Home | History | Annotate | Download | only in SelectionDAG
      1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements bottom-up and top-down register pressure reduction list
     11 // schedulers, using standard algorithms.  The basic approach uses a priority
     12 // queue of available nodes to schedule.  One at a time, nodes are taken from
     13 // the priority queue (thus in priority order), checked for legality to
     14 // schedule, and emitted if legal.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/CodeGen/SchedulerRegistry.h"
     19 #include "ScheduleDAGSDNodes.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     25 #include "llvm/CodeGen/SelectionDAGISel.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetInstrInfo.h"
     32 #include "llvm/Target/TargetLowering.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 #include <climits>
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "pre-RA-sched"
     39 
     40 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
     41 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
     42 STATISTIC(NumDups,       "Number of duplicated nodes");
     43 STATISTIC(NumPRCopies,   "Number of physical register copies");
     44 
     45 static RegisterScheduler
     46   burrListDAGScheduler("list-burr",
     47                        "Bottom-up register reduction list scheduling",
     48                        createBURRListDAGScheduler);
     49 static RegisterScheduler
     50   sourceListDAGScheduler("source",
     51                          "Similar to list-burr but schedules in source "
     52                          "order when possible",
     53                          createSourceListDAGScheduler);
     54 
     55 static RegisterScheduler
     56   hybridListDAGScheduler("list-hybrid",
     57                          "Bottom-up register pressure aware list scheduling "
     58                          "which tries to balance latency and register pressure",
     59                          createHybridListDAGScheduler);
     60 
     61 static RegisterScheduler
     62   ILPListDAGScheduler("list-ilp",
     63                       "Bottom-up register pressure aware list scheduling "
     64                       "which tries to balance ILP and register pressure",
     65                       createILPListDAGScheduler);
     66 
     67 static cl::opt<bool> DisableSchedCycles(
     68   "disable-sched-cycles", cl::Hidden, cl::init(false),
     69   cl::desc("Disable cycle-level precision during preRA scheduling"));
     70 
     71 // Temporary sched=list-ilp flags until the heuristics are robust.
     72 // Some options are also available under sched=list-hybrid.
     73 static cl::opt<bool> DisableSchedRegPressure(
     74   "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
     75   cl::desc("Disable regpressure priority in sched=list-ilp"));
     76 static cl::opt<bool> DisableSchedLiveUses(
     77   "disable-sched-live-uses", cl::Hidden, cl::init(true),
     78   cl::desc("Disable live use priority in sched=list-ilp"));
     79 static cl::opt<bool> DisableSchedVRegCycle(
     80   "disable-sched-vrcycle", cl::Hidden, cl::init(false),
     81   cl::desc("Disable virtual register cycle interference checks"));
     82 static cl::opt<bool> DisableSchedPhysRegJoin(
     83   "disable-sched-physreg-join", cl::Hidden, cl::init(false),
     84   cl::desc("Disable physreg def-use affinity"));
     85 static cl::opt<bool> DisableSchedStalls(
     86   "disable-sched-stalls", cl::Hidden, cl::init(true),
     87   cl::desc("Disable no-stall priority in sched=list-ilp"));
     88 static cl::opt<bool> DisableSchedCriticalPath(
     89   "disable-sched-critical-path", cl::Hidden, cl::init(false),
     90   cl::desc("Disable critical path priority in sched=list-ilp"));
     91 static cl::opt<bool> DisableSchedHeight(
     92   "disable-sched-height", cl::Hidden, cl::init(false),
     93   cl::desc("Disable scheduled-height priority in sched=list-ilp"));
     94 static cl::opt<bool> Disable2AddrHack(
     95   "disable-2addr-hack", cl::Hidden, cl::init(true),
     96   cl::desc("Disable scheduler's two-address hack"));
     97 
     98 static cl::opt<int> MaxReorderWindow(
     99   "max-sched-reorder", cl::Hidden, cl::init(6),
    100   cl::desc("Number of instructions to allow ahead of the critical path "
    101            "in sched=list-ilp"));
    102 
    103 static cl::opt<unsigned> AvgIPC(
    104   "sched-avg-ipc", cl::Hidden, cl::init(1),
    105   cl::desc("Average inst/cycle whan no target itinerary exists."));
    106 
    107 namespace {
    108 //===----------------------------------------------------------------------===//
    109 /// ScheduleDAGRRList - The actual register reduction list scheduler
    110 /// implementation.  This supports both top-down and bottom-up scheduling.
    111 ///
    112 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
    113 private:
    114   /// NeedLatency - True if the scheduler will make use of latency information.
    115   ///
    116   bool NeedLatency;
    117 
    118   /// AvailableQueue - The priority queue to use for the available SUnits.
    119   SchedulingPriorityQueue *AvailableQueue;
    120 
    121   /// PendingQueue - This contains all of the instructions whose operands have
    122   /// been issued, but their results are not ready yet (due to the latency of
    123   /// the operation).  Once the operands becomes available, the instruction is
    124   /// added to the AvailableQueue.
    125   std::vector<SUnit*> PendingQueue;
    126 
    127   /// HazardRec - The hazard recognizer to use.
    128   ScheduleHazardRecognizer *HazardRec;
    129 
    130   /// CurCycle - The current scheduler state corresponds to this cycle.
    131   unsigned CurCycle;
    132 
    133   /// MinAvailableCycle - Cycle of the soonest available instruction.
    134   unsigned MinAvailableCycle;
    135 
    136   /// IssueCount - Count instructions issued in this cycle
    137   /// Currently valid only for bottom-up scheduling.
    138   unsigned IssueCount;
    139 
    140   /// LiveRegDefs - A set of physical registers and their definition
    141   /// that are "live". These nodes must be scheduled before any other nodes that
    142   /// modifies the registers can be scheduled.
    143   unsigned NumLiveRegs;
    144   std::vector<SUnit*> LiveRegDefs;
    145   std::vector<SUnit*> LiveRegGens;
    146 
    147   // Collect interferences between physical register use/defs.
    148   // Each interference is an SUnit and set of physical registers.
    149   SmallVector<SUnit*, 4> Interferences;
    150   typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
    151   LRegsMapT LRegsMap;
    152 
    153   /// Topo - A topological ordering for SUnits which permits fast IsReachable
    154   /// and similar queries.
    155   ScheduleDAGTopologicalSort Topo;
    156 
    157   // Hack to keep track of the inverse of FindCallSeqStart without more crazy
    158   // DAG crawling.
    159   DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
    160 
    161 public:
    162   ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
    163                     SchedulingPriorityQueue *availqueue,
    164                     CodeGenOpt::Level OptLevel)
    165     : ScheduleDAGSDNodes(mf),
    166       NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
    167       Topo(SUnits, nullptr) {
    168 
    169     const TargetSubtargetInfo &STI = mf.getSubtarget();
    170     if (DisableSchedCycles || !NeedLatency)
    171       HazardRec = new ScheduleHazardRecognizer();
    172     else
    173       HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
    174   }
    175 
    176   ~ScheduleDAGRRList() override {
    177     delete HazardRec;
    178     delete AvailableQueue;
    179   }
    180 
    181   void Schedule() override;
    182 
    183   ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
    184 
    185   /// IsReachable - Checks if SU is reachable from TargetSU.
    186   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
    187     return Topo.IsReachable(SU, TargetSU);
    188   }
    189 
    190   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
    191   /// create a cycle.
    192   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    193     return Topo.WillCreateCycle(SU, TargetSU);
    194   }
    195 
    196   /// AddPred - adds a predecessor edge to SUnit SU.
    197   /// This returns true if this is a new predecessor.
    198   /// Updates the topological ordering if required.
    199   void AddPred(SUnit *SU, const SDep &D) {
    200     Topo.AddPred(SU, D.getSUnit());
    201     SU->addPred(D);
    202   }
    203 
    204   /// RemovePred - removes a predecessor edge from SUnit SU.
    205   /// This returns true if an edge was removed.
    206   /// Updates the topological ordering if required.
    207   void RemovePred(SUnit *SU, const SDep &D) {
    208     Topo.RemovePred(SU, D.getSUnit());
    209     SU->removePred(D);
    210   }
    211 
    212 private:
    213   bool isReady(SUnit *SU) {
    214     return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
    215       AvailableQueue->isReady(SU);
    216   }
    217 
    218   void ReleasePred(SUnit *SU, const SDep *PredEdge);
    219   void ReleasePredecessors(SUnit *SU);
    220   void ReleasePending();
    221   void AdvanceToCycle(unsigned NextCycle);
    222   void AdvancePastStalls(SUnit *SU);
    223   void EmitNode(SUnit *SU);
    224   void ScheduleNodeBottomUp(SUnit*);
    225   void CapturePred(SDep *PredEdge);
    226   void UnscheduleNodeBottomUp(SUnit*);
    227   void RestoreHazardCheckerBottomUp();
    228   void BacktrackBottomUp(SUnit*, SUnit*);
    229   SUnit *CopyAndMoveSuccessors(SUnit*);
    230   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
    231                                 const TargetRegisterClass*,
    232                                 const TargetRegisterClass*,
    233                                 SmallVectorImpl<SUnit*>&);
    234   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
    235 
    236   void releaseInterferences(unsigned Reg = 0);
    237 
    238   SUnit *PickNodeToScheduleBottomUp();
    239   void ListScheduleBottomUp();
    240 
    241   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
    242   /// Updates the topological ordering if required.
    243   SUnit *CreateNewSUnit(SDNode *N) {
    244     unsigned NumSUnits = SUnits.size();
    245     SUnit *NewNode = newSUnit(N);
    246     // Update the topological ordering.
    247     if (NewNode->NodeNum >= NumSUnits)
    248       Topo.InitDAGTopologicalSorting();
    249     return NewNode;
    250   }
    251 
    252   /// CreateClone - Creates a new SUnit from an existing one.
    253   /// Updates the topological ordering if required.
    254   SUnit *CreateClone(SUnit *N) {
    255     unsigned NumSUnits = SUnits.size();
    256     SUnit *NewNode = Clone(N);
    257     // Update the topological ordering.
    258     if (NewNode->NodeNum >= NumSUnits)
    259       Topo.InitDAGTopologicalSorting();
    260     return NewNode;
    261   }
    262 
    263   /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
    264   /// need actual latency information but the hybrid scheduler does.
    265   bool forceUnitLatencies() const override {
    266     return !NeedLatency;
    267   }
    268 };
    269 }  // end anonymous namespace
    270 
    271 /// GetCostForDef - Looks up the register class and cost for a given definition.
    272 /// Typically this just means looking up the representative register class,
    273 /// but for untyped values (MVT::Untyped) it means inspecting the node's
    274 /// opcode to determine what register class is being generated.
    275 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
    276                           const TargetLowering *TLI,
    277                           const TargetInstrInfo *TII,
    278                           const TargetRegisterInfo *TRI,
    279                           unsigned &RegClass, unsigned &Cost,
    280                           const MachineFunction &MF) {
    281   MVT VT = RegDefPos.GetValue();
    282 
    283   // Special handling for untyped values.  These values can only come from
    284   // the expansion of custom DAG-to-DAG patterns.
    285   if (VT == MVT::Untyped) {
    286     const SDNode *Node = RegDefPos.GetNode();
    287 
    288     // Special handling for CopyFromReg of untyped values.
    289     if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
    290       unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
    291       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
    292       RegClass = RC->getID();
    293       Cost = 1;
    294       return;
    295     }
    296 
    297     unsigned Opcode = Node->getMachineOpcode();
    298     if (Opcode == TargetOpcode::REG_SEQUENCE) {
    299       unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
    300       const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
    301       RegClass = RC->getID();
    302       Cost = 1;
    303       return;
    304     }
    305 
    306     unsigned Idx = RegDefPos.GetIdx();
    307     const MCInstrDesc Desc = TII->get(Opcode);
    308     const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
    309     RegClass = RC->getID();
    310     // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
    311     // better way to determine it.
    312     Cost = 1;
    313   } else {
    314     RegClass = TLI->getRepRegClassFor(VT)->getID();
    315     Cost = TLI->getRepRegClassCostFor(VT);
    316   }
    317 }
    318 
    319 /// Schedule - Schedule the DAG using list scheduling.
    320 void ScheduleDAGRRList::Schedule() {
    321   DEBUG(dbgs()
    322         << "********** List Scheduling BB#" << BB->getNumber()
    323         << " '" << BB->getName() << "' **********\n");
    324 
    325   CurCycle = 0;
    326   IssueCount = 0;
    327   MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
    328   NumLiveRegs = 0;
    329   // Allocate slots for each physical register, plus one for a special register
    330   // to track the virtual resource of a calling sequence.
    331   LiveRegDefs.resize(TRI->getNumRegs() + 1, nullptr);
    332   LiveRegGens.resize(TRI->getNumRegs() + 1, nullptr);
    333   CallSeqEndForStart.clear();
    334   assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
    335 
    336   // Build the scheduling graph.
    337   BuildSchedGraph(nullptr);
    338 
    339   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    340           SUnits[su].dumpAll(this));
    341   Topo.InitDAGTopologicalSorting();
    342 
    343   AvailableQueue->initNodes(SUnits);
    344 
    345   HazardRec->Reset();
    346 
    347   // Execute the actual scheduling loop.
    348   ListScheduleBottomUp();
    349 
    350   AvailableQueue->releaseState();
    351 
    352   DEBUG({
    353       dbgs() << "*** Final schedule ***\n";
    354       dumpSchedule();
    355       dbgs() << '\n';
    356     });
    357 }
    358 
    359 //===----------------------------------------------------------------------===//
    360 //  Bottom-Up Scheduling
    361 //===----------------------------------------------------------------------===//
    362 
    363 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
    364 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
    365 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
    366   SUnit *PredSU = PredEdge->getSUnit();
    367 
    368 #ifndef NDEBUG
    369   if (PredSU->NumSuccsLeft == 0) {
    370     dbgs() << "*** Scheduling failed! ***\n";
    371     PredSU->dump(this);
    372     dbgs() << " has been released too many times!\n";
    373     llvm_unreachable(nullptr);
    374   }
    375 #endif
    376   --PredSU->NumSuccsLeft;
    377 
    378   if (!forceUnitLatencies()) {
    379     // Updating predecessor's height. This is now the cycle when the
    380     // predecessor can be scheduled without causing a pipeline stall.
