Home | History | Annotate | Download | only in Hexagon
      1 //===- HexagonInstrInfoVector.td - Hexagon Vector Patterns -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Hexagon Vector instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 def V2I1:  PatLeaf<(v2i1  PredRegs:$R)>;
     15 def V4I1:  PatLeaf<(v4i1  PredRegs:$R)>;
     16 def V8I1:  PatLeaf<(v8i1  PredRegs:$R)>;
     17 def V4I8:  PatLeaf<(v4i8  IntRegs:$R)>;
     18 def V2I16: PatLeaf<(v2i16 IntRegs:$R)>;
     19 def V8I8:  PatLeaf<(v8i8  DoubleRegs:$R)>;
     20 def V4I16: PatLeaf<(v4i16 DoubleRegs:$R)>;
     21 def V2I32: PatLeaf<(v2i32 DoubleRegs:$R)>;
     22 
     23 
     24 multiclass bitconvert_32<ValueType a, ValueType b> {
     25   def : Pat <(b (bitconvert (a IntRegs:$src))),
     26              (b IntRegs:$src)>;
     27   def : Pat <(a (bitconvert (b IntRegs:$src))),
     28              (a IntRegs:$src)>;
     29 }
     30 
     31 multiclass bitconvert_64<ValueType a, ValueType b> {
     32   def : Pat <(b (bitconvert (a DoubleRegs:$src))),
     33              (b DoubleRegs:$src)>;
     34   def : Pat <(a (bitconvert (b DoubleRegs:$src))),
     35              (a DoubleRegs:$src)>;
     36 }
     37 
     38 // Bit convert vector types.
     39 defm : bitconvert_32<v4i8, i32>;
     40 defm : bitconvert_32<v2i16, i32>;
     41 defm : bitconvert_32<v2i16, v4i8>;
     42 
     43 defm : bitconvert_64<v8i8, i64>;
     44 defm : bitconvert_64<v4i16, i64>;
     45 defm : bitconvert_64<v2i32, i64>;
     46 defm : bitconvert_64<v8i8, v4i16>;
     47 defm : bitconvert_64<v8i8, v2i32>;
     48 defm : bitconvert_64<v4i16, v2i32>;
     49 
     50 
     51 // Vector shift support. Vector shifting in Hexagon is rather different
     52 // from internal representation of LLVM.
     53 // LLVM assumes all shifts (in vector case) will have the form
     54 // <VT> = SHL/SRA/SRL <VT> by <VT>
     55 // while Hexagon has the following format:
     56 // <VT> = SHL/SRA/SRL <VT> by <IT/i32>
     57 // As a result, special care is needed to guarantee correctness and
     58 // performance.
     59 class vshift_v4i16<SDNode Op, string Str, bits<3>MajOp, bits<3>MinOp>
     60   : S_2OpInstImm<Str, MajOp, MinOp, u4Imm,
     61       [(set (v4i16 DoubleRegs:$dst),
     62             (Op (v4i16 DoubleRegs:$src1), u4ImmPred:$src2))]> {
     63   bits<4> src2;
     64   let Inst{11-8} = src2;
     65 }
     66 
     67 class vshift_v2i32<SDNode Op, string Str, bits<3>MajOp, bits<3>MinOp>
     68   : S_2OpInstImm<Str, MajOp, MinOp, u5Imm,
     69       [(set (v2i32 DoubleRegs:$dst),
     70             (Op (v2i32 DoubleRegs:$src1), u5ImmPred:$src2))]> {
     71   bits<5> src2;
     72   let Inst{12-8} = src2;
     73 }
     74 
     75 def : Pat<(v2i16 (add (v2i16 IntRegs:$src1), (v2i16 IntRegs:$src2))),
     76           (A2_svaddh IntRegs:$src1, IntRegs:$src2)>;
     77 
     78 def : Pat<(v2i16 (sub (v2i16 IntRegs:$src1), (v2i16 IntRegs:$src2))),
     79           (A2_svsubh IntRegs:$src1, IntRegs:$src2)>;
     80 
     81 def S2_asr_i_vw : vshift_v2i32<sra, "vasrw", 0b010, 0b000>;
     82 def S2_lsr_i_vw : vshift_v2i32<srl, "vlsrw", 0b010, 0b001>;
     83 def S2_asl_i_vw : vshift_v2i32<shl, "vaslw", 0b010, 0b010>;
     84 
     85 def S2_asr_i_vh : vshift_v4i16<sra, "vasrh", 0b100, 0b000>;
     86 def S2_lsr_i_vh : vshift_v4i16<srl, "vlsrh", 0b100, 0b001>;
     87 def S2_asl_i_vh : vshift_v4i16<shl, "vaslh", 0b100, 0b010>;
     88 
     89 
     90 def HexagonVSPLATB: SDNode<"HexagonISD::VSPLATB", SDTUnaryOp>;
     91 def HexagonVSPLATH: SDNode<"HexagonISD::VSPLATH", SDTUnaryOp>;
     92 
     93 // Replicate the low 8-bits from 32-bits input register into each of the
     94 // four bytes of 32-bits destination register.
