Home | History | Annotate | Download | only in X86
      1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the various pseudo instructions used by the compiler,
     11 // as well as Pat patterns used during instruction selection.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 //===----------------------------------------------------------------------===//
     16 // Pattern Matching Support
     17 
     18 def GetLo32XForm : SDNodeXForm<imm, [{
     19   // Transformation function: get the low 32 bits.
     20   return getI32Imm((unsigned)N->getZExtValue());
     21 }]>;
     22 
     23 def GetLo8XForm : SDNodeXForm<imm, [{
     24   // Transformation function: get the low 8 bits.
     25   return getI8Imm((uint8_t)N->getZExtValue());
     26 }]>;
     27 
     28 
     29 //===----------------------------------------------------------------------===//
     30 // Random Pseudo Instructions.
     31 
     32 // PIC base construction.  This expands to code that looks like this:
     33 //     call  $next_inst
     34 //     popl %destreg"
     35 let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
     36   def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
     37                       "", []>;
     38 
     39 
     40 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
     41 // a stack adjustment and the codegen must know that they may modify the stack
     42 // pointer before prolog-epilog rewriting occurs.
     43 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
     44 // sub / add which can clobber EFLAGS.
     45 let Defs = [ESP, EFLAGS], Uses = [ESP] in {
     46 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     47                            "#ADJCALLSTACKDOWN",
     48                            []>,
     49                           Requires<[NotLP64]>;
     50 def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     51                            "#ADJCALLSTACKUP",
     52                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
     53                           Requires<[NotLP64]>;
     54 }
     55 def : Pat<(X86callseq_start timm:$amt1),
     56           (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
     57 
     58 
     59 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
     60 // a stack adjustment and the codegen must know that they may modify the stack
     61 // pointer before prolog-epilog rewriting occurs.
     62 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
     63 // sub / add which can clobber EFLAGS.
     64 let Defs = [RSP, EFLAGS], Uses = [RSP] in {
     65 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     66                            "#ADJCALLSTACKDOWN",
     67                            []>,
     68                           Requires<[IsLP64]>;
     69 def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     70                            "#ADJCALLSTACKUP",
     71                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
     72                           Requires<[IsLP64]>;
     73 }
     74 def : Pat<(X86callseq_start timm:$amt1),
     75           (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
     76 
     77 
     78 // x86-64 va_start lowering magic.
     79 let usesCustomInserter = 1, Defs = [EFLAGS] in {
     80 def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
     81                               (outs),
     82                               (ins GR8:$al,
     83                                    i64imm:$regsavefi, i64imm:$offset,
     84                                    variable_ops),
     85                               "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
     86                               [(X86vastart_save_xmm_regs GR8:$al,
     87                                                          imm:$regsavefi,
     88                                                          imm:$offset),
     89                                (implicit EFLAGS)]>;
     90 
     91 // The VAARG_64 pseudo-instruction takes the address of the va_list,
     92 // and places the address of the next argument into a register.
     93 let Defs = [EFLAGS] in
     94 def VAARG_64 : I<0, Pseudo,
     95                  (outs GR64:$dst),
     96                  (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
     97                  "#VAARG_64 $dst, $ap, $size, $mode, $align",
     98                  [(set GR64:$dst,
     99                     (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
    100                   (implicit EFLAGS)]>;
    101 
    102 // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
    103 // targets.  These calls are needed to probe the stack when allocating more than
    104 // 4k bytes in one go. Touching the stack at 4K increments is necessary to
    105 // ensure that the guard pages used by the OS virtual memory manager are
    106 // allocated in correct sequence.
    107 // The main point of having separate instruction are extra unmodelled effects
    108 // (compared to ordinary calls) like stack pointer change.
    109 
    110 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
    111   def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
    112                      "# dynamic stack allocation",
    113                      [(X86WinAlloca)]>;
    114 
    115 // When using segmented stacks these are lowered into instructions which first
    116 // check if the current stacklet has enough free memory. If it does, memory is
    117 // allocated by bumping the stack pointer. Otherwise memory is allocated from
    118 // the heap.
    119 
    120 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
    121 def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
    122                       "# variable sized alloca for segmented stacks",
    123                       [(set GR32:$dst,
    124                          (X86SegAlloca GR32:$size))]>,
    125                     Requires<[NotLP64]>;
    126 
    127 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
    128 def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
    129                       "# variable sized alloca for segmented stacks",
    130                       [(set GR64:$dst,
    131                          (X86SegAlloca GR64:$size))]>,
    132                     Requires<[In64BitMode]>;
    133 }
    134 
    135 // The MSVC runtime contains an _ftol2 routine for converting floating-point
    136 // to integer values. It has a strange calling convention: the input is
    137 // popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
    138 // used as a temporary register. No other registers (aside from flags) are
    139 // touched.
    140 // Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
    141 // variant is unnecessary.
    142 
    143 let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
    144   def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
    145                       "# win32 fptoui",
    146                       [(X86WinFTOL RFP32:$src)]>,
    147                     Requires<[Not64BitMode]>;
    148 
    149   def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
    150                       "# win32 fptoui",
    151                       [(X86WinFTOL RFP64:$src)]>,
    152                     Requires<[Not64BitMode]>;
    153 }
    154 
    155 //===----------------------------------------------------------------------===//
    156 // EH Pseudo Instructions
    157 //
    158 let SchedRW = [WriteSystem] in {
    159 let isTerminator = 1, isReturn = 1, isBarrier = 1,
    160     hasCtrlDep = 1, isCodeGenOnly = 1 in {
    161 def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
    162                     "ret\t#eh_return, addr: $addr",
    163                     [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
    164 
    165 }
    166 
    167 let isTerminator = 1, isReturn = 1, isBarrier = 1,
    168     hasCtrlDep = 1, isCodeGenOnly = 1 in {
    169 def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
    170                      "ret\t#eh_return, addr: $addr",
    171                      [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
    172 
    173 }
    174 
    175 let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
    176     usesCustomInserter = 1 in {
    177   def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
    178                             "#EH_SJLJ_SETJMP32",
    179                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
    180                           Requires<[Not64BitMode]>;
    181   def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
    182                             "#EH_SJLJ_SETJMP64",
    183                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
    184                           Requires<[In64BitMode]>;
    185   let isTerminator = 1 in {
    186   def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
    187                             "#EH_SJLJ_LONGJMP32",
    188                             [(X86eh_sjlj_longjmp addr:$buf)]>,
    189                           Requires<[Not64BitMode]>;
    190   def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
    191                             "#EH_SJLJ_LONGJMP64",
    192                             [(X86eh_sjlj_longjmp addr:$buf)]>,
    193                           Requires<[In64BitMode]>;
    194   }
    195 }
    196 } // SchedRW
    197 
    198 let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
    199   def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
    200                         "#EH_SjLj_Setup\t$dst", []>;
    201 }
    202 
    203 //===----------------------------------------------------------------------===//
    204 // Pseudo instructions used by unwind info.
    205 //
    206 let isPseudo = 1 in {
    207   def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
    208                             "#SEH_PushReg $reg", []>;
    209   def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
    210                             "#SEH_SaveReg $reg, $dst", []>;
    211   def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
    212                             "#SEH_SaveXMM $reg, $dst", []>;
    213   def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
    214                             "#SEH_StackAlloc $size", []>;
    215   def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
    216                             "#SEH_SetFrame $reg, $offset", []>;
    217   def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
    218                             "#SEH_PushFrame $mode", []>;
    219   def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
    220                             "#SEH_EndPrologue", []>;
    221   def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
    222                             "#SEH_Epilogue", []>;
    223 }
    224 
    225 //===----------------------------------------------------------------------===//
    226 // Pseudo instructions used by segmented stacks.
    227 //
    228 
    229 // This is lowered into a RET instruction by MCInstLower.  We need
    230 // this so that we don't have to have a MachineBasicBlock which ends
    231 // with a RET and also has successors.
