Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "MCTargetDesc/X86BaseInfo.h"
     11 #include "MCTargetDesc/X86FixupKinds.h"
     12 #include "llvm/ADT/StringSwitch.h"
     13 #include "llvm/MC/MCAsmBackend.h"
     14 #include "llvm/MC/MCELFObjectWriter.h"
     15 #include "llvm/MC/MCExpr.h"
     16 #include "llvm/MC/MCFixupKindInfo.h"
     17 #include "llvm/MC/MCMachObjectWriter.h"
     18 #include "llvm/MC/MCObjectWriter.h"
     19 #include "llvm/MC/MCSectionCOFF.h"
     20 #include "llvm/MC/MCSectionELF.h"
     21 #include "llvm/MC/MCSectionMachO.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/Support/ELF.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/MachO.h"
     26 #include "llvm/Support/TargetRegistry.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 using namespace llvm;
     29 
     30 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
     31 // is useful when running bitwise comparison experiments on Darwin. We should be
     32 // able to remove this once PR9807 is resolved.
     33 static cl::opt<bool>
     34 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
     35          cl::desc("Disable relaxation of arithmetic instruction for X86"));
     36 
     37 static unsigned getFixupKindLog2Size(unsigned Kind) {
     38   switch (Kind) {
     39   default:
     40     llvm_unreachable("invalid fixup kind!");
     41   case FK_PCRel_1:
     42   case FK_SecRel_1:
     43   case FK_Data_1:
     44     return 0;
     45   case FK_PCRel_2:
     46   case FK_SecRel_2:
     47   case FK_Data_2:
     48     return 1;
     49   case FK_PCRel_4:
     50   case X86::reloc_riprel_4byte:
     51   case X86::reloc_riprel_4byte_movq_load:
     52   case X86::reloc_signed_4byte:
     53   case X86::reloc_global_offset_table:
     54   case FK_SecRel_4:
     55   case FK_Data_4:
     56     return 2;
     57   case FK_PCRel_8:
     58   case FK_SecRel_8:
     59   case FK_Data_8:
     60   case X86::reloc_global_offset_table8:
     61     return 3;
     62   }
     63 }
     64 
     65 namespace {
     66 
     67 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
     68 public:
     69   X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
     70                      bool HasRelocationAddend, bool foobar)
     71     : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
     72 };
     73 
     74 class X86AsmBackend : public MCAsmBackend {
     75   const StringRef CPU;
     76   bool HasNopl;
     77   const uint64_t MaxNopLength;
     78 public:
     79   X86AsmBackend(const Target &T, StringRef CPU)
     80       : MCAsmBackend(), CPU(CPU), MaxNopLength(CPU == "slm" ? 7 : 15) {
     81     HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
     82               CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
     83               CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
     84               CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
     85               CPU != "c3" && CPU != "c3-2";
     86   }
     87 
     88   unsigned getNumFixupKinds() const override {
     89     return X86::NumTargetFixupKinds;
     90   }
     91 
     92   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
     93     const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
     94       { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
     95       { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
     96       { "reloc_signed_4byte", 0, 4 * 8, 0},
     97       { "reloc_global_offset_table", 0, 4 * 8, 0}
     98     };
     99 
    100     if (Kind < FirstTargetFixupKind)
    101       return MCAsmBackend::getFixupKindInfo(Kind);
    102 
    103     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
    104            "Invalid kind!");
    105     return Infos[Kind - FirstTargetFixupKind];
    106   }
    107 
    108   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
    109                   uint64_t Value, bool IsPCRel) const override {
    110     unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
    111 
    112     assert(Fixup.getOffset() + Size <= DataSize &&
    113            "Invalid fixup offset!");
    114 
    115     // Check that uppper bits are either all zeros or all ones.
    116     // Specifically ignore overflow/underflow as long as the leakage is
    117     // limited to the lower bits. This is to remain compatible with
    118     // other assemblers.
