Home | History | Annotate | Download | only in Hexagon
      1 //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // MachineScheduler schedules machine instructions after phi elimination. It
     11 // preserves LiveIntervals so it can be invoked before register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "HexagonMachineScheduler.h"
     16 #include "llvm/CodeGen/MachineLoopInfo.h"
     17 #include "llvm/IR/Function.h"
     18 
     19 using namespace llvm;
     20 
     21 #define DEBUG_TYPE "misched"
     22 
     23 /// Platform-specific modifications to DAG.
     24 void VLIWMachineScheduler::postprocessDAG() {
     25   SUnit* LastSequentialCall = nullptr;
     26   // Currently we only catch the situation when compare gets scheduled
     27   // before preceding call.
     28   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
     29     // Remember the call.
     30     if (SUnits[su].getInstr()->isCall())
     31       LastSequentialCall = &(SUnits[su]);
     32     // Look for a compare that defines a predicate.
     33     else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
     34       SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
     35   }
     36 }
     37 
     38 /// Check if scheduling of this SU is possible
     39 /// in the current packet.
     40 /// It is _not_ precise (statefull), it is more like
     41 /// another heuristic. Many corner cases are figured
     42 /// empirically.
     43 bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
     44   if (!SU || !SU->getInstr())
     45     return false;
     46 
     47   // First see if the pipeline could receive this instruction
     48   // in the current cycle.
     49   switch (SU->getInstr()->getOpcode()) {
     50   default:
     51     if (!ResourcesModel->canReserveResources(SU->getInstr()))
     52       return false;
     53   case TargetOpcode::EXTRACT_SUBREG:
     54   case TargetOpcode::INSERT_SUBREG:
     55   case TargetOpcode::SUBREG_TO_REG:
     56   case TargetOpcode::REG_SEQUENCE:
     57   case TargetOpcode::IMPLICIT_DEF:
     58   case TargetOpcode::COPY:
     59   case TargetOpcode::INLINEASM:
     60     break;
     61   }
     62 
     63   // Now see if there are no other dependencies to instructions already
     64   // in the packet.
     65   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
     66     if (Packet[i]->Succs.size() == 0)
     67       continue;
     68     for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
     69          E = Packet[i]->Succs.end(); I != E; ++I) {
     70       // Since we do not add pseudos to packets, might as well
     71       // ignore order dependencies.
     72       if (I->isCtrl())
     73         continue;
     74 
     75       if (I->getSUnit() == SU)
     76         return false;
     77     }
     78   }
     79   return true;
     80 }
     81 
     82 /// Keep track of available resources.
     83 bool VLIWResourceModel::reserveResources(SUnit *SU) {
     84   bool startNewCycle = false;
     85   // Artificially reset state.
     86   if (!SU) {
     87     ResourcesModel->clearResources();
     88     Packet.clear();
     89     TotalPackets++;
     90     return false;
     91   }
     92   // If this SU does not fit in the packet
     93   // start a new one.
     94   if (!isResourceAvailable(SU)) {
     95     ResourcesModel->clearResources();
     96     Packet.clear();
     97     TotalPackets++;
     98     startNewCycle = true;
     99   }
    100 
    101   switch (SU->getInstr()->getOpcode()) {
    102   default:
    103     ResourcesModel->reserveResources(SU->getInstr());
    104     break;
    105   case TargetOpcode::EXTRACT_SUBREG:
    106   case TargetOpcode::INSERT_SUBREG:
    107   case TargetOpcode::SUBREG_TO_REG:
    108   case TargetOpcode::REG_SEQUENCE:
    109   case TargetOpcode::IMPLICIT_DEF:
    110   case TargetOpcode::KILL:
    111   case TargetOpcode::CFI_INSTRUCTION:
    112   case TargetOpcode::EH_LABEL:
    113   case TargetOpcode::COPY:
    114   case TargetOpcode::INLINEASM:
    115     break;
    116   }
    117   Packet.push_back(SU);
    118 
    119 #ifndef NDEBUG
    120   DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
    121   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
    122     DEBUG(dbgs() << "\t[" << i << "] SU(");
    123     DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
    124     DEBUG(Packet[i]->getInstr()->dump());
    125   }
    126 #endif
    127 
    128   // If packet is now full, reset the state so in the next cycle
    129   // we start fresh.