     95 def: Pat<(v4i8  (HexagonVSPLATB I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
     96 
     97 // Replicate the low 16-bits from 32-bits input register into each of the
     98 // four halfwords of 64-bits destination register.
     99 def: Pat<(v4i16 (HexagonVSPLATH I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
    100 
    101 
    102 class VArith_pat <InstHexagon MI, SDNode Op, PatFrag Type>
    103   : Pat <(Op Type:$Rss, Type:$Rtt),
    104          (MI Type:$Rss, Type:$Rtt)>;
    105 
    106 def: VArith_pat <A2_vaddub, add, V8I8>;
    107 def: VArith_pat <A2_vaddh,  add, V4I16>;
    108 def: VArith_pat <A2_vaddw,  add, V2I32>;
    109 def: VArith_pat <A2_vsubub, sub, V8I8>;
    110 def: VArith_pat <A2_vsubh,  sub, V4I16>;
    111 def: VArith_pat <A2_vsubw,  sub, V2I32>;
    112 
    113 def: VArith_pat <A2_and,    and, V2I16>;
    114 def: VArith_pat <A2_xor,    xor, V2I16>;
    115 def: VArith_pat <A2_or,     or,  V2I16>;
    116 
    117 def: VArith_pat <A2_andp,   and, V8I8>;
    118 def: VArith_pat <A2_andp,   and, V4I16>;
    119 def: VArith_pat <A2_andp,   and, V2I32>;
    120 def: VArith_pat <A2_orp,    or,  V8I8>;
    121 def: VArith_pat <A2_orp,    or,  V4I16>;
    122 def: VArith_pat <A2_orp,    or,  V2I32>;
    123 def: VArith_pat <A2_xorp,   xor, V8I8>;
    124 def: VArith_pat <A2_xorp,   xor, V4I16>;
    125 def: VArith_pat <A2_xorp,   xor, V2I32>;
    126 
    127 def: Pat<(v2i32 (sra V2I32:$b, (i64 (HexagonCOMBINE (i32 u5ImmPred:$c),
    128                                                     (i32 u5ImmPred:$c))))),
    129          (S2_asr_i_vw V2I32:$b, imm:$c)>;
    130 def: Pat<(v2i32 (srl V2I32:$b, (i64 (HexagonCOMBINE (i32 u5ImmPred:$c),
    131                                                     (i32 u5ImmPred:$c))))),
    132          (S2_lsr_i_vw V2I32:$b, imm:$c)>;
    133 def: Pat<(v2i32 (shl V2I32:$b, (i64 (HexagonCOMBINE (i32 u5ImmPred:$c),
    134                                                     (i32 u5ImmPred:$c))))),
    135          (S2_asl_i_vw V2I32:$b, imm:$c)>;
    136 
    137 def: Pat<(v4i16 (sra V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4ImmPred:$c)))))),
    138          (S2_asr_i_vh V4I16:$b, imm:$c)>;
    139 def: Pat<(v4i16 (srl V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4ImmPred:$c)))))),
    140          (S2_lsr_i_vh V4I16:$b, imm:$c)>;
    141 def: Pat<(v4i16 (shl V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4ImmPred:$c)))))),
    142          (S2_asl_i_vh V4I16:$b, imm:$c)>;
    143 