    232 let isPseudo = 1 in {
    233 def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
    234                           "", []>;
    235 
    236 // This instruction is lowered to a RET followed by a MOV.  The two
    237 // instructions are not generated on a higher level since then the
    238 // verifier sees a MachineBasicBlock ending with a non-terminator.
    239 def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
    240                                   "", []>;
    241 }
    242 
    243 //===----------------------------------------------------------------------===//
    244 // Alias Instructions
    245 //===----------------------------------------------------------------------===//
    246 
    247 // Alias instruction mapping movr0 to xor.
    248 // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
    249 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
    250     isPseudo = 1 in
    251 def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    252                  [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
    253 
    254 // Other widths can also make use of the 32-bit xor, which may have a smaller
    255 // encoding and avoid partial register updates.
    256 def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
    257 def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
    258 def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
    259   let AddedComplexity = 20;
    260 }
    261 
    262 // Materialize i64 constant where top 32-bits are zero. This could theoretically
    263 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
    264 // that would make it more difficult to rematerialize.
    265 let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
    266     isCodeGenOnly = 1, hasSideEffects = 0 in
    267 def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
    268                      "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
    269 
    270 // This 64-bit pseudo-move can be used for both a 64-bit constant that is
    271 // actually the zero-extension of a 32-bit constant, and for labels in the
    272 // x86-64 small code model.
    273 def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
    274 
    275 let AddedComplexity = 1 in
    276 def : Pat<(i64 mov64imm32:$src),
    277           (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
    278 
    279 // Use sbb to materialize carry bit.
    280 let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
    281 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
    282 // However, Pat<> can't replicate the destination reg into the inputs of the
    283 // result.
    284 def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
    285                  [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    286 def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
    287                  [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    288 def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    289                  [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    290 def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
    291                  [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    292 } // isCodeGenOnly
    293 
    294 
    295 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    296           (SETB_C16r)>;
    297 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    298           (SETB_C32r)>;
    299 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    300           (SETB_C64r)>;
    301 
    302 def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    303           (SETB_C16r)>;
    304 def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    305           (SETB_C32r)>;
    306 def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    307           (SETB_C64r)>;
    308 
    309 // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
    310 // will be eliminated and that the sbb can be extended up to a wider type.  When
    311 // this happens, it is great.  However, if we are left with an 8-bit sbb and an
    312 // and, we might as well just match it as a setb.
    313 def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
    314           (SETBr)>;
    315 
    316 // (add OP, SETB) -> (adc OP, 0)
    317 def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
    318           (ADC8ri GR8:$op, 0)>;
    319 def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
    320           (ADC32ri8 GR32:$op, 0)>;
    321 def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
    322           (ADC64ri8 GR64:$op, 0)>;
    323 
    324 // (sub OP, SETB) -> (sbb OP, 0)
    325 def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    326           (SBB8ri GR8:$op, 0)>;
    327 def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    328           (SBB32ri8 GR32:$op, 0)>;
    329 def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    330           (SBB64ri8 GR64:$op, 0)>;
    331 
    332 // (sub OP, SETCC_CARRY) -> (adc OP, 0)
    333 def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
    334           (ADC8ri GR8:$op, 0)>;
    335 def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
    336           (ADC32ri8 GR32:$op, 0)>;
    337 def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
    338           (ADC64ri8 GR64:$op, 0)>;
    339 
    340 //===----------------------------------------------------------------------===//
    341 // String Pseudo Instructions
    342 //
    343 let SchedRW = [WriteMicrocoded] in {
    344 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
    345 def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
    346                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
    347                    Requires<[Not64BitMode]>;
    348 def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
    349                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
    350                    Requires<[Not64BitMode]>;
    351 def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
    352                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
    353                    Requires<[Not64BitMode]>;
    354 }
    355 
    356 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
    357 def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
    358                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
    359                    Requires<[In64BitMode]>;
    360 def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
    361                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
    362                    Requires<[In64BitMode]>;
    363 def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
    364                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
    365                    Requires<[In64BitMode]>;
    366 def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
    367                     [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
    368                    Requires<[In64BitMode]>;
    369 }
    370 
    371 // FIXME: Should use "(X86rep_stos AL)" as the pattern.
    372 let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
    373   let Uses = [AL,ECX,EDI] in
    374   def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
    375                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
    376                      Requires<[Not64BitMode]>;
    377   let Uses = [AX,ECX,EDI] in
    378   def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
    379                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
    380                      Requires<[Not64BitMode]>;
    381   let Uses = [EAX,ECX,EDI] in
    382   def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
    383                       [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
    384                      Requires<[Not64BitMode]>;
    385 }
    386 
    387 let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
    388   let Uses = [AL,RCX,RDI] in
    389   def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
    390                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
    391                      Requires<[In64BitMode]>;
    392   let Uses = [AX,RCX,RDI] in
    393   def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
    394                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
    395                      Requires<[In64BitMode]>;
    396   let Uses = [RAX,RCX,RDI] in
    397   def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
    398                       [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
    399                      Requires<[In64BitMode]>;
    400 
    401   let Uses = [RAX,RCX,RDI] in
    402   def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
    403                       [(X86rep_stos i64)], IIC_REP_STOS>, REP,
    404                      Requires<[In64BitMode]>;
    405 }
    406 } // SchedRW
    407 
    408 //===----------------------------------------------------------------------===//
    409 // Thread Local Storage Instructions
    410 //
    411 
    412 // ELF TLS Support
    413 // All calls clobber the non-callee saved registers. ESP is marked as
    414 // a use to prevent stack-pointer assignments that appear immediately
    415 // before calls from potentially appearing dead.
    416 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
    417             ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
    418             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
    419             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
    420             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    421     Uses = [ESP] in {
    422 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    423                   "# TLS_addr32",
    424                   [(X86tlsaddr tls32addr:$sym)]>,
    425                   Requires<[Not64BitMode]>;
    426 def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    427                   "# TLS_base_addr32",
    428                   [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
    429                   Requires<[Not64BitMode]>;
    430 }
    431 
    432 // All calls clobber the non-callee saved registers. RSP is marked as
    433 // a use to prevent stack-pointer assignments that appear immediately
    434 // before calls from potentially appearing dead.
    435 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
    436             FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
    437             ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
    438             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
    439             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
    440             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    441     Uses = [RSP] in {
    442 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    443                    "# TLS_addr64",
    444                   [(X86tlsaddr tls64addr:$sym)]>,
    445                   Requires<[In64BitMode]>;
    446 def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    447                    "# TLS_base_addr64",
    448                   [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
    449                   Requires<[In64BitMode]>;
    450 }
    451 
    452 // Darwin TLS Support
    453 // For i386, the address of the thunk is passed on the stack, on return the
    454 // address of the variable is in %eax.  %ecx is trashed during the function
    455 // call.  All other registers are preserved.
    456 let Defs = [EAX, ECX, EFLAGS],
    457     Uses = [ESP],
    458     usesCustomInserter = 1 in
    459 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    460                 "# TLSCall_32",
    461                 [(X86TLSCall addr:$sym)]>,
    462                 Requires<[Not64BitMode]>;
    463 
    464 // For x86_64, the address of the thunk is passed in %rdi, on return
    465 // the address of the variable is in %rax.  All other registers are preserved.
    466 let Defs = [RAX, EFLAGS],
    467     Uses = [RSP, RDI],
    468     usesCustomInserter = 1 in
    469 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    470                   "# TLSCall_64",
    471                   [(X86TLSCall addr:$sym)]>,
    472                   Requires<[In64BitMode]>;
    473 
    474 
    475 //===----------------------------------------------------------------------===//
    476 // Conditional Move Pseudo Instructions
    477 
    478 // CMOV* - Used to implement the SELECT DAG operation.  Expanded after
    479 // instruction selection into a branch sequence.
