Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveInterval analysis pass which is used
     11 // by the Linear Scan Register allocator. This pass linearizes the
     12 // basic blocks of the function in DFS order and uses the
     13 // LiveVariables pass to conservatively compute live intervals for
     14 // each virtual and physical register.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "LiveRangeCalc.h"
     20 #include "llvm/ADT/DenseSet.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/CodeGen/LiveVariables.h"
     24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     25 #include "llvm/CodeGen/MachineDominators.h"
     26 #include "llvm/CodeGen/MachineInstr.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/CodeGen/Passes.h"
     29 #include "llvm/CodeGen/VirtRegMap.h"
     30 #include "llvm/IR/Value.h"
     31 #include "llvm/Support/BlockFrequency.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/Format.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Target/TargetInstrInfo.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include "llvm/Target/TargetSubtargetInfo.h"
     40 #include <algorithm>
     41 #include <cmath>
     42 #include <limits>
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "regalloc"
     46 
     47 char LiveIntervals::ID = 0;
     48 char &llvm::LiveIntervalsID = LiveIntervals::ID;
     49 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
     50                 "Live Interval Analysis", false, false)
     51 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     52 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
     53 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
     54 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
     55 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
     56                 "Live Interval Analysis", false, false)
     57 
     58 #ifndef NDEBUG
     59 static cl::opt<bool> EnablePrecomputePhysRegs(
     60   "precompute-phys-liveness", cl::Hidden,
     61   cl::desc("Eagerly compute live intervals for all physreg units."));
     62 #else
     63 static bool EnablePrecomputePhysRegs = false;
     64 #endif // NDEBUG
     65 
     66 static cl::opt<bool> EnableSubRegLiveness(
     67   "enable-subreg-liveness", cl::Hidden, cl::init(true),
     68   cl::desc("Enable subregister liveness tracking."));
     69 
     70 namespace llvm {
     71 cl::opt<bool> UseSegmentSetForPhysRegs(
     72     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
     73     cl::desc(
     74         "Use segment set for the computation of the live ranges of physregs."));
     75 }
     76 
     77 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
     78   AU.setPreservesCFG();
     79   AU.addRequired<AliasAnalysis>();
     80   AU.addPreserved<AliasAnalysis>();
     81   // LiveVariables isn't really required by this analysis, it is only required
     82   // here to make sure it is live during TwoAddressInstructionPass and
     83   // PHIElimination. This is temporary.
     84   AU.addRequired<LiveVariables>();
     85   AU.addPreserved<LiveVariables>();
     86   AU.addPreservedID(MachineLoopInfoID);
     87   AU.addRequiredTransitiveID(MachineDominatorsID);
     88   AU.addPreservedID(MachineDominatorsID);
     89   AU.addPreserved<SlotIndexes>();
     90   AU.addRequiredTransitive<SlotIndexes>();
     91   MachineFunctionPass::getAnalysisUsage(AU);
     92 }
     93 
     94 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
     95   DomTree(nullptr), LRCalc(nullptr) {
     96   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
     97 }
     98 
     99 LiveIntervals::~LiveIntervals() {
    100   delete LRCalc;
    101 }
    102 
    103 void LiveIntervals::releaseMemory() {
    104   // Free the live intervals themselves.
    105   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
    106     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
    107   VirtRegIntervals.clear();
    108   RegMaskSlots.clear();
    109   RegMaskBits.clear();
    110   RegMaskBlocks.clear();
    111 
    112   for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
    113     delete RegUnitRanges[i];
    114   RegUnitRanges.clear();
    115 
    116   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
    117   VNInfoAllocator.Reset();
    118 }
    119 
    120 /// runOnMachineFunction - calculates LiveIntervals
    121 ///
    122 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
    123   MF = &fn;
    124   MRI = &MF->getRegInfo();
    125   TRI = MF->getSubtarget().getRegisterInfo();
    126   TII = MF->getSubtarget().getInstrInfo();
    127   AA = &getAnalysis<AliasAnalysis>();
    128   Indexes = &getAnalysis<SlotIndexes>();
    129   DomTree = &getAnalysis<MachineDominatorTree>();
    130 
    131   if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
    132     MRI->enableSubRegLiveness(true);
    133 
    134   if (!LRCalc)
    135     LRCalc = new LiveRangeCalc();
    136 
    137   // Allocate space for all virtual registers.
    138   VirtRegIntervals.resize(MRI->getNumVirtRegs());
    139 
    140   computeVirtRegs();
    141   computeRegMasks();
    142   computeLiveInRegUnits();
    143 
    144   if (EnablePrecomputePhysRegs) {
    145     // For stress testing, precompute live ranges of all physical register
    146     // units, including reserved registers.
    147     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
    148       getRegUnit(i);
    149   }
    150   DEBUG(dump());
    151   return true;
    152 }
    153 
    154 /// print - Implement the dump method.
    155 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
    156   OS << "********** INTERVALS **********\n";
    157 
    158   // Dump the regunits.
    159   for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
    160     if (LiveRange *LR = RegUnitRanges[i])
    161       OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
    162 
    163   // Dump the virtregs.
    164   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    165     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    166     if (hasInterval(Reg))
    167       OS << getInterval(Reg) << '\n';
    168   }
    169 
    170   OS << "RegMasks:";
    171   for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
    172     OS << ' ' << RegMaskSlots[i];
    173   OS << '\n';
    174 
    175   printInstrs(OS);
    176 }
    177 
    178 void LiveIntervals::printInstrs(raw_ostream &OS) const {
    179   OS << "********** MACHINEINSTRS **********\n";
    180   MF->print(OS, Indexes);
    181 }
    182 
    183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    184 void LiveIntervals::dumpInstrs() const {
    185   printInstrs(dbgs());
    186 }
    187 #endif
    188 
    189 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
    190   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
    191                   llvm::huge_valf : 0.0F;
    192   return new LiveInterval(reg, Weight);
    193 }
    194 
    195 
    196 /// computeVirtRegInterval - Compute the live interval of a virtual register,
    197 /// based on defs and uses.
