Home | History | Annotate | Download | only in Support
      1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a hash set that can be used to remove duplication of
     11 // nodes in a graph.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/ADT/FoldingSet.h"
     16 #include "llvm/ADT/Hashing.h"
     17 #include "llvm/Support/Allocator.h"
     18 #include "llvm/Support/ErrorHandling.h"
     19 #include "llvm/Support/Host.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include <cassert>
     22 #include <cstring>
     23 using namespace llvm;
     24 
     25 //===----------------------------------------------------------------------===//
     26 // FoldingSetNodeIDRef Implementation
     27 
     28 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
     29 /// used to lookup the node in the FoldingSetImpl.
     30 unsigned FoldingSetNodeIDRef::ComputeHash() const {
     31   return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
     32 }
     33 
     34 bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
     35   if (Size != RHS.Size) return false;
     36   return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
     37 }
     38 
     39 /// Used to compare the "ordering" of two nodes as defined by the
     40 /// profiled bits and their ordering defined by memcmp().
     41 bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
     42   if (Size != RHS.Size)
     43     return Size < RHS.Size;
     44   return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
     45 }
     46 
     47 //===----------------------------------------------------------------------===//
     48 // FoldingSetNodeID Implementation
     49 
     50 /// Add* - Add various data types to Bit data.
     51 ///
     52 void FoldingSetNodeID::AddPointer(const void *Ptr) {
     53   // Note: this adds pointers to the hash using sizes and endianness that
     54   // depend on the host. It doesn't matter, however, because hashing on
     55   // pointer values is inherently unstable. Nothing should depend on the
     56   // ordering of nodes in the folding set.
     57   Bits.append(reinterpret_cast<unsigned *>(&Ptr),
     58               reinterpret_cast<unsigned *>(&Ptr+1));
     59 }
     60 void FoldingSetNodeID::AddInteger(signed I) {
     61   Bits.push_back(I);
     62 }
     63 void FoldingSetNodeID::AddInteger(unsigned I) {
     64   Bits.push_back(I);
     65 }
     66 void FoldingSetNodeID::AddInteger(long I) {
     67   AddInteger((unsigned long)I);
     68 }
     69 void FoldingSetNodeID::AddInteger(unsigned long I) {
     70   if (sizeof(long) == sizeof(int))
     71     AddInteger(unsigned(I));
     72   else if (sizeof(long) == sizeof(long long)) {
     73     AddInteger((unsigned long long)I);
     74   } else {
     75     llvm_unreachable("unexpected sizeof(long)");
     76   }
     77 }
     78 void FoldingSetNodeID::AddInteger(long long I) {
     79   AddInteger((unsigned long long)I);
     80 }
     81 void FoldingSetNodeID::AddInteger(unsigned long long I) {
     82   AddInteger(unsigned(I));
     83   if ((uint64_t)(unsigned)I != I)
     84     Bits.push_back(unsigned(I >> 32));
     85 }
     86 
     87 void FoldingSetNodeID::AddString(StringRef String) {
     88   unsigned Size =  String.size();
     89   Bits.push_back(Size);
     90   if (!Size) return;
     91 
     92   unsigned Units = Size / 4;
     93   unsigned Pos = 0;
     94   const unsigned *Base = (const unsigned*) String.data();
     95 
     96   // If the string is aligned do a bulk transfer.
     97   if (!((intptr_t)Base & 3)) {
     98     Bits.append(Base, Base + Units);
     99     Pos = (Units + 1) * 4;
    100   } else {
    101     // Otherwise do it the hard way.
    102     // To be compatible with above bulk transfer, we need to take endianness
    103     // into account.
    104     static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
    105                   "Unexpected host endianness");
    106     if (sys::IsBigEndianHost) {
    107       for (Pos += 4; Pos <= Size; Pos += 4) {
    108         unsigned V = ((unsigned char)String[Pos - 4] << 24) |
    109                      ((unsigned char)String[Pos - 3] << 16) |
    110                      ((unsigned char)String[Pos - 2] << 8) |
    111                       (unsigned char)String[Pos - 1];
    112         Bits.push_back(V);
    113       }
    114     } else {  // Little-endian host
    115       for (Pos += 4; Pos <= Size; Pos += 4) {
    116         unsigned V = ((unsigned char)String[Pos - 1] << 24) |
    117                      ((unsigned char)String[Pos - 2] << 16) |
    118                      ((unsigned char)String[Pos - 3] << 8) |
    119                       (unsigned char)String[Pos - 4];
    120         Bits.push_back(V);
    121       }
    122     }
    123   }
    124 
    125   // With the leftover bits.
    126   unsigned V = 0;
    127   // Pos will have overshot size by 4 - #bytes left over.
    128   // No need to take endianness into account here - this is always executed.
    129   switch (Pos - Size) {
    130   case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
    131   case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
    132   case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
    133   default: return; // Nothing left.
    134   }
    135 
    136   Bits.push_back(V);
    137 }
    138 
    139 // AddNodeID - Adds the Bit data of another ID to *this.
