Home | History | Annotate | Download | only in docs
      1 ==============================
      2 LLVM Language Reference Manual
      3 ==============================
      4 
      5 .. contents::
      6    :local:
      7    :depth: 4
      8 
      9 Abstract
     10 ========
     11 
     12 This document is a reference manual for the LLVM assembly language. LLVM
     13 is a Static Single Assignment (SSA) based representation that provides
     14 type safety, low-level operations, flexibility, and the capability of
     15 representing 'all' high-level languages cleanly. It is the common code
     16 representation used throughout all phases of the LLVM compilation
     17 strategy.
     18 
     19 Introduction
     20 ============
     21 
     22 The LLVM code representation is designed to be used in three different
     23 forms: as an in-memory compiler IR, as an on-disk bitcode representation
     24 (suitable for fast loading by a Just-In-Time compiler), and as a human
     25 readable assembly language representation. This allows LLVM to provide a
     26 powerful intermediate representation for efficient compiler
     27 transformations and analysis, while providing a natural means to debug
     28 and visualize the transformations. The three different forms of LLVM are
     29 all equivalent. This document describes the human readable
     30 representation and notation.
     31 
     32 The LLVM representation aims to be light-weight and low-level while
     33 being expressive, typed, and extensible at the same time. It aims to be
     34 a "universal IR" of sorts, by being at a low enough level that
     35 high-level ideas may be cleanly mapped to it (similar to how
     36 microprocessors are "universal IR's", allowing many source languages to
     37 be mapped to them). By providing type information, LLVM can be used as
     38 the target of optimizations: for example, through pointer analysis, it
     39 can be proven that a C automatic variable is never accessed outside of
     40 the current function, allowing it to be promoted to a simple SSA value
     41 instead of a memory location.
     42 
     43 .. _wellformed:
     44 
     45 Well-Formedness
     46 ---------------
     47 
     48 It is important to note that this document describes 'well formed' LLVM
     49 assembly language. There is a difference between what the parser accepts
     50 and what is considered 'well formed'. For example, the following
     51 instruction is syntactically okay, but not well formed:
     52 
     53 .. code-block:: llvm
     54 
     55     %x = add i32 1, %x
     56 
     57 because the definition of ``%x`` does not dominate all of its uses. The
     58 LLVM infrastructure provides a verification pass that may be used to
     59 verify that an LLVM module is well formed. This pass is automatically
     60 run by the parser after parsing input assembly and by the optimizer
     61 before it outputs bitcode. The violations pointed out by the verifier
     62 pass indicate bugs in transformation passes or input to the parser.
     63 
     64 .. _identifiers:
     65 
     66 Identifiers
     67 ===========
     68 
     69 LLVM identifiers come in two basic types: global and local. Global
     70 identifiers (functions, global variables) begin with the ``'@'``
     71 character. Local identifiers (register names, types) begin with the
     72 ``'%'`` character. Additionally, there are three different formats for
     73 identifiers, for different purposes:
     74 
     75 #. Named values are represented as a string of characters with their
     76    prefix. For example, ``%foo``, ``@DivisionByZero``,
     77    ``%a.really.long.identifier``. The actual regular expression used is
     78    '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
     79    characters in their names can be surrounded with quotes. Special
     80    characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
     81    code for the character in hexadecimal. In this way, any character can
     82    be used in a name value, even quotes themselves. The ``"\01"`` prefix
     83    can be used on global variables to suppress mangling.
     84 #. Unnamed values are represented as an unsigned numeric value with
     85    their prefix. For example, ``%12``, ``@2``, ``%44``.
     86 #. Constants, which are described in the section  Constants_ below.
     87 
     88 LLVM requires that values start with a prefix for two reasons: Compilers
     89 don't need to worry about name clashes with reserved words, and the set
     90 of reserved words may be expanded in the future without penalty.
     91 Additionally, unnamed identifiers allow a compiler to quickly come up
     92 with a temporary variable without having to avoid symbol table
     93 conflicts.
     94 
     95 Reserved words in LLVM are very similar to reserved words in other
     96 languages. There are keywords for different opcodes ('``add``',
     97 '``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
     98 '``i32``', etc...), and others. These reserved words cannot conflict
     99 with variable names, because none of them start with a prefix character
    100 (``'%'`` or ``'@'``).
    101 
    102 Here is an example of LLVM code to multiply the integer variable
    103 '``%X``' by 8:
    104 
    105 The easy way:
    106 
    107 .. code-block:: llvm
    108 
    109     %result = mul i32 %X, 8
    110 
    111 After strength reduction:
    112 
    113 .. code-block:: llvm
    114 
    115     %result = shl i32 %X, 3
    116 
    117 And the hard way:
    118 
    119 .. code-block:: llvm
    120 
    121     %0 = add i32 %X, %X           ; yields i32:%0
    122     %1 = add i32 %0, %0           ; yields i32:%1
    123     %result = add i32 %1, %1
    124 
    125 This last way of multiplying ``%X`` by 8 illustrates several important
    126 lexical features of LLVM:
    127 
    128 #. Comments are delimited with a '``;``' and go until the end of line.
    129 #. Unnamed temporaries are created when the result of a computation is
    130    not assigned to a named value.
    131 #. Unnamed temporaries are numbered sequentially (using a per-function
    132    incrementing counter, starting with 0). Note that basic blocks and unnamed
    133    function parameters are included in this numbering. For example, if the
    134    entry basic block is not given a label name and all function parameters are
    135    named, then it will get number 0.
    136 
    137 It also shows a convention that we follow in this document. When
    138 demonstrating instructions, we will follow an instruction with a comment
    139 that defines the type and name of value produced.
    140 
    141 High Level Structure
    142 ====================
    143 
    144 Module Structure
    145 ----------------
    146 
    147 LLVM programs are composed of ``Module``'s, each of which is a
    148 translation unit of the input programs. Each module consists of
    149 functions, global variables, and symbol table entries. Modules may be
    150 combined together with the LLVM linker, which merges function (and
    151 global variable) definitions, resolves forward declarations, and merges
    152 symbol table entries. Here is an example of the "hello world" module:
    153 
    154 .. code-block:: llvm
    155 
    156     ; Declare the string constant as a global constant.
    157     @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
    158 
    159     ; External declaration of the puts function
    160     declare i32 @puts(i8* nocapture) nounwind
    161 
    162     ; Definition of main function
    163     define i32 @main() {   ; i32()*
    164       ; Convert [13 x i8]* to i8  *...
    165       %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
    166 
    167       ; Call puts function to write out the string to stdout.
    168       call i32 @puts(i8* %cast210)
    169       ret i32 0
    170     }
    171 
    172     ; Named metadata
    173     !0 = !{i32 42, null, !"string"}
    174     !foo = !{!0}
    175 
    176 This example is made up of a :ref:`global variable <globalvars>` named
    177 "``.str``", an external declaration of the "``puts``" function, a
    178 :ref:`function definition <functionstructure>` for "``main``" and
    179 :ref:`named metadata <namedmetadatastructure>` "``foo``".
    180 
    181 In general, a module is made up of a list of global values (where both
    182 functions and global variables are global values). Global values are
    183 represented by a pointer to a memory location (in this case, a pointer
    184 to an array of char, and a pointer to a function), and have one of the
    185 following :ref:`linkage types <linkage>`.
    186 
    187 .. _linkage:
    188 
    189 Linkage Types
    190 -------------
    191 
    192 All Global Variables and Functions have one of the following types of
    193 linkage:
    194 
    195 ``private``
    196     Global values with "``private``" linkage are only directly
    197     accessible by objects in the current module. In particular, linking
    198     code into a module with an private global value may cause the
    199     private to be renamed as necessary to avoid collisions. Because the
    200     symbol is private to the module, all references can be updated. This
    201     doesn't show up in any symbol table in the object file.
    202 ``internal``
    203     Similar to private, but the value shows as a local symbol
    204     (``STB_LOCAL`` in the case of ELF) in the object file. This
    205     corresponds to the notion of the '``static``' keyword in C.
    206 ``available_externally``
    207     Globals with "``available_externally``" linkage are never emitted
    208     into the object file corresponding to the LLVM module. They exist to
    209     allow inlining and other optimizations to take place given knowledge
    210     of the definition of the global, which is known to be somewhere
    211     outside the module. Globals with ``available_externally`` linkage
    212     are allowed to be discarded at will, and are otherwise the same as
    213     ``linkonce_odr``. This linkage type is only allowed on definitions,
    214     not declarations.
    215 ``linkonce``
    216     Globals with "``linkonce``" linkage are merged with other globals of
    217     the same name when linkage occurs. This can be used to implement
    218     some forms of inline functions, templates, or other code which must
    219     be generated in each translation unit that uses it, but where the
    220     body may be overridden with a more definitive definition later.
    221     Unreferenced ``linkonce`` globals are allowed to be discarded. Note
    222     that ``linkonce`` linkage does not actually allow the optimizer to
    223     inline the body of this function into callers because it doesn't
    224     know if this definition of the function is the definitive definition
    225     within the program or whether it will be overridden by a stronger
    226     definition. To enable inlining and other optimizations, use
    227     "``linkonce_odr``" linkage.
    228 ``weak``
    229     "``weak``" linkage has the same merging semantics as ``linkonce``
    230     linkage, except that unreferenced globals with ``weak`` linkage may
    231     not be discarded. This is used for globals that are declared "weak"
    232     in C source code.
    233 ``common``
    234     "``common``" linkage is most similar to "``weak``" linkage, but they
    235     are used for tentative definitions in C, such as "``int X;``" at
    236     global scope. Symbols with "``common``" linkage are merged in the
    237     same way as ``weak symbols``, and they may not be deleted if
    238     unreferenced. ``common`` symbols may not have an explicit section,
    239     must have a zero initializer, and may not be marked
    240     ':ref:`constant <globalvars>`'. Functions and aliases may not have
    241     common linkage.
    242 
    243 .. _linkage_appending:
    244 
    245 ``appending``
    246     "``appending``" linkage may only be applied to global variables of
    247     pointer to array type. When two global variables with appending
    248     linkage are linked together, the two global arrays are appended
    249     together. This is the LLVM, typesafe, equivalent of having the
    250     system linker append together "sections" with identical names when
    251     .o files are linked.
    252 ``extern_weak``
    253     The semantics of this linkage follow the ELF object file model: the
    254     symbol is weak until linked, if not linked, the symbol becomes null
    255     instead of being an undefined reference.
    256 ``linkonce_odr``, ``weak_odr``
    257     Some languages allow differing globals to be merged, such as two
    258     functions with different semantics. Other languages, such as
    259     ``C++``, ensure that only equivalent globals are ever merged (the
    260     "one definition rule" --- "ODR").  Such languages can use the
    261     ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
    262     global will only be merged with equivalent globals. These linkage
    263     types are otherwise the same as their non-``odr`` versions.
    264 ``external``
    265     If none of the above identifiers are used, the global is externally
    266     visible, meaning that it participates in linkage and can be used to
    267     resolve external symbol references.
    268 
    269 It is illegal for a function *declaration* to have any linkage type
    270 other than ``external`` or ``extern_weak``.
    271 
    272 .. _callingconv:
    273 
    274 Calling Conventions
    275 -------------------
    276 
    277 LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
    278 :ref:`invokes <i_invoke>` can all have an optional calling convention
    279 specified for the call. The calling convention of any pair of dynamic
    280 caller/callee must match, or the behavior of the program is undefined.
    281 The following calling conventions are supported by LLVM, and more may be
    282 added in the future:
    283 
    284 "``ccc``" - The C calling convention
    285     This calling convention (the default if no other calling convention
    286     is specified) matches the target C calling conventions. This calling
    287     convention supports varargs function calls and tolerates some
    288     mismatch in the declared prototype and implemented declaration of
    289     the function (as does normal C).
    290 "``fastcc``" - The fast calling convention
    291     This calling convention attempts to make calls as fast as possible
    292     (e.g. by passing things in registers). This calling convention
    293     allows the target to use whatever tricks it wants to produce fast
    294     code for the target, without having to conform to an externally
    295     specified ABI (Application Binary Interface). `Tail calls can only
    296     be optimized when this, the GHC or the HiPE convention is
    297     used. <CodeGenerator.html#id80>`_ This calling convention does not
    298     support varargs and requires the prototype of all callees to exactly
    299     match the prototype of the function definition.
    300 "``coldcc``" - The cold calling convention
    301     This calling convention attempts to make code in the caller as
    302     efficient as possible under the assumption that the call is not
    303     commonly executed. As such, these calls often preserve all registers
    304     so that the call does not break any live ranges in the caller side.
    305     This calling convention does not support varargs and requires the
    306     prototype of all callees to exactly match the prototype of the
    307     function definition. Furthermore the inliner doesn't consider such function
    308     calls for inlining.
    309 "``cc 10``" - GHC convention
    310     This calling convention has been implemented specifically for use by
    311     the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
    312     It passes everything in registers, going to extremes to achieve this
    313     by disabling callee save registers. This calling convention should
    314     not be used lightly but only for specific situations such as an
    315     alternative to the *register pinning* performance technique often
    316     used when implementing functional programming languages. At the
    317     moment only X86 supports this convention and it has the following
    318     limitations:
    319 
    320     -  On *X86-32* only supports up to 4 bit type parameters. No
    321        floating point types are supported.
    322     -  On *X86-64* only supports up to 10 bit type parameters and 6
    323        floating point parameters.
    324 
    325     This calling convention supports `tail call
    326     optimization <CodeGenerator.html#id80>`_ but requires both the
    327     caller and callee are using it.
    328 "``cc 11``" - The HiPE calling convention
    329     This calling convention has been implemented specifically for use by
    330     the `High-Performance Erlang
    331     (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
    332     native code compiler of the `Ericsson's Open Source Erlang/OTP
    333     system <http://www.erlang.org/download.shtml>`_. It uses more
    334     registers for argument passing than the ordinary C calling
    335     convention and defines no callee-saved registers. The calling
    336     convention properly supports `tail call
    337     optimization <CodeGenerator.html#id80>`_ but requires that both the
    338     caller and the callee use it. It uses a *register pinning*
    339     mechanism, similar to GHC's convention, for keeping frequently
    340     accessed runtime components pinned to specific hardware registers.
    341     At the moment only X86 supports this convention (both 32 and 64
    342     bit).
    343 "``webkit_jscc``" - WebKit's JavaScript calling convention
    344     This calling convention has been implemented for `WebKit FTL JIT
    345     <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
    346     stack right to left (as cdecl does), and returns a value in the
    347     platform's customary return register.
    348 "``anyregcc``" - Dynamic calling convention for code patching
    349     This is a special convention that supports patching an arbitrary code
    350     sequence in place of a call site. This convention forces the call
    351     arguments into registers but allows them to be dynamically
    352     allocated. This can currently only be used with calls to
    353     llvm.experimental.patchpoint because only this intrinsic records
    354     the location of its arguments in a side table. See :doc:`StackMaps`.
    355 "``preserve_mostcc``" - The `PreserveMost` calling convention
    356     This calling convention attempts to make the code in the caller as
    357     unintrusive as possible. This convention behaves identically to the `C`
    358     calling convention on how arguments and return values are passed, but it
    359     uses a different set of caller/callee-saved registers. This alleviates the
    360     burden of saving and recovering a large register set before and after the
    361     call in the caller. If the arguments are passed in callee-saved registers,
    362     then they will be preserved by the callee across the call. This doesn't
    363     apply for values returned in callee-saved registers.
    364 
    365     - On X86-64 the callee preserves all general purpose registers, except for
    366       R11. R11 can be used as a scratch register. Floating-point registers
    367       (XMMs/YMMs) are not preserved and need to be saved by the caller.
    368 
    369     The idea behind this convention is to support calls to runtime functions
    370     that have a hot path and a cold path. The hot path is usually a small piece
    371     of code that doesn't use many registers. The cold path might need to call out to
    372     another function and therefore only needs to preserve the caller-saved
    373     registers, which haven't already been saved by the caller. The
    374     `PreserveMost` calling convention is very similar to the `cold` calling
    375     convention in terms of caller/callee-saved registers, but they are used for
    376     different types of function calls. `coldcc` is for function calls that are
    377     rarely executed, whereas `preserve_mostcc` function calls are intended to be
    378     on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
    379     doesn't prevent the inliner from inlining the function call.
    380 
    381     This calling convention will be used by a future version of the ObjectiveC
    382     runtime and should therefore still be considered experimental at this time.
    383     Although this convention was created to optimize certain runtime calls to
    384     the ObjectiveC runtime, it is not limited to this runtime and might be used
    385     by other runtimes in the future too. The current implementation only
    386     supports X86-64, but the intention is to support more architectures in the
    387     future.
    388 "``preserve_allcc``" - The `PreserveAll` calling convention
    389     This calling convention attempts to make the code in the caller even less
    390     intrusive than the `PreserveMost` calling convention. This calling
    391     convention also behaves identical to the `C` calling convention on how
    392     arguments and return values are passed, but it uses a different set of
    393     caller/callee-saved registers. This removes the burden of saving and
    394     recovering a large register set before and after the call in the caller. If
    395     the arguments are passed in callee-saved registers, then they will be
    396     preserved by the callee across the call. This doesn't apply for values
    397     returned in callee-saved registers.
    398 
    399     - On X86-64 the callee preserves all general purpose registers, except for
    400       R11. R11 can be used as a scratch register. Furthermore it also preserves
    401       all floating-point registers (XMMs/YMMs).
    402 
    403     The idea behind this convention is to support calls to runtime functions
    404     that don't need to call out to any other functions.
    405 
    406     This calling convention, like the `PreserveMost` calling convention, will be
    407     used by a future version of the ObjectiveC runtime and should be considered
    408     experimental at this time.
    409 "``cc <n>``" - Numbered convention
    410     Any calling convention may be specified by number, allowing
    411     target-specific calling conventions to be used. Target specific
    412     calling conventions start at 64.
    413 
    414 More calling conventions can be added/defined on an as-needed basis, to
    415 support Pascal conventions or any other well-known target-independent
    416 convention.
    417 
    418 .. _visibilitystyles:
    419 
    420 Visibility Styles
    421 -----------------
    422 
    423 All Global Variables and Functions have one of the following visibility
    424 styles:
    425 
    426 "``default``" - Default style
    427     On targets that use the ELF object file format, default visibility
    428     means that the declaration is visible to other modules and, in
    429     shared libraries, means that the declared entity may be overridden.
    430     On Darwin, default visibility means that the declaration is visible
    431     to other modules. Default visibility corresponds to "external
    432     linkage" in the language.
    433 "``hidden``" - Hidden style
    434     Two declarations of an object with hidden visibility refer to the
    435     same object if they are in the same shared object. Usually, hidden
    436     visibility indicates that the symbol will not be placed into the
    437     dynamic symbol table, so no other module (executable or shared
    438     library) can reference it directly.
    439 "``protected``" - Protected style
    440     On ELF, protected visibility indicates that the symbol will be
    441     placed in the dynamic symbol table, but that references within the
    442     defining module will bind to the local symbol. That is, the symbol
    443     cannot be overridden by another module.
    444 
    445 A symbol with ``internal`` or ``private`` linkage must have ``default``
    446 visibility.
    447 
    448 .. _dllstorageclass:
    449 
    450 DLL Storage Classes
    451 -------------------
    452 
    453 All Global Variables, Functions and Aliases can have one of the following
    454 DLL storage class:
    455 
    456 ``dllimport``
    457     "``dllimport``" causes the compiler to reference a function or variable via
    458     a global pointer to a pointer that is set up by the DLL exporting the
    459     symbol. On Microsoft Windows targets, the pointer name is formed by
    460     combining ``__imp_`` and the function or variable name.
    461 ``dllexport``
    462     "``dllexport``" causes the compiler to provide a global pointer to a pointer
    463     in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
    464     Microsoft Windows targets, the pointer name is formed by combining
    465     ``__imp_`` and the function or variable name. Since this storage class
    466     exists for defining a dll interface, the compiler, assembler and linker know
    467     it is externally referenced and must refrain from deleting the symbol.
    468 
    469 .. _tls_model:
    470 
    471 Thread Local Storage Models
    472 ---------------------------
    473 
    474 A variable may be defined as ``thread_local``, which means that it will
    475 not be shared by threads (each thread will have a separated copy of the
    476 variable). Not all targets support thread-local variables. Optionally, a
    477 TLS model may be specified:
    478 
    479 ``localdynamic``
    480     For variables that are only used within the current shared library.
    481 ``initialexec``
    482     For variables in modules that will not be loaded dynamically.
    483 ``localexec``
    484     For variables defined in the executable and only used within it.
    485 
    486 If no explicit model is given, the "general dynamic" model is used.
    487 
    488 The models correspond to the ELF TLS models; see `ELF Handling For
    489 Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
    490 more information on under which circumstances the different models may
    491 be used. The target may choose a different TLS model if the specified
    492 model is not supported, or if a better choice of model can be made.
    493 
    494 A model can also be specified in a alias, but then it only governs how
    495 the alias is accessed. It will not have any effect in the aliasee.
    496 
    497 .. _namedtypes:
    498 
    499 Structure Types
    500 ---------------
    501 
    502 LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
    503 types <t_struct>`.  Literal types are uniqued structurally, but identified types
    504 are never uniqued.  An :ref:`opaque structural type <t_opaque>` can also be used
    505 to forward declare a type that is not yet available.
    506 
    507 An example of a identified structure specification is:
    508 
    509 .. code-block:: llvm
    510 
    511     %mytype = type { %mytype*, i32 }
    512 
    513 Prior to the LLVM 3.0 release, identified types were structurally uniqued.  Only
    514 literal types are uniqued in recent versions of LLVM.
    515 
    516 .. _globalvars:
    517 
    518 Global Variables
    519 ----------------
    520 
    521 Global variables define regions of memory allocated at compilation time
    522 instead of run-time.
    523 
    524 Global variable definitions must be initialized.
    525 
    526 Global variables in other translation units can also be declared, in which
    527 case they don't have an initializer.
    528 
    529 Either global variable definitions or declarations may have an explicit section
    530 to be placed in and may have an optional explicit alignment specified.
    531 
    532 A variable may be defined as a global ``constant``, which indicates that
    533 the contents of the variable will **never** be modified (enabling better
    534 optimization, allowing the global data to be placed in the read-only
    535 section of an executable, etc). Note that variables that need runtime
    536 initialization cannot be marked ``constant`` as there is a store to the
    537 variable.
    538 
    539 LLVM explicitly allows *declarations* of global variables to be marked
    540 constant, even if the final definition of the global is not. This
    541 capability can be used to enable slightly better optimization of the
    542 program, but requires the language definition to guarantee that
    543 optimizations based on the 'constantness' are valid for the translation
    544 units that do not include the definition.
    545 
    546 As SSA values, global variables define pointer values that are in scope
    547 (i.e. they dominate) all basic blocks in the program. Global variables
    548 always define a pointer to their "content" type because they describe a
    549 region of memory, and all memory objects in LLVM are accessed through
    550 pointers.
    551 
    552 Global variables can be marked with ``unnamed_addr`` which indicates
    553 that the address is not significant, only the content. Constants marked
    554 like this can be merged with other constants if they have the same
    555 initializer. Note that a constant with significant address *can* be
    556 merged with a ``unnamed_addr`` constant, the result being a constant
    557 whose address is significant.
    558 
    559 A global variable may be declared to reside in a target-specific
    560 numbered address space. For targets that support them, address spaces
    561 may affect how optimizations are performed and/or what target
    562 instructions are used to access the variable. The default address space
    563 is zero. The address space qualifier must precede any other attributes.
    564 
    565 LLVM allows an explicit section to be specified for globals. If the
    566 target supports it, it will emit globals to the section specified.
    567 Additionally, the global can placed in a comdat if the target has the necessary
    568 support.
    569 
    570 By default, global initializers are optimized by assuming that global
    571 variables defined within the module are not modified from their
    572 initial values before the start of the global initializer.  This is
    573 true even for variables potentially accessible from outside the
    574 module, including those with external linkage or appearing in
    575 ``@llvm.used`` or dllexported variables. This assumption may be suppressed
    576 by marking the variable with ``externally_initialized``.
    577 
    578 An explicit alignment may be specified for a global, which must be a
    579 power of 2. If not present, or if the alignment is set to zero, the
    580 alignment of the global is set by the target to whatever it feels
    581 convenient. If an explicit alignment is specified, the global is forced
    582 to have exactly that alignment. Targets and optimizers are not allowed
    583 to over-align the global if the global has an assigned section. In this
    584 case, the extra alignment could be observable: for example, code could
    585 assume that the globals are densely packed in their section and try to
    586 iterate over them as an array, alignment padding would break this
    587 iteration. The maximum alignment is ``1 << 29``.
    588 
    589 Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
    590 
    591 Variables and aliases can have a
    592 :ref:`Thread Local Storage Model <tls_model>`.
    593 
    594 Syntax::
    595 
    596     [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
    597                          [unnamed_addr] [AddrSpace] [ExternallyInitialized]
    598                          <global | constant> <Type> [<InitializerConstant>]
    599                          [, section "name"] [, comdat [($name)]]
    600                          [, align <Alignment>]
    601 
    602 For example, the following defines a global in a numbered address space
    603 with an initializer, section, and alignment:
    604 
    605 .. code-block:: llvm
    606 
    607     @G = addrspace(5) constant float 1.0, section "foo", align 4
    608 
    609 The following example just declares a global variable
    610 
    611 .. code-block:: llvm
    612 
    613    @G = external global i32
    614 
    615 The following example defines a thread-local global with the
    616 ``initialexec`` TLS model:
    617 
    618 .. code-block:: llvm
    619 
    620     @G = thread_local(initialexec) global i32 0, align 4
    621 
    622 .. _functionstructure:
    623 
    624 Functions
    625 ---------
    626 
    627 LLVM function definitions consist of the "``define``" keyword, an
    628 optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
    629 style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
    630 an optional :ref:`calling convention <callingconv>`,
    631 an optional ``unnamed_addr`` attribute, a return type, an optional
    632 :ref:`parameter attribute <paramattrs>` for the return type, a function
    633 name, a (possibly empty) argument list (each with optional :ref:`parameter
    634 attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
    635 an optional section, an optional alignment,
    636 an optional :ref:`comdat <langref_comdats>`,
    637 an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
    638 an optional :ref:`prologue <prologuedata>`, an opening
    639 curly brace, a list of basic blocks, and a closing curly brace.
    640 
    641 LLVM function declarations consist of the "``declare``" keyword, an
    642 optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
    643 style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
    644 an optional :ref:`calling convention <callingconv>`,
    645 an optional ``unnamed_addr`` attribute, a return type, an optional
    646 :ref:`parameter attribute <paramattrs>` for the return type, a function
    647 name, a possibly empty list of arguments, an optional alignment, an optional
    648 :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
    649 and an optional :ref:`prologue <prologuedata>`.
    650 
    651 A function definition contains a list of basic blocks, forming the CFG (Control
    652 Flow Graph) for the function. Each basic block may optionally start with a label
    653 (giving the basic block a symbol table entry), contains a list of instructions,
    654 and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
    655 function return). If an explicit label is not provided, a block is assigned an
    656 implicit numbered label, using the next value from the same counter as used for
    657 unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
    658 entry block does not have an explicit label, it will be assigned label "%0",
    659 then the first unnamed temporary in that block will be "%1", etc.
    660 
    661 The first basic block in a function is special in two ways: it is
    662 immediately executed on entrance to the function, and it is not allowed
    663 to have predecessor basic blocks (i.e. there can not be any branches to
    664 the entry block of a function). Because the block can have no
    665 predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
    666 
    667 LLVM allows an explicit section to be specified for functions. If the
    668 target supports it, it will emit functions to the section specified.
    669 Additionally, the function can be placed in a COMDAT.
    670 
    671 An explicit alignment may be specified for a function. If not present,
    672 or if the alignment is set to zero, the alignment of the function is set
    673 by the target to whatever it feels convenient. If an explicit alignment
    674 is specified, the function is forced to have at least that much
    675 alignment. All alignments must be a power of 2.
    676 
    677 If the ``unnamed_addr`` attribute is given, the address is known to not
    678 be significant and two identical functions can be merged.
    679 
    680 Syntax::
    681 
    682     define [linkage] [visibility] [DLLStorageClass]
    683            [cconv] [ret attrs]
    684            <ResultType> @<FunctionName> ([argument list])
    685            [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
    686            [align N] [gc] [prefix Constant] [prologue Constant] { ... }
    687 
    688 The argument list is a comma seperated sequence of arguments where each
    689 argument is of the following form
    690 
    691 Syntax::
    692 
    693    <type> [parameter Attrs] [name]
    694 
    695 
    696 .. _langref_aliases:
    697 
    698 Aliases
    699 -------
    700 
    701 Aliases, unlike function or variables, don't create any new data. They
    702 are just a new symbol and metadata for an existing position.
    703 
    704 Aliases have a name and an aliasee that is either a global value or a
    705 constant expression.
    706 
    707 Aliases may have an optional :ref:`linkage type <linkage>`, an optional
    708 :ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
    709 <dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
    710 
    711 Syntax::
    712 
    713     @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
    714 
    715 The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
    716 ``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
    717 might not correctly handle dropping a weak symbol that is aliased.
    718 
    719 Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
    720 the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
    721 to the same content.
    722 
    723 Since aliases are only a second name, some restrictions apply, of which
    724 some can only be checked when producing an object file:
    725 
    726 * The expression defining the aliasee must be computable at assembly
    727   time. Since it is just a name, no relocations can be used.
    728 
    729 * No alias in the expression can be weak as the possibility of the
    730   intermediate alias being overridden cannot be represented in an
    731   object file.
    732 
    733 * No global value in the expression can be a declaration, since that
    734   would require a relocation, which is not possible.
    735 
    736 .. _langref_comdats:
    737 
    738 Comdats
    739 -------
    740 
    741 Comdat IR provides access to COFF and ELF object file COMDAT functionality.
    742 
    743 Comdats have a name which represents the COMDAT key.  All global objects that
    744 specify this key will only end up in the final object file if the linker chooses
    745 that key over some other key.  Aliases are placed in the same COMDAT that their
    746 aliasee computes to, if any.
    747 
    748 Comdats have a selection kind to provide input on how the linker should
    749 choose between keys in two different object files.
    750 
    751 Syntax::
    752 
    753     $<Name> = comdat SelectionKind
    754 
    755 The selection kind must be one of the following:
    756 
    757 ``any``
    758     The linker may choose any COMDAT key, the choice is arbitrary.
    759 ``exactmatch``
    760     The linker may choose any COMDAT key but the sections must contain the
    761     same data.
    762 ``largest``
    763     The linker will choose the section containing the largest COMDAT key.
    764 ``noduplicates``
    765     The linker requires that only section with this COMDAT key exist.
    766 ``samesize``
    767     The linker may choose any COMDAT key but the sections must contain the
    768     same amount of data.
    769 
    770 Note that the Mach-O platform doesn't support COMDATs and ELF only supports
    771 ``any`` as a selection kind.
    772 
    773 Here is an example of a COMDAT group where a function will only be selected if
    774 the COMDAT key's section is the largest:
    775 
    776 .. code-block:: llvm
    777 
    778    $foo = comdat largest
    779    @foo = global i32 2, comdat($foo)
    780 
    781    define void @bar() comdat($foo) {
    782      ret void
    783    }
    784 
    785 As a syntactic sugar the ``$name`` can be omitted if the name is the same as
    786 the global name:
    787 
    788 .. code-block:: llvm
    789 
    790   $foo = comdat any
    791   @foo = global i32 2, comdat
    792 
    793 
    794 In a COFF object file, this will create a COMDAT section with selection kind
    795 ``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
    796 and another COMDAT section with selection kind
    797 ``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
    798 section and contains the contents of the ``@bar`` symbol.
    799 
    800 There are some restrictions on the properties of the global object.
    801 It, or an alias to it, must have the same name as the COMDAT group when
    802 targeting COFF.
    803 The contents and size of this object may be used during link-time to determine
    804 which COMDAT groups get selected depending on the selection kind.
    805 Because the name of the object must match the name of the COMDAT group, the
    806 linkage of the global object must not be local; local symbols can get renamed
    807 if a collision occurs in the symbol table.
    808 
    809 The combined use of COMDATS and section attributes may yield surprising results.
    810 For example:
    811 
    812 .. code-block:: llvm
    813 
    814    $foo = comdat any
    815    $bar = comdat any
    816    @g1 = global i32 42, section "sec", comdat($foo)
    817    @g2 = global i32 42, section "sec", comdat($bar)
    818 
    819 From the object file perspective, this requires the creation of two sections
    820 with the same name.  This is necessary because both globals belong to different
    821 COMDAT groups and COMDATs, at the object file level, are represented by
    822 sections.
    823 
    824 Note that certain IR constructs like global variables and functions may create
    825 COMDATs in the object file in addition to any which are specified using COMDAT
    826 IR.  This arises, for example, when a global variable has linkonce_odr linkage.
    827 
    828 .. _namedmetadatastructure:
    829 
    830 Named Metadata
    831 --------------
    832 
    833 Named metadata is a collection of metadata. :ref:`Metadata
    834 nodes <metadata>` (but not metadata strings) are the only valid
    835 operands for a named metadata.
    836 
    837 Syntax::
    838 
    839     ; Some unnamed metadata nodes, which are referenced by the named metadata.
    840     !0 = !{!"zero"}
    841     !1 = !{!"one"}
    842     !2 = !{!"two"}
    843     ; A named metadata.
    844     !name = !{!0, !1, !2}
    845 
    846 .. _paramattrs:
    847 
    848 Parameter Attributes
    849 --------------------
    850 
    851 The return type and each parameter of a function type may have a set of
    852 *parameter attributes* associated with them. Parameter attributes are
    853 used to communicate additional information about the result or
    854 parameters of a function. Parameter attributes are considered to be part
    855 of the function, not of the function type, so functions with different
    856 parameter attributes can have the same function type.
    857 
    858 Parameter attributes are simple keywords that follow the type specified.
    859 If multiple parameter attributes are needed, they are space separated.
    860 For example:
    861 
    862 .. code-block:: llvm
    863 
    864     declare i32 @printf(i8* noalias nocapture, ...)
    865     declare i32 @atoi(i8 zeroext)
    866     declare signext i8 @returns_signed_char()
    867 
    868 Note that any attributes for the function result (``nounwind``,
    869 ``readonly``) come immediately after the argument list.
    870 
    871 Currently, only the following parameter attributes are defined:
    872 
    873 ``zeroext``
    874     This indicates to the code generator that the parameter or return
    875     value should be zero-extended to the extent required by the target's
    876     ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
    877     the caller (for a parameter) or the callee (for a return value).
    878 ``signext``
    879     This indicates to the code generator that the parameter or return
    880     value should be sign-extended to the extent required by the target's
    881     ABI (which is usually 32-bits) by the caller (for a parameter) or
    882     the callee (for a return value).
    883 ``inreg``
    884     This indicates that this parameter or return value should be treated
    885     in a special target-dependent fashion during while emitting code for
    886     a function call or return (usually, by putting it in a register as
    887     opposed to memory, though some targets use it to distinguish between
    888     two different kinds of registers). Use of this attribute is
    889     target-specific.
    890 ``byval``
    891     This indicates that the pointer parameter should really be passed by
    892     value to the function. The attribute implies that a hidden copy of
    893     the pointee is made between the caller and the callee, so the callee
    894     is unable to modify the value in the caller. This attribute is only
    895     valid on LLVM pointer arguments. It is generally used to pass
    896     structs and arrays by value, but is also valid on pointers to
    897     scalars. The copy is considered to belong to the caller not the
    898     callee (for example, ``readonly`` functions should not write to
    899     ``byval`` parameters). This is not a valid attribute for return
    900     values.
    901 
    902     The byval attribute also supports specifying an alignment with the
    903     align attribute. It indicates the alignment of the stack slot to
    904     form and the known alignment of the pointer specified to the call
    905     site. If the alignment is not specified, then the code generator
    906     makes a target-specific assumption.
    907 
    908 .. _attr_inalloca:
    909 
    910 ``inalloca``
    911 
    912     The ``inalloca`` argument attribute allows the caller to take the
    913     address of outgoing stack arguments.  An ``inalloca`` argument must
    914     be a pointer to stack memory produced by an ``alloca`` instruction.
    915     The alloca, or argument allocation, must also be tagged with the
    916     inalloca keyword.  Only the last argument may have the ``inalloca``
    917     attribute, and that argument is guaranteed to be passed in memory.
    918 
    919     An argument allocation may be used by a call at most once because
    920     the call may deallocate it.  The ``inalloca`` attribute cannot be
    921     used in conjunction with other attributes that affect argument
    922     storage, like ``inreg``, ``nest``, ``sret``, or ``byval``.  The
    923     ``inalloca`` attribute also disables LLVM's implicit lowering of
    924     large aggregate return values, which means that frontend authors
    925     must lower them with ``sret`` pointers.
    926 
    927     When the call site is reached, the argument allocation must have
    928     been the most recent stack allocation that is still live, or the
    929     results are undefined.  It is possible to allocate additional stack
    930     space after an argument allocation and before its call site, but it
    931     must be cleared off with :ref:`llvm.stackrestore
    932     <int_stackrestore>`.
    933 
    934     See :doc:`InAlloca` for more information on how to use this
    935     attribute.
    936 
    937 ``sret``
    938     This indicates that the pointer parameter specifies the address of a
    939     structure that is the return value of the function in the source
    940     program. This pointer must be guaranteed by the caller to be valid:
    941     loads and stores to the structure may be assumed by the callee
    942     not to trap and to be properly aligned. This may only be applied to
    943     the first parameter. This is not a valid attribute for return
    944     values.
    945 
    946 ``align <n>``
    947     This indicates that the pointer value may be assumed by the optimizer to
    948     have the specified alignment.
    949 
    950     Note that this attribute has additional semantics when combined with the
    951     ``byval`` attribute.
    952 
    953 .. _noalias:
    954 
    955 ``noalias``
    956     This indicates that objects accessed via pointer values
    957     :ref:`based <pointeraliasing>` on the argument or return value are not also
    958     accessed, during the execution of the function, via pointer values not
    959     *based* on the argument or return value. The attribute on a return value
    960     also has additional semantics described below. The caller shares the
    961     responsibility with the callee for ensuring that these requirements are met.
    962     For further details, please see the discussion of the NoAlias response in
    963     :ref:`alias analysis <Must, May, or No>`.
    964 
    965     Note that this definition of ``noalias`` is intentionally similar
    966     to the definition of ``restrict`` in C99 for function arguments.
    967 
    968     For function return values, C99's ``restrict`` is not meaningful,
    969     while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
    970     attribute on return values are stronger than the semantics of the attribute
    971     when used on function arguments. On function return values, the ``noalias``
    972     attribute indicates that the function acts like a system memory allocation
    973     function, returning a pointer to allocated storage disjoint from the
    974     storage for any other object accessible to the caller.
    975 
    976 ``nocapture``
    977     This indicates that the callee does not make any copies of the
    978     pointer that outlive the callee itself. This is not a valid
    979     attribute for return values.
    980 
    981 .. _nest:
    982 
    983 ``nest``
    984     This indicates that the pointer parameter can be excised using the
    985     :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
    986     attribute for return values and can only be applied to one parameter.
    987 
    988 ``returned``
    989     This indicates that the function always returns the argument as its return
    990     value. This is an optimization hint to the code generator when generating
    991     the caller, allowing tail call optimization and omission of register saves
    992     and restores in some cases; it is not checked or enforced when generating
    993     the callee. The parameter and the function return type must be valid
    994     operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
    995     valid attribute for return values and can only be applied to one parameter.
    996 
    997 ``nonnull``
    998     This indicates that the parameter or return pointer is not null. This
    999     attribute may only be applied to pointer typed parameters. This is not
   1000     checked or enforced by LLVM, the caller must ensure that the pointer
   1001     passed in is non-null, or the callee must ensure that the returned pointer
   1002     is non-null.
   1003 
   1004 ``dereferenceable(<n>)``
   1005     This indicates that the parameter or return pointer is dereferenceable. This
   1006     attribute may only be applied to pointer typed parameters. A pointer that
   1007     is dereferenceable can be loaded from speculatively without a risk of
   1008     trapping. The number of bytes known to be dereferenceable must be provided
   1009     in parentheses. It is legal for the number of bytes to be less than the
   1010     size of the pointee type. The ``nonnull`` attribute does not imply
   1011     dereferenceability (consider a pointer to one element past the end of an
   1012     array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
   1013     ``addrspace(0)`` (which is the default address space).
   1014 
   1015 ``dereferenceable_or_null(<n>)``
   1016     This indicates that the parameter or return value isn't both
   1017     non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
   1018     time.  All non-null pointers tagged with
   1019     ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
   1020     For address space 0 ``dereferenceable_or_null(<n>)`` implies that
   1021     a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
   1022     and in other address spaces ``dereferenceable_or_null(<n>)``
   1023     implies that a pointer is at least one of ``dereferenceable(<n>)``
   1024     or ``null`` (i.e. it may be both ``null`` and
   1025     ``dereferenceable(<n>)``).  This attribute may only be applied to
   1026     pointer typed parameters.
   1027 
   1028 .. _gc:
   1029 
   1030 Garbage Collector Strategy Names
   1031 --------------------------------
   1032 
   1033 Each function may specify a garbage collector strategy name, which is simply a
   1034 string:
   1035 
   1036 .. code-block:: llvm
   1037 
   1038     define void @f() gc "name" { ... }
   1039 
   1040 The supported values of *name* includes those :ref:`built in to LLVM
   1041 <builtin-gc-strategies>` and any provided by loaded plugins.  Specifying a GC
   1042 strategy will cause the compiler to alter its output in order to support the
   1043 named garbage collection algorithm.  Note that LLVM itself does not contain a
   1044 garbage collector, this functionality is restricted to generating machine code
   1045 which can interoperate with a collector provided externally.
   1046 
   1047 .. _prefixdata:
   1048 
   1049 Prefix Data
   1050 -----------
   1051 
   1052 Prefix data is data associated with a function which the code
   1053 generator will emit immediately before the function's entrypoint.
   1054 The purpose of this feature is to allow frontends to associate
   1055 language-specific runtime metadata with specific functions and make it
   1056 available through the function pointer while still allowing the
   1057 function pointer to be called.
   1058 
   1059 To access the data for a given function, a program may bitcast the
   1060 function pointer to a pointer to the constant's type and dereference
   1061 index -1.  This implies that the IR symbol points just past the end of
   1062 the prefix data. For instance, take the example of a function annotated
   1063 with a single ``i32``,
   1064 
   1065 .. code-block:: llvm
   1066 
   1067     define void @f() prefix i32 123 { ... }
   1068 
   1069 The prefix data can be referenced as,
   1070 
   1071 .. code-block:: llvm
   1072 
   1073     %0 = bitcast void* () @f to i32*
   1074     %a = getelementptr inbounds i32, i32* %0, i32 -1
   1075     %b = load i32, i32* %a
   1076 
   1077 Prefix data is laid out as if it were an initializer for a global variable
   1078 of the prefix data's type.  The function will be placed such that the
   1079 beginning of the prefix data is aligned. This means that if the size
   1080 of the prefix data is not a multiple of the alignment size, the
   1081 function's entrypoint will not be aligned. If alignment of the
   1082 function's entrypoint is desired, padding must be added to the prefix
   1083 data.
   1084 
   1085 A function may have prefix data but no body.  This has similar semantics
   1086 to the ``available_externally`` linkage in that the data may be used by the
   1087 optimizers but will not be emitted in the object file.
   1088 
   1089 .. _prologuedata:
   1090 
   1091 Prologue Data
   1092 -------------
   1093 
   1094 The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
   1095 be inserted prior to the function body. This can be used for enabling
   1096 function hot-patching and instrumentation.
   1097 
   1098 To maintain the semantics of ordinary function calls, the prologue data must
   1099 have a particular format.  Specifically, it must begin with a sequence of
   1100 bytes which decode to a sequence of machine instructions, valid for the
   1101 module's target, which transfer control to the point immediately succeeding
   1102 the prologue data, without performing any other visible action.  This allows
   1103 the inliner and other passes to reason about the semantics of the function
   1104 definition without needing to reason about the prologue data.  Obviously this
   1105 makes the format of the prologue data highly target dependent.
   1106 
   1107 A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
   1108 which encodes the ``nop`` instruction:
   1109 
   1110 .. code-block:: llvm
   1111 
   1112     define void @f() prologue i8 144 { ... }
   1113 
   1114 Generally prologue data can be formed by encoding a relative branch instruction
   1115 which skips the metadata, as in this example of valid prologue data for the
   1116 x86_64 architecture, where the first two bytes encode ``jmp .+10``:
   1117 
   1118 .. code-block:: llvm
   1119 
   1120     %0 = type <{ i8, i8, i8* }>
   1121 
   1122     define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
   1123 
   1124 A function may have prologue data but no body.  This has similar semantics
   1125 to the ``available_externally`` linkage in that the data may be used by the
   1126 optimizers but will not be emitted in the object file.
   1127 
   1128 .. _attrgrp:
   1129 
   1130 Attribute Groups
   1131 ----------------
   1132 
   1133 Attribute groups are groups of attributes that are referenced by objects within
   1134 the IR. They are important for keeping ``.ll`` files readable, because a lot of
   1135 functions will use the same set of attributes. In the degenerative case of a
   1136 ``.ll`` file that corresponds to a single ``.c`` file, the single attribute
   1137 group will capture the important command line flags used to build that file.
   1138 
   1139 An attribute group is a module-level object. To use an attribute group, an
   1140 object references the attribute group's ID (e.g. ``#37``). An object may refer
   1141 to more than one attribute group. In that situation, the attributes from the
   1142 different groups are merged.
   1143 
   1144 Here is an example of attribute groups for a function that should always be
   1145 inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
   1146 
   1147 .. code-block:: llvm
   1148 
   1149    ; Target-independent attributes:
   1150    attributes #0 = { alwaysinline alignstack=4 }
   1151 
   1152    ; Target-dependent attributes:
   1153    attributes #1 = { "no-sse" }
   1154 
   1155    ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
   1156    define void @f() #0 #1 { ... }
   1157 
   1158 .. _fnattrs:
   1159 
   1160 Function Attributes
   1161 -------------------
   1162 
   1163 Function attributes are set to communicate additional information about
   1164 a function. Function attributes are considered to be part of the
   1165 function, not of the function type, so functions with different function
   1166 attributes can have the same function type.
