Home | History | Annotate | Download | only in Fuzzer
      1 //===- FuzzerDFSan.cpp - DFSan-based fuzzer mutator -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // DataFlowSanitizer (DFSan) is a tool for
     10 // generalised dynamic data flow (taint) analysis:
     11 // http://clang.llvm.org/docs/DataFlowSanitizer.html .
     12 //
     13 // This file implements a mutation algorithm based on taint
     14 // analysis feedback from DFSan.
     15 //
     16 // The approach has some similarity to "Taint-based Directed Whitebox Fuzzing"
     17 // by Vijay Ganesh & Tim Leek & Martin Rinard:
     18 // http://dspace.mit.edu/openaccess-disseminate/1721.1/59320,
     19 // but it uses a full blown LLVM IR taint analysis and separate instrumentation
     20 // to analyze all of the "attack points" at once.
     21 //
     22 // Workflow:
     23 //   * lib/Fuzzer/Fuzzer*.cpp is compiled w/o any instrumentation.
     24 //   * The code under test is compiled with DFSan *and* with special extra hooks
     25 //     that are inserted before dfsan. Currently supported hooks:
     26 //     - __sanitizer_cov_trace_cmp: inserted before every ICMP instruction,
     27 //       receives the type, size and arguments of ICMP.
     28 //   * Every call to HOOK(a,b) is replaced by DFSan with
     29 //     __dfsw_HOOK(a, b, label(a), label(b)) so that __dfsw_HOOK
     30 //     gets all the taint labels for the arguments.
     31 //   * At the Fuzzer startup we assign a unique DFSan label
     32 //     to every byte of the input string (Fuzzer::CurrentUnit) so that for any
     33 //     chunk of data we know which input bytes it has derived from.
     34 //   * The __dfsw_* functions (implemented in this file) record the
     35 //     parameters (i.e. the application data and the corresponding taint labels)
     36 //     in a global state.
     37 //   * Fuzzer::MutateWithDFSan() tries to use the data recorded by __dfsw_*
     38 //     hooks to guide the fuzzing towards new application states.
     39 //     For example if 4 bytes of data that derive from input bytes {4,5,6,7}
     40 //     are compared with a constant 12345 and the comparison always yields
     41 //     the same result, we try to insert 12345, 12344, 12346 into bytes
     42 //     {4,5,6,7} of the next fuzzed inputs.
     43 //
     44 // This code does not function when DFSan is not linked in.
     45 // Instead of using ifdefs and thus requiring a separate build of lib/Fuzzer
     46 // we redeclare the dfsan_* interface functions as weak and check if they
     47 // are nullptr before calling.
     48 // If this approach proves to be useful we may add attribute(weak) to the
     49 // dfsan declarations in dfsan_interface.h
     50 //
     51 // This module is in the "proof of concept" stage.
     52 // It is capable of solving only the simplest puzzles
     53 // like test/dfsan/DFSanSimpleCmpTest.cpp.
     54 //===----------------------------------------------------------------------===//
     55 
     56 /* Example of manual usage:
     57 (
     58   cd $LLVM/lib/Fuzzer/
     59   clang  -fPIC -c -g -O2 -std=c++11 Fuzzer*.cpp
     60   clang++ -O0 -std=c++11 -fsanitize-coverage=3  \
     61     -mllvm -sanitizer-coverage-experimental-trace-compares=1 \
     62     -fsanitize=dataflow -fsanitize-blacklist=./dfsan_fuzzer_abi.list  \
     63     test/dfsan/DFSanSimpleCmpTest.cpp Fuzzer*.o
     64   ./a.out
     65 )
     66 */
     67 
     68 #include "FuzzerInternal.h"
     69 #include <sanitizer/dfsan_interface.h>
     70 
     71 #include <cstring>
     72 #include <iostream>
     73 #include <unordered_map>
     74 
     75 extern "C" {
     76 __attribute__((weak))
     77 dfsan_label dfsan_create_label(const char *desc, void *userdata);
     78 __attribute__((weak))
     79 void dfsan_set_label(dfsan_label label, void *addr, size_t size);
     80 __attribute__((weak))
     81 void dfsan_add_label(dfsan_label label, void *addr, size_t size);
     82 __attribute__((weak))
     83 const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label);
     84 }  // extern "C"
     85 
     86 namespace {
     87 
     88 // These values are copied from include/llvm/IR/InstrTypes.h.
     89 // We do not include the LLVM headers here to remain independent.
     90 // If these values ever change, an assertion in ComputeCmp will fail.