    119     assert(isIntN(Size * 8 + 1, Value) &&
    120            "Value does not fit in the Fixup field");
    121 
    122     for (unsigned i = 0; i != Size; ++i)
    123       Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
    124   }
    125 
    126   bool mayNeedRelaxation(const MCInst &Inst) const override;
    127 
    128   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
    129                             const MCRelaxableFragment *DF,
    130                             const MCAsmLayout &Layout) const override;
    131 
    132   void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
    133 
    134   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
    135 };
    136 } // end anonymous namespace
    137 
    138 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
    139   switch (Op) {
    140   default:
    141     return Op;
    142 
    143   case X86::JAE_1: return X86::JAE_4;
    144   case X86::JA_1:  return X86::JA_4;
    145   case X86::JBE_1: return X86::JBE_4;
    146   case X86::JB_1:  return X86::JB_4;
    147   case X86::JE_1:  return X86::JE_4;
    148   case X86::JGE_1: return X86::JGE_4;
    149   case X86::JG_1:  return X86::JG_4;
    150   case X86::JLE_1: return X86::JLE_4;
    151   case X86::JL_1:  return X86::JL_4;
    152   case X86::JMP_1: return X86::JMP_4;
    153   case X86::JNE_1: return X86::JNE_4;
    154   case X86::JNO_1: return X86::JNO_4;
    155   case X86::JNP_1: return X86::JNP_4;
    156   case X86::JNS_1: return X86::JNS_4;
    157   case X86::JO_1:  return X86::JO_4;
    158   case X86::JP_1:  return X86::JP_4;
    159   case X86::JS_1:  return X86::JS_4;
    160   }
    161 }
    162 
    163 static unsigned getRelaxedOpcodeArith(unsigned Op) {
    164   switch (Op) {
    165   default:
    166     return Op;
    167 
    168     // IMUL
    169   case X86::IMUL16rri8: return X86::IMUL16rri;
    170   case X86::IMUL16rmi8: return X86::IMUL16rmi;
    171   case X86::IMUL32rri8: return X86::IMUL32rri;
    172   case X86::IMUL32rmi8: return X86::IMUL32rmi;
    173   case X86::IMUL64rri8: return X86::IMUL64rri32;
    174   case X86::IMUL64rmi8: return X86::IMUL64rmi32;
    175 
    176     // AND
    177   case X86::AND16ri8: return X86::AND16ri;
    178   case X86::AND16mi8: return X86::AND16mi;
    179   case X86::AND32ri8: return X86::AND32ri;
    180   case X86::AND32mi8: return X86::AND32mi;
    181   case X86::AND64ri8: return X86::AND64ri32;
    182   case X86::AND64mi8: return X86::AND64mi32;
    183 
    184     // OR
    185   case X86::OR16ri8: return X86::OR16ri;
    186   case X86::OR16mi8: return X86::OR16mi;
    187   case X86::OR32ri8: return X86::OR32ri;
    188   case X86::OR32mi8: return X86::OR32mi;
    189   case X86::OR64ri8: return X86::OR64ri32;
    190   case X86::OR64mi8: return X86::OR64mi32;
    191 
    192     // XOR
    193   case X86::XOR16ri8: return X86::XOR16ri;
    194   case X86::XOR16mi8: return X86::XOR16mi;
    195   case X86::XOR32ri8: return X86::XOR32ri;
    196   case X86::XOR32mi8: return X86::XOR32mi;
    197   case X86::XOR64ri8: return X86::XOR64ri32;
    198   case X86::XOR64mi8: return X86::XOR64mi32;
    199 
    200     // ADD
    201   case X86::ADD16ri8: return X86::ADD16ri;
    202   case X86::ADD16mi8: return X86::ADD16mi;
    203   case X86::ADD32ri8: return X86::ADD32ri;
    204   case X86::ADD32mi8: return X86::ADD32mi;
    205   case X86::ADD64ri8: return X86::ADD64ri32;
    206   case X86::ADD64mi8: return X86::ADD64mi32;
    207 
    208     // SUB
    209   case X86::SUB16ri8: return X86::SUB16ri;
    210   case X86::SUB16mi8: return X86::SUB16mi;
    211   case X86::SUB32ri8: return X86::SUB32ri;
    212   case X86::SUB32mi8: return X86::SUB32mi;
    213   case X86::SUB64ri8: return X86::SUB64ri32;
    214   case X86::SUB64mi8: return X86::SUB64mi32;
    215 
    216     // CMP
    217   case X86::CMP16ri8: return X86::CMP16ri;
    218   case X86::CMP16mi8: return X86::CMP16mi;
