Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jcphuff.c
      4  *
      5  * Copyright (C) 1995-1997, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains Huffman entropy encoding routines for progressive JPEG.
     10  *
     11  * We do not support output suspension in this module, since the library
     12  * currently does not allow multiple-scan files to be written with output
     13  * suspension.
     14  */
     15 
     16 #define JPEG_INTERNALS
     17 #include "jinclude.h"
     18 #include "jpeglib.h"
     19 #include "jchuff.h"		/* Declarations shared with jchuff.c */
     20 
     21 #ifdef C_PROGRESSIVE_SUPPORTED
     22 
     23 /* Expanded entropy encoder object for progressive Huffman encoding. */
     24 
     25 typedef struct {
     26   struct jpeg_entropy_encoder pub; /* public fields */
     27 
     28   /* Mode flag: TRUE for optimization, FALSE for actual data output */
     29   boolean gather_statistics;
     30 
     31   /* Bit-level coding status.
     32    * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
     33    */
     34   JOCTET * next_output_byte;	/* => next byte to write in buffer */
     35   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
     36   INT32 put_buffer;		/* current bit-accumulation buffer */
     37   int put_bits;			/* # of bits now in it */
     38   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
     39 
     40   /* Coding status for DC components */
     41   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     42 
     43   /* Coding status for AC components */
     44   int ac_tbl_no;		/* the table number of the single component */
     45   unsigned int EOBRUN;		/* run length of EOBs */
     46   unsigned int BE;		/* # of buffered correction bits before MCU */
     47   char * bit_buffer;		/* buffer for correction bits (1 per char) */
     48   /* packing correction bits tightly would save some space but cost time... */
     49 
     50   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     51   int next_restart_num;		/* next restart number to write (0-7) */
     52 
     53   /* Pointers to derived tables (these workspaces have image lifespan).
     54    * Since any one scan codes only DC or only AC, we only need one set
     55    * of tables, not one for DC and one for AC.
     56    */
     57   c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
     58 
     59   /* Statistics tables for optimization; again, one set is enough */
     60   long * count_ptrs[NUM_HUFF_TBLS];
     61 } phuff_entropy_encoder;
     62 
     63 typedef phuff_entropy_encoder * phuff_entropy_ptr;
     64 
     65 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
     66  * buffer can hold.  Larger sizes may slightly improve compression, but
     67  * 1000 is already well into the realm of overkill.
     68  * The minimum safe size is 64 bits.
     69  */
     70 
     71 #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
     72 
     73 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
     74  * We assume that int right shift is unsigned if INT32 right shift is,
     75  * which should be safe.
     76  */
     77 
     78 #ifdef RIGHT_SHIFT_IS_UNSIGNED
     79 #define ISHIFT_TEMPS	int ishift_temp;
     80 #define IRIGHT_SHIFT(x,shft)  \
     81 	((ishift_temp = (x)) < 0 ? \
     82 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
     83 	 (ishift_temp >> (shft)))
     84 #else
     85 #define ISHIFT_TEMPS
     86 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
     87 #endif
     88 
     89 /* Forward declarations */
     90 METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
     91 					    JBLOCKROW *MCU_data));
     92 METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
     93 					    JBLOCKROW *MCU_data));
     94 METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
     95 					     JBLOCKROW *MCU_data));
     96 METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
     97 					     JBLOCKROW *MCU_data));
     98 METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
     99 METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
    100 
    101 
    102 /*
    103  * Initialize for a Huffman-compressed scan using progressive JPEG.
