Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jdhuff.c
      4  *
      5  * Copyright (C) 1991-1997, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains Huffman entropy decoding routines.
     10  *
     11  * Much of the complexity here has to do with supporting input suspension.
     12  * If the data source module demands suspension, we want to be able to back
     13  * up to the start of the current MCU.  To do this, we copy state variables
     14  * into local working storage, and update them back to the permanent
     15  * storage only upon successful completion of an MCU.
     16  */
     17 
     18 #define JPEG_INTERNALS
     19 #include "jinclude.h"
     20 #include "jpeglib.h"
     21 #include "jdhuff.h"		/* Declarations shared with jdphuff.c */
     22 
     23 #ifdef _FX_MANAGED_CODE_
     24 #define savable_state	savable_state_d
     25 #endif
     26 
     27 /*
     28  * Expanded entropy decoder object for Huffman decoding.
     29  *
     30  * The savable_state subrecord contains fields that change within an MCU,
     31  * but must not be updated permanently until we complete the MCU.
     32  */
     33 
     34 typedef struct {
     35   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     36 } savable_state;
     37 
     38 /* This macro is to work around compilers with missing or broken
     39  * structure assignment.  You'll need to fix this code if you have
     40  * such a compiler and you change MAX_COMPS_IN_SCAN.
     41  */
     42 
     43 #ifndef NO_STRUCT_ASSIGN
     44 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     45 #else
     46 #if MAX_COMPS_IN_SCAN == 4
     47 #define ASSIGN_STATE(dest,src)  \
     48 	((dest).last_dc_val[0] = (src).last_dc_val[0], \
     49 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     50 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     51 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     52 #endif
     53 #endif
     54 
     55 
     56 typedef struct {
     57   struct jpeg_entropy_decoder pub; /* public fields */
     58 
     59   /* These fields are loaded into local variables at start of each MCU.
     60    * In case of suspension, we exit WITHOUT updating them.
     61    */
     62   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
     63   savable_state saved;		/* Other state at start of MCU */
     64 
     65   /* These fields are NOT loaded into local working state. */
     66   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     67 
     68   /* Pointers to derived tables (these workspaces have image lifespan) */
     69   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     70   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     71 
     72   /* Precalculated info set up by start_pass for use in decode_mcu: */
     73 
     74   /* Pointers to derived tables to be used for each block within an MCU */
     75   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
     76   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
     77   /* Whether we care about the DC and AC coefficient values for each block */
     78   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
     79   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
     80 } huff_entropy_decoder;
     81 
     82 typedef huff_entropy_decoder * huff_entropy_ptr;
     83 
     84 
     85 /*
     86  * Initialize for a Huffman-compressed scan.
     87  */
     88 
     89 METHODDEF(void)
     90 start_pass_huff_decoder (j_decompress_ptr cinfo)
     91 {
     92   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     93   int ci, blkn, dctbl, actbl;
     94   jpeg_component_info * compptr;
     95 
     96   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
     97    * This ought to be an error condition, but we make it a warning because
     98    * there are some baseline files out there with all zeroes in these bytes.
     99    */
    100   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
    101       cinfo->Ah != 0 || cinfo->Al != 0)
    102     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
    103 
    104   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    105     compptr = cinfo->cur_comp_info[ci];
    106     dctbl = compptr->dc_tbl_no;
    107     actbl = compptr->ac_tbl_no;
    108     /* Compute derived values for Huffman tables */
    109     /* We may do this more than once for a table, but it's not expensive */
    110     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
    111 			    & entropy->dc_derived_tbls[dctbl]);
    112     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
    113 			    & entropy->ac_derived_tbls[actbl]);
    114     /* Initialize DC predictions to 0 */
    115     entropy->saved.last_dc_val[ci] = 0;
    116   }
    117 
    118   /* Precalculate decoding info for each block in an MCU of this scan */
    119   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    120     ci = cinfo->MCU_membership[blkn];
    121     compptr = cinfo->cur_comp_info[ci];
    122     /* Precalculate which table to use for each block */
    123     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
    124     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
    125     /* Decide whether we really care about the coefficient values */
    126     if (compptr->component_needed) {
    127       entropy->dc_needed[blkn] = TRUE;
    128       /* we don't need the ACs if producing a 1/8th-size image */
    129       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
    130     } else {
    131       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
    132     }
    133   }
    134 
    135   /* Initialize bitread state variables */
    136   entropy->bitstate.bits_left = 0;
    137   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
    138   entropy->pub.insufficient_data = FALSE;
    139 
    140   /* Initialize restart counter */
    141   entropy->restarts_to_go = cinfo->restart_interval;
    142 }
    143 
    144 
    145 /*
    146  * Compute the derived values for a Huffman table.