    480 multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
    481   def CMOV#NAME  : I<0, Pseudo,
    482                     (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
    483                     "#CMOV_"#NAME#" PSEUDO!",
    484                     [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
    485                                                 EFLAGS)))]>;
    486 }
    487 
    488 let usesCustomInserter = 1, Uses = [EFLAGS] in {
    489   // X86 doesn't have 8-bit conditional moves. Use a customInserter to
    490   // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
    491   // however that requires promoting the operands, and can induce additional
    492   // i8 register pressure.
    493   defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
    494 
    495   let Predicates = [NoCMov] in {
    496     defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
    497     defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
    498   } // Predicates = [NoCMov]
    499 
    500   // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
    501   // SSE1/SSE2.
    502   let Predicates = [FPStackf32] in
    503     defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
    504 
    505   let Predicates = [FPStackf64] in
    506     defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
    507 
    508   defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
    509 
    510   defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
    511   defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
    512   defm _V4F32  : CMOVrr_PSEUDO<VR128, v4f32>;
    513   defm _V2F64  : CMOVrr_PSEUDO<VR128, v2f64>;
    514   defm _V2I64  : CMOVrr_PSEUDO<VR128, v2i64>;
    515   defm _V8F32  : CMOVrr_PSEUDO<VR256, v8f32>;
    516   defm _V4F64  : CMOVrr_PSEUDO<VR256, v4f64>;
    517   defm _V4I64  : CMOVrr_PSEUDO<VR256, v4i64>;
    518   defm _V8I64  : CMOVrr_PSEUDO<VR512, v8i64>;
    519   defm _V8F64  : CMOVrr_PSEUDO<VR512, v8f64>;
    520   defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
    521 } // usesCustomInserter = 1, Uses = [EFLAGS]
    522 
    523 //===----------------------------------------------------------------------===//
    524 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
    525 //===----------------------------------------------------------------------===//
    526 
    527 // FIXME: Use normal instructions and add lock prefix dynamically.
    528 
    529 // Memory barriers
    530 
    531 // TODO: Get this to fold the constant into the instruction.
    532 let isCodeGenOnly = 1, Defs = [EFLAGS] in
    533 def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
    534                       "or{l}\t{$zero, $dst|$dst, $zero}",
    535                       [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
    536                     Sched<[WriteALULd, WriteRMW]>;
    537 
    538 let hasSideEffects = 1 in
    539 def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
    540                      "#MEMBARRIER",
    541                      [(X86MemBarrier)]>, Sched<[WriteLoad]>;
    542 
    543 // RegOpc corresponds to the mr version of the instruction
    544 // ImmOpc corresponds to the mi version of the instruction
    545 // ImmOpc8 corresponds to the mi8 version of the instruction
    546 // ImmMod corresponds to the instruction format of the mi and mi8 versions
    547 multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
    548                            Format ImmMod, string mnemonic> {
    549 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    550     SchedRW = [WriteALULd, WriteRMW] in {
    551 
    552 def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    553                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
    554                   MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
    555                   !strconcat(mnemonic, "{b}\t",
    556                              "{$src2, $dst|$dst, $src2}"),
    557                   [], IIC_ALU_NONMEM>, LOCK;
    558 def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    559                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    560                    MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
    561                    !strconcat(mnemonic, "{w}\t",
    562                               "{$src2, $dst|$dst, $src2}"),
    563                    [], IIC_ALU_NONMEM>, OpSize16, LOCK;
    564 def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    565                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    566                    MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
    567                    !strconcat(mnemonic, "{l}\t",
    568                               "{$src2, $dst|$dst, $src2}"),
    569                    [], IIC_ALU_NONMEM>, OpSize32, LOCK;
    570 def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    571                     RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    572                     MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
    573                     !strconcat(mnemonic, "{q}\t",
    574                                "{$src2, $dst|$dst, $src2}"),
    575                     [], IIC_ALU_NONMEM>, LOCK;
    576 
    577 def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    578                     ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
    579                     ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
    580                     !strconcat(mnemonic, "{b}\t",
    581                                "{$src2, $dst|$dst, $src2}"),
    582                     [], IIC_ALU_MEM>, LOCK;
    583 
    584 def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    585                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    586                       ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
    587                       !strconcat(mnemonic, "{w}\t",
    588                                  "{$src2, $dst|$dst, $src2}"),
    589                       [], IIC_ALU_MEM>, OpSize16, LOCK;
    590 
    591 def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    592                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    593                       ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
    594                       !strconcat(mnemonic, "{l}\t",
    595                                  "{$src2, $dst|$dst, $src2}"),
    596                       [], IIC_ALU_MEM>, OpSize32, LOCK;
    597 
    598 def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    599                           ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    600                           ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
    601                           !strconcat(mnemonic, "{q}\t",
    602                                      "{$src2, $dst|$dst, $src2}"),
    603                           [], IIC_ALU_MEM>, LOCK;
    604 
    605 def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    606                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    607                       ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
    608                       !strconcat(mnemonic, "{w}\t",
    609                                  "{$src2, $dst|$dst, $src2}"),
    610                       [], IIC_ALU_MEM>, OpSize16, LOCK;
    611 def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    612                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    613                       ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
    614                       !strconcat(mnemonic, "{l}\t",
    615                                  "{$src2, $dst|$dst, $src2}"),
    616                       [], IIC_ALU_MEM>, OpSize32, LOCK;
    617 def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    618                        ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    619                        ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
    620                        !strconcat(mnemonic, "{q}\t",
    621                                   "{$src2, $dst|$dst, $src2}"),
    622                        [], IIC_ALU_MEM>, LOCK;
    623 
    624 }
    625 
    626 }
    627 
    628 defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
    629 defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
    630 defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
    631 defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
    632 defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
    633 
    634 // Optimized codegen when the non-memory output is not used.
    635 multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
    636                           string mnemonic> {
    637 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    638     SchedRW = [WriteALULd, WriteRMW] in {
    639 
    640 def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
    641                  !strconcat(mnemonic, "{b}\t$dst"),
    642                  [], IIC_UNARY_MEM>, LOCK;
    643 def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
    644                  !strconcat(mnemonic, "{w}\t$dst"),
    645                  [], IIC_UNARY_MEM>, OpSize16, LOCK;
    646 def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
    647                  !strconcat(mnemonic, "{l}\t$dst"),
    648                  [], IIC_UNARY_MEM>, OpSize32, LOCK;
    649 def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
    650                   !strconcat(mnemonic, "{q}\t$dst"),
    651                   [], IIC_UNARY_MEM>, LOCK;
    652 }
    653 }
    654 
    655 defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
    656 defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
    657 
    658 // Atomic compare and swap.
    659 multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
    660                          SDPatternOperator frag, X86MemOperand x86memop,
    661                          InstrItinClass itin> {
    662 let isCodeGenOnly = 1 in {
    663   def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
    664                !strconcat(mnemonic, "\t$ptr"),
    665                [(frag addr:$ptr)], itin>, TB, LOCK;
    666 }
    667 }
    668 
    669 multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
    670                           string mnemonic, SDPatternOperator frag,
    671                           InstrItinClass itin8, InstrItinClass itin> {
    672 let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
    673   let Defs = [AL, EFLAGS], Uses = [AL] in
    674   def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
    675                   !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
    676                   [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
    677   let Defs = [AX, EFLAGS], Uses = [AX] in
    678   def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
    679                   !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
    680                   [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
    681   let Defs = [EAX, EFLAGS], Uses = [EAX] in
    682   def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
    683                   !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
    684                   [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
    685   let Defs = [RAX, EFLAGS], Uses = [RAX] in
    686   def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
    687                    !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
    688                    [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
    689 }
    690 }
    691 
    692 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
    693     SchedRW = [WriteALULd, WriteRMW] in {
    694 defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
    695                                 X86cas8, i64mem,
    696                                 IIC_CMPX_LOCK_8B>;
    697 }
    698 
    699 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
    700     Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
    701 defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
    702                                  X86cas16, i128mem,
    703                                  IIC_CMPX_LOCK_16B>, REX_W;
    704 }
    705 
    706 defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
    707                                X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
    708 
    709 // Atomic exchange and add
    710 multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
    711                              string frag,
    712                              InstrItinClass itin8, InstrItinClass itin> {
    713   let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
    714       SchedRW = [WriteALULd, WriteRMW] in {
    715     def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
    716                     (ins GR8:$val, i8mem:$ptr),
    717                     !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
    718                     [(set GR8:$dst,
    719                           (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
    720                     itin8>;
    721     def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
    722                     (ins GR16:$val, i16mem:$ptr),
    723                     !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
    724                     [(set
    725                        GR16:$dst,
    726                        (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
    727                     itin>, OpSize16;
    728     def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
    729                     (ins GR32:$val, i32mem:$ptr),
    730                     !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
    731                     [(set
    732                        GR32:$dst,
    733                        (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
    734                     itin>, OpSize32;
    735     def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
    736                      (ins GR64:$val, i64mem:$ptr),
    737                      !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
    738                      [(set
    739                         GR64:$dst,
    740                         (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
    741                      itin>;
    742   }
    743 }
    744 
    745 defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
    746                                IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
    747              TB, LOCK;
    748 
    749 /* The following multiclass tries to make sure that in code like
    750  *    x.store (immediate op x.load(acquire), release)
    751  * an operation directly on memory is generated instead of wasting a register.