    104  */
    105 
    106 METHODDEF(void)
    107 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
    108 {
    109   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    110   boolean is_DC_band;
    111   int ci, tbl;
    112   jpeg_component_info * compptr;
    113 
    114   entropy->cinfo = cinfo;
    115   entropy->gather_statistics = gather_statistics;
    116 
    117   is_DC_band = (cinfo->Ss == 0);
    118 
    119   /* We assume jcmaster.c already validated the scan parameters. */
    120 
    121   /* Select execution routines */
    122   if (cinfo->Ah == 0) {
    123     if (is_DC_band)
    124       entropy->pub.encode_mcu = encode_mcu_DC_first;
    125     else
    126       entropy->pub.encode_mcu = encode_mcu_AC_first;
    127   } else {
    128     if (is_DC_band)
    129       entropy->pub.encode_mcu = encode_mcu_DC_refine;
    130     else {
    131       entropy->pub.encode_mcu = encode_mcu_AC_refine;
    132       /* AC refinement needs a correction bit buffer */
    133       if (entropy->bit_buffer == NULL)
    134 	entropy->bit_buffer = (char *)
    135 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    136 				      MAX_CORR_BITS * SIZEOF(char));
    137     }
    138   }
    139   if (gather_statistics)
    140     entropy->pub.finish_pass = finish_pass_gather_phuff;
    141   else
    142     entropy->pub.finish_pass = finish_pass_phuff;
    143 
    144   /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
    145    * for AC coefficients.
    146    */
    147   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    148     compptr = cinfo->cur_comp_info[ci];
    149     /* Initialize DC predictions to 0 */
    150     entropy->last_dc_val[ci] = 0;
    151     /* Get table index */
    152     if (is_DC_band) {
    153       if (cinfo->Ah != 0)	/* DC refinement needs no table */
    154 	continue;
    155       tbl = compptr->dc_tbl_no;
    156     } else {
    157       entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
    158     }
    159     if (gather_statistics) {
    160       /* Check for invalid table index */
    161       /* (make_c_derived_tbl does this in the other path) */
    162       if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
    163         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
    164       /* Allocate and zero the statistics tables */
    165       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    166       if (entropy->count_ptrs[tbl] == NULL)
    167 	entropy->count_ptrs[tbl] = (long *)
    168 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    169 				      257 * SIZEOF(long));
    170       MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
    171     } else {
    172       /* Compute derived values for Huffman table */
    173       /* We may do this more than once for a table, but it's not expensive */
    174       jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
    175 			      & entropy->derived_tbls[tbl]);
    176     }
    177   }
    178 
    179   /* Initialize AC stuff */
    180   entropy->EOBRUN = 0;
    181   entropy->BE = 0;
    182 
    183   /* Initialize bit buffer to empty */
    184   entropy->put_buffer = 0;
    185   entropy->put_bits = 0;
    186 
    187   /* Initialize restart stuff */
    188   entropy->restarts_to_go = cinfo->restart_interval;
    189   entropy->next_restart_num = 0;
    190 }
    191 
    192 
    193 /* Outputting bytes to the file.
    194  * NB: these must be called only when actually outputting,
    195  * that is, entropy->gather_statistics == FALSE.
    196  */
    197 
    198 /* Emit a byte */
    199 #define emit_byte(entropy,val)  \
    200 	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
    201 	  if (--(entropy)->free_in_buffer == 0)  \
    202 	    dump_buffer(entropy); }
    203 
    204 
    205 LOCAL(void)
    206 dump_buffer (phuff_entropy_ptr entropy)
    207 /* Empty the output buffer; we do not support suspension in this module. */
    208 {
    209   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
    210 
    211   if (! (*dest->empty_output_buffer) (entropy->cinfo))
    212     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
    213   /* After a successful buffer dump, must reset buffer pointers */
    214   entropy->next_output_byte = dest->next_output_byte;
    215   entropy->free_in_buffer = dest->free_in_buffer;
    216 }
    217 
    218 
    219 /* Outputting bits to the file */
    220 
    221 /* Only the right 24 bits of put_buffer are used; the valid bits are
    222  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    223  * in one call, and we never retain more than 7 bits in put_buffer
    224  * between calls, so 24 bits are sufficient.