   1167 
   1168 Function attributes are simple keywords that follow the type specified.
   1169 If multiple attributes are needed, they are space separated. For
   1170 example:
   1171 
   1172 .. code-block:: llvm
   1173 
   1174     define void @f() noinline { ... }
   1175     define void @f() alwaysinline { ... }
   1176     define void @f() alwaysinline optsize { ... }
   1177     define void @f() optsize { ... }
   1178 
   1179 ``alignstack(<n>)``
   1180     This attribute indicates that, when emitting the prologue and
   1181     epilogue, the backend should forcibly align the stack pointer.
   1182     Specify the desired alignment, which must be a power of two, in
   1183     parentheses.
   1184 ``alwaysinline``
   1185     This attribute indicates that the inliner should attempt to inline
   1186     this function into callers whenever possible, ignoring any active
   1187     inlining size threshold for this caller.
   1188 ``builtin``
   1189     This indicates that the callee function at a call site should be
   1190     recognized as a built-in function, even though the function's declaration
   1191     uses the ``nobuiltin`` attribute. This is only valid at call sites for
   1192     direct calls to functions that are declared with the ``nobuiltin``
   1193     attribute.
   1194 ``cold``
   1195     This attribute indicates that this function is rarely called. When
   1196     computing edge weights, basic blocks post-dominated by a cold
   1197     function call are also considered to be cold; and, thus, given low
   1198     weight.
   1199 ``inlinehint``
   1200     This attribute indicates that the source code contained a hint that
   1201     inlining this function is desirable (such as the "inline" keyword in
   1202     C/C++). It is just a hint; it imposes no requirements on the
   1203     inliner.
   1204 ``jumptable``
   1205     This attribute indicates that the function should be added to a
   1206     jump-instruction table at code-generation time, and that all address-taken
   1207     references to this function should be replaced with a reference to the
   1208     appropriate jump-instruction-table function pointer. Note that this creates
   1209     a new pointer for the original function, which means that code that depends
   1210     on function-pointer identity can break. So, any function annotated with
   1211     ``jumptable`` must also be ``unnamed_addr``.
   1212 ``minsize``
   1213     This attribute suggests that optimization passes and code generator
   1214     passes make choices that keep the code size of this function as small
   1215     as possible and perform optimizations that may sacrifice runtime
   1216     performance in order to minimize the size of the generated code.
   1217 ``naked``
   1218     This attribute disables prologue / epilogue emission for the
   1219     function. This can have very system-specific consequences.
   1220 ``nobuiltin``
   1221     This indicates that the callee function at a call site is not recognized as
   1222     a built-in function. LLVM will retain the original call and not replace it
   1223     with equivalent code based on the semantics of the built-in function, unless
   1224     the call site uses the ``builtin`` attribute. This is valid at call sites
   1225     and on function declarations and definitions.
   1226 ``noduplicate``
   1227     This attribute indicates that calls to the function cannot be
   1228     duplicated. A call to a ``noduplicate`` function may be moved
   1229     within its parent function, but may not be duplicated within
   1230     its parent function.
   1231 
   1232     A function containing a ``noduplicate`` call may still
   1233     be an inlining candidate, provided that the call is not
   1234     duplicated by inlining. That implies that the function has
   1235     internal linkage and only has one call site, so the original
   1236     call is dead after inlining.
   1237 ``noimplicitfloat``
   1238     This attributes disables implicit floating point instructions.
   1239 ``noinline``
   1240     This attribute indicates that the inliner should never inline this
   1241     function in any situation. This attribute may not be used together
   1242     with the ``alwaysinline`` attribute.
   1243 ``nonlazybind``
   1244     This attribute suppresses lazy symbol binding for the function. This
   1245     may make calls to the function faster, at the cost of extra program
   1246     startup time if the function is not called during program startup.
   1247 ``noredzone``
   1248     This attribute indicates that the code generator should not use a
   1249     red zone, even if the target-specific ABI normally permits it.
   1250 ``noreturn``
   1251     This function attribute indicates that the function never returns
   1252     normally. This produces undefined behavior at runtime if the
   1253     function ever does dynamically return.
   1254 ``nounwind``
   1255     This function attribute indicates that the function never raises an
   1256     exception. If the function does raise an exception, its runtime
   1257     behavior is undefined. However, functions marked nounwind may still
   1258     trap or generate asynchronous exceptions. Exception handling schemes
   1259     that are recognized by LLVM to handle asynchronous exceptions, such
   1260     as SEH, will still provide their implementation defined semantics.
   1261 ``optnone``
   1262     This function attribute indicates that the function is not optimized
   1263     by any optimization or code generator passes with the
   1264     exception of interprocedural optimization passes.
   1265     This attribute cannot be used together with the ``alwaysinline``
   1266     attribute; this attribute is also incompatible
   1267     with the ``minsize`` attribute and the ``optsize`` attribute.
   1268 
   1269     This attribute requires the ``noinline`` attribute to be specified on
   1270     the function as well, so the function is never inlined into any caller.
   1271     Only functions with the ``alwaysinline`` attribute are valid
   1272     candidates for inlining into the body of this function.
   1273 ``optsize``
   1274     This attribute suggests that optimization passes and code generator
   1275     passes make choices that keep the code size of this function low,
   1276     and otherwise do optimizations specifically to reduce code size as
   1277     long as they do not significantly impact runtime performance.
   1278 ``readnone``
   1279     On a function, this attribute indicates that the function computes its
   1280     result (or decides to unwind an exception) based strictly on its arguments,
   1281     without dereferencing any pointer arguments or otherwise accessing
   1282     any mutable state (e.g. memory, control registers, etc) visible to
   1283     caller functions. It does not write through any pointer arguments
   1284     (including ``byval`` arguments) and never changes any state visible
   1285     to callers. This means that it cannot unwind exceptions by calling
   1286     the ``C++`` exception throwing methods.
   1287 
   1288     On an argument, this attribute indicates that the function does not
   1289     dereference that pointer argument, even though it may read or write the
   1290     memory that the pointer points to if accessed through other pointers.
   1291 ``readonly``
   1292     On a function, this attribute indicates that the function does not write
   1293     through any pointer arguments (including ``byval`` arguments) or otherwise
   1294     modify any state (e.g. memory, control registers, etc) visible to
   1295     caller functions. It may dereference pointer arguments and read
   1296     state that may be set in the caller. A readonly function always
   1297     returns the same value (or unwinds an exception identically) when
   1298     called with the same set of arguments and global state. It cannot
   1299     unwind an exception by calling the ``C++`` exception throwing
   1300     methods.
   1301 
   1302     On an argument, this attribute indicates that the function does not write
   1303     through this pointer argument, even though it may write to the memory that
   1304     the pointer points to.
   1305 ``returns_twice``
   1306     This attribute indicates that this function can return twice. The C
   1307     ``setjmp`` is an example of such a function. The compiler disables
   1308     some optimizations (like tail calls) in the caller of these
   1309     functions.
   1310 ``sanitize_address``
   1311     This attribute indicates that AddressSanitizer checks
   1312     (dynamic address safety analysis) are enabled for this function.
   1313 ``sanitize_memory``
   1314     This attribute indicates that MemorySanitizer checks (dynamic detection
   1315     of accesses to uninitialized memory) are enabled for this function.
   1316 ``sanitize_thread``
   1317     This attribute indicates that ThreadSanitizer checks
   1318     (dynamic thread safety analysis) are enabled for this function.
   1319 ``ssp``
   1320     This attribute indicates that the function should emit a stack
   1321     smashing protector. It is in the form of a "canary" --- a random value
   1322     placed on the stack before the local variables that's checked upon
   1323     return from the function to see if it has been overwritten. A
   1324     heuristic is used to determine if a function needs stack protectors
   1325     or not. The heuristic used will enable protectors for functions with:
   1326 
   1327     - Character arrays larger than ``ssp-buffer-size`` (default 8).
   1328     - Aggregates containing character arrays larger than ``ssp-buffer-size``.
   1329     - Calls to alloca() with variable sizes or constant sizes greater than
   1330       ``ssp-buffer-size``.
   1331 
   1332     Variables that are identified as requiring a protector will be arranged
   1333     on the stack such that they are adjacent to the stack protector guard.
   1334 
   1335     If a function that has an ``ssp`` attribute is inlined into a
   1336     function that doesn't have an ``ssp`` attribute, then the resulting
   1337     function will have an ``ssp`` attribute.
   1338 ``sspreq``
   1339     This attribute indicates that the function should *always* emit a
   1340     stack smashing protector. This overrides the ``ssp`` function
   1341     attribute.
   1342 
   1343     Variables that are identified as requiring a protector will be arranged
   1344     on the stack such that they are adjacent to the stack protector guard.
   1345     The specific layout rules are:
   1346 
   1347     #. Large arrays and structures containing large arrays
   1348        (``>= ssp-buffer-size``) are closest to the stack protector.
   1349     #. Small arrays and structures containing small arrays
   1350        (``< ssp-buffer-size``) are 2nd closest to the protector.
   1351     #. Variables that have had their address taken are 3rd closest to the
   1352        protector.
   1353 
   1354     If a function that has an ``sspreq`` attribute is inlined into a
   1355     function that doesn't have an ``sspreq`` attribute or which has an
   1356     ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
   1357     an ``sspreq`` attribute.
   1358 ``sspstrong``
   1359     This attribute indicates that the function should emit a stack smashing
   1360     protector. This attribute causes a strong heuristic to be used when
   1361     determining if a function needs stack protectors.  The strong heuristic
   1362     will enable protectors for functions with:
   1363 
   1364     - Arrays of any size and type
   1365     - Aggregates containing an array of any size and type.
   1366     - Calls to alloca().
   1367     - Local variables that have had their address taken.
   1368 
   1369     Variables that are identified as requiring a protector will be arranged
   1370     on the stack such that they are adjacent to the stack protector guard.
   1371     The specific layout rules are:
   1372 
   1373     #. Large arrays and structures containing large arrays
   1374        (``>= ssp-buffer-size``) are closest to the stack protector.
   1375     #. Small arrays and structures containing small arrays
   1376        (``< ssp-buffer-size``) are 2nd closest to the protector.
   1377     #. Variables that have had their address taken are 3rd closest to the
   1378        protector.
   1379 
   1380     This overrides the ``ssp`` function attribute.
   1381 
   1382     If a function that has an ``sspstrong`` attribute is inlined into a
   1383     function that doesn't have an ``sspstrong`` attribute, then the
   1384     resulting function will have an ``sspstrong`` attribute.
   1385 ``"thunk"``
   1386     This attribute indicates that the function will delegate to some other
   1387     function with a tail call. The prototype of a thunk should not be used for
   1388     optimization purposes. The caller is expected to cast the thunk prototype to
   1389     match the thunk target prototype.
   1390 ``uwtable``
   1391     This attribute indicates that the ABI being targeted requires that
   1392     an unwind table entry be produce for this function even if we can
   1393     show that no exceptions passes by it. This is normally the case for
   1394     the ELF x86-64 abi, but it can be disabled for some compilation
   1395     units.
   1396 
   1397 .. _moduleasm:
   1398 
   1399 Module-Level Inline Assembly
   1400 ----------------------------
   1401 
   1402 Modules may contain "module-level inline asm" blocks, which corresponds
   1403 to the GCC "file scope inline asm" blocks. These blocks are internally
   1404 concatenated by LLVM and treated as a single unit, but may be separated
   1405 in the ``.ll`` file if desired. The syntax is very simple:
   1406 
   1407 .. code-block:: llvm
   1408 
   1409     module asm "inline asm code goes here"
   1410     module asm "more can go here"
   1411 
   1412 The strings can contain any character by escaping non-printable
   1413 characters. The escape sequence used is simply "\\xx" where "xx" is the
   1414 two digit hex code for the number.
   1415 
   1416 The inline asm code is simply printed to the machine code .s file when
   1417 assembly code is generated.
   1418 
   1419 .. _langref_datalayout:
   1420 
   1421 Data Layout
   1422 -----------
   1423 
   1424 A module may specify a target specific data layout string that specifies
   1425 how data is to be laid out in memory. The syntax for the data layout is
   1426 simply:
   1427 
   1428 .. code-block:: llvm
   1429 
   1430     target datalayout = "layout specification"
   1431 
   1432 The *layout specification* consists of a list of specifications
   1433 separated by the minus sign character ('-'). Each specification starts
   1434 with a letter and may include other information after the letter to
   1435 define some aspect of the data layout. The specifications accepted are
   1436 as follows:
   1437 
   1438 ``E``
   1439     Specifies that the target lays out data in big-endian form. That is,
   1440     the bits with the most significance have the lowest address
   1441     location.
   1442 ``e``
   1443     Specifies that the target lays out data in little-endian form. That
   1444     is, the bits with the least significance have the lowest address
   1445     location.
   1446 ``S<size>``
   1447     Specifies the natural alignment of the stack in bits. Alignment
   1448     promotion of stack variables is limited to the natural stack
   1449     alignment to avoid dynamic stack realignment. The stack alignment
   1450     must be a multiple of 8-bits. If omitted, the natural stack
   1451     alignment defaults to "unspecified", which does not prevent any
   1452     alignment promotions.
   1453 ``p[n]:<size>:<abi>:<pref>``
   1454     This specifies the *size* of a pointer and its ``<abi>`` and
   1455     ``<pref>``\erred alignments for address space ``n``. All sizes are in
   1456     bits. The address space, ``n`` is optional, and if not specified,
   1457     denotes the default address space 0.  The value of ``n`` must be
   1458     in the range [1,2^23).
   1459 ``i<size>:<abi>:<pref>``
   1460     This specifies the alignment for an integer type of a given bit
   1461     ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
   1462 ``v<size>:<abi>:<pref>``
   1463     This specifies the alignment for a vector type of a given bit
   1464     ``<size>``.
   1465 ``f<size>:<abi>:<pref>``
   1466     This specifies the alignment for a floating point type of a given bit
   1467     ``<size>``. Only values of ``<size>`` that are supported by the target
   1468     will work. 32 (float) and 64 (double) are supported on all targets; 80
   1469     or 128 (different flavors of long double) are also supported on some
   1470     targets.
   1471 ``a:<abi>:<pref>``
   1472     This specifies the alignment for an object of aggregate type.
   1473 ``m:<mangling>``
   1474     If present, specifies that llvm names are mangled in the output. The
   1475     options are
   1476 
   1477     * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
   1478     * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
   1479     * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
   1480       symbols get a ``_`` prefix.
   1481     * ``w``: Windows COFF prefix:  Similar to Mach-O, but stdcall and fastcall
   1482       functions also get a suffix based on the frame size.
   1483 ``n<size1>:<size2>:<size3>...``
   1484     This specifies a set of native integer widths for the target CPU in
   1485     bits. For example, it might contain ``n32`` for 32-bit PowerPC,
   1486     ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
   1487     this set are considered to support most general arithmetic operations
   1488     efficiently.
   1489 
   1490 On every specification that takes a ``<abi>:<pref>``, specifying the
   1491 ``<pref>`` alignment is optional. If omitted, the preceding ``:``
   1492 should be omitted too and ``<pref>`` will be equal to ``<abi>``.
   1493 
   1494 When constructing the data layout for a given target, LLVM starts with a
   1495 default set of specifications which are then (possibly) overridden by
   1496 the specifications in the ``datalayout`` keyword. The default
   1497 specifications are given in this list:
   1498 
   1499 -  ``E`` - big endian
   1500 -  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
   1501 -  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
   1502    same as the default address space.
   1503 -  ``S0`` - natural stack alignment is unspecified
   1504 -  ``i1:8:8`` - i1 is 8-bit (byte) aligned
   1505 -  ``i8:8:8`` - i8 is 8-bit (byte) aligned
   1506 -  ``i16:16:16`` - i16 is 16-bit aligned
   1507 -  ``i32:32:32`` - i32 is 32-bit aligned
   1508 -  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
   1509    alignment of 64-bits
   1510 -  ``f16:16:16`` - half is 16-bit aligned
   1511 -  ``f32:32:32`` - float is 32-bit aligned
   1512 -  ``f64:64:64`` - double is 64-bit aligned
   1513 -  ``f128:128:128`` - quad is 128-bit aligned
   1514 -  ``v64:64:64`` - 64-bit vector is 64-bit aligned
   1515 -  ``v128:128:128`` - 128-bit vector is 128-bit aligned
   1516 -  ``a:0:64`` - aggregates are 64-bit aligned
   1517 
   1518 When LLVM is determining the alignment for a given type, it uses the
   1519 following rules:
   1520 
   1521 #. If the type sought is an exact match for one of the specifications,
   1522    that specification is used.
   1523 #. If no match is found, and the type sought is an integer type, then
   1524    the smallest integer type that is larger than the bitwidth of the
   1525    sought type is used. If none of the specifications are larger than
   1526    the bitwidth then the largest integer type is used. For example,
   1527    given the default specifications above, the i7 type will use the
   1528    alignment of i8 (next largest) while both i65 and i256 will use the
   1529    alignment of i64 (largest specified).
   1530 #. If no match is found, and the type sought is a vector type, then the
   1531    largest vector type that is smaller than the sought vector type will
   1532    be used as a fall back. This happens because <128 x double> can be
   1533    implemented in terms of 64 <2 x double>, for example.
   1534 
   1535 The function of the data layout string may not be what you expect.
   1536 Notably, this is not a specification from the frontend of what alignment
   1537 the code generator should use.
   1538 
   1539 Instead, if specified, the target data layout is required to match what
   1540 the ultimate *code generator* expects. This string is used by the
   1541 mid-level optimizers to improve code, and this only works if it matches
   1542 what the ultimate code generator uses. There is no way to generate IR
   1543 that does not embed this target-specific detail into the IR. If you
   1544 don't specify the string, the default specifications will be used to
   1545 generate a Data Layout and the optimization phases will operate
   1546 accordingly and introduce target specificity into the IR with respect to
   1547 these default specifications.
   1548 
   1549 .. _langref_triple:
   1550 
   1551 Target Triple
   1552 -------------
   1553 
   1554 A module may specify a target triple string that describes the target
   1555 host. The syntax for the target triple is simply:
   1556 
   1557 .. code-block:: llvm
   1558 
   1559     target triple = "x86_64-apple-macosx10.7.0"
   1560 
   1561 The *target triple* string consists of a series of identifiers delimited
   1562 by the minus sign character ('-'). The canonical forms are:
   1563 
   1564 ::
   1565 
   1566     ARCHITECTURE-VENDOR-OPERATING_SYSTEM
   1567     ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
   1568 
   1569 This information is passed along to the backend so that it generates
   1570 code for the proper architecture. It's possible to override this on the
   1571 command line with the ``-mtriple`` command line option.
   1572 
   1573 .. _pointeraliasing:
   1574 
   1575 Pointer Aliasing Rules
   1576 ----------------------
   1577 
   1578 Any memory access must be done through a pointer value associated with
   1579 an address range of the memory access, otherwise the behavior is
   1580 undefined. Pointer values are associated with address ranges according
   1581 to the following rules:
   1582 
   1583 -  A pointer value is associated with the addresses associated with any
   1584    value it is *based* on.
   1585 -  An address of a global variable is associated with the address range
   1586    of the variable's storage.
   1587 -  The result value of an allocation instruction is associated with the
   1588    address range of the allocated storage.
   1589 -  A null pointer in the default address-space is associated with no
   1590    address.
   1591 -  An integer constant other than zero or a pointer value returned from
   1592    a function not defined within LLVM may be associated with address
   1593    ranges allocated through mechanisms other than those provided by
   1594    LLVM. Such ranges shall not overlap with any ranges of addresses
   1595    allocated by mechanisms provided by LLVM.
   1596 
   1597 A pointer value is *based* on another pointer value according to the
   1598 following rules:
   1599 
   1600 -  A pointer value formed from a ``getelementptr`` operation is *based*
   1601    on the first value operand of the ``getelementptr``.
   1602 -  The result value of a ``bitcast`` is *based* on the operand of the
   1603    ``bitcast``.
   1604 -  A pointer value formed by an ``inttoptr`` is *based* on all pointer
   1605    values that contribute (directly or indirectly) to the computation of
   1606    the pointer's value.
   1607 -  The "*based* on" relationship is transitive.
   1608 
   1609 Note that this definition of *"based"* is intentionally similar to the
   1610 definition of *"based"* in C99, though it is slightly weaker.
   1611 
   1612 LLVM IR does not associate types with memory. The result type of a
   1613 ``load`` merely indicates the size and alignment of the memory from
   1614 which to load, as well as the interpretation of the value. The first
   1615 operand type of a ``store`` similarly only indicates the size and
   1616 alignment of the store.
   1617 
   1618 Consequently, type-based alias analysis, aka TBAA, aka
   1619 ``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
   1620 :ref:`Metadata <metadata>` may be used to encode additional information
   1621 which specialized optimization passes may use to implement type-based
   1622 alias analysis.
   1623 
   1624 .. _volatile:
   1625 
   1626 Volatile Memory Accesses
   1627 ------------------------
   1628 
   1629 Certain memory accesses, such as :ref:`load <i_load>`'s,
   1630 :ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
   1631 marked ``volatile``. The optimizers must not change the number of
   1632 volatile operations or change their order of execution relative to other
   1633 volatile operations. The optimizers *may* change the order of volatile
   1634 operations relative to non-volatile operations. This is not Java's
   1635 "volatile" and has no cross-thread synchronization behavior.
   1636 
   1637 IR-level volatile loads and stores cannot safely be optimized into
   1638 llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
   1639 flagged volatile. Likewise, the backend should never split or merge
   1640 target-legal volatile load/store instructions.
   1641 
   1642 .. admonition:: Rationale
   1643 
   1644  Platforms may rely on volatile loads and stores of natively supported
   1645  data width to be executed as single instruction. For example, in C
   1646  this holds for an l-value of volatile primitive type with native
   1647  hardware support, but not necessarily for aggregate types. The
   1648  frontend upholds these expectations, which are intentionally
   1649  unspecified in the IR. The rules above ensure that IR transformation
   1650  do not violate the frontend's contract with the language.
   1651 
   1652 .. _memmodel:
   1653 
   1654 Memory Model for Concurrent Operations
   1655 --------------------------------------
   1656 
   1657 The LLVM IR does not define any way to start parallel threads of
   1658 execution or to register signal handlers. Nonetheless, there are
   1659 platform-specific ways to create them, and we define LLVM IR's behavior
   1660 in their presence. This model is inspired by the C++0x memory model.
   1661 
   1662 For a more informal introduction to this model, see the :doc:`Atomics`.
   1663 
   1664 We define a *happens-before* partial order as the least partial order
   1665 that
   1666 
   1667 -  Is a superset of single-thread program order, and
   1668 -  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
   1669    ``b``. *Synchronizes-with* pairs are introduced by platform-specific
   1670    techniques, like pthread locks, thread creation, thread joining,
   1671    etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
   1672    Constraints <ordering>`).
   1673 
   1674 Note that program order does not introduce *happens-before* edges
   1675 between a thread and signals executing inside that thread.
   1676 
   1677 Every (defined) read operation (load instructions, memcpy, atomic
   1678 loads/read-modify-writes, etc.) R reads a series of bytes written by
   1679 (defined) write operations (store instructions, atomic
   1680 stores/read-modify-writes, memcpy, etc.). For the purposes of this
   1681 section, initialized globals are considered to have a write of the
   1682 initializer which is atomic and happens before any other read or write
   1683 of the memory in question. For each byte of a read R, R\ :sub:`byte`
   1684 may see any write to the same byte, except:
   1685 
   1686 -  If write\ :sub:`1`  happens before write\ :sub:`2`, and
   1687    write\ :sub:`2` happens before R\ :sub:`byte`, then
   1688    R\ :sub:`byte` does not see write\ :sub:`1`.
   1689 -  If R\ :sub:`byte` happens before write\ :sub:`3`, then
   1690    R\ :sub:`byte` does not see write\ :sub:`3`.
   1691 
   1692 Given that definition, R\ :sub:`byte` is defined as follows:
   1693 
   1694 -  If R is volatile, the result is target-dependent. (Volatile is
   1695    supposed to give guarantees which can support ``sig_atomic_t`` in
   1696    C/C++, and may be used for accesses to addresses that do not behave
   1697    like normal memory. It does not generally provide cross-thread
   1698    synchronization.)
   1699 -  Otherwise, if there is no write to the same byte that happens before
   1700    R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
   1701 -  Otherwise, if R\ :sub:`byte` may see exactly one write,
   1702    R\ :sub:`byte` returns the value written by that write.
   1703 -  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
   1704    see are atomic, it chooses one of the values written. See the :ref:`Atomic
   1705    Memory Ordering Constraints <ordering>` section for additional
   1706    constraints on how the choice is made.
   1707 -  Otherwise R\ :sub:`byte` returns ``undef``.
   1708 
   1709 R returns the value composed of the series of bytes it read. This
   1710 implies that some bytes within the value may be ``undef`` **without**
   1711 the entire value being ``undef``. Note that this only defines the
   1712 semantics of the operation; it doesn't mean that targets will emit more
   1713 than one instruction to read the series of bytes.
   1714 
   1715 Note that in cases where none of the atomic intrinsics are used, this
   1716 model places only one restriction on IR transformations on top of what
   1717 is required for single-threaded execution: introducing a store to a byte
   1718 which might not otherwise be stored is not allowed in general.
   1719 (Specifically, in the case where another thread might write to and read
   1720 from an address, introducing a store can change a load that may see
   1721 exactly one write into a load that may see multiple writes.)
   1722 
   1723 .. _ordering:
   1724 
   1725 Atomic Memory Ordering Constraints
   1726 ----------------------------------
   1727 
   1728 Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
   1729 :ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
   1730 :ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
   1731 ordering parameters that determine which other atomic instructions on
   1732 the same address they *synchronize with*. These semantics are borrowed
   1733 from Java and C++0x, but are somewhat more colloquial. If these
   1734 descriptions aren't precise enough, check those specs (see spec
   1735 references in the :doc:`atomics guide <Atomics>`).
   1736 :ref:`fence <i_fence>` instructions treat these orderings somewhat
   1737 differently since they don't take an address. See that instruction's
   1738 documentation for details.
   1739 
   1740 For a simpler introduction to the ordering constraints, see the
   1741 :doc:`Atomics`.
   1742 
   1743 ``unordered``
   1744     The set of values that can be read is governed by the happens-before
   1745     partial order. A value cannot be read unless some operation wrote
   1746     it. This is intended to provide a guarantee strong enough to model
   1747     Java's non-volatile shared variables. This ordering cannot be
   1748     specified for read-modify-write operations; it is not strong enough
   1749     to make them atomic in any interesting way.
   1750 ``monotonic``
   1751     In addition to the guarantees of ``unordered``, there is a single
   1752     total order for modifications by ``monotonic`` operations on each
   1753     address. All modification orders must be compatible with the
   1754     happens-before order. There is no guarantee that the modification
   1755     orders can be combined to a global total order for the whole program
   1756     (and this often will not be possible). The read in an atomic
   1757     read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
   1758     :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
   1759     order immediately before the value it writes. If one atomic read
   1760     happens before another atomic read of the same address, the later
   1761     read must see the same value or a later value in the address's
   1762     modification order. This disallows reordering of ``monotonic`` (or
   1763     stronger) operations on the same address. If an address is written
   1764     ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
   1765     read that address repeatedly, the other threads must eventually see
   1766     the write. This corresponds to the C++0x/C1x
   1767     ``memory_order_relaxed``.
   1768 ``acquire``
   1769     In addition to the guarantees of ``monotonic``, a
   1770     *synchronizes-with* edge may be formed with a ``release`` operation.
   1771     This is intended to model C++'s ``memory_order_acquire``.
   1772 ``release``
   1773     In addition to the guarantees of ``monotonic``, if this operation
   1774     writes a value which is subsequently read by an ``acquire``
   1775     operation, it *synchronizes-with* that operation. (This isn't a
   1776     complete description; see the C++0x definition of a release
   1777     sequence.) This corresponds to the C++0x/C1x
   1778     ``memory_order_release``.
   1779 ``acq_rel`` (acquire+release)
   1780     Acts as both an ``acquire`` and ``release`` operation on its
   1781     address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
   1782 ``seq_cst`` (sequentially consistent)
   1783     In addition to the guarantees of ``acq_rel`` (``acquire`` for an
   1784     operation that only reads, ``release`` for an operation that only
   1785     writes), there is a global total order on all
   1786     sequentially-consistent operations on all addresses, which is
   1787     consistent with the *happens-before* partial order and with the
   1788     modification orders of all the affected addresses. Each
   1789     sequentially-consistent read sees the last preceding write to the
   1790     same address in this global order. This corresponds to the C++0x/C1x
   1791     ``memory_order_seq_cst`` and Java volatile.
   1792 
   1793 .. _singlethread:
   1794 
   1795 If an atomic operation is marked ``singlethread``, it only *synchronizes
   1796 with* or participates in modification and seq\_cst total orderings with
   1797 other operations running in the same thread (for example, in signal
   1798 handlers).
   1799 
   1800 .. _fastmath:
   1801 
   1802 Fast-Math Flags
   1803 ---------------
   1804 
   1805 LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
   1806 :ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
   1807 :ref:`frem <i_frem>`) have the following flags that can be set to enable
   1808 otherwise unsafe floating point operations
   1809 
   1810 ``nnan``
   1811    No NaNs - Allow optimizations to assume the arguments and result are not
   1812    NaN. Such optimizations are required to retain defined behavior over
   1813    NaNs, but the value of the result is undefined.
   1814 
   1815 ``ninf``
   1816    No Infs - Allow optimizations to assume the arguments and result are not
   1817    +/-Inf. Such optimizations are required to retain defined behavior over
   1818    +/-Inf, but the value of the result is undefined.
   1819 
   1820 ``nsz``
   1821    No Signed Zeros - Allow optimizations to treat the sign of a zero
   1822    argument or result as insignificant.
   1823 
   1824 ``arcp``
   1825    Allow Reciprocal - Allow optimizations to use the reciprocal of an
   1826    argument rather than perform division.
   1827 
   1828 ``fast``
   1829    Fast - Allow algebraically equivalent transformations that may
   1830    dramatically change results in floating point (e.g. reassociate). This
   1831    flag implies all the others.
   1832 
   1833 .. _uselistorder:
   1834 
   1835 Use-list Order Directives
   1836 -------------------------
   1837 
   1838 Use-list directives encode the in-memory order of each use-list, allowing the
   1839 order to be recreated.  ``<order-indexes>`` is a comma-separated list of
   1840 indexes that are assigned to the referenced value's uses.  The referenced
   1841 value's use-list is immediately sorted by these indexes.
   1842 
   1843 Use-list directives may appear at function scope or global scope.  They are not
   1844 instructions, and have no effect on the semantics of the IR.  When they're at
   1845 function scope, they must appear after the terminator of the final basic block.
   1846 
   1847 If basic blocks have their address taken via ``blockaddress()`` expressions,
   1848 ``uselistorder_bb`` can be used to reorder their use-lists from outside their
   1849 function's scope.
   1850 
   1851 :Syntax:
   1852 
   1853 ::
   1854 
   1855     uselistorder <ty> <value>, { <order-indexes> }
   1856     uselistorder_bb @function, %block { <order-indexes> }
   1857 
   1858 :Examples:
   1859 
   1860 ::
   1861 
   1862     define void @foo(i32 %arg1, i32 %arg2) {
   1863     entry:
   1864       ; ... instructions ...
   1865     bb:
   1866       ; ... instructions ...
   1867 
   1868       ; At function scope.
   1869       uselistorder i32 %arg1, { 1, 0, 2 }
   1870       uselistorder label %bb, { 1, 0 }
   1871     }
   1872 
   1873     ; At global scope.
   1874     uselistorder i32* @global, { 1, 2, 0 }
   1875     uselistorder i32 7, { 1, 0 }
   1876     uselistorder i32 (i32) @bar, { 1, 0 }
   1877     uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
   1878 
   1879 .. _typesystem:
   1880 
   1881 Type System
   1882 ===========
   1883 
   1884 The LLVM type system is one of the most important features of the
   1885 intermediate representation. Being typed enables a number of
   1886 optimizations to be performed on the intermediate representation
   1887 directly, without having to do extra analyses on the side before the
   1888 transformation. A strong type system makes it easier to read the
   1889 generated code and enables novel analyses and transformations that are
   1890 not feasible to perform on normal three address code representations.
   1891 
   1892 .. _t_void:
   1893 
   1894 Void Type
   1895 ---------
   1896 
   1897 :Overview:
   1898 
   1899 
   1900 The void type does not represent any value and has no size.
   1901 
   1902 :Syntax:
   1903 
   1904 
   1905 ::
   1906 
   1907       void
   1908 
   1909 
   1910 .. _t_function:
   1911 
   1912 Function Type
   1913 -------------
   1914 
   1915 :Overview:
   1916 
   1917 
   1918 The function type can be thought of as a function signature. It consists of a
   1919 return type and a list of formal parameter types. The return type of a function
   1920 type is a void type or first class type --- except for :ref:`label <t_label>`
   1921 and :ref:`metadata <t_metadata>` types.
   1922 
   1923 :Syntax:
   1924 
   1925 ::
   1926 
   1927       <returntype> (<parameter list>)
   1928 
   1929 ...where '``<parameter list>``' is a comma-separated list of type
   1930 specifiers. Optionally, the parameter list may include a type ``...``, which
   1931 indicates that the function takes a variable number of arguments.  Variable
   1932 argument functions can access their arguments with the :ref:`variable argument
   1933 handling intrinsic <int_varargs>` functions.  '``<returntype>``' is any type
   1934 except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
   1935 
   1936 :Examples:
   1937 
   1938 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1939 | ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
   1940 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1941 | ``float (i16, i32 *) *``        | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``.                                    |
   1942 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1943 | ``i32 (i8*, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
   1944 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1945 | ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
   1946 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1947 
   1948 .. _t_firstclass:
   1949 
   1950 First Class Types
   1951 -----------------
   1952 
   1953 The :ref:`first class <t_firstclass>` types are perhaps the most important.
   1954 Values of these types are the only ones which can be produced by
   1955 instructions.
   1956 
   1957 .. _t_single_value:
   1958 
   1959 Single Value Types
   1960 ^^^^^^^^^^^^^^^^^^
   1961 
   1962 These are the types that are valid in registers from CodeGen's perspective.
   1963 
   1964 .. _t_integer:
   1965 
   1966 Integer Type
   1967 """"""""""""
   1968 
   1969 :Overview:
   1970 
   1971 The integer type is a very simple type that simply specifies an
   1972 arbitrary bit width for the integer type desired. Any bit width from 1
   1973 bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
   1974 
   1975 :Syntax:
   1976 
   1977 ::
   1978 
   1979       iN
   1980 
   1981 The number of bits the integer will occupy is specified by the ``N``
   1982 value.
   1983 
   1984 Examples:
   1985 *********
   1986 
   1987 +----------------+------------------------------------------------+
   1988 | ``i1``         | a single-bit integer.                          |
   1989 +----------------+------------------------------------------------+
   1990 | ``i32``        | a 32-bit integer.                              |
   1991 +----------------+------------------------------------------------+
   1992 | ``i1942652``   | a really big integer of over 1 million bits.   |
   1993 +----------------+------------------------------------------------+
   1994 
   1995 .. _t_floating:
   1996 
   1997 Floating Point Types
   1998 """"""""""""""""""""
   1999 
   2000 .. list-table::
   2001    :header-rows: 1
   2002 
   2003    * - Type
   2004      - Description
   2005 
   2006    * - ``half``
   2007      - 16-bit floating point value
   2008 
   2009    * - ``float``
   2010      - 32-bit floating point value
   2011 
   2012    * - ``double``
   2013      - 64-bit floating point value
   2014 
   2015    * - ``fp128``
   2016      - 128-bit floating point value (112-bit mantissa)
   2017 
   2018    * - ``x86_fp80``
   2019      -  80-bit floating point value (X87)
   2020 
   2021    * - ``ppc_fp128``
   2022      - 128-bit floating point value (two 64-bits)
   2023 
   2024 X86_mmx Type
   2025 """"""""""""
   2026 
   2027 :Overview:
   2028 
   2029 The x86_mmx type represents a value held in an MMX register on an x86
   2030 machine. The operations allowed on it are quite limited: parameters and
   2031 return values, load and store, and bitcast. User-specified MMX
   2032 instructions are represented as intrinsic or asm calls with arguments
   2033 and/or results of this type. There are no arrays, vectors or constants
   2034 of this type.
   2035 
   2036 :Syntax:
   2037 
   2038 ::
   2039 
   2040       x86_mmx
   2041 
   2042 
   2043 .. _t_pointer:
   2044 
   2045 Pointer Type
   2046 """"""""""""
   2047 
   2048 :Overview:
   2049 
   2050 The pointer type is used to specify memory locations. Pointers are
   2051 commonly used to reference objects in memory.
   2052 
   2053 Pointer types may have an optional address space attribute defining the
   2054 numbered address space where the pointed-to object resides. The default
   2055 address space is number zero. The semantics of non-zero address spaces
   2056 are target-specific.
   2057 
   2058 Note that LLVM does not permit pointers to void (``void*``) nor does it
   2059 permit pointers to labels (``label*``). Use ``i8*`` instead.
   2060 
   2061 :Syntax:
   2062 
   2063 ::
   2064 
   2065       <type> *
   2066 
   2067 :Examples:
   2068 
   2069 +-------------------------+--------------------------------------------------------------------------------------------------------------+
   2070 | ``[4 x i32]*``          | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values.                               |
   2071 +-------------------------+--------------------------------------------------------------------------------------------------------------+
   2072 | ``i32 (i32*) *``        | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
   2073 +-------------------------+--------------------------------------------------------------------------------------------------------------+
   2074 | ``i32 addrspace(5)*``   | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5.                           |
   2075 +-------------------------+--------------------------------------------------------------------------------------------------------------+
   2076 
   2077 .. _t_vector:
   2078 
   2079 Vector Type
   2080 """""""""""
   2081 
   2082 :Overview:
   2083 
   2084 A vector type is a simple derived type that represents a vector of
   2085 elements. Vector types are used when multiple primitive data are
   2086 operated in parallel using a single instruction (SIMD). A vector type
   2087 requires a size (number of elements) and an underlying primitive data
   2088 type. Vector types are considered :ref:`first class <t_firstclass>`.
   2089 
   2090 :Syntax:
   2091 
   2092 ::
   2093 
   2094       < <# elements> x <elementtype> >
   2095 
   2096 The number of elements is a constant integer value larger than 0;
   2097 elementtype may be any integer, floating point or pointer type. Vectors
   2098 of size zero are not allowed.
   2099 
   2100 :Examples:
   2101 
   2102 +-------------------+--------------------------------------------------+
   2103 | ``<4 x i32>``     | Vector of 4 32-bit integer values.               |
   2104 +-------------------+--------------------------------------------------+
   2105 | ``<8 x float>``   | Vector of 8 32-bit floating-point values.        |
   2106 +-------------------+--------------------------------------------------+
   2107 | ``<2 x i64>``     | Vector of 2 64-bit integer values.               |
   2108 +-------------------+--------------------------------------------------+
   2109 | ``<4 x i64*>``    | Vector of 4 pointers to 64-bit integer values.   |
   2110 +-------------------+--------------------------------------------------+
   2111 
   2112 .. _t_label:
   2113 
   2114 Label Type
   2115 ^^^^^^^^^^
   2116 
   2117 :Overview:
   2118 
   2119 The label type represents code labels.
   2120 
   2121 :Syntax:
   2122 
   2123 ::
   2124 
   2125       label
   2126 
   2127 .. _t_metadata:
   2128 
   2129 Metadata Type
   2130 ^^^^^^^^^^^^^
   2131 
   2132 :Overview:
   2133 
   2134 The metadata type represents embedded metadata. No derived types may be
   2135 created from metadata except for :ref:`function <t_function>` arguments.
   2136 
   2137 :Syntax:
   2138 
   2139 ::
   2140 
   2141       metadata
   2142 
   2143 .. _t_aggregate:
   2144 
   2145 Aggregate Types
   2146 ^^^^^^^^^^^^^^^
   2147 
   2148 Aggregate Types are a subset of derived types that can contain multiple
   2149 member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
   2150 aggregate types. :ref:`Vectors <t_vector>` are not considered to be
   2151 aggregate types.
   2152 
   2153 .. _t_array:
   2154 
   2155 Array Type
   2156 """"""""""
   2157 
   2158 :Overview:
   2159 
   2160 The array type is a very simple derived type that arranges elements
   2161 sequentially in memory. The array type requires a size (number of
   2162 elements) and an underlying data type.
   2163 
   2164 :Syntax:
   2165 
   2166 ::
   2167 
   2168       [<# elements> x <elementtype>]
   2169 
   2170 The number of elements is a constant integer value; ``elementtype`` may
   2171 be any type with a size.
   2172 
   2173 :Examples:
   2174 
   2175 +------------------+--------------------------------------+
   2176 | ``[40 x i32]``   | Array of 40 32-bit integer values.   |
   2177 +------------------+--------------------------------------+
   2178 | ``[41 x i32]``   | Array of 41 32-bit integer values.   |
   2179 +------------------+--------------------------------------+
   2180 | ``[4 x i8]``     | Array of 4 8-bit integer values.     |
   2181 +------------------+--------------------------------------+
   2182 
   2183 Here are some examples of multidimensional arrays:
   2184 
   2185 +-----------------------------+----------------------------------------------------------+
   2186 | ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
   2187 +-----------------------------+----------------------------------------------------------+
   2188 | ``[12 x [10 x float]]``     | 12x10 array of single precision floating point values.   |
   2189 +-----------------------------+----------------------------------------------------------+
   2190 | ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
   2191 +-----------------------------+----------------------------------------------------------+
   2192 
   2193 There is no restriction on indexing beyond the end of the array implied
   2194 by a static type (though there are restrictions on indexing beyond the
   2195 bounds of an allocated object in some cases). This means that
   2196 single-dimension 'variable sized array' addressing can be implemented in
   2197 LLVM with a zero length array type. An implementation of 'pascal style
   2198 arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
   2199 example.
   2200 
   2201 .. _t_struct:
   2202 
   2203 Structure Type
   2204 """"""""""""""
   2205 
   2206 :Overview:
   2207 
   2208 The structure type is used to represent a collection of data members
   2209 together in memory. The elements of a structure may be any type that has
   2210 a size.
   2211 
   2212 Structures in memory are accessed using '``load``' and '``store``' by
   2213 getting a pointer to a field with the '``getelementptr``' instruction.
   2214 Structures in registers are accessed using the '``extractvalue``' and
   2215 '``insertvalue``' instructions.
   2216 
   2217 Structures may optionally be "packed" structures, which indicate that
   2218 the alignment of the struct is one byte, and that there is no padding
   2219 between the elements. In non-packed structs, padding between field types
   2220 is inserted as defined by the DataLayout string in the module, which is
   2221 required to match what the underlying code generator expects.
   2222 
   2223 Structures can either be "literal" or "identified". A literal structure
   2224 is defined inline with other types (e.g. ``{i32, i32}*``) whereas
   2225 identified types are always defined at the top level with a name.
   2226 Literal types are uniqued by their contents and can never be recursive
   2227 or opaque since there is no way to write one. Identified types can be
   2228 recursive, can be opaqued, and are never uniqued.
   2229 
   2230 :Syntax:
   2231 
   2232 ::
   2233 
   2234       %T1 = type { <type list> }     ; Identified normal struct type
   2235       %T2 = type <{ <type list> }>   ; Identified packed struct type
   2236 
   2237 :Examples:
   2238 
   2239 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   2240 | ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
   2241 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   2242 | ``{ float, i32 (i32) * }``   | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``.  |
   2243 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   2244 | ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
   2245 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   2246 
   2247 .. _t_opaque:
   2248 
   2249 Opaque Structure Types
   2250 """"""""""""""""""""""
   2251 
   2252 :Overview:
   2253 
   2254 Opaque structure types are used to represent named structure types that
   2255 do not have a body specified. This corresponds (for example) to the C
   2256 notion of a forward declared structure.
   2257 
   2258 :Syntax:
   2259 
   2260 ::
   2261 
   2262       %X = type opaque
   2263       %52 = type opaque
   2264 
   2265 :Examples:
   2266 
   2267 +--------------+-------------------+
   2268 | ``opaque``   | An opaque type.   |
   2269 +--------------+-------------------+
   2270 
   2271 .. _constants:
   2272 
   2273 Constants
   2274 =========
   2275 
   2276 LLVM has several different basic types of constants. This section
   2277 describes them all and their syntax.
   2278 
   2279 Simple Constants
   2280 ----------------
   2281 
   2282 **Boolean constants**
   2283     The two strings '``true``' and '``false``' are both valid constants
   2284     of the ``i1`` type.
   2285 **Integer constants**
   2286     Standard integers (such as '4') are constants of the
   2287     :ref:`integer <t_integer>` type. Negative numbers may be used with
   2288     integer types.
   2289 **Floating point constants**
   2290     Floating point constants use standard decimal notation (e.g.
   2291     123.421), exponential notation (e.g. 1.23421e+2), or a more precise
   2292     hexadecimal notation (see below). The assembler requires the exact
   2293     decimal value of a floating-point constant. For example, the
   2294     assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
   2295     decimal in binary. Floating point constants must have a :ref:`floating
   2296     point <t_floating>` type.
   2297 **Null pointer constants**
   2298     The identifier '``null``' is recognized as a null pointer constant
   2299     and must be of :ref:`pointer type <t_pointer>`.
   2300 
   2301 The one non-intuitive notation for constants is the hexadecimal form of
   2302 floating point constants. For example, the form
   2303 '``double    0x432ff973cafa8000``' is equivalent to (but harder to read
   2304 than) '``double 4.5e+15``'. The only time hexadecimal floating point
   2305 constants are required (and the only time that they are generated by the
   2306 disassembler) is when a floating point constant must be emitted but it
   2307 cannot be represented as a decimal floating point number in a reasonable
   2308 number of digits. For example, NaN's, infinities, and other special
   2309 values are represented in their IEEE hexadecimal format so that assembly
   2310 and disassembly do not cause any bits to change in the constants.
