Home | History | Annotate | Download | only in docs
      1 LLDB has added new GDB server packets to better support multi-threaded and
      2 remote debugging. Why? Normally you need to start the correct GDB and the
      3 correct GDB server when debugging. If you have mismatch, then things go wrong
      4 very quickly. LLDB makes extensive use of the GDB remote protocol and we 
      5 wanted to make sure that the experience was a bit more dynamic where we can
      6 discover information about a remote target with having to know anything up
      7 front. We also ran into performance issues with the existing GDB remote 
      8 protocol that can be overcome when using a reliable communications layer.
      9 Some packets improve performance, others allow for remote process launching
     10 (if you have an OS), and others allow us to dynamically figure out what
     11 registers a thread might have. Again with GDB, both sides pre-agree on how the
     12 registers will look (how many, their register number,name and offsets). We 
     13 prefer to be able to dynamically determine what kind of architecture, os and
     14 vendor we are debugging, as well as how things are laid out when it comes to
     15 the thread register contexts. Below are the details on the new packets we have
     16 added above and beyond the standard GDB remote protocol packets.
     17 
     18 //----------------------------------------------------------------------
     19 // "QStartNoAckMode"
     20 //
     21 // BRIEF
     22 //  Try to enable no ACK mode to skip sending ACKs and NACKs.
     23 //
     24 // PRIORITY TO IMPLEMENT
     25 //  High. Any GDB remote server that can implement this should if the
     26 //  connection is reliable. This improves packet throughput and increases
     27 //  the performance of the connection.
     28 //----------------------------------------------------------------------
     29 Having to send an ACK/NACK after every packet slows things down a bit, so we
     30 have a way to disable ACK packets to minimize the traffic for reliable
     31 communication interfaces (like sockets). Below GDB or LLDB will send this
     32 packet to try and disable ACKs. All lines that start with "send packet: " are
     33 from GDB/LLDB, and all lines that start with "read packet: " are from the GDB
     34 remote server:
     35 
     36 send packet: $QStartNoAckMode#b0
     37 read packet: +
     38 read packet: $OK#9a
     39 send packet: +
     40 
     41 
     42 
     43 //----------------------------------------------------------------------
     44 // "A" - launch args packet
     45 //
     46 // BRIEF
     47 //  Launch a program using the supplied arguments
     48 //
     49 // PRIORITY TO IMPLEMENT
     50 //  Low. Only needed if the remote target wants to launch a target after
     51 //  making a connection to a GDB server that isn't already connected to
     52 //  an inferior process.
     53 //----------------------------------------------------------------------
     54 
     55 We have added support for the "set program arguments" packet where we can
     56 startup a connection to a remote server and then later supply the path to the
     57 executable and the arguments to use when executing:
     58 
     59 GDB remote docs for this:
     60 
     61 set program arguments(reserved) Aarglen,argnum,arg,...
     62 
     63 Where A is followed by the length in bytes of the hex encoded argument,
     64 followed by an argument integer, and followed by the ASCII characters
     65 converted into hex bytes foreach arg
     66 
     67 send packet: $A98,0,2f566f6c756d65732f776f726b2f67636c6179746f6e2f446f63756d656e74732f7372632f6174746163682f612e6f7574#00
     68 read packet: $OK#00
     69 
     70 The above packet helps when you have remote debugging abilities where you
     71 could launch a process on a remote host, this isn't needed for bare board
     72 debugging.
     73 
     74 //----------------------------------------------------------------------
     75 // "QEnvironment:NAME=VALUE"
     76 //
     77 // BRIEF
     78 //  Setup the environment up for a new child process that will soon be
     79 //  launched using the "A" packet.
     80 //
     81 // PRIORITY TO IMPLEMENT
     82 //  Low. Only needed if the remote target wants to launch a target after
     83 //  making a connection to a GDB server that isn't already connected to
     84 //  an inferior process.
     85 //----------------------------------------------------------------------
     86 
     87 Both GDB and LLDB support passing down environment variables. Is it ok to
     88 respond with a "$#00" (unimplemented):
     89 
     90 send packet: $QEnvironment:ACK_COLOR_FILENAME=bold yellow#00
     91 read packet: $OK#00
     92 
     93 This packet can be sent one or more times _prior_ to sending a "A" packet.
     94 
     95 //----------------------------------------------------------------------
     96 // "QSetSTDIN:<ascii-hex-path>"
     97 // "QSetSTDOUT:<ascii-hex-path>"
     98 // "QSetSTDERR:<ascii-hex-path>"
     99 //
    100 // BRIEF
    101 //  Setup where STDIN, STDOUT, and STDERR go prior to sending an "A" 
    102 //  packet.
    103 //
    104 // PRIORITY TO IMPLEMENT
    105 //  Low. Only needed if the remote target wants to launch a target after
    106 //  making a connection to a GDB server that isn't already connected to
    107 //  an inferior process.
    108 //----------------------------------------------------------------------
    109 
    110 When launching a program through the GDB remote protocol with the "A" packet,
    111 you might also want to specify where stdin/out/err go:
    112 
    113 QSetSTDIN:<ascii-hex-path>
    114 QSetSTDOUT:<ascii-hex-path>
    115 QSetSTDERR:<ascii-hex-path>
    116 
    117 These packets must be sent  _prior_ to sending a "A" packet.
    118 
    119 //----------------------------------------------------------------------
    120 // "QSetWorkingDir:<ascii-hex-path>"
    121 //
    122 // BRIEF
    123 //  Set the working directory prior to sending an "A" packet.