    225  */
    226 
    227 INLINE
    228 LOCAL(void)
    229 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
    230 /* Emit some bits, unless we are in gather mode */
    231 {
    232   /* This routine is heavily used, so it's worth coding tightly. */
    233   register INT32 put_buffer = (INT32) code;
    234   register int put_bits = entropy->put_bits;
    235 
    236   /* if size is 0, caller used an invalid Huffman table entry */
    237   if (size == 0)
    238     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    239 
    240   if (entropy->gather_statistics)
    241     return;			/* do nothing if we're only getting stats */
    242 
    243   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    244 
    245   put_bits += size;		/* new number of bits in buffer */
    246 
    247   put_buffer <<= 24 - put_bits; /* align incoming bits */
    248 
    249   put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
    250 
    251   while (put_bits >= 8) {
    252     int c = (int) ((put_buffer >> 16) & 0xFF);
    253 
    254     emit_byte(entropy, c);
    255     if (c == 0xFF) {		/* need to stuff a zero byte? */
    256       emit_byte(entropy, 0);
    257     }
    258     put_buffer <<= 8;
    259     put_bits -= 8;
    260   }
    261 
    262   entropy->put_buffer = put_buffer; /* update variables */
    263   entropy->put_bits = put_bits;
    264 }
    265 
    266 
    267 LOCAL(void)
    268 flush_bits (phuff_entropy_ptr entropy)
    269 {
    270   emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
    271   entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
    272   entropy->put_bits = 0;
    273 }
    274 
    275 
    276 /*
    277  * Emit (or just count) a Huffman symbol.
    278  */
    279 
    280 INLINE
    281 LOCAL(void)
    282 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
    283 {
    284   if (entropy->gather_statistics)
    285     entropy->count_ptrs[tbl_no][symbol]++;
    286   else {
    287     c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
    288     emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
    289   }
    290 }
    291 
    292 
    293 /*
    294  * Emit bits from a correction bit buffer.
    295  */
    296 
    297 LOCAL(void)
    298 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
    299 		    unsigned int nbits)
    300 {
    301   if (entropy->gather_statistics)
    302     return;			/* no real work */
    303 
    304   while (nbits > 0) {
    305     emit_bits(entropy, (unsigned int) (*bufstart), 1);
    306     bufstart++;
    307     nbits--;
    308   }
    309 }
    310 
    311 
    312 /*
    313  * Emit any pending EOBRUN symbol.
    314  */
    315 
    316 LOCAL(void)
    317 emit_eobrun (phuff_entropy_ptr entropy)
    318 {
    319   register int temp, nbits;
    320 
    321   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
    322     temp = entropy->EOBRUN;
    323     nbits = 0;
    324     while ((temp >>= 1))
    325       nbits++;
    326     /* safety check: shouldn't happen given limited correction-bit buffer */
    327     if (nbits > 14)
    328       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    329 
    330     emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
    331     if (nbits)
    332       emit_bits(entropy, entropy->EOBRUN, nbits);
    333 
    334     entropy->EOBRUN = 0;
    335 
    336     /* Emit any buffered correction bits */
    337     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
    338     entropy->BE = 0;
    339   }
    340 }
    341 
    342 
    343 /*
    344  * Emit a restart marker & resynchronize predictions.
    345  */
    346 
    347 LOCAL(void)
    348 emit_restart (phuff_entropy_ptr entropy, int restart_num)
    349 {
    350   int ci;
    351 
    352   emit_eobrun(entropy);
    353 
    354   if (! entropy->gather_statistics) {
    355     flush_bits(entropy);
    356     emit_byte(entropy, 0xFF);
    357     emit_byte(entropy, JPEG_RST0 + restart_num);
    358   }
    359 
    360   if (entropy->cinfo->Ss == 0) {
    361     /* Re-initialize DC predictions to 0 */
    362     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
    363       entropy->last_dc_val[ci] = 0;
    364   } else {
    365     /* Re-initialize all AC-related fields to 0 */
    366     entropy->EOBRUN = 0;
    367     entropy->BE = 0;
    368   }
    369 }
    370 
    371 
    372 /*
    373  * MCU encoding for DC initial scan (either spectral selection,
    374  * or first pass of successive approximation).
