Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Stack allocation
     12 //===----------------------------------------------------------------------===//
     13 
     14 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
     15                               [(callseq_start timm:$amt)]>;
     16 def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
     17                               [(callseq_end timm:$amt1, timm:$amt2)]>;
     18 
     19 let hasSideEffects = 0 in {
     20   // Takes as input the value of the stack pointer after a dynamic allocation
     21   // has been made.  Sets the output to the address of the dynamically-
     22   // allocated area itself, skipping the outgoing arguments.
     23   //
     24   // This expands to an LA or LAY instruction.  We restrict the offset
     25   // to the range of LA and keep the LAY range in reserve for when
     26   // the size of the outgoing arguments is added.
     27   def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
     28                            [(set GR64:$dst, dynalloc12only:$src)]>;
     29 }
     30 
     31 //===----------------------------------------------------------------------===//
     32 // Control flow instructions
     33 //===----------------------------------------------------------------------===//
     34 
     35 // A return instruction (br %r14).
     36 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
     37   def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
     38 
     39 // Unconditional branches.  R1 is the condition-code mask (all 1s).
     40 let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
     41   let isIndirectBranch = 1 in
     42     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
     43                     "br\t$R2", [(brind ADDR64:$R2)]>;
     44 
     45   // An assembler extended mnemonic for BRC.
     46   def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
     47                  [(br bb:$I2)]>;
     48 
     49   // An assembler extended mnemonic for BRCL.  (The extension is "G"
     50   // rather than "L" because "JL" is "Jump if Less".)
     51   def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
     52 }
     53 
     54 // Conditional branches.  It's easier for LLVM to handle these branches
     55 // in their raw BRC/BRCL form, with the 4-bit condition-code mask being
     56 // the first operand.  It seems friendlier to use mnemonic forms like
     57 // JE and JLH when writing out the assembly though.
     58 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
     59   let isCodeGenOnly = 1, CCMaskFirst = 1 in {
     60     def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
     61                                          brtarget16:$I2), "j$R1\t$I2",
     62                      [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
     63     def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
     64                                            brtarget32:$I2), "jg$R1\t$I2", []>;
     65   }
     66   def AsmBRC : InstRI<0xA74, (outs), (ins imm32zx4:$R1, brtarget16:$I2),
     67                       "brc\t$R1, $I2", []>;
     68   def AsmBRCL : InstRIL<0xC04, (outs), (ins imm32zx4:$R1, brtarget32:$I2),
     69                         "brcl\t$R1, $I2", []>;
     70   def AsmBCR : InstRR<0x07, (outs), (ins imm32zx4:$R1, GR64:$R2),
     71                       "bcr\t$R1, $R2", []>;
     72 }
     73 
     74 // Fused compare-and-branch instructions.  As for normal branches,
     75 // we handle these instructions internally in their raw CRJ-like form,
     76 // but use assembly macros like CRJE when writing them out.
     77 //
     78 // These instructions do not use or clobber the condition codes.
     79 // We nevertheless pretend that they clobber CC, so that we can lower
     80 // them to separate comparisons and BRCLs if the branch ends up being
     81 // out of range.
     82 multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
     83   let isBranch = 1, isTerminator = 1, Defs = [CC] in {
     84     def RJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
     85                                             brtarget16:$RI4),
     86                        "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
     87     def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
     88                                             brtarget16:$RI4),
     89                        "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
     90     def IJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
     91                                             brtarget16:$RI4),
     92                        "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
     93     def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
     94                                             brtarget16:$RI4),
     95                        "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
     96     def LRJ  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
     97                                              brtarget16:$RI4),
     98                         "clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
     99     def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
    100                                              brtarget16:$RI4),
    101                         "clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
    102     def LIJ  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
    103                                              brtarget16:$RI4),
    104                         "clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
    105     def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
    106                                              brtarget16:$RI4),
    107                         "clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
    108   }
    109 }
    110 let isCodeGenOnly = 1 in
    111   defm C : CompareBranches<cond4, "$M3", "">;
    112 defm AsmC : CompareBranches<imm32zx4, "", "$M3, ">;
    113 
    114 // Define AsmParser mnemonics for each general condition-code mask
    115 // (integer or floating-point)
    116 multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
    117   let R1 = ccmask in {
    118     def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
    119                    "j"##name##"\t$I2", []>;
    120     def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
    121                      "jg"##name##"\t$I2", []>;
    122     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), "b"##name##"r\t$R2", []>;
    123   }
    124   def LOCR  : FixedCondUnaryRRF<"locr"##name,  0xB9F2, GR32, GR32, ccmask>;
    125   def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
    126   def LOC   : FixedCondUnaryRSY<"loc"##name,   0xEBF2, GR32, ccmask, 4>;
    127   def LOCG  : FixedCondUnaryRSY<"locg"##name,  0xEBE2, GR64, ccmask, 8>;
    128   def STOC  : FixedCondStoreRSY<"stoc"##name,  0xEBF3, GR32, ccmask, 4>;
    129   def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
    130 }
    131 defm AsmO   : CondExtendedMnemonic<1,  "o">;
    132 defm AsmH   : CondExtendedMnemonic<2,  "h">;
    133 defm AsmNLE : CondExtendedMnemonic<3,  "nle">;
    134 defm AsmL   : CondExtendedMnemonic<4,  "l">;
    135 defm AsmNHE : CondExtendedMnemonic<5,  "nhe">;
    136 defm AsmLH  : CondExtendedMnemonic<6,  "lh">;
    137 defm AsmNE  : CondExtendedMnemonic<7,  "ne">;
    138 defm AsmE   : CondExtendedMnemonic<8,  "e">;
    139 defm AsmNLH : CondExtendedMnemonic<9,  "nlh">;
    140 defm AsmHE  : CondExtendedMnemonic<10, "he">;
    141 defm AsmNL  : CondExtendedMnemonic<11, "nl">;
    142 defm AsmLE  : CondExtendedMnemonic<12, "le">;
    143 defm AsmNH  : CondExtendedMnemonic<13, "nh">;
    144 defm AsmNO  : CondExtendedMnemonic<14, "no">;
    145 
    146 // Define AsmParser mnemonics for each integer condition-code mask.