    124 //
    125 // PRIORITY TO IMPLEMENT
    126 //  Low. Only needed if the remote target wants to launch a target after
    127 //  making a connection to a GDB server that isn't already connected to
    128 //  an inferior process.
    129 //----------------------------------------------------------------------
    130 
    131 Or specify the working directory:
    132 
    133 QSetWorkingDir:<ascii-hex-path>
    134 
    135 This packet must be sent  _prior_ to sending a "A" packet.
    136 
    137 //----------------------------------------------------------------------
    138 // "QSetDisableASLR:<bool>"
    139 //
    140 // BRIEF
    141 //  Enable or disable ASLR on the next "A" packet.
    142 //
    143 // PRIORITY TO IMPLEMENT
    144 //  Low. Only needed if the remote target wants to launch a target after
    145 //  making a connection to a GDB server that isn't already connected to
    146 //  an inferior process and if the target supports disabling ASLR
    147 //  (Address space layout randomization).
    148 //----------------------------------------------------------------------
    149 
    150 Or control if ASLR is enabled/disabled:
    151 
    152 send packet: QSetDisableASLR:1
    153 read packet: OK
    154 
    155 send packet: QSetDisableASLR:0
    156 read packet: OK
    157 
    158 This packet must be sent  _prior_ to sending a "A" packet.
    159 
    160 //----------------------------------------------------------------------
    161 // "qRegisterInfo<hex-reg-id>"
    162 //
    163 // BRIEF
    164 //  Discover register information from the remote GDB server.
    165 //
    166 // PRIORITY TO IMPLEMENT
    167 //  High. Any target that can self describe its registers, should do so.
    168 //  This means if new registers are ever added to a remote target, they
    169 //  will get picked up automatically, and allows registers to change
    170 //  depending on the actual CPU type that is used.
    171 //----------------------------------------------------------------------
    172 
    173 With LLDB, for register information, remote GDB servers can add support for
    174 the "qRegisterInfoN" packet where "N" is a zero based register number that
    175 must start at zero and increase by one for each register that is supported.
    176 The response is done in typical GDB remote fashion where a serious of
    177 "KEY:VALUE;" pairs are returned. An example for the x86_64 registers is
    178 included below:
    179 
    180 send packet: $qRegisterInfo0#00
    181 read packet: $name:rax;bitsize:64;offset:0;encoding:uint;format:hex;set:General Purpose Registers;gcc:0;dwarf:0;#00
    182 send packet: $qRegisterInfo1#00
    183 read packet: $name:rbx;bitsize:64;offset:8;encoding:uint;format:hex;set:General Purpose Registers;gcc:3;dwarf:3;#00
    184 send packet: $qRegisterInfo2#00
    185 read packet: $name:rcx;bitsize:64;offset:16;encoding:uint;format:hex;set:General Purpose Registers;gcc:2;dwarf:2;#00
    186 send packet: $qRegisterInfo3#00
    187 read packet: $name:rdx;bitsize:64;offset:24;encoding:uint;format:hex;set:General Purpose Registers;gcc:1;dwarf:1;#00
    188 send packet: $qRegisterInfo4#00
    189 read packet: $name:rdi;bitsize:64;offset:32;encoding:uint;format:hex;set:General Purpose Registers;gcc:5;dwarf:5;#00
    190 send packet: $qRegisterInfo5#00
    191 read packet: $name:rsi;bitsize:64;offset:40;encoding:uint;format:hex;set:General Purpose Registers;gcc:4;dwarf:4;#00
    192 send packet: $qRegisterInfo6#00
    193 read packet: $name:rbp;alt-name:fp;bitsize:64;offset:48;encoding:uint;format:hex;set:General Purpose Registers;gcc:6;dwarf:6;generic:fp;#00
    194 send packet: $qRegisterInfo7#00
    195 read packet: $name:rsp;alt-name:sp;bitsize:64;offset:56;encoding:uint;format:hex;set:General Purpose Registers;gcc:7;dwarf:7;generic:sp;#00
    196 send packet: $qRegisterInfo8#00
    197 read packet: $name:r8;bitsize:64;offset:64;encoding:uint;format:hex;set:General Purpose Registers;gcc:8;dwarf:8;#00
    198 send packet: $qRegisterInfo9#00
    199 read packet: $name:r9;bitsize:64;offset:72;encoding:uint;format:hex;set:General Purpose Registers;gcc:9;dwarf:9;#00
    200 send packet: $qRegisterInfoa#00
    201 read packet: $name:r10;bitsize:64;offset:80;encoding:uint;format:hex;set:General Purpose Registers;gcc:10;dwarf:10;#00
    202 send packet: $qRegisterInfob#00
    203 read packet: $name:r11;bitsize:64;offset:88;encoding:uint;format:hex;set:General Purpose Registers;gcc:11;dwarf:11;#00
    204 send packet: $qRegisterInfoc#00
    205 read packet: $name:r12;bitsize:64;offset:96;encoding:uint;format:hex;set:General Purpose Registers;gcc:12;dwarf:12;#00
    206 send packet: $qRegisterInfod#00
    207 read packet: $name:r13;bitsize:64;offset:104;encoding:uint;format:hex;set:General Purpose Registers;gcc:13;dwarf:13;#00
    208 send packet: $qRegisterInfoe#00
    209 read packet: $name:r14;bitsize:64;offset:112;encoding:uint;format:hex;set:General Purpose Registers;gcc:14;dwarf:14;#00
    210 send packet: $qRegisterInfof#00
    211 read packet: $name:r15;bitsize:64;offset:120;encoding:uint;format:hex;set:General Purpose Registers;gcc:15;dwarf:15;#00
    212 send packet: $qRegisterInfo10#00
    213 read packet: $name:rip;alt-name:pc;bitsize:64;offset:128;encoding:uint;format:hex;set:General Purpose Registers;gcc:16;dwarf:16;generic:pc;#00
    214 send packet: $qRegisterInfo11#00
    215 read packet: $name:rflags;alt-name:flags;bitsize:64;offset:136;encoding:uint;format:hex;set:General Purpose Registers;#00