    752  * It is not automatic as atomic_store/load are only lowered to MOV instructions
    753  * extremely late to prevent them from being accidentally reordered in the backend
    754  * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
    755  */
    756 multiclass RELEASE_BINOP_MI<string op> {
    757     def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
    758         "#RELEASE_BINOP PSEUDO!",
    759         [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
    760             (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
    761     // NAME#16 is not generated as 16-bit arithmetic instructions are considered
    762     // costly and avoided as far as possible by this backend anyway
    763     def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
    764         "#RELEASE_BINOP PSEUDO!",
    765         [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
    766             (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
    767     def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
    768         "#RELEASE_BINOP PSEUDO!",
    769         [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
    770             (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
    771 }
    772 defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
    773 defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
    774 defm RELEASE_OR  : RELEASE_BINOP_MI<"or">;
    775 defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
    776 // Note: we don't deal with sub, because substractions of constants are
    777 // optimized into additions before this code can run
    778 
    779 multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
    780     def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
    781         "#RELEASE_UNOP PSEUDO!",
    782         [(atomic_store_8 addr:$dst, dag8)]>;
    783     def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
    784         "#RELEASE_UNOP PSEUDO!",
    785         [(atomic_store_16 addr:$dst, dag16)]>;
    786     def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
    787         "#RELEASE_UNOP PSEUDO!",
    788         [(atomic_store_32 addr:$dst, dag32)]>;
    789     def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
    790         "#RELEASE_UNOP PSEUDO!",
    791         [(atomic_store_64 addr:$dst, dag64)]>;
    792 }
    793 
    794 defm RELEASE_INC : RELEASE_UNOP<
    795     (add (atomic_load_8  addr:$dst), (i8 1)),
    796     (add (atomic_load_16 addr:$dst), (i16 1)),
    797     (add (atomic_load_32 addr:$dst), (i32 1)),
    798     (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
    799 defm RELEASE_DEC : RELEASE_UNOP<
    800     (add (atomic_load_8  addr:$dst), (i8 -1)),
    801     (add (atomic_load_16 addr:$dst), (i16 -1)),
    802     (add (atomic_load_32 addr:$dst), (i32 -1)),
    803     (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
    804 /*
    805 TODO: These don't work because the type inference of TableGen fails.
    806 TODO: find a way to fix it.
    807 defm RELEASE_NEG : RELEASE_UNOP<
    808     (ineg (atomic_load_8  addr:$dst)),
    809     (ineg (atomic_load_16 addr:$dst)),
    810     (ineg (atomic_load_32 addr:$dst)),
    811     (ineg (atomic_load_64 addr:$dst))>;
    812 defm RELEASE_NOT : RELEASE_UNOP<
    813     (not (atomic_load_8  addr:$dst)),
    814     (not (atomic_load_16 addr:$dst)),
    815     (not (atomic_load_32 addr:$dst)),
    816     (not (atomic_load_64 addr:$dst))>;
    817 */
    818 
    819 def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
    820 			"#RELEASE_MOV PSEUDO !",
    821 			[(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
    822 def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
    823 			"#RELEASE_MOV PSEUDO !",
    824 			[(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
    825 def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
    826 			"#RELEASE_MOV PSEUDO !",
    827 			[(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
    828 def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
    829 			"#RELEASE_MOV PSEUDO !",
    830 			[(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
    831 
    832 def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
    833                         "#RELEASE_MOV PSEUDO!",
    834                         [(atomic_store_8  addr:$dst, GR8 :$src)]>;
    835 def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
    836                         "#RELEASE_MOV PSEUDO!",
    837                         [(atomic_store_16 addr:$dst, GR16:$src)]>;
    838 def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
    839                         "#RELEASE_MOV PSEUDO!",
    840                         [(atomic_store_32 addr:$dst, GR32:$src)]>;
    841 def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
    842                         "#RELEASE_MOV PSEUDO!",
    843                         [(atomic_store_64 addr:$dst, GR64:$src)]>;
    844 
    845 def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
    846                       "#ACQUIRE_MOV PSEUDO!",
    847                       [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
    848 def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
    849                       "#ACQUIRE_MOV PSEUDO!",
    850                       [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
    851 def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
    852                       "#ACQUIRE_MOV PSEUDO!",
    853                       [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
    854 def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
    855                       "#ACQUIRE_MOV PSEUDO!",
    856                       [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
    857 
    858 //===----------------------------------------------------------------------===//
    859 // DAG Pattern Matching Rules
    860 //===----------------------------------------------------------------------===//
    861 
    862 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
    863 def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
    864 def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
    865 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
    866 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
    867 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
    868 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
    869 
    870 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
    871           (ADD32ri GR32:$src1, tconstpool:$src2)>;
    872 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
    873           (ADD32ri GR32:$src1, tjumptable:$src2)>;
    874 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
    875           (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
    876 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
    877           (ADD32ri GR32:$src1, texternalsym:$src2)>;
    878 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
    879           (ADD32ri GR32:$src1, tblockaddress:$src2)>;
    880 
    881 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
    882           (MOV32mi addr:$dst, tglobaladdr:$src)>;
    883 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
    884           (MOV32mi addr:$dst, texternalsym:$src)>;
    885 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
    886           (MOV32mi addr:$dst, tblockaddress:$src)>;
    887 
    888 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
    889 // code model mode, should use 'movabs'.  FIXME: This is really a hack, the
    890 //  'movabs' predicate should handle this sort of thing.
    891 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
    892           (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
    893 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
    894           (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
    895 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
    896           (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
    897 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
    898           (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
    899 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
    900           (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
    901 
    902 // In kernel code model, we can get the address of a label
    903 // into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
    904 // the MOV64ri32 should accept these.
    905 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
    906           (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
    907 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
    908           (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
    909 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
    910           (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
    911 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
    912           (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
    913 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
    914           (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
    915 
    916 // If we have small model and -static mode, it is safe to store global addresses
    917 // directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
    918 // for MOV64mi32 should handle this sort of thing.
    919 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
    920           (MOV64mi32 addr:$dst, tconstpool:$src)>,
    921           Requires<[NearData, IsStatic]>;
    922 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
    923           (MOV64mi32 addr:$dst, tjumptable:$src)>,
    924           Requires<[NearData, IsStatic]>;
    925 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
    926           (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
    927           Requires<[NearData, IsStatic]>;
    928 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
    929           (MOV64mi32 addr:$dst, texternalsym:$src)>,
    930           Requires<[NearData, IsStatic]>;
    931 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
    932           (MOV64mi32 addr:$dst, tblockaddress:$src)>,
    933           Requires<[NearData, IsStatic]>;
    934 
    935 def : Pat<(i32 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
    936 def : Pat<(i64 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV64ri texternalsym:$dst)>;
    937 
    938 // Calls
    939 
    940 // tls has some funny stuff here...