    130   if (Packet.size() >= SchedModel->getIssueWidth()) {
    131     ResourcesModel->clearResources();
    132     Packet.clear();
    133     TotalPackets++;
    134     startNewCycle = true;
    135   }
    136 
    137   return startNewCycle;
    138 }
    139 
    140 /// schedule - Called back from MachineScheduler::runOnMachineFunction
    141 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
    142 /// only includes instructions that have DAG nodes, not scheduling boundaries.
    143 void VLIWMachineScheduler::schedule() {
    144   DEBUG(dbgs()
    145         << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
    146         << " " << BB->getName()
    147         << " in_func " << BB->getParent()->getFunction()->getName()
    148         << " at loop depth "  << MLI->getLoopDepth(BB)
    149         << " \n");
    150 
    151   buildDAGWithRegPressure();
    152 
    153   // Postprocess the DAG to add platform-specific artificial dependencies.
    154   postprocessDAG();
    155 
    156   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    157   findRootsAndBiasEdges(TopRoots, BotRoots);
    158 
    159   // Initialize the strategy before modifying the DAG.
    160   SchedImpl->initialize(this);
    161 
    162   // To view Height/Depth correctly, they should be accessed at least once.
    163   //
    164   // FIXME: SUnit::dumpAll always recompute depth and height now. The max
    165   // depth/height could be computed directly from the roots and leaves.
    166   DEBUG(unsigned maxH = 0;
    167         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    168           if (SUnits[su].getHeight() > maxH)
    169             maxH = SUnits[su].getHeight();
    170         dbgs() << "Max Height " << maxH << "\n";);
    171   DEBUG(unsigned maxD = 0;
    172         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    173           if (SUnits[su].getDepth() > maxD)
    174             maxD = SUnits[su].getDepth();
    175         dbgs() << "Max Depth " << maxD << "\n";);
    176   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    177           SUnits[su].dumpAll(this));
    178 
    179   initQueues(TopRoots, BotRoots);
    180 
    181   bool IsTopNode = false;
    182   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    183     if (!checkSchedLimit())
    184       break;
    185 
    186     scheduleMI(SU, IsTopNode);
    187 
    188     updateQueues(SU, IsTopNode);
    189 
    190     // Notify the scheduling strategy after updating the DAG.
    191     SchedImpl->schedNode(SU, IsTopNode);
    192   }
    193   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
    194 
    195   placeDebugValues();
    196 }
    197 
    198 void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
    199   DAG = static_cast<VLIWMachineScheduler*>(dag);
    200   SchedModel = DAG->getSchedModel();
    201 
    202   Top.init(DAG, SchedModel);
    203   Bot.init(DAG, SchedModel);
    204 
    205   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
    206   // are disabled, then these HazardRecs will be disabled.
    207   const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
    208   const TargetSubtargetInfo &STI = DAG->MF.getSubtarget();
    209   const TargetInstrInfo *TII = STI.getInstrInfo();
    210   delete Top.HazardRec;
    211   delete Bot.HazardRec;
    212   Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
    213   Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
    214 
    215   delete Top.ResourceModel;
    216   delete Bot.ResourceModel;
    217   Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
    218   Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
    219 
    220   assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
    221          "-misched-topdown incompatible with -misched-bottomup");
    222 }
    223 
    224 void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
    225   if (SU->isScheduled)
    226     return;
    227 
    228   for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    229        I != E; ++I) {
    230     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
    231     unsigned MinLatency = I->getLatency();
    232 #ifndef NDEBUG
    233     Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
    234 #endif
    235     if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
    236       SU->TopReadyCycle = PredReadyCycle + MinLatency;
    237   }
    238   Top.releaseNode(SU, SU->TopReadyCycle);
    239 }
    240 
    241 void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
    242   if (SU->isScheduled)
    243     return;
    244 
    245   assert(SU->getInstr() && "Scheduled SUnit must have instr");
    246 
    247   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    248        I != E; ++I) {
    249     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
    250     unsigned MinLatency = I->getLatency();
    251 #ifndef NDEBUG
    252     Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
    253 #endif
    254     if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
    255       SU->BotReadyCycle = SuccReadyCycle + MinLatency;
    256   }
    257   Bot.releaseNode(SU, SU->BotReadyCycle);
    258 }
    259 
    260 /// Does this SU have a hazard within the current instruction group.