    216 send packet: $qRegisterInfo12#00
    217 read packet: $name:cs;bitsize:64;offset:144;encoding:uint;format:hex;set:General Purpose Registers;#00
    218 send packet: $qRegisterInfo13#00
    219 read packet: $name:fs;bitsize:64;offset:152;encoding:uint;format:hex;set:General Purpose Registers;#00
    220 send packet: $qRegisterInfo14#00
    221 read packet: $name:gs;bitsize:64;offset:160;encoding:uint;format:hex;set:General Purpose Registers;#00
    222 send packet: $qRegisterInfo15#00
    223 read packet: $name:fctrl;bitsize:16;offset:176;encoding:uint;format:hex;set:Floating Point Registers;#00
    224 send packet: $qRegisterInfo16#00
    225 read packet: $name:fstat;bitsize:16;offset:178;encoding:uint;format:hex;set:Floating Point Registers;#00
    226 send packet: $qRegisterInfo17#00
    227 read packet: $name:ftag;bitsize:8;offset:180;encoding:uint;format:hex;set:Floating Point Registers;#00
    228 send packet: $qRegisterInfo18#00
    229 read packet: $name:fop;bitsize:16;offset:182;encoding:uint;format:hex;set:Floating Point Registers;#00
    230 send packet: $qRegisterInfo19#00
    231 read packet: $name:fioff;bitsize:32;offset:184;encoding:uint;format:hex;set:Floating Point Registers;#00
    232 send packet: $qRegisterInfo1a#00
    233 read packet: $name:fiseg;bitsize:16;offset:188;encoding:uint;format:hex;set:Floating Point Registers;#00
    234 send packet: $qRegisterInfo1b#00
    235 read packet: $name:fooff;bitsize:32;offset:192;encoding:uint;format:hex;set:Floating Point Registers;#00
    236 send packet: $qRegisterInfo1c#00
    237 read packet: $name:foseg;bitsize:16;offset:196;encoding:uint;format:hex;set:Floating Point Registers;#00
    238 send packet: $qRegisterInfo1d#00
    239 read packet: $name:mxcsr;bitsize:32;offset:200;encoding:uint;format:hex;set:Floating Point Registers;#00
    240 send packet: $qRegisterInfo1e#00
    241 read packet: $name:mxcsrmask;bitsize:32;offset:204;encoding:uint;format:hex;set:Floating Point Registers;#00
    242 send packet: $qRegisterInfo1f#00
    243 read packet: $name:stmm0;bitsize:80;offset:208;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:33;dwarf:33;#00
    244 send packet: $qRegisterInfo20#00
    245 read packet: $name:stmm1;bitsize:80;offset:224;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:34;dwarf:34;#00
    246 send packet: $qRegisterInfo21#00
    247 read packet: $name:stmm2;bitsize:80;offset:240;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:35;dwarf:35;#00
    248 send packet: $qRegisterInfo22#00
    249 read packet: $name:stmm3;bitsize:80;offset:256;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:36;dwarf:36;#00
    250 send packet: $qRegisterInfo23#00
    251 read packet: $name:stmm4;bitsize:80;offset:272;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:37;dwarf:37;#00
    252 send packet: $qRegisterInfo24#00
    253 read packet: $name:stmm5;bitsize:80;offset:288;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:38;dwarf:38;#00
    254 send packet: $qRegisterInfo25#00
    255 read packet: $name:stmm6;bitsize:80;offset:304;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:39;dwarf:39;#00
    256 send packet: $qRegisterInfo26#00
    257 read packet: $name:stmm7;bitsize:80;offset:320;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:40;dwarf:40;#00
    258 send packet: $qRegisterInfo27#00
    259 read packet: $name:xmm0;bitsize:128;offset:336;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:17;dwarf:17;#00
    260 send packet: $qRegisterInfo28#00
    261 read packet: $name:xmm1;bitsize:128;offset:352;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:18;dwarf:18;#00
    262 send packet: $qRegisterInfo29#00
    263 read packet: $name:xmm2;bitsize:128;offset:368;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:19;dwarf:19;#00
    264 send packet: $qRegisterInfo2a#00
    265 read packet: $name:xmm3;bitsize:128;offset:384;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:20;dwarf:20;#00
    266 send packet: $qRegisterInfo2b#00
    267 read packet: $name:xmm4;bitsize:128;offset:400;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:21;dwarf:21;#00
    268 send packet: $qRegisterInfo2c#00
    269 read packet: $name:xmm5;bitsize:128;offset:416;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:22;dwarf:22;#00
    270 send packet: $qRegisterInfo2d#00
    271 read packet: $name:xmm6;bitsize:128;offset:432;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:23;dwarf:23;#00
    272 send packet: $qRegisterInfo2e#00
    273 read packet: $name:xmm7;bitsize:128;offset:448;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:24;dwarf:24;#00
    274 send packet: $qRegisterInfo2f#00
    275 read packet: $name:xmm8;bitsize:128;offset:464;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:25;dwarf:25;#00
    276 send packet: $qRegisterInfo30#00
    277 read packet: $name:xmm9;bitsize:128;offset:480;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:26;dwarf:26;#00
    278 send packet: $qRegisterInfo31#00
    279 read packet: $name:xmm10;bitsize:128;offset:496;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:27;dwarf:27;#00
    280 send packet: $qRegisterInfo32#00
    281 read packet: $name:xmm11;bitsize:128;offset:512;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:28;dwarf:28;#00
    282 send packet: $qRegisterInfo33#00
    283 read packet: $name:xmm12;bitsize:128;offset:528;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:29;dwarf:29;#00