    144 
    145 def SDTHexagon_v2i32_v2i32_i32 : SDTypeProfile<1, 2,
    146   [SDTCisSameAs<0, 1>, SDTCisVT<0, v2i32>, SDTCisInt<2>]>;
    147 def SDTHexagon_v4i16_v4i16_i32 : SDTypeProfile<1, 2,
    148   [SDTCisSameAs<0, 1>, SDTCisVT<0, v4i16>, SDTCisInt<2>]>;
    149 
    150 def HexagonVSRAW: SDNode<"HexagonISD::VSRAW", SDTHexagon_v2i32_v2i32_i32>;
    151 def HexagonVSRAH: SDNode<"HexagonISD::VSRAH", SDTHexagon_v4i16_v4i16_i32>;
    152 def HexagonVSRLW: SDNode<"HexagonISD::VSRLW", SDTHexagon_v2i32_v2i32_i32>;
    153 def HexagonVSRLH: SDNode<"HexagonISD::VSRLH", SDTHexagon_v4i16_v4i16_i32>;
    154 def HexagonVSHLW: SDNode<"HexagonISD::VSHLW", SDTHexagon_v2i32_v2i32_i32>;
    155 def HexagonVSHLH: SDNode<"HexagonISD::VSHLH", SDTHexagon_v4i16_v4i16_i32>;
    156 
    157 def: Pat<(v2i32 (HexagonVSRAW V2I32:$Rs, u5ImmPred:$u5)),
    158          (S2_asr_i_vw V2I32:$Rs, imm:$u5)>;
    159 def: Pat<(v4i16 (HexagonVSRAH V4I16:$Rs, u4ImmPred:$u4)),
    160          (S2_asr_i_vh V4I16:$Rs, imm:$u4)>;
    161 def: Pat<(v2i32 (HexagonVSRLW V2I32:$Rs, u5ImmPred:$u5)),
    162          (S2_lsr_i_vw V2I32:$Rs, imm:$u5)>;
    163 def: Pat<(v4i16 (HexagonVSRLH V4I16:$Rs, u4ImmPred:$u4)),
    164          (S2_lsr_i_vh V4I16:$Rs, imm:$u4)>;
    165 def: Pat<(v2i32 (HexagonVSHLW V2I32:$Rs, u5ImmPred:$u5)),
    166          (S2_asl_i_vw V2I32:$Rs, imm:$u5)>;
    167 def: Pat<(v4i16 (HexagonVSHLH V4I16:$Rs, u4ImmPred:$u4)),
    168          (S2_asl_i_vh V4I16:$Rs, imm:$u4)>;
    169 
    170 // Vector shift words by register
    171 def S2_asr_r_vw : T_S3op_shiftVect < "vasrw", 0b00, 0b00>;
    172 def S2_lsr_r_vw : T_S3op_shiftVect < "vlsrw", 0b00, 0b01>;
    173 def S2_asl_r_vw : T_S3op_shiftVect < "vaslw", 0b00, 0b10>;
    174 def S2_lsl_r_vw : T_S3op_shiftVect < "vlslw", 0b00, 0b11>;
    175 
    176 // Vector shift halfwords by register
    177 def S2_asr_r_vh : T_S3op_shiftVect < "vasrh", 0b01, 0b00>;
    178 def S2_lsr_r_vh : T_S3op_shiftVect < "vlsrh", 0b01, 0b01>;
    179 def S2_asl_r_vh : T_S3op_shiftVect < "vaslh", 0b01, 0b10>;
    180 def S2_lsl_r_vh : T_S3op_shiftVect < "vlslh", 0b01, 0b11>;
    181 
    182 class vshift_rr_pat<InstHexagon MI, SDNode Op, PatFrag Value>
    183   : Pat <(Op Value:$Rs, I32:$Rt),
    184          (MI Value:$Rs, I32:$Rt)>;
    185 
    186 def: vshift_rr_pat <S2_asr_r_vw, HexagonVSRAW, V2I32>;
    187 def: vshift_rr_pat <S2_asr_r_vh, HexagonVSRAH, V4I16>;
    188 def: vshift_rr_pat <S2_lsr_r_vw, HexagonVSRLW, V2I32>;
    189 def: vshift_rr_pat <S2_lsr_r_vh, HexagonVSRLH, V4I16>;
