Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "sparse.h"
     11 
     12 template<typename SparseMatrixType, typename DenseMatrix, bool IsRowMajor=SparseMatrixType::IsRowMajor> struct test_outer;
     13 
     14 template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,false> {
     15   static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) {
     16     typedef typename SparseMatrixType::Index Index;
     17     Index c  = internal::random<Index>(0,m2.cols()-1);
     18     Index c1 = internal::random<Index>(0,m2.cols()-1);
     19     VERIFY_IS_APPROX(m4=m2.col(c)*refMat2.col(c1).transpose(), refMat4=refMat2.col(c)*refMat2.col(c1).transpose());
     20     VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.col(c).transpose(), refMat4=refMat2.col(c1)*refMat2.col(c).transpose());
     21   }
     22 };
     23 
     24 template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,true> {
     25   static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) {
     26     typedef typename SparseMatrixType::Index Index;
     27     Index r  = internal::random<Index>(0,m2.rows()-1);
     28     Index c1 = internal::random<Index>(0,m2.cols()-1);
     29     VERIFY_IS_APPROX(m4=m2.row(r).transpose()*refMat2.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*refMat2.col(c1).transpose());
     30     VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.row(r), refMat4=refMat2.col(c1)*refMat2.row(r));
     31   }
     32 };
     33 
     34 // (m2,m4,refMat2,refMat4,dv1);
     35 //     VERIFY_IS_APPROX(m4=m2.innerVector(c)*dv1.transpose(), refMat4=refMat2.colVector(c)*dv1.transpose());
     36 //     VERIFY_IS_APPROX(m4=dv1*mcm.col(c).transpose(), refMat4=dv1*refMat2.col(c).transpose());
     37 
     38 template<typename SparseMatrixType> void sparse_product()
     39 {
     40   typedef typename SparseMatrixType::Index Index;
     41   Index n = 100;
     42   const Index rows  = internal::random<Index>(1,n);
     43   const Index cols  = internal::random<Index>(1,n);
     44   const Index depth = internal::random<Index>(1,n);
     45   typedef typename SparseMatrixType::Scalar Scalar;
     46   enum { Flags = SparseMatrixType::Flags };
     47 
     48   double density = (std::max)(8./(rows*cols), 0.1);
     49   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
     50   typedef Matrix<Scalar,Dynamic,1> DenseVector;
     51   typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
     52   typedef SparseVector<Scalar,0,Index> ColSpVector;
     53   typedef SparseVector<Scalar,RowMajor,Index> RowSpVector;
     54 
     55   Scalar s1 = internal::random<Scalar>();
     56   Scalar s2 = internal::random<Scalar>();
     57 
     58   // test matrix-matrix product
     59   {
     60     DenseMatrix refMat2  = DenseMatrix::Zero(rows, depth);
     61     DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows);
     62     DenseMatrix refMat3  = DenseMatrix::Zero(depth, cols);
     63     DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth);
     64     DenseMatrix refMat4  = DenseMatrix::Zero(rows, cols);
     65     DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows);
     66     DenseMatrix refMat5  = DenseMatrix::Random(depth, cols);
     67     DenseMatrix refMat6  = DenseMatrix::Random(rows, rows);
     68     DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
     69 //     DenseVector dv1 = DenseVector::Random(rows);
     70     SparseMatrixType m2 (rows, depth);
     71     SparseMatrixType m2t(depth, rows);
     72     SparseMatrixType m3 (depth, cols);
     73     SparseMatrixType m3t(cols, depth);
     74     SparseMatrixType m4 (rows, cols);
     75     SparseMatrixType m4t(cols, rows);
     76     SparseMatrixType m6(rows, rows);
     77     initSparse(density, refMat2,  m2);
     78     initSparse(density, refMat2t, m2t);
     79     initSparse(density, refMat3,  m3);
     80     initSparse(density, refMat3t, m3t);
     81     initSparse(density, refMat4,  m4);
     82     initSparse(density, refMat4t, m4t);
     83     initSparse(density, refMat6, m6);
     84 
     85 //     int c = internal::random<int>(0,depth-1);
     86 
     87     // sparse * sparse
     88     VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
     89     VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
     90     VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
     91     VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
     92 
     93     VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1);
     94     VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
     95     VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1);
     96 
     97     VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3);
     98     VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3);
     99     VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose());
    100     VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose());
    101 
    102     // test aliasing
    103     m4 = m2; refMat4 = refMat2;
    104     VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3);
    105 
    106     // sparse * dense
    107     VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
    108     VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose());
    109     VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3);
    110     VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
    111 
    112     VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3));
    113     VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5);
    114 
    115     // dense * sparse
    116     VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
    117     VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
    118     VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
    119     VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
    120 
    121     // sparse * dense and dense * sparse outer product