    261 ///
    262 /// The scheduler supports two modes of hazard recognition. The first is the
    263 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
    264 /// supports highly complicated in-order reservation tables
    265 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
    266 ///
    267 /// The second is a streamlined mechanism that checks for hazards based on
    268 /// simple counters that the scheduler itself maintains. It explicitly checks
    269 /// for instruction dispatch limitations, including the number of micro-ops that
    270 /// can dispatch per cycle.
    271 ///
    272 /// TODO: Also check whether the SU must start a new group.
    273 bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
    274   if (HazardRec->isEnabled())
    275     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
    276 
    277   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
    278   if (IssueCount + uops > SchedModel->getIssueWidth())
    279     return true;
    280 
    281   return false;
    282 }
    283 
    284 void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
    285                                                      unsigned ReadyCycle) {
    286   if (ReadyCycle < MinReadyCycle)
    287     MinReadyCycle = ReadyCycle;
    288 
    289   // Check for interlocks first. For the purpose of other heuristics, an
    290   // instruction that cannot issue appears as if it's not in the ReadyQueue.
    291   if (ReadyCycle > CurrCycle || checkHazard(SU))
    292 
    293     Pending.push(SU);
    294   else
    295     Available.push(SU);
    296 }
    297 
    298 /// Move the boundary of scheduled code by one cycle.
    299 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
    300   unsigned Width = SchedModel->getIssueWidth();
    301   IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
    302 
    303   assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
    304   unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
    305 
    306   if (!HazardRec->isEnabled()) {
    307     // Bypass HazardRec virtual calls.
    308     CurrCycle = NextCycle;
    309   } else {
    310     // Bypass getHazardType calls in case of long latency.
    311     for (; CurrCycle != NextCycle; ++CurrCycle) {
    312       if (isTop())
    313         HazardRec->AdvanceCycle();
    314       else
    315         HazardRec->RecedeCycle();
    316     }
    317   }
    318   CheckPending = true;
    319 
    320   DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
    321         << CurrCycle << '\n');
    322 }
    323 
    324 /// Move the boundary of scheduled code by one SUnit.
    325 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
    326   bool startNewCycle = false;
    327 
    328   // Update the reservation table.
    329   if (HazardRec->isEnabled()) {
    330     if (!isTop() && SU->isCall) {
    331       // Calls are scheduled with their preceding instructions. For bottom-up
    332       // scheduling, clear the pipeline state before emitting.
    333       HazardRec->Reset();
    334     }
    335     HazardRec->EmitInstruction(SU);
    336   }
    337 
    338   // Update DFA model.
    339   startNewCycle = ResourceModel->reserveResources(SU);
    340 
    341   // Check the instruction group dispatch limit.
    342   // TODO: Check if this SU must end a dispatch group.
    343   IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
    344   if (startNewCycle) {
    345     DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
    346     bumpCycle();
    347   }
    348   else
    349     DEBUG(dbgs() << "*** IssueCount " << IssueCount
    350           << " at cycle " << CurrCycle << '\n');
    351 }
    352 
    353 /// Release pending ready nodes in to the available queue. This makes them
    354 /// visible to heuristics.
    355 void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
    356   // If the available queue is empty, it is safe to reset MinReadyCycle.
    357   if (Available.empty())
    358     MinReadyCycle = UINT_MAX;
    359 
    360   // Check to see if any of the pending instructions are ready to issue.  If
    361   // so, add them to the available queue.