    219   case X86::CMP32ri8: return X86::CMP32ri;
    220   case X86::CMP32mi8: return X86::CMP32mi;
    221   case X86::CMP64ri8: return X86::CMP64ri32;
    222   case X86::CMP64mi8: return X86::CMP64mi32;
    223 
    224     // PUSH
    225   case X86::PUSH32i8:  return X86::PUSHi32;
    226   case X86::PUSH16i8:  return X86::PUSHi16;
    227   case X86::PUSH64i8:  return X86::PUSH64i32;
    228   case X86::PUSH64i16: return X86::PUSH64i32;
    229   }
    230 }
    231 
    232 static unsigned getRelaxedOpcode(unsigned Op) {
    233   unsigned R = getRelaxedOpcodeArith(Op);
    234   if (R != Op)
    235     return R;
    236   return getRelaxedOpcodeBranch(Op);
    237 }
    238 
    239 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
    240   // Branches can always be relaxed.
    241   if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
    242     return true;
    243 
    244   if (MCDisableArithRelaxation)
    245     return false;
    246 
    247   // Check if this instruction is ever relaxable.
    248   if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
    249     return false;
    250 
    251 
    252   // Check if it has an expression and is not RIP relative.
    253   bool hasExp = false;
    254   bool hasRIP = false;
    255   for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
    256     const MCOperand &Op = Inst.getOperand(i);
    257     if (Op.isExpr())
    258       hasExp = true;
    259 
    260     if (Op.isReg() && Op.getReg() == X86::RIP)
    261       hasRIP = true;
    262   }
    263 
    264   // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
    265   // how we do relaxations?
    266   return hasExp && !hasRIP;
    267 }
    268 
    269 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
    270                                          uint64_t Value,
    271                                          const MCRelaxableFragment *DF,
    272                                          const MCAsmLayout &Layout) const {
    273   // Relax if the value is too big for a (signed) i8.
    274   return int64_t(Value) != int64_t(int8_t(Value));
    275 }
    276 
    277 // FIXME: Can tblgen help at all here to verify there aren't other instructions
    278 // we can relax?
    279 void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
    280   // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
    281   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
    282 
    283   if (RelaxedOp == Inst.getOpcode()) {
    284     SmallString<256> Tmp;
    285     raw_svector_ostream OS(Tmp);
    286     Inst.dump_pretty(OS);
    287     OS << "\n";
    288     report_fatal_error("unexpected instruction to relax: " + OS.str());
    289   }
    290 
    291   Res = Inst;
    292   Res.setOpcode(RelaxedOp);
    293 }
    294 
    295 /// \brief Write a sequence of optimal nops to the output, covering \p Count
    296 /// bytes.
    297 /// \return - true on success, false on failure
    298 bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
    299   static const uint8_t Nops[10][10] = {
    300     // nop
    301     {0x90},
    302     // xchg %ax,%ax
    303     {0x66, 0x90},
    304     // nopl (%[re]ax)
    305     {0x0f, 0x1f, 0x00},
    306     // nopl 0(%[re]ax)
    307     {0x0f, 0x1f, 0x40, 0x00},
    308     // nopl 0(%[re]ax,%[re]ax,1)
    309     {0x0f, 0x1f, 0x44, 0x00, 0x00},
    310     // nopw 0(%[re]ax,%[re]ax,1)
    311     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
    312     // nopl 0L(%[re]ax)
    313     {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
    314     // nopl 0L(%[re]ax,%[re]ax,1)
    315     {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    316     // nopw 0L(%[re]ax,%[re]ax,1)
    317     {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    318     // nopw %cs:0L(%[re]ax,%[re]ax,1)
    319     {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    320   };
    321 
    322   // This CPU doesn't support long nops. If needed add more.
