Home | History | Annotate | Download | only in Sparc
      1 //===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Sparc instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Instruction format superclass
     16 //===----------------------------------------------------------------------===//
     17 
     18 include "SparcInstrFormats.td"
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Feature predicates.
     22 //===----------------------------------------------------------------------===//
     23 
     24 // True when generating 32-bit code.
     25 def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
     26 
     27 // True when generating 64-bit code. This also implies HasV9.
     28 def Is64Bit : Predicate<"Subtarget->is64Bit()">;
     29 
     30 // HasV9 - This predicate is true when the target processor supports V9
     31 // instructions.  Note that the machine may be running in 32-bit mode.
     32 def HasV9   : Predicate<"Subtarget->isV9()">,
     33               AssemblerPredicate<"FeatureV9">;
     34 
     35 // HasNoV9 - This predicate is true when the target doesn't have V9
     36 // instructions.  Use of this is just a hack for the isel not having proper
     37 // costs for V8 instructions that are more expensive than their V9 ones.
     38 def HasNoV9 : Predicate<"!Subtarget->isV9()">;
     39 
     40 // HasVIS - This is true when the target processor has VIS extensions.
     41 def HasVIS : Predicate<"Subtarget->isVIS()">,
     42              AssemblerPredicate<"FeatureVIS">;
     43 def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
     44              AssemblerPredicate<"FeatureVIS2">;
     45 def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
     46              AssemblerPredicate<"FeatureVIS3">;
     47 
     48 // HasHardQuad - This is true when the target processor supports quad floating
     49 // point instructions.
     50 def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
     51 
     52 // UseDeprecatedInsts - This predicate is true when the target processor is a
     53 // V8, or when it is V9 but the V8 deprecated instructions are efficient enough
     54 // to use when appropriate.  In either of these cases, the instruction selector
     55 // will pick deprecated instructions.
     56 def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
     57 
     58 //===----------------------------------------------------------------------===//
     59 // Instruction Pattern Stuff
     60 //===----------------------------------------------------------------------===//
     61 
     62 def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
     63 
     64 def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
     65 
     66 def LO10 : SDNodeXForm<imm, [{
     67   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
     68                                    MVT::i32);
     69 }]>;
     70 
     71 def HI22 : SDNodeXForm<imm, [{
     72   // Transformation function: shift the immediate value down into the low bits.
     73   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
     74 }]>;
     75 
     76 def SETHIimm : PatLeaf<(imm), [{
     77   return isShiftedUInt<22, 10>(N->getZExtValue());
     78 }], HI22>;
     79 
     80 // Addressing modes.
     81 def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
     82 def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
     83 
     84 // Address operands
     85 def SparcMEMrrAsmOperand : AsmOperandClass {
     86   let Name = "MEMrr";
     87   let ParserMethod = "parseMEMOperand";
     88 }
     89 
     90 def SparcMEMriAsmOperand : AsmOperandClass {
     91   let Name = "MEMri";
     92   let ParserMethod = "parseMEMOperand";
     93 }
     94 
     95 def MEMrr : Operand<iPTR> {
     96   let PrintMethod = "printMemOperand";
     97   let MIOperandInfo = (ops ptr_rc, ptr_rc);
     98   let ParserMatchClass = SparcMEMrrAsmOperand;
     99 }
    100 def MEMri : Operand<iPTR> {
    101   let PrintMethod = "printMemOperand";
    102   let MIOperandInfo = (ops ptr_rc, i32imm);
    103   let ParserMatchClass = SparcMEMriAsmOperand;
    104 }
    105 
    106 def TLSSym : Operand<iPTR>;
    107 
    108 // Branch targets have OtherVT type.
    109 def brtarget : Operand<OtherVT> {
    110   let EncoderMethod = "getBranchTargetOpValue";
    111 }
    112 
    113 def bprtarget : Operand<OtherVT> {
    114   let EncoderMethod = "getBranchPredTargetOpValue";
    115 }
    116 
    117 def bprtarget16 : Operand<OtherVT> {
    118   let EncoderMethod = "getBranchOnRegTargetOpValue";
    119 }
    120 
    121 def calltarget : Operand<i32> {
    122   let EncoderMethod = "getCallTargetOpValue";
    123   let DecoderMethod = "DecodeCall";
    124 }
    125 
    126 def simm13Op : Operand<i32> {
    127   let DecoderMethod = "DecodeSIMM13";
    128 }
    129 
    130 // Operand for printing out a condition code.
    131 let PrintMethod = "printCCOperand" in
    132   def CCOp : Operand<i32>;
    133 
    134 def SDTSPcmpicc :
    135 SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
    136 def SDTSPcmpfcc :
    137 SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
    138 def SDTSPbrcc :
    139 SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
    140 def SDTSPselectcc :
    141 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
    142 def SDTSPFTOI :
    143 SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
    144 def SDTSPITOF :
    145 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
    146 def SDTSPFTOX :
    147 SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
    148 def SDTSPXTOF :
    149 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
    150 
    151 def SDTSPtlsadd :
    152 SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
    153 def SDTSPtlsld :
    154 SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
    155 
    156 def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
    157 def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
    158 def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    159 def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    160 def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    161 
    162 def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
    163 def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
    164 
    165 def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
    166 def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
    167 def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
    168 def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
    169 
    170 def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
    171 def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
    172 def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
    173 
    174 //  These are target-independent nodes, but have target-specific formats.
