Home | History | Annotate | Download | only in common
      1 /*
      2 *******************************************************************************
      3 *
      4 *   Copyright (C) 2008-2011, International Business Machines
      5 *   Corporation, Google and others.  All Rights Reserved.
      6 *
      7 *******************************************************************************
      8 */
      9 // Author : eldawy (at) google.com (Mohamed Eldawy)
     10 // ucnvsel.cpp
     11 //
     12 // Purpose: To generate a list of encodings capable of handling
     13 // a given Unicode text
     14 //
     15 // Started 09-April-2008
     16 
     17 /**
     18  * \file
     19  *
     20  * This is an implementation of an encoding selector.
     21  * The goal is, given a unicode string, find the encodings
     22  * this string can be mapped to. To make processing faster
     23  * a trie is built when you call ucnvsel_open() that
     24  * stores all encodings a codepoint can map to
     25  */
     26 
     27 #include "unicode/ucnvsel.h"
     28 
     29 #if !UCONFIG_NO_CONVERSION
     30 
     31 #include <string.h>
     32 
     33 #include "unicode/uchar.h"
     34 #include "unicode/uniset.h"
     35 #include "unicode/ucnv.h"
     36 #include "unicode/ustring.h"
     37 #include "unicode/uchriter.h"
     38 #include "utrie2.h"
     39 #include "propsvec.h"
     40 #include "uassert.h"
     41 #include "ucmndata.h"
     42 #include "uenumimp.h"
     43 #include "cmemory.h"
     44 #include "cstring.h"
     45 
     46 U_NAMESPACE_USE
     47 
     48 struct UConverterSelector {
     49   UTrie2 *trie;              // 16 bit trie containing offsets into pv
     50   uint32_t* pv;              // table of bits!
     51   int32_t pvCount;
     52   char** encodings;          // which encodings did user ask to use?
     53   int32_t encodingsCount;
     54   int32_t encodingStrLength;
     55   uint8_t* swapped;
     56   UBool ownPv, ownEncodingStrings;
     57 };
     58 
     59 static void generateSelectorData(UConverterSelector* result,
     60                                  UPropsVectors *upvec,
     61                                  const USet* excludedCodePoints,
     62                                  const UConverterUnicodeSet whichSet,
     63                                  UErrorCode* status) {
     64   if (U_FAILURE(*status)) {
     65     return;
     66   }
     67 
     68   int32_t columns = (result->encodingsCount+31)/32;
     69 
     70   // set errorValue to all-ones
     71   for (int32_t col = 0; col < columns; col++) {
     72     upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
     73                    col, ~0, ~0, status);
     74   }
     75 
     76   for (int32_t i = 0; i < result->encodingsCount; ++i) {
     77     uint32_t mask;
     78     uint32_t column;
     79     int32_t item_count;
     80     int32_t j;
     81     UConverter* test_converter = ucnv_open(result->encodings[i], status);
     82     if (U_FAILURE(*status)) {
     83       return;
     84     }
     85     USet* unicode_point_set;
     86     unicode_point_set = uset_open(1, 0);  // empty set
     87 
     88     ucnv_getUnicodeSet(test_converter, unicode_point_set,
     89                        whichSet, status);
     90     if (U_FAILURE(*status)) {
     91       ucnv_close(test_converter);
     92       return;
     93     }
     94 
     95     column = i / 32;
     96     mask = 1 << (i%32);
     97     // now iterate over intervals on set i!