    362   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
    363     SUnit *SU = *(Pending.begin()+i);
    364     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
    365 
    366     if (ReadyCycle < MinReadyCycle)
    367       MinReadyCycle = ReadyCycle;
    368 
    369     if (ReadyCycle > CurrCycle)
    370       continue;
    371 
    372     if (checkHazard(SU))
    373       continue;
    374 
    375     Available.push(SU);
    376     Pending.remove(Pending.begin()+i);
    377     --i; --e;
    378   }
    379   CheckPending = false;
    380 }
    381 
    382 /// Remove SU from the ready set for this boundary.
    383 void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
    384   if (Available.isInQueue(SU))
    385     Available.remove(Available.find(SU));
    386   else {
    387     assert(Pending.isInQueue(SU) && "bad ready count");
    388     Pending.remove(Pending.find(SU));
    389   }
    390 }
    391 
    392 /// If this queue only has one ready candidate, return it. As a side effect,
    393 /// advance the cycle until at least one node is ready. If multiple instructions
    394 /// are ready, return NULL.
    395 SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
    396   if (CheckPending)
    397     releasePending();
    398 
    399   for (unsigned i = 0; Available.empty(); ++i) {
    400     assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
    401            "permanent hazard"); (void)i;
    402     ResourceModel->reserveResources(nullptr);
    403     bumpCycle();
    404     releasePending();
    405   }
    406   if (Available.size() == 1)
    407     return *Available.begin();
    408   return nullptr;
    409 }
    410 
    411 #ifndef NDEBUG
    412 void ConvergingVLIWScheduler::traceCandidate(const char *Label,
    413                                              const ReadyQueue &Q,
    414                                              SUnit *SU, PressureChange P) {
    415   dbgs() << Label << " " << Q.getName() << " ";
    416   if (P.isValid())
    417     dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
    418            << P.getUnitInc() << " ";
    419   else
    420     dbgs() << "     ";
    421   SU->dump(DAG);
    422 }
    423 #endif
    424 
    425 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
    426 /// of SU, return it, otherwise return null.
    427 static SUnit *getSingleUnscheduledPred(SUnit *SU) {
    428   SUnit *OnlyAvailablePred = nullptr;
    429   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    430        I != E; ++I) {
    431     SUnit &Pred = *I->getSUnit();
    432     if (!Pred.isScheduled) {
    433       // We found an available, but not scheduled, predecessor.  If it's the
    434       // only one we have found, keep track of it... otherwise give up.
    435       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
    436         return nullptr;
    437       OnlyAvailablePred = &Pred;
    438     }
    439   }
    440   return OnlyAvailablePred;
    441 }
    442 
    443 /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
    444 /// of SU, return it, otherwise return null.
    445 static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
    446   SUnit *OnlyAvailableSucc = nullptr;
    447   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    448        I != E; ++I) {
    449     SUnit &Succ = *I->getSUnit();
    450     if (!Succ.isScheduled) {
    451       // We found an available, but not scheduled, successor.  If it's the
    452       // only one we have found, keep track of it... otherwise give up.
    453       if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
    454         return nullptr;
    455       OnlyAvailableSucc = &Succ;
    456     }
    457   }
    458   return OnlyAvailableSucc;
    459 }
    460 
    461 // Constants used to denote relative importance of
    462 // heuristic components for cost computation.
    463 static const unsigned PriorityOne = 200;
    464 static const unsigned PriorityTwo = 50;
    465 static const unsigned ScaleTwo = 10;
    466 static const unsigned FactorOne = 2;
    467 
    468 /// Single point to compute overall scheduling cost.
    469 /// TODO: More heuristics will be used soon.
    470 int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
    471                                             SchedCandidate &Candidate,
    472                                             RegPressureDelta &Delta,
    473                                             bool verbose) {
    474   // Initial trivial priority.
    475   int ResCount = 1;
    476 
    477   // Do not waste time on a node that is already scheduled.