    175 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
    176 def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
    177                                         SDTCisVT<1, i32> ]>;
    178 
    179 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
    180                            [SDNPHasChain, SDNPOutGlue]>;
    181 def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
    182                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    183 
    184 def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
    185 def call          : SDNode<"SPISD::CALL", SDT_SPCall,
    186                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    187                             SDNPVariadic]>;
    188 
    189 def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
    190 def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
    191                            [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    192 
    193 def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
    194                            [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
    195 
    196 def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
    197 def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
    198 def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
    199                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    200                              SDNPVariadic]>;
    201 
    202 def getPCX        : Operand<iPTR> {
    203   let PrintMethod = "printGetPCX";
    204 }
    205 
    206 //===----------------------------------------------------------------------===//
    207 // SPARC Flag Conditions
    208 //===----------------------------------------------------------------------===//
    209 
    210 // Note that these values must be kept in sync with the CCOp::CondCode enum
    211 // values.
    212 class ICC_VAL<int N> : PatLeaf<(i32 N)>;
    213 def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    214 def ICC_E   : ICC_VAL< 1>;  // Equal
    215 def ICC_G   : ICC_VAL<10>;  // Greater
    216 def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
    217 def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
    218 def ICC_L   : ICC_VAL< 3>;  // Less
    219 def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
    220 def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
    221 def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
    222 def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
    223 def ICC_POS : ICC_VAL<14>;  // Positive
    224 def ICC_NEG : ICC_VAL< 6>;  // Negative
    225 def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
    226 def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
    227 
    228 class FCC_VAL<int N> : PatLeaf<(i32 N)>;
    229 def FCC_U   : FCC_VAL<23>;  // Unordered
    230 def FCC_G   : FCC_VAL<22>;  // Greater
    231 def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    232 def FCC_L   : FCC_VAL<20>;  // Less
    233 def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
    234 def FCC_LG  : FCC_VAL<18>;  // Less or Greater
    235 def FCC_NE  : FCC_VAL<17>;  // Not Equal
    236 def FCC_E   : FCC_VAL<25>;  // Equal
    237 def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
    238 def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
    239 def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
    240 def FCC_LE  : FCC_VAL<27>;  // Less or Equal
    241 def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
    242 def FCC_O   : FCC_VAL<29>;  // Ordered
    243 
    244 //===----------------------------------------------------------------------===//
    245 // Instruction Class Templates
    246 //===----------------------------------------------------------------------===//
    247 
    248 /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
    249 multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
    250                  RegisterClass RC, ValueType Ty, Operand immOp> {
    251   def rr  : F3_1<2, Op3Val,
    252                  (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
    253                  !strconcat(OpcStr, " $rs1, $rs2, $rd"),
    254                  [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))]>;
    255   def ri  : F3_2<2, Op3Val,
    256                  (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
    257                  !strconcat(OpcStr, " $rs1, $simm13, $rd"),
    258                  [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))]>;
    259 }
    260 
    261 /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
    262 /// pattern.
    263 multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
    264   def rr  : F3_1<2, Op3Val,
    265                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    266                  !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
    267   def ri  : F3_2<2, Op3Val,
    268                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    269                  !strconcat(OpcStr, " $rs1, $simm13, $rd"), []>;
    270 }
    271 
    272 // Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
    273 multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    274            RegisterClass RC, ValueType Ty> {
    275   def rr  : F3_1<3, Op3Val,
    276                  (outs RC:$dst), (ins MEMrr:$addr),
    277                  !strconcat(OpcStr, " [$addr], $dst"),
    278                  [(set Ty:$dst, (OpNode ADDRrr:$addr))]>;
    279   def ri  : F3_2<3, Op3Val,
    280                  (outs RC:$dst), (ins MEMri:$addr),
    281                  !strconcat(OpcStr, " [$addr], $dst"),
    282                  [(set Ty:$dst, (OpNode ADDRri:$addr))]>;
    283 }
    284 
    285 // Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
    286 multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    287            RegisterClass RC, ValueType Ty> {
    288   def rr  : F3_1<3, Op3Val,
    289                  (outs), (ins MEMrr:$addr, RC:$rd),
    290                  !strconcat(OpcStr, " $rd, [$addr]"),
    291                  [(OpNode Ty:$rd, ADDRrr:$addr)]>;
    292   def ri  : F3_2<3, Op3Val,
    293                  (outs), (ins MEMri:$addr, RC:$rd),
    294                  !strconcat(OpcStr, " $rd, [$addr]"),
    295                  [(OpNode Ty:$rd, ADDRri:$addr)]>;
    296 }
    297 
    298 //===----------------------------------------------------------------------===//
    299 // Instructions
    300 //===----------------------------------------------------------------------===//
    301 
    302 // Pseudo instructions.
    303 class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
    304    : InstSP<outs, ins, asmstr, pattern> {
    305   let isCodeGenOnly = 1;
    306   let isPseudo = 1;
    307 }
    308 
    309 // GETPCX for PIC
    310 let Defs = [O7] in {
    311   def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
    312 }
    313 
    314 let Defs = [O6], Uses = [O6] in {
    315 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
    316                                "!ADJCALLSTACKDOWN $amt",
    317                                [(callseq_start timm:$amt)]>;
    318 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    319                             "!ADJCALLSTACKUP $amt1",
    320                             [(callseq_end timm:$amt1, timm:$amt2)]>;
    321 }
    322 
    323 let hasSideEffects = 1, mayStore = 1 in {
    324   let rd = 0, rs1 = 0, rs2 = 0 in
    325     def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
    326                       "flushw",
    327                       [(flushw)]>, Requires<[HasV9]>;
    328   let rd = 0, rs1 = 1, simm13 = 3 in
    329     def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
    330                    "ta 3",
    331                    [(flushw)]>;
    332 }
    333 
    334 let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
    335   def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
    336 
    337 let rd = 0 in
    338   def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
    339                   "unimp $imm22", []>;
    340 
    341 // SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
    342 // instruction selection into a branch sequence.  This has to handle all
    343 // permutations of selection between i32/f32/f64 on ICC and FCC.