     98     item_count = uset_getItemCount(unicode_point_set);
     99 
    100     for (j = 0; j < item_count; ++j) {
    101       UChar32 start_char;
    102       UChar32 end_char;
    103       UErrorCode smallStatus = U_ZERO_ERROR;
    104       uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
    105                    &smallStatus);
    106       if (U_FAILURE(smallStatus)) {
    107         // this will be reached for the converters that fill the set with
    108         // strings. Those should be ignored by our system
    109       } else {
    110         upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
    111                        status);
    112       }
    113     }
    114     ucnv_close(test_converter);
    115     uset_close(unicode_point_set);
    116     if (U_FAILURE(*status)) {
    117       return;
    118     }
    119   }
    120 
    121   // handle excluded encodings! Simply set their values to all 1's in the upvec
    122   if (excludedCodePoints) {
    123     int32_t item_count = uset_getItemCount(excludedCodePoints);
    124     for (int32_t j = 0; j < item_count; ++j) {
    125       UChar32 start_char;
    126       UChar32 end_char;
    127 
    128       uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
    129                    status);
    130       for (int32_t col = 0; col < columns; col++) {
    131         upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
    132                       status);
    133       }
    134     }
    135   }
    136 
    137   // alright. Now, let's put things in the same exact form you'd get when you
    138   // unserialize things.
    139   result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
    140   result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
    141   result->pvCount *= columns;  // number of uint32_t = rows * columns
    142   result->ownPv = TRUE;
    143 }
    144 
    145 /* open a selector. If converterListSize is 0, build for all converters.
    146    If excludedCodePoints is NULL, don't exclude any codepoints */
    147 U_CAPI UConverterSelector* U_EXPORT2
    148 ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
    149              const USet* excludedCodePoints,
    150              const UConverterUnicodeSet whichSet, UErrorCode* status) {
    151   // check if already failed
    152   if (U_FAILURE(*status)) {
    153     return NULL;
    154   }
    155   // ensure args make sense!
    156   if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
    157     *status = U_ILLEGAL_ARGUMENT_ERROR;
    158     return NULL;
    159   }
    160 
    161   // allocate a new converter
    162   LocalUConverterSelectorPointer newSelector(
    163     (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
    164   if (newSelector.isNull()) {
    165     *status = U_MEMORY_ALLOCATION_ERROR;
    166     return NULL;
    167   }
    168   uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
    169 
    170   if (converterListSize == 0) {
    171     converterList = NULL;
    172     converterListSize = ucnv_countAvailable();
    173   }
    174   newSelector->encodings =
    175     (char**)uprv_malloc(converterListSize * sizeof(char*));
    176   if (!newSelector->encodings) {
    177     *status = U_MEMORY_ALLOCATION_ERROR;
    178     return NULL;
    179   }
    180   newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
    181 
    182   // make a backup copy of the list of converters
    183   int32_t totalSize = 0;
    184   int32_t i;
    185   for (i = 0; i < converterListSize; i++) {
    186     totalSize +=
    187       (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
    188   }
    189   // 4-align the totalSize to 4-align the size of the serialized form
    190   int32_t encodingStrPadding = totalSize & 3;
    191   if (encodingStrPadding != 0) {
    192     encodingStrPadding = 4 - encodingStrPadding;
    193   }
    194   newSelector->encodingStrLength = totalSize += encodingStrPadding;
    195   char* allStrings = (char*) uprv_malloc(totalSize);
    196   if (!allStrings) {
    197     *status = U_MEMORY_ALLOCATION_ERROR;
    198     return NULL;
    199   }
    200 
    201   for (i = 0; i < converterListSize; i++) {
    202     newSelector->encodings[i] = allStrings;
    203     uprv_strcpy(newSelector->encodings[i],