    147  * This routine also performs some validation checks on the table.
    148  *
    149  * Note this is also used by jdphuff.c.
    150  */
    151 
    152 GLOBAL(void)
    153 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
    154 			 d_derived_tbl ** pdtbl)
    155 {
    156   JHUFF_TBL *htbl;
    157   d_derived_tbl *dtbl;
    158   int p, i, l, _si, numsymbols;
    159   int lookbits, ctr;
    160   char huffsize[257];
    161   unsigned int huffcode[257];
    162   unsigned int code;
    163 
    164   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    165    * paralleling the order of the symbols themselves in htbl->huffval[].
    166    */
    167 
    168   /* Find the input Huffman table */
    169   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    170     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    171   htbl =
    172     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    173   if (htbl == NULL)
    174     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    175 
    176   /* Allocate a workspace if we haven't already done so. */
    177   if (*pdtbl == NULL)
    178     *pdtbl = (d_derived_tbl *)
    179       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    180 				  SIZEOF(d_derived_tbl));
    181   dtbl = *pdtbl;
    182   dtbl->pub = htbl;		/* fill in back link */
    183 
    184   /* Figure C.1: make table of Huffman code length for each symbol */
    185 
    186   p = 0;
    187   for (l = 1; l <= 16; l++) {
    188     i = (int) htbl->bits[l];
    189     if (i < 0 || p + i > 256)	/* protect against table overrun */
    190       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    191     while (i--)
    192       huffsize[p++] = (char) l;
    193   }
    194   huffsize[p] = 0;
    195   numsymbols = p;
    196 
    197   /* Figure C.2: generate the codes themselves */
    198   /* We also validate that the counts represent a legal Huffman code tree. */
    199 
    200   code = 0;
    201   _si = huffsize[0];
    202   p = 0;
    203   while (huffsize[p]) {
    204     while (((int) huffsize[p]) == _si) {
    205       huffcode[p++] = code;
    206       code++;
    207     }
    208     /* code is now 1 more than the last code used for codelength si; but
    209      * it must still fit in si bits, since no code is allowed to be all ones.
    210      */
    211     if (((INT32) code) >= (((INT32) 1) << _si))
    212       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    213     code <<= 1;
    214     _si++;
    215   }
    216 
    217   /* Figure F.15: generate decoding tables for bit-sequential decoding */
    218 
    219   p = 0;
    220   for (l = 1; l <= 16; l++) {
    221     if (htbl->bits[l]) {
    222       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
    223        * minus the minimum code of length l
    224        */
    225       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
    226       p += htbl->bits[l];
    227       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
    228     } else {
    229       dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
    230     }
    231   }
    232   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
    233 
    234   /* Compute lookahead tables to speed up decoding.
    235    * First we set all the table entries to 0, indicating "too long";
    236    * then we iterate through the Huffman codes that are short enough and
    237    * fill in all the entries that correspond to bit sequences starting
    238    * with that code.
    239    */
    240 
    241   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
    242 
    243   p = 0;
    244   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
    245     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
    246       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
    247       /* Generate left-justified code followed by all possible bit sequences */
    248       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
    249       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
    250 	dtbl->look_nbits[lookbits] = l;
    251 	dtbl->look_sym[lookbits] = htbl->huffval[p];
    252 	lookbits++;
    253       }
    254     }
    255   }
    256 
    257   /* Validate symbols as being reasonable.
    258    * For AC tables, we make no check, but accept all byte values 0..255.
    259    * For DC tables, we require the symbols to be in range 0..15.
    260    * (Tighter bounds could be applied depending on the data depth and mode,
    261    * but this is sufficient to ensure safe decoding.)
    262    */
    263   if (isDC) {
    264     for (i = 0; i < numsymbols; i++) {
    265       int sym = htbl->huffval[i];
    266       if (sym < 0 || sym > 15)
    267 	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    268     }
    269   }
    270 }
    271 
    272 
    273 /*
    274  * Out-of-line code for bit fetching (shared with jdphuff.c).