    198 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
    199   assert(LRCalc && "LRCalc not initialized.");
    200   assert(LI.empty() && "Should only compute empty intervals.");
    201   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    202   LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
    203   computeDeadValues(LI, nullptr);
    204 }
    205 
    206 void LiveIntervals::computeVirtRegs() {
    207   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    208     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    209     if (MRI->reg_nodbg_empty(Reg))
    210       continue;
    211     createAndComputeVirtRegInterval(Reg);
    212   }
    213 }
    214 
    215 void LiveIntervals::computeRegMasks() {
    216   RegMaskBlocks.resize(MF->getNumBlockIDs());
    217 
    218   // Find all instructions with regmask operands.
    219   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    220        MBBI != E; ++MBBI) {
    221     MachineBasicBlock *MBB = MBBI;
    222     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
    223     RMB.first = RegMaskSlots.size();
    224     for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
    225          MI != ME; ++MI)
    226       for (MIOperands MO(MI); MO.isValid(); ++MO) {
    227         if (!MO->isRegMask())
    228           continue;
    229           RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
    230           RegMaskBits.push_back(MO->getRegMask());
    231       }
    232     // Compute the number of register mask instructions in this block.
    233     RMB.second = RegMaskSlots.size() - RMB.first;
    234   }
    235 }
    236 
    237 //===----------------------------------------------------------------------===//
    238 //                           Register Unit Liveness
    239 //===----------------------------------------------------------------------===//
    240 //
    241 // Fixed interference typically comes from ABI boundaries: Function arguments
    242 // and return values are passed in fixed registers, and so are exception
    243 // pointers entering landing pads. Certain instructions require values to be
    244 // present in specific registers. That is also represented through fixed
    245 // interference.
    246 //
    247 
    248 /// computeRegUnitInterval - Compute the live range of a register unit, based
    249 /// on the uses and defs of aliasing registers.  The range should be empty,
    250 /// or contain only dead phi-defs from ABI blocks.
    251 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
    252   assert(LRCalc && "LRCalc not initialized.");
    253   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    254 
    255   // The physregs aliasing Unit are the roots and their super-registers.
    256   // Create all values as dead defs before extending to uses. Note that roots
    257   // may share super-registers. That's OK because createDeadDefs() is
    258   // idempotent. It is very rare for a register unit to have multiple roots, so
    259   // uniquing super-registers is probably not worthwhile.
    260   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    261     for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
    262          Supers.isValid(); ++Supers) {
    263       if (!MRI->reg_empty(*Supers))
    264         LRCalc->createDeadDefs(LR, *Supers);
    265     }
    266   }
    267 
    268   // Now extend LR to reach all uses.
    269   // Ignore uses of reserved registers. We only track defs of those.
    270   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    271     for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
    272          Supers.isValid(); ++Supers) {
    273       unsigned Reg = *Supers;
    274       if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
    275         LRCalc->extendToUses(LR, Reg);
    276     }
    277   }
    278 
    279   // Flush the segment set to the segment vector.
    280   if (UseSegmentSetForPhysRegs)
    281     LR.flushSegmentSet();
    282 }
    283 
    284 
    285 /// computeLiveInRegUnits - Precompute the live ranges of any register units
    286 /// that are live-in to an ABI block somewhere. Register values can appear
    287 /// without a corresponding def when entering the entry block or a landing pad.
    288 ///
    289 void LiveIntervals::computeLiveInRegUnits() {
    290   RegUnitRanges.resize(TRI->getNumRegUnits());
    291   DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
    292 
    293   // Keep track of the live range sets allocated.
    294   SmallVector<unsigned, 8> NewRanges;
    295 
    296   // Check all basic blocks for live-ins.
    297   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    298        MFI != MFE; ++MFI) {
    299     const MachineBasicBlock *MBB = MFI;
    300 
    301     // We only care about ABI blocks: Entry + landing pads.
    302     if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
    303       continue;
    304 
    305     // Create phi-defs at Begin for all live-in registers.
    306     SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
    307     DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
    308     for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
    309          LIE = MBB->livein_end(); LII != LIE; ++LII) {
    310       for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
    311         unsigned Unit = *Units;
    312         LiveRange *LR = RegUnitRanges[Unit];
    313         if (!LR) {
    314           // Use segment set to speed-up initial computation of the live range.
    315           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
    316           NewRanges.push_back(Unit);
    317         }
    318         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
    319         (void)VNI;
    320         DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
    321       }
    322     }
    323     DEBUG(dbgs() << '\n');
    324   }
    325   DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
    326 
    327   // Compute the 'normal' part of the ranges.
    328   for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
    329     unsigned Unit = NewRanges[i];
    330     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
    331   }
    332 }
    333 
    334 
    335 static void createSegmentsForValues(LiveRange &LR,
    336       iterator_range<LiveInterval::vni_iterator> VNIs) {
    337   for (auto VNI : VNIs) {
    338     if (VNI->isUnused())
    339       continue;
    340     SlotIndex Def = VNI->def;
    341     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
    342   }
    343 }
    344 
    345 typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
    346 
    347 static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
    348                                  ShrinkToUsesWorkList &WorkList,
    349                                  const LiveRange &OldRange) {
    350   // Keep track of the PHIs that are in use.
    351   SmallPtrSet<VNInfo*, 8> UsedPHIs;
    352   // Blocks that have already been added to WorkList as live-out.
    353   SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
    354 
    355   // Extend intervals to reach all uses in WorkList.
    356   while (!WorkList.empty()) {
    357     SlotIndex Idx = WorkList.back().first;
    358     VNInfo *VNI = WorkList.back().second;
    359     WorkList.pop_back();
    360     const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
    361     SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
    362 
    363     // Extend the live range for VNI to be live at Idx.
    364     if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
    365       assert(ExtVNI == VNI && "Unexpected existing value number");
    366       (void)ExtVNI;
    367       // Is this a PHIDef we haven't seen before?
    368       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
    369           !UsedPHIs.insert(VNI).second)
    370         continue;
    371       // The PHI is live, make sure the predecessors are live-out.
    372       for (auto &Pred : MBB->predecessors()) {
    373         if (!LiveOut.insert(Pred).second)
    374           continue;
    375         SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
    376         // A predecessor is not required to have a live-out value for a PHI.
    377         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
    378           WorkList.push_back(std::make_pair(Stop, PVNI));
    379       }
    380       continue;
    381     }
    382 
    383     // VNI is live-in to MBB.
    384     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
    385     LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
    386 
    387     // Make sure VNI is live-out from the predecessors.