    204                 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
    205     allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
    206   }
    207   while (encodingStrPadding > 0) {
    208     *allStrings++ = 0;
    209     --encodingStrPadding;
    210   }
    211 
    212   newSelector->ownEncodingStrings = TRUE;
    213   newSelector->encodingsCount = converterListSize;
    214   UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
    215   generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
    216   upvec_close(upvec);
    217 
    218   if (U_FAILURE(*status)) {
    219     return NULL;
    220   }
    221 
    222   return newSelector.orphan();
    223 }
    224 
    225 /* close opened selector */
    226 U_CAPI void U_EXPORT2
    227 ucnvsel_close(UConverterSelector *sel) {
    228   if (!sel) {
    229     return;
    230   }
    231   if (sel->ownEncodingStrings) {
    232     uprv_free(sel->encodings[0]);
    233   }
    234   uprv_free(sel->encodings);
    235   if (sel->ownPv) {
    236     uprv_free(sel->pv);
    237   }
    238   utrie2_close(sel->trie);
    239   uprv_free(sel->swapped);
    240   uprv_free(sel);
    241 }
    242 
    243 static const UDataInfo dataInfo = {
    244   sizeof(UDataInfo),
    245   0,
    246 
    247   U_IS_BIG_ENDIAN,
    248   U_CHARSET_FAMILY,
    249   U_SIZEOF_UCHAR,
    250   0,
    251 
    252   { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
    253   { 1, 0, 0, 0 },               /* formatVersion */
    254   { 0, 0, 0, 0 }                /* dataVersion */
    255 };
    256 
    257 enum {
    258   UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
    259   UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
    260   UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
    261   UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
    262   UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
    263   UCNVSEL_INDEX_COUNT = 16
    264 };
    265 
    266 /*
    267  * Serialized form of a UConverterSelector, formatVersion 1:
    268  *
    269  * The serialized form begins with a standard ICU DataHeader with a UDataInfo
    270  * as the template above.
    271  * This is followed by:
    272  *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
    273  *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
    274  *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
    275  *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
    276  */
    277 
    278 /* serialize a selector */
    279 U_CAPI int32_t U_EXPORT2
    280 ucnvsel_serialize(const UConverterSelector* sel,
    281                   void* buffer, int32_t bufferCapacity, UErrorCode* status) {
    282   // check if already failed
    283   if (U_FAILURE(*status)) {
    284     return 0;
    285   }
    286   // ensure args make sense!
    287   uint8_t *p = (uint8_t *)buffer;
    288   if (bufferCapacity < 0 ||
    289       (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
    290   ) {
    291     *status = U_ILLEGAL_ARGUMENT_ERROR;
    292     return 0;
    293   }
    294   // add up the size of the serialized form
    295   int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
    296   if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
    297     return 0;
    298   }
    299   *status = U_ZERO_ERROR;
    300 
    301   DataHeader header;
    302   uprv_memset(&header, 0, sizeof(header));
    303   header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
    304   header.dataHeader.magic1 = 0xda;
    305   header.dataHeader.magic2 = 0x27;
    306   uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
    307 
    308   int32_t indexes[UCNVSEL_INDEX_COUNT] = {
    309     serializedTrieSize,
    310     sel->pvCount,
    311     sel->encodingsCount,
    312     sel->encodingStrLength
    313   };
    314 
    315   int32_t totalSize =
    316     header.dataHeader.headerSize +
    317     (int32_t)sizeof(indexes) +
    318     serializedTrieSize +
    319     sel->pvCount * 4 +
    320     sel->encodingStrLength;
    321   indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
    322   if (totalSize > bufferCapacity) {
    323     *status = U_BUFFER_OVERFLOW_ERROR;
    324     return totalSize;
    325   }
    326   // ok, save!