    147 // This is like the list above, except that condition 3 is not possible
    148 // and that the low bit of the mask is therefore always 0.  This means
    149 // that each condition has two names.  Conditions "o" and "no" are not used.
    150 //
    151 // We don't make one of the two names an alias of the other because
    152 // we need the custom parsing routines to select the correct register class.
    153 multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
    154   let M3 = ccmask in {
    155     def CR  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
    156                                             brtarget16:$RI4),
    157                        "crj"##name##"\t$R1, $R2, $RI4", []>;
    158     def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
    159                                             brtarget16:$RI4),
    160                        "cgrj"##name##"\t$R1, $R2, $RI4", []>;
    161     def CI  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
    162                                             brtarget16:$RI4),
    163                        "cij"##name##"\t$R1, $I2, $RI4", []>;
    164     def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
    165                                             brtarget16:$RI4),
    166                        "cgij"##name##"\t$R1, $I2, $RI4", []>;
    167     def CLR  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2,
    168                                             brtarget16:$RI4),
    169                         "clrj"##name##"\t$R1, $R2, $RI4", []>;
    170     def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2,
    171                                              brtarget16:$RI4),
    172                         "clgrj"##name##"\t$R1, $R2, $RI4", []>;
    173     def CLI  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2,
    174                                              brtarget16:$RI4),
    175                         "clij"##name##"\t$R1, $I2, $RI4", []>;
    176     def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2,
    177                                              brtarget16:$RI4),
    178                         "clgij"##name##"\t$R1, $I2, $RI4", []>;
    179   }
    180 }
    181 multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
    182   : IntCondExtendedMnemonicA<ccmask, name1> {
    183   let isAsmParserOnly = 1 in
    184     defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
    185 }
    186 defm AsmJH   : IntCondExtendedMnemonic<2,  "h",  "nle">;
    187 defm AsmJL   : IntCondExtendedMnemonic<4,  "l",  "nhe">;
    188 defm AsmJLH  : IntCondExtendedMnemonic<6,  "lh", "ne">;
    189 defm AsmJE   : IntCondExtendedMnemonic<8,  "e",  "nlh">;
    190 defm AsmJHE  : IntCondExtendedMnemonic<10, "he", "nl">;
    191 defm AsmJLE  : IntCondExtendedMnemonic<12, "le", "nh">;
    192 
    193 // Decrement a register and branch if it is nonzero.  These don't clobber CC,
    194 // but we might need to split long branches into sequences that do.
    195 let Defs = [CC] in {
    196   def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
    197   def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
    198 }
    199 
    200 //===----------------------------------------------------------------------===//
    201 // Select instructions
    202 //===----------------------------------------------------------------------===//
    203 
    204 def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
    205 def Select32    : SelectWrapper<GR32>;
    206 def Select64    : SelectWrapper<GR64>;
    207 
    208 // We don't define 32-bit Mux stores because the low-only STOC should
    209 // always be used if possible.
    210 defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
    211                                  nonvolatile_anyextloadi8, bdxaddr20only>,
    212                       Requires<[FeatureHighWord]>;
    213 defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
    214                                  nonvolatile_anyextloadi16, bdxaddr20only>,
    215                       Requires<[FeatureHighWord]>;
    216 defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
    217                                  nonvolatile_anyextloadi8, bdxaddr20only>;
    218 defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
    219                                  nonvolatile_anyextloadi16, bdxaddr20only>;
    220 defm CondStore32    : CondStores<GR32, nonvolatile_store,
    221                                  nonvolatile_load, bdxaddr20only>;
    222 
    223 defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
    224                     nonvolatile_anyextloadi8, bdxaddr20only>;
    225 defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
    226                     nonvolatile_anyextloadi16, bdxaddr20only>;
    227 defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
    228                     nonvolatile_anyextloadi32, bdxaddr20only>;
    229 defm CondStore64 : CondStores<GR64, nonvolatile_store,
    230                               nonvolatile_load, bdxaddr20only>;
    231 
    232 //===----------------------------------------------------------------------===//
    233 // Call instructions
    234 //===----------------------------------------------------------------------===//
    235 
    236 let isCall = 1, Defs = [R14D, CC] in {
    237   def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
    238                         [(z_call pcrel32:$I2)]>;
    239   def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
    240                         [(z_call ADDR64:$R2)]>;
    241 }
    242 
    243 // Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
    244 // are argument registers and since branching to R0 is a no-op.
    245 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
    246   def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
    247                      [(z_sibcall pcrel32:$I2)]>;
    248   let Uses = [R1D] in
    249     def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
    250 }
    251 
    252 // TLS calls.  These will be lowered into a call to __tls_get_offset,
    253 // with an extra relocation specifying the TLS symbol.
    254 let isCall = 1, Defs = [R14D, CC] in {
    255   def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
    256                          [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
    257   def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
    258                          [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
    259 }
    260 
    261 // Define the general form of the call instructions for the asm parser.
    262 // These instructions don't hard-code %r14 as the return address register.
    263 // Allow an optional TLS marker symbol to generate TLS call relocations.
    264 def BRAS  : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16tls:$I2),
    265                    "bras\t$R1, $I2", []>;
    266 def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32tls:$I2),
    267                     "brasl\t$R1, $I2", []>;
    268 def BASR  : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
    269                    "basr\t$R1, $R2", []>;
    270 
    271 //===----------------------------------------------------------------------===//
    272 // Move instructions
    273 //===----------------------------------------------------------------------===//
    274 
    275 // Register moves.
    276 let hasSideEffects = 0 in {
    277   // Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
    278   def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
    279               Requires<[FeatureHighWord]>;
    280   def LR  : UnaryRR <"l",  0x18,   null_frag, GR32, GR32>;
    281   def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
    282 }
    283 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    284   def LTR  : UnaryRR <"lt",  0x12,   null_frag, GR32, GR32>;
    285   def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
    286 }
    287 
    288 // Move on condition.
    289 let isCodeGenOnly = 1, Uses = [CC] in {
    290   def LOCR  : CondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
    291   def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
    292 }
    293 let Uses = [CC] in {
    294   def AsmLOCR  : AsmCondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
    295   def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
    296 }
    297 
    298 // Immediate moves.
    299 let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
    300     isReMaterializable = 1 in {
    301   // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
    302   // deopending on the choice of register.