   2311 
   2312 When using the hexadecimal form, constants of types half, float, and
   2313 double are represented using the 16-digit form shown above (which
   2314 matches the IEEE754 representation for double); half and float values
   2315 must, however, be exactly representable as IEEE 754 half and single
   2316 precision, respectively. Hexadecimal format is always used for long
   2317 double, and there are three forms of long double. The 80-bit format used
   2318 by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
   2319 128-bit format used by PowerPC (two adjacent doubles) is represented by
   2320 ``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
   2321 represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
   2322 will only work if they match the long double format on your target.
   2323 The IEEE 16-bit format (half precision) is represented by ``0xH``
   2324 followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
   2325 (sign bit at the left).
   2326 
   2327 There are no constants of type x86_mmx.
   2328 
   2329 .. _complexconstants:
   2330 
   2331 Complex Constants
   2332 -----------------
   2333 
   2334 Complex constants are a (potentially recursive) combination of simple
   2335 constants and smaller complex constants.
   2336 
   2337 **Structure constants**
   2338     Structure constants are represented with notation similar to
   2339     structure type definitions (a comma separated list of elements,
   2340     surrounded by braces (``{}``)). For example:
   2341     "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
   2342     "``@G = external global i32``". Structure constants must have
   2343     :ref:`structure type <t_struct>`, and the number and types of elements
   2344     must match those specified by the type.
   2345 **Array constants**
   2346     Array constants are represented with notation similar to array type
   2347     definitions (a comma separated list of elements, surrounded by
   2348     square brackets (``[]``)). For example:
   2349     "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
   2350     :ref:`array type <t_array>`, and the number and types of elements must
   2351     match those specified by the type. As a special case, character array
   2352     constants may also be represented as a double-quoted string using the ``c``
   2353     prefix. For example: "``c"Hello World\0A\00"``".
   2354 **Vector constants**
   2355     Vector constants are represented with notation similar to vector
   2356     type definitions (a comma separated list of elements, surrounded by
   2357     less-than/greater-than's (``<>``)). For example:
   2358     "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
   2359     must have :ref:`vector type <t_vector>`, and the number and types of
   2360     elements must match those specified by the type.
   2361 **Zero initialization**
   2362     The string '``zeroinitializer``' can be used to zero initialize a
   2363     value to zero of *any* type, including scalar and
   2364     :ref:`aggregate <t_aggregate>` types. This is often used to avoid
   2365     having to print large zero initializers (e.g. for large arrays) and
   2366     is always exactly equivalent to using explicit zero initializers.
   2367 **Metadata node**
   2368     A metadata node is a constant tuple without types.  For example:
   2369     "``!{!0, !{!2, !0}, !"test"}``".  Metadata can reference constant values,
   2370     for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
   2371     Unlike other typed constants that are meant to be interpreted as part of
   2372     the instruction stream, metadata is a place to attach additional
   2373     information such as debug info.
   2374 
   2375 Global Variable and Function Addresses
   2376 --------------------------------------
   2377 
   2378 The addresses of :ref:`global variables <globalvars>` and
   2379 :ref:`functions <functionstructure>` are always implicitly valid
   2380 (link-time) constants. These constants are explicitly referenced when
   2381 the :ref:`identifier for the global <identifiers>` is used and always have
   2382 :ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
   2383 file:
   2384 
   2385 .. code-block:: llvm
   2386 
   2387     @X = global i32 17
   2388     @Y = global i32 42
   2389     @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
   2390 
   2391 .. _undefvalues:
   2392 
   2393 Undefined Values
   2394 ----------------
   2395 
   2396 The string '``undef``' can be used anywhere a constant is expected, and
   2397 indicates that the user of the value may receive an unspecified
   2398 bit-pattern. Undefined values may be of any type (other than '``label``'
   2399 or '``void``') and be used anywhere a constant is permitted.
   2400 
   2401 Undefined values are useful because they indicate to the compiler that
   2402 the program is well defined no matter what value is used. This gives the
   2403 compiler more freedom to optimize. Here are some examples of
   2404 (potentially surprising) transformations that are valid (in pseudo IR):
   2405 
   2406 .. code-block:: llvm
   2407 
   2408       %A = add %X, undef
   2409       %B = sub %X, undef
   2410       %C = xor %X, undef
   2411     Safe:
   2412       %A = undef
   2413       %B = undef
   2414       %C = undef
   2415 
   2416 This is safe because all of the output bits are affected by the undef
   2417 bits. Any output bit can have a zero or one depending on the input bits.
   2418 
   2419 .. code-block:: llvm
   2420 
   2421       %A = or %X, undef
   2422       %B = and %X, undef
   2423     Safe:
   2424       %A = -1
   2425       %B = 0
   2426     Unsafe:
   2427       %A = undef
   2428       %B = undef
   2429 
   2430 These logical operations have bits that are not always affected by the
   2431 input. For example, if ``%X`` has a zero bit, then the output of the
   2432 '``and``' operation will always be a zero for that bit, no matter what
   2433 the corresponding bit from the '``undef``' is. As such, it is unsafe to
   2434 optimize or assume that the result of the '``and``' is '``undef``'.
   2435 However, it is safe to assume that all bits of the '``undef``' could be
   2436 0, and optimize the '``and``' to 0. Likewise, it is safe to assume that
   2437 all the bits of the '``undef``' operand to the '``or``' could be set,
   2438 allowing the '``or``' to be folded to -1.
   2439 
   2440 .. code-block:: llvm
   2441 
   2442       %A = select undef, %X, %Y
   2443       %B = select undef, 42, %Y
   2444       %C = select %X, %Y, undef
   2445     Safe:
   2446       %A = %X     (or %Y)
   2447       %B = 42     (or %Y)
   2448       %C = %Y
   2449     Unsafe:
   2450       %A = undef
   2451       %B = undef
   2452       %C = undef
   2453 
   2454 This set of examples shows that undefined '``select``' (and conditional
   2455 branch) conditions can go *either way*, but they have to come from one
   2456 of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
   2457 both known to have a clear low bit, then ``%A`` would have to have a
   2458 cleared low bit. However, in the ``%C`` example, the optimizer is
   2459 allowed to assume that the '``undef``' operand could be the same as
   2460 ``%Y``, allowing the whole '``select``' to be eliminated.
   2461 
   2462 .. code-block:: llvm
   2463 
   2464       %A = xor undef, undef
   2465 
   2466       %B = undef
   2467       %C = xor %B, %B
   2468 
   2469       %D = undef
   2470       %E = icmp slt %D, 4
   2471       %F = icmp gte %D, 4
   2472 
   2473     Safe:
   2474       %A = undef
   2475       %B = undef
   2476       %C = undef
   2477       %D = undef
   2478       %E = undef
   2479       %F = undef
   2480 
   2481 This example points out that two '``undef``' operands are not
   2482 necessarily the same. This can be surprising to people (and also matches
   2483 C semantics) where they assume that "``X^X``" is always zero, even if
   2484 ``X`` is undefined. This isn't true for a number of reasons, but the
   2485 short answer is that an '``undef``' "variable" can arbitrarily change
   2486 its value over its "live range". This is true because the variable
   2487 doesn't actually *have a live range*. Instead, the value is logically
   2488 read from arbitrary registers that happen to be around when needed, so
   2489 the value is not necessarily consistent over time. In fact, ``%A`` and
   2490 ``%C`` need to have the same semantics or the core LLVM "replace all
   2491 uses with" concept would not hold.
   2492 
   2493 .. code-block:: llvm
   2494 
   2495       %A = fdiv undef, %X
   2496       %B = fdiv %X, undef
   2497     Safe:
   2498       %A = undef
   2499     b: unreachable
   2500 
   2501 These examples show the crucial difference between an *undefined value*
   2502 and *undefined behavior*. An undefined value (like '``undef``') is
   2503 allowed to have an arbitrary bit-pattern. This means that the ``%A``
   2504 operation can be constant folded to '``undef``', because the '``undef``'
   2505 could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
   2506 However, in the second example, we can make a more aggressive
   2507 assumption: because the ``undef`` is allowed to be an arbitrary value,
   2508 we are allowed to assume that it could be zero. Since a divide by zero
   2509 has *undefined behavior*, we are allowed to assume that the operation
   2510 does not execute at all. This allows us to delete the divide and all
   2511 code after it. Because the undefined operation "can't happen", the
   2512 optimizer can assume that it occurs in dead code.
   2513 
   2514 .. code-block:: llvm
   2515 
   2516     a:  store undef -> %X
   2517     b:  store %X -> undef
   2518     Safe:
   2519     a: <deleted>
   2520     b: unreachable
   2521 
   2522 These examples reiterate the ``fdiv`` example: a store *of* an undefined
   2523 value can be assumed to not have any effect; we can assume that the
   2524 value is overwritten with bits that happen to match what was already
   2525 there. However, a store *to* an undefined location could clobber
   2526 arbitrary memory, therefore, it has undefined behavior.
   2527 
   2528 .. _poisonvalues:
   2529 
   2530 Poison Values
   2531 -------------
   2532 
   2533 Poison values are similar to :ref:`undef values <undefvalues>`, however
   2534 they also represent the fact that an instruction or constant expression
   2535 that cannot evoke side effects has nevertheless detected a condition
   2536 that results in undefined behavior.
   2537 
   2538 There is currently no way of representing a poison value in the IR; they
   2539 only exist when produced by operations such as :ref:`add <i_add>` with
   2540 the ``nsw`` flag.
   2541 
   2542 Poison value behavior is defined in terms of value *dependence*:
   2543 
   2544 -  Values other than :ref:`phi <i_phi>` nodes depend on their operands.
   2545 -  :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
   2546    their dynamic predecessor basic block.
   2547 -  Function arguments depend on the corresponding actual argument values
   2548    in the dynamic callers of their functions.
   2549 -  :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
   2550    instructions that dynamically transfer control back to them.
   2551 -  :ref:`Invoke <i_invoke>` instructions depend on the
   2552    :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
   2553    call instructions that dynamically transfer control back to them.
   2554 -  Non-volatile loads and stores depend on the most recent stores to all
   2555    of the referenced memory addresses, following the order in the IR
   2556    (including loads and stores implied by intrinsics such as
   2557    :ref:`@llvm.memcpy <int_memcpy>`.)
   2558 -  An instruction with externally visible side effects depends on the
   2559    most recent preceding instruction with externally visible side
   2560    effects, following the order in the IR. (This includes :ref:`volatile
   2561    operations <volatile>`.)
   2562 -  An instruction *control-depends* on a :ref:`terminator
   2563    instruction <terminators>` if the terminator instruction has
   2564    multiple successors and the instruction is always executed when
   2565    control transfers to one of the successors, and may not be executed
   2566    when control is transferred to another.
   2567 -  Additionally, an instruction also *control-depends* on a terminator
   2568    instruction if the set of instructions it otherwise depends on would
   2569    be different if the terminator had transferred control to a different
   2570    successor.
   2571 -  Dependence is transitive.
   2572 
   2573 Poison values have the same behavior as :ref:`undef values <undefvalues>`,
   2574 with the additional effect that any instruction that has a *dependence*
   2575 on a poison value has undefined behavior.
   2576 
   2577 Here are some examples:
   2578 
   2579 .. code-block:: llvm
   2580 
   2581     entry:
   2582       %poison = sub nuw i32 0, 1           ; Results in a poison value.
   2583       %still_poison = and i32 %poison, 0   ; 0, but also poison.
   2584       %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
   2585       store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
   2586 
   2587       store i32 %poison, i32* @g           ; Poison value stored to memory.
   2588       %poison2 = load i32, i32* @g         ; Poison value loaded back from memory.
   2589 
   2590       store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
   2591 
   2592       %narrowaddr = bitcast i32* @g to i16*
   2593       %wideaddr = bitcast i32* @g to i64*
   2594       %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
   2595       %poison4 = load i64, i64* %wideaddr  ; Returns a poison value.
   2596 
   2597       %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
   2598       br i1 %cmp, label %true, label %end  ; Branch to either destination.
   2599 
   2600     true:
   2601       store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
   2602                                            ; it has undefined behavior.
   2603       br label %end
   2604 
   2605     end:
   2606       %p = phi i32 [ 0, %entry ], [ 1, %true ]
   2607                                            ; Both edges into this PHI are
   2608                                            ; control-dependent on %cmp, so this
   2609                                            ; always results in a poison value.
   2610 
   2611       store volatile i32 0, i32* @g        ; This would depend on the store in %true
   2612                                            ; if %cmp is true, or the store in %entry
   2613                                            ; otherwise, so this is undefined behavior.
   2614 
   2615       br i1 %cmp, label %second_true, label %second_end
   2616                                            ; The same branch again, but this time the
   2617                                            ; true block doesn't have side effects.
   2618 
   2619     second_true:
   2620       ; No side effects!
   2621       ret void
   2622 
   2623     second_end:
   2624       store volatile i32 0, i32* @g        ; This time, the instruction always depends
   2625                                            ; on the store in %end. Also, it is
   2626                                            ; control-equivalent to %end, so this is
   2627                                            ; well-defined (ignoring earlier undefined
   2628                                            ; behavior in this example).
   2629 
   2630 .. _blockaddress:
   2631 
   2632 Addresses of Basic Blocks
   2633 -------------------------
   2634 
   2635 ``blockaddress(@function, %block)``
   2636 
   2637 The '``blockaddress``' constant computes the address of the specified
   2638 basic block in the specified function, and always has an ``i8*`` type.
   2639 Taking the address of the entry block is illegal.
   2640 
   2641 This value only has defined behavior when used as an operand to the
   2642 ':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
   2643 against null. Pointer equality tests between labels addresses results in
   2644 undefined behavior --- though, again, comparison against null is ok, and
   2645 no label is equal to the null pointer. This may be passed around as an
   2646 opaque pointer sized value as long as the bits are not inspected. This
   2647 allows ``ptrtoint`` and arithmetic to be performed on these values so
   2648 long as the original value is reconstituted before the ``indirectbr``
   2649 instruction.
   2650 
   2651 Finally, some targets may provide defined semantics when using the value
   2652 as the operand to an inline assembly, but that is target specific.
   2653 
   2654 .. _constantexprs:
   2655 
   2656 Constant Expressions
   2657 --------------------
   2658 
   2659 Constant expressions are used to allow expressions involving other
   2660 constants to be used as constants. Constant expressions may be of any
   2661 :ref:`first class <t_firstclass>` type and may involve any LLVM operation
   2662 that does not have side effects (e.g. load and call are not supported).
   2663 The following is the syntax for constant expressions:
   2664 
   2665 ``trunc (CST to TYPE)``
   2666     Truncate a constant to another type. The bit size of CST must be
   2667     larger than the bit size of TYPE. Both types must be integers.
   2668 ``zext (CST to TYPE)``
   2669     Zero extend a constant to another type. The bit size of CST must be
   2670     smaller than the bit size of TYPE. Both types must be integers.
   2671 ``sext (CST to TYPE)``
   2672     Sign extend a constant to another type. The bit size of CST must be
   2673     smaller than the bit size of TYPE. Both types must be integers.
   2674 ``fptrunc (CST to TYPE)``
   2675     Truncate a floating point constant to another floating point type.
   2676     The size of CST must be larger than the size of TYPE. Both types
   2677     must be floating point.
   2678 ``fpext (CST to TYPE)``
   2679     Floating point extend a constant to another type. The size of CST
   2680     must be smaller or equal to the size of TYPE. Both types must be
   2681     floating point.
   2682 ``fptoui (CST to TYPE)``
   2683     Convert a floating point constant to the corresponding unsigned
   2684     integer constant. TYPE must be a scalar or vector integer type. CST
   2685     must be of scalar or vector floating point type. Both CST and TYPE
   2686     must be scalars, or vectors of the same number of elements. If the
   2687     value won't fit in the integer type, the results are undefined.
   2688 ``fptosi (CST to TYPE)``
   2689     Convert a floating point constant to the corresponding signed
   2690     integer constant. TYPE must be a scalar or vector integer type. CST
   2691     must be of scalar or vector floating point type. Both CST and TYPE
   2692     must be scalars, or vectors of the same number of elements. If the
   2693     value won't fit in the integer type, the results are undefined.
   2694 ``uitofp (CST to TYPE)``
   2695     Convert an unsigned integer constant to the corresponding floating
   2696     point constant. TYPE must be a scalar or vector floating point type.
   2697     CST must be of scalar or vector integer type. Both CST and TYPE must
   2698     be scalars, or vectors of the same number of elements. If the value
   2699     won't fit in the floating point type, the results are undefined.
   2700 ``sitofp (CST to TYPE)``
   2701     Convert a signed integer constant to the corresponding floating
   2702     point constant. TYPE must be a scalar or vector floating point type.
   2703     CST must be of scalar or vector integer type. Both CST and TYPE must
   2704     be scalars, or vectors of the same number of elements. If the value
   2705     won't fit in the floating point type, the results are undefined.
   2706 ``ptrtoint (CST to TYPE)``
   2707     Convert a pointer typed constant to the corresponding integer
   2708     constant. ``TYPE`` must be an integer type. ``CST`` must be of
   2709     pointer type. The ``CST`` value is zero extended, truncated, or
   2710     unchanged to make it fit in ``TYPE``.
   2711 ``inttoptr (CST to TYPE)``
   2712     Convert an integer constant to a pointer constant. TYPE must be a
   2713     pointer type. CST must be of integer type. The CST value is zero
   2714     extended, truncated, or unchanged to make it fit in a pointer size.
   2715     This one is *really* dangerous!
   2716 ``bitcast (CST to TYPE)``
   2717     Convert a constant, CST, to another TYPE. The constraints of the
   2718     operands are the same as those for the :ref:`bitcast
   2719     instruction <i_bitcast>`.
   2720 ``addrspacecast (CST to TYPE)``
   2721     Convert a constant pointer or constant vector of pointer, CST, to another
   2722     TYPE in a different address space. The constraints of the operands are the
   2723     same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
   2724 ``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
   2725     Perform the :ref:`getelementptr operation <i_getelementptr>` on
   2726     constants. As with the :ref:`getelementptr <i_getelementptr>`
   2727     instruction, the index list may have zero or more indexes, which are
   2728     required to make sense for the type of "pointer to TY".
   2729 ``select (COND, VAL1, VAL2)``
   2730     Perform the :ref:`select operation <i_select>` on constants.
   2731 ``icmp COND (VAL1, VAL2)``
   2732     Performs the :ref:`icmp operation <i_icmp>` on constants.
   2733 ``fcmp COND (VAL1, VAL2)``
   2734     Performs the :ref:`fcmp operation <i_fcmp>` on constants.
   2735 ``extractelement (VAL, IDX)``
   2736     Perform the :ref:`extractelement operation <i_extractelement>` on
   2737     constants.
   2738 ``insertelement (VAL, ELT, IDX)``
   2739     Perform the :ref:`insertelement operation <i_insertelement>` on
   2740     constants.
   2741 ``shufflevector (VEC1, VEC2, IDXMASK)``
   2742     Perform the :ref:`shufflevector operation <i_shufflevector>` on
   2743     constants.
   2744 ``extractvalue (VAL, IDX0, IDX1, ...)``
   2745     Perform the :ref:`extractvalue operation <i_extractvalue>` on
   2746     constants. The index list is interpreted in a similar manner as
   2747     indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
   2748     least one index value must be specified.
   2749 ``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
   2750     Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
   2751     The index list is interpreted in a similar manner as indices in a
   2752     ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
   2753     value must be specified.
   2754 ``OPCODE (LHS, RHS)``
   2755     Perform the specified operation of the LHS and RHS constants. OPCODE
   2756     may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
   2757     binary <bitwiseops>` operations. The constraints on operands are
   2758     the same as those for the corresponding instruction (e.g. no bitwise
   2759     operations on floating point values are allowed).
   2760 
   2761 Other Values
   2762 ============
   2763 
   2764 .. _inlineasmexprs:
   2765 
   2766 Inline Assembler Expressions
   2767 ----------------------------
   2768 
   2769 LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
   2770 Inline Assembly <moduleasm>`) through the use of a special value. This
   2771 value represents the inline assembler as a string (containing the
   2772 instructions to emit), a list of operand constraints (stored as a
   2773 string), a flag that indicates whether or not the inline asm expression
   2774 has side effects, and a flag indicating whether the function containing
   2775 the asm needs to align its stack conservatively. An example inline
   2776 assembler expression is:
   2777 
   2778 .. code-block:: llvm
   2779 
   2780     i32 (i32) asm "bswap $0", "=r,r"
   2781 
   2782 Inline assembler expressions may **only** be used as the callee operand
   2783 of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
   2784 Thus, typically we have:
   2785 
   2786 .. code-block:: llvm
   2787 
   2788     %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
   2789 
   2790 Inline asms with side effects not visible in the constraint list must be
   2791 marked as having side effects. This is done through the use of the
   2792 '``sideeffect``' keyword, like so:
   2793 
   2794 .. code-block:: llvm
   2795 
   2796     call void asm sideeffect "eieio", ""()
   2797 
   2798 In some cases inline asms will contain code that will not work unless
   2799 the stack is aligned in some way, such as calls or SSE instructions on
   2800 x86, yet will not contain code that does that alignment within the asm.
   2801 The compiler should make conservative assumptions about what the asm
   2802 might contain and should generate its usual stack alignment code in the
   2803 prologue if the '``alignstack``' keyword is present:
   2804 
   2805 .. code-block:: llvm
   2806 
   2807     call void asm alignstack "eieio", ""()
   2808 
   2809 Inline asms also support using non-standard assembly dialects. The
   2810 assumed dialect is ATT. When the '``inteldialect``' keyword is present,
   2811 the inline asm is using the Intel dialect. Currently, ATT and Intel are
   2812 the only supported dialects. An example is:
   2813 
   2814 .. code-block:: llvm
   2815 
   2816     call void asm inteldialect "eieio", ""()
   2817 
   2818 If multiple keywords appear the '``sideeffect``' keyword must come
   2819 first, the '``alignstack``' keyword second and the '``inteldialect``'
   2820 keyword last.
   2821 
   2822 Inline Asm Metadata
   2823 ^^^^^^^^^^^^^^^^^^^
   2824 
   2825 The call instructions that wrap inline asm nodes may have a
   2826 "``!srcloc``" MDNode attached to it that contains a list of constant
   2827 integers. If present, the code generator will use the integer as the
   2828 location cookie value when report errors through the ``LLVMContext``
   2829 error reporting mechanisms. This allows a front-end to correlate backend
   2830 errors that occur with inline asm back to the source code that produced
   2831 it. For example:
   2832 
   2833 .. code-block:: llvm
   2834 
   2835     call void asm sideeffect "something bad", ""(), !srcloc !42
   2836     ...
   2837     !42 = !{ i32 1234567 }
   2838 
   2839 It is up to the front-end to make sense of the magic numbers it places
   2840 in the IR. If the MDNode contains multiple constants, the code generator
   2841 will use the one that corresponds to the line of the asm that the error
   2842 occurs on.
   2843 
   2844 .. _metadata:
   2845 
   2846 Metadata
   2847 ========
   2848 
   2849 LLVM IR allows metadata to be attached to instructions in the program
   2850 that can convey extra information about the code to the optimizers and
   2851 code generator. One example application of metadata is source-level
   2852 debug information. There are two metadata primitives: strings and nodes.
   2853 
   2854 Metadata does not have a type, and is not a value.  If referenced from a
   2855 ``call`` instruction, it uses the ``metadata`` type.
   2856 
   2857 All metadata are identified in syntax by a exclamation point ('``!``').
   2858 
   2859 .. _metadata-string:
   2860 
   2861 Metadata Nodes and Metadata Strings
   2862 -----------------------------------
   2863 
   2864 A metadata string is a string surrounded by double quotes. It can
   2865 contain any character by escaping non-printable characters with
   2866 "``\xx``" where "``xx``" is the two digit hex code. For example:
   2867 "``!"test\00"``".
   2868 
   2869 Metadata nodes are represented with notation similar to structure
   2870 constants (a comma separated list of elements, surrounded by braces and
   2871 preceded by an exclamation point). Metadata nodes can have any values as
   2872 their operand. For example:
   2873 
   2874 .. code-block:: llvm
   2875 
   2876     !{ !"test\00", i32 10}
   2877 
   2878 Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
   2879 
   2880 .. code-block:: llvm
   2881 
   2882     !0 = distinct !{!"test\00", i32 10}
   2883 
   2884 ``distinct`` nodes are useful when nodes shouldn't be merged based on their
   2885 content.  They can also occur when transformations cause uniquing collisions
   2886 when metadata operands change.
   2887 
   2888 A :ref:`named metadata <namedmetadatastructure>` is a collection of
   2889 metadata nodes, which can be looked up in the module symbol table. For
   2890 example:
   2891 
   2892 .. code-block:: llvm
   2893 
   2894     !foo = !{!4, !3}
   2895 
   2896 Metadata can be used as function arguments. Here ``llvm.dbg.value``
   2897 function is using two metadata arguments:
   2898 
   2899 .. code-block:: llvm
   2900 
   2901     call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
   2902 
   2903 Metadata can be attached with an instruction. Here metadata ``!21`` is
   2904 attached to the ``add`` instruction using the ``!dbg`` identifier:
   2905 
   2906 .. code-block:: llvm
   2907 
   2908     %indvar.next = add i64 %indvar, 1, !dbg !21
   2909 
   2910 More information about specific metadata nodes recognized by the
   2911 optimizers and code generator is found below.
   2912 
   2913 .. _specialized-metadata:
   2914 
   2915 Specialized Metadata Nodes
   2916 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   2917 
   2918 Specialized metadata nodes are custom data structures in metadata (as opposed
   2919 to generic tuples).  Their fields are labelled, and can be specified in any
   2920 order.
   2921 
   2922 These aren't inherently debug info centric, but currently all the specialized
   2923 metadata nodes are related to debug info.
   2924 
   2925 .. _MDCompileUnit:
   2926 
   2927 MDCompileUnit
   2928 """""""""""""
   2929 
   2930 ``MDCompileUnit`` nodes represent a compile unit.  The ``enums:``,
   2931 ``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
   2932 tuples containing the debug info to be emitted along with the compile unit,
   2933 regardless of code optimizations (some nodes are only emitted if there are
   2934 references to them from instructions).
   2935 
   2936 .. code-block:: llvm
   2937 
   2938     !0 = !MDCompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
   2939                         isOptimized: true, flags: "-O2", runtimeVersion: 2,
   2940                         splitDebugFilename: "abc.debug", emissionKind: 1,
   2941                         enums: !2, retainedTypes: !3, subprograms: !4,
   2942                         globals: !5, imports: !6)
   2943 
   2944 Compile unit descriptors provide the root scope for objects declared in a
   2945 specific compilation unit.  File descriptors are defined using this scope.
   2946 These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
   2947 keep track of subprograms, global variables, type information, and imported
   2948 entities (declarations and namespaces).
   2949 
   2950 .. _MDFile:
   2951 
   2952 MDFile
   2953 """"""
   2954 
   2955 ``MDFile`` nodes represent files.  The ``filename:`` can include slashes.
   2956 
   2957 .. code-block:: llvm
   2958 
   2959     !0 = !MDFile(filename: "path/to/file", directory: "/path/to/dir")
   2960 
   2961 Files are sometimes used in ``scope:`` fields, and are the only valid target
   2962 for ``file:`` fields.
   2963 
   2964 .. _MDLocation:
   2965 
   2966 MDBasicType
   2967 """""""""""
   2968 
   2969 ``MDBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
   2970 ``float``.  ``tag:`` defaults to ``DW_TAG_base_type``.
   2971 
   2972 .. code-block:: llvm
   2973 
   2974     !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
   2975                       encoding: DW_ATE_unsigned_char)
   2976     !1 = !MDBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
   2977 
   2978 The ``encoding:`` describes the details of the type.  Usually it's one of the
   2979 following:
   2980 
   2981 .. code-block:: llvm
   2982 
   2983   DW_ATE_address       = 1
   2984   DW_ATE_boolean       = 2
   2985   DW_ATE_float         = 4
   2986   DW_ATE_signed        = 5
   2987   DW_ATE_signed_char   = 6
   2988   DW_ATE_unsigned      = 7
   2989   DW_ATE_unsigned_char = 8
   2990 
   2991 .. _MDSubroutineType:
   2992 
   2993 MDSubroutineType
   2994 """"""""""""""""
   2995 
   2996 ``MDSubroutineType`` nodes represent subroutine types.  Their ``types:`` field
   2997 refers to a tuple; the first operand is the return type, while the rest are the
   2998 types of the formal arguments in order.  If the first operand is ``null``, that
   2999 represents a function with no return value (such as ``void foo() {}`` in C++).
   3000 
   3001 .. code-block:: llvm
   3002 
   3003     !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
   3004     !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
   3005     !2 = !MDSubroutineType(types: !{null, !0, !1}) ; void (int, char)
   3006 
   3007 .. _MDDerivedType:
   3008 
   3009 MDDerivedType
   3010 """""""""""""
   3011 
   3012 ``MDDerivedType`` nodes represent types derived from other types, such as
   3013 qualified types.
   3014 
   3015 .. code-block:: llvm
   3016 
   3017     !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
   3018                       encoding: DW_ATE_unsigned_char)
   3019     !1 = !MDDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
   3020                         align: 32)
   3021 
   3022 The following ``tag:`` values are valid:
   3023 
   3024 .. code-block:: llvm
   3025 
   3026   DW_TAG_formal_parameter   = 5
   3027   DW_TAG_member             = 13
   3028   DW_TAG_pointer_type       = 15
   3029   DW_TAG_reference_type     = 16
   3030   DW_TAG_typedef            = 22
   3031   DW_TAG_ptr_to_member_type = 31
   3032   DW_TAG_const_type         = 38
   3033   DW_TAG_volatile_type      = 53
   3034   DW_TAG_restrict_type      = 55
   3035 
   3036 ``DW_TAG_member`` is used to define a member of a :ref:`composite type
   3037 <MDCompositeType>` or :ref:`subprogram <MDSubprogram>`.  The type of the member
   3038 is the ``baseType:``.  The ``offset:`` is the member's bit offset.
   3039 ``DW_TAG_formal_parameter`` is used to define a member which is a formal
   3040 argument of a subprogram.
   3041 
   3042 ``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
   3043 
   3044 ``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
   3045 ``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
   3046 ``baseType:``.
   3047 
   3048 Note that the ``void *`` type is expressed as a type derived from NULL.
   3049 
   3050 .. _MDCompositeType:
   3051 
   3052 MDCompositeType
   3053 """""""""""""""
   3054 
   3055 ``MDCompositeType`` nodes represent types composed of other types, like
   3056 structures and unions.  ``elements:`` points to a tuple of the composed types.
   3057 
   3058 If the source language supports ODR, the ``identifier:`` field gives the unique
   3059 identifier used for type merging between modules.  When specified, other types
   3060 can refer to composite types indirectly via a :ref:`metadata string
   3061 <metadata-string>` that matches their identifier.
   3062 
   3063 .. code-block:: llvm
   3064 
   3065     !0 = !MDEnumerator(name: "SixKind", value: 7)
   3066     !1 = !MDEnumerator(name: "SevenKind", value: 7)
   3067     !2 = !MDEnumerator(name: "NegEightKind", value: -8)
   3068     !3 = !MDCompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
   3069                           line: 2, size: 32, align: 32, identifier: "_M4Enum",
   3070                           elements: !{!0, !1, !2})
   3071 
   3072 The following ``tag:`` values are valid:
   3073 
   3074 .. code-block:: llvm
   3075 
   3076   DW_TAG_array_type       = 1
   3077   DW_TAG_class_type       = 2
   3078   DW_TAG_enumeration_type = 4
   3079   DW_TAG_structure_type   = 19
   3080   DW_TAG_union_type       = 23
   3081   DW_TAG_subroutine_type  = 21
   3082   DW_TAG_inheritance      = 28
   3083 
   3084 
   3085 For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
   3086 descriptors <MDSubrange>`, each representing the range of subscripts at that
   3087 level of indexing.  The ``DIFlagVector`` flag to ``flags:`` indicates that an
   3088 array type is a native packed vector.
   3089 
   3090 For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
   3091 descriptors <MDEnumerator>`, each representing the definition of an enumeration
   3092 value for the set.  All enumeration type descriptors are collected in the
   3093 ``enums:`` field of the :ref:`compile unit <MDCompileUnit>`.
   3094 
   3095 For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
   3096 ``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
   3097 <MDDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
   3098 
   3099 .. _MDSubrange:
   3100 
   3101 MDSubrange
   3102 """"""""""
   3103 
   3104 ``MDSubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
   3105 :ref:`MDCompositeType`.  ``count: -1`` indicates an empty array.
   3106 
   3107 .. code-block:: llvm
   3108 
   3109     !0 = !MDSubrange(count: 5, lowerBound: 0) ; array counting from 0
   3110     !1 = !MDSubrange(count: 5, lowerBound: 1) ; array counting from 1
   3111     !2 = !MDSubrange(count: -1) ; empty array.
   3112 
   3113 .. _MDEnumerator:
   3114 
   3115 MDEnumerator
   3116 """"""""""""
   3117 
   3118 ``MDEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
   3119 variants of :ref:`MDCompositeType`.
   3120 
   3121 .. code-block:: llvm
   3122 
   3123     !0 = !MDEnumerator(name: "SixKind", value: 7)
   3124     !1 = !MDEnumerator(name: "SevenKind", value: 7)
   3125     !2 = !MDEnumerator(name: "NegEightKind", value: -8)
   3126 
   3127 MDTemplateTypeParameter
   3128 """""""""""""""""""""""
   3129 
   3130 ``MDTemplateTypeParameter`` nodes represent type parameters to generic source
   3131 language constructs.  They are used (optionally) in :ref:`MDCompositeType` and
   3132 :ref:`MDSubprogram` ``templateParams:`` fields.
   3133 
   3134 .. code-block:: llvm
   3135 
   3136     !0 = !MDTemplateTypeParameter(name: "Ty", type: !1)
   3137 
   3138 MDTemplateValueParameter
   3139 """"""""""""""""""""""""
   3140 
   3141 ``MDTemplateValueParameter`` nodes represent value parameters to generic source
   3142 language constructs.  ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
   3143 but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
   3144 ``DW_TAG_GNU_template_param_pack``.  They are used (optionally) in
   3145 :ref:`MDCompositeType` and :ref:`MDSubprogram` ``templateParams:`` fields.
   3146 
   3147 .. code-block:: llvm
   3148 
   3149     !0 = !MDTemplateValueParameter(name: "Ty", type: !1, value: i32 7)
   3150 
   3151 MDNamespace
   3152 """""""""""
   3153 
   3154 ``MDNamespace`` nodes represent namespaces in the source language.
   3155 
   3156 .. code-block:: llvm
   3157 
   3158     !0 = !MDNamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
   3159 
   3160 MDGlobalVariable
   3161 """"""""""""""""
   3162 
   3163 ``MDGlobalVariable`` nodes represent global variables in the source language.
   3164 
   3165 .. code-block:: llvm
   3166 
   3167     !0 = !MDGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
   3168                            file: !2, line: 7, type: !3, isLocal: true,
   3169                            isDefinition: false, variable: i32* @foo,
   3170                            declaration: !4)
   3171 
   3172 All global variables should be referenced by the `globals:` field of a
   3173 :ref:`compile unit <MDCompileUnit>`.
   3174 
   3175 .. _MDSubprogram:
   3176 
   3177 MDSubprogram
   3178 """"""""""""
   3179 
   3180 ``MDSubprogram`` nodes represent functions from the source language.  The
   3181 ``variables:`` field points at :ref:`variables <MDLocalVariable>` that must be
   3182 retained, even if their IR counterparts are optimized out of the IR.  The
   3183 ``type:`` field must point at an :ref:`MDSubroutineType`.
   3184 
   3185 .. code-block:: llvm
   3186 
   3187     !0 = !MDSubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
   3188                        file: !2, line: 7, type: !3, isLocal: true,
   3189                        isDefinition: false, scopeLine: 8, containingType: !4,
   3190                        virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
   3191                        flags: DIFlagPrototyped, isOptimized: true,
   3192                        function: void ()* @_Z3foov,
   3193                        templateParams: !5, declaration: !6, variables: !7)
   3194 
   3195 .. _MDLexicalBlock:
   3196 
   3197 MDLexicalBlock
   3198 """"""""""""""
   3199 
   3200 ``MDLexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
   3201 <MDSubprogram>`.  The line number and column numbers are used to dinstinguish
   3202 two lexical blocks at same depth.  They are valid targets for ``scope:``
   3203 fields.
   3204 
   3205 .. code-block:: llvm
   3206 
   3207     !0 = distinct !MDLexicalBlock(scope: !1, file: !2, line: 7, column: 35)
   3208 
   3209 Usually lexical blocks are ``distinct`` to prevent node merging based on
   3210 operands.
   3211 
   3212 .. _MDLexicalBlockFile:
   3213 
   3214 MDLexicalBlockFile
   3215 """"""""""""""""""
   3216 
   3217 ``MDLexicalBlockFile`` nodes are used to discriminate between sections of a
   3218 :ref:`lexical block <MDLexicalBlock>`.  The ``file:`` field can be changed to
   3219 indicate textual inclusion, or the ``discriminator:`` field can be used to
   3220 discriminate between control flow within a single block in the source language.
   3221 
   3222 .. code-block:: llvm
   3223 
   3224     !0 = !MDLexicalBlock(scope: !3, file: !4, line: 7, column: 35)
   3225     !1 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 0)
   3226     !2 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 1)
   3227 
   3228 MDLocation
   3229 """"""""""
   3230 
   3231 ``MDLocation`` nodes represent source debug locations.  The ``scope:`` field is
   3232 mandatory, and points at an :ref:`MDLexicalBlockFile`, an
   3233 :ref:`MDLexicalBlock`, or an :ref:`MDSubprogram`.
   3234 
   3235 .. code-block:: llvm
   3236 
   3237     !0 = !MDLocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
   3238 
   3239 .. _MDLocalVariable:
   3240 
   3241 MDLocalVariable
   3242 """""""""""""""
   3243 
   3244 ``MDLocalVariable`` nodes represent local variables in the source language.
   3245 Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
   3246 discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
   3247 arguments (``DW_TAG_arg_variable``).  In the latter case, the ``arg:`` field
   3248 specifies the argument position, and this variable will be included in the
   3249 ``variables:`` field of its :ref:`MDSubprogram`.
   3250 
   3251 .. code-block:: llvm
   3252 
   3253     !0 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
   3254                           scope: !3, file: !2, line: 7, type: !3,
   3255                           flags: DIFlagArtificial)
   3256     !1 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
   3257                           scope: !4, file: !2, line: 7, type: !3)
   3258     !1 = !MDLocalVariable(tag: DW_TAG_auto_variable, name: "y",
   3259                           scope: !5, file: !2, line: 7, type: !3)
   3260 
   3261 MDExpression
   3262 """"""""""""
   3263 
   3264 ``MDExpression`` nodes represent DWARF expression sequences.  They are used in
   3265 :ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
   3266 describe how the referenced LLVM variable relates to the source language
   3267 variable.
   3268 
   3269 The current supported vocabulary is limited:
   3270 
   3271 - ``DW_OP_deref`` dereferences the working expression.
   3272 - ``DW_OP_plus, 93`` adds ``93`` to the working expression.
   3273 - ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
   3274   here, respectively) of the variable piece from the working expression.
   3275 
   3276 .. code-block:: llvm
   3277 
   3278     !0 = !MDExpression(DW_OP_deref)
   3279     !1 = !MDExpression(DW_OP_plus, 3)
   3280     !2 = !MDExpression(DW_OP_bit_piece, 3, 7)
   3281     !3 = !MDExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
   3282 
   3283 MDObjCProperty
   3284 """"""""""""""
   3285 
   3286 ``MDObjCProperty`` nodes represent Objective-C property nodes.
   3287 
   3288 .. code-block:: llvm
   3289 
   3290     !3 = !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
   3291                          getter: "getFoo", attributes: 7, type: !2)
   3292 
   3293 MDImportedEntity
   3294 """"""""""""""""
   3295 
   3296 ``MDImportedEntity`` nodes represent entities (such as modules) imported into a
   3297 compile unit.
   3298 
   3299 .. code-block:: llvm
   3300 
   3301    !2 = !MDImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
   3302                           entity: !1, line: 7)
   3303 
   3304 '``tbaa``' Metadata
   3305 ^^^^^^^^^^^^^^^^^^^
   3306 
   3307 In LLVM IR, memory does not have types, so LLVM's own type system is not
   3308 suitable for doing TBAA. Instead, metadata is added to the IR to
   3309 describe a type system of a higher level language. This can be used to
   3310 implement typical C/C++ TBAA, but it can also be used to implement
   3311 custom alias analysis behavior for other languages.
   3312 
   3313 The current metadata format is very simple. TBAA metadata nodes have up
   3314 to three fields, e.g.:
   3315 
   3316 .. code-block:: llvm
   3317 
   3318     !0 = !{ !"an example type tree" }
   3319     !1 = !{ !"int", !0 }
   3320     !2 = !{ !"float", !0 }
   3321     !3 = !{ !"const float", !2, i64 1 }
   3322 
   3323 The first field is an identity field. It can be any value, usually a
   3324 metadata string, which uniquely identifies the type. The most important
   3325 name in the tree is the name of the root node. Two trees with different
   3326 root node names are entirely disjoint, even if they have leaves with
   3327 common names.
   3328 
   3329 The second field identifies the type's parent node in the tree, or is
   3330 null or omitted for a root node. A type is considered to alias all of
   3331 its descendants and all of its ancestors in the tree. Also, a type is
   3332 considered to alias all types in other trees, so that bitcode produced
   3333 from multiple front-ends is handled conservatively.
   3334 
   3335 If the third field is present, it's an integer which if equal to 1
   3336 indicates that the type is "constant" (meaning
   3337 ``pointsToConstantMemory`` should return true; see `other useful
   3338 AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
   3339 
   3340 '``tbaa.struct``' Metadata
   3341 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   3342 
   3343 The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
   3344 aggregate assignment operations in C and similar languages, however it
   3345 is defined to copy a contiguous region of memory, which is more than
   3346 strictly necessary for aggregate types which contain holes due to
   3347 padding. Also, it doesn't contain any TBAA information about the fields
   3348 of the aggregate.
   3349 
   3350 ``!tbaa.struct`` metadata can describe which memory subregions in a
   3351 memcpy are padding and what the TBAA tags of the struct are.
   3352 
   3353 The current metadata format is very simple. ``!tbaa.struct`` metadata
   3354 nodes are a list of operands which are in conceptual groups of three.
   3355 For each group of three, the first operand gives the byte offset of a
   3356 field in bytes, the second gives its size in bytes, and the third gives
   3357 its tbaa tag. e.g.:
   3358 
   3359 .. code-block:: llvm
   3360 
   3361     !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
   3362 
   3363 This describes a struct with two fields. The first is at offset 0 bytes
   3364 with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
   3365 and has size 4 bytes and has tbaa tag !2.
   3366 
   3367 Note that the fields need not be contiguous. In this example, there is a
   3368 4 byte gap between the two fields. This gap represents padding which
   3369 does not carry useful data and need not be preserved.
   3370 
   3371 '``noalias``' and '``alias.scope``' Metadata
   3372 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3373 
   3374 ``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
   3375 noalias memory-access sets. This means that some collection of memory access
   3376 instructions (loads, stores, memory-accessing calls, etc.) that carry
   3377 ``noalias`` metadata can specifically be specified not to alias with some other
   3378 collection of memory access instructions that carry ``alias.scope`` metadata.
   3379 Each type of metadata specifies a list of scopes where each scope has an id and
   3380 a domain. When evaluating an aliasing query, if for some domain, the set
   3381 of scopes with that domain in one instruction's ``alias.scope`` list is a
   3382 subset of (or equal to) the set of scopes for that domain in another
   3383 instruction's ``noalias`` list, then the two memory accesses are assumed not to
   3384 alias.
   3385 
   3386 The metadata identifying each domain is itself a list containing one or two
   3387 entries. The first entry is the name of the domain. Note that if the name is a
   3388 string then it can be combined accross functions and translation units. A
   3389 self-reference can be used to create globally unique domain names. A
   3390 descriptive string may optionally be provided as a second list entry.
   3391 
   3392 The metadata identifying each scope is also itself a list containing two or
   3393 three entries. The first entry is the name of the scope. Note that if the name
   3394 is a string then it can be combined accross functions and translation units. A
   3395 self-reference can be used to create globally unique scope names. A metadata
   3396 reference to the scope's domain is the second entry. A descriptive string may
   3397 optionally be provided as a third list entry.
   3398 
   3399 For example,
   3400 
   3401 .. code-block:: llvm
   3402 
   3403     ; Two scope domains:
   3404     !0 = !{!0}
   3405     !1 = !{!1}
   3406 
   3407     ; Some scopes in these domains:
   3408     !2 = !{!2, !0}
   3409     !3 = !{!3, !0}
   3410     !4 = !{!4, !1}
   3411 
   3412     ; Some scope lists:
   3413     !5 = !{!4} ; A list containing only scope !4
   3414     !6 = !{!4, !3, !2}
   3415     !7 = !{!3}
   3416 
   3417     ; These two instructions don't alias:
   3418     %0 = load float, float* %c, align 4, !alias.scope !5
   3419     store float %0, float* %arrayidx.i, align 4, !noalias !5
   3420 
   3421     ; These two instructions also don't alias (for domain !1, the set of scopes
   3422     ; in the !alias.scope equals that in the !noalias list):
   3423     %2 = load float, float* %c, align 4, !alias.scope !5
   3424     store float %2, float* %arrayidx.i2, align 4, !noalias !6
   3425 
   3426     ; These two instructions don't alias (for domain !0, the set of scopes in
   3427     ; the !noalias list is not a superset of, or equal to, the scopes in the
   3428     ; !alias.scope list):
   3429     %2 = load float, float* %c, align 4, !alias.scope !6
   3430     store float %0, float* %arrayidx.i, align 4, !noalias !7
   3431 
   3432 '``fpmath``' Metadata
   3433 ^^^^^^^^^^^^^^^^^^^^^
   3434 
   3435 ``fpmath`` metadata may be attached to any instruction of floating point
   3436 type. It can be used to express the maximum acceptable error in the
   3437 result of that instruction, in ULPs, thus potentially allowing the
   3438 compiler to use a more efficient but less accurate method of computing
   3439 it. ULP is defined as follows:
   3440 
   3441     If ``x`` is a real number that lies between two finite consecutive
   3442     floating-point numbers ``a`` and ``b``, without being equal to one
   3443     of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
   3444     distance between the two non-equal finite floating-point numbers
   3445     nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
   3446 
   3447 The metadata node shall consist of a single positive floating point
   3448 number representing the maximum relative error, for example:
   3449 
   3450 .. code-block:: llvm
   3451 
   3452     !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
   3453 
   3454 .. _range-metadata:
   3455 
   3456 '``range``' Metadata
   3457 ^^^^^^^^^^^^^^^^^^^^
   3458 
   3459 ``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
   3460 integer types. It expresses the possible ranges the loaded value or the value
   3461 returned by the called function at this call site is in. The ranges are
   3462 represented with a flattened list of integers. The loaded value or the value
   3463 returned is known to be in the union of the ranges defined by each consecutive
   3464 pair. Each pair has the following properties:
   3465 
   3466 -  The type must match the type loaded by the instruction.
