Home | History | Annotate | Download | only in X86
      1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86SelectionDAGInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86InstrInfo.h"
     15 #include "X86ISelLowering.h"
     16 #include "X86RegisterInfo.h"
     17 #include "X86Subtarget.h"
     18 #include "X86SelectionDAGInfo.h"
     19 #include "llvm/CodeGen/SelectionDAG.h"
     20 #include "llvm/IR/DerivedTypes.h"
     21 #include "llvm/Target/TargetLowering.h"
     22 
     23 using namespace llvm;
     24 
     25 #define DEBUG_TYPE "x86-selectiondag-info"
     26 
     27 X86SelectionDAGInfo::X86SelectionDAGInfo(const DataLayout &DL)
     28     : TargetSelectionDAGInfo(&DL) {}
     29 
     30 X86SelectionDAGInfo::~X86SelectionDAGInfo() {}
     31 
     32 bool X86SelectionDAGInfo::isBaseRegConflictPossible(
     33     SelectionDAG &DAG, ArrayRef<unsigned> ClobberSet) const {
     34   // We cannot use TRI->hasBasePointer() until *after* we select all basic
     35   // blocks.  Legalization may introduce new stack temporaries with large
     36   // alignment requirements.  Fall back to generic code if there are any
     37   // dynamic stack adjustments (hopefully rare) and the base pointer would
     38   // conflict if we had to use it.
     39   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
     40   if (!MFI->hasVarSizedObjects() && !MFI->hasInlineAsmWithSPAdjust())
     41     return false;
     42 
     43   const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
     44       DAG.getSubtarget().getRegisterInfo());
     45   unsigned BaseReg = TRI->getBaseRegister();
     46   for (unsigned R : ClobberSet)
     47     if (BaseReg == R)
     48       return true;
     49   return false;
     50 }
     51 
     52 SDValue
     53 X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
     54                                              SDValue Chain,
     55                                              SDValue Dst, SDValue Src,
     56                                              SDValue Size, unsigned Align,
     57                                              bool isVolatile,
     58                                          MachinePointerInfo DstPtrInfo) const {
     59   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
     60   const X86Subtarget &Subtarget =
     61       DAG.getMachineFunction().getSubtarget<X86Subtarget>();
     62 
     63 #ifndef NDEBUG
     64   // If the base register might conflict with our physical registers, bail out.
     65   const unsigned ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
     66                                  X86::ECX, X86::EAX, X86::EDI};
     67   assert(!isBaseRegConflictPossible(DAG, ClobberSet));
     68 #endif
     69 
     70   // If to a segment-relative address space, use the default lowering.
     71   if (DstPtrInfo.getAddrSpace() >= 256)
     72     return SDValue();
     73 
     74   // If not DWORD aligned or size is more than the threshold, call the library.
     75   // The libc version is likely to be faster for these cases. It can use the
     76   // address value and run time information about the CPU.
     77   if ((Align & 3) != 0 || !ConstantSize ||
     78       ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
     79     // Check to see if there is a specialized entry-point for memory zeroing.
     80     ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
     81 
     82     if (const char *bzeroEntry =  V &&
     83         V->isNullValue() ? Subtarget.getBZeroEntry() : nullptr) {
     84       EVT IntPtr = DAG.getTargetLoweringInfo().getPointerTy();
     85       Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
     86       TargetLowering::ArgListTy Args;
     87       TargetLowering::ArgListEntry Entry;
     88       Entry.Node = Dst;
     89       Entry.Ty = IntPtrTy;
     90       Args.push_back(Entry);
     91       Entry.Node = Size;
     92       Args.push_back(Entry);
     93 
     94       TargetLowering::CallLoweringInfo CLI(DAG);
     95       CLI.setDebugLoc(dl).setChain(Chain)
     96         .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
     97                    DAG.getExternalSymbol(bzeroEntry, IntPtr), std::move(Args),
     98                    0)
     99         .setDiscardResult();
    100 
    101       std::pair<SDValue,SDValue> CallResult = DAG.getTargetLoweringInfo().LowerCallTo(CLI);
    102       return CallResult.second;
    103     }
    104 
    105     // Otherwise have the target-independent code call memset.
    106     return SDValue();
    107   }
    108 
    109   uint64_t SizeVal = ConstantSize->getZExtValue();
    110   SDValue InFlag;
    111   EVT AVT;
    112   SDValue Count;
    113   ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
    114   unsigned BytesLeft = 0;
    115   bool TwoRepStos = false;
    116   if (ValC) {
    117     unsigned ValReg;
    118     uint64_t Val = ValC->getZExtValue() & 255;
    119 
    120     // If the value is a constant, then we can potentially use larger sets.