    388     for (auto &Pred : MBB->predecessors()) {
    389       if (!LiveOut.insert(Pred).second)
    390         continue;
    391       SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
    392       assert(OldRange.getVNInfoBefore(Stop) == VNI &&
    393              "Wrong value out of predecessor");
    394       WorkList.push_back(std::make_pair(Stop, VNI));
    395     }
    396   }
    397 }
    398 
    399 /// shrinkToUses - After removing some uses of a register, shrink its live
    400 /// range to just the remaining uses. This method does not compute reaching
    401 /// defs for new uses, and it doesn't remove dead defs.
    402 bool LiveIntervals::shrinkToUses(LiveInterval *li,
    403                                  SmallVectorImpl<MachineInstr*> *dead) {
    404   DEBUG(dbgs() << "Shrink: " << *li << '\n');
    405   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
    406          && "Can only shrink virtual registers");
    407 
    408   // Shrink subregister live ranges.
    409   for (LiveInterval::SubRange &S : li->subranges()) {
    410     shrinkToUses(S, li->reg);
    411   }
    412 
    413   // Find all the values used, including PHI kills.
    414   ShrinkToUsesWorkList WorkList;
    415 
    416   // Visit all instructions reading li->reg.
    417   for (MachineRegisterInfo::reg_instr_iterator
    418        I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
    419        I != E; ) {
    420     MachineInstr *UseMI = &*(I++);
    421     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
    422       continue;
    423     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
    424     LiveQueryResult LRQ = li->Query(Idx);
    425     VNInfo *VNI = LRQ.valueIn();
    426     if (!VNI) {
    427       // This shouldn't happen: readsVirtualRegister returns true, but there is
    428       // no live value. It is likely caused by a target getting <undef> flags
    429       // wrong.
    430       DEBUG(dbgs() << Idx << '\t' << *UseMI
    431                    << "Warning: Instr claims to read non-existent value in "
    432                     << *li << '\n');
    433       continue;
    434     }
    435     // Special case: An early-clobber tied operand reads and writes the
    436     // register one slot early.
    437     if (VNInfo *DefVNI = LRQ.valueDefined())
    438       Idx = DefVNI->def;
    439 
    440     WorkList.push_back(std::make_pair(Idx, VNI));
    441   }
    442 
    443   // Create new live ranges with only minimal live segments per def.
    444   LiveRange NewLR;
    445   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
    446   extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
    447 
    448   // Move the trimmed segments back.
    449   li->segments.swap(NewLR.segments);
    450 
    451   // Handle dead values.
    452   bool CanSeparate = computeDeadValues(*li, dead);
    453   DEBUG(dbgs() << "Shrunk: " << *li << '\n');
    454   return CanSeparate;
    455 }
    456 
    457 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
    458                                       SmallVectorImpl<MachineInstr*> *dead) {
    459   bool PHIRemoved = false;
    460   for (auto VNI : LI.valnos) {
    461     if (VNI->isUnused())
    462       continue;
    463     SlotIndex Def = VNI->def;
    464     LiveRange::iterator I = LI.FindSegmentContaining(Def);
    465     assert(I != LI.end() && "Missing segment for VNI");
    466 
    467     // Is the register live before? Otherwise we may have to add a read-undef
    468     // flag for subregister defs.
    469     if (MRI->shouldTrackSubRegLiveness(LI.reg)) {
    470       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
    471         MachineInstr *MI = getInstructionFromIndex(Def);
    472         MI->addRegisterDefReadUndef(LI.reg);
    473       }
    474     }
    475 
    476     if (I->end != Def.getDeadSlot())
    477       continue;
    478     if (VNI->isPHIDef()) {
    479       // This is a dead PHI. Remove it.
    480       VNI->markUnused();
    481       LI.removeSegment(I);
    482       DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
    483       PHIRemoved = true;
    484     } else {
    485       // This is a dead def. Make sure the instruction knows.
    486       MachineInstr *MI = getInstructionFromIndex(Def);
    487       assert(MI && "No instruction defining live value");
    488       MI->addRegisterDead(LI.reg, TRI);
    489       if (dead && MI->allDefsAreDead()) {
    490         DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
    491         dead->push_back(MI);
    492       }
    493     }
    494   }
    495   return PHIRemoved;
    496 }
    497 
    498 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
    499 {
    500   DEBUG(dbgs() << "Shrink: " << SR << '\n');
    501   assert(TargetRegisterInfo::isVirtualRegister(Reg)
    502          && "Can only shrink virtual registers");
    503   // Find all the values used, including PHI kills.
    504   ShrinkToUsesWorkList WorkList;
    505 
    506   // Visit all instructions reading Reg.
    507   SlotIndex LastIdx;
    508   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
    509     MachineInstr *UseMI = MO.getParent();
    510     if (UseMI->isDebugValue())
    511       continue;
    512     // Maybe the operand is for a subregister we don't care about.
    513     unsigned SubReg = MO.getSubReg();
    514     if (SubReg != 0) {
    515       unsigned SubRegMask = TRI->getSubRegIndexLaneMask(SubReg);
    516       if ((SubRegMask & SR.LaneMask) == 0)
    517         continue;
    518     }
    519     // We only need to visit each instruction once.
    520     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
    521     if (Idx == LastIdx)
    522       continue;
    523     LastIdx = Idx;
    524 
    525     LiveQueryResult LRQ = SR.Query(Idx);
    526     VNInfo *VNI = LRQ.valueIn();
    527     // For Subranges it is possible that only undef values are left in that
    528     // part of the subregister, so there is no real liverange at the use
    529     if (!VNI)
    530       continue;
    531 
    532     // Special case: An early-clobber tied operand reads and writes the
    533     // register one slot early.
    534     if (VNInfo *DefVNI = LRQ.valueDefined())
    535       Idx = DefVNI->def;
    536 
    537     WorkList.push_back(std::make_pair(Idx, VNI));
    538   }
    539 
    540   // Create a new live ranges with only minimal live segments per def.
    541   LiveRange NewLR;
    542   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
    543   extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
    544 
    545   // Move the trimmed ranges back.