    375  */
    376 
    377 METHODDEF(boolean)
    378 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    379 {
    380   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    381   register int temp, temp2;
    382   register int nbits;
    383   int blkn, ci;
    384   int Al = cinfo->Al;
    385   JBLOCKROW block;
    386   jpeg_component_info * compptr;
    387   ISHIFT_TEMPS
    388 
    389   entropy->next_output_byte = cinfo->dest->next_output_byte;
    390   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    391 
    392   /* Emit restart marker if needed */
    393   if (cinfo->restart_interval)
    394     if (entropy->restarts_to_go == 0)
    395       emit_restart(entropy, entropy->next_restart_num);
    396 
    397   /* Encode the MCU data blocks */
    398   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    399     block = MCU_data[blkn];
    400     ci = cinfo->MCU_membership[blkn];
    401     compptr = cinfo->cur_comp_info[ci];
    402 
    403     /* Compute the DC value after the required point transform by Al.
    404      * This is simply an arithmetic right shift.
    405      */
    406     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
    407 
    408     /* DC differences are figured on the point-transformed values. */
    409     temp = temp2 - entropy->last_dc_val[ci];
    410     entropy->last_dc_val[ci] = temp2;
    411 
    412     /* Encode the DC coefficient difference per section G.1.2.1 */
    413     temp2 = temp;
    414     if (temp < 0) {
    415       temp = -temp;		/* temp is abs value of input */
    416       /* For a negative input, want temp2 = bitwise complement of abs(input) */
    417       /* This code assumes we are on a two's complement machine */
    418       temp2--;
    419     }
    420 
    421     /* Find the number of bits needed for the magnitude of the coefficient */
    422     nbits = 0;
    423     while (temp) {
    424       nbits++;
    425       temp >>= 1;
    426     }
    427     /* Check for out-of-range coefficient values.
    428      * Since we're encoding a difference, the range limit is twice as much.
    429      */
    430     if (nbits > MAX_COEF_BITS+1)
    431       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    432 
    433     /* Count/emit the Huffman-coded symbol for the number of bits */
    434     emit_symbol(entropy, compptr->dc_tbl_no, nbits);
    435 
    436     /* Emit that number of bits of the value, if positive, */
    437     /* or the complement of its magnitude, if negative. */
    438     if (nbits)			/* emit_bits rejects calls with size 0 */
    439       emit_bits(entropy, (unsigned int) temp2, nbits);
    440   }
    441 
    442   cinfo->dest->next_output_byte = entropy->next_output_byte;
    443   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    444 
    445   /* Update restart-interval state too */
    446   if (cinfo->restart_interval) {
    447     if (entropy->restarts_to_go == 0) {
    448       entropy->restarts_to_go = cinfo->restart_interval;
    449       entropy->next_restart_num++;
    450       entropy->next_restart_num &= 7;
    451     }
    452     entropy->restarts_to_go--;
    453   }
    454 
    455   return TRUE;
    456 }
    457 
    458 
    459 /*
    460  * MCU encoding for AC initial scan (either spectral selection,
    461  * or first pass of successive approximation).
    462  */
    463 
    464 METHODDEF(boolean)
    465 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    466 {
    467   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    468   register int temp, temp2;
    469   register int nbits;
    470   register int r, k;
    471   int Se = cinfo->Se;
    472   int Al = cinfo->Al;
    473   JBLOCKROW block;
    474 
    475   entropy->next_output_byte = cinfo->dest->next_output_byte;
    476   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    477 
    478   /* Emit restart marker if needed */
    479   if (cinfo->restart_interval)
    480     if (entropy->restarts_to_go == 0)
    481       emit_restart(entropy, entropy->next_restart_num);
    482 
    483   /* Encode the MCU data block */
    484   block = MCU_data[0];
    485 
    486   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
    487 
    488   r = 0;			/* r = run length of zeros */
    489 
    490   for (k = cinfo->Ss; k <= Se; k++) {
    491     if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
    492       r++;
    493       continue;
    494     }
    495     /* We must apply the point transform by Al.  For AC coefficients this
    496      * is an integer division with rounding towards 0.  To do this portably
    497      * in C, we shift after obtaining the absolute value; so the code is
    498      * interwoven with finding the abs value (temp) and output bits (temp2).