   3467 -  The pair ``a,b`` represents the range ``[a,b)``.
   3468 -  Both ``a`` and ``b`` are constants.
   3469 -  The range is allowed to wrap.
   3470 -  The range should not represent the full or empty set. That is,
   3471    ``a!=b``.
   3472 
   3473 In addition, the pairs must be in signed order of the lower bound and
   3474 they must be non-contiguous.
   3475 
   3476 Examples:
   3477 
   3478 .. code-block:: llvm
   3479 
   3480       %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
   3481       %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
   3482       %c = call i8 @foo(),       !range !2 ; Can only be 0, 1, 3, 4 or 5
   3483       %d = invoke i8 @bar() to label %cont
   3484              unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
   3485     ...
   3486     !0 = !{ i8 0, i8 2 }
   3487     !1 = !{ i8 255, i8 2 }
   3488     !2 = !{ i8 0, i8 2, i8 3, i8 6 }
   3489     !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
   3490 
   3491 '``llvm.loop``'
   3492 ^^^^^^^^^^^^^^^
   3493 
   3494 It is sometimes useful to attach information to loop constructs. Currently,
   3495 loop metadata is implemented as metadata attached to the branch instruction
   3496 in the loop latch block. This type of metadata refer to a metadata node that is
   3497 guaranteed to be separate for each loop. The loop identifier metadata is
   3498 specified with the name ``llvm.loop``.
   3499 
   3500 The loop identifier metadata is implemented using a metadata that refers to
   3501 itself to avoid merging it with any other identifier metadata, e.g.,
   3502 during module linkage or function inlining. That is, each loop should refer
   3503 to their own identification metadata even if they reside in separate functions.
   3504 The following example contains loop identifier metadata for two separate loop
   3505 constructs:
   3506 
   3507 .. code-block:: llvm
   3508 
   3509     !0 = !{!0}
   3510     !1 = !{!1}
   3511 
   3512 The loop identifier metadata can be used to specify additional
   3513 per-loop metadata. Any operands after the first operand can be treated
   3514 as user-defined metadata. For example the ``llvm.loop.unroll.count``
   3515 suggests an unroll factor to the loop unroller:
   3516 
   3517 .. code-block:: llvm
   3518 
   3519       br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
   3520     ...
   3521     !0 = !{!0, !1}
   3522     !1 = !{!"llvm.loop.unroll.count", i32 4}
   3523 
   3524 '``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
   3525 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3526 
   3527 Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
   3528 used to control per-loop vectorization and interleaving parameters such as
   3529 vectorization width and interleave count.  These metadata should be used in
   3530 conjunction with ``llvm.loop`` loop identification metadata.  The
   3531 ``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
   3532 optimization hints and the optimizer will only interleave and vectorize loops if
   3533 it believes it is safe to do so.  The ``llvm.mem.parallel_loop_access`` metadata
   3534 which contains information about loop-carried memory dependencies can be helpful
   3535 in determining the safety of these transformations.
   3536 
   3537 '``llvm.loop.interleave.count``' Metadata
   3538 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3539 
   3540 This metadata suggests an interleave count to the loop interleaver.
   3541 The first operand is the string ``llvm.loop.interleave.count`` and the
   3542 second operand is an integer specifying the interleave count. For
   3543 example:
   3544 
   3545 .. code-block:: llvm
   3546 
   3547    !0 = !{!"llvm.loop.interleave.count", i32 4}
   3548 
   3549 Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
   3550 multiple iterations of the loop.  If ``llvm.loop.interleave.count`` is set to 0
   3551 then the interleave count will be determined automatically.
   3552 
   3553 '``llvm.loop.vectorize.enable``' Metadata
   3554 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3555 
   3556 This metadata selectively enables or disables vectorization for the loop. The
   3557 first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
   3558 is a bit.  If the bit operand value is 1 vectorization is enabled. A value of
   3559 0 disables vectorization:
   3560 
   3561 .. code-block:: llvm
   3562 
   3563    !0 = !{!"llvm.loop.vectorize.enable", i1 0}
   3564    !1 = !{!"llvm.loop.vectorize.enable", i1 1}
   3565 
   3566 '``llvm.loop.vectorize.width``' Metadata
   3567 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3568 
   3569 This metadata sets the target width of the vectorizer. The first
   3570 operand is the string ``llvm.loop.vectorize.width`` and the second
   3571 operand is an integer specifying the width. For example:
   3572 
   3573 .. code-block:: llvm
   3574 
   3575    !0 = !{!"llvm.loop.vectorize.width", i32 4}
   3576 
   3577 Note that setting ``llvm.loop.vectorize.width`` to 1 disables
   3578 vectorization of the loop.  If ``llvm.loop.vectorize.width`` is set to
   3579 0 or if the loop does not have this metadata the width will be
   3580 determined automatically.
   3581 
   3582 '``llvm.loop.unroll``'
   3583 ^^^^^^^^^^^^^^^^^^^^^^
   3584 
   3585 Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
   3586 optimization hints such as the unroll factor. ``llvm.loop.unroll``
   3587 metadata should be used in conjunction with ``llvm.loop`` loop
   3588 identification metadata. The ``llvm.loop.unroll`` metadata are only
   3589 optimization hints and the unrolling will only be performed if the
   3590 optimizer believes it is safe to do so.
   3591 
   3592 '``llvm.loop.unroll.count``' Metadata
   3593 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3594 
   3595 This metadata suggests an unroll factor to the loop unroller. The
   3596 first operand is the string ``llvm.loop.unroll.count`` and the second
   3597 operand is a positive integer specifying the unroll factor. For
   3598 example:
   3599 
   3600 .. code-block:: llvm
   3601 
   3602    !0 = !{!"llvm.loop.unroll.count", i32 4}
   3603 
   3604 If the trip count of the loop is less than the unroll count the loop
   3605 will be partially unrolled.
   3606 
   3607 '``llvm.loop.unroll.disable``' Metadata
   3608 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3609 
   3610 This metadata either disables loop unrolling. The metadata has a single operand
   3611 which is the string ``llvm.loop.unroll.disable``.  For example:
   3612 
   3613 .. code-block:: llvm
   3614 
   3615    !0 = !{!"llvm.loop.unroll.disable"}
   3616 
   3617 '``llvm.loop.unroll.runtime.disable``' Metadata
   3618 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3619 
   3620 This metadata either disables runtime loop unrolling. The metadata has a single
   3621 operand which is the string ``llvm.loop.unroll.runtime.disable``.  For example:
   3622 
   3623 .. code-block:: llvm
   3624 
   3625    !0 = !{!"llvm.loop.unroll.runtime.disable"}
   3626 
   3627 '``llvm.loop.unroll.full``' Metadata
   3628 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3629 
   3630 This metadata either suggests that the loop should be unrolled fully. The
   3631 metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
   3632 For example:
   3633 
   3634 .. code-block:: llvm
   3635 
   3636    !0 = !{!"llvm.loop.unroll.full"}
   3637 
   3638 '``llvm.mem``'
   3639 ^^^^^^^^^^^^^^^
   3640 
   3641 Metadata types used to annotate memory accesses with information helpful
   3642 for optimizations are prefixed with ``llvm.mem``.
   3643 
   3644 '``llvm.mem.parallel_loop_access``' Metadata
   3645 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3646 
   3647 The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
   3648 or metadata containing a list of loop identifiers for nested loops.
   3649 The metadata is attached to memory accessing instructions and denotes that
   3650 no loop carried memory dependence exist between it and other instructions denoted
   3651 with the same loop identifier.
   3652 
   3653 Precisely, given two instructions ``m1`` and ``m2`` that both have the
   3654 ``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
   3655 set of loops associated with that metadata, respectively, then there is no loop
   3656 carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
   3657 ``L2``.
   3658 
   3659 As a special case, if all memory accessing instructions in a loop have
   3660 ``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
   3661 loop has no loop carried memory dependences and is considered to be a parallel
   3662 loop.
   3663 
   3664 Note that if not all memory access instructions have such metadata referring to
   3665 the loop, then the loop is considered not being trivially parallel. Additional
   3666 memory dependence analysis is required to make that determination.  As a fail
   3667 safe mechanism, this causes loops that were originally parallel to be considered
   3668 sequential (if optimization passes that are unaware of the parallel semantics
   3669 insert new memory instructions into the loop body).
   3670 
   3671 Example of a loop that is considered parallel due to its correct use of
   3672 both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
   3673 metadata types that refer to the same loop identifier metadata.
   3674 
   3675 .. code-block:: llvm
   3676 
   3677    for.body:
   3678      ...
   3679      %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
   3680      ...
   3681      store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
   3682      ...
   3683      br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
   3684 
   3685    for.end:
   3686    ...
   3687    !0 = !{!0}
   3688 
   3689 It is also possible to have nested parallel loops. In that case the
   3690 memory accesses refer to a list of loop identifier metadata nodes instead of
   3691 the loop identifier metadata node directly:
   3692 
   3693 .. code-block:: llvm
   3694 
   3695    outer.for.body:
   3696      ...
   3697      %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
   3698      ...
   3699      br label %inner.for.body
   3700 
   3701    inner.for.body:
   3702      ...
   3703      %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
   3704      ...
   3705      store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
   3706      ...
   3707      br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
   3708 
   3709    inner.for.end:
   3710      ...
   3711      store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
   3712      ...
   3713      br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
   3714 
   3715    outer.for.end:                                          ; preds = %for.body
   3716    ...
   3717    !0 = !{!1, !2} ; a list of loop identifiers
   3718    !1 = !{!1} ; an identifier for the inner loop
   3719    !2 = !{!2} ; an identifier for the outer loop
   3720 
   3721 '``llvm.bitsets``'
   3722 ^^^^^^^^^^^^^^^^^^
   3723 
   3724 The ``llvm.bitsets`` global metadata is used to implement
   3725 :doc:`bitsets <BitSets>`.
   3726 
   3727 Module Flags Metadata
   3728 =====================
   3729 
   3730 Information about the module as a whole is difficult to convey to LLVM's
   3731 subsystems. The LLVM IR isn't sufficient to transmit this information.
   3732 The ``llvm.module.flags`` named metadata exists in order to facilitate
   3733 this. These flags are in the form of key / value pairs --- much like a
   3734 dictionary --- making it easy for any subsystem who cares about a flag to
   3735 look it up.
   3736 
   3737 The ``llvm.module.flags`` metadata contains a list of metadata triplets.
   3738 Each triplet has the following form:
   3739 
   3740 -  The first element is a *behavior* flag, which specifies the behavior
   3741    when two (or more) modules are merged together, and it encounters two
   3742    (or more) metadata with the same ID. The supported behaviors are
   3743    described below.
   3744 -  The second element is a metadata string that is a unique ID for the
   3745    metadata. Each module may only have one flag entry for each unique ID (not
   3746    including entries with the **Require** behavior).
   3747 -  The third element is the value of the flag.
   3748 
   3749 When two (or more) modules are merged together, the resulting
   3750 ``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
   3751 each unique metadata ID string, there will be exactly one entry in the merged
   3752 modules ``llvm.module.flags`` metadata table, and the value for that entry will
   3753 be determined by the merge behavior flag, as described below. The only exception
   3754 is that entries with the *Require* behavior are always preserved.
   3755 
   3756 The following behaviors are supported:
   3757 
   3758 .. list-table::
   3759    :header-rows: 1
   3760    :widths: 10 90
   3761 
   3762    * - Value
   3763      - Behavior
   3764 
   3765    * - 1
   3766      - **Error**
   3767            Emits an error if two values disagree, otherwise the resulting value
   3768            is that of the operands.
   3769 
   3770    * - 2
   3771      - **Warning**
   3772            Emits a warning if two values disagree. The result value will be the
   3773            operand for the flag from the first module being linked.
   3774 
   3775    * - 3
   3776      - **Require**
   3777            Adds a requirement that another module flag be present and have a
   3778            specified value after linking is performed. The value must be a
   3779            metadata pair, where the first element of the pair is the ID of the
   3780            module flag to be restricted, and the second element of the pair is
   3781            the value the module flag should be restricted to. This behavior can
   3782            be used to restrict the allowable results (via triggering of an
   3783            error) of linking IDs with the **Override** behavior.
   3784 
   3785    * - 4
   3786      - **Override**
   3787            Uses the specified value, regardless of the behavior or value of the
   3788            other module. If both modules specify **Override**, but the values
   3789            differ, an error will be emitted.
   3790 
   3791    * - 5
   3792      - **Append**
   3793            Appends the two values, which are required to be metadata nodes.
   3794 
   3795    * - 6
   3796      - **AppendUnique**
   3797            Appends the two values, which are required to be metadata
   3798            nodes. However, duplicate entries in the second list are dropped
   3799            during the append operation.
   3800 
   3801 It is an error for a particular unique flag ID to have multiple behaviors,
   3802 except in the case of **Require** (which adds restrictions on another metadata
   3803 value) or **Override**.
   3804 
   3805 An example of module flags:
   3806 
   3807 .. code-block:: llvm
   3808 
   3809     !0 = !{ i32 1, !"foo", i32 1 }
   3810     !1 = !{ i32 4, !"bar", i32 37 }
   3811     !2 = !{ i32 2, !"qux", i32 42 }
   3812     !3 = !{ i32 3, !"qux",
   3813       !{
   3814         !"foo", i32 1
   3815       }
   3816     }
   3817     !llvm.module.flags = !{ !0, !1, !2, !3 }
   3818 
   3819 -  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
   3820    if two or more ``!"foo"`` flags are seen is to emit an error if their
   3821    values are not equal.
   3822 
   3823 -  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
   3824    behavior if two or more ``!"bar"`` flags are seen is to use the value
   3825    '37'.
   3826 
   3827 -  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
   3828    behavior if two or more ``!"qux"`` flags are seen is to emit a
   3829    warning if their values are not equal.
   3830 
   3831 -  Metadata ``!3`` has the ID ``!"qux"`` and the value:
   3832 
   3833    ::
   3834 
   3835        !{ !"foo", i32 1 }
   3836 
   3837    The behavior is to emit an error if the ``llvm.module.flags`` does not
   3838    contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
   3839    performed.
   3840 
   3841 Objective-C Garbage Collection Module Flags Metadata
   3842 ----------------------------------------------------
   3843 
   3844 On the Mach-O platform, Objective-C stores metadata about garbage
   3845 collection in a special section called "image info". The metadata
   3846 consists of a version number and a bitmask specifying what types of
   3847 garbage collection are supported (if any) by the file. If two or more
   3848 modules are linked together their garbage collection metadata needs to
   3849 be merged rather than appended together.
   3850 
   3851 The Objective-C garbage collection module flags metadata consists of the
   3852 following key-value pairs:
   3853 
   3854 .. list-table::
   3855    :header-rows: 1
   3856    :widths: 30 70
   3857 
   3858    * - Key
   3859      - Value
   3860 
   3861    * - ``Objective-C Version``
   3862      - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
   3863 
   3864    * - ``Objective-C Image Info Version``
   3865      - **[Required]** --- The version of the image info section. Currently
   3866        always 0.
   3867 
   3868    * - ``Objective-C Image Info Section``
   3869      - **[Required]** --- The section to place the metadata. Valid values are
   3870        ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
   3871        ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
   3872        Objective-C ABI version 2.
   3873 
   3874    * - ``Objective-C Garbage Collection``
   3875      - **[Required]** --- Specifies whether garbage collection is supported or
   3876        not. Valid values are 0, for no garbage collection, and 2, for garbage
   3877        collection supported.
   3878 
   3879    * - ``Objective-C GC Only``
   3880      - **[Optional]** --- Specifies that only garbage collection is supported.
   3881        If present, its value must be 6. This flag requires that the
   3882        ``Objective-C Garbage Collection`` flag have the value 2.
   3883 
   3884 Some important flag interactions:
   3885 
   3886 -  If a module with ``Objective-C Garbage Collection`` set to 0 is
   3887    merged with a module with ``Objective-C Garbage Collection`` set to
   3888    2, then the resulting module has the
   3889    ``Objective-C Garbage Collection`` flag set to 0.
   3890 -  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
   3891    merged with a module with ``Objective-C GC Only`` set to 6.
   3892 
   3893 Automatic Linker Flags Module Flags Metadata
   3894 --------------------------------------------
   3895 
   3896 Some targets support embedding flags to the linker inside individual object
   3897 files. Typically this is used in conjunction with language extensions which
   3898 allow source files to explicitly declare the libraries they depend on, and have
   3899 these automatically be transmitted to the linker via object files.
   3900 
   3901 These flags are encoded in the IR using metadata in the module flags section,
   3902 using the ``Linker Options`` key. The merge behavior for this flag is required
   3903 to be ``AppendUnique``, and the value for the key is expected to be a metadata
   3904 node which should be a list of other metadata nodes, each of which should be a
   3905 list of metadata strings defining linker options.
   3906 
   3907 For example, the following metadata section specifies two separate sets of
   3908 linker options, presumably to link against ``libz`` and the ``Cocoa``
   3909 framework::
   3910 
   3911     !0 = !{ i32 6, !"Linker Options",
   3912        !{
   3913           !{ !"-lz" },
   3914           !{ !"-framework", !"Cocoa" } } }
   3915     !llvm.module.flags = !{ !0 }
   3916 
   3917 The metadata encoding as lists of lists of options, as opposed to a collapsed
   3918 list of options, is chosen so that the IR encoding can use multiple option
   3919 strings to specify e.g., a single library, while still having that specifier be
   3920 preserved as an atomic element that can be recognized by a target specific
   3921 assembly writer or object file emitter.
   3922 
   3923 Each individual option is required to be either a valid option for the target's
   3924 linker, or an option that is reserved by the target specific assembly writer or
   3925 object file emitter. No other aspect of these options is defined by the IR.
   3926 
   3927 C type width Module Flags Metadata
   3928 ----------------------------------
   3929 
   3930 The ARM backend emits a section into each generated object file describing the
   3931 options that it was compiled with (in a compiler-independent way) to prevent
   3932 linking incompatible objects, and to allow automatic library selection. Some
   3933 of these options are not visible at the IR level, namely wchar_t width and enum
   3934 width.
   3935 
   3936 To pass this information to the backend, these options are encoded in module
   3937 flags metadata, using the following key-value pairs:
   3938 
   3939 .. list-table::
   3940    :header-rows: 1
   3941    :widths: 30 70
   3942 
   3943    * - Key
   3944      - Value
   3945 
   3946    * - short_wchar
   3947      - * 0 --- sizeof(wchar_t) == 4
   3948        * 1 --- sizeof(wchar_t) == 2
   3949 
   3950    * - short_enum
   3951      - * 0 --- Enums are at least as large as an ``int``.
   3952        * 1 --- Enums are stored in the smallest integer type which can
   3953          represent all of its values.
   3954 
   3955 For example, the following metadata section specifies that the module was
   3956 compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
   3957 enum is the smallest type which can represent all of its values::
   3958 
   3959     !llvm.module.flags = !{!0, !1}
   3960     !0 = !{i32 1, !"short_wchar", i32 1}
   3961     !1 = !{i32 1, !"short_enum", i32 0}
   3962 
   3963 .. _intrinsicglobalvariables:
   3964 
   3965 Intrinsic Global Variables
   3966 ==========================
   3967 
   3968 LLVM has a number of "magic" global variables that contain data that
   3969 affect code generation or other IR semantics. These are documented here.
   3970 All globals of this sort should have a section specified as
   3971 "``llvm.metadata``". This section and all globals that start with
   3972 "``llvm.``" are reserved for use by LLVM.
   3973 
   3974 .. _gv_llvmused:
   3975 
   3976 The '``llvm.used``' Global Variable
   3977 -----------------------------------
   3978 
   3979 The ``@llvm.used`` global is an array which has
   3980 :ref:`appending linkage <linkage_appending>`. This array contains a list of
   3981 pointers to named global variables, functions and aliases which may optionally
   3982 have a pointer cast formed of bitcast or getelementptr. For example, a legal
   3983 use of it is:
   3984 
   3985 .. code-block:: llvm
   3986 
   3987     @X = global i8 4
   3988     @Y = global i32 123
   3989 
   3990     @llvm.used = appending global [2 x i8*] [
   3991        i8* @X,
   3992        i8* bitcast (i32* @Y to i8*)
   3993     ], section "llvm.metadata"
   3994 
   3995 If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
   3996 and linker are required to treat the symbol as if there is a reference to the
   3997 symbol that it cannot see (which is why they have to be named). For example, if
   3998 a variable has internal linkage and no references other than that from the
   3999 ``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
   4000 references from inline asms and other things the compiler cannot "see", and
   4001 corresponds to "``attribute((used))``" in GNU C.
   4002 
   4003 On some targets, the code generator must emit a directive to the
   4004 assembler or object file to prevent the assembler and linker from
   4005 molesting the symbol.
   4006 
   4007 .. _gv_llvmcompilerused:
   4008 
   4009 The '``llvm.compiler.used``' Global Variable
   4010 --------------------------------------------
   4011 
   4012 The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
   4013 directive, except that it only prevents the compiler from touching the
   4014 symbol. On targets that support it, this allows an intelligent linker to
   4015 optimize references to the symbol without being impeded as it would be
   4016 by ``@llvm.used``.
   4017 
   4018 This is a rare construct that should only be used in rare circumstances,
   4019 and should not be exposed to source languages.
   4020 
   4021 .. _gv_llvmglobalctors:
   4022 
   4023 The '``llvm.global_ctors``' Global Variable
   4024 -------------------------------------------
   4025 
   4026 .. code-block:: llvm
   4027 
   4028     %0 = type { i32, void ()*, i8* }
   4029     @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
   4030 
   4031 The ``@llvm.global_ctors`` array contains a list of constructor
   4032 functions, priorities, and an optional associated global or function.
   4033 The functions referenced by this array will be called in ascending order
   4034 of priority (i.e. lowest first) when the module is loaded. The order of
   4035 functions with the same priority is not defined.
   4036 
   4037 If the third field is present, non-null, and points to a global variable
   4038 or function, the initializer function will only run if the associated
   4039 data from the current module is not discarded.
   4040 
   4041 .. _llvmglobaldtors:
   4042 
   4043 The '``llvm.global_dtors``' Global Variable
   4044 -------------------------------------------
   4045 
   4046 .. code-block:: llvm
   4047 
   4048     %0 = type { i32, void ()*, i8* }
   4049     @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
   4050 
   4051 The ``@llvm.global_dtors`` array contains a list of destructor
   4052 functions, priorities, and an optional associated global or function.
   4053 The functions referenced by this array will be called in descending
   4054 order of priority (i.e. highest first) when the module is unloaded. The
   4055 order of functions with the same priority is not defined.
   4056 
   4057 If the third field is present, non-null, and points to a global variable
   4058 or function, the destructor function will only run if the associated
   4059 data from the current module is not discarded.
   4060 
   4061 Instruction Reference
   4062 =====================
   4063 
   4064 The LLVM instruction set consists of several different classifications
   4065 of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
   4066 instructions <binaryops>`, :ref:`bitwise binary
   4067 instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
   4068 :ref:`other instructions <otherops>`.
   4069 
   4070 .. _terminators:
   4071 
   4072 Terminator Instructions
   4073 -----------------------
   4074 
   4075 As mentioned :ref:`previously <functionstructure>`, every basic block in a
   4076 program ends with a "Terminator" instruction, which indicates which
   4077 block should be executed after the current block is finished. These
   4078 terminator instructions typically yield a '``void``' value: they produce
   4079 control flow, not values (the one exception being the
   4080 ':ref:`invoke <i_invoke>`' instruction).
   4081 
   4082 The terminator instructions are: ':ref:`ret <i_ret>`',
   4083 ':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
   4084 ':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
   4085 ':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
   4086 
   4087 .. _i_ret:
   4088 
   4089 '``ret``' Instruction
   4090 ^^^^^^^^^^^^^^^^^^^^^
   4091 
   4092 Syntax:
   4093 """""""
   4094 
   4095 ::
   4096 
   4097       ret <type> <value>       ; Return a value from a non-void function
   4098       ret void                 ; Return from void function
   4099 
   4100 Overview:
   4101 """""""""
   4102 
   4103 The '``ret``' instruction is used to return control flow (and optionally
   4104 a value) from a function back to the caller.
   4105 
   4106 There are two forms of the '``ret``' instruction: one that returns a
   4107 value and then causes control flow, and one that just causes control
   4108 flow to occur.
   4109 
   4110 Arguments:
   4111 """"""""""
   4112 
   4113 The '``ret``' instruction optionally accepts a single argument, the
   4114 return value. The type of the return value must be a ':ref:`first
   4115 class <t_firstclass>`' type.
   4116 
   4117 A function is not :ref:`well formed <wellformed>` if it it has a non-void
   4118 return type and contains a '``ret``' instruction with no return value or
   4119 a return value with a type that does not match its type, or if it has a
   4120 void return type and contains a '``ret``' instruction with a return
   4121 value.
   4122 
   4123 Semantics:
   4124 """"""""""
   4125 
   4126 When the '``ret``' instruction is executed, control flow returns back to
   4127 the calling function's context. If the caller is a
   4128 ":ref:`call <i_call>`" instruction, execution continues at the
   4129 instruction after the call. If the caller was an
   4130 ":ref:`invoke <i_invoke>`" instruction, execution continues at the
   4131 beginning of the "normal" destination block. If the instruction returns
   4132 a value, that value shall set the call or invoke instruction's return
   4133 value.
   4134 
   4135 Example:
   4136 """"""""
   4137 
   4138 .. code-block:: llvm
   4139 
   4140       ret i32 5                       ; Return an integer value of 5
   4141       ret void                        ; Return from a void function
   4142       ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
   4143 
   4144 .. _i_br:
   4145 
   4146 '``br``' Instruction
   4147 ^^^^^^^^^^^^^^^^^^^^
   4148 
   4149 Syntax:
   4150 """""""
   4151 
   4152 ::
   4153 
   4154       br i1 <cond>, label <iftrue>, label <iffalse>
   4155       br label <dest>          ; Unconditional branch
   4156 
   4157 Overview:
   4158 """""""""
   4159 
   4160 The '``br``' instruction is used to cause control flow to transfer to a
   4161 different basic block in the current function. There are two forms of
   4162 this instruction, corresponding to a conditional branch and an
   4163 unconditional branch.
   4164 
   4165 Arguments:
   4166 """"""""""
   4167 
   4168 The conditional branch form of the '``br``' instruction takes a single
   4169 '``i1``' value and two '``label``' values. The unconditional form of the
   4170 '``br``' instruction takes a single '``label``' value as a target.
   4171 
   4172 Semantics:
   4173 """"""""""
   4174 
   4175 Upon execution of a conditional '``br``' instruction, the '``i1``'
   4176 argument is evaluated. If the value is ``true``, control flows to the
   4177 '``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
   4178 to the '``iffalse``' ``label`` argument.
   4179 
   4180 Example:
   4181 """"""""
   4182 
   4183 .. code-block:: llvm
   4184 
   4185     Test:
   4186       %cond = icmp eq i32 %a, %b
   4187       br i1 %cond, label %IfEqual, label %IfUnequal
   4188     IfEqual:
   4189       ret i32 1
   4190     IfUnequal:
   4191       ret i32 0
   4192 
   4193 .. _i_switch:
   4194 
   4195 '``switch``' Instruction
   4196 ^^^^^^^^^^^^^^^^^^^^^^^^
   4197 
   4198 Syntax:
   4199 """""""
   4200 
   4201 ::
   4202 
   4203       switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
   4204 
   4205 Overview:
   4206 """""""""
   4207 
   4208 The '``switch``' instruction is used to transfer control flow to one of
   4209 several different places. It is a generalization of the '``br``'
   4210 instruction, allowing a branch to occur to one of many possible
   4211 destinations.
   4212 
   4213 Arguments:
   4214 """"""""""
   4215 
   4216 The '``switch``' instruction uses three parameters: an integer
   4217 comparison value '``value``', a default '``label``' destination, and an
   4218 array of pairs of comparison value constants and '``label``'s. The table
   4219 is not allowed to contain duplicate constant entries.
   4220 
   4221 Semantics:
   4222 """"""""""
   4223 
   4224 The ``switch`` instruction specifies a table of values and destinations.
   4225 When the '``switch``' instruction is executed, this table is searched
   4226 for the given value. If the value is found, control flow is transferred
   4227 to the corresponding destination; otherwise, control flow is transferred
   4228 to the default destination.
   4229 
   4230 Implementation:
   4231 """""""""""""""
   4232 
   4233 Depending on properties of the target machine and the particular
   4234 ``switch`` instruction, this instruction may be code generated in
   4235 different ways. For example, it could be generated as a series of
   4236 chained conditional branches or with a lookup table.
   4237 
   4238 Example:
   4239 """"""""
   4240 
   4241 .. code-block:: llvm
   4242 
   4243      ; Emulate a conditional br instruction
   4244      %Val = zext i1 %value to i32
   4245      switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
   4246 
   4247      ; Emulate an unconditional br instruction
   4248      switch i32 0, label %dest [ ]
   4249 
   4250      ; Implement a jump table:
   4251      switch i32 %val, label %otherwise [ i32 0, label %onzero
   4252                                          i32 1, label %onone
   4253                                          i32 2, label %ontwo ]
   4254 
   4255 .. _i_indirectbr:
   4256 
   4257 '``indirectbr``' Instruction
   4258 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4259 
   4260 Syntax:
   4261 """""""
   4262 
   4263 ::
   4264 
   4265       indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
   4266 
   4267 Overview:
   4268 """""""""
   4269 
   4270 The '``indirectbr``' instruction implements an indirect branch to a
   4271 label within the current function, whose address is specified by
   4272 "``address``". Address must be derived from a
   4273 :ref:`blockaddress <blockaddress>` constant.
   4274 
   4275 Arguments:
   4276 """"""""""
   4277 
   4278 The '``address``' argument is the address of the label to jump to. The
   4279 rest of the arguments indicate the full set of possible destinations
   4280 that the address may point to. Blocks are allowed to occur multiple
   4281 times in the destination list, though this isn't particularly useful.
   4282 
   4283 This destination list is required so that dataflow analysis has an
   4284 accurate understanding of the CFG.
   4285 
   4286 Semantics:
   4287 """"""""""
   4288 
   4289 Control transfers to the block specified in the address argument. All
   4290 possible destination blocks must be listed in the label list, otherwise
   4291 this instruction has undefined behavior. This implies that jumps to
   4292 labels defined in other functions have undefined behavior as well.
   4293 
   4294 Implementation:
   4295 """""""""""""""
   4296 
   4297 This is typically implemented with a jump through a register.
   4298 
   4299 Example:
   4300 """"""""
   4301 
   4302 .. code-block:: llvm
   4303 
   4304      indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
   4305 
   4306 .. _i_invoke:
   4307 
   4308 '``invoke``' Instruction
   4309 ^^^^^^^^^^^^^^^^^^^^^^^^
   4310 
   4311 Syntax:
   4312 """""""
   4313 
   4314 ::
   4315 
   4316       <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
   4317                     to label <normal label> unwind label <exception label>
   4318 
   4319 Overview:
   4320 """""""""
   4321 
   4322 The '``invoke``' instruction causes control to transfer to a specified
   4323 function, with the possibility of control flow transfer to either the
   4324 '``normal``' label or the '``exception``' label. If the callee function
   4325 returns with the "``ret``" instruction, control flow will return to the
   4326 "normal" label. If the callee (or any indirect callees) returns via the
   4327 ":ref:`resume <i_resume>`" instruction or other exception handling
   4328 mechanism, control is interrupted and continued at the dynamically
   4329 nearest "exception" label.
   4330 
   4331 The '``exception``' label is a `landing
   4332 pad <ExceptionHandling.html#overview>`_ for the exception. As such,
   4333 '``exception``' label is required to have the
   4334 ":ref:`landingpad <i_landingpad>`" instruction, which contains the
   4335 information about the behavior of the program after unwinding happens,
   4336 as its first non-PHI instruction. The restrictions on the
   4337 "``landingpad``" instruction's tightly couples it to the "``invoke``"
   4338 instruction, so that the important information contained within the
   4339 "``landingpad``" instruction can't be lost through normal code motion.
   4340 
   4341 Arguments:
   4342 """"""""""
   4343 
   4344 This instruction requires several arguments:
   4345 
   4346 #. The optional "cconv" marker indicates which :ref:`calling
   4347    convention <callingconv>` the call should use. If none is
   4348    specified, the call defaults to using C calling conventions.
   4349 #. The optional :ref:`Parameter Attributes <paramattrs>` list for return
   4350    values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
   4351    are valid here.
   4352 #. '``ptr to function ty``': shall be the signature of the pointer to
   4353    function value being invoked. In most cases, this is a direct
   4354    function invocation, but indirect ``invoke``'s are just as possible,
   4355    branching off an arbitrary pointer to function value.
   4356 #. '``function ptr val``': An LLVM value containing a pointer to a
   4357    function to be invoked.
   4358 #. '``function args``': argument list whose types match the function
   4359    signature argument types and parameter attributes. All arguments must
   4360    be of :ref:`first class <t_firstclass>` type. If the function signature
   4361    indicates the function accepts a variable number of arguments, the
   4362    extra arguments can be specified.
   4363 #. '``normal label``': the label reached when the called function
   4364    executes a '``ret``' instruction.
   4365 #. '``exception label``': the label reached when a callee returns via
   4366    the :ref:`resume <i_resume>` instruction or other exception handling
   4367    mechanism.
   4368 #. The optional :ref:`function attributes <fnattrs>` list. Only
   4369    '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
   4370    attributes are valid here.
   4371 
   4372 Semantics:
   4373 """"""""""
   4374 
   4375 This instruction is designed to operate as a standard '``call``'
   4376 instruction in most regards. The primary difference is that it
   4377 establishes an association with a label, which is used by the runtime
   4378 library to unwind the stack.
   4379 
   4380 This instruction is used in languages with destructors to ensure that
   4381 proper cleanup is performed in the case of either a ``longjmp`` or a
   4382 thrown exception. Additionally, this is important for implementation of
   4383 '``catch``' clauses in high-level languages that support them.
   4384 
   4385 For the purposes of the SSA form, the definition of the value returned
   4386 by the '``invoke``' instruction is deemed to occur on the edge from the
   4387 current block to the "normal" label. If the callee unwinds then no
   4388 return value is available.
   4389 
   4390 Example:
   4391 """"""""
   4392 
   4393 .. code-block:: llvm
   4394 
   4395       %retval = invoke i32 @Test(i32 15) to label %Continue
   4396                   unwind label %TestCleanup              ; i32:retval set
   4397       %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
   4398                   unwind label %TestCleanup              ; i32:retval set
   4399 
   4400 .. _i_resume:
   4401 
   4402 '``resume``' Instruction
   4403 ^^^^^^^^^^^^^^^^^^^^^^^^
   4404 
   4405 Syntax:
   4406 """""""
   4407 
   4408 ::
   4409 
   4410       resume <type> <value>
   4411 
   4412 Overview:
   4413 """""""""
   4414 
   4415 The '``resume``' instruction is a terminator instruction that has no
   4416 successors.
   4417 
   4418 Arguments:
   4419 """"""""""
   4420 
   4421 The '``resume``' instruction requires one argument, which must have the
   4422 same type as the result of any '``landingpad``' instruction in the same
   4423 function.
   4424 
   4425 Semantics:
   4426 """"""""""
   4427 
   4428 The '``resume``' instruction resumes propagation of an existing
   4429 (in-flight) exception whose unwinding was interrupted with a
   4430 :ref:`landingpad <i_landingpad>` instruction.
   4431 
   4432 Example:
   4433 """"""""
   4434 
   4435 .. code-block:: llvm
   4436 
   4437       resume { i8*, i32 } %exn
   4438 
   4439 .. _i_unreachable:
   4440 
   4441 '``unreachable``' Instruction
   4442 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4443 
   4444 Syntax:
   4445 """""""
   4446 
   4447 ::
   4448 
   4449       unreachable
   4450 
   4451 Overview:
   4452 """""""""
   4453 
   4454 The '``unreachable``' instruction has no defined semantics. This
   4455 instruction is used to inform the optimizer that a particular portion of
   4456 the code is not reachable. This can be used to indicate that the code
   4457 after a no-return function cannot be reached, and other facts.
   4458 
   4459 Semantics:
   4460 """"""""""
   4461 
   4462 The '``unreachable``' instruction has no defined semantics.
   4463 
   4464 .. _binaryops:
   4465 
   4466 Binary Operations
   4467 -----------------
   4468 
   4469 Binary operators are used to do most of the computation in a program.
   4470 They require two operands of the same type, execute an operation on
   4471 them, and produce a single value. The operands might represent multiple
   4472 data, as is the case with the :ref:`vector <t_vector>` data type. The
   4473 result value has the same type as its operands.
   4474 
   4475 There are several different binary operators:
   4476 
   4477 .. _i_add:
   4478 
   4479 '``add``' Instruction
   4480 ^^^^^^^^^^^^^^^^^^^^^
   4481 
   4482 Syntax:
   4483 """""""
   4484 
   4485 ::
   4486 
   4487       <result> = add <ty> <op1>, <op2>          ; yields ty:result
   4488       <result> = add nuw <ty> <op1>, <op2>      ; yields ty:result
   4489       <result> = add nsw <ty> <op1>, <op2>      ; yields ty:result
   4490       <result> = add nuw nsw <ty> <op1>, <op2>  ; yields ty:result
   4491 
   4492 Overview:
   4493 """""""""
   4494 
   4495 The '``add``' instruction returns the sum of its two operands.
   4496 
   4497 Arguments:
   4498 """"""""""
   4499 
   4500 The two arguments to the '``add``' instruction must be
   4501 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4502 arguments must have identical types.
   4503 
   4504 Semantics:
   4505 """"""""""
   4506 
   4507 The value produced is the integer sum of the two operands.
   4508 
   4509 If the sum has unsigned overflow, the result returned is the
   4510 mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
   4511 the result.
   4512 
   4513 Because LLVM integers use a two's complement representation, this
   4514 instruction is appropriate for both signed and unsigned integers.
   4515 
   4516 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
   4517 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
   4518 result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
   4519 unsigned and/or signed overflow, respectively, occurs.
   4520 
   4521 Example:
   4522 """"""""
   4523 
   4524 .. code-block:: llvm
   4525 
   4526       <result> = add i32 4, %var          ; yields i32:result = 4 + %var
   4527 
   4528 .. _i_fadd:
   4529 
   4530 '``fadd``' Instruction
   4531 ^^^^^^^^^^^^^^^^^^^^^^
   4532 
   4533 Syntax:
   4534 """""""
   4535 
   4536 ::
   4537 
   4538       <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
   4539 
   4540 Overview:
   4541 """""""""
   4542 
   4543 The '``fadd``' instruction returns the sum of its two operands.
   4544 
   4545 Arguments:
   4546 """"""""""
   4547 
   4548 The two arguments to the '``fadd``' instruction must be :ref:`floating
   4549 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   4550 Both arguments must have identical types.
   4551 
   4552 Semantics:
   4553 """"""""""
   4554 
   4555 The value produced is the floating point sum of the two operands. This
   4556 instruction can also take any number of :ref:`fast-math flags <fastmath>`,
   4557 which are optimization hints to enable otherwise unsafe floating point
   4558 optimizations:
   4559 
   4560 Example:
   4561 """"""""
   4562 
   4563 .. code-block:: llvm
   4564 
   4565       <result> = fadd float 4.0, %var          ; yields float:result = 4.0 + %var
   4566 
   4567 '``sub``' Instruction
   4568 ^^^^^^^^^^^^^^^^^^^^^
   4569 
   4570 Syntax:
   4571 """""""
   4572 
   4573 ::
   4574 
   4575       <result> = sub <ty> <op1>, <op2>          ; yields ty:result
   4576       <result> = sub nuw <ty> <op1>, <op2>      ; yields ty:result
   4577       <result> = sub nsw <ty> <op1>, <op2>      ; yields ty:result
   4578       <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields ty:result
   4579 
   4580 Overview:
   4581 """""""""
   4582 
   4583 The '``sub``' instruction returns the difference of its two operands.
   4584 
   4585 Note that the '``sub``' instruction is used to represent the '``neg``'
   4586 instruction present in most other intermediate representations.
   4587 
   4588 Arguments:
   4589 """"""""""
   4590 
   4591 The two arguments to the '``sub``' instruction must be
   4592 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4593 arguments must have identical types.
   4594 
   4595 Semantics:
   4596 """"""""""
   4597 
   4598 The value produced is the integer difference of the two operands.
   4599 
   4600 If the difference has unsigned overflow, the result returned is the
   4601 mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
   4602 the result.
   4603 
   4604 Because LLVM integers use a two's complement representation, this
   4605 instruction is appropriate for both signed and unsigned integers.
   4606 
   4607 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
   4608 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
   4609 result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
   4610 unsigned and/or signed overflow, respectively, occurs.
   4611 
   4612 Example:
   4613 """"""""
   4614 
   4615 .. code-block:: llvm
   4616 
   4617       <result> = sub i32 4, %var          ; yields i32:result = 4 - %var
   4618       <result> = sub i32 0, %val          ; yields i32:result = -%var
   4619 
   4620 .. _i_fsub:
   4621 
   4622 '``fsub``' Instruction
   4623 ^^^^^^^^^^^^^^^^^^^^^^
   4624 
   4625 Syntax:
   4626 """""""
   4627 
   4628 ::
   4629 
   4630       <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
   4631 
   4632 Overview:
   4633 """""""""
   4634 
   4635 The '``fsub``' instruction returns the difference of its two operands.
   4636 
   4637 Note that the '``fsub``' instruction is used to represent the '``fneg``'
   4638 instruction present in most other intermediate representations.
   4639 
   4640 Arguments:
   4641 """"""""""
   4642 
   4643 The two arguments to the '``fsub``' instruction must be :ref:`floating
   4644 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   4645 Both arguments must have identical types.
   4646 
   4647 Semantics:
   4648 """"""""""
   4649 
   4650 The value produced is the floating point difference of the two operands.
   4651 This instruction can also take any number of :ref:`fast-math
   4652 flags <fastmath>`, which are optimization hints to enable otherwise
   4653 unsafe floating point optimizations:
   4654 
   4655 Example:
   4656 """"""""
   4657 
   4658 .. code-block:: llvm
   4659 
   4660       <result> = fsub float 4.0, %var           ; yields float:result = 4.0 - %var
   4661       <result> = fsub float -0.0, %val          ; yields float:result = -%var
   4662 
   4663 '``mul``' Instruction
   4664 ^^^^^^^^^^^^^^^^^^^^^
   4665 
   4666 Syntax:
   4667 """""""
   4668 
   4669 ::
   4670 
   4671       <result> = mul <ty> <op1>, <op2>          ; yields ty:result
   4672       <result> = mul nuw <ty> <op1>, <op2>      ; yields ty:result
   4673       <result> = mul nsw <ty> <op1>, <op2>      ; yields ty:result
   4674       <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields ty:result
   4675 
   4676 Overview:
   4677 """""""""
   4678 
   4679 The '``mul``' instruction returns the product of its two operands.
   4680 
   4681 Arguments:
   4682 """"""""""
   4683 
   4684 The two arguments to the '``mul``' instruction must be
   4685 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4686 arguments must have identical types.
   4687 
   4688 Semantics:
   4689 """"""""""
   4690 
   4691 The value produced is the integer product of the two operands.
   4692 
   4693 If the result of the multiplication has unsigned overflow, the result
   4694 returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
   4695 bit width of the result.
   4696 
   4697 Because LLVM integers use a two's complement representation, and the
   4698 result is the same width as the operands, this instruction returns the
   4699 correct result for both signed and unsigned integers. If a full product
   4700 (e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
   4701 sign-extended or zero-extended as appropriate to the width of the full
   4702 product.
   4703 
   4704 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
   4705 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
   4706 result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
   4707 unsigned and/or signed overflow, respectively, occurs.
   4708 
   4709 Example:
   4710 """"""""
   4711 
   4712 .. code-block:: llvm
   4713 
   4714       <result> = mul i32 4, %var          ; yields i32:result = 4 * %var
   4715 
   4716 .. _i_fmul:
   4717 
   4718 '``fmul``' Instruction
   4719 ^^^^^^^^^^^^^^^^^^^^^^
   4720 
   4721 Syntax:
   4722 """""""
   4723 
   4724 ::
   4725 
   4726       <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
   4727 
   4728 Overview:
   4729 """""""""
   4730 
   4731 The '``fmul``' instruction returns the product of its two operands.
   4732 
   4733 Arguments:
   4734 """"""""""
   4735 
   4736 The two arguments to the '``fmul``' instruction must be :ref:`floating
   4737 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   4738 Both arguments must have identical types.
   4739 
   4740 Semantics:
   4741 """"""""""
   4742 
   4743 The value produced is the floating point product of the two operands.
   4744 This instruction can also take any number of :ref:`fast-math
   4745 flags <fastmath>`, which are optimization hints to enable otherwise
   4746 unsafe floating point optimizations:
   4747 
   4748 Example:
   4749 """"""""
   4750 
   4751 .. code-block:: llvm
   4752 
   4753       <result> = fmul float 4.0, %var          ; yields float:result = 4.0 * %var
   4754 
   4755 '``udiv``' Instruction
   4756 ^^^^^^^^^^^^^^^^^^^^^^
   4757 
   4758 Syntax:
   4759 """""""
   4760 
   4761 ::
   4762 
   4763       <result> = udiv <ty> <op1>, <op2>         ; yields ty:result
   4764       <result> = udiv exact <ty> <op1>, <op2>   ; yields ty:result
   4765 
   4766 Overview:
   4767 """""""""
   4768 
   4769 The '``udiv``' instruction returns the quotient of its two operands.
   4770 
   4771 Arguments:
   4772 """"""""""
   4773 
   4774 The two arguments to the '``udiv``' instruction must be
   4775 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4776 arguments must have identical types.