    546   SR.segments.swap(NewLR.segments);
    547 
    548   // Remove dead PHI value numbers
    549   for (auto VNI : SR.valnos) {
    550     if (VNI->isUnused())
    551       continue;
    552     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
    553     assert(Segment != nullptr && "Missing segment for VNI");
    554     if (Segment->end != VNI->def.getDeadSlot())
    555       continue;
    556     if (VNI->isPHIDef()) {
    557       // This is a dead PHI. Remove it.
    558       VNI->markUnused();
    559       SR.removeSegment(*Segment);
    560       DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
    561     }
    562   }
    563 
    564   DEBUG(dbgs() << "Shrunk: " << SR << '\n');
    565 }
    566 
    567 void LiveIntervals::extendToIndices(LiveRange &LR,
    568                                     ArrayRef<SlotIndex> Indices) {
    569   assert(LRCalc && "LRCalc not initialized.");
    570   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    571   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
    572     LRCalc->extend(LR, Indices[i]);
    573 }
    574 
    575 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
    576                                SmallVectorImpl<SlotIndex> *EndPoints) {
    577   LiveQueryResult LRQ = LR.Query(Kill);
    578   VNInfo *VNI = LRQ.valueOutOrDead();
    579   if (!VNI)
    580     return;
    581 
    582   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
    583   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
    584 
    585   // If VNI isn't live out from KillMBB, the value is trivially pruned.
    586   if (LRQ.endPoint() < MBBEnd) {
    587     LR.removeSegment(Kill, LRQ.endPoint());
    588     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    589     return;
    590   }
    591 
    592   // VNI is live out of KillMBB.
    593   LR.removeSegment(Kill, MBBEnd);
    594   if (EndPoints) EndPoints->push_back(MBBEnd);
    595 
    596   // Find all blocks that are reachable from KillMBB without leaving VNI's live
    597   // range. It is possible that KillMBB itself is reachable, so start a DFS
    598   // from each successor.
    599   typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
    600   VisitedTy Visited;
    601   for (MachineBasicBlock::succ_iterator
    602        SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
    603        SuccI != SuccE; ++SuccI) {
    604     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
    605          I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
    606          I != E;) {
    607       MachineBasicBlock *MBB = *I;
    608 
    609       // Check if VNI is live in to MBB.
    610       SlotIndex MBBStart, MBBEnd;
    611       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
    612       LiveQueryResult LRQ = LR.Query(MBBStart);
    613       if (LRQ.valueIn() != VNI) {
    614         // This block isn't part of the VNI segment. Prune the search.
    615         I.skipChildren();
    616         continue;
    617       }
    618 
    619       // Prune the search if VNI is killed in MBB.
    620       if (LRQ.endPoint() < MBBEnd) {
    621         LR.removeSegment(MBBStart, LRQ.endPoint());
    622         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    623         I.skipChildren();
    624         continue;
    625       }
    626 
    627       // VNI is live through MBB.
    628       LR.removeSegment(MBBStart, MBBEnd);
    629       if (EndPoints) EndPoints->push_back(MBBEnd);
    630       ++I;
    631     }
    632   }
    633 }
    634 
    635 //===----------------------------------------------------------------------===//
    636 // Register allocator hooks.
    637 //
    638 
    639 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
    640   // Keep track of regunit ranges.
    641   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
    642   // Keep track of subregister ranges.
    643   SmallVector<std::pair<const LiveInterval::SubRange*,
    644                         LiveRange::const_iterator>, 4> SRs;
    645 
    646   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    647     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    648     if (MRI->reg_nodbg_empty(Reg))
    649       continue;
    650     const LiveInterval &LI = getInterval(Reg);
    651     if (LI.empty())
    652       continue;
    653 
    654     // Find the regunit intervals for the assigned register. They may overlap
    655     // the virtual register live range, cancelling any kills.
    656     RU.clear();
    657     for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
    658          ++Units) {
    659       const LiveRange &RURange = getRegUnit(*Units);
    660       if (RURange.empty())
    661         continue;
    662       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
    663     }
    664 
    665     if (MRI->subRegLivenessEnabled()) {
    666       SRs.clear();
    667       for (const LiveInterval::SubRange &SR : LI.subranges()) {
    668         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
    669       }
    670     }
    671 
    672     // Every instruction that kills Reg corresponds to a segment range end
    673     // point.
    674     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
    675          ++RI) {
    676       // A block index indicates an MBB edge.
    677       if (RI->end.isBlock())
    678         continue;
    679       MachineInstr *MI = getInstructionFromIndex(RI->end);
    680       if (!MI)
    681         continue;
    682 
    683       // Check if any of the regunits are live beyond the end of RI. That could
    684       // happen when a physreg is defined as a copy of a virtreg:
    685       //
    686       //   %EAX = COPY %vreg5
    687       //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
    688       //   BAR %EAX<kill>
    689       //
    690       // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
    691       for (auto &RUP : RU) {
    692         const LiveRange &RURange = *RUP.first;
    693         LiveRange::const_iterator &I = RUP.second;
    694         if (I == RURange.end())
    695           continue;
    696         I = RURange.advanceTo(I, RI->end);
    697         if (I == RURange.end() || I->start >= RI->end)
    698           continue;
    699         // I is overlapping RI.
    700         goto CancelKill;
    701       }
    702 
    703       if (MRI->subRegLivenessEnabled()) {
    704         // When reading a partial undefined value we must not add a kill flag.
    705         // The regalloc might have used the undef lane for something else.
    706         // Example:
    707         //     %vreg1 = ...              ; R32: %vreg1
    708         //     %vreg2:high16 = ...       ; R64: %vreg2
    709         //        = read %vreg2<kill>    ; R64: %vreg2
    710         //        = read %vreg1          ; R32: %vreg1
    711         // The <kill> flag is correct for %vreg2, but the register allocator may
    712         // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
    713         // are actually never written by %vreg2. After assignment the <kill>
    714         // flag at the read instruction is invalid.
    715         unsigned DefinedLanesMask;
    716         if (!SRs.empty()) {
    717           // Compute a mask of lanes that are defined.