    344 // Expanded after instruction selection.
    345 let Uses = [ICC], usesCustomInserter = 1 in {
    346   def SELECT_CC_Int_ICC
    347    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    348             "; SELECT_CC_Int_ICC PSEUDO!",
    349             [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
    350   def SELECT_CC_FP_ICC
    351    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    352             "; SELECT_CC_FP_ICC PSEUDO!",
    353             [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
    354 
    355   def SELECT_CC_DFP_ICC
    356    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    357             "; SELECT_CC_DFP_ICC PSEUDO!",
    358             [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
    359 
    360   def SELECT_CC_QFP_ICC
    361    : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
    362             "; SELECT_CC_QFP_ICC PSEUDO!",
    363             [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
    364 }
    365 
    366 let usesCustomInserter = 1, Uses = [FCC0] in {
    367 
    368   def SELECT_CC_Int_FCC
    369    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    370             "; SELECT_CC_Int_FCC PSEUDO!",
    371             [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
    372 
    373   def SELECT_CC_FP_FCC
    374    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    375             "; SELECT_CC_FP_FCC PSEUDO!",
    376             [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
    377   def SELECT_CC_DFP_FCC
    378    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    379             "; SELECT_CC_DFP_FCC PSEUDO!",
    380             [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
    381   def SELECT_CC_QFP_FCC
    382    : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
    383             "; SELECT_CC_QFP_FCC PSEUDO!",
    384             [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
    385 }
    386 
    387 // JMPL Instruction.
    388 let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    389     DecoderMethod = "DecodeJMPL" in {
    390   def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr),
    391                   "jmpl $addr, $dst", []>;
    392   def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr),
    393                   "jmpl $addr, $dst", []>;
    394 }
    395 
    396 // Section A.3 - Synthetic Instructions, p. 85
    397 // special cases of JMPL:
    398 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    399     isCodeGenOnly = 1 in {
    400   let rd = 0, rs1 = 15 in
    401     def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
    402                    "jmp %o7+$val", [(retflag simm13:$val)]>;
    403 
    404   let rd = 0, rs1 = 31 in
    405     def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
    406                   "jmp %i7+$val", []>;
    407 }
    408 
    409 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
    410      isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
    411   def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr),
    412                        "rett $addr", []>;
    413   def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr),
    414                        "rett $addr", []>;
    415 }
    416 
    417 // Section B.1 - Load Integer Instructions, p. 90
    418 let DecoderMethod = "DecodeLoadInt" in {
    419   defm LDSB : Load<"ldsb", 0b001001, sextloadi8,  IntRegs, i32>;
    420   defm LDSH : Load<"ldsh", 0b001010, sextloadi16, IntRegs, i32>;
    421   defm LDUB : Load<"ldub", 0b000001, zextloadi8,  IntRegs, i32>;
    422   defm LDUH : Load<"lduh", 0b000010, zextloadi16, IntRegs, i32>;
    423   defm LD   : Load<"ld",   0b000000, load,        IntRegs, i32>;
    424 }
    425 
    426 // Section B.2 - Load Floating-point Instructions, p. 92
    427 let DecoderMethod = "DecodeLoadFP" in
    428   defm LDF   : Load<"ld",  0b100000, load, FPRegs,  f32>;
    429 let DecoderMethod = "DecodeLoadDFP" in
    430   defm LDDF  : Load<"ldd", 0b100011, load, DFPRegs, f64>;
    431 let DecoderMethod = "DecodeLoadQFP" in
    432   defm LDQF  : Load<"ldq", 0b100010, load, QFPRegs, f128>,
    433                Requires<[HasV9, HasHardQuad]>;
    434 
    435 // Section B.4 - Store Integer Instructions, p. 95
    436 let DecoderMethod = "DecodeStoreInt" in {
    437   defm STB   : Store<"stb", 0b000101, truncstorei8,  IntRegs, i32>;
    438   defm STH   : Store<"sth", 0b000110, truncstorei16, IntRegs, i32>;
    439   defm ST    : Store<"st",  0b000100, store,         IntRegs, i32>;
    440 }
    441 
    442 // Section B.5 - Store Floating-point Instructions, p. 97
    443 let DecoderMethod = "DecodeStoreFP" in
    444   defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
    445 let DecoderMethod = "DecodeStoreDFP" in
    446   defm STDF  : Store<"std", 0b100111, store,         DFPRegs, f64>;
    447 let DecoderMethod = "DecodeStoreQFP" in
    448   defm STQF  : Store<"stq", 0b100110, store,         QFPRegs, f128>,
    449                Requires<[HasV9, HasHardQuad]>;
    450 
    451 // Section B.9 - SETHI Instruction, p. 104
    452 def SETHIi: F2_1<0b100,
    453                  (outs IntRegs:$rd), (ins i32imm:$imm22),
    454                  "sethi $imm22, $rd",
    455                  [(set i32:$rd, SETHIimm:$imm22)]>;
    456 
    457 // Section B.10 - NOP Instruction, p. 105
    458 // (It's a special case of SETHI)
    459 let rd = 0, imm22 = 0 in
    460   def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
    461 
    462 // Section B.11 - Logical Instructions, p. 106
    463 defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
    464 
    465 def ANDNrr  : F3_1<2, 0b000101,
    466                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    467                    "andn $rs1, $rs2, $rd",
    468                    [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
    469 def ANDNri  : F3_2<2, 0b000101,
    470                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    471                    "andn $rs1, $simm13, $rd", []>;
    472 
    473 defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
