Home | History | Annotate | Download | only in i18n
      1 /************************************************************************
      2  * Copyright (C) 1996-2012, International Business Machines Corporation
      3  * and others. All Rights Reserved.
      4  ************************************************************************
      5  *  2003-nov-07   srl       Port from Java
      6  */
      7 
      8 #include "astro.h"
      9 
     10 #if !UCONFIG_NO_FORMATTING
     11 
     12 #include "unicode/calendar.h"
     13 #include <math.h>
     14 #include <float.h>
     15 #include "unicode/putil.h"
     16 #include "uhash.h"
     17 #include "umutex.h"
     18 #include "ucln_in.h"
     19 #include "putilimp.h"
     20 #include <stdio.h>  // for toString()
     21 
     22 #if defined (PI)
     23 #undef PI
     24 #endif
     25 
     26 #ifdef U_DEBUG_ASTRO
     27 # include "uresimp.h" // for debugging
     28 
     29 static void debug_astro_loc(const char *f, int32_t l)
     30 {
     31   fprintf(stderr, "%s:%d: ", f, l);
     32 }
     33 
     34 static void debug_astro_msg(const char *pat, ...)
     35 {
     36   va_list ap;
     37   va_start(ap, pat);
     38   vfprintf(stderr, pat, ap);
     39   fflush(stderr);
     40 }
     41 #include "unicode/datefmt.h"
     42 #include "unicode/ustring.h"
     43 static const char * debug_astro_date(UDate d) {
     44   static char gStrBuf[1024];
     45   static DateFormat *df = NULL;
     46   if(df == NULL) {
     47     df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
     48     df->adoptTimeZone(TimeZone::getGMT()->clone());
     49   }
     50   UnicodeString str;
     51   df->format(d,str);
     52   u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
     53   return gStrBuf;
     54 }
     55 
     56 // must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
     57 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
     58 #else
     59 #define U_DEBUG_ASTRO_MSG(x)
     60 #endif
     61 
     62 static inline UBool isINVALID(double d) {
     63   return(uprv_isNaN(d));
     64 }
     65 
     66 static UMutex ccLock = U_MUTEX_INITIALIZER;
     67 
     68 U_CDECL_BEGIN
     69 static UBool calendar_astro_cleanup(void) {
     70   return TRUE;
     71 }
     72 U_CDECL_END
     73 
     74 U_NAMESPACE_BEGIN
     75 
     76 /**
     77  * The number of standard hours in one sidereal day.
     78  * Approximately 24.93.
     79  * @internal
     80  * @deprecated ICU 2.4. This class may be removed or modified.
     81  */
     82 #define SIDEREAL_DAY (23.93446960027)
     83 
     84 /**
     85  * The number of sidereal hours in one mean solar day.
     86  * Approximately 24.07.
     87  * @internal
     88  * @deprecated ICU 2.4. This class may be removed or modified.
     89  */
     90 #define SOLAR_DAY  (24.065709816)
     91 
     92 /**
     93  * The average number of solar days from one new moon to the next.  This is the time
     94  * it takes for the moon to return the same ecliptic longitude as the sun.
     95  * It is longer than the sidereal month because the sun's longitude increases
     96  * during the year due to the revolution of the earth around the sun.
     97  * Approximately 29.53.
     98  *
     99  * @see #SIDEREAL_MONTH
    100  * @internal
    101  * @deprecated ICU 2.4. This class may be removed or modified.
    102  */
    103 const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
    104 
    105 /**
    106  * The average number of days it takes
    107  * for the moon to return to the same ecliptic longitude relative to the
    108  * stellar background.  This is referred to as the sidereal month.
    109  * It is shorter than the synodic month due to
    110  * the revolution of the earth around the sun.
    111  * Approximately 27.32.
    112  *
    113  * @see #SYNODIC_MONTH
    114  * @internal
    115  * @deprecated ICU 2.4. This class may be removed or modified.
    116  */
    117 #define SIDEREAL_MONTH  27.32166
    118 
    119 /**
    120  * The average number number of days between successive vernal equinoxes.
    121  * Due to the precession of the earth's
    122  * axis, this is not precisely the same as the sidereal year.
    123  * Approximately 365.24
    124  *
    125  * @see #SIDEREAL_YEAR
    126  * @internal
    127  * @deprecated ICU 2.4. This class may be removed or modified.
    128  */
    129 #define TROPICAL_YEAR  365.242191
    130 
    131 /**
    132  * The average number of days it takes
    133  * for the sun to return to the same position against the fixed stellar
    134  * background.  This is the duration of one orbit of the earth about the sun
    135  * as it would appear to an outside observer.
    136  * Due to the precession of the earth's
    137  * axis, this is not precisely the same as the tropical year.
    138  * Approximately 365.25.
    139  *
    140  * @see #TROPICAL_YEAR
    141  * @internal
    142  * @deprecated ICU 2.4. This class may be removed or modified.
    143  */
    144 #define SIDEREAL_YEAR  365.25636
    145 
    146 //-------------------------------------------------------------------------
    147 // Time-related constants
    148 //-------------------------------------------------------------------------
    149 
    150 /**
    151  * The number of milliseconds in one second.
    152  * @internal
    153  * @deprecated ICU 2.4. This class may be removed or modified.
    154  */
    155 #define SECOND_MS  U_MILLIS_PER_SECOND
    156 
    157 /**
    158  * The number of milliseconds in one minute.
    159  * @internal
    160  * @deprecated ICU 2.4. This class may be removed or modified.
    161  */
    162 #define MINUTE_MS  U_MILLIS_PER_MINUTE
    163 
    164 /**
    165  * The number of milliseconds in one hour.
    166  * @internal
    167  * @deprecated ICU 2.4. This class may be removed or modified.
    168  */
    169 #define HOUR_MS   U_MILLIS_PER_HOUR
    170 
    171 /**
    172  * The number of milliseconds in one day.
    173  * @internal
    174  * @deprecated ICU 2.4. This class may be removed or modified.
    175  */
    176 #define DAY_MS U_MILLIS_PER_DAY
    177 
    178 /**
    179  * The start of the julian day numbering scheme used by astronomers, which
    180  * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
    181  * since 1/1/1970 AD (Gregorian), a negative number.
    182  * Note that julian day numbers and
    183  * the Julian calendar are <em>not</em> the same thing.  Also note that
    184  * julian days start at <em>noon</em>, not midnight.
    185  * @internal
    186  * @deprecated ICU 2.4. This class may be removed or modified.
    187  */
    188 #define JULIAN_EPOCH_MS  -210866760000000.0
    189 
    190 
    191 /**
    192  * Milliseconds value for 0.0 January 2000 AD.
    193  */
    194 #define EPOCH_2000_MS  946598400000.0
    195 
    196 //-------------------------------------------------------------------------
    197 // Assorted private data used for conversions
    198 //-------------------------------------------------------------------------
    199 
    200 // My own copies of these so compilers are more likely to optimize them away
    201 const double CalendarAstronomer::PI = 3.14159265358979323846;
    202 
    203 #define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
    204 #define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
    205 #define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
    206 #define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
    207 
    208 /***
    209  * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
    210  * The modulus operator.