    327   int32_t length = header.dataHeader.headerSize;
    328   uprv_memcpy(p, &header, sizeof(header));
    329   uprv_memset(p + sizeof(header), 0, length - sizeof(header));
    330   p += length;
    331 
    332   length = (int32_t)sizeof(indexes);
    333   uprv_memcpy(p, indexes, length);
    334   p += length;
    335 
    336   utrie2_serialize(sel->trie, p, serializedTrieSize, status);
    337   p += serializedTrieSize;
    338 
    339   length = sel->pvCount * 4;
    340   uprv_memcpy(p, sel->pv, length);
    341   p += length;
    342 
    343   uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
    344   p += sel->encodingStrLength;
    345 
    346   return totalSize;
    347 }
    348 
    349 /**
    350  * swap a selector into the desired Endianness and Asciiness of
    351  * the system. Just as FYI, selectors are always saved in the format
    352  * of the system that created them. They are only converted if used
    353  * on another system. In other words, selectors created on different
    354  * system can be different even if the params are identical (endianness
    355  * and Asciiness differences only)
    356  *
    357  * @param ds pointer to data swapper containing swapping info
    358  * @param inData pointer to incoming data
    359  * @param length length of inData in bytes
    360  * @param outData pointer to output data. Capacity should
    361  *                be at least equal to capacity of inData
    362  * @param status an in/out ICU UErrorCode
    363  * @return 0 on failure, number of bytes swapped on success
    364  *         number of bytes swapped can be smaller than length
    365  */
    366 static int32_t
    367 ucnvsel_swap(const UDataSwapper *ds,
    368              const void *inData, int32_t length,
    369              void *outData, UErrorCode *status) {
    370   /* udata_swapDataHeader checks the arguments */
    371   int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
    372   if(U_FAILURE(*status)) {
    373     return 0;
    374   }
    375 
    376   /* check data format and format version */
    377   const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
    378   if(!(
    379     pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
    380     pInfo->dataFormat[1] == 0x53 &&
    381     pInfo->dataFormat[2] == 0x65 &&
    382     pInfo->dataFormat[3] == 0x6c
    383   )) {
    384     udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
    385                      pInfo->dataFormat[0], pInfo->dataFormat[1],
    386                      pInfo->dataFormat[2], pInfo->dataFormat[3]);
    387     *status = U_INVALID_FORMAT_ERROR;
    388     return 0;
    389   }
    390   if(pInfo->formatVersion[0] != 1) {
    391     udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
    392                      pInfo->formatVersion[0]);
    393     *status = U_UNSUPPORTED_ERROR;
    394     return 0;
    395   }
    396 
    397   if(length >= 0) {
    398     length -= headerSize;
    399     if(length < 16*4) {
    400       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
    401                        length);
    402       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    403       return 0;
    404     }
    405   }
    406 
    407   const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
    408   uint8_t *outBytes = (uint8_t *)outData + headerSize;
    409 
    410   /* read the indexes */
    411   const int32_t *inIndexes = (const int32_t *)inBytes;
    412   int32_t indexes[16];
    413   int32_t i;
    414   for(i = 0; i < 16; ++i) {
    415     indexes[i] = udata_readInt32(ds, inIndexes[i]);
    416   }
    417 
    418   /* get the total length of the data */
    419   int32_t size = indexes[UCNVSEL_INDEX_SIZE];
    420   if(length >= 0) {
    421     if(length < size) {
    422       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
    423                        length);
    424       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    425       return 0;
    426     }
    427 
    428     /* copy the data for inaccessible bytes */
    429     if(inBytes != outBytes) {
    430       uprv_memcpy(outBytes, inBytes, size);
    431     }
    432 
    433     int32_t offset = 0, count;
    434 
    435     /* swap the int32_t indexes[] */
    436     count = UCNVSEL_INDEX_COUNT*4;
    437     ds->swapArray32(ds, inBytes, count, outBytes, status);
    438     offset += count;
    439 
    440     /* swap the UTrie2 */
    441     count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
    442     utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
    443     offset += count;
    444 
    445     /* swap the uint32_t pv[] */
    446     count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
    447     ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
    448     offset += count;
    449 
    450     /* swap the encoding names */
    451     count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    452     ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
    453     offset += count;
    454 
    455     U_ASSERT(offset == size);
    456   }
    457 
    458   return headerSize + size;
    459 }
    460 
    461 /* unserialize a selector */
    462 U_CAPI UConverterSelector* U_EXPORT2
    463 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
    464   // check if already failed
    465   if (U_FAILURE(*status)) {
    466     return NULL;
    467   }
    468   // ensure args make sense!