    941 // This corresponds to movabs $foo@tpoff, %rax
    942 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
    943           (MOV64ri32 tglobaltlsaddr :$dst)>;
    944 // This corresponds to add $foo@tpoff, %rax
    945 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
    946           (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
    947 
    948 
    949 // Direct PC relative function call for small code model. 32-bit displacement
    950 // sign extended to 64-bit.
    951 def : Pat<(X86call (i64 tglobaladdr:$dst)),
    952           (CALL64pcrel32 tglobaladdr:$dst)>;
    953 def : Pat<(X86call (i64 texternalsym:$dst)),
    954           (CALL64pcrel32 texternalsym:$dst)>;
    955 
    956 // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
    957 // can never use callee-saved registers. That is the purpose of the GR64_TC
    958 // register classes.
    959 //
    960 // The only volatile register that is never used by the calling convention is
    961 // %r11. This happens when calling a vararg function with 6 arguments.
    962 //
    963 // Match an X86tcret that uses less than 7 volatile registers.
    964 def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
    965                              (X86tcret node:$ptr, node:$off), [{
    966   // X86tcret args: (*chain, ptr, imm, regs..., glue)
    967   unsigned NumRegs = 0;
    968   for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
    969     if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
    970       return false;
    971   return true;
    972 }]>;
    973 
    974 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
    975           (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
    976           Requires<[Not64BitMode]>;
    977 
    978 // FIXME: This is disabled for 32-bit PIC mode because the global base
    979 // register which is part of the address mode may be assigned a
    980 // callee-saved register.
    981 def : Pat<(X86tcret (load addr:$dst), imm:$off),
    982           (TCRETURNmi addr:$dst, imm:$off)>,
    983           Requires<[Not64BitMode, IsNotPIC]>;
    984 
    985 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
    986           (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
    987           Requires<[NotLP64]>;
    988 
    989 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
    990           (TCRETURNdi texternalsym:$dst, imm:$off)>,
    991           Requires<[NotLP64]>;
    992 
    993 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
    994           (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
    995           Requires<[In64BitMode]>;
    996 
    997 // Don't fold loads into X86tcret requiring more than 6 regs.
    998 // There wouldn't be enough scratch registers for base+index.
    999 def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
   1000           (TCRETURNmi64 addr:$dst, imm:$off)>,
   1001           Requires<[In64BitMode]>;
   1002 
   1003 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
   1004           (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
   1005           Requires<[IsLP64]>;
   1006 
   1007 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
   1008           (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
   1009           Requires<[IsLP64]>;
   1010 
   1011 // Normal calls, with various flavors of addresses.
   1012 def : Pat<(X86call (i32 tglobaladdr:$dst)),
   1013           (CALLpcrel32 tglobaladdr:$dst)>;
   1014 def : Pat<(X86call (i32 texternalsym:$dst)),
   1015           (CALLpcrel32 texternalsym:$dst)>;
   1016 def : Pat<(X86call (i32 imm:$dst)),
   1017           (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
   1018 
   1019 // Comparisons.
   1020 
   1021 // TEST R,R is smaller than CMP R,0
   1022 def : Pat<(X86cmp GR8:$src1, 0),
   1023           (TEST8rr GR8:$src1, GR8:$src1)>;
   1024 def : Pat<(X86cmp GR16:$src1, 0),
   1025           (TEST16rr GR16:$src1, GR16:$src1)>;
   1026 def : Pat<(X86cmp GR32:$src1, 0),
   1027           (TEST32rr GR32:$src1, GR32:$src1)>;
   1028 def : Pat<(X86cmp GR64:$src1, 0),
   1029           (TEST64rr GR64:$src1, GR64:$src1)>;
   1030 
   1031 // Conditional moves with folded loads with operands swapped and conditions
   1032 // inverted.
   1033 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
   1034                   Instruction Inst64> {
   1035   let Predicates = [HasCMov] in {
   1036     def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
   1037               (Inst16 GR16:$src2, addr:$src1)>;
   1038     def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
   1039               (Inst32 GR32:$src2, addr:$src1)>;
   1040     def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
   1041               (Inst64 GR64:$src2, addr:$src1)>;
   1042   }
   1043 }
   1044 
   1045 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
   1046 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
   1047 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
   1048 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
   1049 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
   1050 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
   1051 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
   1052 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
   1053 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
   1054 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
   1055 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
   1056 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
   1057 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
   1058 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
   1059 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
   1060 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
   1061 
   1062 // zextload bool -> zextload byte
   1063 def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
   1064 def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
   1065 def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
   1066 def : Pat<(zextloadi64i1 addr:$src),
   1067           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
   1068 
   1069 // extload bool -> extload byte
   1070 // When extloading from 16-bit and smaller memory locations into 64-bit
   1071 // registers, use zero-extending loads so that the entire 64-bit register is
   1072 // defined, avoiding partial-register updates.
   1073 
   1074 def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
   1075 def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
   1076 def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
   1077 def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
   1078 def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
   1079 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
   1080 
   1081 // For other extloads, use subregs, since the high contents of the register are
   1082 // defined after an extload.
   1083 def : Pat<(extloadi64i1 addr:$src),
   1084           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
   1085 def : Pat<(extloadi64i8 addr:$src),
   1086           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
   1087 def : Pat<(extloadi64i16 addr:$src),
   1088           (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
   1089 def : Pat<(extloadi64i32 addr:$src),
   1090           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
   1091 
   1092 // anyext. Define these to do an explicit zero-extend to
   1093 // avoid partial-register updates.
   1094 def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
   1095                                      (MOVZX32rr8 GR8 :$src), sub_16bit)>;
   1096 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
   1097 
   1098 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
   1099 def : Pat<(i32 (anyext GR16:$src)),
   1100           (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
   1101 
   1102 def : Pat<(i64 (anyext GR8 :$src)),
   1103           (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
   1104 def : Pat<(i64 (anyext GR16:$src)),
   1105           (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
   1106 def : Pat<(i64 (anyext GR32:$src)),
   1107           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
   1108 
   1109 
   1110 // Any instruction that defines a 32-bit result leaves the high half of the
   1111 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
   1112 // be copying from a truncate. And x86's cmov doesn't do anything if the
   1113 // condition is false. But any other 32-bit operation will zero-extend
   1114 // up to 64 bits.
   1115 def def32 : PatLeaf<(i32 GR32:$src), [{
   1116   return N->getOpcode() != ISD::TRUNCATE &&
   1117          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
   1118          N->getOpcode() != ISD::CopyFromReg &&
   1119          N->getOpcode() != ISD::AssertSext &&
   1120          N->getOpcode() != X86ISD::CMOV;
   1121 }]>;
   1122 
   1123 // In the case of a 32-bit def that is known to implicitly zero-extend,
   1124 // we can use a SUBREG_TO_REG.
   1125 def : Pat<(i64 (zext def32:$src)),
   1126           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
   1127 
   1128 //===----------------------------------------------------------------------===//
   1129 // Pattern match OR as ADD
   1130 //===----------------------------------------------------------------------===//
   1131 
   1132 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
   1133 // 3-addressified into an LEA instruction to avoid copies.  However, we also
   1134 // want to finally emit these instructions as an or at the end of the code
   1135 // generator to make the generated code easier to read.  To do this, we select
   1136 // into "disjoint bits" pseudo ops.
   1137 
   1138 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
   1139 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
   1140   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
   1141     return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
   1142 
   1143   APInt KnownZero0, KnownOne0;
   1144   CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
   1145   APInt KnownZero1, KnownOne1;
   1146   CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
   1147   return (~KnownZero0 & ~KnownZero1) == 0;
   1148 }]>;
   1149 
   1150 
   1151 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
   1152 // Try this before the selecting to OR.