    303   def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
    304                Requires<[FeatureHighWord]>;
    305   def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
    306   def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
    307 
    308   // Other 16-bit immediates.
    309   def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
    310   def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
    311   def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
    312   def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
    313 
    314   // 32-bit immediates.
    315   def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
    316   def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
    317   def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
    318 }
    319 
    320 // Register loads.
    321 let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
    322   // Expands to L, LY or LFH, depending on the choice of register.
    323   def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
    324              Requires<[FeatureHighWord]>;
    325   defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
    326   def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
    327             Requires<[FeatureHighWord]>;
    328   def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
    329 
    330   // These instructions are split after register allocation, so we don't
    331   // want a custom inserter.
    332   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    333     def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
    334                       [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
    335   }
    336 }
    337 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    338   def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
    339   def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
    340 }
    341 
    342 let canFoldAsLoad = 1 in {
    343   def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
    344   def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
    345 }
    346 
    347 // Load on condition.
    348 let isCodeGenOnly = 1, Uses = [CC] in {
    349   def LOC  : CondUnaryRSY<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
    350   def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
    351 }
    352 let Uses = [CC] in {
    353   def AsmLOC  : AsmCondUnaryRSY<"loc",  0xEBF2, GR32, 4>;
    354   def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
    355 }
    356 
    357 // Register stores.
    358 let SimpleBDXStore = 1 in {
    359   // Expands to ST, STY or STFH, depending on the choice of register.
    360   def STMux : StoreRXYPseudo<store, GRX32, 4>,
    361               Requires<[FeatureHighWord]>;
    362   defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
    363   def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
    364              Requires<[FeatureHighWord]>;
    365   def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
    366 
    367   // These instructions are split after register allocation, so we don't
    368   // want a custom inserter.
    369   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    370     def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
    371                        [(store GR128:$src, bdxaddr20only128:$dst)]>;
    372   }
    373 }
    374 def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
    375 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
    376 
    377 // Store on condition.
    378 let isCodeGenOnly = 1, Uses = [CC] in {
    379   def STOC  : CondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
    380   def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
    381 }
    382 let Uses = [CC] in {
    383   def AsmSTOC  : AsmCondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
    384   def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
    385 }
    386 
    387 // 8-bit immediate stores to 8-bit fields.
    388 defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
    389 
    390 // 16-bit immediate stores to 16-, 32- or 64-bit fields.
    391 def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
    392 def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
    393 def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
    394 
    395 // Memory-to-memory moves.
    396 let mayLoad = 1, mayStore = 1 in
    397   defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
    398 
    399 // String moves.
    400 let mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L] in
    401   defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
    402 
    403 //===----------------------------------------------------------------------===//
    404 // Sign extensions
    405 //===----------------------------------------------------------------------===//
    406 //
    407 // Note that putting these before zero extensions mean that we will prefer
    408 // them for anyextload*.  There's not really much to choose between the two
    409 // either way, but signed-extending loads have a short LH and a long LHY,
    410 // while zero-extending loads have only the long LLH.
    411 //
    412 //===----------------------------------------------------------------------===//
    413 
    414 // 32-bit extensions from registers.
    415 let hasSideEffects = 0 in {
    416   def LBR : UnaryRRE<"lb", 0xB926, sext8,  GR32, GR32>;
    417   def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
    418 }
    419 
    420 // 64-bit extensions from registers.
    421 let hasSideEffects = 0 in {
    422   def LGBR : UnaryRRE<"lgb", 0xB906, sext8,  GR64, GR64>;
    423   def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
    424   def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
    425 }
    426 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
    427   def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>;
    428 
    429 // Match 32-to-64-bit sign extensions in which the source is already
    430 // in a 64-bit register.
    431 def : Pat<(sext_inreg GR64:$src, i32),
    432           (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
    433 
    434 // 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
    435 // depending on the choice of register.
    436 def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
    437             Requires<[FeatureHighWord]>;
    438 def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
    439 def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
    440           Requires<[FeatureHighWord]>;
    441 
    442 // 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
    443 // depending on the choice of register.
    444 def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
    445             Requires<[FeatureHighWord]>;
    446 defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
    447 def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
    448             Requires<[FeatureHighWord]>;
    449 def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
    450 
    451 // 64-bit extensions from memory.
    452 def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
    453 def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
    454 def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
    455 def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
    456 def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
    457 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
    458   def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
    459 
    460 //===----------------------------------------------------------------------===//
    461 // Zero extensions
    462 //===----------------------------------------------------------------------===//
    463 
    464 // 32-bit extensions from registers.
    465 let hasSideEffects = 0 in {
    466   // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
    467   def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
    468                 Requires<[FeatureHighWord]>;
    469   def LLCR    : UnaryRRE<"llc", 0xB994, zext8,  GR32, GR32>;
    470   // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
    471   def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>,
    472                 Requires<[FeatureHighWord]>;
    473   def LLHR    : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
    474 }
    475 
    476 // 64-bit extensions from registers.
    477 let hasSideEffects = 0 in {
    478   def LLGCR : UnaryRRE<"llgc", 0xB984, zext8,  GR64, GR64>;
    479   def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
    480   def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
    481 }
    482 
    483 // Match 32-to-64-bit zero extensions in which the source is already
    484 // in a 64-bit register.
    485 def : Pat<(and GR64:$src, 0xffffffff),
    486           (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
    487 
    488 // 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
    489 // depending on the choice of register.
    490 def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
    491              Requires<[FeatureHighWord]>;
    492 def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
    493 def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GR32, 1>,
    494            Requires<[FeatureHighWord]>;
    495 
    496 // 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
    497 // depending on the choice of register.
    498 def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
    499              Requires<[FeatureHighWord]>;
    500 def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
    501 def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GR32, 2>,
    502             Requires<[FeatureHighWord]>;
    503 def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
    504 
    505 // 64-bit extensions from memory.
    506 def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
    507 def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
    508 def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
    509 def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
    510 def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
    511 
    512 //===----------------------------------------------------------------------===//
    513 // Truncations
    514 //===----------------------------------------------------------------------===//
    515 
    516 // Truncations of 64-bit registers to 32-bit registers.
    517 def : Pat<(i32 (trunc GR64:$src)),
    518           (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
    519 
    520 // Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
    521 // STC, STCY or STCH, depending on the choice of register.