    190 def: vshift_rr_pat <S2_asl_r_vw, HexagonVSHLW, V2I32>;
    191 def: vshift_rr_pat <S2_asl_r_vh, HexagonVSHLH, V4I16>;
    192 
    193 
    194 def SDTHexagonVecCompare_v8i8 : SDTypeProfile<1, 2,
    195   [SDTCisSameAs<1, 2>, SDTCisVT<0, i1>, SDTCisVT<1, v8i8>]>;
    196 def SDTHexagonVecCompare_v4i16 : SDTypeProfile<1, 2,
    197   [SDTCisSameAs<1, 2>, SDTCisVT<0, i1>, SDTCisVT<1, v4i16>]>;
    198 def SDTHexagonVecCompare_v2i32 : SDTypeProfile<1, 2,
    199   [SDTCisSameAs<1, 2>, SDTCisVT<0, i1>, SDTCisVT<1, v2i32>]>;
    200 
    201 def HexagonVCMPBEQ:  SDNode<"HexagonISD::VCMPBEQ",  SDTHexagonVecCompare_v8i8>;
    202 def HexagonVCMPBGT:  SDNode<"HexagonISD::VCMPBGT",  SDTHexagonVecCompare_v8i8>;
    203 def HexagonVCMPBGTU: SDNode<"HexagonISD::VCMPBGTU", SDTHexagonVecCompare_v8i8>;
    204 def HexagonVCMPHEQ:  SDNode<"HexagonISD::VCMPHEQ",  SDTHexagonVecCompare_v4i16>;
    205 def HexagonVCMPHGT:  SDNode<"HexagonISD::VCMPHGT",  SDTHexagonVecCompare_v4i16>;
    206 def HexagonVCMPHGTU: SDNode<"HexagonISD::VCMPHGTU", SDTHexagonVecCompare_v4i16>;
    207 def HexagonVCMPWEQ:  SDNode<"HexagonISD::VCMPWEQ",  SDTHexagonVecCompare_v2i32>;
    208 def HexagonVCMPWGT:  SDNode<"HexagonISD::VCMPWGT",  SDTHexagonVecCompare_v2i32>;
    209 def HexagonVCMPWGTU: SDNode<"HexagonISD::VCMPWGTU", SDTHexagonVecCompare_v2i32>;
    210 
    211 
    212 class vcmp_i1_pat<InstHexagon MI, SDNode Op, PatFrag Value>
    213   : Pat <(i1 (Op Value:$Rs, Value:$Rt)),
    214          (MI Value:$Rs, Value:$Rt)>;
    215 
    216 def: vcmp_i1_pat<A2_vcmpbeq,  HexagonVCMPBEQ,  V8I8>;
    217 def: vcmp_i1_pat<A4_vcmpbgt,  HexagonVCMPBGT,  V8I8>;
    218 def: vcmp_i1_pat<A2_vcmpbgtu, HexagonVCMPBGTU, V8I8>;
    219 
    220 def: vcmp_i1_pat<A2_vcmpheq,  HexagonVCMPHEQ,  V4I16>;
    221 def: vcmp_i1_pat<A2_vcmphgt,  HexagonVCMPHGT,  V4I16>;
    222 def: vcmp_i1_pat<A2_vcmphgtu, HexagonVCMPHGTU, V4I16>;
    223 
    224 def: vcmp_i1_pat<A2_vcmpweq,  HexagonVCMPWEQ,  V2I32>;
    225 def: vcmp_i1_pat<A2_vcmpwgt,  HexagonVCMPWGT,  V2I32>;
    226 def: vcmp_i1_pat<A2_vcmpwgtu, HexagonVCMPWGTU, V2I32>;
    227 
    228 
    229 class vcmp_vi1_pat<InstHexagon MI, PatFrag Op, PatFrag InVal, ValueType OutTy>
    230   : Pat <(OutTy (Op InVal:$Rs, InVal:$Rt)),
    231          (MI InVal:$Rs, InVal:$Rt)>;
    232 
    233 def: vcmp_vi1_pat<A2_vcmpweq,  seteq,  V2I32, v2i1>;
    234 def: vcmp_vi1_pat<A2_vcmpwgt,  setgt,  V2I32, v2i1>;
    235 def: vcmp_vi1_pat<A2_vcmpwgtu, setugt, V2I32, v2i1>;
    236 