    718           DefinedLanesMask = 0;
    719           for (auto &SRP : SRs) {
    720             const LiveInterval::SubRange &SR = *SRP.first;
    721             LiveRange::const_iterator &I = SRP.second;
    722             if (I == SR.end())
    723               continue;
    724             I = SR.advanceTo(I, RI->end);
    725             if (I == SR.end() || I->start >= RI->end)
    726               continue;
    727             // I is overlapping RI
    728             DefinedLanesMask |= SR.LaneMask;
    729           }
    730         } else
    731           DefinedLanesMask = ~0u;
    732 
    733         bool IsFullWrite = false;
    734         for (const MachineOperand &MO : MI->operands()) {
    735           if (!MO.isReg() || MO.getReg() != Reg)
    736             continue;
    737           if (MO.isUse()) {
    738             // Reading any undefined lanes?
    739             unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
    740             if ((UseMask & ~DefinedLanesMask) != 0)
    741               goto CancelKill;
    742           } else if (MO.getSubReg() == 0) {
    743             // Writing to the full register?
    744             assert(MO.isDef());
    745             IsFullWrite = true;
    746           }
    747         }
    748 
    749         // If an instruction writes to a subregister, a new segment starts in
    750         // the LiveInterval. But as this is only overriding part of the register
    751         // adding kill-flags is not correct here after registers have been
    752         // assigned.
    753         if (!IsFullWrite) {
    754           // Next segment has to be adjacent in the subregister write case.
    755           LiveRange::const_iterator N = std::next(RI);
    756           if (N != LI.end() && N->start == RI->end)
    757             goto CancelKill;
    758         }
    759       }
    760 
    761       MI->addRegisterKilled(Reg, nullptr);
    762       continue;
    763 CancelKill:
    764       MI->clearRegisterKills(Reg, nullptr);
    765     }
    766   }
    767 }
    768 
    769 MachineBasicBlock*
    770 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
    771   // A local live range must be fully contained inside the block, meaning it is
    772   // defined and killed at instructions, not at block boundaries. It is not
    773   // live in or or out of any block.
    774   //
    775   // It is technically possible to have a PHI-defined live range identical to a
    776   // single block, but we are going to return false in that case.
    777 
    778   SlotIndex Start = LI.beginIndex();
    779   if (Start.isBlock())
    780     return nullptr;
    781 
    782   SlotIndex Stop = LI.endIndex();
    783   if (Stop.isBlock())
    784     return nullptr;
    785 
    786   // getMBBFromIndex doesn't need to search the MBB table when both indexes
    787   // belong to proper instructions.
    788   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
    789   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
    790   return MBB1 == MBB2 ? MBB1 : nullptr;
    791 }
    792 
    793 bool
    794 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
    795   for (const VNInfo *PHI : LI.valnos) {
    796     if (PHI->isUnused() || !PHI->isPHIDef())
    797       continue;
    798     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
    799     // Conservatively return true instead of scanning huge predecessor lists.
    800     if (PHIMBB->pred_size() > 100)
    801       return true;
    802     for (MachineBasicBlock::const_pred_iterator
    803          PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
    804       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
    805         return true;
    806   }
    807   return false;
    808 }
    809 
    810 float
    811 LiveIntervals::getSpillWeight(bool isDef, bool isUse,
    812                               const MachineBlockFrequencyInfo *MBFI,
    813                               const MachineInstr *MI) {
    814   BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
    815   const float Scale = 1.0f / MBFI->getEntryFreq();
    816   return (isDef + isUse) * (Freq.getFrequency() * Scale);
    817 }
    818 
    819 LiveRange::Segment
    820 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
    821   LiveInterval& Interval = createEmptyInterval(reg);
    822   VNInfo* VN = Interval.getNextValue(
    823     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    824     getVNInfoAllocator());
    825   LiveRange::Segment S(
    826      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    827      getMBBEndIdx(startInst->getParent()), VN);
    828   Interval.addSegment(S);
    829 
    830   return S;
    831 }
    832 
    833 
    834 //===----------------------------------------------------------------------===//
    835 //                          Register mask functions
    836 //===----------------------------------------------------------------------===//
    837 
    838 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
    839                                              BitVector &UsableRegs) {
    840   if (LI.empty())
    841     return false;
    842   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
    843 
    844   // Use a smaller arrays for local live ranges.
    845   ArrayRef<SlotIndex> Slots;
    846   ArrayRef<const uint32_t*> Bits;
    847   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
    848     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
    849     Bits = getRegMaskBitsInBlock(MBB->getNumber());
    850   } else {
    851     Slots = getRegMaskSlots();
    852     Bits = getRegMaskBits();
    853   }
    854 
    855   // We are going to enumerate all the register mask slots contained in LI.
    856   // Start with a binary search of RegMaskSlots to find a starting point.
    857   ArrayRef<SlotIndex>::iterator SlotI =
    858     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
    859   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
    860 
    861   // No slots in range, LI begins after the last call.
    862   if (SlotI == SlotE)
    863     return false;
    864 
    865   bool Found = false;
    866   for (;;) {
    867     assert(*SlotI >= LiveI->start);
    868     // Loop over all slots overlapping this segment.
    869     while (*SlotI < LiveI->end) {
    870       // *SlotI overlaps LI. Collect mask bits.
    871       if (!Found) {
    872         // This is the first overlap. Initialize UsableRegs to all ones.
    873         UsableRegs.clear();
    874         UsableRegs.resize(TRI->getNumRegs(), true);
    875         Found = true;
    876       }
    877       // Remove usable registers clobbered by this mask.
    878       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
    879       if (++SlotI == SlotE)
    880         return Found;
    881     }
    882     // *SlotI is beyond the current LI segment.
    883     LiveI = LI.advanceTo(LiveI, *SlotI);
    884     if (LiveI == LiveE)
    885       return Found;
    886     // Advance SlotI until it overlaps.
    887     while (*SlotI < LiveI->start)
    888       if (++SlotI == SlotE)
    889         return Found;
    890   }
    891 }
    892 
    893 //===----------------------------------------------------------------------===//
    894 //                         IntervalUpdate class.
    895 //===----------------------------------------------------------------------===//
    896 
    897 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
    898 class LiveIntervals::HMEditor {
    899 private:
    900   LiveIntervals& LIS;
    901   const MachineRegisterInfo& MRI;
    902   const TargetRegisterInfo& TRI;
    903   SlotIndex OldIdx;
    904   SlotIndex NewIdx;
    905   SmallPtrSet<LiveRange*, 8> Updated;
    906   bool UpdateFlags;
    907 
    908 public:
    909   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
    910            const TargetRegisterInfo& TRI,
    911            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
    912     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
    913       UpdateFlags(UpdateFlags) {}
    914 
    915   // FIXME: UpdateFlags is a workaround that creates live intervals for all
    916   // physregs, even those that aren't needed for regalloc, in order to update
    917   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
    918   // flags, and postRA passes will use a live register utility instead.