    211  */
    212 inline static double normalize(double value, double range)  {
    213     return value - range * ClockMath::floorDivide(value, range);
    214 }
    215 
    216 /**
    217  * Normalize an angle so that it's in the range 0 - 2pi.
    218  * For positive angles this is just (angle % 2pi), but the Java
    219  * mod operator doesn't work that way for negative numbers....
    220  */
    221 inline static double norm2PI(double angle)  {
    222     return normalize(angle, CalendarAstronomer::PI * 2.0);
    223 }
    224 
    225 /**
    226  * Normalize an angle into the range -PI - PI
    227  */
    228 inline static  double normPI(double angle)  {
    229     return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
    230 }
    231 
    232 //-------------------------------------------------------------------------
    233 // Constructors
    234 //-------------------------------------------------------------------------
    235 
    236 /**
    237  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
    238  * the current date and time.
    239  * @internal
    240  * @deprecated ICU 2.4. This class may be removed or modified.
    241  */
    242 CalendarAstronomer::CalendarAstronomer():
    243   fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
    244   clearCache();
    245 }
    246 
    247 /**
    248  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
    249  * the specified date and time.
    250  * @internal
    251  * @deprecated ICU 2.4. This class may be removed or modified.
    252  */
    253 CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
    254   clearCache();
    255 }
    256 
    257 /**
    258  * Construct a new <code>CalendarAstronomer</code> object with the given
    259  * latitude and longitude.  The object's time is set to the current
    260  * date and time.
    261  * <p>
    262  * @param longitude The desired longitude, in <em>degrees</em> east of
    263  *                  the Greenwich meridian.
    264  *
    265  * @param latitude  The desired latitude, in <em>degrees</em>.  Positive
    266  *                  values signify North, negative South.
    267  *
    268  * @see java.util.Date#getTime()
    269  * @internal
    270  * @deprecated ICU 2.4. This class may be removed or modified.
    271  */
    272 CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
    273   fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
    274   fLongitude = normPI(longitude * (double)DEG_RAD);
    275   fLatitude  = normPI(latitude  * (double)DEG_RAD);
    276   fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
    277   clearCache();
    278 }
    279 
    280 CalendarAstronomer::~CalendarAstronomer()
    281 {
    282 }
    283 
    284 //-------------------------------------------------------------------------
    285 // Time and date getters and setters
    286 //-------------------------------------------------------------------------
    287 
    288 /**
    289  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
    290  * astronomical calculations are performed based on this time setting.
    291  *
    292  * @param aTime the date and time, expressed as the number of milliseconds since
    293  *              1/1/1970 0:00 GMT (Gregorian).
    294  *
    295  * @see #setDate
    296  * @see #getTime
    297  * @internal
    298  * @deprecated ICU 2.4. This class may be removed or modified.
    299  */
    300 void CalendarAstronomer::setTime(UDate aTime) {
    301     fTime = aTime;
    302     U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
    303     clearCache();
    304 }
    305 
    306 /**
    307  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
    308  * astronomical calculations are performed based on this time setting.
    309  *
    310  * @param jdn   the desired time, expressed as a "julian day number",
    311  *              which is the number of elapsed days since
    312  *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day
    313  *              numbers start at <em>noon</em>.  To get the jdn for
    314  *              the corresponding midnight, subtract 0.5.
    315  *
    316  * @see #getJulianDay
    317  * @see #JULIAN_EPOCH_MS
    318  * @internal
    319  * @deprecated ICU 2.4. This class may be removed or modified.
    320  */
    321 void CalendarAstronomer::setJulianDay(double jdn) {
    322     fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
    323     clearCache();
    324     julianDay = jdn;
    325 }
    326 
    327 /**
    328  * Get the current time of this <code>CalendarAstronomer</code> object,
    329  * represented as the number of milliseconds since
    330  * 1/1/1970 AD 0:00 GMT (Gregorian).
    331  *
    332  * @see #setTime
    333  * @see #getDate
    334  * @internal
    335  * @deprecated ICU 2.4. This class may be removed or modified.
    336  */
    337 UDate CalendarAstronomer::getTime() {
    338     return fTime;
    339 }
    340 
    341 /**
    342  * Get the current time of this <code>CalendarAstronomer</code> object,
    343  * expressed as a "julian day number", which is the number of elapsed
    344  * days since 1/1/4713 BC (Julian), 12:00 GMT.
    345  *
    346  * @see #setJulianDay
    347  * @see #JULIAN_EPOCH_MS
    348  * @internal
    349  * @deprecated ICU 2.4. This class may be removed or modified.
    350  */
    351 double CalendarAstronomer::getJulianDay() {
    352     if (isINVALID(julianDay)) {
    353         julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
    354     }
    355     return julianDay;
    356 }
    357 
    358 /**
    359  * Return this object's time expressed in julian centuries:
    360  * the number of centuries after 1/1/1900 AD, 12:00 GMT
    361  *
    362  * @see #getJulianDay
    363  * @internal
    364  * @deprecated ICU 2.4. This class may be removed or modified.
    365  */
    366 double CalendarAstronomer::getJulianCentury() {
    367     if (isINVALID(julianCentury)) {
    368         julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
    369     }
    370     return julianCentury;
    371 }
    372 
    373 /**
    374  * Returns the current Greenwich sidereal time, measured in hours
    375  * @internal
    376  * @deprecated ICU 2.4. This class may be removed or modified.
    377  */
    378 double CalendarAstronomer::getGreenwichSidereal() {
    379     if (isINVALID(siderealTime)) {
    380         // See page 86 of "Practial Astronomy with your Calculator",
    381         // by Peter Duffet-Smith, for details on the algorithm.
    382 
    383         double UT = normalize(fTime/(double)HOUR_MS, 24.);
    384 
    385         siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
    386     }
    387     return siderealTime;
    388 }
    389 
    390 double CalendarAstronomer::getSiderealOffset() {
    391     if (isINVALID(siderealT0)) {
    392         double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5;
    393         double S   = JD - 2451545.0;
    394         double T   = S / 36525.0;
    395         siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
    396     }
    397     return siderealT0;
    398 }
    399 
    400 /**
    401  * Returns the current local sidereal time, measured in hours
    402  * @internal
    403  * @deprecated ICU 2.4. This class may be removed or modified.
    404  */
    405 double CalendarAstronomer::getLocalSidereal() {
    406     return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
    407 }
    408 
    409 /**
    410  * Converts local sidereal time to Universal Time.
    411  *
    412  * @param lst   The Local Sidereal Time, in hours since sidereal midnight
    413  *              on this object's current date.
    414  *
    415  * @return      The corresponding Universal Time, in milliseconds since
    416  *              1 Jan 1970, GMT.