    469   const uint8_t *p = (const uint8_t *)buffer;
    470   if (length <= 0 ||
    471       (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
    472   ) {
    473     *status = U_ILLEGAL_ARGUMENT_ERROR;
    474     return NULL;
    475   }
    476   // header
    477   if (length < 32) {
    478     // not even enough space for a minimal header
    479     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    480     return NULL;
    481   }
    482   const DataHeader *pHeader = (const DataHeader *)p;
    483   if (!(
    484     pHeader->dataHeader.magic1==0xda &&
    485     pHeader->dataHeader.magic2==0x27 &&
    486     pHeader->info.dataFormat[0] == 0x43 &&
    487     pHeader->info.dataFormat[1] == 0x53 &&
    488     pHeader->info.dataFormat[2] == 0x65 &&
    489     pHeader->info.dataFormat[3] == 0x6c
    490   )) {
    491     /* header not valid or dataFormat not recognized */
    492     *status = U_INVALID_FORMAT_ERROR;
    493     return NULL;
    494   }
    495   if (pHeader->info.formatVersion[0] != 1) {
    496     *status = U_UNSUPPORTED_ERROR;
    497     return NULL;
    498   }
    499   uint8_t* swapped = NULL;
    500   if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
    501       pHeader->info.charsetFamily != U_CHARSET_FAMILY
    502   ) {
    503     // swap the data
    504     UDataSwapper *ds =
    505       udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
    506     int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
    507     if (U_FAILURE(*status)) {
    508       udata_closeSwapper(ds);
    509       return NULL;
    510     }
    511     if (length < totalSize) {
    512       udata_closeSwapper(ds);
    513       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    514       return NULL;
    515     }
    516     swapped = (uint8_t*)uprv_malloc(totalSize);
    517     if (swapped == NULL) {
    518       udata_closeSwapper(ds);
    519       *status = U_MEMORY_ALLOCATION_ERROR;
    520       return NULL;
    521     }
    522     ucnvsel_swap(ds, p, length, swapped, status);
    523     udata_closeSwapper(ds);
    524     if (U_FAILURE(*status)) {
    525       uprv_free(swapped);
    526       return NULL;
    527     }
    528     p = swapped;
    529     pHeader = (const DataHeader *)p;
    530   }
    531   if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
    532     // not even enough space for the header and the indexes
    533     uprv_free(swapped);
    534     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    535     return NULL;
    536   }
    537   p += pHeader->dataHeader.headerSize;
    538   length -= pHeader->dataHeader.headerSize;
    539   // indexes
    540   const int32_t *indexes = (const int32_t *)p;
    541   if (length < indexes[UCNVSEL_INDEX_SIZE]) {
    542     uprv_free(swapped);
    543     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    544     return NULL;
    545   }
    546   p += UCNVSEL_INDEX_COUNT * 4;
    547   // create and populate the selector object
    548   UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
    549   char **encodings =
    550     (char **)uprv_malloc(
    551       indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
    552   if (sel == NULL || encodings == NULL) {
    553     uprv_free(swapped);
    554     uprv_free(sel);
    555     uprv_free(encodings);
    556     *status = U_MEMORY_ALLOCATION_ERROR;
    557     return NULL;
    558   }
    559   uprv_memset(sel, 0, sizeof(UConverterSelector));
    560   sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
    561   sel->encodings = encodings;
    562   sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
    563   sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    564   sel->swapped = swapped;
    565   // trie
    566   sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
    567                                         p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
    568                                         status);
    569   p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
    570   if (U_FAILURE(*status)) {
    571     ucnvsel_close(sel);
    572     return NULL;
    573   }
    574   // bit vectors