    284 send packet: $qRegisterInfo34#00
    285 read packet: $name:xmm13;bitsize:128;offset:544;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:30;dwarf:30;#00
    286 send packet: $qRegisterInfo35#00
    287 read packet: $name:xmm14;bitsize:128;offset:560;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:31;dwarf:31;#00
    288 send packet: $qRegisterInfo36#00
    289 read packet: $name:xmm15;bitsize:128;offset:576;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:32;dwarf:32;#00
    290 send packet: $qRegisterInfo37#00
    291 read packet: $name:trapno;bitsize:32;offset:696;encoding:uint;format:hex;set:Exception State Registers;#00
    292 send packet: $qRegisterInfo38#00
    293 read packet: $name:err;bitsize:32;offset:700;encoding:uint;format:hex;set:Exception State Registers;#00
    294 send packet: $qRegisterInfo39#00
    295 read packet: $name:faultvaddr;bitsize:64;offset:704;encoding:uint;format:hex;set:Exception State Registers;#00
    296 send packet: $qRegisterInfo3a#00
    297 read packet: $E45#00
    298 
    299 As we see above we keep making subsequent calls to the remote server to
    300 discover all registers by increasing the number appended to qRegisterInfo and
    301 we get a response back that is a series of "key=value;" strings. The keys and
    302 values are detailed below:
    303 
    304 Key         Value
    305 ==========  ================================================================
    306 name        The primary register name as a string ("rbp" for example)
    307 
    308 alt-name    An alternate name for a register as a string ("fp" for example for
    309             the above "rbp")
    310 
    311 bitsize     Size in bits of a register (32, 64, etc)
    312 
    313 offset      The offset within the "g" and "G" packet of the register data for
    314             this register
    315 
    316 encoding    The encoding type of the register which must be one of: 
    317 
    318                  uint (unsigned integer)
    319                  sint (signed integer)
    320                  ieee754 (IEEE 754 float)
    321                  vector (vector regsiter)
    322 
    323 format      The preferred format for display of this register. The value must
    324             be one of:
    325 
    326                 binary
    327                 decimal
    328                 hex
    329                 float
    330                 vector-sint8
    331                 vector-uint8 
    332                 vector-sint16
    333                 vector-uint16
    334                 vector-sint32
    335                 vector-uint32
    336                 vector-float32
    337                 vector-uint128
    338 
    339 set         The register set name as a string that this register belongs to.
    340 
    341 gcc         The GCC compiler registers number for this register (used for
    342             EH frame and other compiler information that is encoded in the
    343             executable files). The supplied number will be decoded like a
    344             string passed to strtoul() with a base of zero, so the number
    345             can be decimal, or hex if it is prefixed with "0x".
    346 
    347             NOTE: If the compiler doesn't have a register number for this 
    348             register, this key/value pair should be omitted.
    349 
    350 dwarf       The DWARF register number for this register that is used for this
    351             register in the debug information. The supplied number will be decoded
    352             like a string passed to strtoul() with a base of zero, so the number
    353             can be decimal, or hex if it is prefixed with "0x".
    354 
    355             NOTE: If the compiler doesn't have a register number for this 
    356             register, this key/value pair should be omitted.
    357 
    358 generic     If the register is a generic register that most CPUs have, classify
    359             it correctly so the debugger knows. Valid values are one of:
    360              pc  (a program counter register. for example "name=eip;" (i386), 
    361                   "name=rip;" (x86_64), "name=r15;" (32 bit arm) would 
    362                   include a "generic=pc;" key value pair)
    363              sp  (a stack pointer register. for example "name=esp;" (i386), 
    364                   "name=rsp;" (x86_64), "name=r13;" (32 bit arm) would 
    365                   include a "generic=sp;" key value pair)
    366              fp  (a frame pointer register. for example "name=ebp;" (i386), 
    367                    "name=rbp;" (x86_64), "name=r7;" (32 bit arm with macosx 
    368                    ABI) would include a "generic=fp;" key value pair)
    369              ra  (a return address register. for example "name=lr;" (32 bit ARM) 
    370                   would include a "generic=ra;" key value pair)
    371              fp  (a CPU flags register. for example "name=eflags;" (i386), 
    372                   "name=rflags;" (x86_64), "name=cpsr;" (32 bit ARM) 
    373                   would include a "generic=flags;" key value pair)
    374              arg1 - arg8 (specified for registers that contain function 
    375                       arguments when the argument fits into a register)
    376 
    377 container-regs
    378             The value for this key is a comma separated list of raw hex (optional 
    379             leading "0x") register numbers.