    417  */
    418 double CalendarAstronomer::lstToUT(double lst) {
    419     // Convert to local mean time
    420     double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
    421 
    422     // Then find local midnight on this day
    423     double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
    424 
    425     //out("    lt  =" + lt + " hours");
    426     //out("    base=" + new Date(base));
    427 
    428     return base + (long)(lt * HOUR_MS);
    429 }
    430 
    431 
    432 //-------------------------------------------------------------------------
    433 // Coordinate transformations, all based on the current time of this object
    434 //-------------------------------------------------------------------------
    435 
    436 /**
    437  * Convert from ecliptic to equatorial coordinates.
    438  *
    439  * @param ecliptic  A point in the sky in ecliptic coordinates.
    440  * @return          The corresponding point in equatorial coordinates.
    441  * @internal
    442  * @deprecated ICU 2.4. This class may be removed or modified.
    443  */
    444 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
    445 {
    446     return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
    447 }
    448 
    449 /**
    450  * Convert from ecliptic to equatorial coordinates.
    451  *
    452  * @param eclipLong     The ecliptic longitude
    453  * @param eclipLat      The ecliptic latitude
    454  *
    455  * @return              The corresponding point in equatorial coordinates.
    456  * @internal
    457  * @deprecated ICU 2.4. This class may be removed or modified.
    458  */
    459 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
    460 {
    461     // See page 42 of "Practial Astronomy with your Calculator",
    462     // by Peter Duffet-Smith, for details on the algorithm.
    463 
    464     double obliq = eclipticObliquity();
    465     double sinE = ::sin(obliq);
    466     double cosE = cos(obliq);
    467 
    468     double sinL = ::sin(eclipLong);
    469     double cosL = cos(eclipLong);
    470 
    471     double sinB = ::sin(eclipLat);
    472     double cosB = cos(eclipLat);
    473     double tanB = tan(eclipLat);
    474 
    475     result.set(atan2(sinL*cosE - tanB*sinE, cosL),
    476         asin(sinB*cosE + cosB*sinE*sinL) );
    477     return result;
    478 }
    479 
    480 /**
    481  * Convert from ecliptic longitude to equatorial coordinates.
    482  *
    483  * @param eclipLong     The ecliptic longitude
    484  *
    485  * @return              The corresponding point in equatorial coordinates.
    486  * @internal
    487  * @deprecated ICU 2.4. This class may be removed or modified.
    488  */
    489 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
    490 {
    491     return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize
    492 }
    493 
    494 /**
    495  * @internal
    496  * @deprecated ICU 2.4. This class may be removed or modified.
    497  */
    498 CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
    499 {
    500     Equatorial equatorial;
    501     eclipticToEquatorial(equatorial, eclipLong);
    502 
    503     double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle
    504 
    505     double sinH = ::sin(H);
    506     double cosH = cos(H);
    507     double sinD = ::sin(equatorial.declination);
    508     double cosD = cos(equatorial.declination);
    509     double sinL = ::sin(fLatitude);
    510     double cosL = cos(fLatitude);
    511 
    512     double altitude = asin(sinD*sinL + cosD*cosL*cosH);
    513     double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
    514 
    515     result.set(azimuth, altitude);
    516     return result;
    517 }
    518 
    519 
    520 //-------------------------------------------------------------------------
    521 // The Sun
    522 //-------------------------------------------------------------------------
    523 
    524 //
    525 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
    526 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
    527 //
    528 #define JD_EPOCH  2447891.5 // Julian day of epoch
    529 
    530 #define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
    531 #define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
    532 #define SUN_E         0.016713          // Eccentricity of orbit
    533 //double sunR0        1.495585e8        // Semi-major axis in KM
    534 //double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
    535 
    536 // The following three methods, which compute the sun parameters
    537 // given above for an arbitrary epoch (whatever time the object is
    538 // set to), make only a small difference as compared to using the
    539 // above constants.  E.g., Sunset times might differ by ~12
    540 // seconds.  Furthermore, the eta-g computation is befuddled by
    541 // Duffet-Smith's incorrect coefficients (p.86).  I've corrected
    542 // the first-order coefficient but the others may be off too - no
    543 // way of knowing without consulting another source.
    544 
    545 //  /**
    546 //   * Return the sun's ecliptic longitude at perigee for the current time.
    547 //   * See Duffett-Smith, p. 86.
    548 //   * @return radians
    549 //   */
    550 //  private double getSunOmegaG() {
    551 //      double T = getJulianCentury();
    552 //      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
    553 //  }
    554 
    555 //  /**
    556 //   * Return the sun's ecliptic longitude for the current time.
    557 //   * See Duffett-Smith, p. 86.
    558 //   * @return radians
    559 //   */
    560 //  private double getSunEtaG() {
    561 //      double T = getJulianCentury();
    562 //      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
    563 //      //
    564 //      // The above line is from Duffett-Smith, and yields manifestly wrong
    565 //      // results.  The below constant is derived empirically to match the
    566 //      // constant he gives for the 1990 EPOCH.
    567 //      //
    568 //      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
    569 //  }
    570 
    571 //  /**
    572 //   * Return the sun's eccentricity of orbit for the current time.
    573 //   * See Duffett-Smith, p. 86.
    574 //   * @return double
    575 //   */
    576 //  private double getSunE() {
    577 //      double T = getJulianCentury();
    578 //      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
    579 //  }
    580 
    581 /**
    582  * Find the "true anomaly" (longitude) of an object from
    583  * its mean anomaly and the eccentricity of its orbit.  This uses
    584  * an iterative solution to Kepler's equation.
    585  *
    586  * @param meanAnomaly   The object's longitude calculated as if it were in
    587  *                      a regular, circular orbit, measured in radians
    588  *                      from the point of perigee.
    589  *
    590  * @param eccentricity  The eccentricity of the orbit
    591  *
    592  * @return The true anomaly (longitude) measured in radians
    593  */
    594 static double trueAnomaly(double meanAnomaly, double eccentricity)
    595 {
    596     // First, solve Kepler's equation iteratively
    597     // Duffett-Smith, p.90
    598     double delta;
    599     double E = meanAnomaly;
    600     do {
    601         delta = E - eccentricity * ::sin(E) - meanAnomaly;
    602         E = E - delta / (1 - eccentricity * ::cos(E));
    603     }
    604     while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
    605 
    606     return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
    607                                              /(1-eccentricity) ) );
    608 }
    609 
    610 /**
    611  * The longitude of the sun at the time specified by this object.
    612  * The longitude is measured in radians along the ecliptic
    613  * from the "first point of Aries," the point at which the ecliptic
    614  * crosses the earth's equatorial plane at the vernal equinox.
    615  * <p>
    616  * Currently, this method uses an approximation of the two-body Kepler's
    617  * equation for the earth and the sun.  It does not take into account the
    618  * perturbations caused by the other planets, the moon, etc.
    619  * @internal
    620  * @deprecated ICU 2.4. This class may be removed or modified.
    621  */
    622 double CalendarAstronomer::getSunLongitude()
    623 {
    624     // See page 86 of "Practial Astronomy with your Calculator",
    625     // by Peter Duffet-Smith, for details on the algorithm.
    626 
    627     if (isINVALID(sunLongitude)) {
    628         getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
    629     }
    630     return sunLongitude;
    631 }
    632 
    633 /**
    634  * TODO Make this public when the entire class is package-private.