   1153 let AddedComplexity = 5, SchedRW = [WriteALU] in {
   1154 
   1155 let isConvertibleToThreeAddress = 1,
   1156     Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
   1157 let isCommutable = 1 in {
   1158 def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
   1159                     "", // orw/addw REG, REG
   1160                     [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
   1161 def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
   1162                     "", // orl/addl REG, REG
   1163                     [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
   1164 def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
   1165                     "", // orq/addq REG, REG
   1166                     [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
   1167 } // isCommutable
   1168 
   1169 // NOTE: These are order specific, we want the ri8 forms to be listed
   1170 // first so that they are slightly preferred to the ri forms.
   1171 
   1172 def ADD16ri8_DB : I<0, Pseudo,
   1173                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
   1174                     "", // orw/addw REG, imm8
   1175                     [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
   1176 def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
   1177                     "", // orw/addw REG, imm
   1178                     [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
   1179 
   1180 def ADD32ri8_DB : I<0, Pseudo,
   1181                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
   1182                     "", // orl/addl REG, imm8
   1183                     [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
   1184 def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
   1185                     "", // orl/addl REG, imm
   1186                     [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
   1187 
   1188 
   1189 def ADD64ri8_DB : I<0, Pseudo,
   1190                     (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
   1191                     "", // orq/addq REG, imm8
   1192                     [(set GR64:$dst, (or_is_add GR64:$src1,
   1193                                                 i64immSExt8:$src2))]>;
   1194 def ADD64ri32_DB : I<0, Pseudo,
   1195                      (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
   1196                       "", // orq/addq REG, imm
   1197                       [(set GR64:$dst, (or_is_add GR64:$src1,
   1198                                                   i64immSExt32:$src2))]>;
   1199 }
   1200 } // AddedComplexity, SchedRW
   1201 
   1202 
   1203 //===----------------------------------------------------------------------===//
   1204 // Some peepholes
   1205 //===----------------------------------------------------------------------===//
   1206 
   1207 // Odd encoding trick: -128 fits into an 8-bit immediate field while
   1208 // +128 doesn't, so in this special case use a sub instead of an add.
   1209 def : Pat<(add GR16:$src1, 128),
   1210           (SUB16ri8 GR16:$src1, -128)>;
   1211 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
   1212           (SUB16mi8 addr:$dst, -128)>;
   1213 
   1214 def : Pat<(add GR32:$src1, 128),
   1215           (SUB32ri8 GR32:$src1, -128)>;
   1216 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
   1217           (SUB32mi8 addr:$dst, -128)>;
   1218 
   1219 def : Pat<(add GR64:$src1, 128),
   1220           (SUB64ri8 GR64:$src1, -128)>;
   1221 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
   1222           (SUB64mi8 addr:$dst, -128)>;
   1223 
   1224 // The same trick applies for 32-bit immediate fields in 64-bit
   1225 // instructions.
   1226 def : Pat<(add GR64:$src1, 0x0000000080000000),
   1227           (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
   1228 def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
   1229           (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
   1230 
   1231 // To avoid needing to materialize an immediate in a register, use a 32-bit and
   1232 // with implicit zero-extension instead of a 64-bit and if the immediate has at
   1233 // least 32 bits of leading zeros. If in addition the last 32 bits can be
   1234 // represented with a sign extension of a 8 bit constant, use that.
   1235 // This can also reduce instruction size by eliminating the need for the REX
   1236 // prefix.
   1237 
   1238 // AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
   1239 let AddedComplexity = 1 in {
   1240 def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
   1241           (SUBREG_TO_REG
   1242             (i64 0),
   1243             (AND32ri8
   1244               (EXTRACT_SUBREG GR64:$src, sub_32bit),
   1245               (i32 (GetLo8XForm imm:$imm))),
   1246             sub_32bit)>;
   1247 
   1248 def : Pat<(and GR64:$src, i64immZExt32:$imm),
   1249           (SUBREG_TO_REG
   1250             (i64 0),
   1251             (AND32ri
   1252               (EXTRACT_SUBREG GR64:$src, sub_32bit),
   1253               (i32 (GetLo32XForm imm:$imm))),
   1254             sub_32bit)>;
   1255 } // AddedComplexity = 1
   1256 
   1257 
   1258 // AddedComplexity is needed due to the increased complexity on the
   1259 // i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
   1260 // the MOVZX patterns keeps thems together in DAGIsel tables.
   1261 let AddedComplexity = 1 in {
   1262 // r & (2^16-1) ==> movz
   1263 def : Pat<(and GR32:$src1, 0xffff),
   1264           (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
   1265 // r & (2^8-1) ==> movz
   1266 def : Pat<(and GR32:$src1, 0xff),
   1267           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
   1268                                                              GR32_ABCD)),
   1269                                       sub_8bit))>,
   1270       Requires<[Not64BitMode]>;
   1271 // r & (2^8-1) ==> movz
   1272 def : Pat<(and GR16:$src1, 0xff),
   1273            (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
   1274             (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
   1275              sub_16bit)>,
   1276       Requires<[Not64BitMode]>;
   1277 
   1278 // r & (2^32-1) ==> movz
   1279 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
   1280           (SUBREG_TO_REG (i64 0),
   1281                          (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
   1282                          sub_32bit)>;
   1283 // r & (2^16-1) ==> movz
   1284 let AddedComplexity = 1 in // Give priority over i64immZExt32.
   1285 def : Pat<(and GR64:$src, 0xffff),
   1286           (SUBREG_TO_REG (i64 0),
   1287                       (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
   1288                       sub_32bit)>;
   1289 // r & (2^8-1) ==> movz
   1290 def : Pat<(and GR64:$src, 0xff),
   1291           (SUBREG_TO_REG (i64 0),
   1292                          (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
   1293                          sub_32bit)>;
   1294 // r & (2^8-1) ==> movz
   1295 def : Pat<(and GR32:$src1, 0xff),
   1296            (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
   1297       Requires<[In64BitMode]>;
   1298 // r & (2^8-1) ==> movz
   1299 def : Pat<(and GR16:$src1, 0xff),
   1300            (EXTRACT_SUBREG (MOVZX32rr8 (i8
   1301             (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
   1302       Requires<[In64BitMode]>;
   1303 } // AddedComplexity = 1
   1304 
   1305 
   1306 // sext_inreg patterns
   1307 def : Pat<(sext_inreg GR32:$src, i16),
   1308           (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
   1309 def : Pat<(sext_inreg GR32:$src, i8),
   1310           (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1311                                                              GR32_ABCD)),
   1312                                       sub_8bit))>,
   1313       Requires<[Not64BitMode]>;
   1314 
   1315 def : Pat<(sext_inreg GR16:$src, i8),
   1316            (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
   1317             (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
   1318              sub_16bit)>,
   1319       Requires<[Not64BitMode]>;
   1320 
   1321 def : Pat<(sext_inreg GR64:$src, i32),
   1322           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
   1323 def : Pat<(sext_inreg GR64:$src, i16),
   1324           (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
   1325 def : Pat<(sext_inreg GR64:$src, i8),
   1326           (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
   1327 def : Pat<(sext_inreg GR32:$src, i8),
   1328           (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
   1329       Requires<[In64BitMode]>;
   1330 def : Pat<(sext_inreg GR16:$src, i8),
   1331            (EXTRACT_SUBREG (MOVSX32rr8
   1332             (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
   1333       Requires<[In64BitMode]>;
   1334 
   1335 // sext, sext_load, zext, zext_load
   1336 def: Pat<(i16 (sext GR8:$src)),
   1337           (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
   1338 def: Pat<(sextloadi16i8 addr:$src),
   1339           (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
   1340 def: Pat<(i16 (zext GR8:$src)),
   1341           (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
   1342 def: Pat<(zextloadi16i8 addr:$src),
   1343           (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
   1344 
   1345 // trunc patterns
   1346 def : Pat<(i16 (trunc GR32:$src)),
   1347           (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
   1348 def : Pat<(i8 (trunc GR32:$src)),
   1349           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1350                           sub_8bit)>,
   1351       Requires<[Not64BitMode]>;
   1352 def : Pat<(i8 (trunc GR16:$src)),
   1353           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1354                           sub_8bit)>,
   1355       Requires<[Not64BitMode]>;
   1356 def : Pat<(i32 (trunc GR64:$src)),
   1357           (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
   1358 def : Pat<(i16 (trunc GR64:$src)),
   1359           (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
   1360 def : Pat<(i8 (trunc GR64:$src)),
   1361           (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
   1362 def : Pat<(i8 (trunc GR32:$src)),
   1363           (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
   1364       Requires<[In64BitMode]>;
   1365 def : Pat<(i8 (trunc GR16:$src)),
   1366           (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
   1367       Requires<[In64BitMode]>;
   1368 
   1369 // h-register tricks
   1370 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
   1371           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1372                           sub_8bit_hi)>,
   1373       Requires<[Not64BitMode]>;
   1374 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
   1375           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1376                           sub_8bit_hi)>,
   1377       Requires<[Not64BitMode]>;
   1378 def : Pat<(srl GR16:$src, (i8 8)),
   1379           (EXTRACT_SUBREG
   1380             (MOVZX32rr8
   1381               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1382                               sub_8bit_hi)),
   1383             sub_16bit)>,
   1384       Requires<[Not64BitMode]>;
   1385 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
   1386           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
   1387                                                              GR16_ABCD)),
   1388                                       sub_8bit_hi))>,
   1389       Requires<[Not64BitMode]>;
   1390 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
   1391           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
   1392                                                              GR16_ABCD)),
   1393                                       sub_8bit_hi))>,
   1394       Requires<[Not64BitMode]>;
   1395 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
   1396           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1397                                                              GR32_ABCD)),
   1398                                       sub_8bit_hi))>,
   1399       Requires<[Not64BitMode]>;
   1400 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
   1401           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1402                                                              GR32_ABCD)),
   1403                                       sub_8bit_hi))>,
   1404       Requires<[Not64BitMode]>;
   1405 
   1406 // h-register tricks.