     91 enum Predicate {
     92   ICMP_EQ = 32,  ///< equal
     93   ICMP_NE = 33,  ///< not equal
     94   ICMP_UGT = 34, ///< unsigned greater than
     95   ICMP_UGE = 35, ///< unsigned greater or equal
     96   ICMP_ULT = 36, ///< unsigned less than
     97   ICMP_ULE = 37, ///< unsigned less or equal
     98   ICMP_SGT = 38, ///< signed greater than
     99   ICMP_SGE = 39, ///< signed greater or equal
    100   ICMP_SLT = 40, ///< signed less than
    101   ICMP_SLE = 41, ///< signed less or equal
    102 };
    103 
    104 template <class U, class S>
    105 bool ComputeCmp(size_t CmpType, U Arg1, U Arg2) {
    106   switch(CmpType) {
    107     case ICMP_EQ : return Arg1 == Arg2;
    108     case ICMP_NE : return Arg1 != Arg2;
    109     case ICMP_UGT: return Arg1 > Arg2;
    110     case ICMP_UGE: return Arg1 >= Arg2;
    111     case ICMP_ULT: return Arg1 < Arg2;
    112     case ICMP_ULE: return Arg1 <= Arg2;
    113     case ICMP_SGT: return (S)Arg1 > (S)Arg2;
    114     case ICMP_SGE: return (S)Arg1 >= (S)Arg2;
    115     case ICMP_SLT: return (S)Arg1 < (S)Arg2;
    116     case ICMP_SLE: return (S)Arg1 <= (S)Arg2;
    117     default: assert(0 && "unsupported CmpType");
    118   }
    119   return false;
    120 }
    121 
    122 static bool ComputeCmp(size_t CmpSize, size_t CmpType, uint64_t Arg1,
    123                        uint64_t Arg2) {
    124   if (CmpSize == 8) return ComputeCmp<uint64_t, int64_t>(CmpType, Arg1, Arg2);
    125   if (CmpSize == 4) return ComputeCmp<uint32_t, int32_t>(CmpType, Arg1, Arg2);
    126   if (CmpSize == 2) return ComputeCmp<uint16_t, int16_t>(CmpType, Arg1, Arg2);
    127   if (CmpSize == 1) return ComputeCmp<uint8_t, int8_t>(CmpType, Arg1, Arg2);
    128   assert(0 && "unsupported type size");
    129   return true;
    130 }
    131 
    132 // As a simplification we use the range of input bytes instead of a set of input
    133 // bytes.
    134 struct LabelRange {
    135   uint16_t Beg, End;  // Range is [Beg, End), thus Beg==End is an empty range.
    136 
    137   LabelRange(uint16_t Beg = 0, uint16_t End = 0) : Beg(Beg), End(End) {}
    138 
    139   static LabelRange Join(LabelRange LR1, LabelRange LR2) {
    140     if (LR1.Beg == LR1.End) return LR2;
    141     if (LR2.Beg == LR2.End) return LR1;
    142     return {std::min(LR1.Beg, LR2.Beg), std::max(LR1.End, LR2.End)};
    143   }
    144   LabelRange &Join(LabelRange LR) {
    145     return *this = Join(*this, LR);
    146   }
    147   static LabelRange Singleton(const dfsan_label_info *LI) {
    148     uint16_t Idx = (uint16_t)(uintptr_t)LI->userdata;
    149     assert(Idx > 0);
    150     return {(uint16_t)(Idx - 1), Idx};
    151   }
    152 };
    153 
    154 std::ostream &operator<<(std::ostream &os, const LabelRange &LR) {
    155   return os << "[" << LR.Beg << "," << LR.End << ")";
    156 }
    157 
    158 class DFSanState {
    159  public:
    160    DFSanState(const fuzzer::Fuzzer::FuzzingOptions &Options)
    161        : Options(Options) {}
    162 
    163   struct CmpSiteInfo {
    164     size_t ResCounters[2] = {0, 0};
    165     size_t CmpSize = 0;
    166     LabelRange LR;
    167     std::unordered_map<uint64_t, size_t> CountedConstants;
    168   };
    169 
    170   LabelRange GetLabelRange(dfsan_label L);
    171   void DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
    172                         uint64_t Arg1, uint64_t Arg2, dfsan_label L1,
    173                         dfsan_label L2);
    174   bool Mutate(fuzzer::Unit *U);
    175 
    176  private:
    177   std::unordered_map<uintptr_t, CmpSiteInfo> PcToCmpSiteInfoMap;
    178   LabelRange LabelRanges[1 << (sizeof(dfsan_label) * 8)] = {};
    179   const fuzzer::Fuzzer::FuzzingOptions &Options;
    180 };
    181 
    182 LabelRange DFSanState::GetLabelRange(dfsan_label L) {
    183   LabelRange &LR = LabelRanges[L];
    184   if (LR.Beg < LR.End || L == 0)
    185     return LR;
    186   const dfsan_label_info *LI = dfsan_get_label_info(L);
    187   if (LI->l1 || LI->l2)
    188     return LR = LabelRange::Join(GetLabelRange(LI->l1), GetLabelRange(LI->l2));
    189   return LR = LabelRange::Singleton(LI);
    190 }
    191 
    192 void DFSanState::DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
    193                                   uint64_t Arg1, uint64_t Arg2, dfsan_label L1,
    194                                   dfsan_label L2) {
    195   if (L1 == 0 && L2 == 0)
    196     return;  // Not actionable.