    635  */
    636 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
    637 {
    638     // See page 86 of "Practial Astronomy with your Calculator",
    639     // by Peter Duffet-Smith, for details on the algorithm.
    640 
    641     double day = jDay - JD_EPOCH;       // Days since epoch
    642 
    643     // Find the angular distance the sun in a fictitious
    644     // circular orbit has travelled since the epoch.
    645     double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
    646 
    647     // The epoch wasn't at the sun's perigee; find the angular distance
    648     // since perigee, which is called the "mean anomaly"
    649     meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
    650 
    651     // Now find the "true anomaly", e.g. the real solar longitude
    652     // by solving Kepler's equation for an elliptical orbit
    653     // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
    654     // equations; omega_g is to be correct.
    655     longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
    656 }
    657 
    658 /**
    659  * The position of the sun at this object's current date and time,
    660  * in equatorial coordinates.
    661  * @internal
    662  * @deprecated ICU 2.4. This class may be removed or modified.
    663  */
    664 CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
    665     return eclipticToEquatorial(result, getSunLongitude(), 0);
    666 }
    667 
    668 
    669 /**
    670  * Constant representing the vernal equinox.
    671  * For use with {@link #getSunTime getSunTime}.
    672  * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
    673  * @internal
    674  * @deprecated ICU 2.4. This class may be removed or modified.
    675  */
    676 /*double CalendarAstronomer::VERNAL_EQUINOX() {
    677   return 0;
    678 }*/
    679 
    680 /**
    681  * Constant representing the summer solstice.
    682  * For use with {@link #getSunTime getSunTime}.
    683  * Note: In this case, "summer" refers to the northern hemisphere's seasons.
    684  * @internal
    685  * @deprecated ICU 2.4. This class may be removed or modified.
    686  */
    687 double CalendarAstronomer::SUMMER_SOLSTICE() {
    688     return  (CalendarAstronomer::PI/2);
    689 }
    690 
    691 /**
    692  * Constant representing the autumnal equinox.
    693  * For use with {@link #getSunTime getSunTime}.
    694  * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
    695  * @internal
    696  * @deprecated ICU 2.4. This class may be removed or modified.
    697  */
    698 /*double CalendarAstronomer::AUTUMN_EQUINOX() {
    699   return  (CalendarAstronomer::PI);
    700 }*/
    701 
    702 /**
    703  * Constant representing the winter solstice.
    704  * For use with {@link #getSunTime getSunTime}.
    705  * Note: In this case, "winter" refers to the northern hemisphere's seasons.
    706  * @internal
    707  * @deprecated ICU 2.4. This class may be removed or modified.
    708  */
    709 double CalendarAstronomer::WINTER_SOLSTICE() {
    710     return  ((CalendarAstronomer::PI*3)/2);
    711 }
    712 
    713 CalendarAstronomer::AngleFunc::~AngleFunc() {}
    714 
    715 /**
    716  * Find the next time at which the sun's ecliptic longitude will have
    717  * the desired value.
    718  * @internal
    719  * @deprecated ICU 2.4. This class may be removed or modified.
    720  */
    721 class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
    722 public:
    723     virtual ~SunTimeAngleFunc();
    724     virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
    725 };
    726 
    727 SunTimeAngleFunc::~SunTimeAngleFunc() {}
    728 
    729 UDate CalendarAstronomer::getSunTime(double desired, UBool next)
    730 {
    731     SunTimeAngleFunc func;
    732     return timeOfAngle( func,
    733                         desired,
    734                         TROPICAL_YEAR,
    735                         MINUTE_MS,
    736                         next);
    737 }
    738 
    739 CalendarAstronomer::CoordFunc::~CoordFunc() {}
    740 
    741 class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
    742 public:
    743     virtual ~RiseSetCoordFunc();
    744     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); }
    745 };
    746 
    747 RiseSetCoordFunc::~RiseSetCoordFunc() {}
    748 
    749 UDate CalendarAstronomer::getSunRiseSet(UBool rise)
    750 {
    751     UDate t0 = fTime;
    752 
    753     // Make a rough guess: 6am or 6pm local time on the current day
    754     double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
    755 
    756     U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
    757     setTime(noon +  ((rise ? -6 : 6) * HOUR_MS));
    758     U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
    759 
    760     RiseSetCoordFunc func;
    761     double t = riseOrSet(func,
    762                          rise,
    763                          .533 * DEG_RAD,        // Angular Diameter
    764                          34. /60.0 * DEG_RAD,    // Refraction correction
    765                          MINUTE_MS / 12.);       // Desired accuracy
    766 
    767     setTime(t0);
    768     return t;
    769 }
    770 
    771 // Commented out - currently unused. ICU 2.6, Alan
    772 //    //-------------------------------------------------------------------------
    773 //    // Alternate Sun Rise/Set
    774 //    // See Duffett-Smith p.93
    775 //    //-------------------------------------------------------------------------
    776 //
    777 //    // This yields worse results (as compared to USNO data) than getSunRiseSet().
    778 //    /**
    779 //     * TODO Make this when the entire class is package-private.
    780 //     */
    781 //    /*public*/ long getSunRiseSet2(boolean rise) {
    782 //        // 1. Calculate coordinates of the sun's center for midnight
    783 //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
    784 //        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0];
    785 //        Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
    786 //
    787 //        // 2. Add ... to lambda to get position 24 hours later
    788 //        double lambda2 = lambda1 + 0.985647*DEG_RAD;
    789 //        Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
    790 //
    791 //        // 3. Calculate LSTs of rising and setting for these two positions
    792 //        double tanL = ::tan(fLatitude);
    793 //        double H = ::acos(-tanL * ::tan(pos1.declination));
    794 //        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
    795 //        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
    796 //               H = ::acos(-tanL * ::tan(pos2.declination));
    797 //        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
    798 //        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
    799 //        if (lst1r > 24) lst1r -= 24;
    800 //        if (lst1s > 24) lst1s -= 24;
    801 //        if (lst2r > 24) lst2r -= 24;
    802 //        if (lst2s > 24) lst2s -= 24;
    803 //
    804 //        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2.
    805 //        double gst1r = lstToGst(lst1r);
    806 //        double gst1s = lstToGst(lst1s);
    807 //        double gst2r = lstToGst(lst2r);
    808 //        double gst2s = lstToGst(lst2s);
    809 //        if (gst1r > gst2r) gst2r += 24;
    810 //        if (gst1s > gst2s) gst2s += 24;
    811 //
    812 //        // 5. Calculate GST at 0h UT of this date
    813 //        double t00 = utToGst(0);
    814 //
    815 //        // 6. Calculate GST at 0h on the observer's longitude
    816 //        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
    817 //        double t00p = t00 - offset*1.002737909;
    818 //        if (t00p < 0) t00p += 24; // do NOT normalize
    819 //
    820 //        // 7. Adjust
    821 //        if (gst1r < t00p) {
    822 //            gst1r += 24;
    823 //            gst2r += 24;
    824 //        }
    825 //        if (gst1s < t00p) {
    826 //            gst1s += 24;
    827 //            gst2s += 24;
    828 //        }
    829 //
    830 //        // 8.