   4777 
   4778 Semantics:
   4779 """"""""""
   4780 
   4781 The value produced is the unsigned integer quotient of the two operands.
   4782 
   4783 Note that unsigned integer division and signed integer division are
   4784 distinct operations; for signed integer division, use '``sdiv``'.
   4785 
   4786 Division by zero leads to undefined behavior.
   4787 
   4788 If the ``exact`` keyword is present, the result value of the ``udiv`` is
   4789 a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
   4790 such, "((a udiv exact b) mul b) == a").
   4791 
   4792 Example:
   4793 """"""""
   4794 
   4795 .. code-block:: llvm
   4796 
   4797       <result> = udiv i32 4, %var          ; yields i32:result = 4 / %var
   4798 
   4799 '``sdiv``' Instruction
   4800 ^^^^^^^^^^^^^^^^^^^^^^
   4801 
   4802 Syntax:
   4803 """""""
   4804 
   4805 ::
   4806 
   4807       <result> = sdiv <ty> <op1>, <op2>         ; yields ty:result
   4808       <result> = sdiv exact <ty> <op1>, <op2>   ; yields ty:result
   4809 
   4810 Overview:
   4811 """""""""
   4812 
   4813 The '``sdiv``' instruction returns the quotient of its two operands.
   4814 
   4815 Arguments:
   4816 """"""""""
   4817 
   4818 The two arguments to the '``sdiv``' instruction must be
   4819 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4820 arguments must have identical types.
   4821 
   4822 Semantics:
   4823 """"""""""
   4824 
   4825 The value produced is the signed integer quotient of the two operands
   4826 rounded towards zero.
   4827 
   4828 Note that signed integer division and unsigned integer division are
   4829 distinct operations; for unsigned integer division, use '``udiv``'.
   4830 
   4831 Division by zero leads to undefined behavior. Overflow also leads to
   4832 undefined behavior; this is a rare case, but can occur, for example, by
   4833 doing a 32-bit division of -2147483648 by -1.
   4834 
   4835 If the ``exact`` keyword is present, the result value of the ``sdiv`` is
   4836 a :ref:`poison value <poisonvalues>` if the result would be rounded.
   4837 
   4838 Example:
   4839 """"""""
   4840 
   4841 .. code-block:: llvm
   4842 
   4843       <result> = sdiv i32 4, %var          ; yields i32:result = 4 / %var
   4844 
   4845 .. _i_fdiv:
   4846 
   4847 '``fdiv``' Instruction
   4848 ^^^^^^^^^^^^^^^^^^^^^^
   4849 
   4850 Syntax:
   4851 """""""
   4852 
   4853 ::
   4854 
   4855       <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
   4856 
   4857 Overview:
   4858 """""""""
   4859 
   4860 The '``fdiv``' instruction returns the quotient of its two operands.
   4861 
   4862 Arguments:
   4863 """"""""""
   4864 
   4865 The two arguments to the '``fdiv``' instruction must be :ref:`floating
   4866 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   4867 Both arguments must have identical types.
   4868 
   4869 Semantics:
   4870 """"""""""
   4871 
   4872 The value produced is the floating point quotient of the two operands.
   4873 This instruction can also take any number of :ref:`fast-math
   4874 flags <fastmath>`, which are optimization hints to enable otherwise
   4875 unsafe floating point optimizations:
   4876 
   4877 Example:
   4878 """"""""
   4879 
   4880 .. code-block:: llvm
   4881 
   4882       <result> = fdiv float 4.0, %var          ; yields float:result = 4.0 / %var
   4883 
   4884 '``urem``' Instruction
   4885 ^^^^^^^^^^^^^^^^^^^^^^
   4886 
   4887 Syntax:
   4888 """""""
   4889 
   4890 ::
   4891 
   4892       <result> = urem <ty> <op1>, <op2>   ; yields ty:result
   4893 
   4894 Overview:
   4895 """""""""
   4896 
   4897 The '``urem``' instruction returns the remainder from the unsigned
   4898 division of its two arguments.
   4899 
   4900 Arguments:
   4901 """"""""""
   4902 
   4903 The two arguments to the '``urem``' instruction must be
   4904 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4905 arguments must have identical types.
   4906 
   4907 Semantics:
   4908 """"""""""
   4909 
   4910 This instruction returns the unsigned integer *remainder* of a division.
   4911 This instruction always performs an unsigned division to get the
   4912 remainder.
   4913 
   4914 Note that unsigned integer remainder and signed integer remainder are
   4915 distinct operations; for signed integer remainder, use '``srem``'.
   4916 
   4917 Taking the remainder of a division by zero leads to undefined behavior.
   4918 
   4919 Example:
   4920 """"""""
   4921 
   4922 .. code-block:: llvm
   4923 
   4924       <result> = urem i32 4, %var          ; yields i32:result = 4 % %var
   4925 
   4926 '``srem``' Instruction
   4927 ^^^^^^^^^^^^^^^^^^^^^^
   4928 
   4929 Syntax:
   4930 """""""
   4931 
   4932 ::
   4933 
   4934       <result> = srem <ty> <op1>, <op2>   ; yields ty:result
   4935 
   4936 Overview:
   4937 """""""""
   4938 
   4939 The '``srem``' instruction returns the remainder from the signed
   4940 division of its two operands. This instruction can also take
   4941 :ref:`vector <t_vector>` versions of the values in which case the elements
   4942 must be integers.
   4943 
   4944 Arguments:
   4945 """"""""""
   4946 
   4947 The two arguments to the '``srem``' instruction must be
   4948 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4949 arguments must have identical types.
   4950 
   4951 Semantics:
   4952 """"""""""
   4953 
   4954 This instruction returns the *remainder* of a division (where the result
   4955 is either zero or has the same sign as the dividend, ``op1``), not the
   4956 *modulo* operator (where the result is either zero or has the same sign
   4957 as the divisor, ``op2``) of a value. For more information about the
   4958 difference, see `The Math
   4959 Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
   4960 table of how this is implemented in various languages, please see
   4961 `Wikipedia: modulo
   4962 operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
   4963 
   4964 Note that signed integer remainder and unsigned integer remainder are
   4965 distinct operations; for unsigned integer remainder, use '``urem``'.
   4966 
   4967 Taking the remainder of a division by zero leads to undefined behavior.
   4968 Overflow also leads to undefined behavior; this is a rare case, but can
   4969 occur, for example, by taking the remainder of a 32-bit division of
   4970 -2147483648 by -1. (The remainder doesn't actually overflow, but this
   4971 rule lets srem be implemented using instructions that return both the
   4972 result of the division and the remainder.)
   4973 
   4974 Example:
   4975 """"""""
   4976 
   4977 .. code-block:: llvm
   4978 
   4979       <result> = srem i32 4, %var          ; yields i32:result = 4 % %var
   4980 
   4981 .. _i_frem:
   4982 
   4983 '``frem``' Instruction
   4984 ^^^^^^^^^^^^^^^^^^^^^^
   4985 
   4986 Syntax:
   4987 """""""
   4988 
   4989 ::
   4990 
   4991       <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
   4992 
   4993 Overview:
   4994 """""""""
   4995 
   4996 The '``frem``' instruction returns the remainder from the division of
   4997 its two operands.
   4998 
   4999 Arguments:
   5000 """"""""""
   5001 
   5002 The two arguments to the '``frem``' instruction must be :ref:`floating
   5003 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   5004 Both arguments must have identical types.
   5005 
   5006 Semantics:
   5007 """"""""""
   5008 
   5009 This instruction returns the *remainder* of a division. The remainder
   5010 has the same sign as the dividend. This instruction can also take any
   5011 number of :ref:`fast-math flags <fastmath>`, which are optimization hints
   5012 to enable otherwise unsafe floating point optimizations:
   5013 
   5014 Example:
   5015 """"""""
   5016 
   5017 .. code-block:: llvm
   5018 
   5019       <result> = frem float 4.0, %var          ; yields float:result = 4.0 % %var
   5020 
   5021 .. _bitwiseops:
   5022 
   5023 Bitwise Binary Operations
   5024 -------------------------
   5025 
   5026 Bitwise binary operators are used to do various forms of bit-twiddling
   5027 in a program. They are generally very efficient instructions and can
   5028 commonly be strength reduced from other instructions. They require two
   5029 operands of the same type, execute an operation on them, and produce a
   5030 single value. The resulting value is the same type as its operands.
   5031 
   5032 '``shl``' Instruction
   5033 ^^^^^^^^^^^^^^^^^^^^^
   5034 
   5035 Syntax:
   5036 """""""
   5037 
   5038 ::
   5039 
   5040       <result> = shl <ty> <op1>, <op2>           ; yields ty:result
   5041       <result> = shl nuw <ty> <op1>, <op2>       ; yields ty:result
   5042       <result> = shl nsw <ty> <op1>, <op2>       ; yields ty:result
   5043       <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields ty:result
   5044 
   5045 Overview:
   5046 """""""""
   5047 
   5048 The '``shl``' instruction returns the first operand shifted to the left
   5049 a specified number of bits.
   5050 
   5051 Arguments:
   5052 """"""""""
   5053 
   5054 Both arguments to the '``shl``' instruction must be the same
   5055 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
   5056 '``op2``' is treated as an unsigned value.
   5057 
   5058 Semantics:
   5059 """"""""""
   5060 
   5061 The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
   5062 where ``n`` is the width of the result. If ``op2`` is (statically or
   5063 dynamically) negative or equal to or larger than the number of bits in
   5064 ``op1``, the result is undefined. If the arguments are vectors, each
   5065 vector element of ``op1`` is shifted by the corresponding shift amount
   5066 in ``op2``.
   5067 
   5068 If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
   5069 value <poisonvalues>` if it shifts out any non-zero bits. If the
   5070 ``nsw`` keyword is present, then the shift produces a :ref:`poison
   5071 value <poisonvalues>` if it shifts out any bits that disagree with the
   5072 resultant sign bit. As such, NUW/NSW have the same semantics as they
   5073 would if the shift were expressed as a mul instruction with the same
   5074 nsw/nuw bits in (mul %op1, (shl 1, %op2)).
   5075 
   5076 Example:
   5077 """"""""
   5078 
   5079 .. code-block:: llvm
   5080 
   5081       <result> = shl i32 4, %var   ; yields i32: 4 << %var
   5082       <result> = shl i32 4, 2      ; yields i32: 16
   5083       <result> = shl i32 1, 10     ; yields i32: 1024
   5084       <result> = shl i32 1, 32     ; undefined
   5085       <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>
   5086 
   5087 '``lshr``' Instruction
   5088 ^^^^^^^^^^^^^^^^^^^^^^
   5089 
   5090 Syntax:
   5091 """""""
   5092 
   5093 ::
   5094 
   5095       <result> = lshr <ty> <op1>, <op2>         ; yields ty:result
   5096       <result> = lshr exact <ty> <op1>, <op2>   ; yields ty:result
   5097 
   5098 Overview:
   5099 """""""""
   5100 
   5101 The '``lshr``' instruction (logical shift right) returns the first
   5102 operand shifted to the right a specified number of bits with zero fill.
   5103 
   5104 Arguments:
   5105 """"""""""
   5106 
   5107 Both arguments to the '``lshr``' instruction must be the same
   5108 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
   5109 '``op2``' is treated as an unsigned value.
   5110 
   5111 Semantics:
   5112 """"""""""
   5113 
   5114 This instruction always performs a logical shift right operation. The
   5115 most significant bits of the result will be filled with zero bits after
   5116 the shift. If ``op2`` is (statically or dynamically) equal to or larger
   5117 than the number of bits in ``op1``, the result is undefined. If the
   5118 arguments are vectors, each vector element of ``op1`` is shifted by the
   5119 corresponding shift amount in ``op2``.
   5120 
   5121 If the ``exact`` keyword is present, the result value of the ``lshr`` is
   5122 a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
   5123 non-zero.
   5124 
   5125 Example:
   5126 """"""""
   5127 
   5128 .. code-block:: llvm
   5129 
   5130       <result> = lshr i32 4, 1   ; yields i32:result = 2
   5131       <result> = lshr i32 4, 2   ; yields i32:result = 1
   5132       <result> = lshr i8  4, 3   ; yields i8:result = 0
   5133       <result> = lshr i8 -2, 1   ; yields i8:result = 0x7F
   5134       <result> = lshr i32 1, 32  ; undefined
   5135       <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
   5136 
   5137 '``ashr``' Instruction
   5138 ^^^^^^^^^^^^^^^^^^^^^^
   5139 
   5140 Syntax:
   5141 """""""
   5142 
   5143 ::
   5144 
   5145       <result> = ashr <ty> <op1>, <op2>         ; yields ty:result
   5146       <result> = ashr exact <ty> <op1>, <op2>   ; yields ty:result
   5147 
   5148 Overview:
   5149 """""""""
   5150 
   5151 The '``ashr``' instruction (arithmetic shift right) returns the first
   5152 operand shifted to the right a specified number of bits with sign
   5153 extension.
   5154 
   5155 Arguments:
   5156 """"""""""
   5157 
   5158 Both arguments to the '``ashr``' instruction must be the same
   5159 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
   5160 '``op2``' is treated as an unsigned value.
   5161 
   5162 Semantics:
   5163 """"""""""
   5164 
   5165 This instruction always performs an arithmetic shift right operation,
   5166 The most significant bits of the result will be filled with the sign bit
   5167 of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
   5168 than the number of bits in ``op1``, the result is undefined. If the
   5169 arguments are vectors, each vector element of ``op1`` is shifted by the
   5170 corresponding shift amount in ``op2``.
   5171 
   5172 If the ``exact`` keyword is present, the result value of the ``ashr`` is
   5173 a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
   5174 non-zero.
   5175 
   5176 Example:
   5177 """"""""
   5178 
   5179 .. code-block:: llvm
   5180 
   5181       <result> = ashr i32 4, 1   ; yields i32:result = 2
   5182       <result> = ashr i32 4, 2   ; yields i32:result = 1
   5183       <result> = ashr i8  4, 3   ; yields i8:result = 0
   5184       <result> = ashr i8 -2, 1   ; yields i8:result = -1
   5185       <result> = ashr i32 1, 32  ; undefined
   5186       <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>
   5187 
   5188 '``and``' Instruction
   5189 ^^^^^^^^^^^^^^^^^^^^^
   5190 
   5191 Syntax:
   5192 """""""
   5193 
   5194 ::
   5195 
   5196       <result> = and <ty> <op1>, <op2>   ; yields ty:result
   5197 
   5198 Overview:
   5199 """""""""
   5200 
   5201 The '``and``' instruction returns the bitwise logical and of its two
   5202 operands.
   5203 
   5204 Arguments:
   5205 """"""""""
   5206 
   5207 The two arguments to the '``and``' instruction must be
   5208 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   5209 arguments must have identical types.
   5210 
   5211 Semantics:
   5212 """"""""""
   5213 
   5214 The truth table used for the '``and``' instruction is:
   5215 
   5216 +-----+-----+-----+
   5217 | In0 | In1 | Out |
   5218 +-----+-----+-----+
   5219 |   0 |   0 |   0 |
   5220 +-----+-----+-----+
   5221 |   0 |   1 |   0 |
   5222 +-----+-----+-----+
   5223 |   1 |   0 |   0 |
   5224 +-----+-----+-----+
   5225 |   1 |   1 |   1 |
   5226 +-----+-----+-----+
   5227 
   5228 Example:
   5229 """"""""
   5230 
   5231 .. code-block:: llvm
   5232 
   5233       <result> = and i32 4, %var         ; yields i32:result = 4 & %var
   5234       <result> = and i32 15, 40          ; yields i32:result = 8
   5235       <result> = and i32 4, 8            ; yields i32:result = 0
   5236 
   5237 '``or``' Instruction
   5238 ^^^^^^^^^^^^^^^^^^^^
   5239 
   5240 Syntax:
   5241 """""""
   5242 
   5243 ::
   5244 
   5245       <result> = or <ty> <op1>, <op2>   ; yields ty:result
   5246 
   5247 Overview:
   5248 """""""""
   5249 
   5250 The '``or``' instruction returns the bitwise logical inclusive or of its
   5251 two operands.
   5252 
   5253 Arguments:
   5254 """"""""""
   5255 
   5256 The two arguments to the '``or``' instruction must be
   5257 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   5258 arguments must have identical types.
   5259 
   5260 Semantics:
   5261 """"""""""
   5262 
   5263 The truth table used for the '``or``' instruction is:
   5264 
   5265 +-----+-----+-----+
   5266 | In0 | In1 | Out |
   5267 +-----+-----+-----+
   5268 |   0 |   0 |   0 |
   5269 +-----+-----+-----+
   5270 |   0 |   1 |   1 |
   5271 +-----+-----+-----+
   5272 |   1 |   0 |   1 |
   5273 +-----+-----+-----+
   5274 |   1 |   1 |   1 |
   5275 +-----+-----+-----+
   5276 
   5277 Example:
   5278 """"""""
   5279 
   5280 ::
   5281 
   5282       <result> = or i32 4, %var         ; yields i32:result = 4 | %var
   5283       <result> = or i32 15, 40          ; yields i32:result = 47
   5284       <result> = or i32 4, 8            ; yields i32:result = 12
   5285 
   5286 '``xor``' Instruction
   5287 ^^^^^^^^^^^^^^^^^^^^^
   5288 
   5289 Syntax:
   5290 """""""
   5291 
   5292 ::
   5293 
   5294       <result> = xor <ty> <op1>, <op2>   ; yields ty:result
   5295 
   5296 Overview:
   5297 """""""""
   5298 
   5299 The '``xor``' instruction returns the bitwise logical exclusive or of
   5300 its two operands. The ``xor`` is used to implement the "one's
   5301 complement" operation, which is the "~" operator in C.
   5302 
   5303 Arguments:
   5304 """"""""""
   5305 
   5306 The two arguments to the '``xor``' instruction must be
   5307 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   5308 arguments must have identical types.
   5309 
   5310 Semantics:
   5311 """"""""""
   5312 
   5313 The truth table used for the '``xor``' instruction is:
   5314 
   5315 +-----+-----+-----+
   5316 | In0 | In1 | Out |
   5317 +-----+-----+-----+
   5318 |   0 |   0 |   0 |
   5319 +-----+-----+-----+
   5320 |   0 |   1 |   1 |
   5321 +-----+-----+-----+
   5322 |   1 |   0 |   1 |
   5323 +-----+-----+-----+
   5324 |   1 |   1 |   0 |
   5325 +-----+-----+-----+
   5326 
   5327 Example:
   5328 """"""""
   5329 
   5330 .. code-block:: llvm
   5331 
   5332       <result> = xor i32 4, %var         ; yields i32:result = 4 ^ %var
   5333       <result> = xor i32 15, 40          ; yields i32:result = 39
   5334       <result> = xor i32 4, 8            ; yields i32:result = 12
   5335       <result> = xor i32 %V, -1          ; yields i32:result = ~%V
   5336 
   5337 Vector Operations
   5338 -----------------
   5339 
   5340 LLVM supports several instructions to represent vector operations in a
   5341 target-independent manner. These instructions cover the element-access
   5342 and vector-specific operations needed to process vectors effectively.
   5343 While LLVM does directly support these vector operations, many
   5344 sophisticated algorithms will want to use target-specific intrinsics to
   5345 take full advantage of a specific target.
   5346 
   5347 .. _i_extractelement:
   5348 
   5349 '``extractelement``' Instruction
   5350 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5351 
   5352 Syntax:
   5353 """""""
   5354 
   5355 ::
   5356 
   5357       <result> = extractelement <n x <ty>> <val>, <ty2> <idx>  ; yields <ty>
   5358 
   5359 Overview:
   5360 """""""""
   5361 
   5362 The '``extractelement``' instruction extracts a single scalar element
   5363 from a vector at a specified index.
   5364 
   5365 Arguments:
   5366 """"""""""
   5367 
   5368 The first operand of an '``extractelement``' instruction is a value of
   5369 :ref:`vector <t_vector>` type. The second operand is an index indicating
   5370 the position from which to extract the element. The index may be a
   5371 variable of any integer type.
   5372 
   5373 Semantics:
   5374 """"""""""
   5375 
   5376 The result is a scalar of the same type as the element type of ``val``.
   5377 Its value is the value at position ``idx`` of ``val``. If ``idx``
   5378 exceeds the length of ``val``, the results are undefined.
   5379 
   5380 Example:
   5381 """"""""
   5382 
   5383 .. code-block:: llvm
   5384 
   5385       <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32
   5386 
   5387 .. _i_insertelement:
   5388 
   5389 '``insertelement``' Instruction
   5390 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5391 
   5392 Syntax:
   5393 """""""
   5394 
   5395 ::
   5396 
   5397       <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>    ; yields <n x <ty>>
   5398 
   5399 Overview:
   5400 """""""""
   5401 
   5402 The '``insertelement``' instruction inserts a scalar element into a
   5403 vector at a specified index.
   5404 
   5405 Arguments:
   5406 """"""""""
   5407 
   5408 The first operand of an '``insertelement``' instruction is a value of
   5409 :ref:`vector <t_vector>` type. The second operand is a scalar value whose
   5410 type must equal the element type of the first operand. The third operand
   5411 is an index indicating the position at which to insert the value. The
   5412 index may be a variable of any integer type.
   5413 
   5414 Semantics:
   5415 """"""""""
   5416 
   5417 The result is a vector of the same type as ``val``. Its element values
   5418 are those of ``val`` except at position ``idx``, where it gets the value
   5419 ``elt``. If ``idx`` exceeds the length of ``val``, the results are
   5420 undefined.
   5421 
   5422 Example:
   5423 """"""""
   5424 
   5425 .. code-block:: llvm
   5426 
   5427       <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>
   5428 
   5429 .. _i_shufflevector:
   5430 
   5431 '``shufflevector``' Instruction
   5432 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5433 
   5434 Syntax:
   5435 """""""
   5436 
   5437 ::
   5438 
   5439       <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
   5440 
   5441 Overview:
   5442 """""""""
   5443 
   5444 The '``shufflevector``' instruction constructs a permutation of elements
   5445 from two input vectors, returning a vector with the same element type as
   5446 the input and length that is the same as the shuffle mask.
   5447 
   5448 Arguments:
   5449 """"""""""
   5450 
   5451 The first two operands of a '``shufflevector``' instruction are vectors
   5452 with the same type. The third argument is a shuffle mask whose element
   5453 type is always 'i32'. The result of the instruction is a vector whose
   5454 length is the same as the shuffle mask and whose element type is the
   5455 same as the element type of the first two operands.
   5456 
   5457 The shuffle mask operand is required to be a constant vector with either
   5458 constant integer or undef values.
   5459 
   5460 Semantics:
   5461 """"""""""
   5462 
   5463 The elements of the two input vectors are numbered from left to right
   5464 across both of the vectors. The shuffle mask operand specifies, for each
   5465 element of the result vector, which element of the two input vectors the
   5466 result element gets. The element selector may be undef (meaning "don't
   5467 care") and the second operand may be undef if performing a shuffle from
   5468 only one vector.
   5469 
   5470 Example:
   5471 """"""""
   5472 
   5473 .. code-block:: llvm
   5474 
   5475       <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
   5476                               <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
   5477       <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
   5478                               <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
   5479       <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
   5480                               <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
   5481       <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
   5482                               <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>
   5483 
   5484 Aggregate Operations
   5485 --------------------
   5486 
   5487 LLVM supports several instructions for working with
   5488 :ref:`aggregate <t_aggregate>` values.
   5489 
   5490 .. _i_extractvalue:
   5491 
   5492 '``extractvalue``' Instruction
   5493 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5494 
   5495 Syntax:
   5496 """""""
   5497 
   5498 ::
   5499 
   5500       <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
   5501 
   5502 Overview:
   5503 """""""""
   5504 
   5505 The '``extractvalue``' instruction extracts the value of a member field
   5506 from an :ref:`aggregate <t_aggregate>` value.
   5507 
   5508 Arguments:
   5509 """"""""""
   5510 
   5511 The first operand of an '``extractvalue``' instruction is a value of
   5512 :ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
   5513 constant indices to specify which value to extract in a similar manner
   5514 as indices in a '``getelementptr``' instruction.
   5515 
   5516 The major differences to ``getelementptr`` indexing are:
   5517 
   5518 -  Since the value being indexed is not a pointer, the first index is
   5519    omitted and assumed to be zero.
   5520 -  At least one index must be specified.
   5521 -  Not only struct indices but also array indices must be in bounds.
   5522 
   5523 Semantics:
   5524 """"""""""
   5525 
   5526 The result is the value at the position in the aggregate specified by
   5527 the index operands.
   5528 
   5529 Example:
   5530 """"""""
   5531 
   5532 .. code-block:: llvm
   5533 
   5534       <result> = extractvalue {i32, float} %agg, 0    ; yields i32
   5535 
   5536 .. _i_insertvalue:
   5537 
   5538 '``insertvalue``' Instruction
   5539 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5540 
   5541 Syntax:
   5542 """""""
   5543 
   5544 ::
   5545 
   5546       <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>
   5547 
   5548 Overview:
   5549 """""""""
   5550 
   5551 The '``insertvalue``' instruction inserts a value into a member field in
   5552 an :ref:`aggregate <t_aggregate>` value.
   5553 
   5554 Arguments:
   5555 """"""""""
   5556 
   5557 The first operand of an '``insertvalue``' instruction is a value of
   5558 :ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
   5559 a first-class value to insert. The following operands are constant
   5560 indices indicating the position at which to insert the value in a
   5561 similar manner as indices in a '``extractvalue``' instruction. The value
   5562 to insert must have the same type as the value identified by the
   5563 indices.
   5564 
   5565 Semantics:
   5566 """"""""""
   5567 
   5568 The result is an aggregate of the same type as ``val``. Its value is
   5569 that of ``val`` except that the value at the position specified by the
   5570 indices is that of ``elt``.
   5571 
   5572 Example:
   5573 """"""""
   5574 
   5575 .. code-block:: llvm
   5576 
   5577       %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
   5578       %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
   5579       %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0    ; yields {i32 undef, {float %val}}
   5580 
   5581 .. _memoryops:
   5582 
   5583 Memory Access and Addressing Operations
   5584 ---------------------------------------
   5585 
   5586 A key design point of an SSA-based representation is how it represents
   5587 memory. In LLVM, no memory locations are in SSA form, which makes things
   5588 very simple. This section describes how to read, write, and allocate
   5589 memory in LLVM.
   5590 
   5591 .. _i_alloca:
   5592 
   5593 '``alloca``' Instruction
   5594 ^^^^^^^^^^^^^^^^^^^^^^^^
   5595 
   5596 Syntax:
   5597 """""""
   5598 
   5599 ::
   5600 
   5601       <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>]     ; yields type*:result
   5602 
   5603 Overview:
   5604 """""""""
   5605 
   5606 The '``alloca``' instruction allocates memory on the stack frame of the
   5607 currently executing function, to be automatically released when this
   5608 function returns to its caller. The object is always allocated in the
   5609 generic address space (address space zero).
   5610 
   5611 Arguments:
   5612 """"""""""
   5613 
   5614 The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
   5615 bytes of memory on the runtime stack, returning a pointer of the
   5616 appropriate type to the program. If "NumElements" is specified, it is
   5617 the number of elements allocated, otherwise "NumElements" is defaulted
   5618 to be one. If a constant alignment is specified, the value result of the
   5619 allocation is guaranteed to be aligned to at least that boundary. The
   5620 alignment may not be greater than ``1 << 29``. If not specified, or if
   5621 zero, the target can choose to align the allocation on any convenient
   5622 boundary compatible with the type.
   5623 
   5624 '``type``' may be any sized type.
   5625 
   5626 Semantics:
   5627 """"""""""
   5628 
   5629 Memory is allocated; a pointer is returned. The operation is undefined
   5630 if there is insufficient stack space for the allocation. '``alloca``'d
   5631 memory is automatically released when the function returns. The
   5632 '``alloca``' instruction is commonly used to represent automatic
   5633 variables that must have an address available. When the function returns
   5634 (either with the ``ret`` or ``resume`` instructions), the memory is
   5635 reclaimed. Allocating zero bytes is legal, but the result is undefined.
   5636 The order in which memory is allocated (ie., which way the stack grows)
   5637 is not specified.
   5638 
   5639 Example:
   5640 """"""""
   5641 
   5642 .. code-block:: llvm
   5643 
   5644       %ptr = alloca i32                             ; yields i32*:ptr
   5645       %ptr = alloca i32, i32 4                      ; yields i32*:ptr
   5646       %ptr = alloca i32, i32 4, align 1024          ; yields i32*:ptr
   5647       %ptr = alloca i32, align 1024                 ; yields i32*:ptr
   5648 
   5649 .. _i_load:
   5650 
   5651 '``load``' Instruction
   5652 ^^^^^^^^^^^^^^^^^^^^^^
   5653 
   5654 Syntax:
   5655 """""""
   5656 
   5657 ::
   5658 
   5659       <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
   5660       <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
   5661       !<index> = !{ i32 1 }
   5662 
   5663 Overview:
   5664 """""""""
   5665 
   5666 The '``load``' instruction is used to read from memory.
   5667 
   5668 Arguments:
   5669 """"""""""
   5670 
   5671 The argument to the ``load`` instruction specifies the memory address
   5672 from which to load. The type specified must be a :ref:`first
   5673 class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
   5674 then the optimizer is not allowed to modify the number or order of
   5675 execution of this ``load`` with other :ref:`volatile
   5676 operations <volatile>`.
   5677 
   5678 If the ``load`` is marked as ``atomic``, it takes an extra
   5679 :ref:`ordering <ordering>` and optional ``singlethread`` argument. The
   5680 ``release`` and ``acq_rel`` orderings are not valid on ``load``
   5681 instructions. Atomic loads produce :ref:`defined <memmodel>` results
   5682 when they may see multiple atomic stores. The type of the pointee must
   5683 be an integer type whose bit width is a power of two greater than or
   5684 equal to eight and less than or equal to a target-specific size limit.
   5685 ``align`` must be explicitly specified on atomic loads, and the load has
   5686 undefined behavior if the alignment is not set to a value which is at
   5687 least the size in bytes of the pointee. ``!nontemporal`` does not have
   5688 any defined semantics for atomic loads.
   5689 
   5690 The optional constant ``align`` argument specifies the alignment of the
   5691 operation (that is, the alignment of the memory address). A value of 0
   5692 or an omitted ``align`` argument means that the operation has the ABI
   5693 alignment for the target. It is the responsibility of the code emitter
   5694 to ensure that the alignment information is correct. Overestimating the
   5695 alignment results in undefined behavior. Underestimating the alignment
   5696 may produce less efficient code. An alignment of 1 is always safe. The
   5697 maximum possible alignment is ``1 << 29``.
   5698 
   5699 The optional ``!nontemporal`` metadata must reference a single
   5700 metadata name ``<index>`` corresponding to a metadata node with one
   5701 ``i32`` entry of value 1. The existence of the ``!nontemporal``
   5702 metadata on the instruction tells the optimizer and code generator
   5703 that this load is not expected to be reused in the cache. The code
   5704 generator may select special instructions to save cache bandwidth, such
   5705 as the ``MOVNT`` instruction on x86.
   5706 
   5707 The optional ``!invariant.load`` metadata must reference a single
   5708 metadata name ``<index>`` corresponding to a metadata node with no
   5709 entries. The existence of the ``!invariant.load`` metadata on the
   5710 instruction tells the optimizer and code generator that the address
   5711 operand to this load points to memory which can be assumed unchanged.
   5712 Being invariant does not imply that a location is dereferenceable,
   5713 but it does imply that once the location is known dereferenceable
   5714 its value is henceforth unchanging.
   5715 
   5716 The optional ``!nonnull`` metadata must reference a single
   5717 metadata name ``<index>`` corresponding to a metadata node with no
   5718 entries. The existence of the ``!nonnull`` metadata on the
   5719 instruction tells the optimizer that the value loaded is known to
   5720 never be null.  This is analogous to the ''nonnull'' attribute
   5721 on parameters and return values.  This metadata can only be applied
   5722 to loads of a pointer type.
   5723 
   5724 Semantics:
   5725 """"""""""
   5726 
   5727 The location of memory pointed to is loaded. If the value being loaded
   5728 is of scalar type then the number of bytes read does not exceed the
   5729 minimum number of bytes needed to hold all bits of the type. For
   5730 example, loading an ``i24`` reads at most three bytes. When loading a
   5731 value of a type like ``i20`` with a size that is not an integral number
   5732 of bytes, the result is undefined if the value was not originally
   5733 written using a store of the same type.
   5734 
   5735 Examples:
   5736 """""""""
   5737 
   5738 .. code-block:: llvm
   5739 
   5740       %ptr = alloca i32                               ; yields i32*:ptr
   5741       store i32 3, i32* %ptr                          ; yields void
   5742       %val = load i32, i32* %ptr                      ; yields i32:val = i32 3
   5743 
   5744 .. _i_store:
   5745 
   5746 '``store``' Instruction
   5747 ^^^^^^^^^^^^^^^^^^^^^^^
   5748 
   5749 Syntax:
   5750 """""""
   5751 
   5752 ::
   5753 
   5754       store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        ; yields void
   5755       store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  ; yields void
   5756 
   5757 Overview:
   5758 """""""""
   5759 
   5760 The '``store``' instruction is used to write to memory.
   5761 
   5762 Arguments:
   5763 """"""""""
   5764 
   5765 There are two arguments to the ``store`` instruction: a value to store
   5766 and an address at which to store it. The type of the ``<pointer>``
   5767 operand must be a pointer to the :ref:`first class <t_firstclass>` type of
   5768 the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
   5769 then the optimizer is not allowed to modify the number or order of
   5770 execution of this ``store`` with other :ref:`volatile
   5771 operations <volatile>`.
   5772 
   5773 If the ``store`` is marked as ``atomic``, it takes an extra
   5774 :ref:`ordering <ordering>` and optional ``singlethread`` argument. The
   5775 ``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
   5776 instructions. Atomic loads produce :ref:`defined <memmodel>` results
   5777 when they may see multiple atomic stores. The type of the pointee must
   5778 be an integer type whose bit width is a power of two greater than or
   5779 equal to eight and less than or equal to a target-specific size limit.
   5780 ``align`` must be explicitly specified on atomic stores, and the store
   5781 has undefined behavior if the alignment is not set to a value which is
   5782 at least the size in bytes of the pointee. ``!nontemporal`` does not
   5783 have any defined semantics for atomic stores.
   5784 
   5785 The optional constant ``align`` argument specifies the alignment of the
   5786 operation (that is, the alignment of the memory address). A value of 0
   5787 or an omitted ``align`` argument means that the operation has the ABI
   5788 alignment for the target. It is the responsibility of the code emitter
   5789 to ensure that the alignment information is correct. Overestimating the
   5790 alignment results in undefined behavior. Underestimating the
   5791 alignment may produce less efficient code. An alignment of 1 is always
   5792 safe. The maximum possible alignment is ``1 << 29``.
   5793 
   5794 The optional ``!nontemporal`` metadata must reference a single metadata
   5795 name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
   5796 value 1. The existence of the ``!nontemporal`` metadata on the instruction
   5797 tells the optimizer and code generator that this load is not expected to
   5798 be reused in the cache. The code generator may select special
   5799 instructions to save cache bandwidth, such as the MOVNT instruction on
   5800 x86.
   5801 
   5802 Semantics:
   5803 """"""""""
   5804 
   5805 The contents of memory are updated to contain ``<value>`` at the
   5806 location specified by the ``<pointer>`` operand. If ``<value>`` is
   5807 of scalar type then the number of bytes written does not exceed the
   5808 minimum number of bytes needed to hold all bits of the type. For
   5809 example, storing an ``i24`` writes at most three bytes. When writing a
   5810 value of a type like ``i20`` with a size that is not an integral number
   5811 of bytes, it is unspecified what happens to the extra bits that do not
   5812 belong to the type, but they will typically be overwritten.
   5813 
   5814 Example:
   5815 """"""""
   5816 
   5817 .. code-block:: llvm
   5818 
   5819       %ptr = alloca i32                               ; yields i32*:ptr
   5820       store i32 3, i32* %ptr                          ; yields void
   5821       %val = load i32* %ptr                           ; yields i32:val = i32 3
   5822 
   5823 .. _i_fence:
   5824 
   5825 '``fence``' Instruction
   5826 ^^^^^^^^^^^^^^^^^^^^^^^
   5827 
   5828 Syntax:
   5829 """""""
   5830 
   5831 ::
   5832 
   5833       fence [singlethread] <ordering>                   ; yields void
   5834 
   5835 Overview:
   5836 """""""""
   5837 
   5838 The '``fence``' instruction is used to introduce happens-before edges
   5839 between operations.
   5840 
   5841 Arguments:
   5842 """"""""""
   5843 
   5844 '``fence``' instructions take an :ref:`ordering <ordering>` argument which
   5845 defines what *synchronizes-with* edges they add. They can only be given
   5846 ``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
   5847 
   5848 Semantics:
   5849 """"""""""
   5850 
   5851 A fence A which has (at least) ``release`` ordering semantics
   5852 *synchronizes with* a fence B with (at least) ``acquire`` ordering
   5853 semantics if and only if there exist atomic operations X and Y, both
   5854 operating on some atomic object M, such that A is sequenced before X, X
   5855 modifies M (either directly or through some side effect of a sequence
   5856 headed by X), Y is sequenced before B, and Y observes M. This provides a
   5857 *happens-before* dependency between A and B. Rather than an explicit
   5858 ``fence``, one (but not both) of the atomic operations X or Y might
   5859 provide a ``release`` or ``acquire`` (resp.) ordering constraint and
   5860 still *synchronize-with* the explicit ``fence`` and establish the
   5861 *happens-before* edge.
   5862 
   5863 A ``fence`` which has ``seq_cst`` ordering, in addition to having both
   5864 ``acquire`` and ``release`` semantics specified above, participates in
   5865 the global program order of other ``seq_cst`` operations and/or fences.
   5866 
   5867 The optional ":ref:`singlethread <singlethread>`" argument specifies
   5868 that the fence only synchronizes with other fences in the same thread.
   5869 (This is useful for interacting with signal handlers.)
   5870 
   5871 Example:
   5872 """"""""
   5873 
   5874 .. code-block:: llvm
   5875 
   5876       fence acquire                          ; yields void
   5877       fence singlethread seq_cst             ; yields void
   5878 
   5879 .. _i_cmpxchg:
   5880 
   5881 '``cmpxchg``' Instruction
   5882 ^^^^^^^^^^^^^^^^^^^^^^^^^
   5883 
   5884 Syntax:
   5885 """""""
   5886 
   5887 ::
   5888 
   5889       cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields  { ty, i1 }
   5890 
   5891 Overview:
   5892 """""""""
   5893 
   5894 The '``cmpxchg``' instruction is used to atomically modify memory. It
   5895 loads a value in memory and compares it to a given value. If they are
   5896 equal, it tries to store a new value into the memory.
   5897 
   5898 Arguments:
   5899 """"""""""
   5900 
   5901 There are three arguments to the '``cmpxchg``' instruction: an address
   5902 to operate on, a value to compare to the value currently be at that
   5903 address, and a new value to place at that address if the compared values
   5904 are equal. The type of '<cmp>' must be an integer type whose bit width
   5905 is a power of two greater than or equal to eight and less than or equal
   5906 to a target-specific size limit. '<cmp>' and '<new>' must have the same
   5907 type, and the type of '<pointer>' must be a pointer to that type. If the
   5908 ``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
   5909 to modify the number or order of execution of this ``cmpxchg`` with
   5910 other :ref:`volatile operations <volatile>`.
   5911 
   5912 The success and failure :ref:`ordering <ordering>` arguments specify how this
   5913 ``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
   5914 must be at least ``monotonic``, the ordering constraint on failure must be no
   5915 stronger than that on success, and the failure ordering cannot be either
   5916 ``release`` or ``acq_rel``.
   5917 
   5918 The optional "``singlethread``" argument declares that the ``cmpxchg``
   5919 is only atomic with respect to code (usually signal handlers) running in
   5920 the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
   5921 respect to all other code in the system.
   5922 
   5923 The pointer passed into cmpxchg must have alignment greater than or
   5924 equal to the size in memory of the operand.
   5925 
   5926 Semantics:
   5927 """"""""""
   5928 
   5929 The contents of memory at the location specified by the '``<pointer>``' operand
   5930 is read and compared to '``<cmp>``'; if the read value is the equal, the
   5931 '``<new>``' is written. The original value at the location is returned, together
   5932 with a flag indicating success (true) or failure (false).
   5933 
   5934 If the cmpxchg operation is marked as ``weak`` then a spurious failure is
   5935 permitted: the operation may not write ``<new>`` even if the comparison
   5936 matched.
   5937 
   5938 If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
   5939 if the value loaded equals ``cmp``.
   5940 
   5941 A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
   5942 identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
   5943 load with an ordering parameter determined the second ordering parameter.
   5944 
   5945 Example:
   5946 """"""""
   5947 
   5948 .. code-block:: llvm
   5949 
   5950     entry:
   5951       %orig = atomic load i32, i32* %ptr unordered                ; yields i32
   5952       br label %loop
   5953 
   5954     loop:
   5955       %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
   5956       %squared = mul i32 %cmp, %cmp
   5957       %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields  { i32, i1 }
   5958       %value_loaded = extractvalue { i32, i1 } %val_success, 0
   5959       %success = extractvalue { i32, i1 } %val_success, 1
   5960       br i1 %success, label %done, label %loop
   5961 
   5962     done:
   5963       ...
   5964 
   5965 .. _i_atomicrmw:
   5966 
   5967 '``atomicrmw``' Instruction
   5968 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5969 
   5970 Syntax:
   5971 """""""
   5972 
   5973 ::
   5974 
   5975       atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   ; yields ty
   5976 
   5977 Overview:
   5978 """""""""
   5979 
   5980 The '``atomicrmw``' instruction is used to atomically modify memory.
   5981 
   5982 Arguments:
   5983 """"""""""
   5984 
   5985 There are three arguments to the '``atomicrmw``' instruction: an
   5986 operation to apply, an address whose value to modify, an argument to the
   5987 operation. The operation must be one of the following keywords:
   5988 
   5989 -  xchg
   5990 -  add
   5991 -  sub
   5992 -  and
   5993 -  nand
   5994 -  or
   5995 -  xor
   5996 -  max
   5997 -  min
   5998 -  umax
   5999 -  umin
   6000 
   6001 The type of '<value>' must be an integer type whose bit width is a power
   6002 of two greater than or equal to eight and less than or equal to a
   6003 target-specific size limit. The type of the '``<pointer>``' operand must
   6004 be a pointer to that type. If the ``atomicrmw`` is marked as
   6005 ``volatile``, then the optimizer is not allowed to modify the number or
   6006 order of execution of this ``atomicrmw`` with other :ref:`volatile
   6007 operations <volatile>`.
   6008 
   6009 Semantics:
   6010 """"""""""
   6011 
   6012 The contents of memory at the location specified by the '``<pointer>``'
   6013 operand are atomically read, modified, and written back. The original
   6014 value at the location is returned. The modification is specified by the
   6015 operation argument:
   6016 
   6017 -  xchg: ``*ptr = val``
   6018 -  add: ``*ptr = *ptr + val``
   6019 -  sub: ``*ptr = *ptr - val``
   6020 -  and: ``*ptr = *ptr & val``
   6021 -  nand: ``*ptr = ~(*ptr & val)``
   6022 -  or: ``*ptr = *ptr | val``
   6023 -  xor: ``*ptr = *ptr ^ val``
   6024 -  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
   6025 -  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
   6026 -  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
   6027    comparison)
   6028 -  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
   6029    comparison)
   6030 
   6031 Example:
   6032 """"""""
   6033 
   6034 .. code-block:: llvm
   6035 
   6036       %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields i32
   6037 
   6038 .. _i_getelementptr:
   6039 
   6040 '``getelementptr``' Instruction
   6041 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6042 
   6043 Syntax:
   6044 """""""
   6045 
   6046 ::
   6047 
   6048       <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
   6049       <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
   6050       <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
   6051 
   6052 Overview:
   6053 """""""""
   6054 
   6055 The '``getelementptr``' instruction is used to get the address of a
   6056 subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
   6057 address calculation only and does not access memory.
   6058 
   6059 Arguments:
   6060 """"""""""
   6061 
   6062 The first argument is always a type used as the basis for the calculations.
   6063 The second argument is always a pointer or a vector of pointers, and is the
   6064 base address to start from. The remaining arguments are indices
   6065 that indicate which of the elements of the aggregate object are indexed.
   6066 The interpretation of each index is dependent on the type being indexed
   6067 into. The first index always indexes the pointer value given as the
   6068 first argument, the second index indexes a value of the type pointed to
   6069 (not necessarily the value directly pointed to, since the first index
   6070 can be non-zero), etc. The first type indexed into must be a pointer
   6071 value, subsequent types can be arrays, vectors, and structs. Note that
   6072 subsequent types being indexed into can never be pointers, since that
   6073 would require loading the pointer before continuing calculation.
   6074 
   6075 The type of each index argument depends on the type it is indexing into.
   6076 When indexing into a (optionally packed) structure, only ``i32`` integer
   6077 **constants** are allowed (when using a vector of indices they must all
   6078 be the **same** ``i32`` integer constant). When indexing into an array,
   6079 pointer or vector, integers of any width are allowed, and they are not
   6080 required to be constant. These integers are treated as signed values
   6081 where relevant.