    140 void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
    141   Bits.append(ID.Bits.begin(), ID.Bits.end());
    142 }
    143 
    144 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
    145 /// lookup the node in the FoldingSetImpl.
    146 unsigned FoldingSetNodeID::ComputeHash() const {
    147   return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
    148 }
    149 
    150 /// operator== - Used to compare two nodes to each other.
    151 ///
    152 bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
    153   return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
    154 }
    155 
    156 /// operator== - Used to compare two nodes to each other.
    157 ///
    158 bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
    159   return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
    160 }
    161 
    162 /// Used to compare the "ordering" of two nodes as defined by the
    163 /// profiled bits and their ordering defined by memcmp().
    164 bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
    165   return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
    166 }
    167 
    168 bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
    169   return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
    170 }
    171 
    172 /// Intern - Copy this node's data to a memory region allocated from the
    173 /// given allocator and return a FoldingSetNodeIDRef describing the
    174 /// interned data.
    175 FoldingSetNodeIDRef
    176 FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
    177   unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
    178   std::uninitialized_copy(Bits.begin(), Bits.end(), New);
    179   return FoldingSetNodeIDRef(New, Bits.size());
    180 }
    181 
    182 //===----------------------------------------------------------------------===//
    183 /// Helper functions for FoldingSetImpl.
    184 
    185 /// GetNextPtr - In order to save space, each bucket is a
    186 /// singly-linked-list. In order to make deletion more efficient, we make
    187 /// the list circular, so we can delete a node without computing its hash.
    188 /// The problem with this is that the start of the hash buckets are not
    189 /// Nodes.  If NextInBucketPtr is a bucket pointer, this method returns null:
    190 /// use GetBucketPtr when this happens.
    191 static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) {
    192   // The low bit is set if this is the pointer back to the bucket.
    193   if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
    194     return nullptr;
    195 
    196   return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
    197 }
    198 
    199 
    200 /// testing.
    201 static void **GetBucketPtr(void *NextInBucketPtr) {
    202   intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
    203   assert((Ptr & 1) && "Not a bucket pointer");
    204   return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
    205 }
    206 
    207 /// GetBucketFor - Hash the specified node ID and return the hash bucket for
    208 /// the specified ID.
    209 static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
    210   // NumBuckets is always a power of 2.
    211   unsigned BucketNum = Hash & (NumBuckets-1);
    212   return Buckets + BucketNum;
    213 }
    214 
    215 /// AllocateBuckets - Allocated initialized bucket memory.
    216 static void **AllocateBuckets(unsigned NumBuckets) {
    217   void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*)));
    218   // Set the very last bucket to be a non-null "pointer".
    219   Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
    220   return Buckets;
    221 }
    222 
    223 //===----------------------------------------------------------------------===//
    224 // FoldingSetImpl Implementation
    225 
    226 void FoldingSetImpl::anchor() {}
    227 
    228 FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) {
    229   assert(5 < Log2InitSize && Log2InitSize < 32 &&
    230          "Initial hash table size out of range");
    231   NumBuckets = 1 << Log2InitSize;
    232   Buckets = AllocateBuckets(NumBuckets);
    233   NumNodes = 0;
    234 }
    235 FoldingSetImpl::~FoldingSetImpl() {
    236   free(Buckets);
    237 }
    238 void FoldingSetImpl::clear() {
    239   // Set all but the last bucket to null pointers.
    240   memset(Buckets, 0, NumBuckets*sizeof(void*));
    241 
    242   // Set the very last bucket to be a non-null "pointer".
    243   Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
    244 
    245   // Reset the node count to zero.
    246   NumNodes = 0;
    247 }
    248 
    249 /// GrowHashTable - Double the size of the hash table and rehash everything.
    250 ///
    251 void FoldingSetImpl::GrowHashTable() {
    252   void **OldBuckets = Buckets;
    253   unsigned OldNumBuckets = NumBuckets;
    254   NumBuckets <<= 1;
    255 
    256   // Clear out new buckets.
    257   Buckets = AllocateBuckets(NumBuckets);
    258   NumNodes = 0;
    259 
    260   // Walk the old buckets, rehashing nodes into their new place.
    261   FoldingSetNodeID TempID;
    262   for (unsigned i = 0; i != OldNumBuckets; ++i) {
    263     void *Probe = OldBuckets[i];
    264     if (!Probe) continue;
    265     while (Node *NodeInBucket = GetNextPtr(Probe)) {
    266       // Figure out the next link, remove NodeInBucket from the old link.
    267       Probe = NodeInBucket->getNextInBucket();
    268       NodeInBucket->SetNextInBucket(nullptr);
    269 
    270       // Insert the node into the new bucket, after recomputing the hash.
    271       InsertNode(NodeInBucket,
    272                  GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
    273                               Buckets, NumBuckets));
    274       TempID.clear();
    275     }
    276   }
    277 
    278   free(OldBuckets);
    279 }
    280 
    281 /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    282 /// return it.  If not, return the insertion token that will make insertion
    283 /// faster.