    380 
    381             This specifies that this register is contained in other concrete
    382             register values. For example "eax" is in the lower 32 bits of the
    383             "rax" register value for x86_64, so "eax" could specify that it is
    384             contained in "rax" by specifying the register number for "rax" (whose
    385             register number is 0x00)
    386             
    387             "container-regs:00;"
    388             
    389             If a register is comprised of one or more registers, like "d0" is ARM
    390             which is a 64 bit register, it might be made up of "s0" and "s1". If
    391             the register number for "s0" is 0x20, and the register number of "s1"
    392             is "0x21", the "container-regs" key/value pair would be:
    393             
    394             "container-regs:20,21;"
    395             
    396             This is handy for defining what GDB used to call "pseudo" registers.
    397             These registers are never requested by LLDB via the register read
    398             or write packets, the container registers will be requested on behalf
    399             of this register.
    400             
    401 invalidate-regs
    402             The value for this key is a comma separated list of raw hex (optional 
    403             leading "0x") register numbers.
    404             
    405             This specifies which register values should be invalidated when this
    406             register is modified. For example if modifying "eax" would cause "rax",
    407             "eax", "ax", "ah", and "al" to be modified where rax is 0x0, eax is 0x15,
    408             ax is 0x25, ah is 0x35, and al is 0x39, the "invalidate-regs" key/value
    409             pair would be:
    410 
    411             "invalidate-regs:0,15,25,35,39;"
    412             
    413             If there is a single register that gets invalidated, then omit the comma
    414             and just list a single register:
    415             
    416             "invalidate-regs:0;"
    417             
    418             This is handy when modifying a specific register can cause other
    419             register values to change. For example, when debugging an ARM target,
    420             modifying the CPSR register can cause the r8 - r14 and cpsr value to
    421             change depending on if the mode has changed. 
    422 
    423 //----------------------------------------------------------------------
    424 // "qHostInfo"
    425 //
    426 // BRIEF
    427 //  Get information about the host we are remotely connected to.
    428 //
    429 // PRIORITY TO IMPLEMENT
    430 //  High. This packet is usually very easy to implement and can help
    431 //  LLDB select the correct plug-ins for the job based on the target
    432 //  triple information that is suppied.
    433 //----------------------------------------------------------------------
    434 
    435 LLDB supports a host info call that gets all sorts of details of the system
    436 that is being debugged:
    437 
    438 send packet: $qHostInfo#00
    439 read packet: $cputype:16777223;cpusubtype:3;ostype:darwin;vendor:apple;endian:little;ptrsize:8;#00
    440 
    441 Key value pairs are one of:
    442 
    443 cputype: is a number that is the mach-o CPU type that is being debugged
    444 cpusubtype: is a number that is the mach-o CPU subtype type that is being debugged
    445 ostype: is a string the represents the OS being debugged (darwin, linux, freebsd)
    446 vendor: is a string that represents the vendor (apple)
    447 endian: is one of "little", "big", or "pdp"
    448 ptrsize: is a number that represents how big pointers are in bytes on the debug target
    449 
    450 //----------------------------------------------------------------------
    451 // "qProcessInfo"
    452 //
    453 // BRIEF
    454 //  Get information about the process we are currently debugging.
    455 //
    456 // PRIORITY TO IMPLEMENT
    457 //  Medium.  On systems which can launch multiple different architecture processes,
    458 //  the qHostInfo may not disambiguate sufficiently to know what kind of 
    459 //  process is being debugged.
    460 //  e.g. on a 64-bit x86 Mac system both 32-bit and 64-bit user processes are possible,
    461 //  and with Mach-O universal files, the executable file may contain both 32- and 
    462 //  64-bit slices so it may be impossible to know until you're attached to a real
    463 //  process to know what you're working with.
    464 //
    465 //  All numeric fields return base-16 numbers without any "0x" prefix.
    466 //----------------------------------------------------------------------
    467 
    468 An i386 process:
    469 
    470 send packet: $qProcessInfo#00
    471 read packet: $pid:42a8;parent-pid:42bf;real-uid:ecf;real-gid:b;effective-uid:ecf;effective-gid:b;cputype:7;cpusubtype:3;ostype:macosx;vendor:apple;endian:little;ptrsize:4;#00
    472 
    473 An x86_64 process:
    474 
    475 send packet: $qProcessInfo#00
    476 read packet: $pid:d22c;parent-pid:d34d;real-uid:ecf;real-gid:b;effective-uid:ecf;effective-gid:b;cputype:1000007;cpusubtype:3;ostype:macosx;vendor:apple;endian:little;ptrsize:8;#00
    477 
    478 Key value pairs include:
    479 
    480 pid: the process id
    481 parent-pid: the process of the parent process (often debugserver will become the parent when attaching)
    482 real-uid: the real user id of the process
    483 real-gid: the real group id of the process
    484 effective-uid: the effective user id of the process
    485 effective-gid: the effective group id of the process
    486 cputype: the Mach-O CPU type of the process
    487 cpusubtype: the Mach-O CPU subtype of the process
    488 ostype: is a string the represents the OS being debugged (darwin, linux, freebsd)
    489 vendor: is a string that represents the vendor (apple)
    490 endian: is one of "little", "big", or "pdp"
    491 ptrsize: is a number that represents how big pointers are in bytes
    492 
    493 
    494 //----------------------------------------------------------------------
    495 // "qShlibInfoAddr"
    496 //
    497 // BRIEF
    498 //  Get an address where the dynamic linker stores information about 
    499 //  where shared libraries are loaded.