   6082 
   6083 For example, let's consider a C code fragment and how it gets compiled
   6084 to LLVM:
   6085 
   6086 .. code-block:: c
   6087 
   6088     struct RT {
   6089       char A;
   6090       int B[10][20];
   6091       char C;
   6092     };
   6093     struct ST {
   6094       int X;
   6095       double Y;
   6096       struct RT Z;
   6097     };
   6098 
   6099     int *foo(struct ST *s) {
   6100       return &s[1].Z.B[5][13];
   6101     }
   6102 
   6103 The LLVM code generated by Clang is:
   6104 
   6105 .. code-block:: llvm
   6106 
   6107     %struct.RT = type { i8, [10 x [20 x i32]], i8 }
   6108     %struct.ST = type { i32, double, %struct.RT }
   6109 
   6110     define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
   6111     entry:
   6112       %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
   6113       ret i32* %arrayidx
   6114     }
   6115 
   6116 Semantics:
   6117 """"""""""
   6118 
   6119 In the example above, the first index is indexing into the
   6120 '``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
   6121 = '``{ i32, double, %struct.RT }``' type, a structure. The second index
   6122 indexes into the third element of the structure, yielding a
   6123 '``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
   6124 structure. The third index indexes into the second element of the
   6125 structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
   6126 dimensions of the array are subscripted into, yielding an '``i32``'
   6127 type. The '``getelementptr``' instruction returns a pointer to this
   6128 element, thus computing a value of '``i32*``' type.
   6129 
   6130 Note that it is perfectly legal to index partially through a structure,
   6131 returning a pointer to an inner element. Because of this, the LLVM code
   6132 for the given testcase is equivalent to:
   6133 
   6134 .. code-block:: llvm
   6135 
   6136     define i32* @foo(%struct.ST* %s) {
   6137       %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1                        ; yields %struct.ST*:%t1
   6138       %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2                ; yields %struct.RT*:%t2
   6139       %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1                ; yields [10 x [20 x i32]]*:%t3
   6140       %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
   6141       %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13               ; yields i32*:%t5
   6142       ret i32* %t5
   6143     }
   6144 
   6145 If the ``inbounds`` keyword is present, the result value of the
   6146 ``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
   6147 pointer is not an *in bounds* address of an allocated object, or if any
   6148 of the addresses that would be formed by successive addition of the
   6149 offsets implied by the indices to the base address with infinitely
   6150 precise signed arithmetic are not an *in bounds* address of that
   6151 allocated object. The *in bounds* addresses for an allocated object are
   6152 all the addresses that point into the object, plus the address one byte
   6153 past the end. In cases where the base is a vector of pointers the
   6154 ``inbounds`` keyword applies to each of the computations element-wise.
   6155 
   6156 If the ``inbounds`` keyword is not present, the offsets are added to the
   6157 base address with silently-wrapping two's complement arithmetic. If the
   6158 offsets have a different width from the pointer, they are sign-extended
   6159 or truncated to the width of the pointer. The result value of the
   6160 ``getelementptr`` may be outside the object pointed to by the base
   6161 pointer. The result value may not necessarily be used to access memory
   6162 though, even if it happens to point into allocated storage. See the
   6163 :ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
   6164 information.
   6165 
   6166 The getelementptr instruction is often confusing. For some more insight
   6167 into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
   6168 
   6169 Example:
   6170 """"""""
   6171 
   6172 .. code-block:: llvm
   6173 
   6174         ; yields [12 x i8]*:aptr
   6175         %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
   6176         ; yields i8*:vptr
   6177         %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
   6178         ; yields i8*:eptr
   6179         %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
   6180         ; yields i32*:iptr
   6181         %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
   6182 
   6183 In cases where the pointer argument is a vector of pointers, each index
   6184 must be a vector with the same number of elements. For example:
   6185 
   6186 .. code-block:: llvm
   6187 
   6188      %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets,
   6189 
   6190 Conversion Operations
   6191 ---------------------
   6192 
   6193 The instructions in this category are the conversion instructions
   6194 (casting) which all take a single operand and a type. They perform
   6195 various bit conversions on the operand.
   6196 
   6197 '``trunc .. to``' Instruction
   6198 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6199 
   6200 Syntax:
   6201 """""""
   6202 
   6203 ::
   6204 
   6205       <result> = trunc <ty> <value> to <ty2>             ; yields ty2
   6206 
   6207 Overview:
   6208 """""""""
   6209 
   6210 The '``trunc``' instruction truncates its operand to the type ``ty2``.
   6211 
   6212 Arguments:
   6213 """"""""""
   6214 
   6215 The '``trunc``' instruction takes a value to trunc, and a type to trunc
   6216 it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
   6217 of the same number of integers. The bit size of the ``value`` must be
   6218 larger than the bit size of the destination type, ``ty2``. Equal sized
   6219 types are not allowed.
   6220 
   6221 Semantics:
   6222 """"""""""
   6223 
   6224 The '``trunc``' instruction truncates the high order bits in ``value``
   6225 and converts the remaining bits to ``ty2``. Since the source size must
   6226 be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
   6227 It will always truncate bits.
   6228 
   6229 Example:
   6230 """"""""
   6231 
   6232 .. code-block:: llvm
   6233 
   6234       %X = trunc i32 257 to i8                        ; yields i8:1
   6235       %Y = trunc i32 123 to i1                        ; yields i1:true
   6236       %Z = trunc i32 122 to i1                        ; yields i1:false
   6237       %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
   6238 
   6239 '``zext .. to``' Instruction
   6240 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6241 
   6242 Syntax:
   6243 """""""
   6244 
   6245 ::
   6246 
   6247       <result> = zext <ty> <value> to <ty2>             ; yields ty2
   6248 
   6249 Overview:
   6250 """""""""
   6251 
   6252 The '``zext``' instruction zero extends its operand to type ``ty2``.
   6253 
   6254 Arguments:
   6255 """"""""""
   6256 
   6257 The '``zext``' instruction takes a value to cast, and a type to cast it
   6258 to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
   6259 the same number of integers. The bit size of the ``value`` must be
   6260 smaller than the bit size of the destination type, ``ty2``.
   6261 
   6262 Semantics:
   6263 """"""""""
   6264 
   6265 The ``zext`` fills the high order bits of the ``value`` with zero bits
   6266 until it reaches the size of the destination type, ``ty2``.
   6267 
   6268 When zero extending from i1, the result will always be either 0 or 1.
   6269 
   6270 Example:
   6271 """"""""
   6272 
   6273 .. code-block:: llvm
   6274 
   6275       %X = zext i32 257 to i64              ; yields i64:257
   6276       %Y = zext i1 true to i32              ; yields i32:1
   6277       %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
   6278 
   6279 '``sext .. to``' Instruction
   6280 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6281 
   6282 Syntax:
   6283 """""""
   6284 
   6285 ::
   6286 
   6287       <result> = sext <ty> <value> to <ty2>             ; yields ty2
   6288 
   6289 Overview:
   6290 """""""""
   6291 
   6292 The '``sext``' sign extends ``value`` to the type ``ty2``.
   6293 
   6294 Arguments:
   6295 """"""""""
   6296 
   6297 The '``sext``' instruction takes a value to cast, and a type to cast it
   6298 to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
   6299 the same number of integers. The bit size of the ``value`` must be
   6300 smaller than the bit size of the destination type, ``ty2``.
   6301 
   6302 Semantics:
   6303 """"""""""
   6304 
   6305 The '``sext``' instruction performs a sign extension by copying the sign
   6306 bit (highest order bit) of the ``value`` until it reaches the bit size
   6307 of the type ``ty2``.
   6308 
   6309 When sign extending from i1, the extension always results in -1 or 0.
   6310 
   6311 Example:
   6312 """"""""
   6313 
   6314 .. code-block:: llvm
   6315 
   6316       %X = sext i8  -1 to i16              ; yields i16   :65535
   6317       %Y = sext i1 true to i32             ; yields i32:-1
   6318       %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
   6319 
   6320 '``fptrunc .. to``' Instruction
   6321 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6322 
   6323 Syntax:
   6324 """""""
   6325 
   6326 ::
   6327 
   6328       <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2
   6329 
   6330 Overview:
   6331 """""""""
   6332 
   6333 The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
   6334 
   6335 Arguments:
   6336 """"""""""
   6337 
   6338 The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
   6339 value to cast and a :ref:`floating point <t_floating>` type to cast it to.
   6340 The size of ``value`` must be larger than the size of ``ty2``. This
   6341 implies that ``fptrunc`` cannot be used to make a *no-op cast*.
   6342 
   6343 Semantics:
   6344 """"""""""
   6345 
   6346 The '``fptrunc``' instruction truncates a ``value`` from a larger
   6347 :ref:`floating point <t_floating>` type to a smaller :ref:`floating
   6348 point <t_floating>` type. If the value cannot fit within the
   6349 destination type, ``ty2``, then the results are undefined.
   6350 
   6351 Example:
   6352 """"""""
   6353 
   6354 .. code-block:: llvm
   6355 
   6356       %X = fptrunc double 123.0 to float         ; yields float:123.0
   6357       %Y = fptrunc double 1.0E+300 to float      ; yields undefined
   6358 
   6359 '``fpext .. to``' Instruction
   6360 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6361 
   6362 Syntax:
   6363 """""""
   6364 
   6365 ::
   6366 
   6367       <result> = fpext <ty> <value> to <ty2>             ; yields ty2
   6368 
   6369 Overview:
   6370 """""""""
   6371 
   6372 The '``fpext``' extends a floating point ``value`` to a larger floating
   6373 point value.
   6374 
   6375 Arguments:
   6376 """"""""""
   6377 
   6378 The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
   6379 ``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
   6380 to. The source type must be smaller than the destination type.
   6381 
   6382 Semantics:
   6383 """"""""""
   6384 
   6385 The '``fpext``' instruction extends the ``value`` from a smaller
   6386 :ref:`floating point <t_floating>` type to a larger :ref:`floating
   6387 point <t_floating>` type. The ``fpext`` cannot be used to make a
   6388 *no-op cast* because it always changes bits. Use ``bitcast`` to make a
   6389 *no-op cast* for a floating point cast.
   6390 
   6391 Example:
   6392 """"""""
   6393 
   6394 .. code-block:: llvm
   6395 
   6396       %X = fpext float 3.125 to double         ; yields double:3.125000e+00
   6397       %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000
   6398 
   6399 '``fptoui .. to``' Instruction
   6400 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6401 
   6402 Syntax:
   6403 """""""
   6404 
   6405 ::
   6406 
   6407       <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
   6408 
   6409 Overview:
   6410 """""""""
   6411 
   6412 The '``fptoui``' converts a floating point ``value`` to its unsigned
   6413 integer equivalent of type ``ty2``.
   6414 
   6415 Arguments:
   6416 """"""""""
   6417 
   6418 The '``fptoui``' instruction takes a value to cast, which must be a
   6419 scalar or vector :ref:`floating point <t_floating>` value, and a type to
   6420 cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
   6421 ``ty`` is a vector floating point type, ``ty2`` must be a vector integer
   6422 type with the same number of elements as ``ty``
   6423 
   6424 Semantics:
   6425 """"""""""
   6426 
   6427 The '``fptoui``' instruction converts its :ref:`floating
   6428 point <t_floating>` operand into the nearest (rounding towards zero)
   6429 unsigned integer value. If the value cannot fit in ``ty2``, the results
   6430 are undefined.
   6431 
   6432 Example:
   6433 """"""""
   6434 
   6435 .. code-block:: llvm
   6436 
   6437       %X = fptoui double 123.0 to i32      ; yields i32:123
   6438       %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
   6439       %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1
   6440 
   6441 '``fptosi .. to``' Instruction
   6442 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6443 
   6444 Syntax:
   6445 """""""
   6446 
   6447 ::
   6448 
   6449       <result> = fptosi <ty> <value> to <ty2>             ; yields ty2
   6450 
   6451 Overview:
   6452 """""""""
   6453 
   6454 The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
   6455 ``value`` to type ``ty2``.
   6456 
   6457 Arguments:
   6458 """"""""""
   6459 
   6460 The '``fptosi``' instruction takes a value to cast, which must be a
   6461 scalar or vector :ref:`floating point <t_floating>` value, and a type to
   6462 cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
   6463 ``ty`` is a vector floating point type, ``ty2`` must be a vector integer
   6464 type with the same number of elements as ``ty``
   6465 
   6466 Semantics:
   6467 """"""""""
   6468 
   6469 The '``fptosi``' instruction converts its :ref:`floating
   6470 point <t_floating>` operand into the nearest (rounding towards zero)
   6471 signed integer value. If the value cannot fit in ``ty2``, the results
   6472 are undefined.
   6473 
   6474 Example:
   6475 """"""""
   6476 
   6477 .. code-block:: llvm
   6478 
   6479       %X = fptosi double -123.0 to i32      ; yields i32:-123
   6480       %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
   6481       %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1
   6482 
   6483 '``uitofp .. to``' Instruction
   6484 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6485 
   6486 Syntax:
   6487 """""""
   6488 
   6489 ::
   6490 
   6491       <result> = uitofp <ty> <value> to <ty2>             ; yields ty2
   6492 
   6493 Overview:
   6494 """""""""
   6495 
   6496 The '``uitofp``' instruction regards ``value`` as an unsigned integer
   6497 and converts that value to the ``ty2`` type.
   6498 
   6499 Arguments:
   6500 """"""""""
   6501 
   6502 The '``uitofp``' instruction takes a value to cast, which must be a
   6503 scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
   6504 ``ty2``, which must be an :ref:`floating point <t_floating>` type. If
   6505 ``ty`` is a vector integer type, ``ty2`` must be a vector floating point
   6506 type with the same number of elements as ``ty``
   6507 
   6508 Semantics:
   6509 """"""""""
   6510 
   6511 The '``uitofp``' instruction interprets its operand as an unsigned
   6512 integer quantity and converts it to the corresponding floating point
   6513 value. If the value cannot fit in the floating point value, the results
   6514 are undefined.
   6515 
   6516 Example:
   6517 """"""""
   6518 
   6519 .. code-block:: llvm
   6520 
   6521       %X = uitofp i32 257 to float         ; yields float:257.0
   6522       %Y = uitofp i8 -1 to double          ; yields double:255.0
   6523 
   6524 '``sitofp .. to``' Instruction
   6525 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6526 
   6527 Syntax:
   6528 """""""
   6529 
   6530 ::
   6531 
   6532       <result> = sitofp <ty> <value> to <ty2>             ; yields ty2
   6533 
   6534 Overview:
   6535 """""""""
   6536 
   6537 The '``sitofp``' instruction regards ``value`` as a signed integer and
   6538 converts that value to the ``ty2`` type.
   6539 
   6540 Arguments:
   6541 """"""""""
   6542 
   6543 The '``sitofp``' instruction takes a value to cast, which must be a
   6544 scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
   6545 ``ty2``, which must be an :ref:`floating point <t_floating>` type. If
   6546 ``ty`` is a vector integer type, ``ty2`` must be a vector floating point
   6547 type with the same number of elements as ``ty``
   6548 
   6549 Semantics:
   6550 """"""""""
   6551 
   6552 The '``sitofp``' instruction interprets its operand as a signed integer
   6553 quantity and converts it to the corresponding floating point value. If
   6554 the value cannot fit in the floating point value, the results are
   6555 undefined.
   6556 
   6557 Example:
   6558 """"""""
   6559 
   6560 .. code-block:: llvm
   6561 
   6562       %X = sitofp i32 257 to float         ; yields float:257.0
   6563       %Y = sitofp i8 -1 to double          ; yields double:-1.0
   6564 
   6565 .. _i_ptrtoint:
   6566 
   6567 '``ptrtoint .. to``' Instruction
   6568 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6569 
   6570 Syntax:
   6571 """""""
   6572 
   6573 ::
   6574 
   6575       <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2
   6576 
   6577 Overview:
   6578 """""""""
   6579 
   6580 The '``ptrtoint``' instruction converts the pointer or a vector of
   6581 pointers ``value`` to the integer (or vector of integers) type ``ty2``.
   6582 
   6583 Arguments:
   6584 """"""""""
   6585 
   6586 The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
   6587 a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
   6588 type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
   6589 a vector of integers type.
   6590 
   6591 Semantics:
   6592 """"""""""
   6593 
   6594 The '``ptrtoint``' instruction converts ``value`` to integer type
   6595 ``ty2`` by interpreting the pointer value as an integer and either
   6596 truncating or zero extending that value to the size of the integer type.
   6597 If ``value`` is smaller than ``ty2`` then a zero extension is done. If
   6598 ``value`` is larger than ``ty2`` then a truncation is done. If they are
   6599 the same size, then nothing is done (*no-op cast*) other than a type
   6600 change.
   6601 
   6602 Example:
   6603 """"""""
   6604 
   6605 .. code-block:: llvm
   6606 
   6607       %X = ptrtoint i32* %P to i8                         ; yields truncation on 32-bit architecture
   6608       %Y = ptrtoint i32* %P to i64                        ; yields zero extension on 32-bit architecture
   6609       %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
   6610 
   6611 .. _i_inttoptr:
   6612 
   6613 '``inttoptr .. to``' Instruction
   6614 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6615 
   6616 Syntax:
   6617 """""""
   6618 
   6619 ::
   6620 
   6621       <result> = inttoptr <ty> <value> to <ty2>             ; yields ty2
   6622 
   6623 Overview:
   6624 """""""""
   6625 
   6626 The '``inttoptr``' instruction converts an integer ``value`` to a
   6627 pointer type, ``ty2``.
   6628 
   6629 Arguments:
   6630 """"""""""
   6631 
   6632 The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
   6633 cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
   6634 type.
   6635 
   6636 Semantics:
   6637 """"""""""
   6638 
   6639 The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
   6640 applying either a zero extension or a truncation depending on the size
   6641 of the integer ``value``. If ``value`` is larger than the size of a
   6642 pointer then a truncation is done. If ``value`` is smaller than the size
   6643 of a pointer then a zero extension is done. If they are the same size,
   6644 nothing is done (*no-op cast*).
   6645 
   6646 Example:
   6647 """"""""
   6648 
   6649 .. code-block:: llvm
   6650 
   6651       %X = inttoptr i32 255 to i32*          ; yields zero extension on 64-bit architecture
   6652       %Y = inttoptr i32 255 to i32*          ; yields no-op on 32-bit architecture
   6653       %Z = inttoptr i64 0 to i32*            ; yields truncation on 32-bit architecture
   6654       %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
   6655 
   6656 .. _i_bitcast:
   6657 
   6658 '``bitcast .. to``' Instruction
   6659 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6660 
   6661 Syntax:
   6662 """""""
   6663 
   6664 ::
   6665 
   6666       <result> = bitcast <ty> <value> to <ty2>             ; yields ty2
   6667 
   6668 Overview:
   6669 """""""""
   6670 
   6671 The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
   6672 changing any bits.
   6673 
   6674 Arguments:
   6675 """"""""""
   6676 
   6677 The '``bitcast``' instruction takes a value to cast, which must be a
   6678 non-aggregate first class value, and a type to cast it to, which must
   6679 also be a non-aggregate :ref:`first class <t_firstclass>` type. The
   6680 bit sizes of ``value`` and the destination type, ``ty2``, must be
   6681 identical.  If the source type is a pointer, the destination type must
   6682 also be a pointer of the same size. This instruction supports bitwise
   6683 conversion of vectors to integers and to vectors of other types (as
   6684 long as they have the same size).
   6685 
   6686 Semantics:
   6687 """"""""""
   6688 
   6689 The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
   6690 is always a *no-op cast* because no bits change with this
   6691 conversion. The conversion is done as if the ``value`` had been stored
   6692 to memory and read back as type ``ty2``. Pointer (or vector of
   6693 pointers) types may only be converted to other pointer (or vector of
   6694 pointers) types with the same address space through this instruction.
   6695 To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
   6696 or :ref:`ptrtoint <i_ptrtoint>` instructions first.
   6697 
   6698 Example:
   6699 """"""""
   6700 
   6701 .. code-block:: llvm
   6702 
   6703       %X = bitcast i8 255 to i8              ; yields i8 :-1
   6704       %Y = bitcast i32* %x to sint*          ; yields sint*:%x
   6705       %Z = bitcast <2 x int> %V to i64;        ; yields i64: %V
   6706       %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
   6707 
   6708 .. _i_addrspacecast:
   6709 
   6710 '``addrspacecast .. to``' Instruction
   6711 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6712 
   6713 Syntax:
   6714 """""""
   6715 
   6716 ::
   6717 
   6718       <result> = addrspacecast <pty> <ptrval> to <pty2>       ; yields pty2
   6719 
   6720 Overview:
   6721 """""""""
   6722 
   6723 The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
   6724 address space ``n`` to type ``pty2`` in address space ``m``.
   6725 
   6726 Arguments:
   6727 """"""""""
   6728 
   6729 The '``addrspacecast``' instruction takes a pointer or vector of pointer value
   6730 to cast and a pointer type to cast it to, which must have a different
   6731 address space.
   6732 
   6733 Semantics:
   6734 """"""""""
   6735 
   6736 The '``addrspacecast``' instruction converts the pointer value
   6737 ``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
   6738 value modification, depending on the target and the address space
   6739 pair. Pointer conversions within the same address space must be
   6740 performed with the ``bitcast`` instruction. Note that if the address space
   6741 conversion is legal then both result and operand refer to the same memory
   6742 location.
   6743 
   6744 Example:
   6745 """"""""
   6746 
   6747 .. code-block:: llvm
   6748 
   6749       %X = addrspacecast i32* %x to i32 addrspace(1)*    ; yields i32 addrspace(1)*:%x
   6750       %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)*    ; yields i64 addrspace(2)*:%y
   6751       %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*>   ; yields <4 x float addrspace(3)*>:%z
   6752 
   6753 .. _otherops:
   6754 
   6755 Other Operations
   6756 ----------------
   6757 
   6758 The instructions in this category are the "miscellaneous" instructions,
   6759 which defy better classification.
   6760 
   6761 .. _i_icmp:
   6762 
   6763 '``icmp``' Instruction
   6764 ^^^^^^^^^^^^^^^^^^^^^^
   6765 
   6766 Syntax:
   6767 """""""
   6768 
   6769 ::
   6770 
   6771       <result> = icmp <cond> <ty> <op1>, <op2>   ; yields i1 or <N x i1>:result
   6772 
   6773 Overview:
   6774 """""""""
   6775 
   6776 The '``icmp``' instruction returns a boolean value or a vector of
   6777 boolean values based on comparison of its two integer, integer vector,
   6778 pointer, or pointer vector operands.
   6779 
   6780 Arguments:
   6781 """"""""""
   6782 
   6783 The '``icmp``' instruction takes three operands. The first operand is
   6784 the condition code indicating the kind of comparison to perform. It is
   6785 not a value, just a keyword. The possible condition code are:
   6786 
   6787 #. ``eq``: equal
   6788 #. ``ne``: not equal
   6789 #. ``ugt``: unsigned greater than
   6790 #. ``uge``: unsigned greater or equal
   6791 #. ``ult``: unsigned less than
   6792 #. ``ule``: unsigned less or equal
   6793 #. ``sgt``: signed greater than
   6794 #. ``sge``: signed greater or equal
   6795 #. ``slt``: signed less than
   6796 #. ``sle``: signed less or equal
   6797 
   6798 The remaining two arguments must be :ref:`integer <t_integer>` or
   6799 :ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
   6800 must also be identical types.
   6801 
   6802 Semantics:
   6803 """"""""""
   6804 
   6805 The '``icmp``' compares ``op1`` and ``op2`` according to the condition
   6806 code given as ``cond``. The comparison performed always yields either an
   6807 :ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
   6808 
   6809 #. ``eq``: yields ``true`` if the operands are equal, ``false``
   6810    otherwise. No sign interpretation is necessary or performed.
   6811 #. ``ne``: yields ``true`` if the operands are unequal, ``false``
   6812    otherwise. No sign interpretation is necessary or performed.
   6813 #. ``ugt``: interprets the operands as unsigned values and yields
   6814    ``true`` if ``op1`` is greater than ``op2``.
   6815 #. ``uge``: interprets the operands as unsigned values and yields
   6816    ``true`` if ``op1`` is greater than or equal to ``op2``.
   6817 #. ``ult``: interprets the operands as unsigned values and yields
   6818    ``true`` if ``op1`` is less than ``op2``.
   6819 #. ``ule``: interprets the operands as unsigned values and yields
   6820    ``true`` if ``op1`` is less than or equal to ``op2``.
   6821 #. ``sgt``: interprets the operands as signed values and yields ``true``
   6822    if ``op1`` is greater than ``op2``.
   6823 #. ``sge``: interprets the operands as signed values and yields ``true``
   6824    if ``op1`` is greater than or equal to ``op2``.
   6825 #. ``slt``: interprets the operands as signed values and yields ``true``
   6826    if ``op1`` is less than ``op2``.
   6827 #. ``sle``: interprets the operands as signed values and yields ``true``
   6828    if ``op1`` is less than or equal to ``op2``.
   6829 
   6830 If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
   6831 are compared as if they were integers.
   6832 
   6833 If the operands are integer vectors, then they are compared element by
   6834 element. The result is an ``i1`` vector with the same number of elements
   6835 as the values being compared. Otherwise, the result is an ``i1``.
   6836 
   6837 Example:
   6838 """"""""
   6839 
   6840 .. code-block:: llvm
   6841 
   6842       <result> = icmp eq i32 4, 5          ; yields: result=false
   6843       <result> = icmp ne float* %X, %X     ; yields: result=false
   6844       <result> = icmp ult i16  4, 5        ; yields: result=true
   6845       <result> = icmp sgt i16  4, 5        ; yields: result=false
   6846       <result> = icmp ule i16 -4, 5        ; yields: result=false
   6847       <result> = icmp sge i16  4, 5        ; yields: result=false
   6848 
   6849 Note that the code generator does not yet support vector types with the
   6850 ``icmp`` instruction.
   6851 
   6852 .. _i_fcmp:
   6853 
   6854 '``fcmp``' Instruction
   6855 ^^^^^^^^^^^^^^^^^^^^^^
   6856 
   6857 Syntax:
   6858 """""""
   6859 
   6860 ::
   6861 
   6862       <result> = fcmp <cond> <ty> <op1>, <op2>     ; yields i1 or <N x i1>:result
   6863 
   6864 Overview:
   6865 """""""""
   6866 
   6867 The '``fcmp``' instruction returns a boolean value or vector of boolean
   6868 values based on comparison of its operands.
   6869 
   6870 If the operands are floating point scalars, then the result type is a
   6871 boolean (:ref:`i1 <t_integer>`).
   6872 
   6873 If the operands are floating point vectors, then the result type is a
   6874 vector of boolean with the same number of elements as the operands being
   6875 compared.
   6876 
   6877 Arguments:
   6878 """"""""""
   6879 
   6880 The '``fcmp``' instruction takes three operands. The first operand is
   6881 the condition code indicating the kind of comparison to perform. It is
   6882 not a value, just a keyword. The possible condition code are:
   6883 
   6884 #. ``false``: no comparison, always returns false
   6885 #. ``oeq``: ordered and equal
   6886 #. ``ogt``: ordered and greater than
   6887 #. ``oge``: ordered and greater than or equal
   6888 #. ``olt``: ordered and less than
   6889 #. ``ole``: ordered and less than or equal
   6890 #. ``one``: ordered and not equal
   6891 #. ``ord``: ordered (no nans)
   6892 #. ``ueq``: unordered or equal
   6893 #. ``ugt``: unordered or greater than
   6894 #. ``uge``: unordered or greater than or equal
   6895 #. ``ult``: unordered or less than
   6896 #. ``ule``: unordered or less than or equal
   6897 #. ``une``: unordered or not equal
   6898 #. ``uno``: unordered (either nans)
   6899 #. ``true``: no comparison, always returns true
   6900 
   6901 *Ordered* means that neither operand is a QNAN while *unordered* means
   6902 that either operand may be a QNAN.
   6903 
   6904 Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
   6905 point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
   6906 type. They must have identical types.
   6907 
   6908 Semantics:
   6909 """"""""""
   6910 
   6911 The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
   6912 condition code given as ``cond``. If the operands are vectors, then the
   6913 vectors are compared element by element. Each comparison performed
   6914 always yields an :ref:`i1 <t_integer>` result, as follows:
   6915 
   6916 #. ``false``: always yields ``false``, regardless of operands.
   6917 #. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
   6918    is equal to ``op2``.
   6919 #. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
   6920    is greater than ``op2``.
   6921 #. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
   6922    is greater than or equal to ``op2``.
   6923 #. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
   6924    is less than ``op2``.
   6925 #. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
   6926    is less than or equal to ``op2``.
   6927 #. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
   6928    is not equal to ``op2``.
   6929 #. ``ord``: yields ``true`` if both operands are not a QNAN.
   6930 #. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
   6931    equal to ``op2``.
   6932 #. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
   6933    greater than ``op2``.
   6934 #. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
   6935    greater than or equal to ``op2``.
   6936 #. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
   6937    less than ``op2``.
   6938 #. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
   6939    less than or equal to ``op2``.
   6940 #. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
   6941    not equal to ``op2``.
   6942 #. ``uno``: yields ``true`` if either operand is a QNAN.
   6943 #. ``true``: always yields ``true``, regardless of operands.
   6944 
   6945 Example:
   6946 """"""""
   6947 
   6948 .. code-block:: llvm
   6949 
   6950       <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
   6951       <result> = fcmp one float 4.0, 5.0    ; yields: result=true
   6952       <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
   6953       <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false
   6954 
   6955 Note that the code generator does not yet support vector types with the
   6956 ``fcmp`` instruction.
   6957 
   6958 .. _i_phi:
   6959 
   6960 '``phi``' Instruction
   6961 ^^^^^^^^^^^^^^^^^^^^^
   6962 
   6963 Syntax:
   6964 """""""
   6965 
   6966 ::
   6967 
   6968       <result> = phi <ty> [ <val0>, <label0>], ...
   6969 
   6970 Overview:
   6971 """""""""
   6972 
   6973 The '``phi``' instruction is used to implement the  node in the SSA
   6974 graph representing the function.
   6975 
   6976 Arguments:
   6977 """"""""""
   6978 
   6979 The type of the incoming values is specified with the first type field.
   6980 After this, the '``phi``' instruction takes a list of pairs as
   6981 arguments, with one pair for each predecessor basic block of the current
   6982 block. Only values of :ref:`first class <t_firstclass>` type may be used as
   6983 the value arguments to the PHI node. Only labels may be used as the
   6984 label arguments.
   6985 
   6986 There must be no non-phi instructions between the start of a basic block
   6987 and the PHI instructions: i.e. PHI instructions must be first in a basic
   6988 block.
   6989 
   6990 For the purposes of the SSA form, the use of each incoming value is
   6991 deemed to occur on the edge from the corresponding predecessor block to
   6992 the current block (but after any definition of an '``invoke``'
   6993 instruction's return value on the same edge).
   6994 
   6995 Semantics:
   6996 """"""""""
   6997 
   6998 At runtime, the '``phi``' instruction logically takes on the value
   6999 specified by the pair corresponding to the predecessor basic block that
   7000 executed just prior to the current block.
   7001 
   7002 Example:
   7003 """"""""
   7004 
   7005 .. code-block:: llvm
   7006 
   7007     Loop:       ; Infinite loop that counts from 0 on up...
   7008       %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
   7009       %nextindvar = add i32 %indvar, 1
   7010       br label %Loop
   7011 
   7012 .. _i_select:
   7013 
   7014 '``select``' Instruction
   7015 ^^^^^^^^^^^^^^^^^^^^^^^^
   7016 
   7017 Syntax:
   7018 """""""
   7019 
   7020 ::
   7021 
   7022       <result> = select selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty
   7023 
   7024       selty is either i1 or {<N x i1>}
   7025 
   7026 Overview:
   7027 """""""""
   7028 
   7029 The '``select``' instruction is used to choose one value based on a
   7030 condition, without IR-level branching.
   7031 
   7032 Arguments:
   7033 """"""""""
   7034 
   7035 The '``select``' instruction requires an 'i1' value or a vector of 'i1'
   7036 values indicating the condition, and two values of the same :ref:`first
   7037 class <t_firstclass>` type.
   7038 
   7039 Semantics:
   7040 """"""""""
   7041 
   7042 If the condition is an i1 and it evaluates to 1, the instruction returns
   7043 the first value argument; otherwise, it returns the second value
   7044 argument.
   7045 
   7046 If the condition is a vector of i1, then the value arguments must be
   7047 vectors of the same size, and the selection is done element by element.
   7048 
   7049 If the condition is an i1 and the value arguments are vectors of the
   7050 same size, then an entire vector is selected.
   7051 
   7052 Example:
   7053 """"""""
   7054 
   7055 .. code-block:: llvm
   7056 
   7057       %X = select i1 true, i8 17, i8 42          ; yields i8:17
   7058 
   7059 .. _i_call:
   7060 
   7061 '``call``' Instruction
   7062 ^^^^^^^^^^^^^^^^^^^^^^
   7063 
   7064 Syntax:
   7065 """""""
   7066 
   7067 ::
   7068 
   7069       <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
   7070 
   7071 Overview:
   7072 """""""""
   7073 
   7074 The '``call``' instruction represents a simple function call.
   7075 
   7076 Arguments:
   7077 """"""""""
   7078 
   7079 This instruction requires several arguments:
   7080 
   7081 #. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
   7082    should perform tail call optimization.  The ``tail`` marker is a hint that
   7083    `can be ignored <CodeGenerator.html#sibcallopt>`_.  The ``musttail`` marker
   7084    means that the call must be tail call optimized in order for the program to
   7085    be correct.  The ``musttail`` marker provides these guarantees:
   7086 
   7087    #. The call will not cause unbounded stack growth if it is part of a
   7088       recursive cycle in the call graph.
   7089    #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
   7090       forwarded in place.
   7091 
   7092    Both markers imply that the callee does not access allocas or varargs from
   7093    the caller.  Calls marked ``musttail`` must obey the following additional
   7094    rules:
   7095 
   7096    - The call must immediately precede a :ref:`ret <i_ret>` instruction,
   7097      or a pointer bitcast followed by a ret instruction.
   7098    - The ret instruction must return the (possibly bitcasted) value
   7099      produced by the call or void.
   7100    - The caller and callee prototypes must match.  Pointer types of
   7101      parameters or return types may differ in pointee type, but not
   7102      in address space.
   7103    - The calling conventions of the caller and callee must match.
   7104    - All ABI-impacting function attributes, such as sret, byval, inreg,
   7105      returned, and inalloca, must match.
   7106    - The callee must be varargs iff the caller is varargs. Bitcasting a
   7107      non-varargs function to the appropriate varargs type is legal so
   7108      long as the non-varargs prefixes obey the other rules.
   7109 
   7110    Tail call optimization for calls marked ``tail`` is guaranteed to occur if
   7111    the following conditions are met:
   7112 
   7113    -  Caller and callee both have the calling convention ``fastcc``.
   7114    -  The call is in tail position (ret immediately follows call and ret
   7115       uses value of call or is void).
   7116    -  Option ``-tailcallopt`` is enabled, or
   7117       ``llvm::GuaranteedTailCallOpt`` is ``true``.
   7118    -  `Platform-specific constraints are
   7119       met. <CodeGenerator.html#tailcallopt>`_
   7120 
   7121 #. The optional "cconv" marker indicates which :ref:`calling
   7122    convention <callingconv>` the call should use. If none is
   7123    specified, the call defaults to using C calling conventions. The
   7124    calling convention of the call must match the calling convention of
   7125    the target function, or else the behavior is undefined.
   7126 #. The optional :ref:`Parameter Attributes <paramattrs>` list for return
   7127    values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
   7128    are valid here.
   7129 #. '``ty``': the type of the call instruction itself which is also the
   7130    type of the return value. Functions that return no value are marked
   7131    ``void``.
   7132 #. '``fnty``': shall be the signature of the pointer to function value
   7133    being invoked. The argument types must match the types implied by
   7134    this signature. This type can be omitted if the function is not
   7135    varargs and if the function type does not return a pointer to a
   7136    function.
   7137 #. '``fnptrval``': An LLVM value containing a pointer to a function to
   7138    be invoked. In most cases, this is a direct function invocation, but
   7139    indirect ``call``'s are just as possible, calling an arbitrary pointer
   7140    to function value.
   7141 #. '``function args``': argument list whose types match the function
   7142    signature argument types and parameter attributes. All arguments must
   7143    be of :ref:`first class <t_firstclass>` type. If the function signature
   7144    indicates the function accepts a variable number of arguments, the
   7145    extra arguments can be specified.
   7146 #. The optional :ref:`function attributes <fnattrs>` list. Only
   7147    '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
   7148    attributes are valid here.
   7149 
   7150 Semantics:
   7151 """"""""""
   7152 
   7153 The '``call``' instruction is used to cause control flow to transfer to
   7154 a specified function, with its incoming arguments bound to the specified
   7155 values. Upon a '``ret``' instruction in the called function, control
   7156 flow continues with the instruction after the function call, and the
   7157 return value of the function is bound to the result argument.
   7158 
   7159 Example:
   7160 """"""""
   7161 
   7162 .. code-block:: llvm
   7163 
   7164       %retval = call i32 @test(i32 %argc)
   7165       call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        ; yields i32
   7166       %X = tail call i32 @foo()                                    ; yields i32
   7167       %Y = tail call fastcc i32 @foo()  ; yields i32
   7168       call void %foo(i8 97 signext)
   7169 
   7170       %struct.A = type { i32, i8 }
   7171       %r = call %struct.A @foo()                        ; yields { i32, i8 }
   7172       %gr = extractvalue %struct.A %r, 0                ; yields i32
   7173       %gr1 = extractvalue %struct.A %r, 1               ; yields i8
   7174       %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
   7175       %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended
   7176 
   7177 llvm treats calls to some functions with names and arguments that match
   7178 the standard C99 library as being the C99 library functions, and may
   7179 perform optimizations or generate code for them under that assumption.
   7180 This is something we'd like to change in the future to provide better
   7181 support for freestanding environments and non-C-based languages.
   7182 
   7183 .. _i_va_arg:
   7184 
   7185 '``va_arg``' Instruction
   7186 ^^^^^^^^^^^^^^^^^^^^^^^^
   7187 
   7188 Syntax:
   7189 """""""
   7190 
   7191 ::
   7192 
   7193       <resultval> = va_arg <va_list*> <arglist>, <argty>
   7194 
   7195 Overview:
   7196 """""""""
   7197 
   7198 The '``va_arg``' instruction is used to access arguments passed through
   7199 the "variable argument" area of a function call. It is used to implement
   7200 the ``va_arg`` macro in C.
   7201 
   7202 Arguments:
   7203 """"""""""
   7204 
   7205 This instruction takes a ``va_list*`` value and the type of the
   7206 argument. It returns a value of the specified argument type and
   7207 increments the ``va_list`` to point to the next argument. The actual
   7208 type of ``va_list`` is target specific.
   7209 
   7210 Semantics:
   7211 """"""""""
   7212 
   7213 The '``va_arg``' instruction loads an argument of the specified type
   7214 from the specified ``va_list`` and causes the ``va_list`` to point to
   7215 the next argument. For more information, see the variable argument
   7216 handling :ref:`Intrinsic Functions <int_varargs>`.
   7217 
   7218 It is legal for this instruction to be called in a function which does
   7219 not take a variable number of arguments, for example, the ``vfprintf``
   7220 function.
   7221 
   7222 ``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
   7223 function <intrinsics>` because it takes a type as an argument.
   7224 
   7225 Example:
   7226 """"""""
   7227 
   7228 See the :ref:`variable argument processing <int_varargs>` section.
   7229 
   7230 Note that the code generator does not yet fully support va\_arg on many
   7231 targets. Also, it does not currently support va\_arg with aggregate
   7232 types on any target.
   7233 
   7234 .. _i_landingpad:
   7235 
   7236 '``landingpad``' Instruction
   7237 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7238 
   7239 Syntax:
   7240 """""""
   7241 
   7242 ::
   7243 
   7244       <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
   7245       <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
   7246 
   7247       <clause> := catch <type> <value>
   7248       <clause> := filter <array constant type> <array constant>
   7249 
   7250 Overview:
   7251 """""""""
   7252 
   7253 The '``landingpad``' instruction is used by `LLVM's exception handling
   7254 system <ExceptionHandling.html#overview>`_ to specify that a basic block
   7255 is a landing pad --- one where the exception lands, and corresponds to the
   7256 code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
   7257 defines values supplied by the personality function (``pers_fn``) upon
   7258 re-entry to the function. The ``resultval`` has the type ``resultty``.
   7259 
   7260 Arguments:
   7261 """"""""""
   7262 
   7263 This instruction takes a ``pers_fn`` value. This is the personality
   7264 function associated with the unwinding mechanism. The optional
   7265 ``cleanup`` flag indicates that the landing pad block is a cleanup.
   7266 
   7267 A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
   7268 contains the global variable representing the "type" that may be caught
   7269 or filtered respectively. Unlike the ``catch`` clause, the ``filter``
   7270 clause takes an array constant as its argument. Use
   7271 "``[0 x i8**] undef``" for a filter which cannot throw. The
   7272 '``landingpad``' instruction must contain *at least* one ``clause`` or
   7273 the ``cleanup`` flag.
   7274 
   7275 Semantics:
   7276 """"""""""
   7277 
   7278 The '``landingpad``' instruction defines the values which are set by the
   7279 personality function (``pers_fn``) upon re-entry to the function, and
   7280 therefore the "result type" of the ``landingpad`` instruction. As with
   7281 calling conventions, how the personality function results are
   7282 represented in LLVM IR is target specific.
   7283 
   7284 The clauses are applied in order from top to bottom. If two
   7285 ``landingpad`` instructions are merged together through inlining, the
   7286 clauses from the calling function are appended to the list of clauses.
   7287 When the call stack is being unwound due to an exception being thrown,
   7288 the exception is compared against each ``clause`` in turn. If it doesn't
   7289 match any of the clauses, and the ``cleanup`` flag is not set, then
   7290 unwinding continues further up the call stack.
   7291 
   7292 The ``landingpad`` instruction has several restrictions:
   7293 
   7294 -  A landing pad block is a basic block which is the unwind destination
   7295    of an '``invoke``' instruction.
   7296 -  A landing pad block must have a '``landingpad``' instruction as its
   7297    first non-PHI instruction.
   7298 -  There can be only one '``landingpad``' instruction within the landing
   7299    pad block.
   7300 -  A basic block that is not a landing pad block may not include a
   7301    '``landingpad``' instruction.
   7302 -  All '``landingpad``' instructions in a function must have the same
   7303    personality function.
   7304 
   7305 Example:
   7306 """"""""
   7307 
   7308 .. code-block:: llvm
   7309 
   7310       ;; A landing pad which can catch an integer.
   7311       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   7312                catch i8** @_ZTIi
   7313       ;; A landing pad that is a cleanup.
   7314       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   7315                cleanup
   7316       ;; A landing pad which can catch an integer and can only throw a double.
   7317       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   7318                catch i8** @_ZTIi
   7319                filter [1 x i8**] [@_ZTId]
   7320 
   7321 .. _intrinsics:
   7322 
   7323 Intrinsic Functions
   7324 ===================
   7325 
   7326 LLVM supports the notion of an "intrinsic function". These functions
   7327 have well known names and semantics and are required to follow certain
   7328 restrictions. Overall, these intrinsics represent an extension mechanism
   7329 for the LLVM language that does not require changing all of the
   7330 transformations in LLVM when adding to the language (or the bitcode
   7331 reader/writer, the parser, etc...).
   7332 
   7333 Intrinsic function names must all start with an "``llvm.``" prefix. This
   7334 prefix is reserved in LLVM for intrinsic names; thus, function names may
   7335 not begin with this prefix. Intrinsic functions must always be external
   7336 functions: you cannot define the body of intrinsic functions. Intrinsic
   7337 functions may only be used in call or invoke instructions: it is illegal
   7338 to take the address of an intrinsic function. Additionally, because
   7339 intrinsic functions are part of the LLVM language, it is required if any
   7340 are added that they be documented here.
   7341 
   7342 Some intrinsic functions can be overloaded, i.e., the intrinsic
   7343 represents a family of functions that perform the same operation but on
   7344 different data types. Because LLVM can represent over 8 million
   7345 different integer types, overloading is used commonly to allow an
   7346 intrinsic function to operate on any integer type. One or more of the
   7347 argument types or the result type can be overloaded to accept any
   7348 integer type. Argument types may also be defined as exactly matching a
   7349 previous argument's type or the result type. This allows an intrinsic
   7350 function which accepts multiple arguments, but needs all of them to be
   7351 of the same type, to only be overloaded with respect to a single
   7352 argument or the result.
   7353 
   7354 Overloaded intrinsics will have the names of its overloaded argument
   7355 types encoded into its function name, each preceded by a period. Only
   7356 those types which are overloaded result in a name suffix. Arguments
   7357 whose type is matched against another type do not. For example, the
   7358 ``llvm.ctpop`` function can take an integer of any width and returns an
   7359 integer of exactly the same integer width. This leads to a family of
   7360 functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
   7361 ``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
   7362 overloaded, and only one type suffix is required. Because the argument's
   7363 type is matched against the return type, it does not require its own
   7364 name suffix.
   7365 
   7366 To learn how to add an intrinsic function, please see the `Extending
   7367 LLVM Guide <ExtendingLLVM.html>`_.
   7368 
   7369 .. _int_varargs:
   7370 
   7371 Variable Argument Handling Intrinsics
   7372 -------------------------------------
   7373 
   7374 Variable argument support is defined in LLVM with the
   7375 :ref:`va_arg <i_va_arg>` instruction and these three intrinsic
   7376 functions. These functions are related to the similarly named macros
   7377 defined in the ``<stdarg.h>`` header file.
   7378 
   7379 All of these functions operate on arguments that use a target-specific
   7380 value type "``va_list``". The LLVM assembly language reference manual
   7381 does not define what this type is, so all transformations should be
   7382 prepared to handle these functions regardless of the type used.
   7383 
   7384 This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
   7385 variable argument handling intrinsic functions are used.
   7386 
   7387 .. code-block:: llvm
   7388 
   7389     ; This struct is different for every platform. For most platforms,
   7390     ; it is merely an i8*.