    522 def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
    523              Requires<[FeatureHighWord]>;
    524 defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
    525 def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
    526            Requires<[FeatureHighWord]>;
    527 
    528 // Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
    529 // STH, STHY or STHH, depending on the choice of register.
    530 def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
    531              Requires<[FeatureHighWord]>;
    532 defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
    533 def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
    534            Requires<[FeatureHighWord]>;
    535 def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
    536 
    537 // Truncations of 64-bit registers to memory.
    538 defm : StoreGR64Pair<STC, STCY, truncstorei8>;
    539 defm : StoreGR64Pair<STH, STHY, truncstorei16>;
    540 def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
    541 defm : StoreGR64Pair<ST, STY, truncstorei32>;
    542 def  : StoreGR64PC<STRL, aligned_truncstorei32>;
    543 
    544 //===----------------------------------------------------------------------===//
    545 // Multi-register moves
    546 //===----------------------------------------------------------------------===//
    547 
    548 // Multi-register loads.
    549 def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
    550 
    551 // Multi-register stores.
    552 def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
    553 
    554 //===----------------------------------------------------------------------===//
    555 // Byte swaps
    556 //===----------------------------------------------------------------------===//
    557 
    558 // Byte-swapping register moves.
    559 let hasSideEffects = 0 in {
    560   def LRVR  : UnaryRRE<"lrv",  0xB91F, bswap, GR32, GR32>;
    561   def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
    562 }
    563 
    564 // Byte-swapping loads.  Unlike normal loads, these instructions are
    565 // allowed to access storage more than once.
    566 def LRV  : UnaryRXY<"lrv",  0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
    567 def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
    568 
    569 // Likewise byte-swapping stores.
    570 def STRV  : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
    571 def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
    572                      GR64, 8>;
    573 
    574 //===----------------------------------------------------------------------===//
    575 // Load address instructions
    576 //===----------------------------------------------------------------------===//
    577 
    578 // Load BDX-style addresses.
    579 let hasSideEffects = 0, isAsCheapAsAMove = 1, isReMaterializable = 1,
    580     DispKey = "la" in {
    581   let DispSize = "12" in
    582     def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
    583                     "la\t$R1, $XBD2",
    584                     [(set GR64:$R1, laaddr12pair:$XBD2)]>;
    585   let DispSize = "20" in
    586     def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
    587                       "lay\t$R1, $XBD2",
    588                       [(set GR64:$R1, laaddr20pair:$XBD2)]>;
    589 }
    590 
    591 // Load a PC-relative address.  There's no version of this instruction
    592 // with a 16-bit offset, so there's no relaxation.
    593 let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
    594     isReMaterializable = 1 in {
    595   def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
    596                      "larl\t$R1, $I2",
    597                      [(set GR64:$R1, pcrel32:$I2)]>;
    598 }
    599 
    600 // Load the Global Offset Table address.  This will be lowered into a
    601 //     larl $R1, _GLOBAL_OFFSET_TABLE_
    602 // instruction.
    603 def GOT : Alias<6, (outs GR64:$R1), (ins),
    604                 [(set GR64:$R1, (global_offset_table))]>;
    605 
    606 //===----------------------------------------------------------------------===//
    607 // Absolute and Negation
    608 //===----------------------------------------------------------------------===//
    609 
    610 let Defs = [CC] in {
    611   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    612     def LPR  : UnaryRR <"lp",  0x10,   z_iabs, GR32, GR32>;
    613     def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs, GR64, GR64>;
    614   }
    615   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    616     def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>;
    617 }
    618 def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
    619 def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
    620 defm : SXU<z_iabs,   LPGFR>;
    621 defm : SXU<z_iabs64, LPGFR>;
    622 
    623 let Defs = [CC] in {
    624   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    625     def LNR  : UnaryRR <"ln",  0x11,   z_inegabs, GR32, GR32>;
    626     def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs, GR64, GR64>;
    627   }
    628   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    629     def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>;
    630 }
    631 def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
    632 def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
    633 defm : SXU<z_inegabs,   LNGFR>;
    634 defm : SXU<z_inegabs64, LNGFR>;
    635 
    636 let Defs = [CC] in {
    637   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    638     def LCR  : UnaryRR <"lc",  0x13,   ineg, GR32, GR32>;
    639     def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
    640   }
    641   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    642     def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
    643 }
    644 defm : SXU<ineg, LCGFR>;
    645 
    646 //===----------------------------------------------------------------------===//
    647 // Insertion
    648 //===----------------------------------------------------------------------===//
    649 
    650 let isCodeGenOnly = 1 in
    651   defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
    652 defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
    653 
    654 defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
    655 defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
    656 
    657 defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
    658 defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
    659 
    660 // Insertions of a 16-bit immediate, leaving other bits unaffected.
    661 // We don't have or_as_insert equivalents of these operations because
    662 // OI is available instead.
    663 //
    664 // IIxMux expands to II[LH]x, depending on the choice of register.
    665 def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
    666              Requires<[FeatureHighWord]>;
    667 def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
    668              Requires<[FeatureHighWord]>;
    669 def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
    670 def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
    671 def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
    672 def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
    673 def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
    674 def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
    675 def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
    676 def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
    677 
    678 // ...likewise for 32-bit immediates.  For GR32s this is a general
    679 // full-width move.  (We use IILF rather than something like LLILF
    680 // for 32-bit moves because IILF leaves the upper 32 bits of the
    681 // GR64 unchanged.)
    682 let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
    683   def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
    684                Requires<[FeatureHighWord]>;
    685   def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
    686   def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
    687 }
    688 def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
    689 def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
    690 
    691 // An alternative model of inserthf, with the first operand being
    692 // a zero-extended value.
    693 def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
    694           (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
    695                   imm64hf32:$imm)>;
    696 
    697 //===----------------------------------------------------------------------===//
    698 // Addition
    699 //===----------------------------------------------------------------------===//
    700 
    701 // Plain addition.
    702 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    703   // Addition of a register.
    704   let isCommutable = 1 in {
    705     defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
    706     defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
    707   }
    708   def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
    709 
    710   // Addition of signed 16-bit immediates.
    711   defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>;
    712   defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
    713   defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
    714 
    715   // Addition of signed 32-bit immediates.