    381     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
    382   }
    383 
    384   // If all the node's successors are scheduled, this node is ready
    385   // to be scheduled. Ignore the special EntrySU node.
    386   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    387     PredSU->isAvailable = true;
    388 
    389     unsigned Height = PredSU->getHeight();
    390     if (Height < MinAvailableCycle)
    391       MinAvailableCycle = Height;
    392 
    393     if (isReady(PredSU)) {
    394       AvailableQueue->push(PredSU);
    395     }
    396     // CapturePred and others may have left the node in the pending queue, avoid
    397     // adding it twice.
    398     else if (!PredSU->isPending) {
    399       PredSU->isPending = true;
    400       PendingQueue.push_back(PredSU);
    401     }
    402   }
    403 }
    404 
    405 /// IsChainDependent - Test if Outer is reachable from Inner through
    406 /// chain dependencies.
    407 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
    408                              unsigned NestLevel,
    409                              const TargetInstrInfo *TII) {
    410   SDNode *N = Outer;
    411   for (;;) {
    412     if (N == Inner)
    413       return true;
    414     // For a TokenFactor, examine each operand. There may be multiple ways
    415     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    416     // most nesting in order to ensure that we find the corresponding match.
    417     if (N->getOpcode() == ISD::TokenFactor) {
    418       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    419         if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
    420           return true;
    421       return false;
    422     }
    423     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    424     if (N->isMachineOpcode()) {
    425       if (N->getMachineOpcode() ==
    426           (unsigned)TII->getCallFrameDestroyOpcode()) {
    427         ++NestLevel;
    428       } else if (N->getMachineOpcode() ==
    429                  (unsigned)TII->getCallFrameSetupOpcode()) {
    430         if (NestLevel == 0)
    431           return false;
    432         --NestLevel;
    433       }
    434     }
    435     // Otherwise, find the chain and continue climbing.
    436     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    437       if (N->getOperand(i).getValueType() == MVT::Other) {
    438         N = N->getOperand(i).getNode();
    439         goto found_chain_operand;
    440       }
    441     return false;
    442   found_chain_operand:;
    443     if (N->getOpcode() == ISD::EntryToken)
    444       return false;
    445   }
    446 }
    447 
    448 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
    449 /// the corresponding (lowered) CALLSEQ_BEGIN node.
    450 ///
    451 /// NestLevel and MaxNested are used in recursion to indcate the current level
    452 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
    453 /// level seen so far.
    454 ///
    455 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
    456 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
    457 static SDNode *
    458 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
    459                  const TargetInstrInfo *TII) {
    460   for (;;) {
    461     // For a TokenFactor, examine each operand. There may be multiple ways
    462     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    463     // most nesting in order to ensure that we find the corresponding match.
    464     if (N->getOpcode() == ISD::TokenFactor) {
    465       SDNode *Best = nullptr;
    466       unsigned BestMaxNest = MaxNest;
    467       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    468         unsigned MyNestLevel = NestLevel;
    469         unsigned MyMaxNest = MaxNest;
    470         if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
    471                                            MyNestLevel, MyMaxNest, TII))
    472           if (!Best || (MyMaxNest > BestMaxNest)) {
    473             Best = New;
    474             BestMaxNest = MyMaxNest;
    475           }
    476       }
    477       assert(Best);
    478       MaxNest = BestMaxNest;
    479       return Best;
    480     }
    481     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    482     if (N->isMachineOpcode()) {
    483       if (N->getMachineOpcode() ==
    484           (unsigned)TII->getCallFrameDestroyOpcode()) {
    485         ++NestLevel;
    486         MaxNest = std::max(MaxNest, NestLevel);
    487       } else if (N->getMachineOpcode() ==
    488                  (unsigned)TII->getCallFrameSetupOpcode()) {
    489         assert(NestLevel != 0);
    490         --NestLevel;
    491         if (NestLevel == 0)
    492           return N;
    493       }
    494     }
    495     // Otherwise, find the chain and continue climbing.
    496     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    497       if (N->getOperand(i).getValueType() == MVT::Other) {
    498         N = N->getOperand(i).getNode();
    499         goto found_chain_operand;
    500       }
    501     return nullptr;
    502   found_chain_operand:;
    503     if (N->getOpcode() == ISD::EntryToken)
    504       return nullptr;
    505   }
    506 }
    507 
    508 /// Call ReleasePred for each predecessor, then update register live def/gen.
    509 /// Always update LiveRegDefs for a register dependence even if the current SU
    510 /// also defines the register. This effectively create one large live range
    511 /// across a sequence of two-address node. This is important because the
    512 /// entire chain must be scheduled together. Example:
    513 ///
    514 /// flags = (3) add
    515 /// flags = (2) addc flags
    516 /// flags = (1) addc flags
    517 ///
    518 /// results in
    519 ///
    520 /// LiveRegDefs[flags] = 3
    521 /// LiveRegGens[flags] = 1
    522 ///
    523 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
    524 /// interference on flags.
    525 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
    526   // Bottom up: release predecessors
    527   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    528        I != E; ++I) {
    529     ReleasePred(SU, &*I);
    530     if (I->isAssignedRegDep()) {
    531       // This is a physical register dependency and it's impossible or
    532       // expensive to copy the register. Make sure nothing that can
    533       // clobber the register is scheduled between the predecessor and
    534       // this node.
    535       SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
    536       assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
    537              "interference on register dependence");
    538       LiveRegDefs[I->getReg()] = I->getSUnit();
    539       if (!LiveRegGens[I->getReg()]) {
    540         ++NumLiveRegs;
    541         LiveRegGens[I->getReg()] = SU;
    542       }
    543     }
    544   }
    545 
    546   // If we're scheduling a lowered CALLSEQ_END, find the corresponding
    547   // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
    548   // these nodes, to prevent other calls from being interscheduled with them.
    549   unsigned CallResource = TRI->getNumRegs();
    550   if (!LiveRegDefs[CallResource])
    551     for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
    552       if (Node->isMachineOpcode() &&
    553           Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
    554         unsigned NestLevel = 0;
    555         unsigned MaxNest = 0;
    556         SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
    557 
    558         SUnit *Def = &SUnits[N->getNodeId()];
    559         CallSeqEndForStart[Def] = SU;
    560 
    561         ++NumLiveRegs;
    562         LiveRegDefs[CallResource] = Def;
    563         LiveRegGens[CallResource] = SU;
    564         break;
    565       }
    566 }
    567 
    568 /// Check to see if any of the pending instructions are ready to issue.  If
    569 /// so, add them to the available queue.
    570 void ScheduleDAGRRList::ReleasePending() {
    571   if (DisableSchedCycles) {
    572     assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
    573     return;
    574   }
    575 
    576   // If the available queue is empty, it is safe to reset MinAvailableCycle.
    577   if (AvailableQueue->empty())
    578     MinAvailableCycle = UINT_MAX;
    579 
    580   // Check to see if any of the pending instructions are ready to issue.  If
    581   // so, add them to the available queue.
    582   for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    583     unsigned ReadyCycle = PendingQueue[i]->getHeight();
    584     if (ReadyCycle < MinAvailableCycle)
    585       MinAvailableCycle = ReadyCycle;
    586 
    587     if (PendingQueue[i]->isAvailable) {
    588       if (!isReady(PendingQueue[i]))
    589           continue;
    590       AvailableQueue->push(PendingQueue[i]);
    591     }
    592     PendingQueue[i]->isPending = false;
    593     PendingQueue[i] = PendingQueue.back();
    594     PendingQueue.pop_back();
    595     --i; --e;
    596   }
    597 }
    598 
    599 /// Move the scheduler state forward by the specified number of Cycles.
    600 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
    601   if (NextCycle <= CurCycle)
    602     return;
    603 
    604   IssueCount = 0;
    605   AvailableQueue->setCurCycle(NextCycle);
    606   if (!HazardRec->isEnabled()) {
    607     // Bypass lots of virtual calls in case of long latency.
    608     CurCycle = NextCycle;
    609   }
    610   else {
    611     for (; CurCycle != NextCycle; ++CurCycle) {
    612       HazardRec->RecedeCycle();
    613     }
    614   }
    615   // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
    616   // available Q to release pending nodes at least once before popping.
    617   ReleasePending();
    618 }
    619 
    620 /// Move the scheduler state forward until the specified node's dependents are
    621 /// ready and can be scheduled with no resource conflicts.
    622 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
    623   if (DisableSchedCycles)
    624     return;
    625 
    626   // FIXME: Nodes such as CopyFromReg probably should not advance the current
    627   // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
    628   // has predecessors the cycle will be advanced when they are scheduled.
    629   // But given the crude nature of modeling latency though such nodes, we
    630   // currently need to treat these nodes like real instructions.
    631   // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
    632 
    633   unsigned ReadyCycle = SU->getHeight();
    634 
    635   // Bump CurCycle to account for latency. We assume the latency of other
    636   // available instructions may be hidden by the stall (not a full pipe stall).
    637   // This updates the hazard recognizer's cycle before reserving resources for
    638   // this instruction.
    639   AdvanceToCycle(ReadyCycle);
    640 
    641   // Calls are scheduled in their preceding cycle, so don't conflict with
    642   // hazards from instructions after the call. EmitNode will reset the
    643   // scoreboard state before emitting the call.
    644   if (SU->isCall)
    645     return;
    646 
    647   // FIXME: For resource conflicts in very long non-pipelined stages, we
    648   // should probably skip ahead here to avoid useless scoreboard checks.
    649   int Stalls = 0;
    650   while (true) {
    651     ScheduleHazardRecognizer::HazardType HT =
    652       HazardRec->getHazardType(SU, -Stalls);
    653 
    654     if (HT == ScheduleHazardRecognizer::NoHazard)
    655       break;
    656 
    657     ++Stalls;
    658   }
    659   AdvanceToCycle(CurCycle + Stalls);
    660 }
    661 
    662 /// Record this SUnit in the HazardRecognizer.
    663 /// Does not update CurCycle.
    664 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
    665   if (!HazardRec->isEnabled())
    666     return;
    667 
    668   // Check for phys reg copy.
    669   if (!SU->getNode())
    670     return;
    671 
    672   switch (SU->getNode()->getOpcode()) {
    673   default:
    674     assert(SU->getNode()->isMachineOpcode() &&
    675            "This target-independent node should not be scheduled.");
    676     break;
    677   case ISD::MERGE_VALUES:
    678   case ISD::TokenFactor:
    679   case ISD::LIFETIME_START:
    680   case ISD::LIFETIME_END:
    681   case ISD::CopyToReg:
    682   case ISD::CopyFromReg:
    683   case ISD::EH_LABEL:
    684     // Noops don't affect the scoreboard state. Copies are likely to be
    685     // removed.
    686     return;
    687   case ISD::INLINEASM:
    688     // For inline asm, clear the pipeline state.
    689     HazardRec->Reset();
    690     return;
    691   }
    692   if (SU->isCall) {
    693     // Calls are scheduled with their preceding instructions. For bottom-up
    694     // scheduling, clear the pipeline state before emitting.
    695     HazardRec->Reset();
    696   }
    697 
    698   HazardRec->EmitInstruction(SU);
    699 }
    700 
    701 static void resetVRegCycle(SUnit *SU);
    702 
    703 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
    704 /// count of its predecessors. If a predecessor pending count is zero, add it to
    705 /// the Available queue.
    706 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
    707   DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
    708   DEBUG(SU->dump(this));
    709 
    710 #ifndef NDEBUG
    711   if (CurCycle < SU->getHeight())
    712     DEBUG(dbgs() << "   Height [" << SU->getHeight()
    713           << "] pipeline stall!\n");
    714 #endif
    715 
    716   // FIXME: Do not modify node height. It may interfere with
    717   // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
    718   // node its ready cycle can aid heuristics, and after scheduling it can
    719   // indicate the scheduled cycle.
    720   SU->setHeightToAtLeast(CurCycle);
    721 
    722   // Reserve resources for the scheduled instruction.
    723   EmitNode(SU);
    724 
    725   Sequence.push_back(SU);
    726 
    727   AvailableQueue->scheduledNode(SU);
    728 
    729   // If HazardRec is disabled, and each inst counts as one cycle, then
    730   // advance CurCycle before ReleasePredecessors to avoid useless pushes to
    731   // PendingQueue for schedulers that implement HasReadyFilter.
    732   if (!HazardRec->isEnabled() && AvgIPC < 2)
    733     AdvanceToCycle(CurCycle + 1);
    734 
    735   // Update liveness of predecessors before successors to avoid treating a
    736   // two-address node as a live range def.
    737   ReleasePredecessors(SU);
    738 
    739   // Release all the implicit physical register defs that are live.
    740   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    741        I != E; ++I) {
    742     // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
    743     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
    744       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    745       --NumLiveRegs;
    746       LiveRegDefs[I->getReg()] = nullptr;
    747       LiveRegGens[I->getReg()] = nullptr;
    748       releaseInterferences(I->getReg());
    749     }
    750   }
    751   // Release the special call resource dependence, if this is the beginning
    752   // of a call.
