Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
      2 //                     The LLVM Compiler Infrastructure
      3 //
      4 // This file is distributed under the University of Illinois Open Source
      5 // License. See LICENSE.TXT for details.
      6 //
      7 //===----------------------------------------------------------------------===//
      8 
      9 #include "Hexagon.h"
     10 #include "HexagonMachineFunctionInfo.h"
     11 #include "HexagonSubtarget.h"
     12 #include "HexagonTargetMachine.h"
     13 #include "llvm/CodeGen/MachineDominators.h"
     14 #include "llvm/CodeGen/MachineFunctionPass.h"
     15 #include "llvm/CodeGen/MachineInstrBuilder.h"
     16 #include "llvm/CodeGen/MachineLoopInfo.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/MathExtras.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/Target/TargetMachine.h"
     24 #include "llvm/Target/TargetRegisterInfo.h"
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "hexagon_cfg"
     29 
     30 namespace llvm {
     31   void initializeHexagonCFGOptimizerPass(PassRegistry&);
     32 }
     33 
     34 
     35 namespace {
     36 
     37 class HexagonCFGOptimizer : public MachineFunctionPass {
     38 
     39 private:
     40   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
     41 
     42  public:
     43   static char ID;
     44   HexagonCFGOptimizer() : MachineFunctionPass(ID) {
     45     initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
     46   }
     47 
     48   const char *getPassName() const override {
     49     return "Hexagon CFG Optimizer";
     50   }
     51   bool runOnMachineFunction(MachineFunction &Fn) override;
     52 };
     53 
     54 
     55 char HexagonCFGOptimizer::ID = 0;
     56 
     57 static bool IsConditionalBranch(int Opc) {
     58   return (Opc == Hexagon::J2_jumpt) || (Opc == Hexagon::J2_jumpf)
     59     || (Opc == Hexagon::J2_jumptnewpt) || (Opc == Hexagon::J2_jumpfnewpt);
     60 }
     61 
     62 
     63 static bool IsUnconditionalJump(int Opc) {
     64   return (Opc == Hexagon::J2_jump);
     65 }
     66 
     67 
     68 void
     69 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
     70                                                MachineBasicBlock* NewTarget) {
     71   const TargetInstrInfo *TII =
     72       MI->getParent()->getParent()->getSubtarget().getInstrInfo();
     73   int NewOpcode = 0;
     74   switch(MI->getOpcode()) {
     75   case Hexagon::J2_jumpt:
     76     NewOpcode = Hexagon::J2_jumpf;
     77     break;
     78 
     79   case Hexagon::J2_jumpf:
     80     NewOpcode = Hexagon::J2_jumpt;
     81     break;
     82 
     83   case Hexagon::J2_jumptnewpt:
     84     NewOpcode = Hexagon::J2_jumpfnewpt;
     85     break;
     86 
     87   case Hexagon::J2_jumpfnewpt:
     88     NewOpcode = Hexagon::J2_jumptnewpt;
     89     break;
     90 
     91   default:
     92     llvm_unreachable("Cannot handle this case");
     93   }
     94 
     95   MI->setDesc(TII->get(NewOpcode));
     96   MI->getOperand(1).setMBB(NewTarget);
     97 }
     98 
     99 
    100 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
    101   // Loop over all of the basic blocks.
    102   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
    103        MBBb != MBBe; ++MBBb) {
    104     MachineBasicBlock* MBB = MBBb;
    105 
    106     // Traverse the basic block.
    107     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
    108     if (MII != MBB->end()) {
    109       MachineInstr *MI = MII;
    110       int Opc = MI->getOpcode();
    111       if (IsConditionalBranch(Opc)) {
    112 
    113         //
    114         // (Case 1) Transform the code if the following condition occurs:
    115         //   BB1: if (p0) jump BB3
    116         //   ...falls-through to BB2 ...
    117         //   BB2: jump BB4
    118         //   ...next block in layout is BB3...
    119         //   BB3: ...
    120         //
    121         //  Transform this to:
    122         //  BB1: if (!p0) jump BB4
    123         //  Remove BB2
    124         //  BB3: ...
    125         //
    126         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
    127         //   BB1: if (p0) jump BB3
    128         //   ...falls-through to BB2 ...
    129         //   BB2: jump BB4
    130         //   ...other basic blocks ...
    131         //   BB4:
    132         //   ...not a fall-thru
    133         //   BB3: ...