    575   sel->pv = (uint32_t *)p;
    576   p += sel->pvCount * 4;
    577   // encoding names
    578   char* s = (char*)p;
    579   for (int32_t i = 0; i < sel->encodingsCount; ++i) {
    580     sel->encodings[i] = s;
    581     s += uprv_strlen(s) + 1;
    582   }
    583   p += sel->encodingStrLength;
    584 
    585   return sel;
    586 }
    587 
    588 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
    589 // iterate over the selected encodings
    590 struct Enumerator {
    591   int16_t* index;
    592   int16_t length;
    593   int16_t cur;
    594   const UConverterSelector* sel;
    595 };
    596 
    597 U_CDECL_BEGIN
    598 
    599 static void U_CALLCONV
    600 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
    601   uprv_free(((Enumerator*)(enumerator->context))->index);
    602   uprv_free(enumerator->context);
    603   uprv_free(enumerator);
    604 }
    605 
    606 
    607 static int32_t U_CALLCONV
    608 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
    609   // check if already failed
    610   if (U_FAILURE(*status)) {
    611     return 0;
    612   }
    613   return ((Enumerator*)(enumerator->context))->length;
    614 }
    615 
    616 
    617 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
    618                                                  int32_t* resultLength,
    619                                                  UErrorCode* status) {
    620   // check if already failed
    621   if (U_FAILURE(*status)) {
    622     return NULL;
    623   }
    624 
    625   int16_t cur = ((Enumerator*)(enumerator->context))->cur;
    626   const UConverterSelector* sel;
    627   const char* result;
    628   if (cur >= ((Enumerator*)(enumerator->context))->length) {
    629     return NULL;
    630   }
    631   sel = ((Enumerator*)(enumerator->context))->sel;
    632   result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
    633   ((Enumerator*)(enumerator->context))->cur++;
    634   if (resultLength) {
    635     *resultLength = (int32_t)uprv_strlen(result);
    636   }
    637   return result;
    638 }
    639 
    640 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
    641                                            UErrorCode* status) {
    642   // check if already failed
    643   if (U_FAILURE(*status)) {
    644     return ;
    645   }
    646   ((Enumerator*)(enumerator->context))->cur = 0;
    647 }
    648 
    649 U_CDECL_END
    650 
    651 
    652 static const UEnumeration defaultEncodings = {
    653   NULL,
    654     NULL,
    655     ucnvsel_close_selector_iterator,
    656     ucnvsel_count_encodings,
    657     uenum_unextDefault,
    658     ucnvsel_next_encoding,
    659     ucnvsel_reset_iterator
    660 };
    661 
    662 
    663 // internal fn to intersect two sets of masks
    664 // returns whether the mask has reduced to all zeros
    665 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
    666   int32_t i;
    667   uint32_t oredDest = 0;
    668   for (i = 0 ; i < len ; ++i) {
    669     oredDest |= (dest[i] &= source1[i]);
    670   }
    671   return oredDest == 0;
    672 }
    673 
    674 // internal fn to count how many 1's are there in a mask
    675 // algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
    676 static int16_t countOnes(uint32_t* mask, int32_t len) {
    677   int32_t i, totalOnes = 0;
    678   for (i = 0 ; i < len ; ++i) {
    679     uint32_t ent = mask[i];
    680     for (; ent; totalOnes++)
    681     {
    682       ent &= ent - 1; // clear the least significant bit set
    683     }
    684   }
    685   return totalOnes;
    686 }
    687 
    688 
    689 /* internal function! */
    690 static UEnumeration *selectForMask(const UConverterSelector* sel,
    691                                    uint32_t *mask, UErrorCode *status) {
    692   // this is the context we will use. Store a table of indices to which
    693   // encodings are legit.
    694   struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
    695   if (result == NULL) {
    696     uprv_free(mask);
    697     *status = U_MEMORY_ALLOCATION_ERROR;
    698     return NULL;
    699   }
    700   result->index = NULL;  // this will be allocated later!