    474 
    475 def ORNrr   : F3_1<2, 0b000110,
    476                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    477                    "orn $rs1, $rs2, $rd",
    478                    [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
    479 def ORNri   : F3_2<2, 0b000110,
    480                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    481                    "orn $rs1, $simm13, $rd", []>;
    482 defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
    483 
    484 def XNORrr  : F3_1<2, 0b000111,
    485                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    486                    "xnor $rs1, $rs2, $rd",
    487                    [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
    488 def XNORri  : F3_2<2, 0b000111,
    489                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    490                    "xnor $rs1, $simm13, $rd", []>;
    491 
    492 let Defs = [ICC] in {
    493   defm ANDCC  : F3_12np<"andcc",  0b010001>;
    494   defm ANDNCC : F3_12np<"andncc", 0b010101>;
    495   defm ORCC   : F3_12np<"orcc",   0b010010>;
    496   defm ORNCC  : F3_12np<"orncc",  0b010110>;
    497   defm XORCC  : F3_12np<"xorcc",  0b010011>;
    498   defm XNORCC : F3_12np<"xnorcc", 0b010111>;
    499 }
    500 
    501 // Section B.12 - Shift Instructions, p. 107
    502 defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
    503 defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
    504 defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
    505 
    506 // Section B.13 - Add Instructions, p. 108
    507 defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
    508 
    509 // "LEA" forms of add (patterns to make tblgen happy)
    510 let Predicates = [Is32Bit], isCodeGenOnly = 1 in
    511   def LEA_ADDri   : F3_2<2, 0b000000,
    512                      (outs IntRegs:$dst), (ins MEMri:$addr),
    513                      "add ${addr:arith}, $dst",
    514                      [(set iPTR:$dst, ADDRri:$addr)]>;
    515 
    516 let Defs = [ICC] in
    517   defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
    518 
    519 let Uses = [ICC] in
    520   defm ADDC   : F3_12np<"addx", 0b001000>;
    521 
    522 let Uses = [ICC], Defs = [ICC] in
    523   defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
    524 
    525 // Section B.15 - Subtract Instructions, p. 110
    526 defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
    527 let Uses = [ICC], Defs = [ICC] in
    528   defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
    529 
    530 let Defs = [ICC] in
    531   defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
    532 
    533 let Uses = [ICC] in
    534   defm SUBC   : F3_12np <"subx", 0b001100>;
    535 
    536 let Defs = [ICC], rd = 0 in {
    537   def CMPrr   : F3_1<2, 0b010100,
    538                      (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
    539                      "cmp $rs1, $rs2",
    540                      [(SPcmpicc i32:$rs1, i32:$rs2)]>;
    541   def CMPri   : F3_2<2, 0b010100,
    542                      (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
    543                      "cmp $rs1, $simm13",
    544                      [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
    545 }
    546 
    547 // Section B.18 - Multiply Instructions, p. 113
    548 let Defs = [Y] in {
    549   defm UMUL : F3_12np<"umul", 0b001010>;
    550   defm SMUL : F3_12  <"smul", 0b001011, mul, IntRegs, i32, simm13Op>;
    551 }
    552 
    553 let Defs = [Y, ICC] in {
    554   defm UMULCC : F3_12np<"umulcc", 0b011010>;
    555   defm SMULCC : F3_12np<"smulcc", 0b011011>;
    556 }
    557 
    558 // Section B.19 - Divide Instructions, p. 115
    559 let Defs = [Y] in {
    560   defm UDIV : F3_12np<"udiv", 0b001110>;
    561   defm SDIV : F3_12np<"sdiv", 0b001111>;
    562 }
    563 
    564 let Defs = [Y, ICC] in {
    565   defm UDIVCC : F3_12np<"udivcc", 0b011110>;
    566   defm SDIVCC : F3_12np<"sdivcc", 0b011111>;
    567 }
    568 
    569 // Section B.20 - SAVE and RESTORE, p. 117
    570 defm SAVE    : F3_12np<"save"   , 0b111100>;
    571 defm RESTORE : F3_12np<"restore", 0b111101>;
    572 
    573 // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
    574 
    575 // unconditional branch class.
    576 class BranchAlways<dag ins, string asmstr, list<dag> pattern>
    577   : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
    578   let isBranch     = 1;
    579   let isTerminator = 1;
    580   let hasDelaySlot = 1;
    581   let isBarrier    = 1;
    582 }
    583 
    584 let cond = 8 in
    585   def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
    586 
    587 
    588 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    589 
    590 // conditional branch class:
    591 class BranchSP<dag ins, string asmstr, list<dag> pattern>
    592  : F2_2<0b010, 0, (outs), ins, asmstr, pattern>;
    593 
    594 // conditional branch with annul class:
    595 class BranchSPA<dag ins, string asmstr, list<dag> pattern>
    596  : F2_2<0b010, 1, (outs), ins, asmstr, pattern>;
    597 
    598 // Conditional branch class on %icc|%xcc with predication:
    599 multiclass IPredBranch<string regstr, list<dag> CCPattern> {
    600   def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    601                   !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
    602                    CCPattern>;
    603   def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    604                   !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
    605                    []>;
    606   def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    607                    !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
    608                    []>;
    609   def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    610                    !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
    611                    []>;
    612 }
    613 
    614 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    615 
    616 
    617 // Indirect branch instructions.