    134         //     jump BB4
    135         //
    136         // Transform this to:
    137         //   BB1: if (!p0) jump BB4
    138         //   Remove BB2
    139         //   BB3: ...
    140         //   BB4: ...
    141         //
    142         unsigned NumSuccs = MBB->succ_size();
    143         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
    144         MachineBasicBlock* FirstSucc = *SI;
    145         MachineBasicBlock* SecondSucc = *(++SI);
    146         MachineBasicBlock* LayoutSucc = nullptr;
    147         MachineBasicBlock* JumpAroundTarget = nullptr;
    148 
    149         if (MBB->isLayoutSuccessor(FirstSucc)) {
    150           LayoutSucc = FirstSucc;
    151           JumpAroundTarget = SecondSucc;
    152         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
    153           LayoutSucc = SecondSucc;
    154           JumpAroundTarget = FirstSucc;
    155         } else {
    156           // Odd case...cannot handle.
    157         }
    158 
    159         // The target of the unconditional branch must be JumpAroundTarget.
    160         // TODO: If not, we should not invert the unconditional branch.
    161         MachineBasicBlock* CondBranchTarget = nullptr;
    162         if ((MI->getOpcode() == Hexagon::J2_jumpt) ||
    163             (MI->getOpcode() == Hexagon::J2_jumpf)) {
    164           CondBranchTarget = MI->getOperand(1).getMBB();
    165         }
    166 
    167         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
    168           continue;
    169         }
    170 
    171         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
    172 
    173           // Ensure that BB2 has one instruction -- an unconditional jump.
    174           if ((LayoutSucc->size() == 1) &&
    175               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
    176             MachineBasicBlock* UncondTarget =
    177               LayoutSucc->front().getOperand(0).getMBB();
    178             // Check if the layout successor of BB2 is BB3.
    179             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
    180             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
    181               JumpAroundTarget->size() >= 1 &&
    182               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
    183               JumpAroundTarget->pred_size() == 1 &&
    184               JumpAroundTarget->succ_size() == 1;
    185 
    186             if (case1 || case2) {
    187               InvertAndChangeJumpTarget(MI, UncondTarget);
    188               MBB->removeSuccessor(JumpAroundTarget);
    189               MBB->addSuccessor(UncondTarget);
    190 
    191               // Remove the unconditional branch in LayoutSucc.
    192               LayoutSucc->erase(LayoutSucc->begin());
    193               LayoutSucc->removeSuccessor(UncondTarget);
    194               LayoutSucc->addSuccessor(JumpAroundTarget);
    195 
    196               // This code performs the conversion for case 2, which moves
    197               // the block to the fall-thru case (BB3 in the code above).
    198               if (case2 && !case1) {
    199                 JumpAroundTarget->moveAfter(LayoutSucc);
    200                 // only move a block if it doesn't have a fall-thru. otherwise
    201                 // the CFG will be incorrect.
    202                 if (!UncondTarget->canFallThrough()) {
    203                   UncondTarget->moveAfter(JumpAroundTarget);
    204                 }
    205               }
    206 
    207               //
    208               // Correct live-in information. Is used by post-RA scheduler
    209               // The live-in to LayoutSucc is now all values live-in to
    210               // JumpAroundTarget.
    211               //
    212               std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
    213                                                LayoutSucc->livein_end());
    214               std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
    215                                               JumpAroundTarget->livein_end());
    216               for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
    217                 LayoutSucc->removeLiveIn(OrigLiveIn[i]);
    218               }
    219               for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
    220                 LayoutSucc->addLiveIn(NewLiveIn[i]);
    221               }
    222             }
    223           }
    224         }
    225       }
    226     }
    227   }
    228   return true;
    229 }
    230 }
    231 
    232 
    233 //===----------------------------------------------------------------------===//
    234 //                         Public Constructor Functions
    235 //===----------------------------------------------------------------------===//
    236 
    237 static void initializePassOnce(PassRegistry &Registry) {
    238   PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
    239                               &HexagonCFGOptimizer::ID, nullptr, false, false);
    240   Registry.registerPass(*PI, true);
    241 }
    242 
    243 void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
    244   CALL_ONCE_INITIALIZATION(initializePassOnce)
    245 }
    246 
    247 FunctionPass *llvm::createHexagonCFGOptimizer() {
    248   return new HexagonCFGOptimizer();
    249 }
    250