    323   // FIXME: Can we get this from the subtarget somehow?
    324   // FIXME: We could generated something better than plain 0x90.
    325   if (!HasNopl) {
    326     for (uint64_t i = 0; i < Count; ++i)
    327       OW->Write8(0x90);
    328     return true;
    329   }
    330 
    331   // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
    332   // needed, then emit a nop of the remaining length.
    333   do {
    334     const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
    335     const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
    336     for (uint8_t i = 0; i < Prefixes; i++)
    337       OW->Write8(0x66);
    338     const uint8_t Rest = ThisNopLength - Prefixes;
    339     for (uint8_t i = 0; i < Rest; i++)
    340       OW->Write8(Nops[Rest - 1][i]);
    341     Count -= ThisNopLength;
    342   } while (Count != 0);
    343 
    344   return true;
    345 }
    346 
    347 /* *** */
    348 
    349 namespace {
    350 
    351 class ELFX86AsmBackend : public X86AsmBackend {
    352 public:
    353   uint8_t OSABI;
    354   ELFX86AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    355       : X86AsmBackend(T, CPU), OSABI(OSABI) {}
    356 };
    357 
    358 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
    359 public:
    360   ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    361     : ELFX86AsmBackend(T, OSABI, CPU) {}
    362 
    363   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    364     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
    365   }
    366 };
    367 
    368 class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
    369 public:
    370   ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    371       : ELFX86AsmBackend(T, OSABI, CPU) {}
    372 
    373   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    374     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
    375                                     ELF::EM_X86_64);
    376   }
    377 };
    378 
    379 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
    380 public:
    381   ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    382     : ELFX86AsmBackend(T, OSABI, CPU) {}
    383 
    384   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    385     return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
    386   }
    387 };
    388 
    389 class WindowsX86AsmBackend : public X86AsmBackend {
    390   bool Is64Bit;
    391 
    392 public:
    393   WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
    394     : X86AsmBackend(T, CPU)
    395     , Is64Bit(is64Bit) {
    396   }
    397 
    398   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    399     return createX86WinCOFFObjectWriter(OS, Is64Bit);
    400   }
    401 };
    402 
    403 namespace CU {
    404 
    405   /// Compact unwind encoding values.
    406   enum CompactUnwindEncodings {
    407     /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
    408     /// the return address, then [RE]SP is moved to [RE]BP.
    409     UNWIND_MODE_BP_FRAME                   = 0x01000000,
    410 
    411     /// A frameless function with a small constant stack size.
    412     UNWIND_MODE_STACK_IMMD                 = 0x02000000,
    413 
    414     /// A frameless function with a large constant stack size.
    415     UNWIND_MODE_STACK_IND                  = 0x03000000,
    416 
    417     /// No compact unwind encoding is available.
    418     UNWIND_MODE_DWARF                      = 0x04000000,
    419 
    420     /// Mask for encoding the frame registers.
    421     UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
    422 
    423     /// Mask for encoding the frameless registers.
    424     UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
    425   };
    426 
    427 } // end CU namespace
    428 
    429 class DarwinX86AsmBackend : public X86AsmBackend {
    430   const MCRegisterInfo &MRI;
    431 
    432   /// \brief Number of registers that can be saved in a compact unwind encoding.
    433   enum { CU_NUM_SAVED_REGS = 6 };
    434 
    435   mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
    436   bool Is64Bit;
    437 
    438   unsigned OffsetSize;                   ///< Offset of a "push" instruction.
    439   unsigned MoveInstrSize;                ///< Size of a "move" instruction.
    440   unsigned StackDivide;                  ///< Amount to adjust stack size by.
    441 protected:
    442   /// \brief Size of a "push" instruction for the given register.
    443   unsigned PushInstrSize(unsigned Reg) const {
    444     switch (Reg) {
    445       case X86::EBX:
    446       case X86::ECX:
    447       case X86::EDX:
    448       case X86::EDI:
    449       case X86::ESI:
    450       case X86::EBP:
    451       case X86::RBX:
    452       case X86::RBP:
    453         return 1;
    454       case X86::R12:
    455       case X86::R13:
    456       case X86::R14:
    457       case X86::R15:
    458         return 2;
    459     }
    460     return 1;
    461   }
    462 
    463   /// \brief Implementation of algorithm to generate the compact unwind encoding
    464   /// for the CFI instructions.