    753   unsigned CallResource = TRI->getNumRegs();
    754   if (LiveRegDefs[CallResource] == SU)
    755     for (const SDNode *SUNode = SU->getNode(); SUNode;
    756          SUNode = SUNode->getGluedNode()) {
    757       if (SUNode->isMachineOpcode() &&
    758           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
    759         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    760         --NumLiveRegs;
    761         LiveRegDefs[CallResource] = nullptr;
    762         LiveRegGens[CallResource] = nullptr;
    763         releaseInterferences(CallResource);
    764       }
    765     }
    766 
    767   resetVRegCycle(SU);
    768 
    769   SU->isScheduled = true;
    770 
    771   // Conditions under which the scheduler should eagerly advance the cycle:
    772   // (1) No available instructions
    773   // (2) All pipelines full, so available instructions must have hazards.
    774   //
    775   // If HazardRec is disabled, the cycle was pre-advanced before calling
    776   // ReleasePredecessors. In that case, IssueCount should remain 0.
    777   //
    778   // Check AvailableQueue after ReleasePredecessors in case of zero latency.
    779   if (HazardRec->isEnabled() || AvgIPC > 1) {
    780     if (SU->getNode() && SU->getNode()->isMachineOpcode())
    781       ++IssueCount;
    782     if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
    783         || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
    784       AdvanceToCycle(CurCycle + 1);
    785   }
    786 }
    787 
    788 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
    789 /// unscheduled, incrcease the succ left count of its predecessors. Remove
    790 /// them from AvailableQueue if necessary.
    791 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
    792   SUnit *PredSU = PredEdge->getSUnit();
    793   if (PredSU->isAvailable) {
    794     PredSU->isAvailable = false;
    795     if (!PredSU->isPending)
    796       AvailableQueue->remove(PredSU);
    797   }
    798 
    799   assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
    800   ++PredSU->NumSuccsLeft;
    801 }
    802 
    803 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
    804 /// its predecessor states to reflect the change.
    805 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
    806   DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
    807   DEBUG(SU->dump(this));
    808 
    809   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    810        I != E; ++I) {
    811     CapturePred(&*I);
    812     if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
    813       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    814       assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
    815              "Physical register dependency violated?");
    816       --NumLiveRegs;
    817       LiveRegDefs[I->getReg()] = nullptr;
    818       LiveRegGens[I->getReg()] = nullptr;
    819       releaseInterferences(I->getReg());
    820     }
    821   }
    822 
    823   // Reclaim the special call resource dependence, if this is the beginning
    824   // of a call.
    825   unsigned CallResource = TRI->getNumRegs();
    826   for (const SDNode *SUNode = SU->getNode(); SUNode;
    827        SUNode = SUNode->getGluedNode()) {
    828     if (SUNode->isMachineOpcode() &&
    829         SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
    830       ++NumLiveRegs;
    831       LiveRegDefs[CallResource] = SU;
    832       LiveRegGens[CallResource] = CallSeqEndForStart[SU];
    833     }
    834   }
    835 
    836   // Release the special call resource dependence, if this is the end
    837   // of a call.
    838   if (LiveRegGens[CallResource] == SU)
    839     for (const SDNode *SUNode = SU->getNode(); SUNode;
    840          SUNode = SUNode->getGluedNode()) {
    841       if (SUNode->isMachineOpcode() &&
    842           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
    843         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    844         --NumLiveRegs;
    845         LiveRegDefs[CallResource] = nullptr;
    846         LiveRegGens[CallResource] = nullptr;
    847         releaseInterferences(CallResource);
    848       }
    849     }
    850 
    851   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    852        I != E; ++I) {
    853     if (I->isAssignedRegDep()) {
    854       if (!LiveRegDefs[I->getReg()])
    855         ++NumLiveRegs;
    856       // This becomes the nearest def. Note that an earlier def may still be
    857       // pending if this is a two-address node.
    858       LiveRegDefs[I->getReg()] = SU;
    859       if (LiveRegGens[I->getReg()] == nullptr ||
    860           I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
    861         LiveRegGens[I->getReg()] = I->getSUnit();
    862     }
    863   }
    864   if (SU->getHeight() < MinAvailableCycle)
    865     MinAvailableCycle = SU->getHeight();
    866 
    867   SU->setHeightDirty();
    868   SU->isScheduled = false;
    869   SU->isAvailable = true;
    870   if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
    871     // Don't make available until backtracking is complete.
    872     SU->isPending = true;
    873     PendingQueue.push_back(SU);
    874   }
    875   else {
    876     AvailableQueue->push(SU);
    877   }
    878   AvailableQueue->unscheduledNode(SU);
    879 }
    880 
    881 /// After backtracking, the hazard checker needs to be restored to a state
    882 /// corresponding the current cycle.
    883 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
    884   HazardRec->Reset();
    885 
    886   unsigned LookAhead = std::min((unsigned)Sequence.size(),
    887                                 HazardRec->getMaxLookAhead());
    888   if (LookAhead == 0)
    889     return;
    890 
    891   std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
    892   unsigned HazardCycle = (*I)->getHeight();
    893   for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
    894     SUnit *SU = *I;
    895     for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
    896       HazardRec->RecedeCycle();
    897     }
    898     EmitNode(SU);
    899   }
    900 }
    901 
    902 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
    903 /// BTCycle in order to schedule a specific node.
    904 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
    905   SUnit *OldSU = Sequence.back();
    906   while (true) {
    907     Sequence.pop_back();
    908     // FIXME: use ready cycle instead of height
    909     CurCycle = OldSU->getHeight();
    910     UnscheduleNodeBottomUp(OldSU);
    911     AvailableQueue->setCurCycle(CurCycle);
    912     if (OldSU == BtSU)
    913       break;
    914     OldSU = Sequence.back();
    915   }
    916 
    917   assert(!SU->isSucc(OldSU) && "Something is wrong!");
    918 
    919   RestoreHazardCheckerBottomUp();
    920 
    921   ReleasePending();
    922 
    923   ++NumBacktracks;
    924 }
    925 
    926 static bool isOperandOf(const SUnit *SU, SDNode *N) {
    927   for (const SDNode *SUNode = SU->getNode(); SUNode;
    928        SUNode = SUNode->getGluedNode()) {
    929     if (SUNode->isOperandOf(N))
    930       return true;
    931   }
    932   return false;
    933 }
    934 
    935 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
    936 /// successors to the newly created node.
    937 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
    938   SDNode *N = SU->getNode();
    939   if (!N)
    940     return nullptr;
    941 
    942   if (SU->getNode()->getGluedNode())
    943     return nullptr;
    944 
    945   SUnit *NewSU;
    946   bool TryUnfold = false;
    947   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    948     MVT VT = N->getSimpleValueType(i);
    949     if (VT == MVT::Glue)
    950       return nullptr;
    951     else if (VT == MVT::Other)
    952       TryUnfold = true;
    953   }
    954   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    955     const SDValue &Op = N->getOperand(i);
    956     MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
    957     if (VT == MVT::Glue)
    958       return nullptr;
    959   }
    960 
    961   if (TryUnfold) {
    962     SmallVector<SDNode*, 2> NewNodes;
    963     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    964       return nullptr;
    965 
    966     // unfolding an x86 DEC64m operation results in store, dec, load which
    967     // can't be handled here so quit
    968     if (NewNodes.size() == 3)
    969       return nullptr;
    970 
    971     DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
    972     assert(NewNodes.size() == 2 && "Expected a load folding node!");
    973 
    974     N = NewNodes[1];
    975     SDNode *LoadNode = NewNodes[0];
    976     unsigned NumVals = N->getNumValues();
    977     unsigned OldNumVals = SU->getNode()->getNumValues();
    978     for (unsigned i = 0; i != NumVals; ++i)
    979       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    980     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
    981                                    SDValue(LoadNode, 1));
    982 
    983     // LoadNode may already exist. This can happen when there is another
    984     // load from the same location and producing the same type of value
    985     // but it has different alignment or volatileness.
    986     bool isNewLoad = true;
    987     SUnit *LoadSU;
    988     if (LoadNode->getNodeId() != -1) {
    989       LoadSU = &SUnits[LoadNode->getNodeId()];
    990       isNewLoad = false;
    991     } else {
    992       LoadSU = CreateNewSUnit(LoadNode);
    993       LoadNode->setNodeId(LoadSU->NodeNum);
    994 
    995       InitNumRegDefsLeft(LoadSU);
    996       computeLatency(LoadSU);
    997     }
    998 
    999     SUnit *NewSU = CreateNewSUnit(N);
   1000     assert(N->getNodeId() == -1 && "Node already inserted!");
   1001     N->setNodeId(NewSU->NodeNum);
   1002 
   1003     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1004     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
   1005       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
   1006         NewSU->isTwoAddress = true;
   1007         break;
   1008       }
   1009     }
   1010     if (MCID.isCommutable())
   1011       NewSU->isCommutable = true;
   1012 
   1013     InitNumRegDefsLeft(NewSU);
   1014     computeLatency(NewSU);
   1015 
   1016     // Record all the edges to and from the old SU, by category.
   1017     SmallVector<SDep, 4> ChainPreds;
   1018     SmallVector<SDep, 4> ChainSuccs;
   1019     SmallVector<SDep, 4> LoadPreds;
   1020     SmallVector<SDep, 4> NodePreds;
   1021     SmallVector<SDep, 4> NodeSuccs;
   1022     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1023          I != E; ++I) {
   1024       if (I->isCtrl())
   1025         ChainPreds.push_back(*I);
   1026       else if (isOperandOf(I->getSUnit(), LoadNode))
   1027         LoadPreds.push_back(*I);
   1028       else
   1029         NodePreds.push_back(*I);
   1030     }
   1031     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1032          I != E; ++I) {
   1033       if (I->isCtrl())
   1034         ChainSuccs.push_back(*I);
   1035       else
   1036         NodeSuccs.push_back(*I);
   1037     }
   1038 
   1039     // Now assign edges to the newly-created nodes.
   1040     for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
   1041       const SDep &Pred = ChainPreds[i];
   1042       RemovePred(SU, Pred);
   1043       if (isNewLoad)
   1044         AddPred(LoadSU, Pred);
   1045     }
   1046     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
   1047       const SDep &Pred = LoadPreds[i];
   1048       RemovePred(SU, Pred);
   1049       if (isNewLoad)
   1050         AddPred(LoadSU, Pred);
   1051     }
   1052     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
   1053       const SDep &Pred = NodePreds[i];
   1054       RemovePred(SU, Pred);
   1055       AddPred(NewSU, Pred);
   1056     }
   1057     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
   1058       SDep D = NodeSuccs[i];
   1059       SUnit *SuccDep = D.getSUnit();
   1060       D.setSUnit(SU);
   1061       RemovePred(SuccDep, D);
   1062       D.setSUnit(NewSU);
   1063       AddPred(SuccDep, D);
   1064       // Balance register pressure.
   1065       if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
   1066           && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
   1067         --NewSU->NumRegDefsLeft;
   1068     }
   1069     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
   1070       SDep D = ChainSuccs[i];
   1071       SUnit *SuccDep = D.getSUnit();
   1072       D.setSUnit(SU);
   1073       RemovePred(SuccDep, D);
   1074       if (isNewLoad) {
   1075         D.setSUnit(LoadSU);
   1076         AddPred(SuccDep, D);
   1077       }
   1078     }
   1079 
   1080     // Add a data dependency to reflect that NewSU reads the value defined
   1081     // by LoadSU.
   1082     SDep D(LoadSU, SDep::Data, 0);
   1083     D.setLatency(LoadSU->Latency);
   1084     AddPred(NewSU, D);
   1085 
   1086     if (isNewLoad)
   1087       AvailableQueue->addNode(LoadSU);
   1088     AvailableQueue->addNode(NewSU);
   1089 
   1090     ++NumUnfolds;
   1091 
   1092     if (NewSU->NumSuccsLeft == 0) {
   1093       NewSU->isAvailable = true;
   1094       return NewSU;
   1095     }
   1096     SU = NewSU;
   1097   }
   1098 
   1099   DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
   1100   NewSU = CreateClone(SU);
   1101 
   1102   // New SUnit has the exact same predecessors.
   1103   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1104        I != E; ++I)
   1105     if (!I->isArtificial())
   1106       AddPred(NewSU, *I);
   1107 
   1108   // Only copy scheduled successors. Cut them from old node's successor
   1109   // list and move them over.
   1110   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
   1111   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1112        I != E; ++I) {
   1113     if (I->isArtificial())
   1114       continue;
   1115     SUnit *SuccSU = I->getSUnit();
   1116     if (SuccSU->isScheduled) {
   1117       SDep D = *I;
   1118       D.setSUnit(NewSU);
   1119       AddPred(SuccSU, D);
   1120       D.setSUnit(SU);
   1121       DelDeps.push_back(std::make_pair(SuccSU, D));
   1122     }
   1123   }
   1124   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
   1125     RemovePred(DelDeps[i].first, DelDeps[i].second);
   1126 
   1127   AvailableQueue->updateNode(SU);
   1128   AvailableQueue->addNode(NewSU);
   1129 
   1130   ++NumDups;
   1131   return NewSU;
   1132 }
   1133 
   1134 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
   1135 /// scheduled successors of the given SUnit to the last copy.
   1136 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
   1137                                               const TargetRegisterClass *DestRC,
   1138                                               const TargetRegisterClass *SrcRC,
   1139                                               SmallVectorImpl<SUnit*> &Copies) {
   1140   SUnit *CopyFromSU = CreateNewSUnit(nullptr);
   1141   CopyFromSU->CopySrcRC = SrcRC;
   1142   CopyFromSU->CopyDstRC = DestRC;
   1143 
   1144   SUnit *CopyToSU = CreateNewSUnit(nullptr);
   1145   CopyToSU->CopySrcRC = DestRC;
   1146   CopyToSU->CopyDstRC = SrcRC;
   1147 
   1148   // Only copy scheduled successors. Cut them from old node's successor
   1149   // list and move them over.