    500 //
    501 // PRIORITY TO IMPLEMENT
    502 //  High if you have a dynamic loader plug-in in LLDB for your target
    503 //  triple (see the "qHostInfo" packet) that can use this information.
    504 //  Many times address load randomization can make it hard to detect 
    505 //  where the dynamic loader binary and data structures are located and
    506 //  some platforms know, or can find out where this information is.
    507 //
    508 //  Low if you have a debug target where all object and symbol files 
    509 //  contain static load addresses.
    510 //----------------------------------------------------------------------
    511 
    512 LLDB and GDB both support the "qShlibInfoAddr" packet which is a hint to each
    513 debugger as to where to find the dynamic loader information. For darwin
    514 binaries that run in user land this is the address of the "all_image_infos"
    515 structure in the "/usr/lib/dyld" executable, or the result of a TASK_DYLD_INFO
    516 call. The result is returned as big endian hex bytes that are the address
    517 value:
    518 
    519 send packet: $qShlibInfoAddr#00
    520 read packet: $7fff5fc40040#00
    521 
    522 
    523 
    524 //----------------------------------------------------------------------
    525 // "qThreadStopInfo<tid>"
    526 //
    527 // BRIEF
    528 //  Get information about why a thread, whose ID is "<tid>", is stopped.
    529 //
    530 // PRIORITY TO IMPLEMENT
    531 //  High if you need to support multi-threaded or multi-core debugging.
    532 //  Many times one thread will hit a breakpoint and while the debugger
    533 //  is in the process of suspending the other threads, other threads
    534 //  will also hit a breakpoint. This packet allows LLDB to know why all
    535 //  threads (live system debug) / cores (JTAG) in your program have 
    536 //  stopped and allows LLDB to display and control your program 
    537 //  correctly.
    538 //----------------------------------------------------------------------
    539     
    540 LLDB tries to use the "qThreadStopInfo" packet which is formatted as
    541 "qThreadStopInfo%x" where %x is the hex thread ID. This requests information
    542 about why a thread is stopped. The response is the same as the stop reply
    543 packets and tells us what happened to the other threads. The standard GDB
    544 remote packets love to think that there is only _one_ reason that _one_ thread
    545 stops at a time. This allows us to see why all threads stopped and allows us
    546 to implement better multi-threaded debugging support.
    547 
    548 //----------------------------------------------------------------------
    549 // "QThreadSuffixSupported"
    550 //
    551 // BRIEF
    552 //  Try to enable thread suffix support for the 'g', 'G', 'p', and 'P'
    553 //  packets.
    554 //
    555 // PRIORITY TO IMPLEMENT
    556 //  High. Adding a thread suffix allows us to read and write registers
    557 //  more efficiently and stops us from having to select a thread with
    558 //  one packet and then read registers with a second packet. It also
    559 //  makes sure that no errors can occur where the debugger thinks it
    560 //  already has a thread selected (see the "Hg" packet from the standard
    561 //  GDB remote protocol documentation) yet the remote GDB server actually
    562 //  has another thread selected.
    563 //----------------------------------------------------------------------
    564 
    565 When reading thread registers, you currently need to set the current
    566 thread, then read the registers. This is kind of cumbersome, so we added the
    567 ability to query if the remote GDB server supports adding a "thread:<tid>;"
    568 suffix to all packets that request information for a thread. To test if the
    569 remote GDB server supports this feature:
    570 
    571 send packet: $QThreadSuffixSupported#00
    572 read packet: OK
    573 
    574 If "OK" is returned, then the 'g', 'G', 'p' and 'P' packets can accept a
    575 thread suffix. So to send a 'g' packet (read all register values):
    576 
    577 send packet: $g;thread:<tid>;#00
    578 read packet: ....
    579 
    580 send packet: $G;thread:<tid>;#00
    581 read packet: ....
    582 
    583 send packet: $p1a;thread:<tid>;#00
    584 read packet: ....
    585 
    586 send packet: $P1a=1234abcd;thread:<tid>;#00
    587 read packet: ....
    588 
    589 
    590 otherwise, without this you would need to always send two packets:
    591 
    592 send packet: $Hg<tid>#00
    593 read packet: ....
    594 send packet: $g#00
    595 read packet: ....
    596 
    597 We also added support for allocating and deallocating memory. We use this to
    598 allocate memory so we can run JITed code.
    599 
    600 //----------------------------------------------------------------------
    601 // "_M<size>,<permissions>"
    602 //
    603 // BRIEF
    604 //  Allocate memory on the remote target with the specified size and
    605 //  permissions.
    606 //
    607 // PRIORITY TO IMPLEMENT
    608 //  High if you want LLDB to be able to JIT code and run that code. JIT
    609 //  code also needs data which is also allocated and tracked.
    610 //
    611 //  Low if you don't support running JIT'ed code.