    716   def AFIMux : BinaryRIPseudo<add, GRX32, simm32>,
    717                Requires<[FeatureHighWord]>;
    718   def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
    719   def AIH  : BinaryRIL<"aih",  0xCC8, add, GRH32, simm32>,
    720              Requires<[FeatureHighWord]>;
    721   def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
    722 
    723   // Addition of memory.
    724   defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
    725   defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
    726   def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
    727   def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;
    728 
    729   // Addition to memory.
    730   def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
    731   def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
    732 }
    733 defm : SXB<add, GR64, AGFR>;
    734 
    735 // Addition producing a carry.
    736 let Defs = [CC] in {
    737   // Addition of a register.
    738   let isCommutable = 1 in {
    739     defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
    740     defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
    741   }
    742   def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
    743 
    744   // Addition of signed 16-bit immediates.
    745   def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
    746                 Requires<[FeatureDistinctOps]>;
    747   def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
    748                 Requires<[FeatureDistinctOps]>;
    749 
    750   // Addition of unsigned 32-bit immediates.
    751   def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
    752   def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
    753 
    754   // Addition of memory.
    755   defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
    756   def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
    757   def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;
    758 }
    759 defm : ZXB<addc, GR64, ALGFR>;
    760 
    761 // Addition producing and using a carry.
    762 let Defs = [CC], Uses = [CC] in {
    763   // Addition of a register.
    764   def ALCR  : BinaryRRE<"alc",  0xB998, adde, GR32, GR32>;
    765   def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
    766 
    767   // Addition of memory.
    768   def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
    769   def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
    770 }
    771 
    772 //===----------------------------------------------------------------------===//
    773 // Subtraction
    774 //===----------------------------------------------------------------------===//
    775 
    776 // Plain subtraction.  Although immediate forms exist, we use the
    777 // add-immediate instruction instead.
    778 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    779   // Subtraction of a register.
    780   defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
    781   def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
    782   defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
    783 
    784   // Subtraction of memory.
    785   defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
    786   defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
    787   def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
    788   def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
    789 }
    790 defm : SXB<sub, GR64, SGFR>;
    791 
    792 // Subtraction producing a carry.
    793 let Defs = [CC] in {
    794   // Subtraction of a register.
    795   defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
    796   def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
    797   defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
    798 
    799   // Subtraction of unsigned 32-bit immediates.  These don't match
    800   // subc because we prefer addc for constants.
    801   def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
    802   def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
    803 
    804   // Subtraction of memory.
    805   defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
    806   def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
    807   def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
    808 }
    809 defm : ZXB<subc, GR64, SLGFR>;
    810 
    811 // Subtraction producing and using a carry.
    812 let Defs = [CC], Uses = [CC] in {
    813   // Subtraction of a register.
    814   def SLBR  : BinaryRRE<"slb",  0xB999, sube, GR32, GR32>;
    815   def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
    816 
    817   // Subtraction of memory.
    818   def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
    819   def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
    820 }
    821 
    822 //===----------------------------------------------------------------------===//
    823 // AND
    824 //===----------------------------------------------------------------------===//
    825 
    826 let Defs = [CC] in {
    827   // ANDs of a register.
    828   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    829     defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
    830     defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
    831   }
    832 
    833   let isConvertibleToThreeAddress = 1 in {
    834     // ANDs of a 16-bit immediate, leaving other bits unaffected.
    835     // The CC result only reflects the 16-bit field, not the full register.
    836     //
    837     // NIxMux expands to NI[LH]x, depending on the choice of register.
    838     def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
    839                  Requires<[FeatureHighWord]>;
    840     def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
    841                  Requires<[FeatureHighWord]>;
    842     def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
    843     def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
    844     def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
    845     def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
    846     def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
    847     def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
    848     def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
    849     def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
    850 
    851     // ANDs of a 32-bit immediate, leaving other bits unaffected.
    852     // The CC result only reflects the 32-bit field, which means we can
    853     // use it as a zero indicator for i32 operations but not otherwise.
    854     let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    855       // Expands to NILF or NIHF, depending on the choice of register.
    856       def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
    857                    Requires<[FeatureHighWord]>;
    858       def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
    859       def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
    860     }
    861     def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
    862     def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
    863   }
    864 
    865   // ANDs of memory.
    866   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    867     defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
    868     def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; 
    869   }
    870 
    871   // AND to memory
    872   defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
    873 
    874   // Block AND.
    875   let mayLoad = 1, mayStore = 1 in
    876     defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
    877 }
    878 defm : RMWIByte<and, bdaddr12pair, NI>;
    879 defm : RMWIByte<and, bdaddr20pair, NIY>;
    880 
    881 //===----------------------------------------------------------------------===//
    882 // OR
    883 //===----------------------------------------------------------------------===//
    884 
    885 let Defs = [CC] in {
    886   // ORs of a register.
    887   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    888     defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
    889     defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
    890   }
    891 
    892   // ORs of a 16-bit immediate, leaving other bits unaffected.
    893   // The CC result only reflects the 16-bit field, not the full register.
    894   //
    895   // OIxMux expands to OI[LH]x, depending on the choice of register.
    896   def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
    897                Requires<[FeatureHighWord]>;
    898   def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
    899                Requires<[FeatureHighWord]>;
    900   def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
    901   def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
    902   def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
    903   def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
    904   def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
    905   def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
    906   def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
    907   def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
    908 
    909   // ORs of a 32-bit immediate, leaving other bits unaffected.
    910   // The CC result only reflects the 32-bit field, which means we can
    911   // use it as a zero indicator for i32 operations but not otherwise.
    912   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    913     // Expands to OILF or OIHF, depending on the choice of register.
    914     def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
    915                  Requires<[FeatureHighWord]>;
    916     def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
    917     def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
    918   }
    919   def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
    920   def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
    921 
    922   // ORs of memory.
    923   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    924     defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
    925     def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
    926   }
    927 
    928   // OR to memory
    929   defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
    930 
    931   // Block OR.
    932   let mayLoad = 1, mayStore = 1 in
    933     defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
    934 }
    935 defm : RMWIByte<or, bdaddr12pair, OI>;
    936 defm : RMWIByte<or, bdaddr20pair, OIY>;
    937 
    938 //===----------------------------------------------------------------------===//
    939 // XOR
    940 //===----------------------------------------------------------------------===//
    941 
    942 let Defs = [CC] in {
    943   // XORs of a register.