    275  * See jdhuff.h for info about usage.
    276  * Note: current values of get_buffer and bits_left are passed as parameters,
    277  * but are returned in the corresponding fields of the state struct.
    278  *
    279  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
    280  * of get_buffer to be used.  (On machines with wider words, an even larger
    281  * buffer could be used.)  However, on some machines 32-bit shifts are
    282  * quite slow and take time proportional to the number of places shifted.
    283  * (This is true with most PC compilers, for instance.)  In this case it may
    284  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
    285  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
    286  */
    287 
    288 #ifdef SLOW_SHIFT_32
    289 #define MIN_GET_BITS  15	/* minimum allowable value */
    290 #else
    291 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
    292 #endif
    293 
    294 
    295 GLOBAL(boolean)
    296 jpeg_fill_bit_buffer (bitread_working_state * state,
    297 		      register bit_buf_type get_buffer, register int bits_left,
    298 		      int nbits)
    299 /* Load up the bit buffer to a depth of at least nbits */
    300 {
    301   /* Copy heavily used state fields into locals (hopefully registers) */
    302   register const JOCTET * next_input_byte = state->next_input_byte;
    303   register size_t bytes_in_buffer = state->bytes_in_buffer;
    304   j_decompress_ptr cinfo = state->cinfo;
    305 
    306   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
    307   /* (It is assumed that no request will be for more than that many bits.) */
    308   /* We fail to do so only if we hit a marker or are forced to suspend. */
    309 
    310   if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
    311     while (bits_left < MIN_GET_BITS) {
    312       register int c;
    313 
    314       /* Attempt to read a byte */
    315       if (bytes_in_buffer == 0) {
    316 	if (! (*cinfo->src->fill_input_buffer) (cinfo))
    317 	  return FALSE;
    318 	next_input_byte = cinfo->src->next_input_byte;
    319 	bytes_in_buffer = cinfo->src->bytes_in_buffer;
    320       }
    321       bytes_in_buffer--;
    322       c = GETJOCTET(*next_input_byte++);
    323 
    324       /* If it's 0xFF, check and discard stuffed zero byte */
    325       if (c == 0xFF) {
    326 	/* Loop here to discard any padding FF's on terminating marker,
    327 	 * so that we can save a valid unread_marker value.  NOTE: we will
    328 	 * accept multiple FF's followed by a 0 as meaning a single FF data
    329 	 * byte.  This data pattern is not valid according to the standard.
    330 	 */
    331 	do {
    332 	  if (bytes_in_buffer == 0) {
    333 	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
    334 	      return FALSE;
    335 	    next_input_byte = cinfo->src->next_input_byte;
    336 	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
    337 	  }
    338 	  bytes_in_buffer--;
    339 	  c = GETJOCTET(*next_input_byte++);
    340 	} while (c == 0xFF);
    341 
    342 	if (c == 0) {
    343 	  /* Found FF/00, which represents an FF data byte */
    344 	  c = 0xFF;
    345 	} else {
    346 	  /* Oops, it's actually a marker indicating end of compressed data.
    347 	   * Save the marker code for later use.
    348 	   * Fine point: it might appear that we should save the marker into
    349 	   * bitread working state, not straight into permanent state.  But
    350 	   * once we have hit a marker, we cannot need to suspend within the
    351 	   * current MCU, because we will read no more bytes from the data
    352 	   * source.  So it is OK to update permanent state right away.
    353 	   */
    354 	  cinfo->unread_marker = c;
    355 	  /* See if we need to insert some fake zero bits. */
    356 	  goto no_more_bytes;
    357 	}
    358       }
    359 
    360       /* OK, load c into get_buffer */
    361       get_buffer = (get_buffer << 8) | c;
    362       bits_left += 8;
    363     } /* end while */
    364   } else {
    365   no_more_bytes:
    366     /* We get here if we've read the marker that terminates the compressed
    367      * data segment.  There should be enough bits in the buffer register
    368      * to satisfy the request; if so, no problem.
    369      */
    370     if (nbits > bits_left) {
    371       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
    372        * the data stream, so that we can produce some kind of image.
    373        * We use a nonvolatile flag to ensure that only one warning message
    374        * appears per data segment.