   1407 // For now, be conservative on x86-64 and use an h-register extract only if the
   1408 // value is immediately zero-extended or stored, which are somewhat common
   1409 // cases. This uses a bunch of code to prevent a register requiring a REX prefix
   1410 // from being allocated in the same instruction as the h register, as there's
   1411 // currently no way to describe this requirement to the register allocator.
   1412 
   1413 // h-register extract and zero-extend.
   1414 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
   1415           (SUBREG_TO_REG
   1416             (i64 0),
   1417             (MOVZX32_NOREXrr8
   1418               (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
   1419                               sub_8bit_hi)),
   1420             sub_32bit)>;
   1421 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
   1422           (MOVZX32_NOREXrr8
   1423             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1424                             sub_8bit_hi))>,
   1425       Requires<[In64BitMode]>;
   1426 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
   1427           (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1428                                                                    GR32_ABCD)),
   1429                                              sub_8bit_hi))>,
   1430       Requires<[In64BitMode]>;
   1431 def : Pat<(srl GR16:$src, (i8 8)),
   1432           (EXTRACT_SUBREG
   1433             (MOVZX32_NOREXrr8
   1434               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1435                               sub_8bit_hi)),
   1436             sub_16bit)>,
   1437       Requires<[In64BitMode]>;
   1438 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
   1439           (MOVZX32_NOREXrr8
   1440             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1441                             sub_8bit_hi))>,
   1442       Requires<[In64BitMode]>;
   1443 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
   1444           (MOVZX32_NOREXrr8
   1445             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1446                             sub_8bit_hi))>,
   1447       Requires<[In64BitMode]>;
   1448 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
   1449           (SUBREG_TO_REG
   1450             (i64 0),
   1451             (MOVZX32_NOREXrr8
   1452               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1453                               sub_8bit_hi)),
   1454             sub_32bit)>;
   1455 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
   1456           (SUBREG_TO_REG
   1457             (i64 0),
   1458             (MOVZX32_NOREXrr8
   1459               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1460                               sub_8bit_hi)),
   1461             sub_32bit)>;
   1462 
   1463 // h-register extract and store.
   1464 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
   1465           (MOV8mr_NOREX
   1466             addr:$dst,
   1467             (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
   1468                             sub_8bit_hi))>;
   1469 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
   1470           (MOV8mr_NOREX
   1471             addr:$dst,
   1472             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1473                             sub_8bit_hi))>,
   1474       Requires<[In64BitMode]>;
   1475 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
   1476           (MOV8mr_NOREX
   1477             addr:$dst,
   1478             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1479                             sub_8bit_hi))>,
   1480       Requires<[In64BitMode]>;
   1481 
   1482 
   1483 // (shl x, 1) ==> (add x, x)
   1484 // Note that if x is undef (immediate or otherwise), we could theoretically
   1485 // end up with the two uses of x getting different values, producing a result
   1486 // where the least significant bit is not 0. However, the probability of this
   1487 // happening is considered low enough that this is officially not a
   1488 // "real problem".
   1489 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
   1490 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
   1491 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
   1492 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
   1493 
   1494 // Helper imms that check if a mask doesn't change significant shift bits.
   1495 def immShift32 : ImmLeaf<i8, [{
   1496   return countTrailingOnes<uint64_t>(Imm) >= 5;
   1497 }]>;
   1498 def immShift64 : ImmLeaf<i8, [{
   1499   return countTrailingOnes<uint64_t>(Imm) >= 6;
   1500 }]>;
   1501 
   1502 // Shift amount is implicitly masked.