   7391     %struct.va_list = type { i8* }
   7392 
   7393     ; For Unix x86_64 platforms, va_list is the following struct:
   7394     ; %struct.va_list = type { i32, i32, i8*, i8* }
   7395 
   7396     define i32 @test(i32 %X, ...) {
   7397       ; Initialize variable argument processing
   7398       %ap = alloca %struct.va_list
   7399       %ap2 = bitcast %struct.va_list* %ap to i8*
   7400       call void @llvm.va_start(i8* %ap2)
   7401 
   7402       ; Read a single integer argument
   7403       %tmp = va_arg i8* %ap2, i32
   7404 
   7405       ; Demonstrate usage of llvm.va_copy and llvm.va_end
   7406       %aq = alloca i8*
   7407       %aq2 = bitcast i8** %aq to i8*
   7408       call void @llvm.va_copy(i8* %aq2, i8* %ap2)
   7409       call void @llvm.va_end(i8* %aq2)
   7410 
   7411       ; Stop processing of arguments.
   7412       call void @llvm.va_end(i8* %ap2)
   7413       ret i32 %tmp
   7414     }
   7415 
   7416     declare void @llvm.va_start(i8*)
   7417     declare void @llvm.va_copy(i8*, i8*)
   7418     declare void @llvm.va_end(i8*)
   7419 
   7420 .. _int_va_start:
   7421 
   7422 '``llvm.va_start``' Intrinsic
   7423 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7424 
   7425 Syntax:
   7426 """""""
   7427 
   7428 ::
   7429 
   7430       declare void @llvm.va_start(i8* <arglist>)
   7431 
   7432 Overview:
   7433 """""""""
   7434 
   7435 The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
   7436 subsequent use by ``va_arg``.
   7437 
   7438 Arguments:
   7439 """"""""""
   7440 
   7441 The argument is a pointer to a ``va_list`` element to initialize.
   7442 
   7443 Semantics:
   7444 """"""""""
   7445 
   7446 The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
   7447 available in C. In a target-dependent way, it initializes the
   7448 ``va_list`` element to which the argument points, so that the next call
   7449 to ``va_arg`` will produce the first variable argument passed to the
   7450 function. Unlike the C ``va_start`` macro, this intrinsic does not need
   7451 to know the last argument of the function as the compiler can figure
   7452 that out.
   7453 
   7454 '``llvm.va_end``' Intrinsic
   7455 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7456 
   7457 Syntax:
   7458 """""""
   7459 
   7460 ::
   7461 
   7462       declare void @llvm.va_end(i8* <arglist>)
   7463 
   7464 Overview:
   7465 """""""""
   7466 
   7467 The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
   7468 initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
   7469 
   7470 Arguments:
   7471 """"""""""
   7472 
   7473 The argument is a pointer to a ``va_list`` to destroy.
   7474 
   7475 Semantics:
   7476 """"""""""
   7477 
   7478 The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
   7479 available in C. In a target-dependent way, it destroys the ``va_list``
   7480 element to which the argument points. Calls to
   7481 :ref:`llvm.va_start <int_va_start>` and
   7482 :ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
   7483 ``llvm.va_end``.
   7484 
   7485 .. _int_va_copy:
   7486 
   7487 '``llvm.va_copy``' Intrinsic
   7488 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7489 
   7490 Syntax:
   7491 """""""
   7492 
   7493 ::
   7494 
   7495       declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
   7496 
   7497 Overview:
   7498 """""""""
   7499 
   7500 The '``llvm.va_copy``' intrinsic copies the current argument position
   7501 from the source argument list to the destination argument list.
   7502 
   7503 Arguments:
   7504 """"""""""
   7505 
   7506 The first argument is a pointer to a ``va_list`` element to initialize.
   7507 The second argument is a pointer to a ``va_list`` element to copy from.
   7508 
   7509 Semantics:
   7510 """"""""""
   7511 
   7512 The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
   7513 available in C. In a target-dependent way, it copies the source
   7514 ``va_list`` element into the destination ``va_list`` element. This
   7515 intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
   7516 arbitrarily complex and require, for example, memory allocation.
   7517 
   7518 Accurate Garbage Collection Intrinsics
   7519 --------------------------------------
   7520 
   7521 LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
   7522 (GC) requires the frontend to generate code containing appropriate intrinsic
   7523 calls and select an appropriate GC strategy which knows how to lower these
   7524 intrinsics in a manner which is appropriate for the target collector.
   7525 
   7526 These intrinsics allow identification of :ref:`GC roots on the
   7527 stack <int_gcroot>`, as well as garbage collector implementations that
   7528 require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
   7529 Frontends for type-safe garbage collected languages should generate
   7530 these intrinsics to make use of the LLVM garbage collectors. For more
   7531 details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
   7532 
   7533 Experimental Statepoint Intrinsics
   7534 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7535 
   7536 LLVM provides an second experimental set of intrinsics for describing garbage
   7537 collection safepoints in compiled code.  These intrinsics are an alternative
   7538 to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
   7539 :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.  The
   7540 differences in approach are covered in the `Garbage Collection with LLVM
   7541 <GarbageCollection.html>`_ documentation.  The intrinsics themselves are
   7542 described in :doc:`Statepoints`.
   7543 
   7544 .. _int_gcroot:
   7545 
   7546 '``llvm.gcroot``' Intrinsic
   7547 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7548 
   7549 Syntax:
   7550 """""""
   7551 
   7552 ::
   7553 
   7554       declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
   7555 
   7556 Overview:
   7557 """""""""
   7558 
   7559 The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
   7560 the code generator, and allows some metadata to be associated with it.
   7561 
   7562 Arguments:
   7563 """"""""""
   7564 
   7565 The first argument specifies the address of a stack object that contains
   7566 the root pointer. The second pointer (which must be either a constant or
   7567 a global value address) contains the meta-data to be associated with the
   7568 root.
   7569 
   7570 Semantics:
   7571 """"""""""
   7572 
   7573 At runtime, a call to this intrinsic stores a null pointer into the
   7574 "ptrloc" location. At compile-time, the code generator generates
   7575 information to allow the runtime to find the pointer at GC safe points.
   7576 The '``llvm.gcroot``' intrinsic may only be used in a function which
   7577 :ref:`specifies a GC algorithm <gc>`.
   7578 
   7579 .. _int_gcread:
   7580 
   7581 '``llvm.gcread``' Intrinsic
   7582 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7583 
   7584 Syntax:
   7585 """""""
   7586 
   7587 ::
   7588 
   7589       declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
   7590 
   7591 Overview:
   7592 """""""""
   7593 
   7594 The '``llvm.gcread``' intrinsic identifies reads of references from heap
   7595 locations, allowing garbage collector implementations that require read
   7596 barriers.
   7597 
   7598 Arguments:
   7599 """"""""""
   7600 
   7601 The second argument is the address to read from, which should be an
   7602 address allocated from the garbage collector. The first object is a
   7603 pointer to the start of the referenced object, if needed by the language
   7604 runtime (otherwise null).
   7605 
   7606 Semantics:
   7607 """"""""""
   7608 
   7609 The '``llvm.gcread``' intrinsic has the same semantics as a load
   7610 instruction, but may be replaced with substantially more complex code by
   7611 the garbage collector runtime, as needed. The '``llvm.gcread``'
   7612 intrinsic may only be used in a function which :ref:`specifies a GC
   7613 algorithm <gc>`.
   7614 
   7615 .. _int_gcwrite:
   7616 
   7617 '``llvm.gcwrite``' Intrinsic
   7618 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7619 
   7620 Syntax:
   7621 """""""
   7622 
   7623 ::
   7624 
   7625       declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
   7626 
   7627 Overview:
   7628 """""""""
   7629 
   7630 The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
   7631 locations, allowing garbage collector implementations that require write
   7632 barriers (such as generational or reference counting collectors).
   7633 
   7634 Arguments:
   7635 """"""""""
   7636 
   7637 The first argument is the reference to store, the second is the start of
   7638 the object to store it to, and the third is the address of the field of
   7639 Obj to store to. If the runtime does not require a pointer to the
   7640 object, Obj may be null.
   7641 
   7642 Semantics:
   7643 """"""""""
   7644 
   7645 The '``llvm.gcwrite``' intrinsic has the same semantics as a store
   7646 instruction, but may be replaced with substantially more complex code by
   7647 the garbage collector runtime, as needed. The '``llvm.gcwrite``'
   7648 intrinsic may only be used in a function which :ref:`specifies a GC
   7649 algorithm <gc>`.
   7650 
   7651 Code Generator Intrinsics
   7652 -------------------------
   7653 
   7654 These intrinsics are provided by LLVM to expose special features that
   7655 may only be implemented with code generator support.
   7656 
   7657 '``llvm.returnaddress``' Intrinsic
   7658 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7659 
   7660 Syntax:
   7661 """""""
   7662 
   7663 ::
   7664 
   7665       declare i8  *@llvm.returnaddress(i32 <level>)
   7666 
   7667 Overview:
   7668 """""""""
   7669 
   7670 The '``llvm.returnaddress``' intrinsic attempts to compute a
   7671 target-specific value indicating the return address of the current
   7672 function or one of its callers.
   7673 
   7674 Arguments:
   7675 """"""""""
   7676 
   7677 The argument to this intrinsic indicates which function to return the
   7678 address for. Zero indicates the calling function, one indicates its
   7679 caller, etc. The argument is **required** to be a constant integer
   7680 value.
   7681 
   7682 Semantics:
   7683 """"""""""
   7684 
   7685 The '``llvm.returnaddress``' intrinsic either returns a pointer
   7686 indicating the return address of the specified call frame, or zero if it
   7687 cannot be identified. The value returned by this intrinsic is likely to
   7688 be incorrect or 0 for arguments other than zero, so it should only be
   7689 used for debugging purposes.
   7690 
   7691 Note that calling this intrinsic does not prevent function inlining or
   7692 other aggressive transformations, so the value returned may not be that
   7693 of the obvious source-language caller.
   7694 
   7695 '``llvm.frameaddress``' Intrinsic
   7696 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7697 
   7698 Syntax:
   7699 """""""
   7700 
   7701 ::
   7702 
   7703       declare i8* @llvm.frameaddress(i32 <level>)
   7704 
   7705 Overview:
   7706 """""""""
   7707 
   7708 The '``llvm.frameaddress``' intrinsic attempts to return the
   7709 target-specific frame pointer value for the specified stack frame.
   7710 
   7711 Arguments:
   7712 """"""""""
   7713 
   7714 The argument to this intrinsic indicates which function to return the
   7715 frame pointer for. Zero indicates the calling function, one indicates
   7716 its caller, etc. The argument is **required** to be a constant integer
   7717 value.
   7718 
   7719 Semantics:
   7720 """"""""""
   7721 
   7722 The '``llvm.frameaddress``' intrinsic either returns a pointer
   7723 indicating the frame address of the specified call frame, or zero if it
   7724 cannot be identified. The value returned by this intrinsic is likely to
   7725 be incorrect or 0 for arguments other than zero, so it should only be
   7726 used for debugging purposes.
   7727 
   7728 Note that calling this intrinsic does not prevent function inlining or
   7729 other aggressive transformations, so the value returned may not be that
   7730 of the obvious source-language caller.
   7731 
   7732 '``llvm.frameescape``' and '``llvm.framerecover``' Intrinsics
   7733 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7734 
   7735 Syntax:
   7736 """""""
   7737 
   7738 ::
   7739 
   7740       declare void @llvm.frameescape(...)
   7741       declare i8* @llvm.framerecover(i8* %func, i8* %fp, i32 %idx)
   7742 
   7743 Overview:
   7744 """""""""
   7745 
   7746 The '``llvm.frameescape``' intrinsic escapes offsets of a collection of static
   7747 allocas, and the '``llvm.framerecover``' intrinsic applies those offsets to a
   7748 live frame pointer to recover the address of the allocation. The offset is
   7749 computed during frame layout of the caller of ``llvm.frameescape``.
   7750 
   7751 Arguments:
   7752 """"""""""
   7753 
   7754 All arguments to '``llvm.frameescape``' must be pointers to static allocas or
   7755 casts of static allocas. Each function can only call '``llvm.frameescape``'
   7756 once, and it can only do so from the entry block.
   7757 
   7758 The ``func`` argument to '``llvm.framerecover``' must be a constant
   7759 bitcasted pointer to a function defined in the current module. The code
   7760 generator cannot determine the frame allocation offset of functions defined in
   7761 other modules.
   7762 
   7763 The ``fp`` argument to '``llvm.framerecover``' must be a frame
   7764 pointer of a call frame that is currently live. The return value of
   7765 '``llvm.frameaddress``' is one way to produce such a value, but most platforms
   7766 also expose the frame pointer through stack unwinding mechanisms.
   7767 
   7768 The ``idx`` argument to '``llvm.framerecover``' indicates which alloca passed to
   7769 '``llvm.frameescape``' to recover. It is zero-indexed.
   7770 
   7771 Semantics:
   7772 """"""""""
   7773 
   7774 These intrinsics allow a group of functions to access one stack memory
   7775 allocation in an ancestor stack frame. The memory returned from
   7776 '``llvm.frameallocate``' may be allocated prior to stack realignment, so the
   7777 memory is only aligned to the ABI-required stack alignment.  Each function may
   7778 only call '``llvm.frameallocate``' one or zero times from the function entry
   7779 block.  The frame allocation intrinsic inhibits inlining, as any frame
   7780 allocations in the inlined function frame are likely to be at a different
   7781 offset from the one used by '``llvm.framerecover``' called with the
   7782 uninlined function.
   7783 
   7784 .. _int_read_register:
   7785 .. _int_write_register:
   7786 
   7787 '``llvm.read_register``' and '``llvm.write_register``' Intrinsics
   7788 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7789 
   7790 Syntax:
   7791 """""""
   7792 
   7793 ::
   7794 
   7795       declare i32 @llvm.read_register.i32(metadata)
   7796       declare i64 @llvm.read_register.i64(metadata)
   7797       declare void @llvm.write_register.i32(metadata, i32 @value)
   7798       declare void @llvm.write_register.i64(metadata, i64 @value)
   7799       !0 = !{!"sp\00"}
   7800 
   7801 Overview:
   7802 """""""""
   7803 
   7804 The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
   7805 provides access to the named register. The register must be valid on
   7806 the architecture being compiled to. The type needs to be compatible
   7807 with the register being read.
   7808 
   7809 Semantics:
   7810 """"""""""
   7811 
   7812 The '``llvm.read_register``' intrinsic returns the current value of the
   7813 register, where possible. The '``llvm.write_register``' intrinsic sets
   7814 the current value of the register, where possible.
   7815 
   7816 This is useful to implement named register global variables that need
   7817 to always be mapped to a specific register, as is common practice on
   7818 bare-metal programs including OS kernels.
   7819 
   7820 The compiler doesn't check for register availability or use of the used
   7821 register in surrounding code, including inline assembly. Because of that,
   7822 allocatable registers are not supported.
   7823 
   7824 Warning: So far it only works with the stack pointer on selected
   7825 architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
   7826 work is needed to support other registers and even more so, allocatable
   7827 registers.
   7828 
   7829 .. _int_stacksave:
   7830 
   7831 '``llvm.stacksave``' Intrinsic
   7832 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7833 
   7834 Syntax:
   7835 """""""
   7836 
   7837 ::
   7838 
   7839       declare i8* @llvm.stacksave()
   7840 
   7841 Overview:
   7842 """""""""
   7843 
   7844 The '``llvm.stacksave``' intrinsic is used to remember the current state
   7845 of the function stack, for use with
   7846 :ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
   7847 implementing language features like scoped automatic variable sized
   7848 arrays in C99.
   7849 
   7850 Semantics:
   7851 """"""""""
   7852 
   7853 This intrinsic returns a opaque pointer value that can be passed to
   7854 :ref:`llvm.stackrestore <int_stackrestore>`. When an
   7855 ``llvm.stackrestore`` intrinsic is executed with a value saved from
   7856 ``llvm.stacksave``, it effectively restores the state of the stack to
   7857 the state it was in when the ``llvm.stacksave`` intrinsic executed. In
   7858 practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
   7859 were allocated after the ``llvm.stacksave`` was executed.
   7860 
   7861 .. _int_stackrestore:
   7862 
   7863 '``llvm.stackrestore``' Intrinsic
   7864 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7865 
   7866 Syntax:
   7867 """""""
   7868 
   7869 ::
   7870 
   7871       declare void @llvm.stackrestore(i8* %ptr)
   7872 
   7873 Overview:
   7874 """""""""
   7875 
   7876 The '``llvm.stackrestore``' intrinsic is used to restore the state of
   7877 the function stack to the state it was in when the corresponding
   7878 :ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
   7879 useful for implementing language features like scoped automatic variable
   7880 sized arrays in C99.
   7881 
   7882 Semantics:
   7883 """"""""""
   7884 
   7885 See the description for :ref:`llvm.stacksave <int_stacksave>`.
   7886 
   7887 '``llvm.prefetch``' Intrinsic
   7888 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7889 
   7890 Syntax:
   7891 """""""
   7892 
   7893 ::
   7894 
   7895       declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
   7896 
   7897 Overview:
   7898 """""""""
   7899 
   7900 The '``llvm.prefetch``' intrinsic is a hint to the code generator to
   7901 insert a prefetch instruction if supported; otherwise, it is a noop.
   7902 Prefetches have no effect on the behavior of the program but can change
   7903 its performance characteristics.
   7904 
   7905 Arguments:
   7906 """"""""""
   7907 
   7908 ``address`` is the address to be prefetched, ``rw`` is the specifier
   7909 determining if the fetch should be for a read (0) or write (1), and
   7910 ``locality`` is a temporal locality specifier ranging from (0) - no
   7911 locality, to (3) - extremely local keep in cache. The ``cache type``
   7912 specifies whether the prefetch is performed on the data (1) or
   7913 instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
   7914 arguments must be constant integers.
   7915 
   7916 Semantics:
   7917 """"""""""
   7918 
   7919 This intrinsic does not modify the behavior of the program. In
   7920 particular, prefetches cannot trap and do not produce a value. On
   7921 targets that support this intrinsic, the prefetch can provide hints to
   7922 the processor cache for better performance.
   7923 
   7924 '``llvm.pcmarker``' Intrinsic
   7925 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7926 
   7927 Syntax:
   7928 """""""
   7929 
   7930 ::
   7931 
   7932       declare void @llvm.pcmarker(i32 <id>)
   7933 
   7934 Overview:
   7935 """""""""
   7936 
   7937 The '``llvm.pcmarker``' intrinsic is a method to export a Program
   7938 Counter (PC) in a region of code to simulators and other tools. The
   7939 method is target specific, but it is expected that the marker will use
   7940 exported symbols to transmit the PC of the marker. The marker makes no
   7941 guarantees that it will remain with any specific instruction after
   7942 optimizations. It is possible that the presence of a marker will inhibit
   7943 optimizations. The intended use is to be inserted after optimizations to
   7944 allow correlations of simulation runs.
   7945 
   7946 Arguments:
   7947 """"""""""
   7948 
   7949 ``id`` is a numerical id identifying the marker.
   7950 
   7951 Semantics:
   7952 """"""""""
   7953 
   7954 This intrinsic does not modify the behavior of the program. Backends
   7955 that do not support this intrinsic may ignore it.
   7956 
   7957 '``llvm.readcyclecounter``' Intrinsic
   7958 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7959 
   7960 Syntax:
   7961 """""""
   7962 
   7963 ::
   7964 
   7965       declare i64 @llvm.readcyclecounter()
   7966 
   7967 Overview:
   7968 """""""""
   7969 
   7970 The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
   7971 counter register (or similar low latency, high accuracy clocks) on those
   7972 targets that support it. On X86, it should map to RDTSC. On Alpha, it
   7973 should map to RPCC. As the backing counters overflow quickly (on the
   7974 order of 9 seconds on alpha), this should only be used for small
   7975 timings.
   7976 
   7977 Semantics:
   7978 """"""""""
   7979 
   7980 When directly supported, reading the cycle counter should not modify any
   7981 memory. Implementations are allowed to either return a application
   7982 specific value or a system wide value. On backends without support, this
   7983 is lowered to a constant 0.
   7984 
   7985 Note that runtime support may be conditional on the privilege-level code is
   7986 running at and the host platform.
   7987 
   7988 '``llvm.clear_cache``' Intrinsic
   7989 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7990 
   7991 Syntax:
   7992 """""""
   7993 
   7994 ::
   7995 
   7996       declare void @llvm.clear_cache(i8*, i8*)
   7997 
   7998 Overview:
   7999 """""""""
   8000 
   8001 The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
   8002 in the specified range to the execution unit of the processor. On
   8003 targets with non-unified instruction and data cache, the implementation
   8004 flushes the instruction cache.
   8005 
   8006 Semantics:
   8007 """"""""""
   8008 
   8009 On platforms with coherent instruction and data caches (e.g. x86), this
   8010 intrinsic is a nop. On platforms with non-coherent instruction and data
   8011 cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
   8012 instructions or a system call, if cache flushing requires special
   8013 privileges.
   8014 
   8015 The default behavior is to emit a call to ``__clear_cache`` from the run
   8016 time library.
   8017 
   8018 This instrinsic does *not* empty the instruction pipeline. Modifications
   8019 of the current function are outside the scope of the intrinsic.
   8020 
   8021 '``llvm.instrprof_increment``' Intrinsic
   8022 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8023 
   8024 Syntax:
   8025 """""""
   8026 
   8027 ::
   8028 
   8029       declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
   8030                                              i32 <num-counters>, i32 <index>)
   8031 
   8032 Overview:
   8033 """""""""
   8034 
   8035 The '``llvm.instrprof_increment``' intrinsic can be emitted by a
   8036 frontend for use with instrumentation based profiling. These will be
   8037 lowered by the ``-instrprof`` pass to generate execution counts of a
   8038 program at runtime.
   8039 
   8040 Arguments:
   8041 """"""""""
   8042 
   8043 The first argument is a pointer to a global variable containing the
   8044 name of the entity being instrumented. This should generally be the
   8045 (mangled) function name for a set of counters.
   8046 
   8047 The second argument is a hash value that can be used by the consumer
   8048 of the profile data to detect changes to the instrumented source, and
   8049 the third is the number of counters associated with ``name``. It is an
   8050 error if ``hash`` or ``num-counters`` differ between two instances of
   8051 ``instrprof_increment`` that refer to the same name.
   8052 
   8053 The last argument refers to which of the counters for ``name`` should
   8054 be incremented. It should be a value between 0 and ``num-counters``.
   8055 
   8056 Semantics:
   8057 """"""""""
   8058 
   8059 This intrinsic represents an increment of a profiling counter. It will
   8060 cause the ``-instrprof`` pass to generate the appropriate data
   8061 structures and the code to increment the appropriate value, in a
   8062 format that can be written out by a compiler runtime and consumed via
   8063 the ``llvm-profdata`` tool.
   8064 
   8065 Standard C Library Intrinsics
   8066 -----------------------------
   8067 
   8068 LLVM provides intrinsics for a few important standard C library
   8069 functions. These intrinsics allow source-language front-ends to pass
   8070 information about the alignment of the pointer arguments to the code
   8071 generator, providing opportunity for more efficient code generation.
   8072 
   8073 .. _int_memcpy:
   8074 
   8075 '``llvm.memcpy``' Intrinsic
   8076 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8077 
   8078 Syntax:
   8079 """""""
   8080 
   8081 This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
   8082 integer bit width and for different address spaces. Not all targets
   8083 support all bit widths however.
   8084 
   8085 ::
   8086 
   8087       declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
   8088                                               i32 <len>, i32 <align>, i1 <isvolatile>)
   8089       declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
   8090                                               i64 <len>, i32 <align>, i1 <isvolatile>)
   8091 
   8092 Overview:
   8093 """""""""
   8094 
   8095 The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
   8096 source location to the destination location.
   8097 
   8098 Note that, unlike the standard libc function, the ``llvm.memcpy.*``
   8099 intrinsics do not return a value, takes extra alignment/isvolatile
   8100 arguments and the pointers can be in specified address spaces.
   8101 
   8102 Arguments:
   8103 """"""""""
   8104 
   8105 The first argument is a pointer to the destination, the second is a
   8106 pointer to the source. The third argument is an integer argument
   8107 specifying the number of bytes to copy, the fourth argument is the
   8108 alignment of the source and destination locations, and the fifth is a
   8109 boolean indicating a volatile access.
   8110 
   8111 If the call to this intrinsic has an alignment value that is not 0 or 1,
   8112 then the caller guarantees that both the source and destination pointers
   8113 are aligned to that boundary.
   8114 
   8115 If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
   8116 a :ref:`volatile operation <volatile>`. The detailed access behavior is not
   8117 very cleanly specified and it is unwise to depend on it.
   8118 
   8119 Semantics:
   8120 """"""""""
   8121 
   8122 The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
   8123 source location to the destination location, which are not allowed to
   8124 overlap. It copies "len" bytes of memory over. If the argument is known
   8125 to be aligned to some boundary, this can be specified as the fourth
   8126 argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
   8127 
   8128 '``llvm.memmove``' Intrinsic
   8129 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8130 
   8131 Syntax:
   8132 """""""
   8133 
   8134 This is an overloaded intrinsic. You can use llvm.memmove on any integer
   8135 bit width and for different address space. Not all targets support all
   8136 bit widths however.
   8137 
   8138 ::
   8139 
   8140       declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
   8141                                                i32 <len>, i32 <align>, i1 <isvolatile>)
   8142       declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
   8143                                                i64 <len>, i32 <align>, i1 <isvolatile>)
   8144 
   8145 Overview:
   8146 """""""""
   8147 
   8148 The '``llvm.memmove.*``' intrinsics move a block of memory from the
   8149 source location to the destination location. It is similar to the
   8150 '``llvm.memcpy``' intrinsic but allows the two memory locations to
   8151 overlap.
   8152 
   8153 Note that, unlike the standard libc function, the ``llvm.memmove.*``
   8154 intrinsics do not return a value, takes extra alignment/isvolatile
   8155 arguments and the pointers can be in specified address spaces.
   8156 
   8157 Arguments:
   8158 """"""""""
   8159 
   8160 The first argument is a pointer to the destination, the second is a
   8161 pointer to the source. The third argument is an integer argument
   8162 specifying the number of bytes to copy, the fourth argument is the
   8163 alignment of the source and destination locations, and the fifth is a
   8164 boolean indicating a volatile access.
   8165 
   8166 If the call to this intrinsic has an alignment value that is not 0 or 1,
   8167 then the caller guarantees that the source and destination pointers are
   8168 aligned to that boundary.
   8169 
   8170 If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
   8171 is a :ref:`volatile operation <volatile>`. The detailed access behavior is
   8172 not very cleanly specified and it is unwise to depend on it.
   8173 
   8174 Semantics:
   8175 """"""""""
   8176 
   8177 The '``llvm.memmove.*``' intrinsics copy a block of memory from the
   8178 source location to the destination location, which may overlap. It
   8179 copies "len" bytes of memory over. If the argument is known to be
   8180 aligned to some boundary, this can be specified as the fourth argument,
   8181 otherwise it should be set to 0 or 1 (both meaning no alignment).
   8182 
   8183 '``llvm.memset.*``' Intrinsics
   8184 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8185 
   8186 Syntax:
   8187 """""""
   8188 
   8189 This is an overloaded intrinsic. You can use llvm.memset on any integer
   8190 bit width and for different address spaces. However, not all targets
   8191 support all bit widths.
   8192 
   8193 ::
   8194 
   8195       declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
   8196                                          i32 <len>, i32 <align>, i1 <isvolatile>)
   8197       declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
   8198                                          i64 <len>, i32 <align>, i1 <isvolatile>)
   8199 
   8200 Overview:
   8201 """""""""
   8202 
   8203 The '``llvm.memset.*``' intrinsics fill a block of memory with a
   8204 particular byte value.
   8205 
   8206 Note that, unlike the standard libc function, the ``llvm.memset``
   8207 intrinsic does not return a value and takes extra alignment/volatile
   8208 arguments. Also, the destination can be in an arbitrary address space.
   8209 
   8210 Arguments:
   8211 """"""""""
   8212 
   8213 The first argument is a pointer to the destination to fill, the second
   8214 is the byte value with which to fill it, the third argument is an
   8215 integer argument specifying the number of bytes to fill, and the fourth
   8216 argument is the known alignment of the destination location.
   8217 
   8218 If the call to this intrinsic has an alignment value that is not 0 or 1,
   8219 then the caller guarantees that the destination pointer is aligned to
   8220 that boundary.
   8221 
   8222 If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
   8223 a :ref:`volatile operation <volatile>`. The detailed access behavior is not
   8224 very cleanly specified and it is unwise to depend on it.
   8225 
   8226 Semantics:
   8227 """"""""""
   8228 
   8229 The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
   8230 at the destination location. If the argument is known to be aligned to
   8231 some boundary, this can be specified as the fourth argument, otherwise
   8232 it should be set to 0 or 1 (both meaning no alignment).
   8233 
   8234 '``llvm.sqrt.*``' Intrinsic
   8235 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8236 
   8237 Syntax:
   8238 """""""
   8239 
   8240 This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
   8241 floating point or vector of floating point type. Not all targets support
   8242 all types however.
   8243 
   8244 ::
   8245 
   8246       declare float     @llvm.sqrt.f32(float %Val)
   8247       declare double    @llvm.sqrt.f64(double %Val)
   8248       declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
   8249       declare fp128     @llvm.sqrt.f128(fp128 %Val)
   8250       declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
   8251 
   8252 Overview:
   8253 """""""""
   8254 
   8255 The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
   8256 returning the same value as the libm '``sqrt``' functions would. Unlike
   8257 ``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
   8258 negative numbers other than -0.0 (which allows for better optimization,
   8259 because there is no need to worry about errno being set).
   8260 ``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
   8261 
   8262 Arguments:
   8263 """"""""""
   8264 
   8265 The argument and return value are floating point numbers of the same
   8266 type.
   8267 
   8268 Semantics:
   8269 """"""""""
   8270 
   8271 This function returns the sqrt of the specified operand if it is a
   8272 nonnegative floating point number.
   8273 
   8274 '``llvm.powi.*``' Intrinsic
   8275 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8276 
   8277 Syntax:
   8278 """""""
   8279 
   8280 This is an overloaded intrinsic. You can use ``llvm.powi`` on any
   8281 floating point or vector of floating point type. Not all targets support
   8282 all types however.
   8283 
   8284 ::
   8285 
   8286       declare float     @llvm.powi.f32(float  %Val, i32 %power)
   8287       declare double    @llvm.powi.f64(double %Val, i32 %power)
   8288       declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
   8289       declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
   8290       declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
   8291 
   8292 Overview:
   8293 """""""""
   8294 
   8295 The '``llvm.powi.*``' intrinsics return the first operand raised to the
   8296 specified (positive or negative) power. The order of evaluation of
   8297 multiplications is not defined. When a vector of floating point type is
   8298 used, the second argument remains a scalar integer value.
   8299 
   8300 Arguments:
   8301 """"""""""
   8302 
   8303 The second argument is an integer power, and the first is a value to
   8304 raise to that power.
   8305 
   8306 Semantics:
   8307 """"""""""
   8308 
   8309 This function returns the first value raised to the second power with an
   8310 unspecified sequence of rounding operations.
   8311 
   8312 '``llvm.sin.*``' Intrinsic
   8313 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   8314 
   8315 Syntax:
   8316 """""""
   8317 
   8318 This is an overloaded intrinsic. You can use ``llvm.sin`` on any
   8319 floating point or vector of floating point type. Not all targets support
   8320 all types however.
   8321 
   8322 ::
   8323 
   8324       declare float     @llvm.sin.f32(float  %Val)
   8325       declare double    @llvm.sin.f64(double %Val)
   8326       declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
   8327       declare fp128     @llvm.sin.f128(fp128 %Val)
   8328       declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
   8329 
   8330 Overview:
   8331 """""""""
   8332 
   8333 The '``llvm.sin.*``' intrinsics return the sine of the operand.
   8334 
   8335 Arguments:
   8336 """"""""""
   8337 
   8338 The argument and return value are floating point numbers of the same
   8339 type.
   8340 
   8341 Semantics:
   8342 """"""""""
   8343 
   8344 This function returns the sine of the specified operand, returning the
   8345 same values as the libm ``sin`` functions would, and handles error
   8346 conditions in the same way.
   8347 
   8348 '``llvm.cos.*``' Intrinsic
   8349 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   8350 
   8351 Syntax:
   8352 """""""
   8353 
   8354 This is an overloaded intrinsic. You can use ``llvm.cos`` on any
   8355 floating point or vector of floating point type. Not all targets support
   8356 all types however.
   8357 
   8358 ::
   8359 
   8360       declare float     @llvm.cos.f32(float  %Val)
   8361       declare double    @llvm.cos.f64(double %Val)
   8362       declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
   8363       declare fp128     @llvm.cos.f128(fp128 %Val)
   8364       declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
   8365 
   8366 Overview:
   8367 """""""""
   8368 
   8369 The '``llvm.cos.*``' intrinsics return the cosine of the operand.
   8370 
   8371 Arguments:
   8372 """"""""""
   8373 
   8374 The argument and return value are floating point numbers of the same
   8375 type.
   8376 
   8377 Semantics:
   8378 """"""""""
   8379 
   8380 This function returns the cosine of the specified operand, returning the
   8381 same values as the libm ``cos`` functions would, and handles error
   8382 conditions in the same way.
   8383 
   8384 '``llvm.pow.*``' Intrinsic
   8385 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   8386 
   8387 Syntax:
   8388 """""""
   8389 
   8390 This is an overloaded intrinsic. You can use ``llvm.pow`` on any
   8391 floating point or vector of floating point type. Not all targets support
   8392 all types however.
   8393 
   8394 ::
   8395 
   8396       declare float     @llvm.pow.f32(float  %Val, float %Power)
   8397       declare double    @llvm.pow.f64(double %Val, double %Power)
   8398       declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
   8399       declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
   8400       declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
   8401 
   8402 Overview:
   8403 """""""""
   8404 
   8405 The '``llvm.pow.*``' intrinsics return the first operand raised to the
   8406 specified (positive or negative) power.
   8407 
   8408 Arguments:
   8409 """"""""""
   8410 
   8411 The second argument is a floating point power, and the first is a value
   8412 to raise to that power.
   8413 
   8414 Semantics:
   8415 """"""""""
   8416 
   8417 This function returns the first value raised to the second power,
   8418 returning the same values as the libm ``pow`` functions would, and
   8419 handles error conditions in the same way.
   8420 
   8421 '``llvm.exp.*``' Intrinsic
   8422 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   8423 
   8424 Syntax:
   8425 """""""
   8426 
   8427 This is an overloaded intrinsic. You can use ``llvm.exp`` on any
   8428 floating point or vector of floating point type. Not all targets support
   8429 all types however.
   8430 
   8431 ::
   8432 
   8433       declare float     @llvm.exp.f32(float  %Val)
   8434       declare double    @llvm.exp.f64(double %Val)
   8435       declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
   8436       declare fp128     @llvm.exp.f128(fp128 %Val)
   8437       declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
   8438 
   8439 Overview:
   8440 """""""""
   8441 
   8442 The '``llvm.exp.*``' intrinsics perform the exp function.
   8443 
   8444 Arguments:
   8445 """"""""""
   8446 
   8447 The argument and return value are floating point numbers of the same
   8448 type.
   8449 
   8450 Semantics:
   8451 """"""""""
   8452 
   8453 This function returns the same values as the libm ``exp`` functions
   8454 would, and handles error conditions in the same way.
   8455 
   8456 '``llvm.exp2.*``' Intrinsic
   8457 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8458 
   8459 Syntax:
   8460 """""""
   8461 
   8462 This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
   8463 floating point or vector of floating point type. Not all targets support
   8464 all types however.
   8465 
   8466 ::
   8467 
   8468       declare float     @llvm.exp2.f32(float  %Val)
   8469       declare double    @llvm.exp2.f64(double %Val)
   8470       declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
   8471       declare fp128     @llvm.exp2.f128(fp128 %Val)
   8472       declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)
   8473 
   8474 Overview:
   8475 """""""""
   8476 
   8477 The '``llvm.exp2.*``' intrinsics perform the exp2 function.
   8478 
   8479 Arguments:
   8480 """"""""""
   8481 
   8482 The argument and return value are floating point numbers of the same
   8483 type.
   8484 
   8485 Semantics:
   8486 """"""""""
   8487 
   8488 This function returns the same values as the libm ``exp2`` functions
   8489 would, and handles error conditions in the same way.
   8490 
   8491 '``llvm.log.*``' Intrinsic
   8492 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   8493 
   8494 Syntax:
   8495 """""""
   8496 
   8497 This is an overloaded intrinsic. You can use ``llvm.log`` on any
   8498 floating point or vector of floating point type. Not all targets support
   8499 all types however.
   8500 
   8501 ::
   8502 
   8503       declare float     @llvm.log.f32(float  %Val)
   8504       declare double    @llvm.log.f64(double %Val)
   8505       declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
   8506       declare fp128     @llvm.log.f128(fp128 %Val)
   8507       declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
   8508 
   8509 Overview:
   8510 """""""""
   8511 
   8512 The '``llvm.log.*``' intrinsics perform the log function.
   8513 
   8514 Arguments:
   8515 """"""""""
   8516 
   8517 The argument and return value are floating point numbers of the same
   8518 type.
   8519 
   8520 Semantics:
   8521 """"""""""
   8522 
   8523 This function returns the same values as the libm ``log`` functions
   8524 would, and handles error conditions in the same way.
   8525 
   8526 '``llvm.log10.*``' Intrinsic
   8527 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8528 
   8529 Syntax:
   8530 """""""
   8531 
   8532 This is an overloaded intrinsic. You can use ``llvm.log10`` on any
   8533 floating point or vector of floating point type. Not all targets support
   8534 all types however.
   8535 
   8536 ::
   8537 
   8538       declare float     @llvm.log10.f32(float  %Val)
   8539       declare double    @llvm.log10.f64(double %Val)
   8540       declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
   8541       declare fp128     @llvm.log10.f128(fp128 %Val)
   8542       declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)
   8543 
   8544 Overview:
   8545 """""""""
   8546 
   8547 The '``llvm.log10.*``' intrinsics perform the log10 function.
   8548 
   8549 Arguments:
   8550 """"""""""
   8551 
   8552 The argument and return value are floating point numbers of the same
   8553 type.
   8554 
   8555 Semantics:
   8556 """"""""""
   8557 
   8558 This function returns the same values as the libm ``log10`` functions
   8559 would, and handles error conditions in the same way.
   8560 
   8561 '``llvm.log2.*``' Intrinsic
   8562 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8563 
   8564 Syntax:
   8565 """""""
   8566 
   8567 This is an overloaded intrinsic. You can use ``llvm.log2`` on any
   8568 floating point or vector of floating point type. Not all targets support
   8569 all types however.
   8570 
   8571 ::
   8572 
   8573       declare float     @llvm.log2.f32(float  %Val)
   8574       declare double    @llvm.log2.f64(double %Val)
   8575       declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
   8576       declare fp128     @llvm.log2.f128(fp128 %Val)
   8577       declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)
   8578 
   8579 Overview:
   8580 """""""""
   8581 
   8582 The '``llvm.log2.*``' intrinsics perform the log2 function.
   8583 
   8584 Arguments:
   8585 """"""""""
   8586 
   8587 The argument and return value are floating point numbers of the same
   8588 type.
   8589 
   8590 Semantics:
   8591 """"""""""
   8592 
   8593 This function returns the same values as the libm ``log2`` functions
   8594 would, and handles error conditions in the same way.
   8595 
   8596 '``llvm.fma.*``' Intrinsic
   8597 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   8598 
   8599 Syntax:
   8600 """""""
   8601 
   8602 This is an overloaded intrinsic. You can use ``llvm.fma`` on any
   8603 floating point or vector of floating point type. Not all targets support
   8604 all types however.
   8605 
   8606 ::
   8607 
   8608       declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
   8609       declare double    @llvm.fma.f64(double %a, double %b, double %c)
   8610       declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
   8611       declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
   8612       declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
   8613 
   8614 Overview:
   8615 """""""""
   8616 
   8617 The '``llvm.fma.*``' intrinsics perform the fused multiply-add
   8618 operation.
   8619 
   8620 Arguments:
   8621 """"""""""
   8622 
   8623 The argument and return value are floating point numbers of the same
   8624 type.
   8625 
   8626 Semantics:
   8627 """"""""""
   8628 
   8629 This function returns the same values as the libm ``fma`` functions
   8630 would, and does not set errno.
   8631 
   8632 '``llvm.fabs.*``' Intrinsic
   8633 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8634 
   8635 Syntax:
   8636 """""""
   8637 
   8638 This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
   8639 floating point or vector of floating point type. Not all targets support
   8640 all types however.
   8641 
   8642 ::
   8643 
   8644       declare float     @llvm.fabs.f32(float  %Val)
   8645       declare double    @llvm.fabs.f64(double %Val)
   8646       declare x86_fp80  @llvm.fabs.f80(x86_fp80 %Val)
   8647       declare fp128     @llvm.fabs.f128(fp128 %Val)
   8648       declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
   8649 
   8650 Overview:
   8651 """""""""
   8652 
   8653 The '``llvm.fabs.*``' intrinsics return the absolute value of the
   8654 operand.
   8655 
   8656 Arguments:
   8657 """"""""""
   8658 
   8659 The argument and return value are floating point numbers of the same
   8660 type.
   8661 
   8662 Semantics:
   8663 """"""""""
   8664 
   8665 This function returns the same values as the libm ``fabs`` functions
   8666 would, and handles error conditions in the same way.
   8667 
   8668 '``llvm.minnum.*``' Intrinsic
   8669 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8670 
   8671 Syntax:
   8672 """""""
   8673 
   8674 This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
   8675 floating point or vector of floating point type. Not all targets support
   8676 all types however.
   8677 
   8678 ::
   8679 
   8680       declare float     @llvm.minnum.f32(float %Val0, float %Val1)
   8681       declare double    @llvm.minnum.f64(double %Val0, double %Val1)
   8682       declare x86_fp80  @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
   8683       declare fp128     @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
   8684       declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
   8685 
   8686 Overview:
   8687 """""""""
   8688 
   8689 The '``llvm.minnum.*``' intrinsics return the minimum of the two
   8690 arguments.
   8691 
   8692 
   8693 Arguments:
   8694 """"""""""
   8695 
   8696 The arguments and return value are floating point numbers of the same
   8697 type.
   8698 
   8699 Semantics:
   8700 """"""""""
   8701 
   8702 Follows the IEEE-754 semantics for minNum, which also match for libm's
   8703 fmin.
   8704 
   8705 If either operand is a NaN, returns the other non-NaN operand. Returns
   8706 NaN only if both operands are NaN. If the operands compare equal,
   8707 returns a value that compares equal to both operands. This means that
   8708 fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
   8709 
   8710 '``llvm.maxnum.*``' Intrinsic
   8711 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8712 
   8713 Syntax:
   8714 """""""
   8715 
   8716 This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
   8717 floating point or vector of floating point type. Not all targets support
   8718 all types however.
   8719 
   8720 ::
   8721 
   8722       declare float     @llvm.maxnum.f32(float  %Val0, float  %Val1l)
   8723       declare double    @llvm.maxnum.f64(double %Val0, double %Val1)
   8724       declare x86_fp80  @llvm.maxnum.f80(x86_fp80  %Val0, x86_fp80  %Val1)
   8725       declare fp128     @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
   8726       declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128  %Val0, ppc_fp128  %Val1)
   8727 
   8728 Overview:
   8729 """""""""
   8730 
   8731 The '``llvm.maxnum.*``' intrinsics return the maximum of the two
   8732 arguments.
   8733 
   8734 
   8735 Arguments:
   8736 """"""""""
   8737 
   8738 The arguments and return value are floating point numbers of the same
   8739 type.
   8740 
   8741 Semantics:
   8742 """"""""""
   8743 Follows the IEEE-754 semantics for maxNum, which also match for libm's
   8744 fmax.
   8745 
   8746 If either operand is a NaN, returns the other non-NaN operand. Returns
   8747 NaN only if both operands are NaN. If the operands compare equal,
   8748 returns a value that compares equal to both operands. This means that
   8749 fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
   8750 
   8751 '``llvm.copysign.*``' Intrinsic
   8752 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8753 
   8754 Syntax:
   8755 """""""
   8756 
   8757 This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
   8758 floating point or vector of floating point type. Not all targets support
   8759 all types however.
   8760 
   8761 ::
   8762 
   8763       declare float     @llvm.copysign.f32(float  %Mag, float  %Sgn)
   8764       declare double    @llvm.copysign.f64(double %Mag, double %Sgn)
   8765       declare x86_fp80  @llvm.copysign.f80(x86_fp80  %Mag, x86_fp80  %Sgn)
   8766       declare fp128     @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
   8767       declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128  %Mag, ppc_fp128  %Sgn)
   8768 
   8769 Overview:
   8770 """""""""
   8771 
   8772 The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
   8773 first operand and the sign of the second operand.
   8774 
   8775 Arguments:
   8776 """"""""""
   8777 
   8778 The arguments and return value are floating point numbers of the same
   8779 type.
   8780 
   8781 Semantics:
   8782 """"""""""
   8783 
   8784 This function returns the same values as the libm ``copysign``
   8785 functions would, and handles error conditions in the same way.
   8786 
   8787 '``llvm.floor.*``' Intrinsic
   8788 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8789 
   8790 Syntax:
   8791 """""""
   8792 
   8793 This is an overloaded intrinsic. You can use ``llvm.floor`` on any
   8794 floating point or vector of floating point type. Not all targets support
   8795 all types however.
   8796 
   8797 ::
   8798 
   8799       declare float     @llvm.floor.f32(float  %Val)
   8800       declare double    @llvm.floor.f64(double %Val)
   8801       declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
   8802       declare fp128     @llvm.floor.f128(fp128 %Val)
   8803       declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
   8804 
   8805 Overview:
   8806 """""""""
   8807 
   8808 The '``llvm.floor.*``' intrinsics return the floor of the operand.
   8809 
   8810 Arguments:
   8811 """"""""""
   8812 
   8813 The argument and return value are floating point numbers of the same
   8814 type.
   8815 
   8816 Semantics:
   8817 """"""""""
   8818 
   8819 This function returns the same values as the libm ``floor`` functions
   8820 would, and handles error conditions in the same way.
   8821 
   8822 '``llvm.ceil.*``' Intrinsic
   8823 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8824 
   8825 Syntax:
   8826 """""""
   8827 
   8828 This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
   8829 floating point or vector of floating point type. Not all targets support
   8830 all types however.