   1150   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
   1151   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1152        I != E; ++I) {
   1153     if (I->isArtificial())
   1154       continue;
   1155     SUnit *SuccSU = I->getSUnit();
   1156     if (SuccSU->isScheduled) {
   1157       SDep D = *I;
   1158       D.setSUnit(CopyToSU);
   1159       AddPred(SuccSU, D);
   1160       DelDeps.push_back(std::make_pair(SuccSU, *I));
   1161     }
   1162     else {
   1163       // Avoid scheduling the def-side copy before other successors. Otherwise
   1164       // we could introduce another physreg interference on the copy and
   1165       // continue inserting copies indefinitely.
   1166       AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
   1167     }
   1168   }
   1169   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
   1170     RemovePred(DelDeps[i].first, DelDeps[i].second);
   1171 
   1172   SDep FromDep(SU, SDep::Data, Reg);
   1173   FromDep.setLatency(SU->Latency);
   1174   AddPred(CopyFromSU, FromDep);
   1175   SDep ToDep(CopyFromSU, SDep::Data, 0);
   1176   ToDep.setLatency(CopyFromSU->Latency);
   1177   AddPred(CopyToSU, ToDep);
   1178 
   1179   AvailableQueue->updateNode(SU);
   1180   AvailableQueue->addNode(CopyFromSU);
   1181   AvailableQueue->addNode(CopyToSU);
   1182   Copies.push_back(CopyFromSU);
   1183   Copies.push_back(CopyToSU);
   1184 
   1185   ++NumPRCopies;
   1186 }
   1187 
   1188 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
   1189 /// definition of the specified node.
   1190 /// FIXME: Move to SelectionDAG?
   1191 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
   1192                                  const TargetInstrInfo *TII) {
   1193   unsigned NumRes;
   1194   if (N->getOpcode() == ISD::CopyFromReg) {
   1195     // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
   1196     NumRes = 1;
   1197   } else {
   1198     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1199     assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
   1200     NumRes = MCID.getNumDefs();
   1201     for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
   1202       if (Reg == *ImpDef)
   1203         break;
   1204       ++NumRes;
   1205     }
   1206   }
   1207   return N->getSimpleValueType(NumRes);
   1208 }
   1209 
   1210 /// CheckForLiveRegDef - Return true and update live register vector if the
   1211 /// specified register def of the specified SUnit clobbers any "live" registers.
   1212 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
   1213                                std::vector<SUnit*> &LiveRegDefs,
   1214                                SmallSet<unsigned, 4> &RegAdded,
   1215                                SmallVectorImpl<unsigned> &LRegs,
   1216                                const TargetRegisterInfo *TRI) {
   1217   for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
   1218 
   1219     // Check if Ref is live.
   1220     if (!LiveRegDefs[*AliasI]) continue;
   1221 
   1222     // Allow multiple uses of the same def.
   1223     if (LiveRegDefs[*AliasI] == SU) continue;
   1224 
   1225     // Add Reg to the set of interfering live regs.
   1226     if (RegAdded.insert(*AliasI).second) {
   1227       LRegs.push_back(*AliasI);
   1228     }
   1229   }
   1230 }
   1231 
   1232 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
   1233 /// by RegMask, and add them to LRegs.
   1234 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
   1235                                      std::vector<SUnit*> &LiveRegDefs,
   1236                                      SmallSet<unsigned, 4> &RegAdded,
   1237                                      SmallVectorImpl<unsigned> &LRegs) {
   1238   // Look at all live registers. Skip Reg0 and the special CallResource.
   1239   for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
   1240     if (!LiveRegDefs[i]) continue;
   1241     if (LiveRegDefs[i] == SU) continue;
   1242     if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
   1243     if (RegAdded.insert(i).second)
   1244       LRegs.push_back(i);
   1245   }
   1246 }
   1247 
   1248 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
   1249 static const uint32_t *getNodeRegMask(const SDNode *N) {
   1250   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
   1251     if (const RegisterMaskSDNode *Op =
   1252         dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
   1253       return Op->getRegMask();
   1254   return nullptr;
   1255 }
   1256 
   1257 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
   1258 /// scheduling of the given node to satisfy live physical register dependencies.
   1259 /// If the specific node is the last one that's available to schedule, do
   1260 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
   1261 bool ScheduleDAGRRList::
   1262 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
   1263   if (NumLiveRegs == 0)
   1264     return false;
   1265 
   1266   SmallSet<unsigned, 4> RegAdded;
   1267   // If this node would clobber any "live" register, then it's not ready.
   1268   //
   1269   // If SU is the currently live definition of the same register that it uses,
   1270   // then we are free to schedule it.
   1271   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1272        I != E; ++I) {
   1273     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
   1274       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
   1275                          RegAdded, LRegs, TRI);
   1276   }
   1277 
   1278   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
   1279     if (Node->getOpcode() == ISD::INLINEASM) {
   1280       // Inline asm can clobber physical defs.
   1281       unsigned NumOps = Node->getNumOperands();
   1282       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
   1283         --NumOps;  // Ignore the glue operand.
   1284 
   1285       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
   1286         unsigned Flags =
   1287           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
   1288         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
   1289 
   1290         ++i; // Skip the ID value.
   1291         if (InlineAsm::isRegDefKind(Flags) ||
   1292             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
   1293             InlineAsm::isClobberKind(Flags)) {
   1294           // Check for def of register or earlyclobber register.
   1295           for (; NumVals; --NumVals, ++i) {
   1296             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
   1297             if (TargetRegisterInfo::isPhysicalRegister(Reg))
   1298               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
   1299           }
   1300         } else
   1301           i += NumVals;
   1302       }
   1303       continue;
   1304     }
   1305 
   1306     if (!Node->isMachineOpcode())
   1307       continue;
   1308     // If we're in the middle of scheduling a call, don't begin scheduling
   1309     // another call. Also, don't allow any physical registers to be live across
   1310     // the call.
   1311     if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
   1312       // Check the special calling-sequence resource.
   1313       unsigned CallResource = TRI->getNumRegs();
   1314       if (LiveRegDefs[CallResource]) {
   1315         SDNode *Gen = LiveRegGens[CallResource]->getNode();
   1316         while (SDNode *Glued = Gen->getGluedNode())
   1317           Gen = Glued;
   1318         if (!IsChainDependent(Gen, Node, 0, TII) &&
   1319             RegAdded.insert(CallResource).second)
   1320           LRegs.push_back(CallResource);
   1321       }
   1322     }
   1323     if (const uint32_t *RegMask = getNodeRegMask(Node))
   1324       CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
   1325 
   1326     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
   1327     if (!MCID.ImplicitDefs)
   1328       continue;
   1329     for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
   1330       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
   1331   }
   1332 
   1333   return !LRegs.empty();
   1334 }
   1335 
   1336 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
   1337   // Add the nodes that aren't ready back onto the available list.
   1338   for (unsigned i = Interferences.size(); i > 0; --i) {
   1339     SUnit *SU = Interferences[i-1];
   1340     LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
   1341     if (Reg) {
   1342       SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
   1343       if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
   1344         continue;
   1345     }
   1346     SU->isPending = false;
   1347     // The interfering node may no longer be available due to backtracking.
   1348     // Furthermore, it may have been made available again, in which case it is
   1349     // now already in the AvailableQueue.
   1350     if (SU->isAvailable && !SU->NodeQueueId) {
   1351       DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
   1352       AvailableQueue->push(SU);
   1353     }
   1354     if (i < Interferences.size())
   1355       Interferences[i-1] = Interferences.back();
   1356     Interferences.pop_back();
   1357     LRegsMap.erase(LRegsPos);
   1358   }
   1359 }
   1360 
   1361 /// Return a node that can be scheduled in this cycle. Requirements:
   1362 /// (1) Ready: latency has been satisfied
   1363 /// (2) No Hazards: resources are available
   1364 /// (3) No Interferences: may unschedule to break register interferences.
   1365 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
   1366   SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
   1367   while (CurSU) {
   1368     SmallVector<unsigned, 4> LRegs;
   1369     if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
   1370       break;
   1371     DEBUG(dbgs() << "    Interfering reg " <<
   1372           (LRegs[0] == TRI->getNumRegs() ? "CallResource"
   1373            : TRI->getName(LRegs[0]))
   1374            << " SU #" << CurSU->NodeNum << '\n');
   1375     std::pair<LRegsMapT::iterator, bool> LRegsPair =
   1376       LRegsMap.insert(std::make_pair(CurSU, LRegs));
   1377     if (LRegsPair.second) {
   1378       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
   1379       Interferences.push_back(CurSU);
   1380     }
   1381     else {
   1382       assert(CurSU->isPending && "Interferences are pending");
   1383       // Update the interference with current live regs.
   1384       LRegsPair.first->second = LRegs;
   1385     }
   1386     CurSU = AvailableQueue->pop();
   1387   }
   1388   if (CurSU)
   1389     return CurSU;
   1390 
   1391   // All candidates are delayed due to live physical reg dependencies.
   1392   // Try backtracking, code duplication, or inserting cross class copies
   1393   // to resolve it.
   1394   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
   1395     SUnit *TrySU = Interferences[i];
   1396     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
   1397 
   1398     // Try unscheduling up to the point where it's safe to schedule
   1399     // this node.
   1400     SUnit *BtSU = nullptr;
   1401     unsigned LiveCycle = UINT_MAX;
   1402     for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
   1403       unsigned Reg = LRegs[j];
   1404       if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
   1405         BtSU = LiveRegGens[Reg];
   1406         LiveCycle = BtSU->getHeight();
   1407       }
   1408     }
   1409     if (!WillCreateCycle(TrySU, BtSU))  {
   1410       // BacktrackBottomUp mutates Interferences!
   1411       BacktrackBottomUp(TrySU, BtSU);
   1412 
   1413       // Force the current node to be scheduled before the node that
   1414       // requires the physical reg dep.
   1415       if (BtSU->isAvailable) {
   1416         BtSU->isAvailable = false;
   1417         if (!BtSU->isPending)
   1418           AvailableQueue->remove(BtSU);
   1419       }
   1420       DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
   1421             << TrySU->NodeNum << ")\n");
   1422       AddPred(TrySU, SDep(BtSU, SDep::Artificial));
   1423 
   1424       // If one or more successors has been unscheduled, then the current
   1425       // node is no longer available.
   1426       if (!TrySU->isAvailable || !TrySU->NodeQueueId)
   1427         CurSU = AvailableQueue->pop();
   1428       else {
   1429         // Available and in AvailableQueue
   1430         AvailableQueue->remove(TrySU);
   1431         CurSU = TrySU;
   1432       }
   1433       // Interferences has been mutated. We must break.
   1434       break;
   1435     }
   1436   }
   1437 
   1438   if (!CurSU) {
   1439     // Can't backtrack. If it's too expensive to copy the value, then try
   1440     // duplicate the nodes that produces these "too expensive to copy"
   1441     // values to break the dependency. In case even that doesn't work,
   1442     // insert cross class copies.
   1443     // If it's not too expensive, i.e. cost != -1, issue copies.
   1444     SUnit *TrySU = Interferences[0];
   1445     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
   1446     assert(LRegs.size() == 1 && "Can't handle this yet!");
   1447     unsigned Reg = LRegs[0];
   1448     SUnit *LRDef = LiveRegDefs[Reg];
   1449     MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
   1450     const TargetRegisterClass *RC =
   1451       TRI->getMinimalPhysRegClass(Reg, VT);
   1452     const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
   1453 
   1454     // If cross copy register class is the same as RC, then it must be possible
   1455     // copy the value directly. Do not try duplicate the def.
   1456     // If cross copy register class is not the same as RC, then it's possible to
   1457     // copy the value but it require cross register class copies and it is
   1458     // expensive.
   1459     // If cross copy register class is null, then it's not possible to copy
   1460     // the value at all.
   1461     SUnit *NewDef = nullptr;
   1462     if (DestRC != RC) {
   1463       NewDef = CopyAndMoveSuccessors(LRDef);
   1464       if (!DestRC && !NewDef)
   1465         report_fatal_error("Can't handle live physical register dependency!");
   1466     }
   1467     if (!NewDef) {
   1468       // Issue copies, these can be expensive cross register class copies.
   1469       SmallVector<SUnit*, 2> Copies;
   1470       InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
   1471       DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
   1472             << " to SU #" << Copies.front()->NodeNum << "\n");
   1473       AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
   1474       NewDef = Copies.back();
   1475     }
   1476 
   1477     DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
   1478           << " to SU #" << TrySU->NodeNum << "\n");
   1479     LiveRegDefs[Reg] = NewDef;
   1480     AddPred(NewDef, SDep(TrySU, SDep::Artificial));
   1481     TrySU->isAvailable = false;
   1482     CurSU = NewDef;
   1483   }
   1484   assert(CurSU && "Unable to resolve live physical register dependencies!");
   1485   return CurSU;
   1486 }
   1487 
   1488 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
   1489 /// schedulers.
   1490 void ScheduleDAGRRList::ListScheduleBottomUp() {
   1491   // Release any predecessors of the special Exit node.
   1492   ReleasePredecessors(&ExitSU);
   1493 
   1494   // Add root to Available queue.
   1495   if (!SUnits.empty()) {
   1496     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
   1497     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
   1498     RootSU->isAvailable = true;
   1499     AvailableQueue->push(RootSU);
   1500   }
   1501 
   1502   // While Available queue is not empty, grab the node with the highest
   1503   // priority. If it is not ready put it back.  Schedule the node.
   1504   Sequence.reserve(SUnits.size());
   1505   while (!AvailableQueue->empty() || !Interferences.empty()) {
   1506     DEBUG(dbgs() << "\nExamining Available:\n";
   1507           AvailableQueue->dump(this));
   1508 
   1509     // Pick the best node to schedule taking all constraints into
   1510     // consideration.
   1511     SUnit *SU = PickNodeToScheduleBottomUp();
   1512 
   1513     AdvancePastStalls(SU);
   1514 
   1515     ScheduleNodeBottomUp(SU);
   1516 
   1517     while (AvailableQueue->empty() && !PendingQueue.empty()) {
   1518       // Advance the cycle to free resources. Skip ahead to the next ready SU.