    237 def: vcmp_vi1_pat<A2_vcmpheq,  seteq,  V4I16, v4i1>;
    238 def: vcmp_vi1_pat<A2_vcmphgt,  setgt,  V4I16, v4i1>;
    239 def: vcmp_vi1_pat<A2_vcmphgtu, setugt, V4I16, v4i1>;
    240 
    241 
    242 // Hexagon doesn't have a vector multiply with C semantics.
    243 // Instead, generate a pseudo instruction that gets expaneded into two
    244 // scalar MPYI instructions.
    245 // This is expanded by ExpandPostRAPseudos.
    246 let isPseudo = 1 in
    247 def VMULW : PseudoM<(outs DoubleRegs:$Rd),
    248       (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
    249       ".error \"Should never try to emit VMULW\"",
    250       [(set V2I32:$Rd, (mul V2I32:$Rs, V2I32:$Rt))]>;
    251 
    252 let isPseudo = 1 in
    253 def VMULW_ACC : PseudoM<(outs DoubleRegs:$Rd),
    254       (ins DoubleRegs:$Rx, DoubleRegs:$Rs, DoubleRegs:$Rt),
    255       ".error \"Should never try to emit VMULW_ACC\"",
    256       [(set V2I32:$Rd, (add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)))],
    257       "$Rd = $Rx">;
    258 
    259 // Adds two v4i8: Hexagon does not have an insn for this one, so we
    260 // use the double add v8i8, and use only the low part of the result.
    261 def: Pat<(v4i8 (add (v4i8 IntRegs:$Rs), (v4i8 IntRegs:$Rt))),
    262          (LoReg (A2_vaddub (Zext64 $Rs), (Zext64 $Rt)))>;
    263 
    264 // Subtract two v4i8: Hexagon does not have an insn for this one, so we
    265 // use the double sub v8i8, and use only the low part of the result.
    266 def: Pat<(v4i8 (sub (v4i8 IntRegs:$Rs), (v4i8 IntRegs:$Rt))),
    267          (LoReg (A2_vsubub (Zext64 $Rs), (Zext64 $Rt)))>;
    268 
    269 //
    270 // No 32 bit vector mux.
    271 //
    272 def: Pat<(v4i8 (select I1:$Pu, V4I8:$Rs, V4I8:$Rt)),
    273          (LoReg (C2_vmux I1:$Pu, (Zext64 $Rs), (Zext64 $Rt)))>;
    274 def: Pat<(v2i16 (select I1:$Pu, V2I16:$Rs, V2I16:$Rt)),
    275          (LoReg (C2_vmux I1:$Pu, (Zext64 $Rs), (Zext64 $Rt)))>;
    276 
    277 //
    278 // 64-bit vector mux.
    279 //
    280 def: Pat<(v8i8 (vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)),
    281          (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
    282 def: Pat<(v4i16 (vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)),
    283          (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
    284 def: Pat<(v2i32 (vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)),
    285          (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;
    286 
    287 //
    288 // No 32 bit vector compare.