    831 //        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
    832 //        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
    833 //
    834 //        // 9. Correct for parallax, refraction, and sun's diameter
    835 //        double dec = (pos1.declination + pos2.declination) / 2;
    836 //        double psi = ::acos(sin(fLatitude) / cos(dec));
    837 //        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
    838 //        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
    839 //        double delta_t = 240 * y / cos(dec) / 3600; // hours
    840 //
    841 //        // 10. Add correction to GSTs, subtract from GSTr
    842 //        gstr -= delta_t;
    843 //        gsts += delta_t;
    844 //
    845 //        // 11. Convert GST to UT and then to local civil time
    846 //        double ut = gstToUt(rise ? gstr : gsts);
    847 //        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
    848 //        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
    849 //        return midnight + (long) (ut * 3600000);
    850 //    }
    851 
    852 // Commented out - currently unused. ICU 2.6, Alan
    853 //    /**
    854 //     * Convert local sidereal time to Greenwich sidereal time.
    855 //     * Section 15.  Duffett-Smith p.21
    856 //     * @param lst in hours (0..24)
    857 //     * @return GST in hours (0..24)
    858 //     */
    859 //    double lstToGst(double lst) {
    860 //        double delta = fLongitude * 24 / CalendarAstronomer_PI2;
    861 //        return normalize(lst - delta, 24);
    862 //    }
    863 
    864 // Commented out - currently unused. ICU 2.6, Alan
    865 //    /**
    866 //     * Convert UT to GST on this date.
    867 //     * Section 12.  Duffett-Smith p.17
    868 //     * @param ut in hours
    869 //     * @return GST in hours
    870 //     */
    871 //    double utToGst(double ut) {
    872 //        return normalize(getT0() + ut*1.002737909, 24);
    873 //    }
    874 
    875 // Commented out - currently unused. ICU 2.6, Alan
    876 //    /**
    877 //     * Convert GST to UT on this date.
    878 //     * Section 13.  Duffett-Smith p.18
    879 //     * @param gst in hours
    880 //     * @return UT in hours
    881 //     */
    882 //    double gstToUt(double gst) {
    883 //        return normalize(gst - getT0(), 24) * 0.9972695663;
    884 //    }
    885 
    886 // Commented out - currently unused. ICU 2.6, Alan
    887 //    double getT0() {
    888 //        // Common computation for UT <=> GST
    889 //
    890 //        // Find JD for 0h UT
    891 //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
    892 //
    893 //        double s = jd - 2451545.0;
    894 //        double t = s / 36525.0;
    895 //        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
    896 //        return t0;
    897 //    }
    898 
    899 // Commented out - currently unused. ICU 2.6, Alan
    900 //    //-------------------------------------------------------------------------
    901 //    // Alternate Sun Rise/Set
    902 //    // See sci.astro FAQ
    903 //    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
    904 //    //-------------------------------------------------------------------------
    905 //
    906 //    // Note: This method appears to produce inferior accuracy as
    907 //    // compared to getSunRiseSet().
    908 //
    909 //    /**
    910 //     * TODO Make this when the entire class is package-private.
    911 //     */
    912 //    /*public*/ long getSunRiseSet3(boolean rise) {
    913 //
    914 //        // Compute day number for 0.0 Jan 2000 epoch
    915 //        double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
    916 //
    917 //        // Now compute the Local Sidereal Time, LST:
    918 //        //
    919 //        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/
    920 //            fLongitude*RAD_DEG;
    921 //        //
    922 //        // (east long. positive).  Note that LST is here expressed in degrees,
    923 //        // where 15 degrees corresponds to one hour.  Since LST really is an angle,
    924 //        // it's convenient to use one unit---degrees---throughout.
    925 //
    926 //        //    COMPUTING THE SUN'S POSITION
    927 //        //    ----------------------------
    928 //        //
    929 //        // To be able to compute the Sun's rise/set times, you need to be able to
    930 //        // compute the Sun's position at any time.  First compute the "day
    931 //        // number" d as outlined above, for the desired moment.  Next compute:
    932 //        //
    933 //        double oblecl = 23.4393 - 3.563E-7 * d;
    934 //        //
    935 //        double w  =  282.9404  +  4.70935E-5   * d;
    936 //        double M  =  356.0470  +  0.9856002585 * d;
    937 //        double e  =  0.016709  -  1.151E-9     * d;
    938 //        //
    939 //        // This is the obliquity of the ecliptic, plus some of the elements of
    940 //        // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
    941 //        // argument of perihelion, M = mean anomaly, e = eccentricity.
    942 //        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
    943 //        // true, this is still an accurate approximation).  Next compute E, the
    944 //        // eccentric anomaly:
    945 //        //
    946 //        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
    947 //        //
    948 //        // where E and M are in degrees.  This is it---no further iterations are
    949 //        // needed because we know e has a sufficiently small value.  Next compute
    950 //        // the true anomaly, v, and the distance, r:
    951 //        //
    952 //        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e;
    953 //        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
    954 //        //
    955 //        // and
    956 //        //
    957 //        //      r  =  sqrt( A*A + B*B )
    958 //        double v  =  ::atan2( B, A )*RAD_DEG;
    959 //        //
    960 //        // The Sun's true longitude, slon, can now be computed:
    961 //        //
    962 //        double slon  =  v + w;
    963 //        //
    964 //        // Since the Sun is always at the ecliptic (or at least very very close to
    965 //        // it), we can use simplified formulae to convert slon (the Sun's ecliptic
    966 //        // longitude) to sRA and sDec (the Sun's RA and Dec):
    967 //        //
    968 //        //                   ::sin(slon) * cos(oblecl)
    969 //        //     tan(sRA)  =  -------------------------
    970 //        //            cos(slon)
    971 //        //
    972 //        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon)
    973 //        //
    974 //        // As was the case when computing az, the Azimuth, if possible use an
    975 //        // atan2() function to compute sRA.
    976 //
    977 //        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
    978 //
    979 //        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
    980 //        double sDec = ::asin(sin_sDec)*RAD_DEG;
    981 //
    982 //        //    COMPUTING RISE AND SET TIMES
    983 //        //    ----------------------------
    984 //        //
    985 //        // To compute when an object rises or sets, you must compute when it
    986 //        // passes the meridian and the HA of rise/set.  Then the rise time is
    987 //        // the meridian time minus HA for rise/set, and the set time is the
    988 //        // meridian time plus the HA for rise/set.