    478   if (!SU || SU->isScheduled)
    479     return ResCount;
    480 
    481   // Forced priority is high.
    482   if (SU->isScheduleHigh)
    483     ResCount += PriorityOne;
    484 
    485   // Critical path first.
    486   if (Q.getID() == TopQID) {
    487     ResCount += (SU->getHeight() * ScaleTwo);
    488 
    489     // If resources are available for it, multiply the
    490     // chance of scheduling.
    491     if (Top.ResourceModel->isResourceAvailable(SU))
    492       ResCount <<= FactorOne;
    493   } else {
    494     ResCount += (SU->getDepth() * ScaleTwo);
    495 
    496     // If resources are available for it, multiply the
    497     // chance of scheduling.
    498     if (Bot.ResourceModel->isResourceAvailable(SU))
    499       ResCount <<= FactorOne;
    500   }
    501 
    502   unsigned NumNodesBlocking = 0;
    503   if (Q.getID() == TopQID) {
    504     // How many SUs does it block from scheduling?
    505     // Look at all of the successors of this node.
    506     // Count the number of nodes that
    507     // this node is the sole unscheduled node for.
    508     for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    509          I != E; ++I)
    510       if (getSingleUnscheduledPred(I->getSUnit()) == SU)
    511         ++NumNodesBlocking;
    512   } else {
    513     // How many unscheduled predecessors block this node?
    514     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    515          I != E; ++I)
    516       if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
    517         ++NumNodesBlocking;
    518   }
    519   ResCount += (NumNodesBlocking * ScaleTwo);
    520 
    521   // Factor in reg pressure as a heuristic.
    522   ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo);
    523   ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo);
    524 
    525   DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
    526 
    527   return ResCount;
    528 }
    529 
    530 /// Pick the best candidate from the top queue.
    531 ///
    532 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
    533 /// DAG building. To adjust for the current scheduling location we need to
    534 /// maintain the number of vreg uses remaining to be top-scheduled.
    535 ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
    536 pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
    537                   SchedCandidate &Candidate) {
    538   DEBUG(Q.dump());
    539 
    540   // getMaxPressureDelta temporarily modifies the tracker.
    541   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
    542 
    543   // BestSU remains NULL if no top candidates beat the best existing candidate.
    544   CandResult FoundCandidate = NoCand;
    545   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
    546     RegPressureDelta RPDelta;
    547     TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
    548                                     DAG->getRegionCriticalPSets(),
    549                                     DAG->getRegPressure().MaxSetPressure);
    550 
    551     int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
    552 
    553     // Initialize the candidate if needed.
    554     if (!Candidate.SU) {
    555       Candidate.SU = *I;
    556       Candidate.RPDelta = RPDelta;
    557       Candidate.SCost = CurrentCost;
    558       FoundCandidate = NodeOrder;
    559       continue;
    560     }
    561 
    562     // Best cost.
    563     if (CurrentCost > Candidate.SCost) {
    564       DEBUG(traceCandidate("CCAND", Q, *I));
    565       Candidate.SU = *I;
    566       Candidate.RPDelta = RPDelta;
    567       Candidate.SCost = CurrentCost;
    568       FoundCandidate = BestCost;
    569       continue;
    570     }
    571 
    572     // Fall through to original instruction order.
    573     // Only consider node order if Candidate was chosen from this Q.
    574     if (FoundCandidate == NoCand)
    575       continue;
    576   }
    577   return FoundCandidate;
    578 }
    579 
    580 /// Pick the best candidate node from either the top or bottom queue.
    581 SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
    582   // Schedule as far as possible in the direction of no choice. This is most
    583   // efficient, but also provides the best heuristics for CriticalPSets.
    584   if (SUnit *SU = Bot.pickOnlyChoice()) {
    585     IsTopNode = false;
    586     return SU;
    587   }
    588   if (SUnit *SU = Top.pickOnlyChoice()) {
    589     IsTopNode = true;
    590     return SU;
    591   }
    592   SchedCandidate BotCand;
    593   // Prefer bottom scheduling when heuristics are silent.