   1519       assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
   1520       AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
   1521     }
   1522   }
   1523 
   1524   // Reverse the order if it is bottom up.
   1525   std::reverse(Sequence.begin(), Sequence.end());
   1526 
   1527 #ifndef NDEBUG
   1528   VerifyScheduledSequence(/*isBottomUp=*/true);
   1529 #endif
   1530 }
   1531 
   1532 //===----------------------------------------------------------------------===//
   1533 //                RegReductionPriorityQueue Definition
   1534 //===----------------------------------------------------------------------===//
   1535 //
   1536 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
   1537 // to reduce register pressure.
   1538 //
   1539 namespace {
   1540 class RegReductionPQBase;
   1541 
   1542 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
   1543   bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
   1544 };
   1545 
   1546 #ifndef NDEBUG
   1547 template<class SF>
   1548 struct reverse_sort : public queue_sort {
   1549   SF &SortFunc;
   1550   reverse_sort(SF &sf) : SortFunc(sf) {}
   1551 
   1552   bool operator()(SUnit* left, SUnit* right) const {
   1553     // reverse left/right rather than simply !SortFunc(left, right)
   1554     // to expose different paths in the comparison logic.
   1555     return SortFunc(right, left);
   1556   }
   1557 };
   1558 #endif // NDEBUG
   1559 
   1560 /// bu_ls_rr_sort - Priority function for bottom up register pressure
   1561 // reduction scheduler.
   1562 struct bu_ls_rr_sort : public queue_sort {
   1563   enum {
   1564     IsBottomUp = true,
   1565     HasReadyFilter = false
   1566   };
   1567 
   1568   RegReductionPQBase *SPQ;
   1569   bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
   1570 
   1571   bool operator()(SUnit* left, SUnit* right) const;
   1572 };
   1573 
   1574 // src_ls_rr_sort - Priority function for source order scheduler.
   1575 struct src_ls_rr_sort : public queue_sort {
   1576   enum {
   1577     IsBottomUp = true,
   1578     HasReadyFilter = false
   1579   };
   1580 
   1581   RegReductionPQBase *SPQ;
   1582   src_ls_rr_sort(RegReductionPQBase *spq)
   1583     : SPQ(spq) {}
   1584 
   1585   bool operator()(SUnit* left, SUnit* right) const;
   1586 };
   1587 
   1588 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
   1589 struct hybrid_ls_rr_sort : public queue_sort {
   1590   enum {
   1591     IsBottomUp = true,
   1592     HasReadyFilter = false
   1593   };
   1594 
   1595   RegReductionPQBase *SPQ;
   1596   hybrid_ls_rr_sort(RegReductionPQBase *spq)
   1597     : SPQ(spq) {}
   1598 
   1599   bool isReady(SUnit *SU, unsigned CurCycle) const;
   1600 
   1601   bool operator()(SUnit* left, SUnit* right) const;
   1602 };
   1603 
   1604 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
   1605 // scheduler.
   1606 struct ilp_ls_rr_sort : public queue_sort {
   1607   enum {
   1608     IsBottomUp = true,
   1609     HasReadyFilter = false
   1610   };
   1611 
   1612   RegReductionPQBase *SPQ;
   1613   ilp_ls_rr_sort(RegReductionPQBase *spq)
   1614     : SPQ(spq) {}
   1615 
   1616   bool isReady(SUnit *SU, unsigned CurCycle) const;
   1617 
   1618   bool operator()(SUnit* left, SUnit* right) const;
   1619 };
   1620 
   1621 class RegReductionPQBase : public SchedulingPriorityQueue {
   1622 protected:
   1623   std::vector<SUnit*> Queue;
   1624   unsigned CurQueueId;
   1625   bool TracksRegPressure;
   1626   bool SrcOrder;
   1627 
   1628   // SUnits - The SUnits for the current graph.
   1629   std::vector<SUnit> *SUnits;
   1630 
   1631   MachineFunction &MF;
   1632   const TargetInstrInfo *TII;
   1633   const TargetRegisterInfo *TRI;
   1634   const TargetLowering *TLI;
   1635   ScheduleDAGRRList *scheduleDAG;
   1636 
   1637   // SethiUllmanNumbers - The SethiUllman number for each node.
   1638   std::vector<unsigned> SethiUllmanNumbers;
   1639 
   1640   /// RegPressure - Tracking current reg pressure per register class.
   1641   ///
   1642   std::vector<unsigned> RegPressure;
   1643 
   1644   /// RegLimit - Tracking the number of allocatable registers per register
   1645   /// class.
   1646   std::vector<unsigned> RegLimit;
   1647 
   1648 public:
   1649   RegReductionPQBase(MachineFunction &mf,
   1650                      bool hasReadyFilter,
   1651                      bool tracksrp,
   1652                      bool srcorder,
   1653                      const TargetInstrInfo *tii,
   1654                      const TargetRegisterInfo *tri,
   1655                      const TargetLowering *tli)
   1656     : SchedulingPriorityQueue(hasReadyFilter),
   1657       CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
   1658       MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(nullptr) {
   1659     if (TracksRegPressure) {
   1660       unsigned NumRC = TRI->getNumRegClasses();
   1661       RegLimit.resize(NumRC);
   1662       RegPressure.resize(NumRC);
   1663       std::fill(RegLimit.begin(), RegLimit.end(), 0);
   1664       std::fill(RegPressure.begin(), RegPressure.end(), 0);
   1665       for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
   1666              E = TRI->regclass_end(); I != E; ++I)
   1667         RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
   1668     }
   1669   }
   1670 
   1671   void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
   1672     scheduleDAG = scheduleDag;
   1673   }
   1674 
   1675   ScheduleHazardRecognizer* getHazardRec() {
   1676     return scheduleDAG->getHazardRec();
   1677   }
   1678 
   1679   void initNodes(std::vector<SUnit> &sunits) override;
   1680 
   1681   void addNode(const SUnit *SU) override;
   1682 
   1683   void updateNode(const SUnit *SU) override;
   1684 
   1685   void releaseState() override {
   1686     SUnits = nullptr;
   1687     SethiUllmanNumbers.clear();
   1688     std::fill(RegPressure.begin(), RegPressure.end(), 0);
   1689   }
   1690 
   1691   unsigned getNodePriority(const SUnit *SU) const;
   1692 
   1693   unsigned getNodeOrdering(const SUnit *SU) const {
   1694     if (!SU->getNode()) return 0;
   1695 
   1696     return SU->getNode()->getIROrder();
   1697   }
   1698 
   1699   bool empty() const override { return Queue.empty(); }
   1700 
   1701   void push(SUnit *U) override {
   1702     assert(!U->NodeQueueId && "Node in the queue already");
   1703     U->NodeQueueId = ++CurQueueId;
   1704     Queue.push_back(U);
   1705   }
   1706 
   1707   void remove(SUnit *SU) override {
   1708     assert(!Queue.empty() && "Queue is empty!");
   1709     assert(SU->NodeQueueId != 0 && "Not in queue!");
   1710     std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
   1711                                                  SU);
   1712     if (I != std::prev(Queue.end()))
   1713       std::swap(*I, Queue.back());
   1714     Queue.pop_back();
   1715     SU->NodeQueueId = 0;
   1716   }
   1717 
   1718   bool tracksRegPressure() const override { return TracksRegPressure; }
   1719 
   1720   void dumpRegPressure() const;
   1721 
   1722   bool HighRegPressure(const SUnit *SU) const;
   1723 
   1724   bool MayReduceRegPressure(SUnit *SU) const;
   1725 
   1726   int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
   1727 
   1728   void scheduledNode(SUnit *SU) override;
   1729 
   1730   void unscheduledNode(SUnit *SU) override;
   1731 
   1732 protected:
   1733   bool canClobber(const SUnit *SU, const SUnit *Op);
   1734   void AddPseudoTwoAddrDeps();
   1735   void PrescheduleNodesWithMultipleUses();
   1736   void CalculateSethiUllmanNumbers();
   1737 };
   1738 
   1739 template<class SF>
   1740 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
   1741   std::vector<SUnit *>::iterator Best = Q.begin();
   1742   for (std::vector<SUnit *>::iterator I = std::next(Q.begin()),
   1743          E = Q.end(); I != E; ++I)
   1744     if (Picker(*Best, *I))
   1745       Best = I;
   1746   SUnit *V = *Best;
   1747   if (Best != std::prev(Q.end()))
   1748     std::swap(*Best, Q.back());
   1749   Q.pop_back();
   1750   return V;
   1751 }
   1752 
   1753 template<class SF>
   1754 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
   1755 #ifndef NDEBUG
   1756   if (DAG->StressSched) {
   1757     reverse_sort<SF> RPicker(Picker);
   1758     return popFromQueueImpl(Q, RPicker);
   1759   }
   1760 #endif
   1761   (void)DAG;
   1762   return popFromQueueImpl(Q, Picker);
   1763 }
   1764 
   1765 template<class SF>
   1766 class RegReductionPriorityQueue : public RegReductionPQBase {
   1767   SF Picker;
   1768 
   1769 public:
   1770   RegReductionPriorityQueue(MachineFunction &mf,
   1771                             bool tracksrp,
   1772                             bool srcorder,
   1773                             const TargetInstrInfo *tii,
   1774                             const TargetRegisterInfo *tri,
   1775                             const TargetLowering *tli)
   1776     : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
   1777                          tii, tri, tli),
   1778       Picker(this) {}
   1779 
   1780   bool isBottomUp() const override { return SF::IsBottomUp; }
   1781 
   1782   bool isReady(SUnit *U) const override {
   1783     return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
   1784   }
   1785 
   1786   SUnit *pop() override {
   1787     if (Queue.empty()) return nullptr;
   1788 
   1789     SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
   1790     V->NodeQueueId = 0;
   1791     return V;
   1792   }
   1793 
   1794 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1795   void dump(ScheduleDAG *DAG) const override {
   1796     // Emulate pop() without clobbering NodeQueueIds.
   1797     std::vector<SUnit*> DumpQueue = Queue;
   1798     SF DumpPicker = Picker;
   1799     while (!DumpQueue.empty()) {
   1800       SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
   1801       dbgs() << "Height " << SU->getHeight() << ": ";
   1802       SU->dump(DAG);
   1803     }
   1804   }
   1805 #endif
   1806 };
   1807 
   1808 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
   1809 BURegReductionPriorityQueue;
   1810 
   1811 typedef RegReductionPriorityQueue<src_ls_rr_sort>
   1812 SrcRegReductionPriorityQueue;
   1813 
   1814 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
   1815 HybridBURRPriorityQueue;
   1816 
   1817 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
   1818 ILPBURRPriorityQueue;
   1819 } // end anonymous namespace
   1820 
   1821 //===----------------------------------------------------------------------===//
   1822 //           Static Node Priority for Register Pressure Reduction
   1823 //===----------------------------------------------------------------------===//
   1824 
   1825 // Check for special nodes that bypass scheduling heuristics.
   1826 // Currently this pushes TokenFactor nodes down, but may be used for other
   1827 // pseudo-ops as well.
   1828 //
   1829 // Return -1 to schedule right above left, 1 for left above right.
   1830 // Return 0 if no bias exists.
   1831 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
   1832   bool LSchedLow = left->isScheduleLow;
   1833   bool RSchedLow = right->isScheduleLow;
   1834   if (LSchedLow != RSchedLow)
   1835     return LSchedLow < RSchedLow ? 1 : -1;
   1836   return 0;
   1837 }
   1838 
   1839 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
   1840 /// Smaller number is the higher priority.
   1841 static unsigned
   1842 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
   1843   unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
   1844   if (SethiUllmanNumber != 0)
   1845     return SethiUllmanNumber;
   1846 
   1847   unsigned Extra = 0;
   1848   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1849        I != E; ++I) {
   1850     if (I->isCtrl()) continue;  // ignore chain preds
   1851     SUnit *PredSU = I->getSUnit();
   1852     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
   1853     if (PredSethiUllman > SethiUllmanNumber) {
   1854       SethiUllmanNumber = PredSethiUllman;
   1855       Extra = 0;
   1856     } else if (PredSethiUllman == SethiUllmanNumber)
   1857       ++Extra;
   1858   }
   1859 
   1860   SethiUllmanNumber += Extra;
   1861 
   1862   if (SethiUllmanNumber == 0)
   1863     SethiUllmanNumber = 1;
   1864 
   1865   return SethiUllmanNumber;
   1866 }
   1867 
   1868 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
   1869 /// scheduling units.
   1870 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
   1871   SethiUllmanNumbers.assign(SUnits->size(), 0);
   1872 
   1873   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
   1874     CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
   1875 }
   1876 
   1877 void RegReductionPQBase::addNode(const SUnit *SU) {
   1878   unsigned SUSize = SethiUllmanNumbers.size();
   1879   if (SUnits->size() > SUSize)
   1880     SethiUllmanNumbers.resize(SUSize*2, 0);
   1881   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
   1882 }
   1883 
   1884 void RegReductionPQBase::updateNode(const SUnit *SU) {
   1885   SethiUllmanNumbers[SU->NodeNum] = 0;
   1886   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
   1887 }
   1888 
   1889 // Lower priority means schedule further down. For bottom-up scheduling, lower
   1890 // priority SUs are scheduled before higher priority SUs.
   1891 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
   1892   assert(SU->NodeNum < SethiUllmanNumbers.size());
   1893   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
   1894   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
   1895     // CopyToReg should be close to its uses to facilitate coalescing and
   1896     // avoid spilling.
   1897     return 0;
   1898   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   1899       Opc == TargetOpcode::SUBREG_TO_REG ||
   1900       Opc == TargetOpcode::INSERT_SUBREG)
   1901     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
   1902     // close to their uses to facilitate coalescing.