    465   uint32_t
    466   generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
    467     if (Instrs.empty()) return 0;
    468 
    469     // Reset the saved registers.
    470     unsigned SavedRegIdx = 0;
    471     memset(SavedRegs, 0, sizeof(SavedRegs));
    472 
    473     bool HasFP = false;
    474 
    475     // Encode that we are using EBP/RBP as the frame pointer.
    476     uint32_t CompactUnwindEncoding = 0;
    477 
    478     unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
    479     unsigned InstrOffset = 0;
    480     unsigned StackAdjust = 0;
    481     unsigned StackSize = 0;
    482     unsigned PrevStackSize = 0;
    483     unsigned NumDefCFAOffsets = 0;
    484 
    485     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
    486       const MCCFIInstruction &Inst = Instrs[i];
    487 
    488       switch (Inst.getOperation()) {
    489       default:
    490         // Any other CFI directives indicate a frame that we aren't prepared
    491         // to represent via compact unwind, so just bail out.
    492         return 0;
    493       case MCCFIInstruction::OpDefCfaRegister: {
    494         // Defines a frame pointer. E.g.
    495         //
    496         //     movq %rsp, %rbp
    497         //  L0:
    498         //     .cfi_def_cfa_register %rbp
    499         //
    500         HasFP = true;
    501         assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
    502                (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
    503 
    504         // Reset the counts.
    505         memset(SavedRegs, 0, sizeof(SavedRegs));
    506         StackAdjust = 0;
    507         SavedRegIdx = 0;
    508         InstrOffset += MoveInstrSize;
    509         break;
    510       }
    511       case MCCFIInstruction::OpDefCfaOffset: {
    512         // Defines a new offset for the CFA. E.g.
    513         //
    514         //  With frame:
    515         //
    516         //     pushq %rbp
    517         //  L0:
    518         //     .cfi_def_cfa_offset 16
    519         //
    520         //  Without frame:
    521         //
    522         //     subq $72, %rsp
    523         //  L0:
    524         //     .cfi_def_cfa_offset 80
    525         //
    526         PrevStackSize = StackSize;
    527         StackSize = std::abs(Inst.getOffset()) / StackDivide;
    528         ++NumDefCFAOffsets;
    529         break;
    530       }
    531       case MCCFIInstruction::OpOffset: {
    532         // Defines a "push" of a callee-saved register. E.g.
    533         //
    534         //     pushq %r15
    535         //     pushq %r14
    536         //     pushq %rbx
    537         //  L0:
    538         //     subq $120, %rsp
    539         //  L1:
    540         //     .cfi_offset %rbx, -40
    541         //     .cfi_offset %r14, -32
    542         //     .cfi_offset %r15, -24
    543         //
    544         if (SavedRegIdx == CU_NUM_SAVED_REGS)
    545           // If there are too many saved registers, we cannot use a compact
    546           // unwind encoding.
    547           return CU::UNWIND_MODE_DWARF;
    548 
    549         unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
    550         SavedRegs[SavedRegIdx++] = Reg;
    551         StackAdjust += OffsetSize;
    552         InstrOffset += PushInstrSize(Reg);
    553         break;
    554       }
    555       }
    556     }
    557 
    558     StackAdjust /= StackDivide;
    559 
    560     if (HasFP) {
    561       if ((StackAdjust & 0xFF) != StackAdjust)
    562         // Offset was too big for a compact unwind encoding.
    563         return CU::UNWIND_MODE_DWARF;
    564 
    565       // Get the encoding of the saved registers when we have a frame pointer.
    566       uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
    567       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
    568 
    569       CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
    570       CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
    571       CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
    572     } else {
    573       // If the amount of the stack allocation is the size of a register, then
    574       // we "push" the RAX/EAX register onto the stack instead of adjusting the
    575       // stack pointer with a SUB instruction. We don't support the push of the
    576       // RAX/EAX register with compact unwind. So we check for that situation
    577       // here.