    618 let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
    619      isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
    620   def BINDrr  : F3_1<2, 0b111000,
    621                    (outs), (ins MEMrr:$ptr),
    622                    "jmp $ptr",
    623                    [(brind ADDRrr:$ptr)]>;
    624   def BINDri  : F3_2<2, 0b111000,
    625                    (outs), (ins MEMri:$ptr),
    626                    "jmp $ptr",
    627                    [(brind ADDRri:$ptr)]>;
    628 }
    629 
    630 let Uses = [ICC] in {
    631   def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
    632                          "b$cond $imm22",
    633                         [(SPbricc bb:$imm22, imm:$cond)]>;
    634   def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    635                          "b$cond,a $imm22", []>;
    636 
    637   let Predicates = [HasV9], cc = 0b00 in
    638     defm BPI : IPredBranch<"%icc", []>;
    639 }
    640 
    641 // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
    642 
    643 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    644 
    645 // floating-point conditional branch class:
    646 class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
    647  : F2_2<0b110, 0, (outs), ins, asmstr, pattern>;
    648 
    649 // floating-point conditional branch with annul class:
    650 class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
    651  : F2_2<0b110, 1, (outs), ins, asmstr, pattern>;
    652 
    653 // Conditional branch class on %fcc0-%fcc3 with predication:
    654 multiclass FPredBranch {
    655   def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    656                                          FCCRegs:$cc),
    657                   "fb$cond $cc, $imm19", []>;
    658   def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    659                                          FCCRegs:$cc),
    660                   "fb$cond,a $cc, $imm19", []>;
    661   def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    662                                          FCCRegs:$cc),
    663                   "fb$cond,pn $cc, $imm19", []>;
    664   def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    665                                          FCCRegs:$cc),
    666                   "fb$cond,a,pn $cc, $imm19", []>;
    667 }
    668 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    669 
    670 let Uses = [FCC0] in {
    671   def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
    672                               "fb$cond $imm22",
    673                               [(SPbrfcc bb:$imm22, imm:$cond)]>;
    674   def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    675                              "fb$cond,a $imm22", []>;
    676 }
    677 
    678 let Predicates = [HasV9] in
    679   defm BPF : FPredBranch;
    680 
    681 
    682 // Section B.24 - Call and Link Instruction, p. 125
    683 // This is the only Format 1 instruction
    684 let Uses = [O6],
    685     hasDelaySlot = 1, isCall = 1 in {
    686   def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
    687                     "call $disp", []> {
    688     bits<30> disp;
    689     let op = 1;
    690     let Inst{29-0} = disp;
    691   }
    692 
    693   // indirect calls: special cases of JMPL.
    694   let isCodeGenOnly = 1, rd = 15 in {
    695     def CALLrr : F3_1<2, 0b111000,
    696                       (outs), (ins MEMrr:$ptr, variable_ops),
    697                       "call $ptr",
    698                       [(call ADDRrr:$ptr)]>;
    699     def CALLri : F3_2<2, 0b111000,
    700                       (outs), (ins MEMri:$ptr, variable_ops),
    701                       "call $ptr",
    702                       [(call ADDRri:$ptr)]>;
    703   }
    704 }
    705 
    706 // Section B.28 - Read State Register Instructions
    707 let Uses = [Y], rs1 = 0, rs2 = 0 in
    708   def RDY : F3_1<2, 0b101000,
    709                  (outs IntRegs:$dst), (ins),
    710                  "rd %y, $dst", []>;
    711 
    712 // Section B.29 - Write State Register Instructions
    713 let Defs = [Y], rd = 0 in {
    714   def WRYrr : F3_1<2, 0b110000,
    715                    (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
    716                    "wr $rs1, $rs2, %y", []>;
    717   def WRYri : F3_2<2, 0b110000,
    718                    (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
    719                    "wr $rs1, $simm13, %y", []>;
    720 }
    721 // Convert Integer to Floating-point Instructions, p. 141
    722 def FITOS : F3_3u<2, 0b110100, 0b011000100,
    723                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    724                  "fitos $rs2, $rd",
    725                  [(set FPRegs:$rd, (SPitof FPRegs:$rs2))]>;
    726 def FITOD : F3_3u<2, 0b110100, 0b011001000,
    727                  (outs DFPRegs:$rd), (ins FPRegs:$rs2),
    728                  "fitod $rs2, $rd",
    729                  [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))]>;
    730 def FITOQ : F3_3u<2, 0b110100, 0b011001100,
    731                  (outs QFPRegs:$rd), (ins FPRegs:$rs2),
    732                  "fitoq $rs2, $rd",
    733                  [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
    734                  Requires<[HasHardQuad]>;
    735 
    736 // Convert Floating-point to Integer Instructions, p. 142
    737 def FSTOI : F3_3u<2, 0b110100, 0b011010001,
    738                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    739                  "fstoi $rs2, $rd",
    740                  [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))]>;
    741 def FDTOI : F3_3u<2, 0b110100, 0b011010010,
    742                  (outs FPRegs:$rd), (ins DFPRegs:$rs2),
    743                  "fdtoi $rs2, $rd",
    744                  [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))]>;
    745 def FQTOI : F3_3u<2, 0b110100, 0b011010011,
    746                  (outs FPRegs:$rd), (ins QFPRegs:$rs2),
    747                  "fqtoi $rs2, $rd",
    748                  [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
    749                  Requires<[HasHardQuad]>;
    750 
    751 // Convert between Floating-point Formats Instructions, p. 143
    752 def FSTOD : F3_3u<2, 0b110100, 0b011001001,
    753                  (outs DFPRegs:$rd), (ins FPRegs:$rs2),
    754                  "fstod $rs2, $rd",
    755                  [(set f64:$rd, (fextend f32:$rs2))]>;
    756 def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
    757                  (outs QFPRegs:$rd), (ins FPRegs:$rs2),
    758                  "fstoq $rs2, $rd",
    759                  [(set f128:$rd, (fextend f32:$rs2))]>,
    760                  Requires<[HasHardQuad]>;
    761 def FDTOS : F3_3u<2, 0b110100, 0b011000110,
    762                  (outs FPRegs:$rd), (ins DFPRegs:$rs2),
    763                  "fdtos $rs2, $rd",
    764                  [(set f32:$rd, (fround f64:$rs2))]>;
    765 def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
    766                  (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
    767                  "fdtoq $rs2, $rd",
    768                  [(set f128:$rd, (fextend f64:$rs2))]>,
    769                  Requires<[HasHardQuad]>;
    770 def FQTOS : F3_3u<2, 0b110100, 0b011000111,
    771                  (outs FPRegs:$rd), (ins QFPRegs:$rs2),
    772                  "fqtos $rs2, $rd",
    773                  [(set f32:$rd, (fround f128:$rs2))]>,
    774                  Requires<[HasHardQuad]>;