    284 FoldingSetImpl::Node
    285 *FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
    286                                      void *&InsertPos) {
    287   unsigned IDHash = ID.ComputeHash();
    288   void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
    289   void *Probe = *Bucket;
    290 
    291   InsertPos = nullptr;
    292 
    293   FoldingSetNodeID TempID;
    294   while (Node *NodeInBucket = GetNextPtr(Probe)) {
    295     if (NodeEquals(NodeInBucket, ID, IDHash, TempID))
    296       return NodeInBucket;
    297     TempID.clear();
    298 
    299     Probe = NodeInBucket->getNextInBucket();
    300   }
    301 
    302   // Didn't find the node, return null with the bucket as the InsertPos.
    303   InsertPos = Bucket;
    304   return nullptr;
    305 }
    306 
    307 /// InsertNode - Insert the specified node into the folding set, knowing that it
    308 /// is not already in the map.  InsertPos must be obtained from
    309 /// FindNodeOrInsertPos.
    310 void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
    311   assert(!N->getNextInBucket());
    312   // Do we need to grow the hashtable?
    313   if (NumNodes+1 > NumBuckets*2) {
    314     GrowHashTable();
    315     FoldingSetNodeID TempID;
    316     InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
    317   }
    318 
    319   ++NumNodes;
    320 
    321   /// The insert position is actually a bucket pointer.
    322   void **Bucket = static_cast<void**>(InsertPos);
    323 
    324   void *Next = *Bucket;
    325 
    326   // If this is the first insertion into this bucket, its next pointer will be
    327   // null.  Pretend as if it pointed to itself, setting the low bit to indicate
    328   // that it is a pointer to the bucket.
    329   if (!Next)
    330     Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
    331 
    332   // Set the node's next pointer, and make the bucket point to the node.
    333   N->SetNextInBucket(Next);
    334   *Bucket = N;
    335 }
    336 
    337 /// RemoveNode - Remove a node from the folding set, returning true if one was
    338 /// removed or false if the node was not in the folding set.
    339 bool FoldingSetImpl::RemoveNode(Node *N) {
    340   // Because each bucket is a circular list, we don't need to compute N's hash
    341   // to remove it.
    342   void *Ptr = N->getNextInBucket();
    343   if (!Ptr) return false;  // Not in folding set.
    344 
    345   --NumNodes;
    346   N->SetNextInBucket(nullptr);
    347 
    348   // Remember what N originally pointed to, either a bucket or another node.
    349   void *NodeNextPtr = Ptr;
    350 
    351   // Chase around the list until we find the node (or bucket) which points to N.
    352   while (true) {
    353     if (Node *NodeInBucket = GetNextPtr(Ptr)) {
    354       // Advance pointer.
    355       Ptr = NodeInBucket->getNextInBucket();
    356 
    357       // We found a node that points to N, change it to point to N's next node,
    358       // removing N from the list.
    359       if (Ptr == N) {
    360         NodeInBucket->SetNextInBucket(NodeNextPtr);
    361         return true;
    362       }
    363     } else {
    364       void **Bucket = GetBucketPtr(Ptr);
    365       Ptr = *Bucket;
    366 
    367       // If we found that the bucket points to N, update the bucket to point to
    368       // whatever is next.
    369       if (Ptr == N) {
    370         *Bucket = NodeNextPtr;
    371         return true;
    372       }
    373     }
    374   }
    375 }
    376 
    377 /// GetOrInsertNode - If there is an existing simple Node exactly
    378 /// equal to the specified node, return it.  Otherwise, insert 'N' and it
    379 /// instead.
    380 FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
    381   FoldingSetNodeID ID;
    382   GetNodeProfile(N, ID);
    383   void *IP;
    384   if (Node *E = FindNodeOrInsertPos(ID, IP))
    385     return E;
    386   InsertNode(N, IP);
    387   return N;
    388 }
    389 
    390 //===----------------------------------------------------------------------===//
    391 // FoldingSetIteratorImpl Implementation
    392 
    393 FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
    394   // Skip to the first non-null non-self-cycle bucket.
    395   while (*Bucket != reinterpret_cast<void*>(-1) &&
    396          (!*Bucket || !GetNextPtr(*Bucket)))
    397     ++Bucket;
    398 
    399   NodePtr = static_cast<FoldingSetNode*>(*Bucket);
    400 }
    401 
    402 void FoldingSetIteratorImpl::advance() {
    403   // If there is another link within this bucket, go to it.
    404   void *Probe = NodePtr->getNextInBucket();
    405 
    406   if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
    407     NodePtr = NextNodeInBucket;
    408   else {
    409     // Otherwise, this is the last link in this bucket.
    410     void **Bucket = GetBucketPtr(Probe);
    411 
    412     // Skip to the next non-null non-self-cycle bucket.
    413     do {
    414       ++Bucket;
    415     } while (*Bucket != reinterpret_cast<void*>(-1) &&
    416              (!*Bucket || !GetNextPtr(*Bucket)));
    417 
    418     NodePtr = static_cast<FoldingSetNode*>(*Bucket);
    419   }
    420 }
    421 
    422 //===----------------------------------------------------------------------===//
    423 // FoldingSetBucketIteratorImpl Implementation
    424 
    425 FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
    426   Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;
    427 }
    428