    578       if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
    579            StackSize - PrevStackSize == 1) ||
    580           (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
    581         return CU::UNWIND_MODE_DWARF;
    582 
    583       SubtractInstrIdx += InstrOffset;
    584       ++StackAdjust;
    585 
    586       if ((StackSize & 0xFF) == StackSize) {
    587         // Frameless stack with a small stack size.
    588         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
    589 
    590         // Encode the stack size.
    591         CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
    592       } else {
    593         if ((StackAdjust & 0x7) != StackAdjust)
    594           // The extra stack adjustments are too big for us to handle.
    595           return CU::UNWIND_MODE_DWARF;
    596 
    597         // Frameless stack with an offset too large for us to encode compactly.
    598         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
    599 
    600         // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
    601         // instruction.
    602         CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
    603 
    604         // Encode any extra stack stack adjustments (done via push
    605         // instructions).
    606         CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
    607       }
    608 
    609       // Encode the number of registers saved. (Reverse the list first.)
    610       std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
    611       CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
    612 
    613       // Get the encoding of the saved registers when we don't have a frame
    614       // pointer.
    615       uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
    616       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
    617 
    618       // Encode the register encoding.
    619       CompactUnwindEncoding |=
    620         RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
    621     }
    622 
    623     return CompactUnwindEncoding;
    624   }
    625 
    626 private:
    627   /// \brief Get the compact unwind number for a given register. The number
    628   /// corresponds to the enum lists in compact_unwind_encoding.h.
    629   int getCompactUnwindRegNum(unsigned Reg) const {
    630     static const uint16_t CU32BitRegs[7] = {
    631       X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    632     };
    633     static const uint16_t CU64BitRegs[] = {
    634       X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    635     };
    636     const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
    637     for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
    638       if (*CURegs == Reg)
    639         return Idx;
    640 
    641     return -1;
    642   }
    643 
    644   /// \brief Return the registers encoded for a compact encoding with a frame
    645   /// pointer.
    646   uint32_t encodeCompactUnwindRegistersWithFrame() const {
    647     // Encode the registers in the order they were saved --- 3-bits per
    648     // register. The list of saved registers is assumed to be in reverse
    649     // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
    650     uint32_t RegEnc = 0;
    651     for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
    652       unsigned Reg = SavedRegs[i];
    653       if (Reg == 0) break;
    654 
    655       int CURegNum = getCompactUnwindRegNum(Reg);
    656       if (CURegNum == -1) return ~0U;
    657 
    658       // Encode the 3-bit register number in order, skipping over 3-bits for
    659       // each register.
    660       RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
    661     }
    662 
    663     assert((RegEnc & 0x3FFFF) == RegEnc &&
    664            "Invalid compact register encoding!");
    665     return RegEnc;
    666   }
    667 
    668   /// \brief Create the permutation encoding used with frameless stacks. It is
    669   /// passed the number of registers to be saved and an array of the registers
    670   /// saved.
    671   uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
    672     // The saved registers are numbered from 1 to 6. In order to encode the
    673     // order in which they were saved, we re-number them according to their
    674     // place in the register order. The re-numbering is relative to the last
    675     // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
    676     // that order:
    677     //
    678     //    Orig  Re-Num
    679     //    ----  ------
    680     //     6       6
    681     //     2       2
    682     //     4       3
    683     //     5       3
    684     //
    685     for (unsigned i = 0; i < RegCount; ++i) {
    686       int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
    687       if (CUReg == -1) return ~0U;
    688       SavedRegs[i] = CUReg;
    689     }
    690 
    691     // Reverse the list.
    692     std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
    693 
    694     uint32_t RenumRegs[CU_NUM_SAVED_REGS];
    695     for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
    696       unsigned Countless = 0;
    697       for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
    698         if (SavedRegs[j] < SavedRegs[i])
    699           ++Countless;
    700 
    701       RenumRegs[i] = SavedRegs[i] - Countless - 1;
    702     }
    703 
    704     // Take the renumbered values and encode them into a 10-bit number.