   1503 multiclass MaskedShiftAmountPats<SDNode frag, string name> {
   1504   // (shift x (and y, 31)) ==> (shift x, y)
   1505   def : Pat<(frag GR8:$src1, (and CL, immShift32)),
   1506             (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
   1507   def : Pat<(frag GR16:$src1, (and CL, immShift32)),
   1508             (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
   1509   def : Pat<(frag GR32:$src1, (and CL, immShift32)),
   1510             (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
   1511   def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
   1512             (!cast<Instruction>(name # "8mCL") addr:$dst)>;
   1513   def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
   1514             (!cast<Instruction>(name # "16mCL") addr:$dst)>;
   1515   def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
   1516             (!cast<Instruction>(name # "32mCL") addr:$dst)>;
   1517 
   1518   // (shift x (and y, 63)) ==> (shift x, y)
   1519   def : Pat<(frag GR64:$src1, (and CL, immShift64)),
   1520             (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
   1521   def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
   1522             (!cast<Instruction>(name # "64mCL") addr:$dst)>;
   1523 }
   1524 
   1525 defm : MaskedShiftAmountPats<shl, "SHL">;
   1526 defm : MaskedShiftAmountPats<srl, "SHR">;
   1527 defm : MaskedShiftAmountPats<sra, "SAR">;
   1528 defm : MaskedShiftAmountPats<rotl, "ROL">;
   1529 defm : MaskedShiftAmountPats<rotr, "ROR">;
   1530 
   1531 // (anyext (setcc_carry)) -> (setcc_carry)
   1532 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
   1533           (SETB_C16r)>;
   1534 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
   1535           (SETB_C32r)>;
   1536 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
   1537           (SETB_C32r)>;
   1538 
   1539 
   1540 
   1541 
   1542 //===----------------------------------------------------------------------===//
   1543 // EFLAGS-defining Patterns
   1544 //===----------------------------------------------------------------------===//
   1545 
   1546 // add reg, reg
   1547 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
   1548 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
   1549 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
   1550 
   1551 // add reg, mem
   1552 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
   1553           (ADD8rm GR8:$src1, addr:$src2)>;
   1554 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
   1555           (ADD16rm GR16:$src1, addr:$src2)>;
   1556 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
   1557           (ADD32rm GR32:$src1, addr:$src2)>;
   1558 
   1559 // add reg, imm
   1560 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
   1561 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
   1562 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
   1563 def : Pat<(add GR16:$src1, i16immSExt8:$src2),
   1564           (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1565 def : Pat<(add GR32:$src1, i32immSExt8:$src2),
   1566           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1567 
   1568 // sub reg, reg
   1569 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
   1570 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
   1571 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
   1572 
   1573 // sub reg, mem
   1574 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
   1575           (SUB8rm GR8:$src1, addr:$src2)>;
   1576 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
   1577           (SUB16rm GR16:$src1, addr:$src2)>;
   1578 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
   1579           (SUB32rm GR32:$src1, addr:$src2)>;
   1580 
   1581 // sub reg, imm
   1582 def : Pat<(sub GR8:$src1, imm:$src2),
   1583           (SUB8ri GR8:$src1, imm:$src2)>;
   1584 def : Pat<(sub GR16:$src1, imm:$src2),
   1585           (SUB16ri GR16:$src1, imm:$src2)>;
   1586 def : Pat<(sub GR32:$src1, imm:$src2),
   1587           (SUB32ri GR32:$src1, imm:$src2)>;
   1588 def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
   1589           (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1590 def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
   1591           (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1592 
   1593 // sub 0, reg
   1594 def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
   1595 def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
   1596 def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
   1597 def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
   1598 
   1599 // mul reg, reg
   1600 def : Pat<(mul GR16:$src1, GR16:$src2),
   1601           (IMUL16rr GR16:$src1, GR16:$src2)>;
   1602 def : Pat<(mul GR32:$src1, GR32:$src2),
   1603           (IMUL32rr GR32:$src1, GR32:$src2)>;
   1604 
   1605 // mul reg, mem
   1606 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
   1607           (IMUL16rm GR16:$src1, addr:$src2)>;
   1608 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
   1609           (IMUL32rm GR32:$src1, addr:$src2)>;
   1610 
   1611 // mul reg, imm
   1612 def : Pat<(mul GR16:$src1, imm:$src2),
   1613           (IMUL16rri GR16:$src1, imm:$src2)>;
   1614 def : Pat<(mul GR32:$src1, imm:$src2),
   1615           (IMUL32rri GR32:$src1, imm:$src2)>;
   1616 def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
   1617           (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
   1618 def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
   1619           (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
   1620 
   1621 // reg = mul mem, imm
   1622 def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
   1623           (IMUL16rmi addr:$src1, imm:$src2)>;
   1624 def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
   1625           (IMUL32rmi addr:$src1, imm:$src2)>;
   1626 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
   1627           (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
   1628 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
   1629           (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
   1630 
   1631 // Patterns for nodes that do not produce flags, for instructions that do.
   1632 
   1633 // addition
   1634 def : Pat<(add GR64:$src1, GR64:$src2),
   1635           (ADD64rr GR64:$src1, GR64:$src2)>;
   1636 def : Pat<(add GR64:$src1, i64immSExt8:$src2),
   1637           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1638 def : Pat<(add GR64:$src1, i64immSExt32:$src2),
   1639           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1640 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
   1641           (ADD64rm GR64:$src1, addr:$src2)>;
   1642 
   1643 // subtraction
   1644 def : Pat<(sub GR64:$src1, GR64:$src2),
   1645           (SUB64rr GR64:$src1, GR64:$src2)>;
   1646 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
   1647           (SUB64rm GR64:$src1, addr:$src2)>;
   1648 def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
   1649           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1650 def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
   1651           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1652 
   1653 // Multiply
   1654 def : Pat<(mul GR64:$src1, GR64:$src2),
   1655           (IMUL64rr GR64:$src1, GR64:$src2)>;
   1656 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
   1657           (IMUL64rm GR64:$src1, addr:$src2)>;
   1658 def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
   1659           (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
   1660 def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
   1661           (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
   1662 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
   1663           (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
   1664 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
   1665           (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
   1666 
   1667 // Increment/Decrement reg.
   1668 // Do not make INC/DEC if it is slow
   1669 let Predicates = [NotSlowIncDec] in {
   1670   def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
   1671   def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
   1672   def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
   1673   def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
   1674   def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
   1675   def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
   1676   def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
   1677   def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
   1678 }
   1679 
   1680 // or reg/reg.
   1681 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
   1682 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
   1683 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
   1684 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
   1685 
   1686 // or reg/mem
   1687 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
   1688           (OR8rm GR8:$src1, addr:$src2)>;
   1689 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
   1690           (OR16rm GR16:$src1, addr:$src2)>;
   1691 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
   1692           (OR32rm GR32:$src1, addr:$src2)>;
   1693 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
   1694           (OR64rm GR64:$src1, addr:$src2)>;
   1695 
   1696 // or reg/imm
   1697 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
   1698 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
   1699 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
   1700 def : Pat<(or GR16:$src1, i16immSExt8:$src2),
   1701           (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1702 def : Pat<(or GR32:$src1, i32immSExt8:$src2),
   1703           (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1704 def : Pat<(or GR64:$src1, i64immSExt8:$src2),
   1705           (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1706 def : Pat<(or GR64:$src1, i64immSExt32:$src2),
   1707           (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1708 
   1709 // xor reg/reg
   1710 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
   1711 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
   1712 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
   1713 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
   1714 
   1715 // xor reg/mem
   1716 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
   1717           (XOR8rm GR8:$src1, addr:$src2)>;
   1718 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
   1719           (XOR16rm GR16:$src1, addr:$src2)>;
   1720 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
   1721           (XOR32rm GR32:$src1, addr:$src2)>;
   1722 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
   1723           (XOR64rm GR64:$src1, addr:$src2)>;
   1724 
   1725 // xor reg/imm
   1726 def : Pat<(xor GR8:$src1, imm:$src2),
   1727           (XOR8ri GR8:$src1, imm:$src2)>;
   1728 def : Pat<(xor GR16:$src1, imm:$src2),
   1729           (XOR16ri GR16:$src1, imm:$src2)>;
   1730 def : Pat<(xor GR32:$src1, imm:$src2),
   1731           (XOR32ri GR32:$src1, imm:$src2)>;
   1732 def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
   1733           (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1734 def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
   1735           (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1736 def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
   1737           (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1738 def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
   1739           (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1740 
   1741 // and reg/reg
   1742 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
   1743 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
   1744 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
   1745 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
   1746 
   1747 // and reg/mem
   1748 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
   1749           (AND8rm GR8:$src1, addr:$src2)>;
   1750 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
   1751           (AND16rm GR16:$src1, addr:$src2)>;
   1752 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
   1753           (AND32rm GR32:$src1, addr:$src2)>;
   1754 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
   1755           (AND64rm GR64:$src1, addr:$src2)>;
   1756 
   1757 // and reg/imm
   1758 def : Pat<(and GR8:$src1, imm:$src2),
   1759           (AND8ri GR8:$src1, imm:$src2)>;
   1760 def : Pat<(and GR16:$src1, imm:$src2),
   1761           (AND16ri GR16:$src1, imm:$src2)>;
   1762 def : Pat<(and GR32:$src1, imm:$src2),
   1763           (AND32ri GR32:$src1, imm:$src2)>;
   1764 def : Pat<(and GR16:$src1, i16immSExt8:$src2),
   1765           (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1766 def : Pat<(and GR32:$src1, i32immSExt8:$src2),
   1767           (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1768 def : Pat<(and GR64:$src1, i64immSExt8:$src2),
   1769           (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1770 def : Pat<(and GR64:$src1, i64immSExt32:$src2),
   1771           (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1772 
   1773 // Bit scan instruction patterns to match explicit zero-undef behavior.
   1774 def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
   1775 def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
   1776 def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
   1777 def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
   1778 def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
   1779 def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
   1780 
   1781 // When HasMOVBE is enabled it is possible to get a non-legalized
   1782 // register-register 16 bit bswap. This maps it to a ROL instruction.
   1783 let Predicates = [HasMOVBE] in {
   1784  def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
   1785 }
   1786