    775 def FQTOD : F3_3u<2, 0b110100, 0b011001011,
    776                  (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
    777                  "fqtod $rs2, $rd",
    778                  [(set f64:$rd, (fround f128:$rs2))]>,
    779                  Requires<[HasHardQuad]>;
    780 
    781 // Floating-point Move Instructions, p. 144
    782 def FMOVS : F3_3u<2, 0b110100, 0b000000001,
    783                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    784                  "fmovs $rs2, $rd", []>;
    785 def FNEGS : F3_3u<2, 0b110100, 0b000000101,
    786                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    787                  "fnegs $rs2, $rd",
    788                  [(set f32:$rd, (fneg f32:$rs2))]>;
    789 def FABSS : F3_3u<2, 0b110100, 0b000001001,
    790                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    791                  "fabss $rs2, $rd",
    792                  [(set f32:$rd, (fabs f32:$rs2))]>;
    793 
    794 
    795 // Floating-point Square Root Instructions, p.145
    796 def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
    797                   (outs FPRegs:$rd), (ins FPRegs:$rs2),
    798                   "fsqrts $rs2, $rd",
    799                   [(set f32:$rd, (fsqrt f32:$rs2))]>;
    800 def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
    801                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
    802                   "fsqrtd $rs2, $rd",
    803                   [(set f64:$rd, (fsqrt f64:$rs2))]>;
    804 def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
    805                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
    806                   "fsqrtq $rs2, $rd",
    807                   [(set f128:$rd, (fsqrt f128:$rs2))]>,
    808                   Requires<[HasHardQuad]>;
    809 
    810 
    811 
    812 // Floating-point Add and Subtract Instructions, p. 146
    813 def FADDS  : F3_3<2, 0b110100, 0b001000001,
    814                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
    815                   "fadds $rs1, $rs2, $rd",
    816                   [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))]>;
    817 def FADDD  : F3_3<2, 0b110100, 0b001000010,
    818                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
    819                   "faddd $rs1, $rs2, $rd",
    820                   [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))]>;
    821 def FADDQ  : F3_3<2, 0b110100, 0b001000011,
    822                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
    823                   "faddq $rs1, $rs2, $rd",
    824                   [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
    825                   Requires<[HasHardQuad]>;
    826 
    827 def FSUBS  : F3_3<2, 0b110100, 0b001000101,
    828                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
    829                   "fsubs $rs1, $rs2, $rd",
    830                   [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))]>;
    831 def FSUBD  : F3_3<2, 0b110100, 0b001000110,
    832                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
    833                   "fsubd $rs1, $rs2, $rd",
    834                   [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))]>;
    835 def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
    836                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
    837                   "fsubq $rs1, $rs2, $rd",
    838                   [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
    839                   Requires<[HasHardQuad]>;
    840 
    841 
    842 // Floating-point Multiply and Divide Instructions, p. 147
    843 def FMULS  : F3_3<2, 0b110100, 0b001001001,
    844                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
    845                   "fmuls $rs1, $rs2, $rd",
    846                   [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))]>;
    847 def FMULD  : F3_3<2, 0b110100, 0b001001010,
    848                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
    849                   "fmuld $rs1, $rs2, $rd",
    850                   [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))]>;
    851 def FMULQ  : F3_3<2, 0b110100, 0b001001011,
    852                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
    853                   "fmulq $rs1, $rs2, $rd",
    854                   [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
    855                   Requires<[HasHardQuad]>;
    856 
    857 def FSMULD : F3_3<2, 0b110100, 0b001101001,
    858                   (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
    859                   "fsmuld $rs1, $rs2, $rd",
    860                   [(set f64:$rd, (fmul (fextend f32:$rs1),
    861                                         (fextend f32:$rs2)))]>;
    862 def FDMULQ : F3_3<2, 0b110100, 0b001101110,
    863                   (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
    864                   "fdmulq $rs1, $rs2, $rd",
    865                   [(set f128:$rd, (fmul (fextend f64:$rs1),
    866                                          (fextend f64:$rs2)))]>,
    867                   Requires<[HasHardQuad]>;
    868 
    869 def FDIVS  : F3_3<2, 0b110100, 0b001001101,
    870                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
    871                  "fdivs $rs1, $rs2, $rd",
    872                  [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))]>;
    873 def FDIVD  : F3_3<2, 0b110100, 0b001001110,
    874                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
    875                  "fdivd $rs1, $rs2, $rd",
    876                  [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))]>;
    877 def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
    878                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
    879                  "fdivq $rs1, $rs2, $rd",
    880                  [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
    881                  Requires<[HasHardQuad]>;
    882 
    883 // Floating-point Compare Instructions, p. 148
    884 // Note: the 2nd template arg is different for these guys.
    885 // Note 2: the result of a FCMP is not available until the 2nd cycle
    886 // after the instr is retired, but there is no interlock in Sparc V8.
    887 // This behavior is modeled with a forced noop after the instruction in
    888 // DelaySlotFiller.
    889 
    890 let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
    891   def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
    892                    (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
    893                    "fcmps $rs1, $rs2",
    894                    [(SPcmpfcc f32:$rs1, f32:$rs2)]>;
    895   def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
    896                    (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
    897                    "fcmpd $rs1, $rs2",
    898                    [(SPcmpfcc f64:$rs1, f64:$rs2)]>;
    899   def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
    900                    (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
    901                    "fcmpq $rs1, $rs2",
    902                    [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
    903                    Requires<[HasHardQuad]>;
    904 }
    905 
    906 //===----------------------------------------------------------------------===//
    907 // Instructions for Thread Local Storage(TLS).