   1903     return 0;
   1904   if (SU->NumSuccs == 0 && SU->NumPreds != 0)
   1905     // If SU does not have a register use, i.e. it doesn't produce a value
   1906     // that would be consumed (e.g. store), then it terminates a chain of
   1907     // computation.  Give it a large SethiUllman number so it will be
   1908     // scheduled right before its predecessors that it doesn't lengthen
   1909     // their live ranges.
   1910     return 0xffff;
   1911   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
   1912     // If SU does not have a register def, schedule it close to its uses
   1913     // because it does not lengthen any live ranges.
   1914     return 0;
   1915 #if 1
   1916   return SethiUllmanNumbers[SU->NodeNum];
   1917 #else
   1918   unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
   1919   if (SU->isCallOp) {
   1920     // FIXME: This assumes all of the defs are used as call operands.
   1921     int NP = (int)Priority - SU->getNode()->getNumValues();
   1922     return (NP > 0) ? NP : 0;
   1923   }
   1924   return Priority;
   1925 #endif
   1926 }
   1927 
   1928 //===----------------------------------------------------------------------===//
   1929 //                     Register Pressure Tracking
   1930 //===----------------------------------------------------------------------===//
   1931 
   1932 void RegReductionPQBase::dumpRegPressure() const {
   1933 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1934   for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
   1935          E = TRI->regclass_end(); I != E; ++I) {
   1936     const TargetRegisterClass *RC = *I;
   1937     unsigned Id = RC->getID();
   1938     unsigned RP = RegPressure[Id];
   1939     if (!RP) continue;
   1940     DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
   1941           << RegLimit[Id] << '\n');
   1942   }
   1943 #endif
   1944 }
   1945 
   1946 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
   1947   if (!TLI)
   1948     return false;
   1949 
   1950   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   1951        I != E; ++I) {
   1952     if (I->isCtrl())
   1953       continue;
   1954     SUnit *PredSU = I->getSUnit();
   1955     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   1956     // to cover the number of registers defined (they are all live).
   1957     if (PredSU->NumRegDefsLeft == 0) {
   1958       continue;
   1959     }
   1960     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   1961          RegDefPos.IsValid(); RegDefPos.Advance()) {
   1962       unsigned RCId, Cost;
   1963       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   1964 
   1965       if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
   1966         return true;
   1967     }
   1968   }
   1969   return false;
   1970 }
   1971 
   1972 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
   1973   const SDNode *N = SU->getNode();
   1974 
   1975   if (!N->isMachineOpcode() || !SU->NumSuccs)
   1976     return false;
   1977 
   1978   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   1979   for (unsigned i = 0; i != NumDefs; ++i) {
   1980     MVT VT = N->getSimpleValueType(i);
   1981     if (!N->hasAnyUseOfValue(i))
   1982       continue;
   1983     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   1984     if (RegPressure[RCId] >= RegLimit[RCId])
   1985       return true;
   1986   }
   1987   return false;
   1988 }
   1989 
   1990 // Compute the register pressure contribution by this instruction by count up
   1991 // for uses that are not live and down for defs. Only count register classes
   1992 // that are already under high pressure. As a side effect, compute the number of
   1993 // uses of registers that are already live.
   1994 //
   1995 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
   1996 // so could probably be factored.
   1997 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
   1998   LiveUses = 0;
   1999   int PDiff = 0;
   2000   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2001        I != E; ++I) {
   2002     if (I->isCtrl())
   2003       continue;
   2004     SUnit *PredSU = I->getSUnit();
   2005     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   2006     // to cover the number of registers defined (they are all live).
   2007     if (PredSU->NumRegDefsLeft == 0) {
   2008       if (PredSU->getNode()->isMachineOpcode())
   2009         ++LiveUses;
   2010       continue;
   2011     }
   2012     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   2013          RegDefPos.IsValid(); RegDefPos.Advance()) {
   2014       MVT VT = RegDefPos.GetValue();
   2015       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2016       if (RegPressure[RCId] >= RegLimit[RCId])
   2017         ++PDiff;
   2018     }
   2019   }
   2020   const SDNode *N = SU->getNode();
   2021 
   2022   if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
   2023     return PDiff;
   2024 
   2025   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2026   for (unsigned i = 0; i != NumDefs; ++i) {
   2027     MVT VT = N->getSimpleValueType(i);
   2028     if (!N->hasAnyUseOfValue(i))
   2029       continue;
   2030     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2031     if (RegPressure[RCId] >= RegLimit[RCId])
   2032       --PDiff;
   2033   }
   2034   return PDiff;
   2035 }
   2036 
   2037 void RegReductionPQBase::scheduledNode(SUnit *SU) {
   2038   if (!TracksRegPressure)
   2039     return;
   2040 
   2041   if (!SU->getNode())
   2042     return;
   2043 
   2044   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2045        I != E; ++I) {
   2046     if (I->isCtrl())
   2047       continue;
   2048     SUnit *PredSU = I->getSUnit();
   2049     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   2050     // to cover the number of registers defined (they are all live).
   2051     if (PredSU->NumRegDefsLeft == 0) {
   2052       continue;
   2053     }
   2054     // FIXME: The ScheduleDAG currently loses information about which of a
   2055     // node's values is consumed by each dependence. Consequently, if the node
   2056     // defines multiple register classes, we don't know which to pressurize
   2057     // here. Instead the following loop consumes the register defs in an
   2058     // arbitrary order. At least it handles the common case of clustered loads
   2059     // to the same class. For precise liveness, each SDep needs to indicate the
   2060     // result number. But that tightly couples the ScheduleDAG with the
   2061     // SelectionDAG making updates tricky. A simpler hack would be to attach a
   2062     // value type or register class to SDep.
   2063     //
   2064     // The most important aspect of register tracking is balancing the increase
   2065     // here with the reduction further below. Note that this SU may use multiple
   2066     // defs in PredSU. The can't be determined here, but we've already
   2067     // compensated by reducing NumRegDefsLeft in PredSU during
   2068     // ScheduleDAGSDNodes::AddSchedEdges.
   2069     --PredSU->NumRegDefsLeft;
   2070     unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
   2071     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   2072          RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
   2073       if (SkipRegDefs)
   2074         continue;
   2075 
   2076       unsigned RCId, Cost;
   2077       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   2078       RegPressure[RCId] += Cost;
   2079       break;
   2080     }
   2081   }
   2082 
   2083   // We should have this assert, but there may be dead SDNodes that never
   2084   // materialize as SUnits, so they don't appear to generate liveness.
   2085   //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
   2086   int SkipRegDefs = (int)SU->NumRegDefsLeft;
   2087   for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
   2088        RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
   2089     if (SkipRegDefs > 0)
   2090       continue;
   2091     unsigned RCId, Cost;
   2092     GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   2093     if (RegPressure[RCId] < Cost) {
   2094       // Register pressure tracking is imprecise. This can happen. But we try
   2095       // hard not to let it happen because it likely results in poor scheduling.
   2096       DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
   2097       RegPressure[RCId] = 0;
   2098     }
   2099     else {
   2100       RegPressure[RCId] -= Cost;
   2101     }
   2102   }
   2103   dumpRegPressure();
   2104 }
   2105 
   2106 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
   2107   if (!TracksRegPressure)
   2108     return;
   2109 
   2110   const SDNode *N = SU->getNode();
   2111   if (!N) return;
   2112 
   2113   if (!N->isMachineOpcode()) {
   2114     if (N->getOpcode() != ISD::CopyToReg)
   2115       return;
   2116   } else {
   2117     unsigned Opc = N->getMachineOpcode();
   2118     if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   2119         Opc == TargetOpcode::INSERT_SUBREG ||
   2120         Opc == TargetOpcode::SUBREG_TO_REG ||
   2121         Opc == TargetOpcode::REG_SEQUENCE ||
   2122         Opc == TargetOpcode::IMPLICIT_DEF)
   2123       return;
   2124   }
   2125 
   2126   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2127        I != E; ++I) {
   2128     if (I->isCtrl())
   2129       continue;
   2130     SUnit *PredSU = I->getSUnit();
   2131     // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
   2132     // counts data deps.
   2133     if (PredSU->NumSuccsLeft != PredSU->Succs.size())
   2134       continue;
   2135     const SDNode *PN = PredSU->getNode();
   2136     if (!PN->isMachineOpcode()) {
   2137       if (PN->getOpcode() == ISD::CopyFromReg) {
   2138         MVT VT = PN->getSimpleValueType(0);
   2139         unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2140         RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2141       }
   2142       continue;
   2143     }
   2144     unsigned POpc = PN->getMachineOpcode();
   2145     if (POpc == TargetOpcode::IMPLICIT_DEF)
   2146       continue;
   2147     if (POpc == TargetOpcode::EXTRACT_SUBREG ||
   2148         POpc == TargetOpcode::INSERT_SUBREG ||
   2149         POpc == TargetOpcode::SUBREG_TO_REG) {
   2150       MVT VT = PN->getSimpleValueType(0);
   2151       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2152       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2153       continue;
   2154     }
   2155     unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
   2156     for (unsigned i = 0; i != NumDefs; ++i) {
   2157       MVT VT = PN->getSimpleValueType(i);
   2158       if (!PN->hasAnyUseOfValue(i))
   2159         continue;
   2160       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2161       if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
   2162         // Register pressure tracking is imprecise. This can happen.
   2163         RegPressure[RCId] = 0;
   2164       else
   2165         RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
   2166     }
   2167   }
   2168 
   2169   // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
   2170   // may transfer data dependencies to CopyToReg.
   2171   if (SU->NumSuccs && N->isMachineOpcode()) {
   2172     unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2173     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
   2174       MVT VT = N->getSimpleValueType(i);
   2175       if (VT == MVT::Glue || VT == MVT::Other)
   2176         continue;
   2177       if (!N->hasAnyUseOfValue(i))
   2178         continue;
   2179       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2180       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2181     }
   2182   }
   2183 
   2184   dumpRegPressure();
   2185 }
   2186 
   2187 //===----------------------------------------------------------------------===//
   2188 //           Dynamic Node Priority for Register Pressure Reduction
   2189 //===----------------------------------------------------------------------===//
   2190 
   2191 /// closestSucc - Returns the scheduled cycle of the successor which is
   2192 /// closest to the current cycle.
   2193 static unsigned closestSucc(const SUnit *SU) {
   2194   unsigned MaxHeight = 0;
   2195   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   2196        I != E; ++I) {
   2197     if (I->isCtrl()) continue;  // ignore chain succs
   2198     unsigned Height = I->getSUnit()->getHeight();
   2199     // If there are bunch of CopyToRegs stacked up, they should be considered
   2200     // to be at the same position.
   2201     if (I->getSUnit()->getNode() &&
   2202         I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
   2203       Height = closestSucc(I->getSUnit())+1;
   2204     if (Height > MaxHeight)
   2205       MaxHeight = Height;
   2206   }
   2207   return MaxHeight;
   2208 }
   2209 
   2210 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
   2211 /// for scratch registers, i.e. number of data dependencies.
   2212 static unsigned calcMaxScratches(const SUnit *SU) {
   2213   unsigned Scratches = 0;
   2214   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2215        I != E; ++I) {
   2216     if (I->isCtrl()) continue;  // ignore chain preds
   2217     Scratches++;
   2218   }
   2219   return Scratches;
   2220 }
   2221 
   2222 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
   2223 /// CopyFromReg from a virtual register.
   2224 static bool hasOnlyLiveInOpers(const SUnit *SU) {
   2225   bool RetVal = false;
   2226   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2227        I != E; ++I) {
   2228     if (I->isCtrl()) continue;
   2229     const SUnit *PredSU = I->getSUnit();
   2230     if (PredSU->getNode() &&
   2231         PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
   2232       unsigned Reg =
   2233         cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
   2234       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2235         RetVal = true;
   2236         continue;
   2237       }
   2238     }
   2239     return false;
   2240   }
   2241   return RetVal;
   2242 }
   2243 
   2244 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
   2245 /// CopyToReg to a virtual register. This SU def is probably a liveout and
   2246 /// it has no other use. It should be scheduled closer to the terminator.
   2247 static bool hasOnlyLiveOutUses(const SUnit *SU) {
   2248   bool RetVal = false;
   2249   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   2250        I != E; ++I) {
   2251     if (I->isCtrl()) continue;
   2252     const SUnit *SuccSU = I->getSUnit();
   2253     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
   2254       unsigned Reg =
   2255         cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
   2256       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2257         RetVal = true;
   2258         continue;
   2259       }
   2260     }
   2261     return false;
   2262   }
   2263   return RetVal;
   2264 }
   2265 
   2266 // Set isVRegCycle for a node with only live in opers and live out uses. Also
   2267 // set isVRegCycle for its CopyFromReg operands.
   2268 //
   2269 // This is only relevant for single-block loops, in which case the VRegCycle
   2270 // node is likely an induction variable in which the operand and target virtual
   2271 // registers should be coalesced (e.g. pre/post increment values). Setting the
   2272 // isVRegCycle flag helps the scheduler prioritize other uses of the same
   2273 // CopyFromReg so that this node becomes the virtual register "kill". This
   2274 // avoids interference between the values live in and out of the block and
   2275 // eliminates a copy inside the loop.
   2276 static void initVRegCycle(SUnit *SU) {
   2277   if (DisableSchedVRegCycle)
   2278     return;
   2279 
   2280   if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
   2281     return;
   2282 
   2283   DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
   2284 
   2285   SU->isVRegCycle = true;
   2286 
   2287   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2288        I != E; ++I) {
   2289     if (I->isCtrl()) continue;
   2290     I->getSUnit()->isVRegCycle = true;
   2291   }
   2292 }
   2293 
   2294 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
   2295 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
   2296 static void resetVRegCycle(SUnit *SU) {
   2297   if (!SU->isVRegCycle)
   2298     return;
   2299 
   2300   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2301        I != E; ++I) {
   2302     if (I->isCtrl()) continue;  // ignore chain preds
   2303     SUnit *PredSU = I->getSUnit();
   2304     if (PredSU->isVRegCycle) {
   2305       assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
   2306              "VRegCycle def must be CopyFromReg");
   2307       I->getSUnit()->isVRegCycle = 0;
   2308     }
   2309   }
   2310 }
   2311 
   2312 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
   2313 // means a node that defines the VRegCycle has not been scheduled yet.