    701   result->length = result->cur = 0;
    702   result->sel = sel;
    703 
    704   UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
    705   if (en == NULL) {
    706     // TODO(markus): Combine Enumerator and UEnumeration into one struct.
    707     uprv_free(mask);
    708     uprv_free(result);
    709     *status = U_MEMORY_ALLOCATION_ERROR;
    710     return NULL;
    711   }
    712   memcpy(en, &defaultEncodings, sizeof(UEnumeration));
    713   en->context = result;
    714 
    715   int32_t columns = (sel->encodingsCount+31)/32;
    716   int16_t numOnes = countOnes(mask, columns);
    717   // now, we know the exact space we need for index
    718   if (numOnes > 0) {
    719     result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
    720 
    721     int32_t i, j;
    722     int16_t k = 0;
    723     for (j = 0 ; j < columns; j++) {
    724       uint32_t v = mask[j];
    725       for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
    726         if ((v & 1) != 0) {
    727           result->index[result->length++] = k;
    728         }
    729         v >>= 1;
    730       }
    731     }
    732   } //otherwise, index will remain NULL (and will never be touched by
    733     //the enumerator code anyway)
    734   uprv_free(mask);
    735   return en;
    736 }
    737 
    738 /* check a string against the selector - UTF16 version */
    739 U_CAPI UEnumeration * U_EXPORT2
    740 ucnvsel_selectForString(const UConverterSelector* sel,
    741                         const UChar *s, int32_t length, UErrorCode *status) {
    742   // check if already failed
    743   if (U_FAILURE(*status)) {
    744     return NULL;
    745   }
    746   // ensure args make sense!
    747   if (sel == NULL || (s == NULL && length != 0)) {
    748     *status = U_ILLEGAL_ARGUMENT_ERROR;
    749     return NULL;
    750   }
    751 
    752   int32_t columns = (sel->encodingsCount+31)/32;
    753   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
    754   if (mask == NULL) {
    755     *status = U_MEMORY_ALLOCATION_ERROR;
    756     return NULL;
    757   }
    758   uprv_memset(mask, ~0, columns *4);
    759 
    760   if(s!=NULL) {
    761     const UChar *limit;
    762     if (length >= 0) {
    763       limit = s + length;
    764     } else {
    765       limit = NULL;
    766     }
    767 
    768     while (limit == NULL ? *s != 0 : s != limit) {
    769       UChar32 c;
    770       uint16_t pvIndex;
    771       UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
    772       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
    773         break;
    774       }
    775     }
    776   }
    777   return selectForMask(sel, mask, status);
    778 }
    779 
    780 /* check a string against the selector - UTF8 version */
    781 U_CAPI UEnumeration * U_EXPORT2
    782 ucnvsel_selectForUTF8(const UConverterSelector* sel,
    783                       const char *s, int32_t length, UErrorCode *status) {
    784   // check if already failed
    785   if (U_FAILURE(*status)) {
    786     return NULL;
    787   }
    788   // ensure args make sense!
    789   if (sel == NULL || (s == NULL && length != 0)) {
    790     *status = U_ILLEGAL_ARGUMENT_ERROR;
    791     return NULL;
    792   }
    793 
    794   int32_t columns = (sel->encodingsCount+31)/32;
    795   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
    796   if (mask == NULL) {
    797     *status = U_MEMORY_ALLOCATION_ERROR;
    798     return NULL;
    799   }
    800   uprv_memset(mask, ~0, columns *4);
    801 
    802   if (length < 0) {
    803     length = (int32_t)uprv_strlen(s);
    804   }
    805 
    806   if(s!=NULL) {
    807     const char *limit = s + length;
    808 
    809     while (s != limit) {
    810       uint16_t pvIndex;
    811       UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
    812       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
    813         break;
    814       }
    815     }
    816   }
    817   return selectForMask(sel, mask, status);
    818 }
    819 
    820 #endif  // !UCONFIG_NO_CONVERSION
    821