    594   CandResult BotResult = pickNodeFromQueue(Bot.Available,
    595                                            DAG->getBotRPTracker(), BotCand);
    596   assert(BotResult != NoCand && "failed to find the first candidate");
    597 
    598   // If either Q has a single candidate that provides the least increase in
    599   // Excess pressure, we can immediately schedule from that Q.
    600   //
    601   // RegionCriticalPSets summarizes the pressure within the scheduled region and
    602   // affects picking from either Q. If scheduling in one direction must
    603   // increase pressure for one of the excess PSets, then schedule in that
    604   // direction first to provide more freedom in the other direction.
    605   if (BotResult == SingleExcess || BotResult == SingleCritical) {
    606     IsTopNode = false;
    607     return BotCand.SU;
    608   }
    609   // Check if the top Q has a better candidate.
    610   SchedCandidate TopCand;
    611   CandResult TopResult = pickNodeFromQueue(Top.Available,
    612                                            DAG->getTopRPTracker(), TopCand);
    613   assert(TopResult != NoCand && "failed to find the first candidate");
    614 
    615   if (TopResult == SingleExcess || TopResult == SingleCritical) {
    616     IsTopNode = true;
    617     return TopCand.SU;
    618   }
    619   // If either Q has a single candidate that minimizes pressure above the
    620   // original region's pressure pick it.
    621   if (BotResult == SingleMax) {
    622     IsTopNode = false;
    623     return BotCand.SU;
    624   }
    625   if (TopResult == SingleMax) {
    626     IsTopNode = true;
    627     return TopCand.SU;
    628   }
    629   if (TopCand.SCost > BotCand.SCost) {
    630     IsTopNode = true;
    631     return TopCand.SU;
    632   }
    633   // Otherwise prefer the bottom candidate in node order.
    634   IsTopNode = false;
    635   return BotCand.SU;
    636 }
    637 
    638 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
    639 SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
    640   if (DAG->top() == DAG->bottom()) {
    641     assert(Top.Available.empty() && Top.Pending.empty() &&
    642            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    643     return nullptr;
    644   }
    645   SUnit *SU;
    646   if (llvm::ForceTopDown) {
    647     SU = Top.pickOnlyChoice();
    648     if (!SU) {
    649       SchedCandidate TopCand;
    650       CandResult TopResult =
    651         pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
    652       assert(TopResult != NoCand && "failed to find the first candidate");
    653       (void)TopResult;
    654       SU = TopCand.SU;
    655     }
    656     IsTopNode = true;
    657   } else if (llvm::ForceBottomUp) {
    658     SU = Bot.pickOnlyChoice();
    659     if (!SU) {
    660       SchedCandidate BotCand;
    661       CandResult BotResult =
    662         pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
    663       assert(BotResult != NoCand && "failed to find the first candidate");
    664       (void)BotResult;
    665       SU = BotCand.SU;
    666     }
    667     IsTopNode = false;
    668   } else {
    669     SU = pickNodeBidrectional(IsTopNode);
    670   }
    671   if (SU->isTopReady())
    672     Top.removeReady(SU);
    673   if (SU->isBottomReady())
    674     Bot.removeReady(SU);
    675 
    676   DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
    677         << " Scheduling Instruction in cycle "
    678         << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
    679         SU->dump(DAG));
    680   return SU;
    681 }
    682 
    683 /// Update the scheduler's state after scheduling a node. This is the same node
    684 /// that was just returned by pickNode(). However, VLIWMachineScheduler needs
    685 /// to update it's state based on the current cycle before MachineSchedStrategy
    686 /// does.
    687 void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
    688   if (IsTopNode) {
    689     SU->TopReadyCycle = Top.CurrCycle;
    690     Top.bumpNode(SU);
    691   } else {
    692     SU->BotReadyCycle = Bot.CurrCycle;
    693     Bot.bumpNode(SU);
    694   }
    695 }
    696