    289 //
    290 def: Pat<(i1 (seteq V4I8:$Rs, V4I8:$Rt)),
    291          (A2_vcmpbeq (Zext64 $Rs), (Zext64 $Rt))>;
    292 def: Pat<(i1 (setgt V4I8:$Rs, V4I8:$Rt)),
    293          (A4_vcmpbgt (Zext64 $Rs), (Zext64 $Rt))>;
    294 def: Pat<(i1 (setugt V4I8:$Rs, V4I8:$Rt)),
    295          (A2_vcmpbgtu (Zext64 $Rs), (Zext64 $Rt))>;
    296 
    297 def: Pat<(i1 (seteq V2I16:$Rs, V2I16:$Rt)),
    298          (A2_vcmpheq (Zext64 $Rs), (Zext64 $Rt))>;
    299 def: Pat<(i1 (setgt V2I16:$Rs, V2I16:$Rt)),
    300          (A2_vcmphgt (Zext64 $Rs), (Zext64 $Rt))>;
    301 def: Pat<(i1 (setugt V2I16:$Rs, V2I16:$Rt)),
    302          (A2_vcmphgtu (Zext64 $Rs), (Zext64 $Rt))>;
    303 
    304 
    305 class InvertCmp_pat<InstHexagon InvMI, PatFrag CmpOp, PatFrag Value,
    306                     ValueType CmpTy>
    307   : Pat<(CmpTy (CmpOp Value:$Rs, Value:$Rt)),
    308         (InvMI Value:$Rt, Value:$Rs)>;
    309 
    310 // Map from a compare operation to the corresponding instruction with the
    311 // order of operands reversed, e.g.  x > y --> cmp.lt(y,x).
    312 def: InvertCmp_pat<A4_vcmpbgt,  setlt,  V8I8,  i1>;
    313 def: InvertCmp_pat<A4_vcmpbgt,  setlt,  V8I8,  v8i1>;
    314 def: InvertCmp_pat<A2_vcmphgt,  setlt,  V4I16, i1>;
    315 def: InvertCmp_pat<A2_vcmphgt,  setlt,  V4I16, v4i1>;
    316 def: InvertCmp_pat<A2_vcmpwgt,  setlt,  V2I32, i1>;
    317 def: InvertCmp_pat<A2_vcmpwgt,  setlt,  V2I32, v2i1>;
    318 
    319 def: InvertCmp_pat<A2_vcmpbgtu, setult, V8I8,  i1>;
    320 def: InvertCmp_pat<A2_vcmpbgtu, setult, V8I8,  v8i1>;
    321 def: InvertCmp_pat<A2_vcmphgtu, setult, V4I16, i1>;
    322 def: InvertCmp_pat<A2_vcmphgtu, setult, V4I16, v4i1>;
    323 def: InvertCmp_pat<A2_vcmpwgtu, setult, V2I32, i1>;
    324 def: InvertCmp_pat<A2_vcmpwgtu, setult, V2I32, v2i1>;
    325 
    326 // Map from vcmpne(Rss) -> !vcmpew(Rss).
    327 // rs != rt -> !(rs == rt).
    328 def: Pat<(v2i1 (setne V2I32:$Rs, V2I32:$Rt)),
    329          (C2_not (v2i1 (A2_vcmpbeq V2I32:$Rs, V2I32:$Rt)))>;
    330 
    331 
    332 // Truncate: from vector B copy all 'E'ven 'B'yte elements:
    333 // A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
    334 def: Pat<(v4i8 (trunc V4I16:$Rs)),
    335          (S2_vtrunehb V4I16:$Rs)>;
    336 
    337 // Truncate: from vector B copy all 'O'dd 'B'yte elements:
    338 // A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
    339 // S2_vtrunohb
    340 
    341 // Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
    342 // A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
    343 // S2_vtruneh
    344 
    345 def: Pat<(v2i16 (trunc V2I32:$Rs)),
    346          (LoReg (S2_packhl (HiReg $Rs), (LoReg $Rs)))>;
    347 
    348 
    349 def HexagonVSXTBH : SDNode<"HexagonISD::VSXTBH", SDTUnaryOp>;
    350 def HexagonVSXTBW : SDNode<"HexagonISD::VSXTBW", SDTUnaryOp>;
    351 
    352 def: Pat<(i64 (HexagonVSXTBH I32:$Rs)), (S2_vsxtbh I32:$Rs)>;
    353 def: Pat<(i64 (HexagonVSXTBW I32:$Rs)), (S2_vsxthw I32:$Rs)>;
    354 
    355 def: Pat<(v4i16 (zext   V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
    356 def: Pat<(v2i32 (zext   V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
    357 def: Pat<(v4i16 (anyext V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
    358 def: Pat<(v2i32 (anyext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
    359 def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
    360 def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;
    361 
    362 // Sign extends a v2i8 into a v2i32.