    499      */
    500     if (temp < 0) {
    501       temp = -temp;		/* temp is abs value of input */
    502       temp >>= Al;		/* apply the point transform */
    503       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
    504       temp2 = ~temp;
    505     } else {
    506       temp >>= Al;		/* apply the point transform */
    507       temp2 = temp;
    508     }
    509     /* Watch out for case that nonzero coef is zero after point transform */
    510     if (temp == 0) {
    511       r++;
    512       continue;
    513     }
    514 
    515     /* Emit any pending EOBRUN */
    516     if (entropy->EOBRUN > 0)
    517       emit_eobrun(entropy);
    518     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    519     while (r > 15) {
    520       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    521       r -= 16;
    522     }
    523 
    524     /* Find the number of bits needed for the magnitude of the coefficient */
    525     nbits = 1;			/* there must be at least one 1 bit */
    526     while ((temp >>= 1))
    527       nbits++;
    528     /* Check for out-of-range coefficient values */
    529     if (nbits > MAX_COEF_BITS)
    530       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    531 
    532     /* Count/emit Huffman symbol for run length / number of bits */
    533     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
    534 
    535     /* Emit that number of bits of the value, if positive, */
    536     /* or the complement of its magnitude, if negative. */
    537     emit_bits(entropy, (unsigned int) temp2, nbits);
    538 
    539     r = 0;			/* reset zero run length */
    540   }
    541 
    542   if (r > 0) {			/* If there are trailing zeroes, */
    543     entropy->EOBRUN++;		/* count an EOB */
    544     if (entropy->EOBRUN == 0x7FFF)
    545       emit_eobrun(entropy);	/* force it out to avoid overflow */
    546   }
    547 
    548   cinfo->dest->next_output_byte = entropy->next_output_byte;
    549   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    550 
    551   /* Update restart-interval state too */
    552   if (cinfo->restart_interval) {
    553     if (entropy->restarts_to_go == 0) {
    554       entropy->restarts_to_go = cinfo->restart_interval;
    555       entropy->next_restart_num++;
    556       entropy->next_restart_num &= 7;
    557     }
    558     entropy->restarts_to_go--;
    559   }
    560 
    561   return TRUE;
    562 }
    563 
    564 
    565 /*
    566  * MCU encoding for DC successive approximation refinement scan.
    567  * Note: we assume such scans can be multi-component, although the spec
    568  * is not very clear on the point.
    569  */
    570 
    571 METHODDEF(boolean)
    572 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    573 {
    574   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    575   register int temp;
    576   int blkn;
    577   int Al = cinfo->Al;
    578   JBLOCKROW block;
    579 
    580   entropy->next_output_byte = cinfo->dest->next_output_byte;
    581   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    582 
    583   /* Emit restart marker if needed */
    584   if (cinfo->restart_interval)
    585     if (entropy->restarts_to_go == 0)
    586       emit_restart(entropy, entropy->next_restart_num);
    587 
    588   /* Encode the MCU data blocks */
    589   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    590     block = MCU_data[blkn];
    591 
    592     /* We simply emit the Al'th bit of the DC coefficient value. */
    593     temp = (*block)[0];
    594     emit_bits(entropy, (unsigned int) (temp >> Al), 1);
    595   }
    596 
    597   cinfo->dest->next_output_byte = entropy->next_output_byte;
    598   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    599 
    600   /* Update restart-interval state too */
    601   if (cinfo->restart_interval) {
    602     if (entropy->restarts_to_go == 0) {
    603       entropy->restarts_to_go = cinfo->restart_interval;
    604       entropy->next_restart_num++;
    605       entropy->next_restart_num &= 7;
    606     }
    607     entropy->restarts_to_go--;
    608   }
    609 
    610   return TRUE;
    611 }
    612 
    613 
    614 /*
    615  * MCU encoding for AC successive approximation refinement scan.