    908 //===----------------------------------------------------------------------===//
    909 let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
    910 def TLS_ADDrr : F3_1<2, 0b000000,
    911                     (outs IntRegs:$rd),
    912                     (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
    913                     "add $rs1, $rs2, $rd, $sym",
    914                     [(set i32:$rd,
    915                         (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
    916 
    917 let mayLoad = 1 in
    918   def TLS_LDrr : F3_1<3, 0b000000,
    919                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
    920                       "ld [$addr], $dst, $sym",
    921                       [(set i32:$dst,
    922                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
    923 
    924 let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
    925   def TLS_CALL : InstSP<(outs),
    926                         (ins calltarget:$disp, TLSSym:$sym, variable_ops),
    927                         "call $disp, $sym",
    928                         [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
    929   bits<30> disp;
    930   let op = 1;
    931   let Inst{29-0} = disp;
    932 }
    933 }
    934 
    935 //===----------------------------------------------------------------------===//
    936 // V9 Instructions
    937 //===----------------------------------------------------------------------===//
    938 
    939 // V9 Conditional Moves.
    940 let Predicates = [HasV9], Constraints = "$f = $rd" in {
    941   // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
    942   let Uses = [ICC], intcc = 1, cc = 0b00 in {
    943     def MOVICCrr
    944       : F4_1<0b101100, (outs IntRegs:$rd),
    945              (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
    946              "mov$cond %icc, $rs2, $rd",
    947              [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
    948 
    949     def MOVICCri
    950       : F4_2<0b101100, (outs IntRegs:$rd),
    951              (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
    952              "mov$cond %icc, $simm11, $rd",
    953              [(set i32:$rd,
    954                     (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
    955   }
    956 
    957   let Uses = [FCC0], intcc = 0, cc = 0b00 in {
    958     def MOVFCCrr
    959       : F4_1<0b101100, (outs IntRegs:$rd),
    960              (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
    961              "mov$cond %fcc0, $rs2, $rd",
    962              [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
    963     def MOVFCCri
    964       : F4_2<0b101100, (outs IntRegs:$rd),
    965              (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
    966              "mov$cond %fcc0, $simm11, $rd",
    967              [(set i32:$rd,
    968                     (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
    969   }
    970 
    971   let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
    972     def FMOVS_ICC
    973       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
    974              (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
    975              "fmovs$cond %icc, $rs2, $rd",
    976              [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
    977     def FMOVD_ICC
    978       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
    979                (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
    980                "fmovd$cond %icc, $rs2, $rd",
    981                [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
    982     def FMOVQ_ICC
    983       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
    984                (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
    985                "fmovq$cond %icc, $rs2, $rd",
    986                [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
    987                Requires<[HasHardQuad]>;
    988   }
    989 
    990   let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
    991     def FMOVS_FCC
    992       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
    993              (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
    994              "fmovs$cond %fcc0, $rs2, $rd",
    995              [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
    996     def FMOVD_FCC
    997       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
    998              (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
    999              "fmovd$cond %fcc0, $rs2, $rd",
   1000              [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
   1001     def FMOVQ_FCC
   1002       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1003              (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1004              "fmovq$cond %fcc0, $rs2, $rd",
   1005              [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
   1006              Requires<[HasHardQuad]>;
   1007   }
   1008 
   1009 }
   1010 
   1011 // Floating-Point Move Instructions, p. 164 of the V9 manual.
   1012 let Predicates = [HasV9] in {
   1013   def FMOVD : F3_3u<2, 0b110100, 0b000000010,
   1014                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1015                    "fmovd $rs2, $rd", []>;
   1016   def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
   1017                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1018                    "fmovq $rs2, $rd", []>,
   1019                    Requires<[HasHardQuad]>;
   1020   def FNEGD : F3_3u<2, 0b110100, 0b000000110,
   1021                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1022                    "fnegd $rs2, $rd",
   1023                    [(set f64:$rd, (fneg f64:$rs2))]>;
   1024   def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
   1025                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1026                    "fnegq $rs2, $rd",
   1027                    [(set f128:$rd, (fneg f128:$rs2))]>,
   1028                    Requires<[HasHardQuad]>;
   1029   def FABSD : F3_3u<2, 0b110100, 0b000001010,
   1030                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1031                    "fabsd $rs2, $rd",
   1032                    [(set f64:$rd, (fabs f64:$rs2))]>;
   1033   def FABSQ : F3_3u<2, 0b110100, 0b000001011,
   1034                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1035                    "fabsq $rs2, $rd",
   1036                    [(set f128:$rd, (fabs f128:$rs2))]>,
   1037                    Requires<[HasHardQuad]>;
   1038 }
   1039 
   1040 // Floating-point compare instruction with %fcc0-%fcc3.
   1041 def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
   1042                (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1043                "fcmps $rd, $rs1, $rs2", []>;
   1044 def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
   1045                 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1046                 "fcmpd $rd, $rs1, $rs2", []>;
   1047 def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
   1048                 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1049                 "fcmpq $rd, $rs1, $rs2", []>,
   1050                  Requires<[HasHardQuad]>;
   1051 
   1052 let hasSideEffects = 1 in {
   1053   def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
   1054                    (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1055                    "fcmpes $rd, $rs1, $rs2", []>;
   1056   def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
   1057                    (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1058                    "fcmped $rd, $rs1, $rs2", []>;
   1059   def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
   1060                    (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1061                    "fcmpeq $rd, $rs1, $rs2", []>,
   1062                    Requires<[HasHardQuad]>;
   1063 }
   1064 
   1065 // Floating point conditional move instrucitons with %fcc0-%fcc3.