    944   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    945     defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
    946     defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
    947   }
    948 
    949   // XORs of a 32-bit immediate, leaving other bits unaffected.
    950   // The CC result only reflects the 32-bit field, which means we can
    951   // use it as a zero indicator for i32 operations but not otherwise.
    952   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    953     // Expands to XILF or XIHF, depending on the choice of register.
    954     def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
    955                  Requires<[FeatureHighWord]>;
    956     def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
    957     def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
    958   }
    959   def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
    960   def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
    961 
    962   // XORs of memory.
    963   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    964     defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
    965     def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
    966   }
    967 
    968   // XOR to memory
    969   defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
    970 
    971   // Block XOR.
    972   let mayLoad = 1, mayStore = 1 in
    973     defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
    974 }
    975 defm : RMWIByte<xor, bdaddr12pair, XI>;
    976 defm : RMWIByte<xor, bdaddr20pair, XIY>;
    977 
    978 //===----------------------------------------------------------------------===//
    979 // Multiplication
    980 //===----------------------------------------------------------------------===//
    981 
    982 // Multiplication of a register.
    983 let isCommutable = 1 in {
    984   def MSR  : BinaryRRE<"ms",  0xB252, mul, GR32, GR32>;
    985   def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
    986 }
    987 def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
    988 defm : SXB<mul, GR64, MSGFR>;
    989 
    990 // Multiplication of a signed 16-bit immediate.
    991 def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
    992 def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
    993 
    994 // Multiplication of a signed 32-bit immediate.
    995 def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
    996 def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
    997 
    998 // Multiplication of memory.
    999 defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
   1000 defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
   1001 def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
   1002 def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
   1003 
   1004 // Multiplication of a register, producing two results.
   1005 def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
   1006 
   1007 // Multiplication of memory, producing two results.
   1008 def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
   1009 
   1010 //===----------------------------------------------------------------------===//
   1011 // Division and remainder
   1012 //===----------------------------------------------------------------------===//
   1013 
   1014 // Division and remainder, from registers.
   1015 def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
   1016 def DSGR  : BinaryRRE<"dsg",  0xB90D, z_sdivrem64, GR128, GR64>;
   1017 def DLR   : BinaryRRE<"dl",   0xB997, z_udivrem32, GR128, GR32>;
   1018 def DLGR  : BinaryRRE<"dlg",  0xB987, z_udivrem64, GR128, GR64>;
   1019 
   1020 // Division and remainder, from memory.
   1021 def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
   1022 def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load, 8>;
   1023 def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load, 4>;
   1024 def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load, 8>;
   1025 
   1026 //===----------------------------------------------------------------------===//
   1027 // Shifts
   1028 //===----------------------------------------------------------------------===//
   1029 
   1030 // Shift left.
   1031 let hasSideEffects = 0 in {
   1032   defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
   1033   def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>;
   1034 }
   1035 
   1036 // Logical shift right.
   1037 let hasSideEffects = 0 in {
   1038   defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
   1039   def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>;
   1040 }
   1041 
   1042 // Arithmetic shift right.
   1043 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
   1044   defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
   1045   def SRAG : BinaryRSY<"srag", 0xEB0A, sra, GR64>;
   1046 }
   1047 
   1048 // Rotate left.
   1049 let hasSideEffects = 0 in {
   1050   def RLL  : BinaryRSY<"rll",  0xEB1D, rotl, GR32>;
   1051   def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>;
   1052 }
   1053 
   1054 // Rotate second operand left and inserted selected bits into first operand.
   1055 // These can act like 32-bit operands provided that the constant start and
   1056 // end bits (operands 2 and 3) are in the range [32, 64).
   1057 let Defs = [CC] in {
   1058   let isCodeGenOnly = 1 in
   1059     def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
   1060   let CCValues = 0xE, CompareZeroCCMask = 0xE in
   1061     def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
   1062 }
   1063 
   1064 // On zEC12 we have a variant of RISBG that does not set CC.
   1065 let Predicates = [FeatureMiscellaneousExtensions] in
   1066   def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
   1067 
   1068 // Forms of RISBG that only affect one word of the destination register.
   1069 // They do not set CC.
   1070 let Predicates = [FeatureHighWord] in {
   1071   def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
   1072   def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
   1073   def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
   1074   def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
   1075   def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
   1076   def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
   1077   def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
   1078 }
   1079 
   1080 // Rotate second operand left and perform a logical operation with selected
   1081 // bits of the first operand.  The CC result only describes the selected bits,
   1082 // so isn't useful for a full comparison against zero.
   1083 let Defs = [CC] in {
   1084   def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
   1085   def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
   1086   def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
   1087 }
   1088 
   1089 //===----------------------------------------------------------------------===//
   1090 // Comparison
   1091 //===----------------------------------------------------------------------===//
   1092 
   1093 // Signed comparisons.  We put these before the unsigned comparisons because
   1094 // some of the signed forms have COMPARE AND BRANCH equivalents whereas none
   1095 // of the unsigned forms do.
   1096 let Defs = [CC], CCValues = 0xE in {
   1097   // Comparison with a register.
   1098   def CR   : CompareRR <"c",   0x19,   z_scmp,    GR32, GR32>;
   1099   def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
   1100   def CGR  : CompareRRE<"cg",  0xB920, z_scmp,    GR64, GR64>;
   1101 
   1102   // Comparison with a signed 16-bit immediate.
   1103   def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
   1104   def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
   1105 
   1106   // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
   1107   // depending on the choice of register.
   1108   def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
   1109                Requires<[FeatureHighWord]>;
   1110   def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
   1111   def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
   1112              Requires<[FeatureHighWord]>;
   1113   def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
   1114 
   1115   // Comparison with memory.
   1116   defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
   1117   def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
   1118                Requires<[FeatureHighWord]>;
   1119   defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
   1120   def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
   1121                Requires<[FeatureHighWord]>;
   1122   def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
   1123   def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
   1124   def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
   1125   def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
   1126   def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
   1127   def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
   1128   def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
   1129   def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
   1130 
   1131   // Comparison between memory and a signed 16-bit immediate.
   1132   def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
   1133   def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
   1134   def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
   1135 }
   1136 defm : SXB<z_scmp, GR64, CGFR>;
   1137 
   1138 // Unsigned comparisons.