    375        */
    376       if (! cinfo->entropy->insufficient_data) {
    377 	WARNMS(cinfo, JWRN_HIT_MARKER);
    378 	cinfo->entropy->insufficient_data = TRUE;
    379       }
    380       /* Fill the buffer with zero bits */
    381       get_buffer <<= MIN_GET_BITS - bits_left;
    382       bits_left = MIN_GET_BITS;
    383     }
    384   }
    385 
    386   /* Unload the local registers */
    387   state->next_input_byte = next_input_byte;
    388   state->bytes_in_buffer = bytes_in_buffer;
    389   state->get_buffer = get_buffer;
    390   state->bits_left = bits_left;
    391 
    392   return TRUE;
    393 }
    394 
    395 
    396 /*
    397  * Out-of-line code for Huffman code decoding.
    398  * See jdhuff.h for info about usage.
    399  */
    400 
    401 GLOBAL(int)
    402 jpeg_huff_decode (bitread_working_state * state,
    403 		  register bit_buf_type get_buffer, register int bits_left,
    404 		  d_derived_tbl * htbl, int min_bits)
    405 {
    406   register int l = min_bits;
    407   register INT32 code;
    408 
    409   /* HUFF_DECODE has determined that the code is at least min_bits */
    410   /* bits long, so fetch that many bits in one swoop. */
    411 
    412   CHECK_BIT_BUFFER(*state, l, return -1);
    413   code = GET_BITS(l);
    414 
    415   /* Collect the rest of the Huffman code one bit at a time. */
    416   /* This is per Figure F.16 in the JPEG spec. */
    417 
    418   while (code > htbl->maxcode[l]) {
    419     code <<= 1;
    420     CHECK_BIT_BUFFER(*state, 1, return -1);
    421     code |= GET_BITS(1);
    422     l++;
    423   }
    424 
    425   /* Unload the local registers */
    426   state->get_buffer = get_buffer;
    427   state->bits_left = bits_left;
    428 
    429   /* With garbage input we may reach the sentinel value l = 17. */
    430 
    431   if (l > 16) {
    432     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
    433     return 0;			/* fake a zero as the safest result */
    434   }
    435 
    436   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
    437 }
    438 
    439 
    440 /*
    441  * Figure F.12: extend sign bit.
    442  * On some machines, a shift and add will be faster than a table lookup.
    443  */
    444 
    445 #ifdef AVOID_TABLES
    446 
    447 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
    448 
    449 #else
    450 
    451 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
    452 
    453 static const int extend_test[16] =   /* entry n is 2**(n-1) */
    454   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    455     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
    456 
    457 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
    458   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
    459     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
    460     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
    461     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
    462 
    463 #endif /* AVOID_TABLES */
    464 
    465 
    466 /*
    467  * Check for a restart marker & resynchronize decoder.
    468  * Returns FALSE if must suspend.
    469  */
    470 
    471 LOCAL(boolean)
    472 process_restart (j_decompress_ptr cinfo)
    473 {
    474   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    475   int ci;
    476 
    477   /* Throw away any unused bits remaining in bit buffer; */
    478   /* include any full bytes in next_marker's count of discarded bytes */
    479   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
    480   entropy->bitstate.bits_left = 0;
    481 
    482   /* Advance past the RSTn marker */
    483   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    484     return FALSE;
    485 
    486   /* Re-initialize DC predictions to 0 */
    487   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    488     entropy->saved.last_dc_val[ci] = 0;
    489 
    490   /* Reset restart counter */
    491   entropy->restarts_to_go = cinfo->restart_interval;
    492 
    493   /* Reset out-of-data flag, unless read_restart_marker left us smack up
    494    * against a marker.  In that case we will end up treating the next data
    495    * segment as empty, and we can avoid producing bogus output pixels by
    496    * leaving the flag set.
    497    */
    498   if (cinfo->unread_marker == 0)
    499     entropy->pub.insufficient_data = FALSE;
    500 
    501   return TRUE;
    502 }
    503 
    504 
    505 /*
    506  * Decode and return one MCU's worth of Huffman-compressed coefficients.
    507  * The coefficients are reordered from zigzag order into natural array order,
    508  * but are not dequantized.
    509  *
    510  * The i'th block of the MCU is stored into the block pointed to by
    511  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
    512  * (Wholesale zeroing is usually a little faster than retail...)