    919   LiveRange *getRegUnitLI(unsigned Unit) {
    920     if (UpdateFlags)
    921       return &LIS.getRegUnit(Unit);
    922     return LIS.getCachedRegUnit(Unit);
    923   }
    924 
    925   /// Update all live ranges touched by MI, assuming a move from OldIdx to
    926   /// NewIdx.
    927   void updateAllRanges(MachineInstr *MI) {
    928     DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
    929     bool hasRegMask = false;
    930     for (MIOperands MO(MI); MO.isValid(); ++MO) {
    931       if (MO->isRegMask())
    932         hasRegMask = true;
    933       if (!MO->isReg())
    934         continue;
    935       // Aggressively clear all kill flags.
    936       // They are reinserted by VirtRegRewriter.
    937       if (MO->isUse())
    938         MO->setIsKill(false);
    939 
    940       unsigned Reg = MO->getReg();
    941       if (!Reg)
    942         continue;
    943       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    944         LiveInterval &LI = LIS.getInterval(Reg);
    945         if (LI.hasSubRanges()) {
    946           unsigned SubReg = MO->getSubReg();
    947           unsigned LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
    948           for (LiveInterval::SubRange &S : LI.subranges()) {
    949             if ((S.LaneMask & LaneMask) == 0)
    950               continue;
    951             updateRange(S, Reg, S.LaneMask);
    952           }
    953         }
    954         updateRange(LI, Reg, 0);
    955         continue;
    956       }
    957 
    958       // For physregs, only update the regunits that actually have a
    959       // precomputed live range.
    960       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
    961         if (LiveRange *LR = getRegUnitLI(*Units))
    962           updateRange(*LR, *Units, 0);
    963     }
    964     if (hasRegMask)
    965       updateRegMaskSlots();
    966   }
    967 
    968 private:
    969   /// Update a single live range, assuming an instruction has been moved from
    970   /// OldIdx to NewIdx.
    971   void updateRange(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
    972     if (!Updated.insert(&LR).second)
    973       return;
    974     DEBUG({
    975       dbgs() << "     ";
    976       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    977         dbgs() << PrintReg(Reg);
    978         if (LaneMask != 0)
    979           dbgs() << format(" L%04X", LaneMask);
    980       } else {
    981         dbgs() << PrintRegUnit(Reg, &TRI);
    982       }
    983       dbgs() << ":\t" << LR << '\n';
    984     });
    985     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
    986       handleMoveDown(LR);
    987     else
    988       handleMoveUp(LR, Reg, LaneMask);
    989     DEBUG(dbgs() << "        -->\t" << LR << '\n');
    990     LR.verify();
    991   }
    992 
    993   /// Update LR to reflect an instruction has been moved downwards from OldIdx
    994   /// to NewIdx.
    995   ///
    996   /// 1. Live def at OldIdx:
    997   ///    Move def to NewIdx, assert endpoint after NewIdx.
    998   ///
    999   /// 2. Live def at OldIdx, killed at NewIdx:
   1000   ///    Change to dead def at NewIdx.
   1001   ///    (Happens when bundling def+kill together).
   1002   ///
   1003   /// 3. Dead def at OldIdx:
   1004   ///    Move def to NewIdx, possibly across another live value.
   1005   ///
   1006   /// 4. Def at OldIdx AND at NewIdx:
   1007   ///    Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
   1008   ///    (Happens when bundling multiple defs together).
   1009   ///
   1010   /// 5. Value read at OldIdx, killed before NewIdx:
   1011   ///    Extend kill to NewIdx.
   1012   ///
   1013   void handleMoveDown(LiveRange &LR) {
   1014     // First look for a kill at OldIdx.
   1015     LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
   1016     LiveRange::iterator E = LR.end();
   1017     // Is LR even live at OldIdx?
   1018     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
   1019       return;
   1020 
   1021     // Handle a live-in value.
   1022     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
   1023       bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
   1024       // If the live-in value already extends to NewIdx, there is nothing to do.
   1025       if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
   1026         return;
   1027       // Aggressively remove all kill flags from the old kill point.
   1028       // Kill flags shouldn't be used while live intervals exist, they will be
   1029       // reinserted by VirtRegRewriter.
   1030       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
   1031         for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
   1032           if (MO->isReg() && MO->isUse())
   1033             MO->setIsKill(false);
   1034       // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
   1035       // overlapping ranges. Case 5 above.
   1036       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
   1037       // If this was a kill, there may also be a def. Otherwise we're done.
   1038       if (!isKill)
   1039         return;
   1040       ++I;
   1041     }
   1042 
   1043     // Check for a def at OldIdx.
   1044     if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
   1045       return;
   1046     // We have a def at OldIdx.
   1047     VNInfo *DefVNI = I->valno;
   1048     assert(DefVNI->def == I->start && "Inconsistent def");
   1049     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
   1050     // If the defined value extends beyond NewIdx, just move the def down.
   1051     // This is case 1 above.
   1052     if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
   1053       I->start = DefVNI->def;
   1054       return;
   1055     }
   1056     // The remaining possibilities are now:
   1057     // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
   1058     // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
   1059     // In either case, it is possible that there is an existing def at NewIdx.
   1060     assert((I->end == OldIdx.getDeadSlot() ||
   1061             SlotIndex::isSameInstr(I->end, NewIdx)) &&
   1062             "Cannot move def below kill");
   1063     LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
   1064     if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
   1065       // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
   1066       // coalesced into that value.
   1067       assert(NewI->valno != DefVNI && "Multiple defs of value?");
   1068       LR.removeValNo(DefVNI);
   1069       return;
   1070     }
   1071     // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
   1072     // If the def at OldIdx was dead, we allow it to be moved across other LR
   1073     // values. The new range should be placed immediately before NewI, move any
   1074     // intermediate ranges up.
   1075     assert(NewI != I && "Inconsistent iterators");
   1076     std::copy(std::next(I), NewI, I);
   1077     *std::prev(NewI)
   1078       = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
   1079   }
   1080 
   1081   /// Update LR to reflect an instruction has been moved upwards from OldIdx
   1082   /// to NewIdx.