    989 //        //
    990 //        // To find the meridian time, compute the Local Sidereal Time at 0h local
    991 //        // time (or 0h UT if you prefer to work in UT) as outlined above---name
    992 //        // that quantity LST0.  The Meridian Time, MT, will now be:
    993 //        //
    994 //        //     MT  =  RA - LST0
    995 //        double MT = normalize(sRA - LST, 360);
    996 //        //
    997 //        // where "RA" is the object's Right Ascension (in degrees!).  If negative,
    998 //        // add 360 deg to MT.  If the object is the Sun, leave the time as it is,
    999 //        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
   1000 //        // sidereal to solar time.  Now, compute HA for rise/set, name that
   1001 //        // quantity HA0:
   1002 //        //
   1003 //        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec)
   1004 //        // cos(HA0)  =  ---------------------------------
   1005 //        //                      cos(lat) * cos(Dec)
   1006 //        //
   1007 //        // where h0 is the altitude selected to represent rise/set.  For a purely
   1008 //        // mathematical horizon, set h0 = 0 and simplify to:
   1009 //        //
   1010 //        //    cos(HA0)  =  - tan(lat) * tan(Dec)
   1011 //        //
   1012 //        // If you want to account for refraction on the atmosphere, set h0 = -35/60
   1013 //        // degrees (-35 arc minutes), and if you want to compute the rise/set times
   1014 //        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
   1015 //        //
   1016 //        double h0 = -50/60 * DEG_RAD;
   1017 //
   1018 //        double HA0 = ::acos(
   1019 //          (sin(h0) - ::sin(fLatitude) * sin_sDec) /
   1020 //          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
   1021 //
   1022 //        // When HA0 has been computed, leave it as it is for the Sun but multiply
   1023 //        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
   1024 //        // solar time.  Finally compute:
   1025 //        //
   1026 //        //    Rise time  =  MT - HA0
   1027 //        //    Set  time  =  MT + HA0
   1028 //        //
   1029 //        // convert the times from degrees to hours by dividing by 15.
   1030 //        //
   1031 //        // If you'd like to check that your calculations are accurate or just
   1032 //        // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
   1033 //        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
   1034 //
   1035 //        double result = MT + (rise ? -HA0 : HA0); // in degrees
   1036 //
   1037 //        // Find UT midnight on this day
   1038 //        long midnight = DAY_MS * (time / DAY_MS);
   1039 //
   1040 //        return midnight + (long) (result * 3600000 / 15);
   1041 //    }
   1042 
   1043 //-------------------------------------------------------------------------
   1044 // The Moon
   1045 //-------------------------------------------------------------------------
   1046 
   1047 #define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
   1048 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
   1049 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
   1050 #define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
   1051 #define moonE  (   0.054900 )            // Eccentricity of orbit
   1052 
   1053 // These aren't used right now
   1054 #define moonA  (   3.84401e5 )           // semi-major axis (km)
   1055 #define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
   1056 #define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
   1057 
   1058 /**
   1059  * The position of the moon at the time set on this
   1060  * object, in equatorial coordinates.
   1061  * @internal
   1062  * @deprecated ICU 2.4. This class may be removed or modified.
   1063  */
   1064 const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
   1065 {
   1066     //
   1067     // See page 142 of "Practial Astronomy with your Calculator",
   1068     // by Peter Duffet-Smith, for details on the algorithm.
   1069     //
   1070     if (moonPositionSet == FALSE) {
   1071         // Calculate the solar longitude.  Has the side effect of
   1072         // filling in "meanAnomalySun" as well.
   1073         getSunLongitude();
   1074 
   1075         //
   1076         // Find the # of days since the epoch of our orbital parameters.
   1077         // TODO: Convert the time of day portion into ephemeris time
   1078         //
   1079         double day = getJulianDay() - JD_EPOCH;       // Days since epoch
   1080 
   1081         // Calculate the mean longitude and anomaly of the moon, based on
   1082         // a circular orbit.  Similar to the corresponding solar calculation.
   1083         double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
   1084         meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
   1085 
   1086         //
   1087         // Calculate the following corrections:
   1088         //  Evection:   the sun's gravity affects the moon's eccentricity
   1089         //  Annual Eqn: variation in the effect due to earth-sun distance
   1090         //  A3:         correction factor (for ???)
   1091         //
   1092         double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
   1093             - meanAnomalyMoon);
   1094         double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
   1095         double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
   1096 
   1097         meanAnomalyMoon += evection - annual - a3;
   1098 
   1099         //
   1100         // More correction factors:
   1101         //  center  equation of the center correction
   1102         //  a4      yet another error correction (???)
   1103         //
   1104         // TODO: Skip the equation of the center correction and solve Kepler's eqn?
   1105         //
   1106         double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
   1107         double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
   1108 
   1109         // Now find the moon's corrected longitude
   1110         moonLongitude = meanLongitude + evection + center - annual + a4;
   1111 
   1112         //
   1113         // And finally, find the variation, caused by the fact that the sun's
   1114         // gravitational pull on the moon varies depending on which side of
   1115         // the earth the moon is on
   1116         //
   1117         double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
   1118 
   1119         moonLongitude += variation;
   1120 
   1121         //
   1122         // What we've calculated so far is the moon's longitude in the plane
   1123         // of its own orbit.  Now map to the ecliptic to get the latitude
   1124         // and longitude.  First we need to find the longitude of the ascending
   1125         // node, the position on the ecliptic where it is crossed by the moon's
   1126         // orbit as it crosses from the southern to the northern hemisphere.
   1127         //
   1128         double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
   1129 
   1130         nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
   1131 
   1132         double y = ::sin(moonLongitude - nodeLongitude);
   1133         double x = cos(moonLongitude - nodeLongitude);
   1134 
   1135         moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
   1136         double moonEclipLat = ::asin(y * ::sin(moonI));
   1137 
   1138         eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
   1139         moonPositionSet = TRUE;
   1140     }
   1141     return moonPosition;
   1142 }
   1143 
   1144 /**
   1145  * The "age" of the moon at the time specified in this object.
   1146  * This is really the angle between the
   1147  * current ecliptic longitudes of the sun and the moon,
   1148  * measured in radians.
   1149  *
   1150  * @see #getMoonPhase
   1151  * @internal
   1152  * @deprecated ICU 2.4. This class may be removed or modified.
   1153  */
   1154 double CalendarAstronomer::getMoonAge() {
   1155     // See page 147 of "Practial Astronomy with your Calculator",
   1156     // by Peter Duffet-Smith, for details on the algorithm.
   1157     //
   1158     // Force the moon's position to be calculated.  We're going to use
   1159     // some the intermediate results cached during that calculation.
   1160     //
   1161     getMoonPosition();
   1162 
   1163     return norm2PI(moonEclipLong - sunLongitude);
   1164 }
   1165 
   1166 /**
   1167  * Calculate the phase of the moon at the time set in this object.
   1168  * The returned phase is a <code>double</code> in the range
   1169  * <code>0 <= phase < 1</code>, interpreted as follows:
   1170  * <ul>
   1171  * <li>0.00: New moon
   1172  * <li>0.25: First quarter
   1173  * <li>0.50: Full moon
   1174  * <li>0.75: Last quarter
   1175  * </ul>
   1176  *
   1177  * @see #getMoonAge
   1178  * @internal
   1179  * @deprecated ICU 2.4. This class may be removed or modified.
   1180  */
   1181 double CalendarAstronomer::getMoonPhase() {
   1182     // See page 147 of "Practial Astronomy with your Calculator",
   1183     // by Peter Duffet-Smith, for details on the algorithm.
   1184     return 0.5 * (1 - cos(getMoonAge()));
   1185 }
   1186 
   1187 /**
   1188  * Constant representing a new moon.