    513  *
    514  * Returns FALSE if data source requested suspension.  In that case no
    515  * changes have been made to permanent state.  (Exception: some output
    516  * coefficients may already have been assigned.  This is harmless for
    517  * this module, since we'll just re-assign them on the next call.)
    518  */
    519 
    520 METHODDEF(boolean)
    521 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    522 {
    523   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    524   int blkn;
    525   BITREAD_STATE_VARS;
    526   savable_state state;
    527 
    528   /* Process restart marker if needed; may have to suspend */
    529   if (cinfo->restart_interval) {
    530     if (entropy->restarts_to_go == 0)
    531       if (! process_restart(cinfo))
    532 	return FALSE;
    533   }
    534 
    535   /* If we've run out of data, just leave the MCU set to zeroes.
    536    * This way, we return uniform gray for the remainder of the segment.
    537    */
    538   if (! entropy->pub.insufficient_data) {
    539 
    540     /* Load up working state */
    541     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    542     ASSIGN_STATE(state, entropy->saved);
    543 
    544     /* Outer loop handles each block in the MCU */
    545 
    546     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    547       JBLOCKROW block = MCU_data[blkn];
    548       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
    549       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
    550       register int s, k, r;
    551 
    552       /* Decode a single block's worth of coefficients */
    553 
    554       /* Section F.2.2.1: decode the DC coefficient difference */
    555       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
    556       if (s) {
    557 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
    558 	r = GET_BITS(s);
    559 	s = HUFF_EXTEND(r, s);
    560       }
    561 
    562       if (entropy->dc_needed[blkn]) {
    563 	/* Convert DC difference to actual value, update last_dc_val */
    564 	int ci = cinfo->MCU_membership[blkn];
    565 	s += state.last_dc_val[ci];
    566 	state.last_dc_val[ci] = s;
    567 	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
    568 	(*block)[0] = (JCOEF) s;
    569       }
    570 
    571       if (entropy->ac_needed[blkn]) {
    572 
    573 	/* Section F.2.2.2: decode the AC coefficients */
    574 	/* Since zeroes are skipped, output area must be cleared beforehand */
    575 	for (k = 1; k < DCTSIZE2; k++) {
    576 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
    577 
    578 	  r = s >> 4;
    579 	  s &= 15;
    580 
    581 	  if (s) {
    582 	    k += r;
    583 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
    584 	    r = GET_BITS(s);
    585 	    s = HUFF_EXTEND(r, s);
    586 	    /* Output coefficient in natural (dezigzagged) order.
    587 	     * Note: the extra entries in jpeg_natural_order[] will save us
    588 	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
    589 	     */
    590 	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
    591 	  } else {
    592 	    if (r != 15)
    593 	      break;
    594 	    k += 15;
    595 	  }
    596 	}
    597 
    598       } else {
    599 
    600 	/* Section F.2.2.2: decode the AC coefficients */
    601 	/* In this path we just discard the values */
    602 	for (k = 1; k < DCTSIZE2; k++) {
    603 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
    604 
    605 	  r = s >> 4;
    606 	  s &= 15;
    607 
    608 	  if (s) {
    609 	    k += r;
    610 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
    611 	    DROP_BITS(s);
    612 	  } else {
    613 	    if (r != 15)
    614 	      break;
    615 	    k += 15;
    616 	  }
    617 	}
    618 
    619       }
    620     }
    621 
    622     /* Completed MCU, so update state */
    623     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    624     ASSIGN_STATE(entropy->saved, state);
    625   }
    626 
    627   /* Account for restart interval (no-op if not using restarts) */
    628   entropy->restarts_to_go--;
    629 
    630   return TRUE;
    631 }
    632 
    633 
    634 /*
    635  * Module initialization routine for Huffman entropy decoding.
    636  */
    637 
    638 GLOBAL(void)
    639 jinit_huff_decoder (j_decompress_ptr cinfo)
    640 {
    641   huff_entropy_ptr entropy;
    642   int i;
    643 
    644   entropy = (huff_entropy_ptr)
    645     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    646 				SIZEOF(huff_entropy_decoder));
    647   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    648   entropy->pub.start_pass = start_pass_huff_decoder;
    649   entropy->pub.decode_mcu = decode_mcu;
    650 
    651   /* Mark tables unallocated */
    652   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    653     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    654   }
    655 }
    656 
    657 #endif //_FX_JPEG_TURBO_
    658