    616  */
    617 
    618 METHODDEF(boolean)
    619 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    620 {
    621   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    622   register int temp;
    623   register int r, k;
    624   int EOB;
    625   char *BR_buffer;
    626   unsigned int BR;
    627   int Se = cinfo->Se;
    628   int Al = cinfo->Al;
    629   JBLOCKROW block;
    630   int absvalues[DCTSIZE2];
    631 
    632   entropy->next_output_byte = cinfo->dest->next_output_byte;
    633   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    634 
    635   /* Emit restart marker if needed */
    636   if (cinfo->restart_interval)
    637     if (entropy->restarts_to_go == 0)
    638       emit_restart(entropy, entropy->next_restart_num);
    639 
    640   /* Encode the MCU data block */
    641   block = MCU_data[0];
    642 
    643   /* It is convenient to make a pre-pass to determine the transformed
    644    * coefficients' absolute values and the EOB position.
    645    */
    646   EOB = 0;
    647   for (k = cinfo->Ss; k <= Se; k++) {
    648     temp = (*block)[jpeg_natural_order[k]];
    649     /* We must apply the point transform by Al.  For AC coefficients this
    650      * is an integer division with rounding towards 0.  To do this portably
    651      * in C, we shift after obtaining the absolute value.
    652      */
    653     if (temp < 0)
    654       temp = -temp;		/* temp is abs value of input */
    655     temp >>= Al;		/* apply the point transform */
    656     absvalues[k] = temp;	/* save abs value for main pass */
    657     if (temp == 1)
    658       EOB = k;			/* EOB = index of last newly-nonzero coef */
    659   }
    660 
    661   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
    662 
    663   r = 0;			/* r = run length of zeros */
    664   BR = 0;			/* BR = count of buffered bits added now */
    665   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
    666 
    667   for (k = cinfo->Ss; k <= Se; k++) {
    668     if ((temp = absvalues[k]) == 0) {
    669       r++;
    670       continue;
    671     }
    672 
    673     /* Emit any required ZRLs, but not if they can be folded into EOB */
    674     while (r > 15 && k <= EOB) {
    675       /* emit any pending EOBRUN and the BE correction bits */
    676       emit_eobrun(entropy);
    677       /* Emit ZRL */
    678       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    679       r -= 16;
    680       /* Emit buffered correction bits that must be associated with ZRL */
    681       emit_buffered_bits(entropy, BR_buffer, BR);
    682       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    683       BR = 0;
    684     }
    685 
    686     /* If the coef was previously nonzero, it only needs a correction bit.
    687      * NOTE: a straight translation of the spec's figure G.7 would suggest
    688      * that we also need to test r > 15.  But if r > 15, we can only get here
    689      * if k > EOB, which implies that this coefficient is not 1.
    690      */
    691     if (temp > 1) {
    692       /* The correction bit is the next bit of the absolute value. */
    693       BR_buffer[BR++] = (char) (temp & 1);
    694       continue;
    695     }
    696 
    697     /* Emit any pending EOBRUN and the BE correction bits */
    698     emit_eobrun(entropy);
    699 
    700     /* Count/emit Huffman symbol for run length / number of bits */
    701     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
    702 
    703     /* Emit output bit for newly-nonzero coef */
    704     temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
    705     emit_bits(entropy, (unsigned int) temp, 1);
    706 
    707     /* Emit buffered correction bits that must be associated with this code */
    708     emit_buffered_bits(entropy, BR_buffer, BR);
    709     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    710     BR = 0;
    711     r = 0;			/* reset zero run length */
    712   }
    713 
    714   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
    715     entropy->EOBRUN++;		/* count an EOB */
    716     entropy->BE += BR;		/* concat my correction bits to older ones */
    717     /* We force out the EOB if we risk either:
    718      * 1. overflow of the EOB counter;
    719      * 2. overflow of the correction bit buffer during the next MCU.