   2314 static bool hasVRegCycleUse(const SUnit *SU) {
   2315   // If this SU also defines the VReg, don't hoist it as a "use".
   2316   if (SU->isVRegCycle)
   2317     return false;
   2318 
   2319   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2320        I != E; ++I) {
   2321     if (I->isCtrl()) continue;  // ignore chain preds
   2322     if (I->getSUnit()->isVRegCycle &&
   2323         I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
   2324       DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
   2325       return true;
   2326     }
   2327   }
   2328   return false;
   2329 }
   2330 
   2331 // Check for either a dependence (latency) or resource (hazard) stall.
   2332 //
   2333 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
   2334 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
   2335   if ((int)SPQ->getCurCycle() < Height) return true;
   2336   if (SPQ->getHazardRec()->getHazardType(SU, 0)
   2337       != ScheduleHazardRecognizer::NoHazard)
   2338     return true;
   2339   return false;
   2340 }
   2341 
   2342 // Return -1 if left has higher priority, 1 if right has higher priority.
   2343 // Return 0 if latency-based priority is equivalent.
   2344 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
   2345                             RegReductionPQBase *SPQ) {
   2346   // Scheduling an instruction that uses a VReg whose postincrement has not yet
   2347   // been scheduled will induce a copy. Model this as an extra cycle of latency.
   2348   int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
   2349   int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
   2350   int LHeight = (int)left->getHeight() + LPenalty;
   2351   int RHeight = (int)right->getHeight() + RPenalty;
   2352 
   2353   bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
   2354     BUHasStall(left, LHeight, SPQ);
   2355   bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
   2356     BUHasStall(right, RHeight, SPQ);
   2357 
   2358   // If scheduling one of the node will cause a pipeline stall, delay it.
   2359   // If scheduling either one of the node will cause a pipeline stall, sort
   2360   // them according to their height.
   2361   if (LStall) {
   2362     if (!RStall)
   2363       return 1;
   2364     if (LHeight != RHeight)
   2365       return LHeight > RHeight ? 1 : -1;
   2366   } else if (RStall)
   2367     return -1;
   2368 
   2369   // If either node is scheduling for latency, sort them by height/depth
   2370   // and latency.
   2371   if (!checkPref || (left->SchedulingPref == Sched::ILP ||
   2372                      right->SchedulingPref == Sched::ILP)) {
   2373     // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
   2374     // is enabled, grouping instructions by cycle, then its height is already
   2375     // covered so only its depth matters. We also reach this point if both stall
   2376     // but have the same height.
   2377     if (!SPQ->getHazardRec()->isEnabled()) {
   2378       if (LHeight != RHeight)
   2379         return LHeight > RHeight ? 1 : -1;
   2380     }
   2381     int LDepth = left->getDepth() - LPenalty;
   2382     int RDepth = right->getDepth() - RPenalty;
   2383     if (LDepth != RDepth) {
   2384       DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
   2385             << ") depth " << LDepth << " vs SU (" << right->NodeNum
   2386             << ") depth " << RDepth << "\n");
   2387       return LDepth < RDepth ? 1 : -1;
   2388     }
   2389     if (left->Latency != right->Latency)
   2390       return left->Latency > right->Latency ? 1 : -1;
   2391   }
   2392   return 0;
   2393 }
   2394 
   2395 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
   2396   // Schedule physical register definitions close to their use. This is
   2397   // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
   2398   // long as shortening physreg live ranges is generally good, we can defer
   2399   // creating a subtarget hook.
   2400   if (!DisableSchedPhysRegJoin) {
   2401     bool LHasPhysReg = left->hasPhysRegDefs;
   2402     bool RHasPhysReg = right->hasPhysRegDefs;
   2403     if (LHasPhysReg != RHasPhysReg) {
   2404       #ifndef NDEBUG
   2405       static const char *const PhysRegMsg[] = { " has no physreg",
   2406                                                 " defines a physreg" };
   2407       #endif
   2408       DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
   2409             << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
   2410             << PhysRegMsg[RHasPhysReg] << "\n");
   2411       return LHasPhysReg < RHasPhysReg;
   2412     }
   2413   }
   2414 
   2415   // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
   2416   unsigned LPriority = SPQ->getNodePriority(left);
   2417   unsigned RPriority = SPQ->getNodePriority(right);
   2418 
   2419   // Be really careful about hoisting call operands above previous calls.
   2420   // Only allows it if it would reduce register pressure.
   2421   if (left->isCall && right->isCallOp) {
   2422     unsigned RNumVals = right->getNode()->getNumValues();
   2423     RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
   2424   }
   2425   if (right->isCall && left->isCallOp) {
   2426     unsigned LNumVals = left->getNode()->getNumValues();
   2427     LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
   2428   }
   2429 
   2430   if (LPriority != RPriority)
   2431     return LPriority > RPriority;
   2432 
   2433   // One or both of the nodes are calls and their sethi-ullman numbers are the
   2434   // same, then keep source order.
   2435   if (left->isCall || right->isCall) {
   2436     unsigned LOrder = SPQ->getNodeOrdering(left);
   2437     unsigned ROrder = SPQ->getNodeOrdering(right);
   2438 
   2439     // Prefer an ordering where the lower the non-zero order number, the higher
   2440     // the preference.
   2441     if ((LOrder || ROrder) && LOrder != ROrder)
   2442       return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
   2443   }
   2444 
   2445   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
   2446   // e.g.
   2447   // t1 = op t2, c1
   2448   // t3 = op t4, c2
   2449   //
   2450   // and the following instructions are both ready.
   2451   // t2 = op c3
   2452   // t4 = op c4
   2453   //
   2454   // Then schedule t2 = op first.
   2455   // i.e.
   2456   // t4 = op c4
   2457   // t2 = op c3
   2458   // t1 = op t2, c1
   2459   // t3 = op t4, c2
   2460   //
   2461   // This creates more short live intervals.
   2462   unsigned LDist = closestSucc(left);
   2463   unsigned RDist = closestSucc(right);
   2464   if (LDist != RDist)
   2465     return LDist < RDist;
   2466 
   2467   // How many registers becomes live when the node is scheduled.
   2468   unsigned LScratch = calcMaxScratches(left);
   2469   unsigned RScratch = calcMaxScratches(right);
   2470   if (LScratch != RScratch)
   2471     return LScratch > RScratch;
   2472 
   2473   // Comparing latency against a call makes little sense unless the node
   2474   // is register pressure-neutral.
   2475   if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
   2476     return (left->NodeQueueId > right->NodeQueueId);
   2477 
   2478   // Do not compare latencies when one or both of the nodes are calls.
   2479   if (!DisableSchedCycles &&
   2480       !(left->isCall || right->isCall)) {
   2481     int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
   2482     if (result != 0)
   2483       return result > 0;
   2484   }
   2485   else {
   2486     if (left->getHeight() != right->getHeight())
   2487       return left->getHeight() > right->getHeight();
   2488 
   2489     if (left->getDepth() != right->getDepth())
   2490       return left->getDepth() < right->getDepth();
   2491   }
   2492 
   2493   assert(left->NodeQueueId && right->NodeQueueId &&
   2494          "NodeQueueId cannot be zero");
   2495   return (left->NodeQueueId > right->NodeQueueId);
   2496 }
   2497 
   2498 // Bottom up
   2499 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2500   if (int res = checkSpecialNodes(left, right))
   2501     return res > 0;
   2502 
   2503   return BURRSort(left, right, SPQ);
   2504 }
   2505 
   2506 // Source order, otherwise bottom up.
   2507 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2508   if (int res = checkSpecialNodes(left, right))
   2509     return res > 0;
   2510 
   2511   unsigned LOrder = SPQ->getNodeOrdering(left);
   2512   unsigned ROrder = SPQ->getNodeOrdering(right);
   2513 
   2514   // Prefer an ordering where the lower the non-zero order number, the higher
   2515   // the preference.
   2516   if ((LOrder || ROrder) && LOrder != ROrder)
   2517     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
   2518 
   2519   return BURRSort(left, right, SPQ);
   2520 }
   2521 
   2522 // If the time between now and when the instruction will be ready can cover
   2523 // the spill code, then avoid adding it to the ready queue. This gives long
   2524 // stalls highest priority and allows hoisting across calls. It should also
   2525 // speed up processing the available queue.
   2526 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
   2527   static const unsigned ReadyDelay = 3;
   2528 
   2529   if (SPQ->MayReduceRegPressure(SU)) return true;
   2530 
   2531   if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
   2532 
   2533   if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
   2534       != ScheduleHazardRecognizer::NoHazard)
   2535     return false;
   2536 
   2537   return true;
   2538 }
   2539 
   2540 // Return true if right should be scheduled with higher priority than left.
   2541 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2542   if (int res = checkSpecialNodes(left, right))
   2543     return res > 0;
   2544 
   2545   if (left->isCall || right->isCall)
   2546     // No way to compute latency of calls.
   2547     return BURRSort(left, right, SPQ);
   2548 
   2549   bool LHigh = SPQ->HighRegPressure(left);
   2550   bool RHigh = SPQ->HighRegPressure(right);
   2551   // Avoid causing spills. If register pressure is high, schedule for
   2552   // register pressure reduction.
   2553   if (LHigh && !RHigh) {
   2554     DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
   2555           << right->NodeNum << ")\n");
   2556     return true;
   2557   }
   2558   else if (!LHigh && RHigh) {
   2559     DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
   2560           << left->NodeNum << ")\n");
   2561     return false;
   2562   }
   2563   if (!LHigh && !RHigh) {
   2564     int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
   2565     if (result != 0)
   2566       return result > 0;
   2567   }
   2568   return BURRSort(left, right, SPQ);
   2569 }
   2570 
   2571 // Schedule as many instructions in each cycle as possible. So don't make an
   2572 // instruction available unless it is ready in the current cycle.
   2573 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
   2574   if (SU->getHeight() > CurCycle) return false;
   2575 
   2576   if (SPQ->getHazardRec()->getHazardType(SU, 0)
   2577       != ScheduleHazardRecognizer::NoHazard)
   2578     return false;
   2579 
   2580   return true;
   2581 }
   2582 
   2583 static bool canEnableCoalescing(SUnit *SU) {
   2584   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
   2585   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
   2586     // CopyToReg should be close to its uses to facilitate coalescing and
   2587     // avoid spilling.
   2588     return true;
   2589 
   2590   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   2591       Opc == TargetOpcode::SUBREG_TO_REG ||
   2592       Opc == TargetOpcode::INSERT_SUBREG)
   2593     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
   2594     // close to their uses to facilitate coalescing.
   2595     return true;
   2596 
   2597   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
   2598     // If SU does not have a register def, schedule it close to its uses
   2599     // because it does not lengthen any live ranges.
   2600     return true;
   2601 
   2602   return false;
   2603 }
   2604 
   2605 // list-ilp is currently an experimental scheduler that allows various
   2606 // heuristics to be enabled prior to the normal register reduction logic.
   2607 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2608   if (int res = checkSpecialNodes(left, right))
   2609     return res > 0;
   2610 
   2611   if (left->isCall || right->isCall)
   2612     // No way to compute latency of calls.
   2613     return BURRSort(left, right, SPQ);
   2614 
   2615   unsigned LLiveUses = 0, RLiveUses = 0;
   2616   int LPDiff = 0, RPDiff = 0;
   2617   if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
   2618     LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
   2619     RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
   2620   }
   2621   if (!DisableSchedRegPressure && LPDiff != RPDiff) {
   2622     DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
   2623           << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
   2624     return LPDiff > RPDiff;
   2625   }
   2626 
   2627   if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
   2628     bool LReduce = canEnableCoalescing(left);
   2629     bool RReduce = canEnableCoalescing(right);
   2630     if (LReduce && !RReduce) return false;
   2631     if (RReduce && !LReduce) return true;
   2632   }
   2633 
   2634   if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
   2635     DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
   2636           << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
   2637     return LLiveUses < RLiveUses;
   2638   }
   2639 
   2640   if (!DisableSchedStalls) {
   2641     bool LStall = BUHasStall(left, left->getHeight(), SPQ);
   2642     bool RStall = BUHasStall(right, right->getHeight(), SPQ);
   2643     if (LStall != RStall)
   2644       return left->getHeight() > right->getHeight();
   2645   }
   2646 
   2647   if (!DisableSchedCriticalPath) {
   2648     int spread = (int)left->getDepth() - (int)right->getDepth();
   2649     if (std::abs(spread) > MaxReorderWindow) {
   2650       DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
   2651             << left->getDepth() << " != SU(" << right->NodeNum << "): "
   2652             << right->getDepth() << "\n");
   2653       return left->getDepth() < right->getDepth();
   2654     }
   2655   }
   2656 
   2657   if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
   2658     int spread = (int)left->getHeight() - (int)right->getHeight();
   2659     if (std::abs(spread) > MaxReorderWindow)
   2660       return left->getHeight() > right->getHeight();
   2661   }
   2662 
   2663   return BURRSort(left, right, SPQ);
   2664 }
   2665 
   2666 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
   2667   SUnits = &sunits;
   2668   // Add pseudo dependency edges for two-address nodes.
   2669   if (!Disable2AddrHack)
   2670     AddPseudoTwoAddrDeps();
   2671   // Reroute edges to nodes with multiple uses.
   2672   if (!TracksRegPressure && !SrcOrder)
   2673     PrescheduleNodesWithMultipleUses();
   2674   // Calculate node priorities.