    122     test_outer<SparseMatrixType,DenseMatrix>::run(m2,m4,refMat2,refMat4);
    123 
    124     VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6);
    125 
    126     // sparse matrix * sparse vector
    127     ColSpVector cv0(cols), cv1;
    128     DenseVector dcv0(cols), dcv1;
    129     initSparse(2*density,dcv0, cv0);
    130 
    131     RowSpVector rv0(depth), rv1;
    132     RowDenseVector drv0(depth), drv1(rv1);
    133     initSparse(2*density,drv0, rv0);
    134 
    135     VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
    136     VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3);
    137     VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
    138     VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0);
    139     VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0);
    140   }
    141 
    142   // test matrix - diagonal product
    143   {
    144     DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
    145     DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
    146     DenseMatrix d3 = DenseMatrix::Zero(rows, cols);
    147     DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols));
    148     DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows));
    149     SparseMatrixType m2(rows, cols);
    150     SparseMatrixType m3(rows, cols);
    151     initSparse<Scalar>(density, refM2, m2);
    152     initSparse<Scalar>(density, refM3, m3);
    153     VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
    154     VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
    155     VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2);
    156     VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose());
    157 
    158     // also check with a SparseWrapper:
    159     DenseVector v1 = DenseVector::Random(cols);
    160     DenseVector v2 = DenseVector::Random(rows);
    161     VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal());
    162     VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal());
    163     VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2);
    164     VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose());
    165 
    166     VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal());
    167 
    168     // evaluate to a dense matrix to check the .row() and .col() iterator functions
    169     VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1);
    170     VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
    171     VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2);
    172     VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose());
    173   }
    174 
    175   // test self adjoint products
    176   {
    177     DenseMatrix b = DenseMatrix::Random(rows, rows);
    178     DenseMatrix x = DenseMatrix::Random(rows, rows);
    179     DenseMatrix refX = DenseMatrix::Random(rows, rows);
    180     DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
    181     DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
    182     DenseMatrix refS = DenseMatrix::Zero(rows, rows);
    183     SparseMatrixType mUp(rows, rows);
    184     SparseMatrixType mLo(rows, rows);
    185     SparseMatrixType mS(rows, rows);
    186     do {
    187       initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
    188     } while (refUp.isZero());
    189     refLo = refUp.adjoint();
    190     mLo = mUp.adjoint();
    191     refS = refUp + refLo;
    192     refS.diagonal() *= 0.5;
    193     mS = mUp + mLo;
    194     // TODO be able to address the diagonal....
    195     for (int k=0; k<mS.outerSize(); ++k)
    196       for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
    197         if (it.index() == k)
    198           it.valueRef() *= 0.5;
    199 
    200     VERIFY_IS_APPROX(refS.adjoint(), refS);
    201     VERIFY_IS_APPROX(mS.adjoint(), mS);
    202     VERIFY_IS_APPROX(mS, refS);
    203     VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
    204 
    205     VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b);
    206     VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b);
    207     VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b);
    208 
    209     // sparse selfadjointView * sparse
    210     SparseMatrixType mSres(rows,rows);
    211     VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS,
    212                      refX = refLo.template selfadjointView<Lower>()*refS);
    213     // sparse * sparse selfadjointview
    214     VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
    215                      refX = refS * refLo.template selfadjointView<Lower>());
    216   }
    217 
    218 }
    219 
    220 // New test for Bug in SparseTimeDenseProduct
    221 template<typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test()
    222 {
    223   // This code does not compile with afflicted versions of the bug
    224   SparseMatrixType sm1(3,2);
    225   DenseMatrixType m2(2,2);
    226   sm1.setZero();
    227   m2.setZero();
    228 
    229   DenseMatrixType m3 = sm1*m2;
    230 
    231 
    232   // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct
    233   // bug
    234 
    235   SparseMatrixType sm2(20000,2);
    236   sm2.setZero();
    237   DenseMatrixType m4(sm2*m2);
    238 
    239   VERIFY_IS_APPROX( m4(0,0), 0.0 );
    240 }
    241 
    242 void test_sparse_product()
    243 {
    244   for(int i = 0; i < g_repeat; i++) {
    245     CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,ColMajor> >()) );
    246     CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) );
    247     CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) );
    248     CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) );
    249     CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) );
    250     CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) );
    251   }
    252 }
    253