Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jfdctfst.c
      4  *
      5  * Copyright (C) 1994-1996, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains a fast, not so accurate integer implementation of the
     10  * forward DCT (Discrete Cosine Transform).
     11  *
     12  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     13  * on each column.  Direct algorithms are also available, but they are
     14  * much more complex and seem not to be any faster when reduced to code.
     15  *
     16  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     17  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     18  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     19  * JPEG textbook (see REFERENCES section in file README).  The following code
     20  * is based directly on figure 4-8 in P&M.
     21  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     22  * possible to arrange the computation so that many of the multiplies are
     23  * simple scalings of the final outputs.  These multiplies can then be
     24  * folded into the multiplications or divisions by the JPEG quantization
     25  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     26  * to be done in the DCT itself.
     27  * The primary disadvantage of this method is that with fixed-point math,
     28  * accuracy is lost due to imprecise representation of the scaled
     29  * quantization values.  The smaller the quantization table entry, the less
     30  * precise the scaled value, so this implementation does worse with high-
     31  * quality-setting files than with low-quality ones.
     32  */
     33 
     34 #define JPEG_INTERNALS
     35 #include "jinclude.h"
     36 #include "jpeglib.h"
     37 #include "jdct.h"		/* Private declarations for DCT subsystem */
     38 
     39 #ifdef DCT_IFAST_SUPPORTED
     40 
     41 
     42 /*
     43  * This module is specialized to the case DCTSIZE = 8.
     44  */
     45 
     46 #if DCTSIZE != 8
     47   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     48 #endif
     49 
     50 
     51 /* Scaling decisions are generally the same as in the LL&M algorithm;
     52  * see jfdctint.c for more details.  However, we choose to descale
     53  * (right shift) multiplication products as soon as they are formed,
     54  * rather than carrying additional fractional bits into subsequent additions.
     55  * This compromises accuracy slightly, but it lets us save a few shifts.
     56  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
     57  * everywhere except in the multiplications proper; this saves a good deal
     58  * of work on 16-bit-int machines.
     59  *
     60  * Again to save a few shifts, the intermediate results between pass 1 and
     61  * pass 2 are not upscaled, but are represented only to integral precision.
     62  *
     63  * A final compromise is to represent the multiplicative constants to only
     64  * 8 fractional bits, rather than 13.  This saves some shifting work on some
     65  * machines, and may also reduce the cost of multiplication (since there
     66  * are fewer one-bits in the constants).
     67  */
     68 
     69 #define CONST_BITS  8
     70 
     71 
     72 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     73  * causing a lot of useless floating-point operations at run time.
     74  * To get around this we use the following pre-calculated constants.
     75  * If you change CONST_BITS you may want to add appropriate values.
     76  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     77  */
     78 
     79 #if CONST_BITS == 8
     80 #define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */
     81 #define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */
     82 #define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */
     83 #define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */
     84 #else
     85 #define FIX_0_382683433  FIX(0.382683433)
     86 #define FIX_0_541196100  FIX(0.541196100)
     87 #define FIX_0_707106781  FIX(0.707106781)
     88 #define FIX_1_306562965  FIX(1.306562965)
     89 #endif
     90 
     91 
     92 /* We can gain a little more speed, with a further compromise in accuracy,
     93  * by omitting the addition in a descaling shift.  This yields an incorrectly
     94  * rounded result half the time...
     95  */
     96 
     97 #ifndef USE_ACCURATE_ROUNDING
     98 #undef DESCALE
     99 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
    100 #endif
    101 
    102 
    103 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
    104  * descale to yield a DCTELEM result.
    105  */
    106 
    107 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
    108 
    109 
    110 /*
    111  * Perform the forward DCT on one block of samples.
    112  */
    113 
    114 GLOBAL(void)
    115 jpeg_fdct_ifast (DCTELEM * data)
    116 {
    117   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    118   DCTELEM tmp10, tmp11, tmp12, tmp13;
    119   DCTELEM z1, z2, z3, z4, z5, z11, z13;
    120   DCTELEM *dataptr;
    121   int ctr;
    122   SHIFT_TEMPS
    123 
    124   /* Pass 1: process rows. */
    125 
    126   dataptr = data;
    127   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    128     tmp0 = dataptr[0] + dataptr[7];
    129     tmp7 = dataptr[0] - dataptr[7];
    130     tmp1 = dataptr[1] + dataptr[6];
    131     tmp6 = dataptr[1] - dataptr[6];
    132     tmp2 = dataptr[2] + dataptr[5];
    133     tmp5 = dataptr[2] - dataptr[5];
    134     tmp3 = dataptr[3] + dataptr[4];
    135     tmp4 = dataptr[3] - dataptr[4];
    136 
    137     /* Even part */
    138 
    139     tmp10 = tmp0 + tmp3;	/* phase 2 */
    140     tmp13 = tmp0 - tmp3;
    141     tmp11 = tmp1 + tmp2;
    142     tmp12 = tmp1 - tmp2;
    143 
    144     dataptr[0] = tmp10 + tmp11; /* phase 3 */
    145     dataptr[4] = tmp10 - tmp11;
    146 
    147     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
    148     dataptr[2] = tmp13 + z1;	/* phase 5 */
    149     dataptr[6] = tmp13 - z1;
    150 
    151     /* Odd part */
    152 
    153     tmp10 = tmp4 + tmp5;	/* phase 2 */
    154     tmp11 = tmp5 + tmp6;
    155     tmp12 = tmp6 + tmp7;
    156 
    157     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    158     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
    159     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
    160     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
    161     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
    162 
    163     z11 = tmp7 + z3;		/* phase 5 */
    164     z13 = tmp7 - z3;
    165 
    166     dataptr[5] = z13 + z2;	/* phase 6 */
    167     dataptr[3] = z13 - z2;
    168     dataptr[1] = z11 + z4;
    169     dataptr[7] = z11 - z4;
    170 
    171     dataptr += DCTSIZE;		/* advance pointer to next row */
    172   }
    173 
    174   /* Pass 2: process columns. */
    175 
    176   dataptr = data;
    177   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    178     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    179     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    180     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    181     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    182     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    183     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    184     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    185     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    186 
    187     /* Even part */
    188 
    189     tmp10 = tmp0 + tmp3;	/* phase 2 */
    190     tmp13 = tmp0 - tmp3;
    191     tmp11 = tmp1 + tmp2;
    192     tmp12 = tmp1 - tmp2;
    193 
    194     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
    195     dataptr[DCTSIZE*4] = tmp10 - tmp11;
    196 
    197     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
    198     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
    199     dataptr[DCTSIZE*6] = tmp13 - z1;
    200 
    201     /* Odd part */
    202 
    203     tmp10 = tmp4 + tmp5;	/* phase 2 */
    204     tmp11 = tmp5 + tmp6;
    205     tmp12 = tmp6 + tmp7;
    206 
    207     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    208     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
    209     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
    210     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
    211     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
    212 
    213     z11 = tmp7 + z3;		/* phase 5 */
    214     z13 = tmp7 - z3;
    215 
    216     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
    217     dataptr[DCTSIZE*3] = z13 - z2;
    218     dataptr[DCTSIZE*1] = z11 + z4;
    219     dataptr[DCTSIZE*7] = z11 - z4;
    220 
    221     dataptr++;			/* advance pointer to next column */
    222   }
    223 }
    224 
    225 #endif /* DCT_IFAST_SUPPORTED */
    226 
    227 #endif //_FX_JPEG_TURBO_
    228