   1083   ///
   1084   /// 1. Live def at OldIdx:
   1085   ///    Hoist def to NewIdx.
   1086   ///
   1087   /// 2. Dead def at OldIdx:
   1088   ///    Hoist def+end to NewIdx, possibly move across other values.
   1089   ///
   1090   /// 3. Dead def at OldIdx AND existing def at NewIdx:
   1091   ///    Remove value defined at OldIdx, coalescing it with existing value.
   1092   ///
   1093   /// 4. Live def at OldIdx AND existing def at NewIdx:
   1094   ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
   1095   ///    (Happens when bundling multiple defs together).
   1096   ///
   1097   /// 5. Value killed at OldIdx:
   1098   ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
   1099   ///    OldIdx.
   1100   ///
   1101   void handleMoveUp(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
   1102     // First look for a kill at OldIdx.
   1103     LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
   1104     LiveRange::iterator E = LR.end();
   1105     // Is LR even live at OldIdx?
   1106     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
   1107       return;
   1108 
   1109     // Handle a live-in value.
   1110     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
   1111       // If the live-in value isn't killed here, there is nothing to do.
   1112       if (!SlotIndex::isSameInstr(OldIdx, I->end))
   1113         return;
   1114       // Adjust I->end to end at NewIdx. If we are hoisting a kill above
   1115       // another use, we need to search for that use. Case 5 above.
   1116       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
   1117       ++I;
   1118       // If OldIdx also defines a value, there couldn't have been another use.
   1119       if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
   1120         // No def, search for the new kill.
   1121         // This can never be an early clobber kill since there is no def.
   1122         std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
   1123         return;
   1124       }
   1125     }
   1126 
   1127     // Now deal with the def at OldIdx.
   1128     assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
   1129     VNInfo *DefVNI = I->valno;
   1130     assert(DefVNI->def == I->start && "Inconsistent def");
   1131     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
   1132 
   1133     // Check for an existing def at NewIdx.
   1134     LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
   1135     if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
   1136       assert(NewI->valno != DefVNI && "Same value defined more than once?");
   1137       // There is an existing def at NewIdx.
   1138       if (I->end.isDead()) {
   1139         // Case 3: Remove the dead def at OldIdx.
   1140         LR.removeValNo(DefVNI);
   1141         return;
   1142       }
   1143       // Case 4: Replace def at NewIdx with live def at OldIdx.
   1144       I->start = DefVNI->def;
   1145       LR.removeValNo(NewI->valno);
   1146       return;
   1147     }
   1148 
   1149     // There is no existing def at NewIdx. Hoist DefVNI.
   1150     if (!I->end.isDead()) {
   1151       // Leave the end point of a live def.
   1152       I->start = DefVNI->def;
   1153       return;
   1154     }
   1155 
   1156     // DefVNI is a dead def. It may have been moved across other values in LR,
   1157     // so move I up to NewI. Slide [NewI;I) down one position.
   1158     std::copy_backward(NewI, I, std::next(I));
   1159     *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
   1160   }
   1161 
   1162   void updateRegMaskSlots() {
   1163     SmallVectorImpl<SlotIndex>::iterator RI =
   1164       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
   1165                        OldIdx);
   1166     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
   1167            "No RegMask at OldIdx.");
   1168     *RI = NewIdx.getRegSlot();
   1169     assert((RI == LIS.RegMaskSlots.begin() ||
   1170             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
   1171            "Cannot move regmask instruction above another call");
   1172     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
   1173             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
   1174            "Cannot move regmask instruction below another call");
   1175   }
   1176 
   1177   // Return the last use of reg between NewIdx and OldIdx.
   1178   SlotIndex findLastUseBefore(unsigned Reg, unsigned LaneMask) {
   1179 
   1180     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1181       SlotIndex LastUse = NewIdx;
   1182       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
   1183         unsigned SubReg = MO.getSubReg();
   1184         if (SubReg != 0 && LaneMask != 0
   1185             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
   1186           continue;
   1187 
   1188         const MachineInstr *MI = MO.getParent();
   1189         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
   1190         if (InstSlot > LastUse && InstSlot < OldIdx)
   1191           LastUse = InstSlot;
   1192       }
   1193       return LastUse;
   1194     }
   1195 
   1196     // This is a regunit interval, so scanning the use list could be very
   1197     // expensive. Scan upwards from OldIdx instead.
   1198     assert(NewIdx < OldIdx && "Expected upwards move");
   1199     SlotIndexes *Indexes = LIS.getSlotIndexes();
   1200     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
   1201 
   1202     // OldIdx may not correspond to an instruction any longer, so set MII to
   1203     // point to the next instruction after OldIdx, or MBB->end().
   1204     MachineBasicBlock::iterator MII = MBB->end();
   1205     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
   1206                            Indexes->getNextNonNullIndex(OldIdx)))
   1207       if (MI->getParent() == MBB)
   1208         MII = MI;
   1209 
   1210     MachineBasicBlock::iterator Begin = MBB->begin();
   1211     while (MII != Begin) {
   1212       if ((--MII)->isDebugValue())
   1213         continue;
   1214       SlotIndex Idx = Indexes->getInstructionIndex(MII);
   1215 
   1216       // Stop searching when NewIdx is reached.
   1217       if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
   1218         return NewIdx;
   1219 
   1220       // Check if MII uses Reg.
   1221       for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
   1222         if (MO->isReg() &&
   1223             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
   1224             TRI.hasRegUnit(MO->getReg(), Reg))
   1225           return Idx;
   1226     }
   1227     // Didn't reach NewIdx. It must be the first instruction in the block.