   1189  * For use with {@link #getMoonTime getMoonTime}
   1190  * @internal
   1191  * @deprecated ICU 2.4. This class may be removed or modified.
   1192  */
   1193 const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
   1194     return  CalendarAstronomer::MoonAge(0);
   1195 }
   1196 
   1197 /**
   1198  * Constant representing the moon's first quarter.
   1199  * For use with {@link #getMoonTime getMoonTime}
   1200  * @internal
   1201  * @deprecated ICU 2.4. This class may be removed or modified.
   1202  */
   1203 /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
   1204   return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
   1205 }*/
   1206 
   1207 /**
   1208  * Constant representing a full moon.
   1209  * For use with {@link #getMoonTime getMoonTime}
   1210  * @internal
   1211  * @deprecated ICU 2.4. This class may be removed or modified.
   1212  */
   1213 const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
   1214     return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
   1215 }
   1216 /**
   1217  * Constant representing the moon's last quarter.
   1218  * For use with {@link #getMoonTime getMoonTime}
   1219  * @internal
   1220  * @deprecated ICU 2.4. This class may be removed or modified.
   1221  */
   1222 
   1223 class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
   1224 public:
   1225     virtual ~MoonTimeAngleFunc();
   1226     virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
   1227 };
   1228 
   1229 MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
   1230 
   1231 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
   1232   return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
   1233 }*/
   1234 
   1235 /**
   1236  * Find the next or previous time at which the Moon's ecliptic
   1237  * longitude will have the desired value.
   1238  * <p>
   1239  * @param desired   The desired longitude.
   1240  * @param next      <tt>true</tt> if the next occurrance of the phase
   1241  *                  is desired, <tt>false</tt> for the previous occurrance.
   1242  * @internal
   1243  * @deprecated ICU 2.4. This class may be removed or modified.
   1244  */
   1245 UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
   1246 {
   1247     MoonTimeAngleFunc func;
   1248     return timeOfAngle( func,
   1249                         desired,
   1250                         SYNODIC_MONTH,
   1251                         MINUTE_MS,
   1252                         next);
   1253 }
   1254 
   1255 /**
   1256  * Find the next or previous time at which the moon will be in the
   1257  * desired phase.
   1258  * <p>
   1259  * @param desired   The desired phase of the moon.
   1260  * @param next      <tt>true</tt> if the next occurrance of the phase
   1261  *                  is desired, <tt>false</tt> for the previous occurrance.
   1262  * @internal
   1263  * @deprecated ICU 2.4. This class may be removed or modified.
   1264  */
   1265 UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
   1266     return getMoonTime(desired.value, next);
   1267 }
   1268 
   1269 class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
   1270 public:
   1271     virtual ~MoonRiseSetCoordFunc();
   1272     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
   1273 };
   1274 
   1275 MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {}
   1276 
   1277 /**
   1278  * Returns the time (GMT) of sunrise or sunset on the local date to which
   1279  * this calendar is currently set.
   1280  * @internal
   1281  * @deprecated ICU 2.4. This class may be removed or modified.
   1282  */
   1283 UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
   1284 {
   1285     MoonRiseSetCoordFunc func;
   1286     return riseOrSet(func,
   1287                      rise,
   1288                      .533 * DEG_RAD,        // Angular Diameter
   1289                      34 /60.0 * DEG_RAD,    // Refraction correction
   1290                      MINUTE_MS);            // Desired accuracy
   1291 }
   1292 
   1293 //-------------------------------------------------------------------------
   1294 // Interpolation methods for finding the time at which a given event occurs
   1295 //-------------------------------------------------------------------------
   1296 
   1297 UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
   1298                                       double periodDays, double epsilon, UBool next)
   1299 {
   1300     // Find the value of the function at the current time
   1301     double lastAngle = func.eval(*this);
   1302 
   1303     // Find out how far we are from the desired angle
   1304     double deltaAngle = norm2PI(desired - lastAngle) ;
   1305 
   1306     // Using the average period, estimate the next (or previous) time at
   1307     // which the desired angle occurs.
   1308     double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
   1309 
   1310     double lastDeltaT = deltaT; // Liu
   1311     UDate startTime = fTime; // Liu
   1312 
   1313     setTime(fTime + uprv_ceil(deltaT));
   1314 
   1315     // Now iterate until we get the error below epsilon.  Throughout
   1316     // this loop we use normPI to get values in the range -Pi to Pi,
   1317     // since we're using them as correction factors rather than absolute angles.
   1318     do {
   1319         // Evaluate the function at the time we've estimated
   1320         double angle = func.eval(*this);
   1321 
   1322         // Find the # of milliseconds per radian at this point on the curve
   1323         double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
   1324 
   1325         // Correct the time estimate based on how far off the angle is
   1326         deltaT = normPI(desired - angle) * factor;
   1327 
   1328         // HACK:
   1329         //
   1330         // If abs(deltaT) begins to diverge we need to quit this loop.
   1331         // This only appears to happen when attempting to locate, for
   1332         // example, a new moon on the day of the new moon.  E.g.:
   1333         //
   1334         // This result is correct:
   1335         // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
   1336         //   Sun Jul 22 10:57:41 CST 1990
   1337         //
   1338         // But attempting to make the same call a day earlier causes deltaT
   1339         // to diverge:
   1340         // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
   1341         //   1.3649828540224032E9
   1342         // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
   1343         //   Sun Jul 08 13:56:15 CST 1990
   1344         //
   1345         // As a temporary solution, we catch this specific condition and
   1346         // adjust our start time by one eighth period days (either forward
   1347         // or backward) and try again.
   1348         // Liu 11/9/00
   1349         if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
   1350             double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
   1351             setTime(startTime + (next ? delta : -delta));
   1352             return timeOfAngle(func, desired, periodDays, epsilon, next);
   1353         }
   1354 
   1355         lastDeltaT = deltaT;
   1356         lastAngle = angle;
   1357 
   1358         setTime(fTime + uprv_ceil(deltaT));
   1359     }
   1360     while (uprv_fabs(deltaT) > epsilon);
   1361 
   1362     return fTime;
   1363 }
   1364 
   1365 UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
   1366                                     double diameter, double refraction,
   1367                                     double epsilon)
   1368 {
   1369     Equatorial pos;
   1370     double      tanL   = ::tan(fLatitude);
   1371     double     deltaT = 0;
   1372     int32_t         count = 0;
   1373 
   1374     //
   1375     // Calculate the object's position at the current time, then use that
   1376     // position to calculate the time of rising or setting.  The position
   1377     // will be different at that time, so iterate until the error is allowable.
   1378     //
   1379     U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
   1380         rise?"T":"F", diameter, refraction, epsilon));
   1381     do {
   1382         // See "Practical Astronomy With Your Calculator, section 33.
   1383         func.eval(pos, *this);
   1384         double angle = ::acos(-tanL * ::tan(pos.declination));
   1385         double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
   1386 
   1387         // Convert from LST to Universal Time.