    121     switch (Align & 3) {
    122     case 2:   // WORD aligned
    123       AVT = MVT::i16;
    124       ValReg = X86::AX;
    125       Val = (Val << 8) | Val;
    126       break;
    127     case 0:  // DWORD aligned
    128       AVT = MVT::i32;
    129       ValReg = X86::EAX;
    130       Val = (Val << 8)  | Val;
    131       Val = (Val << 16) | Val;
    132       if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
    133         AVT = MVT::i64;
    134         ValReg = X86::RAX;
    135         Val = (Val << 32) | Val;
    136       }
    137       break;
    138     default:  // Byte aligned
    139       AVT = MVT::i8;
    140       ValReg = X86::AL;
    141       Count = DAG.getIntPtrConstant(SizeVal);
    142       break;
    143     }
    144 
    145     if (AVT.bitsGT(MVT::i8)) {
    146       unsigned UBytes = AVT.getSizeInBits() / 8;
    147       Count = DAG.getIntPtrConstant(SizeVal / UBytes);
    148       BytesLeft = SizeVal % UBytes;
    149     }
    150 
    151     Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
    152                               InFlag);
    153     InFlag = Chain.getValue(1);
    154   } else {
    155     AVT = MVT::i8;
    156     Count  = DAG.getIntPtrConstant(SizeVal);
    157     Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
    158     InFlag = Chain.getValue(1);
    159   }
    160 
    161   Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RCX : X86::ECX,
    162                            Count, InFlag);
    163   InFlag = Chain.getValue(1);
    164   Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RDI : X86::EDI,
    165                            Dst, InFlag);
    166   InFlag = Chain.getValue(1);
    167 
    168   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
    169   SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
    170   Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
    171 
    172   if (TwoRepStos) {
    173     InFlag = Chain.getValue(1);
    174     Count  = Size;
    175     EVT CVT = Count.getValueType();
    176     SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
    177                                DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
    178     Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
    179                                                              X86::ECX,
    180                               Left, InFlag);
    181     InFlag = Chain.getValue(1);
    182     Tys = DAG.getVTList(MVT::Other, MVT::Glue);
    183     SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
    184     Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
    185   } else if (BytesLeft) {
    186     // Handle the last 1 - 7 bytes.
    187     unsigned Offset = SizeVal - BytesLeft;
    188     EVT AddrVT = Dst.getValueType();
    189     EVT SizeVT = Size.getValueType();
    190 
    191     Chain = DAG.getMemset(Chain, dl,
    192                           DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
    193                                       DAG.getConstant(Offset, AddrVT)),
    194                           Src,
    195                           DAG.getConstant(BytesLeft, SizeVT),
    196                           Align, isVolatile, false,
    197                           DstPtrInfo.getWithOffset(Offset));
    198   }
    199 
    200   // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
    201   return Chain;
    202 }
    203 
    204 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
    205     SelectionDAG &DAG, SDLoc dl, SDValue Chain, SDValue Dst, SDValue Src,
    206     SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
    207     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
    208   // This requires the copy size to be a constant, preferably
    209   // within a subtarget-specific limit.
    210   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
    211   const X86Subtarget &Subtarget =
    212       DAG.getMachineFunction().getSubtarget<X86Subtarget>();
    213   if (!ConstantSize)
    214     return SDValue();
    215   uint64_t SizeVal = ConstantSize->getZExtValue();
    216   if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
    217     return SDValue();
    218 
    219   /// If not DWORD aligned, it is more efficient to call the library.  However
    220   /// if calling the library is not allowed (AlwaysInline), then soldier on as
    221   /// the code generated here is better than the long load-store sequence we
    222   /// would otherwise get.
    223   if (!AlwaysInline && (Align & 3) != 0)
    224     return SDValue();
    225 
    226   // If to a segment-relative address space, use the default lowering.
    227   if (DstPtrInfo.getAddrSpace() >= 256 ||
    228       SrcPtrInfo.getAddrSpace() >= 256)
    229     return SDValue();
    230 
    231   // If the base register might conflict with our physical registers, bail out.
    232   const unsigned ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
    233                                  X86::ECX, X86::ESI, X86::EDI};
    234   if (isBaseRegConflictPossible(DAG, ClobberSet))
    235     return SDValue();
    236 
    237   MVT AVT;
    238   if (Align & 1)
    239     AVT = MVT::i8;
    240   else if (Align & 2)
    241     AVT = MVT::i16;
    242   else if (Align & 4)
    243     // DWORD aligned
    244     AVT = MVT::i32;
    245   else
    246     // QWORD aligned
    247     AVT = Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
    248 
    249   unsigned UBytes = AVT.getSizeInBits() / 8;
    250   unsigned CountVal = SizeVal / UBytes;
    251   SDValue Count = DAG.getIntPtrConstant(CountVal);
    252   unsigned BytesLeft = SizeVal % UBytes;
    253 
    254   SDValue InFlag;
    255   Chain  = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RCX :
    256                                                               X86::ECX,
    257                             Count, InFlag);
    258   InFlag = Chain.getValue(1);
    259   Chain  = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RDI :
    260                                                               X86::EDI,
    261                             Dst, InFlag);
    262   InFlag = Chain.getValue(1);
    263   Chain  = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RSI :
    264                                                               X86::ESI,
    265                             Src, InFlag);
    266   InFlag = Chain.getValue(1);
    267 
    268   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
    269   SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
    270   SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
    271 
    272   SmallVector<SDValue, 4> Results;
    273   Results.push_back(RepMovs);
    274   if (BytesLeft) {
    275     // Handle the last 1 - 7 bytes.
    276     unsigned Offset = SizeVal - BytesLeft;
    277     EVT DstVT = Dst.getValueType();
    278     EVT SrcVT = Src.getValueType();
    279     EVT SizeVT = Size.getValueType();
    280     Results.push_back(DAG.getMemcpy(Chain, dl,
    281                                     DAG.getNode(ISD::ADD, dl, DstVT, Dst,
    282                                                 DAG.getConstant(Offset, DstVT)),
    283                                     DAG.getNode(ISD::ADD, dl, SrcVT, Src,
    284                                                 DAG.getConstant(Offset, SrcVT)),
    285                                     DAG.getConstant(BytesLeft, SizeVT),
    286                                     Align, isVolatile, AlwaysInline, false,
    287                                     DstPtrInfo.getWithOffset(Offset),
    288                                     SrcPtrInfo.getWithOffset(Offset)));
    289   }
    290 
    291   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
    292 }
    293