    197   if (L1 != 0 && L2 != 0)
    198     return;  // Probably still actionable.
    199   bool Res = ComputeCmp(CmpSize, CmpType, Arg1, Arg2);
    200   CmpSiteInfo &CSI = PcToCmpSiteInfoMap[PC];
    201   CSI.CmpSize = CmpSize;
    202   CSI.LR.Join(GetLabelRange(L1)).Join(GetLabelRange(L2));
    203   if (!L1) CSI.CountedConstants[Arg1]++;
    204   if (!L2) CSI.CountedConstants[Arg2]++;
    205   size_t Counter = CSI.ResCounters[Res]++;
    206 
    207   if (Options.Verbosity >= 2  &&
    208       (Counter & (Counter - 1)) == 0 &&
    209       CSI.ResCounters[!Res] == 0)
    210     std::cerr << "DFSAN:"
    211               << " PC " << std::hex << PC << std::dec
    212               << " S " << CmpSize
    213               << " T " << CmpType
    214               << " A1 " << Arg1 << " A2 " << Arg2 << " R " << Res
    215               << " L" << L1 << GetLabelRange(L1)
    216               << " L" << L2 << GetLabelRange(L2)
    217               << " LR " << CSI.LR
    218               << "\n";
    219 }
    220 
    221 bool DFSanState::Mutate(fuzzer::Unit *U) {
    222   for (auto &PCToCmp : PcToCmpSiteInfoMap) {
    223     auto &CSI = PCToCmp.second;
    224     if (CSI.ResCounters[0] * CSI.ResCounters[1] != 0) continue;
    225     if (CSI.ResCounters[0] + CSI.ResCounters[1] < 1000) continue;
    226     if (CSI.CountedConstants.size() != 1) continue;
    227     uintptr_t C = CSI.CountedConstants.begin()->first;
    228     if (U->size() >= CSI.CmpSize) {
    229       size_t RangeSize = CSI.LR.End - CSI.LR.Beg;
    230       size_t Idx = CSI.LR.Beg + rand() % RangeSize;
    231       if (Idx + CSI.CmpSize > U->size()) continue;
    232       C += rand() % 5 - 2;
    233       memcpy(U->data() + Idx, &C, CSI.CmpSize);
    234       return true;
    235     }
    236   }
    237   return false;
    238 }
    239 
    240 static DFSanState *DFSan;
    241 
    242 }  // namespace
    243 
    244 namespace fuzzer {
    245 
    246 bool Fuzzer::MutateWithDFSan(Unit *U) {
    247   if (!&dfsan_create_label || !DFSan) return false;
    248   return DFSan->Mutate(U);
    249 }
    250 
    251 void Fuzzer::InitializeDFSan() {
    252   if (!&dfsan_create_label || !Options.UseDFSan) return;
    253   DFSan = new DFSanState(Options);
    254   CurrentUnit.resize(Options.MaxLen);
    255   for (size_t i = 0; i < static_cast<size_t>(Options.MaxLen); i++) {
    256     dfsan_label L = dfsan_create_label("input", (void*)(i + 1));
    257     // We assume that no one else has called dfsan_create_label before.
    258     assert(L == i + 1);
    259     dfsan_set_label(L, &CurrentUnit[i], 1);
    260   }
    261 }
    262 
    263 }  // namespace fuzzer
    264 
    265 extern "C" {
    266 void __dfsw___sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1,
    267                                       uint64_t Arg2, dfsan_label L0,
    268                                       dfsan_label L1, dfsan_label L2) {
    269   assert(L0 == 0);
    270   uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
    271   uint64_t CmpSize = (SizeAndType >> 32) / 8;
    272   uint64_t Type = (SizeAndType << 32) >> 32;
    273   DFSan->DFSanCmpCallback(PC, CmpSize, Type, Arg1, Arg2, L1, L2);
    274 }
    275 }  // extern "C"
    276