   2675   CalculateSethiUllmanNumbers();
   2676 
   2677   // For single block loops, mark nodes that look like canonical IV increments.
   2678   if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
   2679     for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
   2680       initVRegCycle(&sunits[i]);
   2681     }
   2682   }
   2683 }
   2684 
   2685 //===----------------------------------------------------------------------===//
   2686 //                    Preschedule for Register Pressure
   2687 //===----------------------------------------------------------------------===//
   2688 
   2689 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
   2690   if (SU->isTwoAddress) {
   2691     unsigned Opc = SU->getNode()->getMachineOpcode();
   2692     const MCInstrDesc &MCID = TII->get(Opc);
   2693     unsigned NumRes = MCID.getNumDefs();
   2694     unsigned NumOps = MCID.getNumOperands() - NumRes;
   2695     for (unsigned i = 0; i != NumOps; ++i) {
   2696       if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
   2697         SDNode *DU = SU->getNode()->getOperand(i).getNode();
   2698         if (DU->getNodeId() != -1 &&
   2699             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
   2700           return true;
   2701       }
   2702     }
   2703   }
   2704   return false;
   2705 }
   2706 
   2707 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
   2708 /// successor's explicit physregs whose definition can reach DepSU.
   2709 /// i.e. DepSU should not be scheduled above SU.
   2710 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
   2711                                          ScheduleDAGRRList *scheduleDAG,
   2712                                          const TargetInstrInfo *TII,
   2713                                          const TargetRegisterInfo *TRI) {
   2714   const uint16_t *ImpDefs
   2715     = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
   2716   const uint32_t *RegMask = getNodeRegMask(SU->getNode());
   2717   if(!ImpDefs && !RegMask)
   2718     return false;
   2719 
   2720   for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
   2721        SI != SE; ++SI) {
   2722     SUnit *SuccSU = SI->getSUnit();
   2723     for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
   2724            PE = SuccSU->Preds.end(); PI != PE; ++PI) {
   2725       if (!PI->isAssignedRegDep())
   2726         continue;
   2727 
   2728       if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
   2729           scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
   2730         return true;
   2731 
   2732       if (ImpDefs)
   2733         for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
   2734           // Return true if SU clobbers this physical register use and the
   2735           // definition of the register reaches from DepSU. IsReachable queries
   2736           // a topological forward sort of the DAG (following the successors).
   2737           if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
   2738               scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
   2739             return true;
   2740     }
   2741   }
   2742   return false;
   2743 }
   2744 
   2745 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
   2746 /// physical register defs.
   2747 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
   2748                                   const TargetInstrInfo *TII,
   2749                                   const TargetRegisterInfo *TRI) {
   2750   SDNode *N = SuccSU->getNode();
   2751   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2752   const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
   2753   assert(ImpDefs && "Caller should check hasPhysRegDefs");
   2754   for (const SDNode *SUNode = SU->getNode(); SUNode;
   2755        SUNode = SUNode->getGluedNode()) {
   2756     if (!SUNode->isMachineOpcode())
   2757       continue;
   2758     const uint16_t *SUImpDefs =
   2759       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
   2760     const uint32_t *SURegMask = getNodeRegMask(SUNode);
   2761     if (!SUImpDefs && !SURegMask)
   2762       continue;
   2763     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
   2764       MVT VT = N->getSimpleValueType(i);
   2765       if (VT == MVT::Glue || VT == MVT::Other)
   2766         continue;
   2767       if (!N->hasAnyUseOfValue(i))
   2768         continue;
   2769       unsigned Reg = ImpDefs[i - NumDefs];
   2770       if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
   2771         return true;
   2772       if (!SUImpDefs)
   2773         continue;
   2774       for (;*SUImpDefs; ++SUImpDefs) {
   2775         unsigned SUReg = *SUImpDefs;
   2776         if (TRI->regsOverlap(Reg, SUReg))
   2777           return true;
   2778       }
   2779     }
   2780   }
   2781   return false;
   2782 }
   2783 
   2784 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
   2785 /// are not handled well by the general register pressure reduction
   2786 /// heuristics. When presented with code like this:
   2787 ///
   2788 ///      N
   2789 ///    / |
   2790 ///   /  |
   2791 ///  U  store
   2792 ///  |
   2793 /// ...
   2794 ///
   2795 /// the heuristics tend to push the store up, but since the
   2796 /// operand of the store has another use (U), this would increase
   2797 /// the length of that other use (the U->N edge).
   2798 ///
   2799 /// This function transforms code like the above to route U's
   2800 /// dependence through the store when possible, like this:
   2801 ///
   2802 ///      N
   2803 ///      ||
   2804 ///      ||
   2805 ///     store
   2806 ///       |
   2807 ///       U
   2808 ///       |
   2809 ///      ...
   2810 ///
   2811 /// This results in the store being scheduled immediately
   2812 /// after N, which shortens the U->N live range, reducing
   2813 /// register pressure.
   2814 ///
   2815 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
   2816   // Visit all the nodes in topological order, working top-down.
   2817   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
   2818     SUnit *SU = &(*SUnits)[i];
   2819     // For now, only look at nodes with no data successors, such as stores.
   2820     // These are especially important, due to the heuristics in
   2821     // getNodePriority for nodes with no data successors.
   2822     if (SU->NumSuccs != 0)
   2823       continue;
   2824     // For now, only look at nodes with exactly one data predecessor.
   2825     if (SU->NumPreds != 1)
   2826       continue;
   2827     // Avoid prescheduling copies to virtual registers, which don't behave
   2828     // like other nodes from the perspective of scheduling heuristics.
   2829     if (SDNode *N = SU->getNode())
   2830       if (N->getOpcode() == ISD::CopyToReg &&
   2831           TargetRegisterInfo::isVirtualRegister
   2832             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
   2833         continue;
   2834 
   2835     // Locate the single data predecessor.
   2836     SUnit *PredSU = nullptr;
   2837     for (SUnit::const_pred_iterator II = SU->Preds.begin(),
   2838          EE = SU->Preds.end(); II != EE; ++II)
   2839       if (!II->isCtrl()) {
   2840         PredSU = II->getSUnit();
   2841         break;
   2842       }
   2843     assert(PredSU);
   2844 
   2845     // Don't rewrite edges that carry physregs, because that requires additional
   2846     // support infrastructure.
   2847     if (PredSU->hasPhysRegDefs)
   2848       continue;
   2849     // Short-circuit the case where SU is PredSU's only data successor.
   2850     if (PredSU->NumSuccs == 1)
   2851       continue;
   2852     // Avoid prescheduling to copies from virtual registers, which don't behave
   2853     // like other nodes from the perspective of scheduling heuristics.
   2854     if (SDNode *N = SU->getNode())
   2855       if (N->getOpcode() == ISD::CopyFromReg &&
   2856           TargetRegisterInfo::isVirtualRegister
   2857             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
   2858         continue;
   2859 
   2860     // Perform checks on the successors of PredSU.
   2861     for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
   2862          EE = PredSU->Succs.end(); II != EE; ++II) {
   2863       SUnit *PredSuccSU = II->getSUnit();
   2864       if (PredSuccSU == SU) continue;
   2865       // If PredSU has another successor with no data successors, for
   2866       // now don't attempt to choose either over the other.
   2867       if (PredSuccSU->NumSuccs == 0)
   2868         goto outer_loop_continue;
   2869       // Don't break physical register dependencies.
   2870       if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
   2871         if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
   2872           goto outer_loop_continue;
   2873       // Don't introduce graph cycles.
   2874       if (scheduleDAG->IsReachable(SU, PredSuccSU))
   2875         goto outer_loop_continue;
   2876     }
   2877 
   2878     // Ok, the transformation is safe and the heuristics suggest it is
   2879     // profitable. Update the graph.
   2880     DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
   2881                  << " next to PredSU #" << PredSU->NodeNum
   2882                  << " to guide scheduling in the presence of multiple uses\n");
   2883     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
   2884       SDep Edge = PredSU->Succs[i];
   2885       assert(!Edge.isAssignedRegDep());
   2886       SUnit *SuccSU = Edge.getSUnit();
   2887       if (SuccSU != SU) {
   2888         Edge.setSUnit(PredSU);
   2889         scheduleDAG->RemovePred(SuccSU, Edge);
   2890         scheduleDAG->AddPred(SU, Edge);
   2891         Edge.setSUnit(SU);
   2892         scheduleDAG->AddPred(SuccSU, Edge);
   2893         --i;
   2894       }
   2895     }
   2896   outer_loop_continue:;
   2897   }
   2898 }
   2899 
   2900 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
   2901 /// it as a def&use operand. Add a pseudo control edge from it to the other
   2902 /// node (if it won't create a cycle) so the two-address one will be scheduled
   2903 /// first (lower in the schedule). If both nodes are two-address, favor the
   2904 /// one that has a CopyToReg use (more likely to be a loop induction update).
   2905 /// If both are two-address, but one is commutable while the other is not
   2906 /// commutable, favor the one that's not commutable.
   2907 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
   2908   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
   2909     SUnit *SU = &(*SUnits)[i];
   2910     if (!SU->isTwoAddress)
   2911       continue;
   2912 
   2913     SDNode *Node = SU->getNode();
   2914     if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
   2915       continue;
   2916 
   2917     bool isLiveOut = hasOnlyLiveOutUses(SU);
   2918     unsigned Opc = Node->getMachineOpcode();
   2919     const MCInstrDesc &MCID = TII->get(Opc);
   2920     unsigned NumRes = MCID.getNumDefs();
   2921     unsigned NumOps = MCID.getNumOperands() - NumRes;
   2922     for (unsigned j = 0; j != NumOps; ++j) {
   2923       if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
   2924         continue;
   2925       SDNode *DU = SU->getNode()->getOperand(j).getNode();
   2926       if (DU->getNodeId() == -1)
   2927         continue;
   2928       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
   2929       if (!DUSU) continue;
   2930       for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
   2931            E = DUSU->Succs.end(); I != E; ++I) {
   2932         if (I->isCtrl()) continue;
   2933         SUnit *SuccSU = I->getSUnit();
   2934         if (SuccSU == SU)
   2935           continue;
   2936         // Be conservative. Ignore if nodes aren't at roughly the same
   2937         // depth and height.
   2938         if (SuccSU->getHeight() < SU->getHeight() &&
   2939             (SU->getHeight() - SuccSU->getHeight()) > 1)
   2940           continue;
   2941         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
   2942         // constrains whatever is using the copy, instead of the copy
   2943         // itself. In the case that the copy is coalesced, this
   2944         // preserves the intent of the pseudo two-address heurietics.
   2945         while (SuccSU->Succs.size() == 1 &&
   2946                SuccSU->getNode()->isMachineOpcode() &&
   2947                SuccSU->getNode()->getMachineOpcode() ==
   2948                  TargetOpcode::COPY_TO_REGCLASS)
   2949           SuccSU = SuccSU->Succs.front().getSUnit();
   2950         // Don't constrain non-instruction nodes.
   2951         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
   2952           continue;
   2953         // Don't constrain nodes with physical register defs if the
   2954         // predecessor can clobber them.
   2955         if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
   2956           if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
   2957             continue;
   2958         }
   2959         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
   2960         // these may be coalesced away. We want them close to their uses.
   2961         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
   2962         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
   2963             SuccOpc == TargetOpcode::INSERT_SUBREG ||
   2964             SuccOpc == TargetOpcode::SUBREG_TO_REG)
   2965           continue;
   2966         if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
   2967             (!canClobber(SuccSU, DUSU) ||
   2968              (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
   2969              (!SU->isCommutable && SuccSU->isCommutable)) &&
   2970             !scheduleDAG->IsReachable(SuccSU, SU)) {
   2971           DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
   2972                        << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
   2973           scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
   2974         }
   2975       }
   2976     }
   2977   }
   2978 }
   2979 
   2980 //===----------------------------------------------------------------------===//
   2981 //                         Public Constructor Functions
   2982 //===----------------------------------------------------------------------===//
   2983 
   2984 llvm::ScheduleDAGSDNodes *
   2985 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
   2986                                  CodeGenOpt::Level OptLevel) {
   2987   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
   2988   const TargetInstrInfo *TII = STI.getInstrInfo();
   2989   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
   2990 
   2991   BURegReductionPriorityQueue *PQ =
   2992     new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
   2993   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
   2994   PQ->setScheduleDAG(SD);
   2995   return SD;
   2996 }
   2997 
   2998 llvm::ScheduleDAGSDNodes *
   2999 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
   3000                                    CodeGenOpt::Level OptLevel) {
   3001   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
   3002   const TargetInstrInfo *TII = STI.getInstrInfo();
   3003   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
   3004 
   3005   SrcRegReductionPriorityQueue *PQ =
   3006     new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
   3007   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
   3008   PQ->setScheduleDAG(SD);
   3009   return SD;
   3010 }
   3011 
   3012 llvm::ScheduleDAGSDNodes *
   3013 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
   3014                                    CodeGenOpt::Level OptLevel) {
   3015   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
   3016   const TargetInstrInfo *TII = STI.getInstrInfo();
   3017   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
   3018   const TargetLowering *TLI = IS->TLI;
   3019 
   3020   HybridBURRPriorityQueue *PQ =
   3021     new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
   3022 
   3023   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
   3024   PQ->setScheduleDAG(SD);
   3025   return SD;
   3026 }
   3027 
   3028 llvm::ScheduleDAGSDNodes *
   3029 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
   3030                                 CodeGenOpt::Level OptLevel) {
   3031   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
   3032   const TargetInstrInfo *TII = STI.getInstrInfo();
   3033   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
   3034   const TargetLowering *TLI = IS->TLI;
   3035 
   3036   ILPBURRPriorityQueue *PQ =
   3037     new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
   3038   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
   3039   PQ->setScheduleDAG(SD);
   3040   return SD;
   3041 }
   3042