    363 def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
    364          (A2_combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;
    365 
    366 // Sign extends a v2i16 into a v2i32.
    367 def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
    368          (A2_combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;
    369 
    370 
    371 // Multiplies two v2i16 and returns a v2i32.  We are using here the
    372 // saturating multiply, as hexagon does not provide a non saturating
    373 // vector multiply, and saturation does not impact the result that is
    374 // in double precision of the operands.
    375 
    376 // Multiplies two v2i16 vectors: as Hexagon does not have a multiply
    377 // with the C semantics for this one, this pattern uses the half word
    378 // multiply vmpyh that takes two v2i16 and returns a v2i32.  This is
    379 // then truncated to fit this back into a v2i16 and to simulate the
    380 // wrap around semantics for unsigned in C.
    381 def vmpyh: OutPatFrag<(ops node:$Rs, node:$Rt),
    382                       (M2_vmpy2s_s0 (i32 $Rs), (i32 $Rt))>;
    383 
    384 def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
    385          (LoReg (S2_vtrunewh (v2i32 (A2_combineii 0, 0)),
    386                              (v2i32 (vmpyh V2I16:$Rs, V2I16:$Rt))))>;
    387 
    388 // Multiplies two v4i16 vectors.
    389 def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
    390          (S2_vtrunewh (vmpyh (HiReg $Rs), (HiReg $Rt)),
    391                       (vmpyh (LoReg $Rs), (LoReg $Rt)))>;
    392 
    393 def VMPYB_no_V5: OutPatFrag<(ops node:$Rs, node:$Rt),
    394   (S2_vtrunewh (vmpyh (HiReg (S2_vsxtbh $Rs)), (HiReg (S2_vsxtbh $Rt))),
    395                (vmpyh (LoReg (S2_vsxtbh $Rs)), (LoReg (S2_vsxtbh $Rt))))>;
    396 
    397 // Multiplies two v4i8 vectors.
    398 def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
    399          (S2_vtrunehb (M5_vmpybsu V4I8:$Rs, V4I8:$Rt))>,
    400      Requires<[HasV5T]>;
    401 
    402 def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
    403          (S2_vtrunehb (VMPYB_no_V5 V4I8:$Rs, V4I8:$Rt))>;
    404 
    405 // Multiplies two v8i8 vectors.