   1139 let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
   1140   // Comparison with a register.
   1141   def CLR   : CompareRR <"cl",   0x15,   z_ucmp,    GR32, GR32>;
   1142   def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
   1143   def CLGR  : CompareRRE<"clg",  0xB921, z_ucmp,    GR64, GR64>;
   1144 
   1145   // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
   1146   // or CLIH, depending on the choice of register.
   1147   def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
   1148                 Requires<[FeatureHighWord]>;
   1149   def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
   1150   def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GR32, uimm32>,
   1151               Requires<[FeatureHighWord]>;
   1152   def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
   1153 
   1154   // Comparison with memory.
   1155   def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
   1156                 Requires<[FeatureHighWord]>;
   1157   defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
   1158   def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
   1159                 Requires<[FeatureHighWord]>;
   1160   def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
   1161   def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
   1162   def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
   1163                              aligned_azextloadi16>;
   1164   def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
   1165                              aligned_load>;
   1166   def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
   1167                              aligned_azextloadi16>;
   1168   def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
   1169                              aligned_azextloadi32>;
   1170   def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
   1171                              aligned_load>;
   1172 
   1173   // Comparison between memory and an unsigned 8-bit immediate.
   1174   defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
   1175 
   1176   // Comparison between memory and an unsigned 16-bit immediate.
   1177   def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
   1178   def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
   1179   def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
   1180 }
   1181 defm : ZXB<z_ucmp, GR64, CLGFR>;
   1182 
   1183 // Memory-to-memory comparison.
   1184 let mayLoad = 1, Defs = [CC] in
   1185   defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
   1186 
   1187 // String comparison.
   1188 let mayLoad = 1, Defs = [CC], Uses = [R0L] in
   1189   defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
   1190 
   1191 // Test under mask.
   1192 let Defs = [CC] in {
   1193   // TMxMux expands to TM[LH]x, depending on the choice of register.
   1194   def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
   1195                Requires<[FeatureHighWord]>;
   1196   def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
   1197                Requires<[FeatureHighWord]>;
   1198   def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
   1199   def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
   1200   def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
   1201   def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
   1202 
   1203   def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
   1204   def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
   1205   def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
   1206   def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
   1207 
   1208   defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
   1209 }
   1210 
   1211 //===----------------------------------------------------------------------===//
   1212 // Prefetch
   1213 //===----------------------------------------------------------------------===//
   1214 
   1215 def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
   1216 def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
   1217 
   1218 //===----------------------------------------------------------------------===//
   1219 // Atomic operations
   1220 //===----------------------------------------------------------------------===//
   1221 
   1222 def Serialize : Alias<2, (outs), (ins), [(z_serialize)]>;
   1223 
   1224 let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
   1225   def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
   1226   def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
   1227   def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
   1228   def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
   1229   def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
   1230   def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
   1231   def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
   1232   def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
   1233   def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
   1234   def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
   1235 }
   1236 
   1237 def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
   1238 def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
   1239 def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
   1240 
   1241 def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
   1242 def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
   1243 let Predicates = [FeatureNoInterlockedAccess1] in {
   1244   def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
   1245   def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
   1246   def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
   1247   def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
   1248   def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
   1249   def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
   1250 }
   1251 
   1252 def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
   1253 def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
   1254 def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
   1255 
   1256 def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
   1257 def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
   1258 let Predicates = [FeatureNoInterlockedAccess1] in {
   1259   def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
   1260   def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
   1261                                                  imm32ll16c>;
   1262   def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
   1263                                                  imm32lh16c>;
   1264   def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
   1265   def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
   1266   def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1267                                                  imm64ll16c>;
   1268   def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1269                                                  imm64lh16c>;
   1270   def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1271                                                  imm64hl16c>;
   1272   def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1273                                                  imm64hh16c>;
   1274   def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1275                                                  imm64lf32c>;
   1276   def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1277                                                  imm64hf32c>;
   1278 }
   1279 
   1280 def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
   1281 def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
   1282 let Predicates = [FeatureNoInterlockedAccess1] in {
   1283   def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
   1284   def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
   1285   def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
   1286   def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
   1287   def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
   1288   def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
   1289   def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
   1290   def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
   1291   def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
   1292   def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
   1293   def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
   1294 }
   1295 
   1296 def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
   1297 def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
   1298 let Predicates = [FeatureNoInterlockedAccess1] in {
   1299   def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
   1300   def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
   1301   def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
   1302   def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
   1303   def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
   1304 }
   1305 
   1306 def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
   1307 def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
   1308                                                imm32lh16c>;
   1309 def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
   1310 def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
   1311                                                 imm32ll16c>;
   1312 def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
   1313                                                 imm32lh16c>;
   1314 def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
   1315 def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
   1316 def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1317                                                 imm64ll16c>;