    612 //----------------------------------------------------------------------
    613 
    614 The allocate memory packet starts with "_M<size>,<permissions>". It returns a
    615 raw big endian address value, or "" for unimplemented, or "EXX" for an error
    616 code. The packet is formatted as:
    617 
    618 char packet[256];
    619 int packet_len;
    620 packet_len = ::snprintf (
    621     packet, 
    622     sizeof(packet), 
    623     "_M%zx,%s%s%s", 
    624     (size_t)size,
    625     permissions & lldb::ePermissionsReadable ? "r" : "",
    626     permissions & lldb::ePermissionsWritable ? "w" : "",
    627     permissions & lldb::ePermissionsExecutable ? "x" : "");
    628 
    629 You request a size and give the permissions. This packet does NOT need to be
    630 implemented if you don't want to support running JITed code. The return value
    631 is just the address of the newly allocated memory as raw big endian hex bytes.
    632 
    633 //----------------------------------------------------------------------
    634 // "_m<addr>"
    635 //
    636 // BRIEF
    637 //  Deallocate memory that was previously allocated using an allocate
    638 //  memory pack.
    639 //
    640 // PRIORITY TO IMPLEMENT
    641 //  High if you want LLDB to be able to JIT code and run that code. JIT
    642 //  code also needs data which is also allocated and tracked.
    643 //
    644 //  Low if you don't support running JIT'ed code.
    645 //----------------------------------------------------------------------
    646 
    647 The deallocate memory packet is "_m<addr>" where you pass in the address you
    648 got back from a previous call to the allocate memory packet. It returns "OK"
    649 if the memory was successfully deallocated, or "EXX" for an error, or "" if
    650 not supported.
    651 
    652 //----------------------------------------------------------------------
    653 // "qMemoryRegionInfo:<addr>"
    654 //
    655 // BRIEF
    656 //  Get information about the address the range that contains "<addr>"
    657 //
    658 // PRIORITY TO IMPLEMENT
    659 //  Medium. This is nice to have, but it isn't necessary. It helps LLDB
    660 //  do stack unwinding when we branch into memory that isn't executable.
    661 //  If we can detect that the code we are stopped in isn't executable,
    662 //  then we can recover registers for stack frames above the current
    663 //  frame. Otherwise we must assume we are in some JIT'ed code (not JIT
    664 //  code that LLDB has made) and assume that no registers are available
    665 //  in higher stack frames.
    666 //----------------------------------------------------------------------
    667 
    668 We added a way to get information for a memory region. The packet is:
    669 
    670     qMemoryRegionInfo:<addr>
    671     
    672 Where <addr> is a big endian hex address. The response is returned in a series
    673 of tuples like the data returned in a stop reply packet. The currently valid
    674 tuples tp return are:
    675 
    676     start:<start-addr>; // <start-addr> is a big endian hex address that is 
    677                         // the start address of the range that contains <addr>
    678     
    679     size:<size>;    // <size> is a big endian hex byte size of the address
    680                     // of the range that contains <addr>
    681     
    682     permissions:<permissions>;  // <permissions> is a string that contains one
    683                                 // or more of the characters from "rwx"
    684                                 
    685     error:<ascii-byte-error-string>; // where <ascii-byte-error-string> is
    686                                      // a hex encoded string value that 
    687                                      // contains an error string
    688                                     
    689 If the address requested is not in a mapped region (e.g. we've jumped through
    690 a NULL pointer and are at 0x0) currently lldb expects to get back the size 
    691 of the unmapped region -- that is, the distance to the next valid region.
    692 For instance, with a Mac OS X process which has nothing mapped in the first
    693 4GB of its address space, if we're asking about address 0x2,
    694 
    695   qMemoryRegionInfo:2
    696   start:2;size:fffffffe;
    697 
    698 The lack of 'permissions:' indicates that none of read/write/execute are valid
    699 for this region.
    700 
    701 //----------------------------------------------------------------------
    702 // Detach and stay stopped:
    703 //
    704 // We extended the "D" packet to specify that the monitor should keep the
    705 // target suspended on detach.  The normal behavior is to resume execution
    706 // on detach.  We will send:
    707 //
    708 //  qSupportsDetachAndStayStopped:
    709 //
    710 // to query whether the monitor supports the extended detach, and if it does,
    711 // when we want the monitor to detach but not resume the target, we will
    712 // send:
    713 // 
    714 //   D1
    715 //
    716 // In any case, if we want the normal detach behavior we will just send:
    717 //
    718 //   D
    719 //----------------------------------------------------------------------
    720 
    721 //----------------------------------------------------------------------
    722 // Stop reply packet extensions
    723 //
    724 // BRIEF
    725 //  This section describes some of the additional information you can
    726 //  specify in stop reply packets that help LLDB to know more detailed
    727 //  information about your threads.
    728 //
    729 // DESCRIPTION
    730 //  Standard GDB remote stop reply packets are reply packets sent in
    731 //  response to a packet  that made the program run. They come in the
    732 //  following forms:
    733 //
    734 //  "SAA"
    735 //  "S" means signal and "AA" is a hex signal number that describes why 
    736 //  the thread or stopped. It doesn't specify which thread, so the "T"
    737 //  packet is recommended to use instead of the "S" packet.
    738 //
    739 //  "TAAkey1:value1;key2:value2;..."
    740 //  "T" means a thread stopped due to a unix signal where "AA" is a hex 
    741 //  signal number that describes why the program stopped. This is 
    742 //  followed by a series of key/value pairs:
    743 //      - If key is a hex number, it is a register number and value is
    744 //        the hex value of the register in debuggee endian byte order.