    720      */
    721     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
    722       emit_eobrun(entropy);
    723   }
    724 
    725   cinfo->dest->next_output_byte = entropy->next_output_byte;
    726   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    727 
    728   /* Update restart-interval state too */
    729   if (cinfo->restart_interval) {
    730     if (entropy->restarts_to_go == 0) {
    731       entropy->restarts_to_go = cinfo->restart_interval;
    732       entropy->next_restart_num++;
    733       entropy->next_restart_num &= 7;
    734     }
    735     entropy->restarts_to_go--;
    736   }
    737 
    738   return TRUE;
    739 }
    740 
    741 
    742 /*
    743  * Finish up at the end of a Huffman-compressed progressive scan.
    744  */
    745 
    746 METHODDEF(void)
    747 finish_pass_phuff (j_compress_ptr cinfo)
    748 {
    749   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    750 
    751   entropy->next_output_byte = cinfo->dest->next_output_byte;
    752   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    753 
    754   /* Flush out any buffered data */
    755   emit_eobrun(entropy);
    756   flush_bits(entropy);
    757 
    758   cinfo->dest->next_output_byte = entropy->next_output_byte;
    759   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    760 }
    761 
    762 
    763 /*
    764  * Finish up a statistics-gathering pass and create the new Huffman tables.
    765  */
    766 
    767 METHODDEF(void)
    768 finish_pass_gather_phuff (j_compress_ptr cinfo)
    769 {
    770   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    771   boolean is_DC_band;
    772   int ci, tbl;
    773   jpeg_component_info * compptr;
    774   JHUFF_TBL **htblptr;
    775   boolean did[NUM_HUFF_TBLS];
    776 
    777   /* Flush out buffered data (all we care about is counting the EOB symbol) */
    778   emit_eobrun(entropy);
    779 
    780   is_DC_band = (cinfo->Ss == 0);
    781 
    782   /* It's important not to apply jpeg_gen_optimal_table more than once
    783    * per table, because it clobbers the input frequency counts!
    784    */
    785   MEMZERO(did, SIZEOF(did));
    786 
    787   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    788     compptr = cinfo->cur_comp_info[ci];
    789     if (is_DC_band) {
    790       if (cinfo->Ah != 0)	/* DC refinement needs no table */
    791 	continue;
    792       tbl = compptr->dc_tbl_no;
    793     } else {
    794       tbl = compptr->ac_tbl_no;
    795     }
    796     if (! did[tbl]) {
    797       if (is_DC_band)
    798         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
    799       else
    800         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
    801       if (*htblptr == NULL)
    802         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    803       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
    804       did[tbl] = TRUE;
    805     }
    806   }
    807 }
    808 
    809 
    810 /*
    811  * Module initialization routine for progressive Huffman entropy encoding.
    812  */
    813 
    814 GLOBAL(void)
    815 jinit_phuff_encoder (j_compress_ptr cinfo)
    816 {
    817   phuff_entropy_ptr entropy;
    818   int i;
    819 
    820   entropy = (phuff_entropy_ptr)
    821     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    822 				SIZEOF(phuff_entropy_encoder));
    823   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    824   entropy->pub.start_pass = start_pass_phuff;
    825 
    826   /* Mark tables unallocated */
    827   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    828     entropy->derived_tbls[i] = NULL;
    829     entropy->count_ptrs[i] = NULL;
    830   }
    831   entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
    832 }
    833 
    834 #endif /* C_PROGRESSIVE_SUPPORTED */
    835 
    836 #endif //_FX_JPEG_TURBO_
    837