    705     uint32_t permutationEncoding = 0;
    706     switch (RegCount) {
    707     case 6:
    708       permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
    709                              + 6 * RenumRegs[2] +  2 * RenumRegs[3]
    710                              +     RenumRegs[4];
    711       break;
    712     case 5:
    713       permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
    714                              + 6 * RenumRegs[3] +  2 * RenumRegs[4]
    715                              +     RenumRegs[5];
    716       break;
    717     case 4:
    718       permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
    719                              + 3 * RenumRegs[4] +      RenumRegs[5];
    720       break;
    721     case 3:
    722       permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
    723                              +     RenumRegs[5];
    724       break;
    725     case 2:
    726       permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
    727       break;
    728     case 1:
    729       permutationEncoding |=       RenumRegs[5];
    730       break;
    731     }
    732 
    733     assert((permutationEncoding & 0x3FF) == permutationEncoding &&
    734            "Invalid compact register encoding!");
    735     return permutationEncoding;
    736   }
    737 
    738 public:
    739   DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
    740                       bool Is64Bit)
    741     : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
    742     memset(SavedRegs, 0, sizeof(SavedRegs));
    743     OffsetSize = Is64Bit ? 8 : 4;
    744     MoveInstrSize = Is64Bit ? 3 : 2;
    745     StackDivide = Is64Bit ? 8 : 4;
    746   }
    747 };
    748 
    749 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
    750 public:
    751   DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
    752                          StringRef CPU)
    753       : DarwinX86AsmBackend(T, MRI, CPU, false) {}
    754 
    755   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    756     return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
    757                                      MachO::CPU_TYPE_I386,
    758                                      MachO::CPU_SUBTYPE_I386_ALL);
    759   }
    760 
    761   /// \brief Generate the compact unwind encoding for the CFI instructions.
    762   uint32_t generateCompactUnwindEncoding(
    763                              ArrayRef<MCCFIInstruction> Instrs) const override {
    764     return generateCompactUnwindEncodingImpl(Instrs);
    765   }
    766 };
    767 
    768 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
    769   const MachO::CPUSubTypeX86 Subtype;
    770 public:
    771   DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
    772                          StringRef CPU, MachO::CPUSubTypeX86 st)
    773       : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
    774 
    775   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    776     return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
    777                                      MachO::CPU_TYPE_X86_64, Subtype);
    778   }
    779 
    780   /// \brief Generate the compact unwind encoding for the CFI instructions.
    781   uint32_t generateCompactUnwindEncoding(
    782                              ArrayRef<MCCFIInstruction> Instrs) const override {
    783     return generateCompactUnwindEncodingImpl(Instrs);
    784   }
    785 };
    786 
    787 } // end anonymous namespace
    788 
    789 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
    790                                            const MCRegisterInfo &MRI,
    791                                            StringRef TT,
    792                                            StringRef CPU) {
    793   Triple TheTriple(TT);
    794 
    795   if (TheTriple.isOSBinFormatMachO())
    796     return new DarwinX86_32AsmBackend(T, MRI, CPU);
    797 
    798   if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
    799     return new WindowsX86AsmBackend(T, false, CPU);
    800 
    801   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    802   return new ELFX86_32AsmBackend(T, OSABI, CPU);
    803 }
    804 
    805 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
    806                                            const MCRegisterInfo &MRI,
    807                                            StringRef TT,
    808                                            StringRef CPU) {
    809   Triple TheTriple(TT);
    810 
    811   if (TheTriple.isOSBinFormatMachO()) {
    812     MachO::CPUSubTypeX86 CS =
    813         StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
    814             .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
    815             .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
    816     return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
    817   }
    818 
    819   if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
    820     return new WindowsX86AsmBackend(T, true, CPU);
    821 
    822   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    823 
    824   if (TheTriple.getEnvironment() == Triple::GNUX32)
    825     return new ELFX86_X32AsmBackend(T, OSABI, CPU);
    826   return new ELFX86_64AsmBackend(T, OSABI, CPU);
    827 }
    828