   8831 
   8832 ::
   8833 
   8834       declare float     @llvm.ceil.f32(float  %Val)
   8835       declare double    @llvm.ceil.f64(double %Val)
   8836       declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
   8837       declare fp128     @llvm.ceil.f128(fp128 %Val)
   8838       declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)
   8839 
   8840 Overview:
   8841 """""""""
   8842 
   8843 The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
   8844 
   8845 Arguments:
   8846 """"""""""
   8847 
   8848 The argument and return value are floating point numbers of the same
   8849 type.
   8850 
   8851 Semantics:
   8852 """"""""""
   8853 
   8854 This function returns the same values as the libm ``ceil`` functions
   8855 would, and handles error conditions in the same way.
   8856 
   8857 '``llvm.trunc.*``' Intrinsic
   8858 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8859 
   8860 Syntax:
   8861 """""""
   8862 
   8863 This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
   8864 floating point or vector of floating point type. Not all targets support
   8865 all types however.
   8866 
   8867 ::
   8868 
   8869       declare float     @llvm.trunc.f32(float  %Val)
   8870       declare double    @llvm.trunc.f64(double %Val)
   8871       declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
   8872       declare fp128     @llvm.trunc.f128(fp128 %Val)
   8873       declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)
   8874 
   8875 Overview:
   8876 """""""""
   8877 
   8878 The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
   8879 nearest integer not larger in magnitude than the operand.
   8880 
   8881 Arguments:
   8882 """"""""""
   8883 
   8884 The argument and return value are floating point numbers of the same
   8885 type.
   8886 
   8887 Semantics:
   8888 """"""""""
   8889 
   8890 This function returns the same values as the libm ``trunc`` functions
   8891 would, and handles error conditions in the same way.
   8892 
   8893 '``llvm.rint.*``' Intrinsic
   8894 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8895 
   8896 Syntax:
   8897 """""""
   8898 
   8899 This is an overloaded intrinsic. You can use ``llvm.rint`` on any
   8900 floating point or vector of floating point type. Not all targets support
   8901 all types however.
   8902 
   8903 ::
   8904 
   8905       declare float     @llvm.rint.f32(float  %Val)
   8906       declare double    @llvm.rint.f64(double %Val)
   8907       declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
   8908       declare fp128     @llvm.rint.f128(fp128 %Val)
   8909       declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)
   8910 
   8911 Overview:
   8912 """""""""
   8913 
   8914 The '``llvm.rint.*``' intrinsics returns the operand rounded to the
   8915 nearest integer. It may raise an inexact floating-point exception if the
   8916 operand isn't an integer.
   8917 
   8918 Arguments:
   8919 """"""""""
   8920 
   8921 The argument and return value are floating point numbers of the same
   8922 type.
   8923 
   8924 Semantics:
   8925 """"""""""
   8926 
   8927 This function returns the same values as the libm ``rint`` functions
   8928 would, and handles error conditions in the same way.
   8929 
   8930 '``llvm.nearbyint.*``' Intrinsic
   8931 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8932 
   8933 Syntax:
   8934 """""""
   8935 
   8936 This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
   8937 floating point or vector of floating point type. Not all targets support
   8938 all types however.
   8939 
   8940 ::
   8941 
   8942       declare float     @llvm.nearbyint.f32(float  %Val)
   8943       declare double    @llvm.nearbyint.f64(double %Val)
   8944       declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
   8945       declare fp128     @llvm.nearbyint.f128(fp128 %Val)
   8946       declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)
   8947 
   8948 Overview:
   8949 """""""""
   8950 
   8951 The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
   8952 nearest integer.
   8953 
   8954 Arguments:
   8955 """"""""""
   8956 
   8957 The argument and return value are floating point numbers of the same
   8958 type.
   8959 
   8960 Semantics:
   8961 """"""""""
   8962 
   8963 This function returns the same values as the libm ``nearbyint``
   8964 functions would, and handles error conditions in the same way.
   8965 
   8966 '``llvm.round.*``' Intrinsic
   8967 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8968 
   8969 Syntax:
   8970 """""""
   8971 
   8972 This is an overloaded intrinsic. You can use ``llvm.round`` on any
   8973 floating point or vector of floating point type. Not all targets support
   8974 all types however.
   8975 
   8976 ::
   8977 
   8978       declare float     @llvm.round.f32(float  %Val)
   8979       declare double    @llvm.round.f64(double %Val)
   8980       declare x86_fp80  @llvm.round.f80(x86_fp80  %Val)
   8981       declare fp128     @llvm.round.f128(fp128 %Val)
   8982       declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128  %Val)
   8983 
   8984 Overview:
   8985 """""""""
   8986 
   8987 The '``llvm.round.*``' intrinsics returns the operand rounded to the
   8988 nearest integer.
   8989 
   8990 Arguments:
   8991 """"""""""
   8992 
   8993 The argument and return value are floating point numbers of the same
   8994 type.
   8995 
   8996 Semantics:
   8997 """"""""""
   8998 
   8999 This function returns the same values as the libm ``round``
   9000 functions would, and handles error conditions in the same way.
   9001 
   9002 Bit Manipulation Intrinsics
   9003 ---------------------------
   9004 
   9005 LLVM provides intrinsics for a few important bit manipulation
   9006 operations. These allow efficient code generation for some algorithms.
   9007 
   9008 '``llvm.bswap.*``' Intrinsics
   9009 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9010 
   9011 Syntax:
   9012 """""""
   9013 
   9014 This is an overloaded intrinsic function. You can use bswap on any
   9015 integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
   9016 
   9017 ::
   9018 
   9019       declare i16 @llvm.bswap.i16(i16 <id>)
   9020       declare i32 @llvm.bswap.i32(i32 <id>)
   9021       declare i64 @llvm.bswap.i64(i64 <id>)
   9022 
   9023 Overview:
   9024 """""""""
   9025 
   9026 The '``llvm.bswap``' family of intrinsics is used to byte swap integer
   9027 values with an even number of bytes (positive multiple of 16 bits).
   9028 These are useful for performing operations on data that is not in the
   9029 target's native byte order.
   9030 
   9031 Semantics:
   9032 """"""""""
   9033 
   9034 The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
   9035 and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
   9036 intrinsic returns an i32 value that has the four bytes of the input i32
   9037 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
   9038 returned i32 will have its bytes in 3, 2, 1, 0 order. The
   9039 ``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
   9040 concept to additional even-byte lengths (6 bytes, 8 bytes and more,
   9041 respectively).
   9042 
   9043 '``llvm.ctpop.*``' Intrinsic
   9044 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9045 
   9046 Syntax:
   9047 """""""
   9048 
   9049 This is an overloaded intrinsic. You can use llvm.ctpop on any integer
   9050 bit width, or on any vector with integer elements. Not all targets
   9051 support all bit widths or vector types, however.
   9052 
   9053 ::
   9054 
   9055       declare i8 @llvm.ctpop.i8(i8  <src>)
   9056       declare i16 @llvm.ctpop.i16(i16 <src>)
   9057       declare i32 @llvm.ctpop.i32(i32 <src>)
   9058       declare i64 @llvm.ctpop.i64(i64 <src>)
   9059       declare i256 @llvm.ctpop.i256(i256 <src>)
   9060       declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
   9061 
   9062 Overview:
   9063 """""""""
   9064 
   9065 The '``llvm.ctpop``' family of intrinsics counts the number of bits set
   9066 in a value.
   9067 
   9068 Arguments:
   9069 """"""""""
   9070 
   9071 The only argument is the value to be counted. The argument may be of any
   9072 integer type, or a vector with integer elements. The return type must
   9073 match the argument type.
   9074 
   9075 Semantics:
   9076 """"""""""
   9077 
   9078 The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
   9079 each element of a vector.
   9080 
   9081 '``llvm.ctlz.*``' Intrinsic
   9082 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9083 
   9084 Syntax:
   9085 """""""
   9086 
   9087 This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
   9088 integer bit width, or any vector whose elements are integers. Not all
   9089 targets support all bit widths or vector types, however.
   9090 
   9091 ::
   9092 
   9093       declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
   9094       declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
   9095       declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
   9096       declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
   9097       declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
   9098       declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
   9099 
   9100 Overview:
   9101 """""""""
   9102 
   9103 The '``llvm.ctlz``' family of intrinsic functions counts the number of
   9104 leading zeros in a variable.
   9105 
   9106 Arguments:
   9107 """"""""""
   9108 
   9109 The first argument is the value to be counted. This argument may be of
   9110 any integer type, or a vector with integer element type. The return
   9111 type must match the first argument type.
   9112 
   9113 The second argument must be a constant and is a flag to indicate whether
   9114 the intrinsic should ensure that a zero as the first argument produces a
   9115 defined result. Historically some architectures did not provide a
   9116 defined result for zero values as efficiently, and many algorithms are
   9117 now predicated on avoiding zero-value inputs.
   9118 
   9119 Semantics:
   9120 """"""""""
   9121 
   9122 The '``llvm.ctlz``' intrinsic counts the leading (most significant)
   9123 zeros in a variable, or within each element of the vector. If
   9124 ``src == 0`` then the result is the size in bits of the type of ``src``
   9125 if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
   9126 ``llvm.ctlz(i32 2) = 30``.
   9127 
   9128 '``llvm.cttz.*``' Intrinsic
   9129 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9130 
   9131 Syntax:
   9132 """""""
   9133 
   9134 This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
   9135 integer bit width, or any vector of integer elements. Not all targets
   9136 support all bit widths or vector types, however.
   9137 
   9138 ::
   9139 
   9140       declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
   9141       declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
   9142       declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
   9143       declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
   9144       declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
   9145       declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
   9146 
   9147 Overview:
   9148 """""""""
   9149 
   9150 The '``llvm.cttz``' family of intrinsic functions counts the number of
   9151 trailing zeros.
   9152 
   9153 Arguments:
   9154 """"""""""
   9155 
   9156 The first argument is the value to be counted. This argument may be of
   9157 any integer type, or a vector with integer element type. The return
   9158 type must match the first argument type.
   9159 
   9160 The second argument must be a constant and is a flag to indicate whether
   9161 the intrinsic should ensure that a zero as the first argument produces a
   9162 defined result. Historically some architectures did not provide a
   9163 defined result for zero values as efficiently, and many algorithms are
   9164 now predicated on avoiding zero-value inputs.
   9165 
   9166 Semantics:
   9167 """"""""""
   9168 
   9169 The '``llvm.cttz``' intrinsic counts the trailing (least significant)
   9170 zeros in a variable, or within each element of a vector. If ``src == 0``
   9171 then the result is the size in bits of the type of ``src`` if
   9172 ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
   9173 ``llvm.cttz(2) = 1``.
   9174 
   9175 .. _int_overflow:
   9176 
   9177 Arithmetic with Overflow Intrinsics
   9178 -----------------------------------
   9179 
   9180 LLVM provides intrinsics for some arithmetic with overflow operations.
   9181 
   9182 '``llvm.sadd.with.overflow.*``' Intrinsics
   9183 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9184 
   9185 Syntax:
   9186 """""""
   9187 
   9188 This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
   9189 on any integer bit width.
   9190 
   9191 ::
   9192 
   9193       declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
   9194       declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   9195       declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
   9196 
   9197 Overview:
   9198 """""""""
   9199 
   9200 The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
   9201 a signed addition of the two arguments, and indicate whether an overflow
   9202 occurred during the signed summation.
   9203 
   9204 Arguments:
   9205 """"""""""
   9206 
   9207 The arguments (%a and %b) and the first element of the result structure
   9208 may be of integer types of any bit width, but they must have the same
   9209 bit width. The second element of the result structure must be of type
   9210 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
   9211 addition.
   9212 
   9213 Semantics:
   9214 """"""""""
   9215 
   9216 The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
   9217 a signed addition of the two variables. They return a structure --- the
   9218 first element of which is the signed summation, and the second element
   9219 of which is a bit specifying if the signed summation resulted in an
   9220 overflow.
   9221 
   9222 Examples:
   9223 """""""""
   9224 
   9225 .. code-block:: llvm
   9226 
   9227       %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   9228       %sum = extractvalue {i32, i1} %res, 0
   9229       %obit = extractvalue {i32, i1} %res, 1
   9230       br i1 %obit, label %overflow, label %normal
   9231 
   9232 '``llvm.uadd.with.overflow.*``' Intrinsics
   9233 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9234 
   9235 Syntax:
   9236 """""""
   9237 
   9238 This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
   9239 on any integer bit width.
   9240 
   9241 ::
   9242 
   9243       declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
   9244       declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   9245       declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
   9246 
   9247 Overview:
   9248 """""""""
   9249 
   9250 The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
   9251 an unsigned addition of the two arguments, and indicate whether a carry
   9252 occurred during the unsigned summation.
   9253 
   9254 Arguments:
   9255 """"""""""
   9256 
   9257 The arguments (%a and %b) and the first element of the result structure
   9258 may be of integer types of any bit width, but they must have the same
   9259 bit width. The second element of the result structure must be of type
   9260 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
   9261 addition.
   9262 
   9263 Semantics:
   9264 """"""""""
   9265 
   9266 The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
   9267 an unsigned addition of the two arguments. They return a structure --- the
   9268 first element of which is the sum, and the second element of which is a
   9269 bit specifying if the unsigned summation resulted in a carry.
   9270 
   9271 Examples:
   9272 """""""""
   9273 
   9274 .. code-block:: llvm
   9275 
   9276       %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   9277       %sum = extractvalue {i32, i1} %res, 0
   9278       %obit = extractvalue {i32, i1} %res, 1
   9279       br i1 %obit, label %carry, label %normal
   9280 
   9281 '``llvm.ssub.with.overflow.*``' Intrinsics
   9282 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9283 
   9284 Syntax:
   9285 """""""
   9286 
   9287 This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
   9288 on any integer bit width.
   9289 
   9290 ::
   9291 
   9292       declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
   9293       declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   9294       declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
   9295 
   9296 Overview:
   9297 """""""""
   9298 
   9299 The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
   9300 a signed subtraction of the two arguments, and indicate whether an
   9301 overflow occurred during the signed subtraction.
   9302 
   9303 Arguments:
   9304 """"""""""
   9305 
   9306 The arguments (%a and %b) and the first element of the result structure
   9307 may be of integer types of any bit width, but they must have the same
   9308 bit width. The second element of the result structure must be of type
   9309 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
   9310 subtraction.
   9311 
   9312 Semantics:
   9313 """"""""""
   9314 
   9315 The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
   9316 a signed subtraction of the two arguments. They return a structure --- the
   9317 first element of which is the subtraction, and the second element of
   9318 which is a bit specifying if the signed subtraction resulted in an
   9319 overflow.
   9320 
   9321 Examples:
   9322 """""""""
   9323 
   9324 .. code-block:: llvm
   9325 
   9326       %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   9327       %sum = extractvalue {i32, i1} %res, 0
   9328       %obit = extractvalue {i32, i1} %res, 1
   9329       br i1 %obit, label %overflow, label %normal
   9330 
   9331 '``llvm.usub.with.overflow.*``' Intrinsics
   9332 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9333 
   9334 Syntax:
   9335 """""""
   9336 
   9337 This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
   9338 on any integer bit width.
   9339 
   9340 ::
   9341 
   9342       declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
   9343       declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   9344       declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
   9345 
   9346 Overview:
   9347 """""""""
   9348 
   9349 The '``llvm.usub.with.overflow``' family of intrinsic functions perform
   9350 an unsigned subtraction of the two arguments, and indicate whether an
   9351 overflow occurred during the unsigned subtraction.
   9352 
   9353 Arguments:
   9354 """"""""""
   9355 
   9356 The arguments (%a and %b) and the first element of the result structure
   9357 may be of integer types of any bit width, but they must have the same
   9358 bit width. The second element of the result structure must be of type
   9359 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
   9360 subtraction.
   9361 
   9362 Semantics:
   9363 """"""""""
   9364 
   9365 The '``llvm.usub.with.overflow``' family of intrinsic functions perform
   9366 an unsigned subtraction of the two arguments. They return a structure ---
   9367 the first element of which is the subtraction, and the second element of
   9368 which is a bit specifying if the unsigned subtraction resulted in an
   9369 overflow.
   9370 
   9371 Examples:
   9372 """""""""
   9373 
   9374 .. code-block:: llvm
   9375 
   9376       %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   9377       %sum = extractvalue {i32, i1} %res, 0
   9378       %obit = extractvalue {i32, i1} %res, 1
   9379       br i1 %obit, label %overflow, label %normal
   9380 
   9381 '``llvm.smul.with.overflow.*``' Intrinsics
   9382 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9383 
   9384 Syntax:
   9385 """""""
   9386 
   9387 This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
   9388 on any integer bit width.
   9389 
   9390 ::
   9391 
   9392       declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
   9393       declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   9394       declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
   9395 
   9396 Overview:
   9397 """""""""
   9398 
   9399 The '``llvm.smul.with.overflow``' family of intrinsic functions perform
   9400 a signed multiplication of the two arguments, and indicate whether an
   9401 overflow occurred during the signed multiplication.
   9402 
   9403 Arguments:
   9404 """"""""""
   9405 
   9406 The arguments (%a and %b) and the first element of the result structure
   9407 may be of integer types of any bit width, but they must have the same
   9408 bit width. The second element of the result structure must be of type
   9409 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
   9410 multiplication.
   9411 
   9412 Semantics:
   9413 """"""""""
   9414 
   9415 The '``llvm.smul.with.overflow``' family of intrinsic functions perform
   9416 a signed multiplication of the two arguments. They return a structure ---
   9417 the first element of which is the multiplication, and the second element
   9418 of which is a bit specifying if the signed multiplication resulted in an
   9419 overflow.
   9420 
   9421 Examples:
   9422 """""""""
   9423 
   9424 .. code-block:: llvm
   9425 
   9426       %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   9427       %sum = extractvalue {i32, i1} %res, 0
   9428       %obit = extractvalue {i32, i1} %res, 1
   9429       br i1 %obit, label %overflow, label %normal
   9430 
   9431 '``llvm.umul.with.overflow.*``' Intrinsics
   9432 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9433 
   9434 Syntax:
   9435 """""""
   9436 
   9437 This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
   9438 on any integer bit width.
   9439 
   9440 ::
   9441 
   9442       declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
   9443       declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   9444       declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
   9445 
   9446 Overview:
   9447 """""""""
   9448 
   9449 The '``llvm.umul.with.overflow``' family of intrinsic functions perform
   9450 a unsigned multiplication of the two arguments, and indicate whether an
   9451 overflow occurred during the unsigned multiplication.
   9452 
   9453 Arguments:
   9454 """"""""""
   9455 
   9456 The arguments (%a and %b) and the first element of the result structure
   9457 may be of integer types of any bit width, but they must have the same
   9458 bit width. The second element of the result structure must be of type
   9459 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
   9460 multiplication.
   9461 
   9462 Semantics:
   9463 """"""""""
   9464 
   9465 The '``llvm.umul.with.overflow``' family of intrinsic functions perform
   9466 an unsigned multiplication of the two arguments. They return a structure ---
   9467 the first element of which is the multiplication, and the second
   9468 element of which is a bit specifying if the unsigned multiplication
   9469 resulted in an overflow.
   9470 
   9471 Examples:
   9472 """""""""
   9473 
   9474 .. code-block:: llvm
   9475 
   9476       %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   9477       %sum = extractvalue {i32, i1} %res, 0
   9478       %obit = extractvalue {i32, i1} %res, 1
   9479       br i1 %obit, label %overflow, label %normal
   9480 
   9481 Specialised Arithmetic Intrinsics
   9482 ---------------------------------
   9483 
   9484 '``llvm.fmuladd.*``' Intrinsic
   9485 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9486 
   9487 Syntax:
   9488 """""""
   9489 
   9490 ::
   9491 
   9492       declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
   9493       declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
   9494 
   9495 Overview:
   9496 """""""""
   9497 
   9498 The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
   9499 expressions that can be fused if the code generator determines that (a) the
   9500 target instruction set has support for a fused operation, and (b) that the
   9501 fused operation is more efficient than the equivalent, separate pair of mul
   9502 and add instructions.
   9503 
   9504 Arguments:
   9505 """"""""""
   9506 
   9507 The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
   9508 multiplicands, a and b, and an addend c.
   9509 
   9510 Semantics:
   9511 """"""""""
   9512 
   9513 The expression:
   9514 
   9515 ::
   9516 
   9517       %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
   9518 
   9519 is equivalent to the expression a \* b + c, except that rounding will
   9520 not be performed between the multiplication and addition steps if the
   9521 code generator fuses the operations. Fusion is not guaranteed, even if
   9522 the target platform supports it. If a fused multiply-add is required the
   9523 corresponding llvm.fma.\* intrinsic function should be used
   9524 instead. This never sets errno, just as '``llvm.fma.*``'.
   9525 
   9526 Examples:
   9527 """""""""
   9528 
   9529 .. code-block:: llvm
   9530 
   9531       %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
   9532 
   9533 Half Precision Floating Point Intrinsics
   9534 ----------------------------------------
   9535 
   9536 For most target platforms, half precision floating point is a
   9537 storage-only format. This means that it is a dense encoding (in memory)
   9538 but does not support computation in the format.
   9539 
   9540 This means that code must first load the half-precision floating point
   9541 value as an i16, then convert it to float with
   9542 :ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
   9543 then be performed on the float value (including extending to double
   9544 etc). To store the value back to memory, it is first converted to float
   9545 if needed, then converted to i16 with
   9546 :ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
   9547 i16 value.
   9548 
   9549 .. _int_convert_to_fp16:
   9550 
   9551 '``llvm.convert.to.fp16``' Intrinsic
   9552 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9553 
   9554 Syntax:
   9555 """""""
   9556 
   9557 ::
   9558 
   9559       declare i16 @llvm.convert.to.fp16.f32(float %a)
   9560       declare i16 @llvm.convert.to.fp16.f64(double %a)
   9561 
   9562 Overview:
   9563 """""""""
   9564 
   9565 The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
   9566 conventional floating point type to half precision floating point format.
   9567 
   9568 Arguments:
   9569 """"""""""
   9570 
   9571 The intrinsic function contains single argument - the value to be
   9572 converted.
   9573 
   9574 Semantics:
   9575 """"""""""
   9576 
   9577 The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
   9578 conventional floating point format to half precision floating point format. The
   9579 return value is an ``i16`` which contains the converted number.
   9580 
   9581 Examples:
   9582 """""""""
   9583 
   9584 .. code-block:: llvm
   9585 
   9586       %res = call i16 @llvm.convert.to.fp16.f32(float %a)
   9587       store i16 %res, i16* @x, align 2
   9588 
   9589 .. _int_convert_from_fp16:
   9590 
   9591 '``llvm.convert.from.fp16``' Intrinsic
   9592 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9593 
   9594 Syntax:
   9595 """""""
   9596 
   9597 ::
   9598 
   9599       declare float @llvm.convert.from.fp16.f32(i16 %a)
   9600       declare double @llvm.convert.from.fp16.f64(i16 %a)
   9601 
   9602 Overview:
   9603 """""""""
   9604 
   9605 The '``llvm.convert.from.fp16``' intrinsic function performs a
   9606 conversion from half precision floating point format to single precision
   9607 floating point format.
   9608 
   9609 Arguments:
   9610 """"""""""
   9611 
   9612 The intrinsic function contains single argument - the value to be
   9613 converted.
   9614 
   9615 Semantics:
   9616 """"""""""
   9617 
   9618 The '``llvm.convert.from.fp16``' intrinsic function performs a
   9619 conversion from half single precision floating point format to single
   9620 precision floating point format. The input half-float value is
   9621 represented by an ``i16`` value.
   9622 
   9623 Examples:
   9624 """""""""
   9625 
   9626 .. code-block:: llvm
   9627 
   9628       %a = load i16, i16* @x, align 2
   9629       %res = call float @llvm.convert.from.fp16(i16 %a)
   9630 
   9631 .. _dbg_intrinsics:
   9632 
   9633 Debugger Intrinsics
   9634 -------------------
   9635 
   9636 The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
   9637 prefix), are described in the `LLVM Source Level
   9638 Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
   9639 document.
   9640 
   9641 Exception Handling Intrinsics
   9642 -----------------------------
   9643 
   9644 The LLVM exception handling intrinsics (which all start with
   9645 ``llvm.eh.`` prefix), are described in the `LLVM Exception
   9646 Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
   9647 
   9648 .. _int_trampoline:
   9649 
   9650 Trampoline Intrinsics
   9651 ---------------------
   9652 
   9653 These intrinsics make it possible to excise one parameter, marked with
   9654 the :ref:`nest <nest>` attribute, from a function. The result is a
   9655 callable function pointer lacking the nest parameter - the caller does
   9656 not need to provide a value for it. Instead, the value to use is stored
   9657 in advance in a "trampoline", a block of memory usually allocated on the
   9658 stack, which also contains code to splice the nest value into the
   9659 argument list. This is used to implement the GCC nested function address
   9660 extension.
   9661 
   9662 For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
   9663 then the resulting function pointer has signature ``i32 (i32, i32)*``.
   9664 It can be created as follows:
   9665 
   9666 .. code-block:: llvm
   9667 
   9668       %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   9669       %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
   9670       call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
   9671       %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
   9672       %fp = bitcast i8* %p to i32 (i32, i32)*
   9673 
   9674 The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
   9675 ``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
   9676 
   9677 .. _int_it:
   9678 
   9679 '``llvm.init.trampoline``' Intrinsic
   9680 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9681 
   9682 Syntax:
   9683 """""""
   9684 
   9685 ::
   9686 
   9687       declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
   9688 
   9689 Overview:
   9690 """""""""
   9691 
   9692 This fills the memory pointed to by ``tramp`` with executable code,
   9693 turning it into a trampoline.
   9694 
   9695 Arguments:
   9696 """"""""""
   9697 
   9698 The ``llvm.init.trampoline`` intrinsic takes three arguments, all
   9699 pointers. The ``tramp`` argument must point to a sufficiently large and
   9700 sufficiently aligned block of memory; this memory is written to by the
   9701 intrinsic. Note that the size and the alignment are target-specific -
   9702 LLVM currently provides no portable way of determining them, so a
   9703 front-end that generates this intrinsic needs to have some
   9704 target-specific knowledge. The ``func`` argument must hold a function
   9705 bitcast to an ``i8*``.
   9706 
   9707 Semantics:
   9708 """"""""""
   9709 
   9710 The block of memory pointed to by ``tramp`` is filled with target
   9711 dependent code, turning it into a function. Then ``tramp`` needs to be
   9712 passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
   9713 be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
   9714 function's signature is the same as that of ``func`` with any arguments
   9715 marked with the ``nest`` attribute removed. At most one such ``nest``
   9716 argument is allowed, and it must be of pointer type. Calling the new
   9717 function is equivalent to calling ``func`` with the same argument list,
   9718 but with ``nval`` used for the missing ``nest`` argument. If, after
   9719 calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
   9720 modified, then the effect of any later call to the returned function
   9721 pointer is undefined.
   9722 
   9723 .. _int_at:
   9724 
   9725 '``llvm.adjust.trampoline``' Intrinsic
   9726 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9727 
   9728 Syntax:
   9729 """""""
   9730 
   9731 ::
   9732 
   9733       declare i8* @llvm.adjust.trampoline(i8* <tramp>)
   9734 
   9735 Overview:
   9736 """""""""
   9737 
   9738 This performs any required machine-specific adjustment to the address of
   9739 a trampoline (passed as ``tramp``).
   9740 
   9741 Arguments:
   9742 """"""""""
   9743 
   9744 ``tramp`` must point to a block of memory which already has trampoline
   9745 code filled in by a previous call to
   9746 :ref:`llvm.init.trampoline <int_it>`.
   9747 
   9748 Semantics:
   9749 """"""""""
   9750 
   9751 On some architectures the address of the code to be executed needs to be
   9752 different than the address where the trampoline is actually stored. This
   9753 intrinsic returns the executable address corresponding to ``tramp``
   9754 after performing the required machine specific adjustments. The pointer
   9755 returned can then be :ref:`bitcast and executed <int_trampoline>`.
   9756 
   9757 Masked Vector Load and Store Intrinsics
   9758 ---------------------------------------
   9759 
   9760 LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
   9761 
   9762 .. _int_mload:
   9763 
   9764 '``llvm.masked.load.*``' Intrinsics
   9765 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9766 
   9767 Syntax:
   9768 """""""
   9769 This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
   9770 
   9771 ::
   9772 
   9773       declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
   9774       declare <2 x double> @llvm.masked.load.v2f64  (<2 x double>* <ptr>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
   9775 
   9776 Overview:
   9777 """""""""
   9778 
   9779 Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
   9780 
   9781 
   9782 Arguments:
   9783 """"""""""
   9784 
   9785 The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
   9786 
   9787 
   9788 Semantics:
   9789 """"""""""
   9790 
   9791 The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
   9792 The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
   9793 
   9794 
   9795 ::
   9796 
   9797        %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
   9798 
   9799        ;; The result of the two following instructions is identical aside from potential memory access exception
   9800        %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
   9801        %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
   9802 
   9803 .. _int_mstore:
   9804 
   9805 '``llvm.masked.store.*``' Intrinsics
   9806 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9807 
   9808 Syntax:
   9809 """""""
   9810 This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
   9811 
   9812 ::
   9813 
   9814        declare void @llvm.masked.store.v8i32 (<8 x i32>  <value>, <8 x i32> * <ptr>, i32 <alignment>,  <8 x i1>  <mask>)
   9815        declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>,  <16 x i1> <mask>)
   9816 
   9817 Overview:
   9818 """""""""
   9819 
   9820 Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
   9821 
   9822 Arguments:
   9823 """"""""""
   9824 
   9825 The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
   9826 
   9827 
   9828 Semantics:
   9829 """"""""""
   9830 
   9831 The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
   9832 The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
   9833 
   9834 ::
   9835 
   9836        call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4,  <16 x i1> %mask)
   9837 
   9838        ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
   9839        %oldval = load <16 x float>, <16 x float>* %ptr, align 4
   9840        %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
   9841        store <16 x float> %res, <16 x float>* %ptr, align 4
   9842 
   9843 
   9844 Memory Use Markers
   9845 ------------------
   9846 
   9847 This class of intrinsics provides information about the lifetime of
   9848 memory objects and ranges where variables are immutable.
   9849 
   9850 .. _int_lifestart:
   9851 
   9852 '``llvm.lifetime.start``' Intrinsic
   9853 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9854 
   9855 Syntax:
   9856 """""""
   9857 
   9858 ::
   9859 
   9860       declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
   9861 
   9862 Overview:
   9863 """""""""
   9864 
   9865 The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
   9866 object's lifetime.
   9867 
   9868 Arguments:
   9869 """"""""""
   9870 
   9871 The first argument is a constant integer representing the size of the
   9872 object, or -1 if it is variable sized. The second argument is a pointer
   9873 to the object.
   9874 
   9875 Semantics:
   9876 """"""""""
   9877 
   9878 This intrinsic indicates that before this point in the code, the value
   9879 of the memory pointed to by ``ptr`` is dead. This means that it is known
   9880 to never be used and has an undefined value. A load from the pointer
   9881 that precedes this intrinsic can be replaced with ``'undef'``.
   9882 
   9883 .. _int_lifeend:
   9884 
   9885 '``llvm.lifetime.end``' Intrinsic
   9886 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9887 
   9888 Syntax:
   9889 """""""
   9890 
   9891 ::
   9892 
   9893       declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
   9894 
   9895 Overview:
   9896 """""""""
   9897 
   9898 The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
   9899 object's lifetime.
   9900 
   9901 Arguments:
   9902 """"""""""
   9903 
   9904 The first argument is a constant integer representing the size of the
   9905 object, or -1 if it is variable sized. The second argument is a pointer
   9906 to the object.
   9907 
   9908 Semantics:
   9909 """"""""""
   9910 
   9911 This intrinsic indicates that after this point in the code, the value of
   9912 the memory pointed to by ``ptr`` is dead. This means that it is known to
   9913 never be used and has an undefined value. Any stores into the memory
   9914 object following this intrinsic may be removed as dead.
   9915 
   9916 '``llvm.invariant.start``' Intrinsic
   9917 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9918 
   9919 Syntax:
   9920 """""""
   9921 
   9922 ::
   9923 
   9924       declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
   9925 
   9926 Overview:
   9927 """""""""
   9928 
   9929 The '``llvm.invariant.start``' intrinsic specifies that the contents of
   9930 a memory object will not change.
   9931 
   9932 Arguments:
   9933 """"""""""
   9934 
   9935 The first argument is a constant integer representing the size of the
   9936 object, or -1 if it is variable sized. The second argument is a pointer
   9937 to the object.
   9938 
   9939 Semantics:
   9940 """"""""""
   9941 
   9942 This intrinsic indicates that until an ``llvm.invariant.end`` that uses
   9943 the return value, the referenced memory location is constant and
   9944 unchanging.
   9945 
   9946 '``llvm.invariant.end``' Intrinsic
   9947 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9948 
   9949 Syntax:
   9950 """""""
   9951 
   9952 ::
   9953 
   9954       declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
   9955 
   9956 Overview:
   9957 """""""""
   9958 
   9959 The '``llvm.invariant.end``' intrinsic specifies that the contents of a
   9960 memory object are mutable.
   9961 
   9962 Arguments:
   9963 """"""""""
   9964 
   9965 The first argument is the matching ``llvm.invariant.start`` intrinsic.
   9966 The second argument is a constant integer representing the size of the
   9967 object, or -1 if it is variable sized and the third argument is a
   9968 pointer to the object.
   9969 
   9970 Semantics:
   9971 """"""""""
   9972 
   9973 This intrinsic indicates that the memory is mutable again.
   9974 
   9975 General Intrinsics
   9976 ------------------
   9977 
   9978 This class of intrinsics is designed to be generic and has no specific
   9979 purpose.
   9980 
   9981 '``llvm.var.annotation``' Intrinsic
   9982 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   9983 
   9984 Syntax:
   9985 """""""
   9986 
   9987 ::
   9988 
   9989       declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
   9990 
   9991 Overview:
   9992 """""""""
   9993 
   9994 The '``llvm.var.annotation``' intrinsic.
   9995 
   9996 Arguments:
   9997 """"""""""
   9998 
   9999 The first argument is a pointer to a value, the second is a pointer to a
   10000 global string, the third is a pointer to a global string which is the
   10001 source file name, and the last argument is the line number.
   10002 
   10003 Semantics:
   10004 """"""""""
   10005 
   10006 This intrinsic allows annotation of local variables with arbitrary
   10007 strings. This can be useful for special purpose optimizations that want
   10008 to look for these annotations. These have no other defined use; they are
   10009 ignored by code generation and optimization.
   10010 
   10011 '``llvm.ptr.annotation.*``' Intrinsic
   10012 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10013 
   10014 Syntax:
   10015 """""""
   10016 
   10017 This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
   10018 pointer to an integer of any width. *NOTE* you must specify an address space for
   10019 the pointer. The identifier for the default address space is the integer
   10020 '``0``'.
   10021 
   10022 ::
   10023 
   10024       declare i8*   @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
   10025       declare i16*  @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32  <int>)
   10026       declare i32*  @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32  <int>)
   10027       declare i64*  @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32  <int>)
   10028       declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32  <int>)
   10029 
   10030 Overview:
   10031 """""""""
   10032 
   10033 The '``llvm.ptr.annotation``' intrinsic.
   10034 
   10035 Arguments:
   10036 """"""""""
   10037 
   10038 The first argument is a pointer to an integer value of arbitrary bitwidth
   10039 (result of some expression), the second is a pointer to a global string, the
   10040 third is a pointer to a global string which is the source file name, and the
   10041 last argument is the line number. It returns the value of the first argument.
   10042 
   10043 Semantics:
   10044 """"""""""
   10045 
   10046 This intrinsic allows annotation of a pointer to an integer with arbitrary
   10047 strings. This can be useful for special purpose optimizations that want to look
   10048 for these annotations. These have no other defined use; they are ignored by code
   10049 generation and optimization.
   10050 
   10051 '``llvm.annotation.*``' Intrinsic
   10052 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10053 
   10054 Syntax:
   10055 """""""
   10056 
   10057 This is an overloaded intrinsic. You can use '``llvm.annotation``' on
   10058 any integer bit width.
   10059 
   10060 ::
   10061 
   10062       declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
   10063       declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
   10064       declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
   10065       declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
   10066       declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)
   10067 
   10068 Overview:
   10069 """""""""
   10070 
   10071 The '``llvm.annotation``' intrinsic.
   10072 
   10073 Arguments:
   10074 """"""""""
   10075 
   10076 The first argument is an integer value (result of some expression), the
   10077 second is a pointer to a global string, the third is a pointer to a
   10078 global string which is the source file name, and the last argument is
   10079 the line number. It returns the value of the first argument.
   10080 
   10081 Semantics:
   10082 """"""""""
   10083 
   10084 This intrinsic allows annotations to be put on arbitrary expressions
   10085 with arbitrary strings. This can be useful for special purpose
   10086 optimizations that want to look for these annotations. These have no
   10087 other defined use; they are ignored by code generation and optimization.
   10088 
   10089 '``llvm.trap``' Intrinsic
   10090 ^^^^^^^^^^^^^^^^^^^^^^^^^
   10091 
   10092 Syntax:
   10093 """""""
   10094 
   10095 ::
   10096 
   10097       declare void @llvm.trap() noreturn nounwind
   10098 
   10099 Overview:
   10100 """""""""
   10101 
   10102 The '``llvm.trap``' intrinsic.
   10103 
   10104 Arguments:
   10105 """"""""""
   10106 
   10107 None.
   10108 
   10109 Semantics:
   10110 """"""""""
   10111 
   10112 This intrinsic is lowered to the target dependent trap instruction. If
   10113 the target does not have a trap instruction, this intrinsic will be
   10114 lowered to a call of the ``abort()`` function.
   10115 
   10116 '``llvm.debugtrap``' Intrinsic
   10117 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10118 
   10119 Syntax:
   10120 """""""
   10121 
   10122 ::
   10123 
   10124       declare void @llvm.debugtrap() nounwind
   10125 
   10126 Overview:
   10127 """""""""
   10128 
   10129 The '``llvm.debugtrap``' intrinsic.
   10130 
   10131 Arguments:
   10132 """"""""""
   10133 
   10134 None.
   10135 
   10136 Semantics:
   10137 """"""""""
   10138 
   10139 This intrinsic is lowered to code which is intended to cause an
   10140 execution trap with the intention of requesting the attention of a
   10141 debugger.
   10142 
   10143 '``llvm.stackprotector``' Intrinsic
   10144 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10145 
   10146 Syntax:
   10147 """""""
   10148 
   10149 ::
   10150 
   10151       declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
   10152 
   10153 Overview:
   10154 """""""""
   10155 
   10156 The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
   10157 onto the stack at ``slot``. The stack slot is adjusted to ensure that it
   10158 is placed on the stack before local variables.
   10159 
   10160 Arguments:
   10161 """"""""""
   10162 
   10163 The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
   10164 The first argument is the value loaded from the stack guard
   10165 ``@__stack_chk_guard``. The second variable is an ``alloca`` that has
   10166 enough space to hold the value of the guard.
   10167 
   10168 Semantics:
   10169 """"""""""
   10170 
   10171 This intrinsic causes the prologue/epilogue inserter to force the position of
   10172 the ``AllocaInst`` stack slot to be before local variables on the stack. This is
   10173 to ensure that if a local variable on the stack is overwritten, it will destroy
   10174 the value of the guard. When the function exits, the guard on the stack is
   10175 checked against the original guard by ``llvm.stackprotectorcheck``. If they are
   10176 different, then ``llvm.stackprotectorcheck`` causes the program to abort by
   10177 calling the ``__stack_chk_fail()`` function.
   10178 
   10179 '``llvm.stackprotectorcheck``' Intrinsic
   10180 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10181 
   10182 Syntax:
   10183 """""""
   10184 
   10185 ::
   10186 
   10187       declare void @llvm.stackprotectorcheck(i8** <guard>)
   10188 
   10189 Overview:
   10190 """""""""
   10191 
   10192 The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
   10193 created stack protector and if they are not equal calls the
   10194 ``__stack_chk_fail()`` function.
   10195 
   10196 Arguments:
   10197 """"""""""
   10198 
   10199 The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
   10200 the variable ``@__stack_chk_guard``.
   10201 
   10202 Semantics:
   10203 """"""""""
   10204 
   10205 This intrinsic is provided to perform the stack protector check by comparing
   10206 ``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
   10207 values do not match call the ``__stack_chk_fail()`` function.
   10208 
   10209 The reason to provide this as an IR level intrinsic instead of implementing it
   10210 via other IR operations is that in order to perform this operation at the IR
   10211 level without an intrinsic, one would need to create additional basic blocks to
   10212 handle the success/failure cases. This makes it difficult to stop the stack
   10213 protector check from disrupting sibling tail calls in Codegen. With this
   10214 intrinsic, we are able to generate the stack protector basic blocks late in
   10215 codegen after the tail call decision has occurred.
   10216 
   10217 '``llvm.objectsize``' Intrinsic
   10218 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10219 
   10220 Syntax:
   10221 """""""
   10222 
   10223 ::
   10224 
   10225       declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
   10226       declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
   10227 
   10228 Overview:
   10229 """""""""
   10230 
   10231 The ``llvm.objectsize`` intrinsic is designed to provide information to
   10232 the optimizers to determine at compile time whether a) an operation
   10233 (like memcpy) will overflow a buffer that corresponds to an object, or
   10234 b) that a runtime check for overflow isn't necessary. An object in this
   10235 context means an allocation of a specific class, structure, array, or
   10236 other object.
   10237 
   10238 Arguments:
   10239 """"""""""
   10240 
   10241 The ``llvm.objectsize`` intrinsic takes two arguments. The first
   10242 argument is a pointer to or into the ``object``. The second argument is
   10243 a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
   10244 or -1 (if false) when the object size is unknown. The second argument
   10245 only accepts constants.
   10246 
   10247 Semantics:
   10248 """"""""""
   10249 
   10250 The ``llvm.objectsize`` intrinsic is lowered to a constant representing
   10251 the size of the object concerned. If the size cannot be determined at
   10252 compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
   10253 on the ``min`` argument).
   10254 
   10255 '``llvm.expect``' Intrinsic
   10256 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10257 
   10258 Syntax:
   10259 """""""
   10260 
   10261 This is an overloaded intrinsic. You can use ``llvm.expect`` on any
   10262 integer bit width.
   10263 
   10264 ::
   10265 
   10266       declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
   10267       declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
   10268       declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
   10269 
   10270 Overview:
   10271 """""""""
   10272 
   10273 The ``llvm.expect`` intrinsic provides information about expected (the
   10274 most probable) value of ``val``, which can be used by optimizers.
   10275 
   10276 Arguments:
   10277 """"""""""
   10278 
   10279 The ``llvm.expect`` intrinsic takes two arguments. The first argument is
   10280 a value. The second argument is an expected value, this needs to be a
   10281 constant value, variables are not allowed.
   10282 
   10283 Semantics:
   10284 """"""""""
   10285 
   10286 This intrinsic is lowered to the ``val``.
   10287 
   10288 '``llvm.assume``' Intrinsic
   10289 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10290 
   10291 Syntax:
   10292 """""""
   10293 
   10294 ::
   10295 
   10296       declare void @llvm.assume(i1 %cond)
   10297 
   10298 Overview:
   10299 """""""""
   10300 
   10301 The ``llvm.assume`` allows the optimizer to assume that the provided
   10302 condition is true. This information can then be used in simplifying other parts
   10303 of the code.
   10304 
   10305 Arguments:
   10306 """"""""""
   10307 
   10308 The condition which the optimizer may assume is always true.
   10309 
   10310 Semantics:
   10311 """"""""""
   10312 
   10313 The intrinsic allows the optimizer to assume that the provided condition is
   10314 always true whenever the control flow reaches the intrinsic call. No code is
   10315 generated for this intrinsic, and instructions that contribute only to the
   10316 provided condition are not used for code generation. If the condition is
   10317 violated during execution, the behavior is undefined.
   10318 
   10319 Note that the optimizer might limit the transformations performed on values
   10320 used by the ``llvm.assume`` intrinsic in order to preserve the instructions
   10321 only used to form the intrinsic's input argument. This might prove undesirable
   10322 if the extra information provided by the ``llvm.assume`` intrinsic does not cause
   10323 sufficient overall improvement in code quality. For this reason,
   10324 ``llvm.assume`` should not be used to document basic mathematical invariants
   10325 that the optimizer can otherwise deduce or facts that are of little use to the
   10326 optimizer.
   10327 
   10328 .. _bitset.test:
   10329 
   10330 '``llvm.bitset.test``' Intrinsic
   10331 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10332 
   10333 Syntax:
   10334 """""""
   10335 
   10336 ::
   10337 
   10338       declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
   10339 
   10340 
   10341 Arguments:
   10342 """"""""""
   10343 
   10344 The first argument is a pointer to be tested. The second argument is a
   10345 metadata string containing the name of a :doc:`bitset <BitSets>`.
   10346 
   10347 Overview:
   10348 """""""""
   10349 
   10350 The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
   10351 member of the given bitset.
   10352 
   10353 '``llvm.donothing``' Intrinsic
   10354 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   10355 
   10356 Syntax:
   10357 """""""
   10358 
   10359 ::
   10360 
   10361       declare void @llvm.donothing() nounwind readnone
   10362 
   10363 Overview:
   10364 """""""""
   10365 
   10366 The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
   10367 two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
   10368 with an invoke instruction.
   10369 
   10370 Arguments:
   10371 """"""""""
   10372 
   10373 None.
   10374 
   10375 Semantics:
   10376 """"""""""
   10377 
   10378 This intrinsic does nothing, and it's removed by optimizers and ignored
   10379 by codegen.
   10380 
   10381 Stack Map Intrinsics
   10382 --------------------
   10383 
   10384 LLVM provides experimental intrinsics to support runtime patching
   10385 mechanisms commonly desired in dynamic language JITs. These intrinsics
   10386 are described in :doc:`StackMaps`.
   10387