   1388         UDate newTime = lstToUT( lst );
   1389 
   1390         deltaT = newTime - fTime;
   1391         setTime(newTime);
   1392         U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n",
   1393             count, deltaT, angle, lst, pos.ascension, pos.declination));
   1394     }
   1395     while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
   1396 
   1397     // Calculate the correction due to refraction and the object's angular diameter
   1398     double cosD  = ::cos(pos.declination);
   1399     double psi   = ::acos(sin(fLatitude) / cosD);
   1400     double x     = diameter / 2 + refraction;
   1401     double y     = ::asin(sin(x) / ::sin(psi));
   1402     long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
   1403 
   1404     return fTime + (rise ? -delta : delta);
   1405 }
   1406 											   /**
   1407  * Return the obliquity of the ecliptic (the angle between the ecliptic
   1408  * and the earth's equator) at the current time.  This varies due to
   1409  * the precession of the earth's axis.
   1410  *
   1411  * @return  the obliquity of the ecliptic relative to the equator,
   1412  *          measured in radians.
   1413  */
   1414 double CalendarAstronomer::eclipticObliquity() {
   1415     if (isINVALID(eclipObliquity)) {
   1416         const double epoch = 2451545.0;     // 2000 AD, January 1.5
   1417 
   1418         double T = (getJulianDay() - epoch) / 36525;
   1419 
   1420         eclipObliquity = 23.439292
   1421             - 46.815/3600 * T
   1422             - 0.0006/3600 * T*T
   1423             + 0.00181/3600 * T*T*T;
   1424 
   1425         eclipObliquity *= DEG_RAD;
   1426     }
   1427     return eclipObliquity;
   1428 }
   1429 
   1430 
   1431 //-------------------------------------------------------------------------
   1432 // Private data
   1433 //-------------------------------------------------------------------------
   1434 void CalendarAstronomer::clearCache() {
   1435     const double INVALID = uprv_getNaN();
   1436 
   1437     julianDay       = INVALID;
   1438     julianCentury   = INVALID;
   1439     sunLongitude    = INVALID;
   1440     meanAnomalySun  = INVALID;
   1441     moonLongitude   = INVALID;
   1442     moonEclipLong   = INVALID;
   1443     meanAnomalyMoon = INVALID;
   1444     eclipObliquity  = INVALID;
   1445     siderealTime    = INVALID;
   1446     siderealT0      = INVALID;
   1447     moonPositionSet = FALSE;
   1448 }
   1449 
   1450 //private static void out(String s) {
   1451 //    System.out.println(s);
   1452 //}
   1453 
   1454 //private static String deg(double rad) {
   1455 //    return Double.toString(rad * RAD_DEG);
   1456 //}
   1457 
   1458 //private static String hours(long ms) {
   1459 //    return Double.toString((double)ms / HOUR_MS) + " hours";
   1460 //}
   1461 
   1462 /**
   1463  * @internal
   1464  * @deprecated ICU 2.4. This class may be removed or modified.
   1465  */
   1466 /*UDate CalendarAstronomer::local(UDate localMillis) {
   1467   // TODO - srl ?
   1468   TimeZone *tz = TimeZone::createDefault();
   1469   int32_t rawOffset;
   1470   int32_t dstOffset;
   1471   UErrorCode status = U_ZERO_ERROR;
   1472   tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
   1473   delete tz;
   1474   return localMillis - rawOffset;
   1475 }*/
   1476 
   1477 // Debugging functions
   1478 UnicodeString CalendarAstronomer::Ecliptic::toString() const
   1479 {
   1480 #ifdef U_DEBUG_ASTRO
   1481     char tmp[800];
   1482     sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
   1483     return UnicodeString(tmp, "");
   1484 #else
   1485     return UnicodeString();
   1486 #endif
   1487 }
   1488 
   1489 UnicodeString CalendarAstronomer::Equatorial::toString() const
   1490 {
   1491 #ifdef U_DEBUG_ASTRO
   1492     char tmp[400];
   1493     sprintf(tmp, "%f,%f",
   1494         (ascension*RAD_DEG), (declination*RAD_DEG));
   1495     return UnicodeString(tmp, "");
   1496 #else
   1497     return UnicodeString();
   1498 #endif
   1499 }
   1500 
   1501 UnicodeString CalendarAstronomer::Horizon::toString() const
   1502 {
   1503 #ifdef U_DEBUG_ASTRO
   1504     char tmp[800];
   1505     sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
   1506     return UnicodeString(tmp, "");
   1507 #else
   1508     return UnicodeString();
   1509 #endif
   1510 }
   1511 
   1512 
   1513 //  static private String radToHms(double angle) {
   1514 //    int hrs = (int) (angle*RAD_HOUR);
   1515 //    int min = (int)((angle*RAD_HOUR - hrs) * 60);
   1516 //    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
   1517 
   1518 //    return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
   1519 //  }
   1520 
   1521 //  static private String radToDms(double angle) {
   1522 //    int deg = (int) (angle*RAD_DEG);
   1523 //    int min = (int)((angle*RAD_DEG - deg) * 60);
   1524 //    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
   1525 
   1526 //    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
   1527 //  }
   1528 
   1529 // =============== Calendar Cache ================
   1530 
   1531 void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
   1532     ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
   1533     if(cache == NULL) {
   1534         status = U_MEMORY_ALLOCATION_ERROR;
   1535     } else {
   1536         *cache = new CalendarCache(32, status);
   1537         if(U_FAILURE(status)) {
   1538             delete *cache;
   1539             *cache = NULL;
   1540         }
   1541     }
   1542 }
   1543 
   1544 int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
   1545     int32_t res;
   1546 
   1547     if(U_FAILURE(status)) {
   1548         return 0;
   1549     }
   1550     umtx_lock(&ccLock);
   1551 
   1552     if(*cache == NULL) {
   1553         createCache(cache, status);
   1554         if(U_FAILURE(status)) {
   1555             umtx_unlock(&ccLock);
   1556             return 0;
   1557         }
   1558     }
   1559 
   1560     res = uhash_igeti((*cache)->fTable, key);
   1561     U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
   1562 
   1563     umtx_unlock(&ccLock);
   1564     return res;
   1565 }
   1566 
   1567 void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
   1568     if(U_FAILURE(status)) {
   1569         return;
   1570     }
   1571     umtx_lock(&ccLock);
   1572 
   1573     if(*cache == NULL) {
   1574         createCache(cache, status);
   1575         if(U_FAILURE(status)) {
   1576             umtx_unlock(&ccLock);
   1577             return;
   1578         }
   1579     }
   1580 
   1581     uhash_iputi((*cache)->fTable, key, value, &status);
   1582     U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
   1583 
   1584     umtx_unlock(&ccLock);
   1585 }
   1586 
   1587 CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
   1588     fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);
   1589     U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
   1590 }
   1591 
   1592 CalendarCache::~CalendarCache() {
   1593     if(fTable != NULL) {
   1594         U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
   1595         uhash_close(fTable);
   1596     }
   1597 }
   1598 
   1599 U_NAMESPACE_END
   1600 
   1601 #endif //  !UCONFIG_NO_FORMATTING
   1602