   1228     return NewIdx;
   1229   }
   1230 };
   1231 
   1232 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
   1233   assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
   1234   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
   1235   Indexes->removeMachineInstrFromMaps(MI);
   1236   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
   1237   assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
   1238          OldIndex < getMBBEndIdx(MI->getParent()) &&
   1239          "Cannot handle moves across basic block boundaries.");
   1240 
   1241   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
   1242   HME.updateAllRanges(MI);
   1243 }
   1244 
   1245 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
   1246                                          MachineInstr* BundleStart,
   1247                                          bool UpdateFlags) {
   1248   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
   1249   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
   1250   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
   1251   HME.updateAllRanges(MI);
   1252 }
   1253 
   1254 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
   1255                                         const MachineBasicBlock::iterator End,
   1256                                         const SlotIndex endIdx,
   1257                                         LiveRange &LR, const unsigned Reg,
   1258                                         const unsigned LaneMask) {
   1259   LiveInterval::iterator LII = LR.find(endIdx);
   1260   SlotIndex lastUseIdx;
   1261   if (LII != LR.end() && LII->start < endIdx)
   1262     lastUseIdx = LII->end;
   1263   else
   1264     --LII;
   1265 
   1266   for (MachineBasicBlock::iterator I = End; I != Begin;) {
   1267     --I;
   1268     MachineInstr *MI = I;
   1269     if (MI->isDebugValue())
   1270       continue;
   1271 
   1272     SlotIndex instrIdx = getInstructionIndex(MI);
   1273     bool isStartValid = getInstructionFromIndex(LII->start);
   1274     bool isEndValid = getInstructionFromIndex(LII->end);
   1275 
   1276     // FIXME: This doesn't currently handle early-clobber or multiple removed
   1277     // defs inside of the region to repair.
   1278     for (MachineInstr::mop_iterator OI = MI->operands_begin(),
   1279          OE = MI->operands_end(); OI != OE; ++OI) {
   1280       const MachineOperand &MO = *OI;
   1281       if (!MO.isReg() || MO.getReg() != Reg)
   1282         continue;
   1283 
   1284       unsigned SubReg = MO.getSubReg();
   1285       unsigned Mask = TRI->getSubRegIndexLaneMask(SubReg);
   1286       if ((Mask & LaneMask) == 0)
   1287         continue;
   1288 
   1289       if (MO.isDef()) {
   1290         if (!isStartValid) {
   1291           if (LII->end.isDead()) {
   1292             SlotIndex prevStart;
   1293             if (LII != LR.begin())
   1294               prevStart = std::prev(LII)->start;
   1295 
   1296             // FIXME: This could be more efficient if there was a
   1297             // removeSegment method that returned an iterator.
   1298             LR.removeSegment(*LII, true);
   1299             if (prevStart.isValid())
   1300               LII = LR.find(prevStart);
   1301             else
   1302               LII = LR.begin();
   1303           } else {
   1304             LII->start = instrIdx.getRegSlot();
   1305             LII->valno->def = instrIdx.getRegSlot();
   1306             if (MO.getSubReg() && !MO.isUndef())
   1307               lastUseIdx = instrIdx.getRegSlot();
   1308             else
   1309               lastUseIdx = SlotIndex();
   1310             continue;
   1311           }
   1312         }
   1313 
   1314         if (!lastUseIdx.isValid()) {
   1315           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
   1316           LiveRange::Segment S(instrIdx.getRegSlot(),
   1317                                instrIdx.getDeadSlot(), VNI);
   1318           LII = LR.addSegment(S);
   1319         } else if (LII->start != instrIdx.getRegSlot()) {
   1320           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
   1321           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
   1322           LII = LR.addSegment(S);
   1323         }
   1324 
   1325         if (MO.getSubReg() && !MO.isUndef())
   1326           lastUseIdx = instrIdx.getRegSlot();
   1327         else
   1328           lastUseIdx = SlotIndex();
   1329       } else if (MO.isUse()) {
   1330         // FIXME: This should probably be handled outside of this branch,
   1331         // either as part of the def case (for defs inside of the region) or
   1332         // after the loop over the region.
   1333         if (!isEndValid && !LII->end.isBlock())
   1334           LII->end = instrIdx.getRegSlot();
   1335         if (!lastUseIdx.isValid())
   1336           lastUseIdx = instrIdx.getRegSlot();
   1337       }
   1338     }
   1339   }
   1340 }
   1341 
   1342 void
   1343 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
   1344                                       MachineBasicBlock::iterator Begin,
   1345                                       MachineBasicBlock::iterator End,
   1346                                       ArrayRef<unsigned> OrigRegs) {
   1347   // Find anchor points, which are at the beginning/end of blocks or at
   1348   // instructions that already have indexes.
   1349   while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
   1350     --Begin;
   1351   while (End != MBB->end() && !Indexes->hasIndex(End))
   1352     ++End;
   1353 
   1354   SlotIndex endIdx;
   1355   if (End == MBB->end())
   1356     endIdx = getMBBEndIdx(MBB).getPrevSlot();
   1357   else
   1358     endIdx = getInstructionIndex(End);
   1359 
   1360   Indexes->repairIndexesInRange(MBB, Begin, End);
   1361 
   1362   for (MachineBasicBlock::iterator I = End; I != Begin;) {
   1363     --I;
   1364     MachineInstr *MI = I;
   1365     if (MI->isDebugValue())
   1366       continue;
   1367     for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
   1368          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
   1369       if (MOI->isReg() &&
   1370           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
   1371           !hasInterval(MOI->getReg())) {
   1372         createAndComputeVirtRegInterval(MOI->getReg());
   1373       }
   1374     }
   1375   }
   1376 
   1377   for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
   1378     unsigned Reg = OrigRegs[i];
   1379     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1380       continue;
   1381 
   1382     LiveInterval &LI = getInterval(Reg);
   1383     // FIXME: Should we support undefs that gain defs?
   1384     if (!LI.hasAtLeastOneValue())
   1385       continue;
   1386 
   1387     for (LiveInterval::SubRange &S : LI.subranges()) {
   1388       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
   1389     }
   1390     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
   1391   }
   1392 }
   1393 
   1394 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
   1395   for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
   1396     if (LiveRange *LR = getCachedRegUnit(*Units))
   1397       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
   1398         LR->removeValNo(VNI);
   1399   }
   1400 }
   1401 
   1402 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
   1403   VNInfo *VNI = LI.getVNInfoAt(Pos);
   1404   if (VNI == nullptr)
   1405     return;
   1406   LI.removeValNo(VNI);
   1407 
   1408   // Also remove the value in subranges.
   1409   for (LiveInterval::SubRange &S : LI.subranges()) {
   1410     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
   1411       S.removeValNo(SVNI);
   1412   }
   1413   LI.removeEmptySubRanges();
   1414 }
   1415