   1318 def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1319                                                 imm64lh16c>;
   1320 def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1321                                                 imm64hl16c>;
   1322 def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1323                                                 imm64hh16c>;
   1324 def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1325                                                 imm64lf32c>;
   1326 def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1327                                                 imm64hf32c>;
   1328 
   1329 def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
   1330 def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
   1331 def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
   1332 
   1333 def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
   1334 def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
   1335 def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
   1336 
   1337 def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
   1338 def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
   1339 def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
   1340 
   1341 def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
   1342 def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
   1343 def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
   1344 
   1345 def ATOMIC_CMP_SWAPW
   1346   : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
   1347                                   ADDR32:$bitshift, ADDR32:$negbitshift,
   1348                                   uimm32:$bitsize),
   1349            [(set GR32:$dst,
   1350                  (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
   1351                                      ADDR32:$bitshift, ADDR32:$negbitshift,
   1352                                      uimm32:$bitsize))]> {
   1353   let Defs = [CC];
   1354   let mayLoad = 1;
   1355   let mayStore = 1;
   1356   let usesCustomInserter = 1;
   1357 }
   1358 
   1359 let Defs = [CC] in {
   1360   defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
   1361   def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
   1362 }
   1363 
   1364 //===----------------------------------------------------------------------===//
   1365 // Transactional execution
   1366 //===----------------------------------------------------------------------===//
   1367 
   1368 let Predicates = [FeatureTransactionalExecution] in {
   1369   // Transaction Begin
   1370   let hasSideEffects = 1, mayStore = 1,
   1371       usesCustomInserter = 1, Defs = [CC] in {
   1372     def TBEGIN : InstSIL<0xE560,
   1373                          (outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
   1374                          "tbegin\t$BD1, $I2",
   1375                          [(z_tbegin bdaddr12only:$BD1, imm32zx16:$I2)]>;
   1376     def TBEGIN_nofloat : Pseudo<(outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
   1377                                 [(z_tbegin_nofloat bdaddr12only:$BD1,
   1378                                                    imm32zx16:$I2)]>;
   1379     def TBEGINC : InstSIL<0xE561,
   1380                           (outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
   1381                           "tbeginc\t$BD1, $I2",
   1382                           [(int_s390_tbeginc bdaddr12only:$BD1,
   1383                                              imm32zx16:$I2)]>;
   1384   }
   1385 
   1386   // Transaction End
   1387   let hasSideEffects = 1, Defs = [CC], BD2 = 0 in
   1388     def TEND : InstS<0xB2F8, (outs), (ins), "tend", [(z_tend)]>;
   1389 
   1390   // Transaction Abort
   1391   let hasSideEffects = 1, isTerminator = 1, isBarrier = 1 in
   1392     def TABORT : InstS<0xB2FC, (outs), (ins bdaddr12only:$BD2),
   1393                        "tabort\t$BD2",
   1394                        [(int_s390_tabort bdaddr12only:$BD2)]>;
   1395 
   1396   // Nontransactional Store
   1397   let hasSideEffects = 1 in
   1398     def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
   1399 
   1400   // Extract Transaction Nesting Depth
   1401   let hasSideEffects = 1 in
   1402     def ETND : InherentRRE<"etnd", 0xB2EC, GR32, (int_s390_etnd)>;
   1403 }
   1404 
   1405 //===----------------------------------------------------------------------===//
   1406 // Processor assist
   1407 //===----------------------------------------------------------------------===//
   1408 
   1409 let Predicates = [FeatureProcessorAssist] in {
   1410   let hasSideEffects = 1, R4 = 0 in
   1411     def PPA : InstRRF<0xB2E8, (outs), (ins GR64:$R1, GR64:$R2, imm32zx4:$R3),
   1412                       "ppa\t$R1, $R2, $R3", []>;
   1413   def : Pat<(int_s390_ppa_txassist GR32:$src),
   1414             (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
   1415                  0, 1)>;
   1416 }
   1417 
   1418 //===----------------------------------------------------------------------===//
   1419 // Miscellaneous Instructions.
   1420 //===----------------------------------------------------------------------===//
   1421 
   1422 // Extract CC into bits 29 and 28 of a register.
   1423 let Uses = [CC] in
   1424   def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>;
   1425 
   1426 // Read a 32-bit access register into a GR32.  As with all GR32 operations,
   1427 // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
   1428 // when a 64-bit address is stored in a pair of access registers.
   1429 def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
   1430                   "ear\t$R1, $R2",
   1431                   [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
   1432 
   1433 // Find leftmost one, AKA count leading zeros.  The instruction actually
   1434 // returns a pair of GR64s, the first giving the number of leading zeros
   1435 // and the second giving a copy of the source with the leftmost one bit
   1436 // cleared.  We only use the first result here.
   1437 let Defs = [CC] in {
   1438   def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
   1439 }
   1440 def : Pat<(ctlz GR64:$src),
   1441           (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
   1442 
   1443 // Population count.  Counts bits set per byte.
   1444 let Predicates = [FeaturePopulationCount], Defs = [CC] in {
   1445   def POPCNT : InstRRE<0xB9E1, (outs GR64:$R1), (ins GR64:$R2),
   1446                        "popcnt\t$R1, $R2",
   1447                        [(set GR64:$R1, (z_popcnt GR64:$R2))]>;
   1448 }
   1449 
   1450 // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
   1451 def : Pat<(i64 (anyext GR32:$src)),
   1452           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
   1453 
   1454 // Extend GR32s and GR64s to GR128s.
   1455 let usesCustomInserter = 1 in {
   1456   def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
   1457   def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
   1458   def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
   1459 }
   1460 
   1461 // Search a block of memory for a character.
   1462 let mayLoad = 1, Defs = [CC], Uses = [R0L] in
   1463   defm SRST : StringRRE<"srst", 0xb25e, z_search_string>;
   1464 
   1465 //===----------------------------------------------------------------------===//
   1466 // Peepholes.
   1467 //===----------------------------------------------------------------------===//
   1468 
   1469 // Use AL* for GR64 additions of unsigned 32-bit values.
   1470 defm : ZXB<add, GR64, ALGFR>;
   1471 def  : Pat<(add GR64:$src1, imm64zx32:$src2),
   1472            (ALGFI GR64:$src1, imm64zx32:$src2)>;
   1473 def  : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
   1474            (ALGF GR64:$src1, bdxaddr20only:$addr)>;
   1475 
   1476 // Use SL* for GR64 subtractions of unsigned 32-bit values.
   1477 defm : ZXB<sub, GR64, SLGFR>;
   1478 def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
   1479            (SLGFI GR64:$src1, imm64zx32n:$src2)>;
   1480 def  : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
   1481            (SLGF GR64:$src1, bdxaddr20only:$addr)>;
   1482 
   1483 // Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
   1484 // for vector legalization.
   1485 def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, imm32zx4:$cc)),
   1486                          (i32 31)),
   1487                     (i32 31)),
   1488           (Select32 (LHI -1), (LHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
   1489 def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, imm32zx4:$valid,
   1490                                                        imm32zx4:$cc)))),
   1491                     (i32 63)),
   1492                (i32 63)),
   1493           (Select64 (LGHI -1), (LGHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
   1494 
   1495 // Peepholes for turning scalar operations into block operations.
   1496 defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
   1497                       XCSequence, 1>;
   1498 defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
   1499                       XCSequence, 2>;
   1500 defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
   1501                       XCSequence, 4>;
   1502 defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
   1503                       OCSequence, XCSequence, 1>;
   1504 defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
   1505                       XCSequence, 2>;
   1506 defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
   1507                       XCSequence, 4>;
   1508 defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
   1509                       XCSequence, 8>;
   1510