   1066 let Predicates = [HasV9] in {
   1067   let Constraints = "$f = $rd", intcc = 0 in {
   1068     def V9MOVFCCrr
   1069       : F4_1<0b101100, (outs IntRegs:$rd),
   1070              (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1071              "mov$cond $cc, $rs2, $rd", []>;
   1072     def V9MOVFCCri
   1073       : F4_2<0b101100, (outs IntRegs:$rd),
   1074              (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1075              "mov$cond $cc, $simm11, $rd", []>;
   1076     def V9FMOVS_FCC
   1077       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1078              (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1079              "fmovs$cond $opf_cc, $rs2, $rd", []>;
   1080     def V9FMOVD_FCC
   1081       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1082              (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1083              "fmovd$cond $opf_cc, $rs2, $rd", []>;
   1084     def V9FMOVQ_FCC
   1085       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1086              (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1087              "fmovq$cond $opf_cc, $rs2, $rd", []>,
   1088              Requires<[HasHardQuad]>;
   1089   } // Constraints = "$f = $rd", ...
   1090 } // let Predicates = [hasV9]
   1091 
   1092 
   1093 // POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
   1094 // the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
   1095 let rs1 = 0 in
   1096   def POPCrr : F3_1<2, 0b101110,
   1097                     (outs IntRegs:$dst), (ins IntRegs:$src),
   1098                     "popc $src, $dst", []>, Requires<[HasV9]>;
   1099 def : Pat<(ctpop i32:$src),
   1100           (POPCrr (SRLri $src, 0))>;
   1101 
   1102 // Atomic swap.
   1103 let hasSideEffects =1, rd = 0, rs1 = 0b01111, rs2 = 0 in
   1104   def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
   1105 
   1106 let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
   1107  def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
   1108                     "membar $simm13", []>;
   1109 
   1110 let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
   1111   def SWAPrr : F3_1<3, 0b001111,
   1112                  (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
   1113                  "swap [$addr], $dst",
   1114                  [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
   1115   def SWAPri : F3_2<3, 0b001111,
   1116                  (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
   1117                  "swap [$addr], $dst",
   1118                  [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
   1119 }
   1120 
   1121 let Predicates = [HasV9], Constraints = "$swap = $rd" in
   1122   def CASrr: F3_1_asi<3, 0b111100, 0b10000000,
   1123                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
   1124                                      IntRegs:$swap),
   1125                  "cas [$rs1], $rs2, $rd",
   1126                  [(set i32:$rd,
   1127                      (atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>;
   1128 
   1129 let Defs = [ICC] in {
   1130 defm TADDCC   : F3_12np<"taddcc",   0b100000>;
   1131 defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
   1132 
   1133 let hasSideEffects = 1 in {
   1134   defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
   1135   defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
   1136 }
   1137 }
   1138 
   1139 multiclass TRAP<string regStr> {
   1140   def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2,
   1141                                        CCOp:$cond),
   1142               !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>;
   1143   def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm,
   1144                                       CCOp:$cond),
   1145               !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>;
   1146 }
   1147 
   1148 let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
   1149   defm TICC : TRAP<"%icc">;
   1150 
   1151 //===----------------------------------------------------------------------===//
   1152 // Non-Instruction Patterns
   1153 //===----------------------------------------------------------------------===//
   1154 
   1155 // Small immediates.
   1156 def : Pat<(i32 simm13:$val),
   1157           (ORri (i32 G0), imm:$val)>;
   1158 // Arbitrary immediates.
   1159 def : Pat<(i32 imm:$val),
   1160           (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
   1161 
   1162 
   1163 // Global addresses, constant pool entries
   1164 let Predicates = [Is32Bit] in {
   1165 
   1166 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
   1167 def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
   1168 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
   1169 def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
   1170 
   1171 // GlobalTLS addresses
   1172 def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
   1173 def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
   1174 def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
   1175           (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
   1176 def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
   1177           (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
   1178 
   1179 // Blockaddress
   1180 def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
   1181 def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
   1182 
   1183 // Add reg, lo.  This is used when taking the addr of a global/constpool entry.
   1184 def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
   1185 def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
   1186 def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
   1187                         (ADDri $r, tblockaddress:$in)>;
   1188 }
   1189 
   1190 // Calls:
   1191 def : Pat<(call tglobaladdr:$dst),
   1192           (CALL tglobaladdr:$dst)>;
   1193 def : Pat<(call texternalsym:$dst),
   1194           (CALL texternalsym:$dst)>;
   1195 
   1196 // Map integer extload's to zextloads.
   1197 def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1198 def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1199 def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1200 def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1201 def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
   1202 def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
   1203 
   1204 // zextload bool -> zextload byte
   1205 def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1206 def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1207 
   1208 // store 0, addr -> store %g0, addr
   1209 def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
   1210 def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
   1211 
   1212 // store bar for all atomic_fence in V8.
   1213 let Predicates = [HasNoV9] in
   1214   def : Pat<(atomic_fence imm, imm), (STBAR)>;
   1215 
   1216 // atomic_load_32 addr -> load addr
   1217 def : Pat<(i32 (atomic_load ADDRrr:$src)), (LDrr ADDRrr:$src)>;
   1218 def : Pat<(i32 (atomic_load ADDRri:$src)), (LDri ADDRri:$src)>;
   1219 
   1220 // atomic_store_32 val, addr -> store val, addr
   1221 def : Pat<(atomic_store ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
   1222 def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
   1223 
   1224 
   1225 include "SparcInstr64Bit.td"
   1226 include "SparcInstrVIS.td"
   1227 include "SparcInstrAliases.td"
   1228