    745 //      - If key == "thread", then the value is the big endian hex
    746 //        thread-id of the stopped thread.
    747 //      - If key == "core", then value is a hex number of the core on
    748 //        which the stop was detected.
    749 //      - If key == "watch" or key == "rwatch" or key == "awatch", then
    750 //        value is the data address in big endian hex
    751 //      - If key == "library", then value is ignore and "qXfer:libraries:read"
    752 //        packets should be used to detect any newly loaded shared libraries
    753 //
    754 //  "WAA"
    755 //  "W" means the process exited and "AA" is the exit status.
    756 //
    757 //  "XAA"
    758 //  "X" means the process exited and "AA" is signal that caused the program
    759 //  to exit.
    760 //
    761 //  "O<ascii-hex-string>"
    762 //  "O" means STDOUT has data that was written to its console and is
    763 //  being delivered to the debugger. This packet happens asynchronously
    764 //  and the debugger is expected to continue to way for another stop reply
    765 //  packet.
    766 //
    767 // LLDB EXTENSIONS
    768 //
    769 //  We have extended the "T" packet to be able to also understand the
    770 //  following keys and values:
    771 //
    772 //  KEY           VALUE     DESCRIPTION
    773 //  ===========   ========  ================================================
    774 //  "metype"      unsigned  mach exception type (the value of the EXC_XXX enumerations)
    775 //                          as an unsigned integer. For targets with mach 
    776 //                          kernels only.
    777 //
    778 //  "mecount"     unsigned  mach exception data count as an unsigned integer
    779 //                          For targets with mach kernels only.
    780 //
    781 //  "medata"      unsigned  There should be "mecount" of these and it is the data
    782 //                          that goes along with a mach exception (as an unsigned 
    783 //                          integer). For targets with mach kernels only.
    784 //
    785 //  "name"        string    The name of the thread as a plain string. The string
    786 //                          must not contain an special packet characters or
    787 //                          contain a ':' or a ';'. Use "hexname" if the thread
    788 //                          name has special characters.
    789 //
    790 //  "hexname"     ascii-hex An ASCII hex string that contains the name of the thread
    791 //
    792 //  "qaddr"       hex       Big endian hex value that contains the libdispatch
    793 //                          queue address for the queue of the thread.
    794 //
    795 //  "reason"      enum      The enumeration must be one of:
    796 //                          "trace" the program stopped after a single instruction
    797 //                              was executed on a core. Usually done when single
    798 //                              stepping past a breakpoint
    799 //                          "breakpoint" a breakpoint set using a 'z' packet was hit.
    800 //                          "trap" stopped due to user interruption
    801 //                          "signal" stopped due to an actual unix signal, not
    802 //                              just the debugger using a unix signal to keep
    803 //                              the GDB remote client happy.
    804 //                          "watchpoint". Should be used in conjunction with 
    805 //                              the "watch"/"rwatch"/"awatch" key value pairs.
    806 //                          "exception" an exception stop reason. Use with
    807 //                              the "description" key/value pair to describe the
    808 //                              exceptional event the user should see as the stop
    809 //                              reason.
    810 //  "description" ascii-hex An ASCII hex string that contains a more descriptive
    811 //                          reason that the thread stopped. This is only needed
    812 //                          if none of the key/value pairs are enough to
    813 //                          describe why something stopped.
    814 //
    815 // BEST PRACTICES:
    816 //  Since register values can be supplied with this packet, it is often useful
    817 //  to return the PC, SP, FP, LR (if any), and FLAGS registers so that separate
    818 //  packets don't need to be sent to read each of these registers from each
    819 //  thread.
    820 //
    821 //  If a thread is stopped for no reason (like just because another thread
    822 //  stopped, or because when one core stops all cores should stop), use a 
    823 //  "T" packet with "00" as the signal number and fill in as many key values 
    824 //  and registers as possible.
    825 //
    826 //  LLDB likes to know why a thread stopped since many thread control 
    827 //  operations like stepping over a source line, actually are implemented
    828 //  by running the process multiple times. If a breakpoint is hit while
    829 //  trying to step over a source line and LLDB finds out that a breakpoint
    830 //  is hit in the "reason", we will know to stop trying to do the step
    831 //  over because something happened that should stop us from trying to
    832 //  do the step. If we are at a breakpoint and we disable the breakpoint
    833 //  at the current PC and do an instruction single step, knowing that
    834 //  we stopped due to a "trace" helps us know that we can continue
    835 //  running versus stopping due to a "breakpoint" (if we have two 
    836 //  breakpoint instruction on consecutive instructions). So the more info
    837 //  we can get about the reason a thread stops, the better job LLDB can
    838 //  do when controlling your process. A typical GDB server behavior is 
    839 //  to send a SIGTRAP for breakpoints _and_ also when instruction single
    840 //  stepping, in this case the debugger doesn't really know why we 
    841 //  stopped and it can make it hard for the debugger to control your
    842 //  program correctly. What if a real SIGTRAP was delivered to a thread
    843 //  while we were trying to single step? We wouldn't know the difference
    844 //  with a standard GDB remote server and we could do the wrong thing.
    845 //
    846 // PRIORITY TO IMPLEMENT
    847 //  High. Having the extra information in your stop reply packets makes
    848 //  your debug session more reliable and informative.
    849 //----------------------------------------------------------------------
    850  
    851