    406 def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
    407          (A2_combinew (S2_vtrunehb (M5_vmpybsu (HiReg $Rs), (HiReg $Rt))),
    408                       (S2_vtrunehb (M5_vmpybsu (LoReg $Rs), (LoReg $Rt))))>,
    409      Requires<[HasV5T]>;
    410 
    411 def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
    412          (A2_combinew (S2_vtrunehb (VMPYB_no_V5 (HiReg $Rs), (HiReg $Rt))),
    413                       (S2_vtrunehb (VMPYB_no_V5 (LoReg $Rs), (LoReg $Rt))))>;
    414 
    415 
    416 class shuffler<SDNode Op, string Str>
    417   : SInst<(outs DoubleRegs:$a), (ins DoubleRegs:$b, DoubleRegs:$c),
    418       "$a = " # Str # "($b, $c)",
    419       [(set (i64 DoubleRegs:$a),
    420             (i64 (Op (i64 DoubleRegs:$b), (i64 DoubleRegs:$c))))],
    421       "", S_3op_tc_1_SLOT23>;
    422 
    423 def SDTHexagonBinOp64 : SDTypeProfile<1, 2,
    424   [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>]>;
    425 
    426 def HexagonSHUFFEB: SDNode<"HexagonISD::SHUFFEB", SDTHexagonBinOp64>;
    427 def HexagonSHUFFEH: SDNode<"HexagonISD::SHUFFEH", SDTHexagonBinOp64>;
    428 def HexagonSHUFFOB: SDNode<"HexagonISD::SHUFFOB", SDTHexagonBinOp64>;
    429 def HexagonSHUFFOH: SDNode<"HexagonISD::SHUFFOH", SDTHexagonBinOp64>;
    430 
    431 class ShufflePat<InstHexagon MI, SDNode Op>
    432   : Pat<(i64 (Op DoubleRegs:$src1, DoubleRegs:$src2)),
    433         (i64 (MI DoubleRegs:$src1, DoubleRegs:$src2))>;
    434 
    435 // Shuffles even bytes for i=0..3: A[2*i].b = C[2*i].b; A[2*i+1].b = B[2*i].b
    436 def: ShufflePat<S2_shuffeb, HexagonSHUFFEB>;
    437 
    438 // Shuffles odd bytes for i=0..3: A[2*i].b = C[2*i+1].b; A[2*i+1].b = B[2*i+1].b
    439 def: ShufflePat<S2_shuffob, HexagonSHUFFOB>;
    440 
    441 // Shuffles even half for i=0,1: A[2*i].h = C[2*i].h; A[2*i+1].h = B[2*i].h
    442 def: ShufflePat<S2_shuffeh, HexagonSHUFFEH>;
    443 
    444 // Shuffles odd half for i=0,1: A[2*i].h = C[2*i+1].h; A[2*i+1].h = B[2*i+1].h
    445 def: ShufflePat<S2_shuffoh, HexagonSHUFFOH>;
    446 
    447 
    448 // Truncated store from v4i16 to v4i8.
    449 def truncstorev4i8: PatFrag<(ops node:$val, node:$ptr),
    450                             (truncstore node:$val, node:$ptr),
    451     [{ return cast<StoreSDNode>(N)->getMemoryVT() == MVT::v4i8; }]>;
    452 
    453 // Truncated store from v2i32 to v2i16.
    454 def truncstorev2i16: PatFrag<(ops node:$val, node:$ptr),
    455                              (truncstore node:$val, node:$ptr),
    456     [{ return cast<StoreSDNode>(N)->getMemoryVT() == MVT::v2i16; }]>;
    457 
    458 def: Pat<(truncstorev2i16 V2I32:$Rs, I32:$Rt),
    459          (S2_storeri_io I32:$Rt, 0, (LoReg (S2_packhl (HiReg $Rs),
    460                                                       (LoReg $Rs))))>;
    461 
    462 def: Pat<(truncstorev4i8 V4I16:$Rs, I32:$Rt),
    463          (S2_storeri_io I32:$Rt, 0, (S2_vtrunehb V4I16:$Rs))>;
    464 
    465 
    466 // Zero and sign extended load from v2i8 into v2i16.
    467 def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr),
    468     [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; }]>;
    469 
    470 def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr),
    471     [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; }]>;
    472 
    473 def: Pat<(v2i16 (zextloadv2i8 I32:$Rs)),
    474          (LoReg (v4i16 (S2_vzxtbh (L2_loadruh_io I32:$Rs, 0))))>;
    475 
    476 def: Pat<(v2i16 (sextloadv2i8 I32:$Rs)),
    477          (LoReg (v4i16 (S2_vsxtbh (L2_loadrh_io I32:$Rs, 0))))>;
    478 
    479 def: Pat<(v2i32 (zextloadv2i8 I32:$Rs)),
    480          (S2_vzxthw (LoReg (v4i16 (S2_vzxtbh (L2_loadruh_io I32:$Rs, 0)))))>;
    481 
    482 def: Pat<(v2i32 (sextloadv2i8 I32:$Rs)),
    483          (S2_vsxthw (LoReg (v4i16 (S2_vsxtbh (L2_loadrh_io I32:$Rs, 0)))))>;
    484