Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkIntersections.h"
      8 #include "SkPathOpsLine.h"
      9 #include "SkPathOpsQuad.h"
     10 
     11 /*
     12 Find the interection of a line and quadratic by solving for valid t values.
     13 
     14 From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
     15 
     16 "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
     17 control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
     18 A, B and C are points and t goes from zero to one.
     19 
     20 This will give you two equations:
     21 
     22   x = a(1 - t)^2 + b(1 - t)t + ct^2
     23   y = d(1 - t)^2 + e(1 - t)t + ft^2
     24 
     25 If you add for instance the line equation (y = kx + m) to that, you'll end up
     26 with three equations and three unknowns (x, y and t)."
     27 
     28 Similar to above, the quadratic is represented as
     29   x = a(1-t)^2 + 2b(1-t)t + ct^2
     30   y = d(1-t)^2 + 2e(1-t)t + ft^2
     31 and the line as
     32   y = g*x + h
     33 
     34 Using Mathematica, solve for the values of t where the quadratic intersects the
     35 line:
     36 
     37   (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
     38                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
     39   (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
     40          g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
     41   (in)  Solve[t1 == 0, t]
     42   (out) {
     43     {t -> (-2 d + 2 e +   2 a g - 2 b g    -
     44       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
     45           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
     46          (2 (-d + 2 e - f + a g - 2 b g    + c g))
     47          },
     48     {t -> (-2 d + 2 e +   2 a g - 2 b g    +
     49       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
     50           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
     51          (2 (-d + 2 e - f + a g - 2 b g    + c g))
     52          }
     53         }
     54 
     55 Using the results above (when the line tends towards horizontal)
     56        A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
     57        B = 2*( (d -   e    ) - g*(a -   b    )     )
     58        C =   (-(d          ) + g*(a          ) + h )
     59 
     60 If g goes to infinity, we can rewrite the line in terms of x.
     61   x = g'*y + h'
     62 
     63 And solve accordingly in Mathematica:
     64 
     65   (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
     66                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
     67   (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
     68          g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
     69   (in)  Solve[t2 == 0, t]
     70   (out) {
     71     {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
     72     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
     73           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
     74          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
     75          },
     76     {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
     77     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
     78           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
     79          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
     80          }
     81         }
     82 
     83 Thus, if the slope of the line tends towards vertical, we use:
     84        A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
     85        B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
     86        C =   ( (a          ) - g'*(d           ) - h' )
     87  */
     88 
     89 class LineQuadraticIntersections {
     90 public:
     91     enum PinTPoint {
     92         kPointUninitialized,
     93         kPointInitialized
     94     };
     95 
     96     LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
     97         : fQuad(q)
     98         , fLine(&l)
     99         , fIntersections(i)
    100         , fAllowNear(true) {
    101         i->setMax(3);  // allow short partial coincidence plus discrete intersection
    102     }
    103 
    104     LineQuadraticIntersections(const SkDQuad& q)
    105         : fQuad(q)
    106         SkDEBUGPARAMS(fLine(NULL))
    107         SkDEBUGPARAMS(fIntersections(NULL))
    108         SkDEBUGPARAMS(fAllowNear(false)) {
    109     }
    110 
    111     void allowNear(bool allow) {
    112         fAllowNear = allow;
    113     }
    114 
    115     void checkCoincident() {
    116         int last = fIntersections->used() - 1;
    117         for (int index = 0; index < last; ) {
    118             double quadMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
    119             SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
    120             double t = fLine->nearPoint(quadMidPt, NULL);
    121             if (t < 0) {
    122                 ++index;
    123                 continue;
    124             }
    125             if (fIntersections->isCoincident(index)) {
    126                 fIntersections->removeOne(index);
    127                 --last;
    128             } else if (fIntersections->isCoincident(index + 1)) {
    129                 fIntersections->removeOne(index + 1);
    130                 --last;
    131             } else {
    132                 fIntersections->setCoincident(index++);
    133             }
    134             fIntersections->setCoincident(index);
    135         }
    136     }
    137 
    138     int intersectRay(double roots[2]) {
    139     /*
    140         solve by rotating line+quad so line is horizontal, then finding the roots
    141         set up matrix to rotate quad to x-axis
    142         |cos(a) -sin(a)|
    143         |sin(a)  cos(a)|
    144         note that cos(a) = A(djacent) / Hypoteneuse
    145                   sin(a) = O(pposite) / Hypoteneuse
    146         since we are computing Ts, we can ignore hypoteneuse, the scale factor:
    147         |  A     -O    |
    148         |  O      A    |
    149         A = line[1].fX - line[0].fX (adjacent side of the right triangle)
    150         O = line[1].fY - line[0].fY (opposite side of the right triangle)
    151         for each of the three points (e.g. n = 0 to 2)
    152         quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
    153     */
    154         double adj = (*fLine)[1].fX - (*fLine)[0].fX;
    155         double opp = (*fLine)[1].fY - (*fLine)[0].fY;
    156         double r[3];
    157         for (int n = 0; n < 3; ++n) {
    158             r[n] = (fQuad[n].fY - (*fLine)[0].fY) * adj - (fQuad[n].fX - (*fLine)[0].fX) * opp;
    159         }
    160         double A = r[2];
    161         double B = r[1];
    162         double C = r[0];
    163         A += C - 2 * B;  // A = a - 2*b + c
    164         B -= C;  // B = -(b - c)
    165         return SkDQuad::RootsValidT(A, 2 * B, C, roots);
    166     }
    167 
    168     int intersect() {
    169         addExactEndPoints();
    170         if (fAllowNear) {
    171             addNearEndPoints();
    172         }
    173         double rootVals[2];
    174         int roots = intersectRay(rootVals);
    175         for (int index = 0; index < roots; ++index) {
    176             double quadT = rootVals[index];
    177             double lineT = findLineT(quadT);
    178             SkDPoint pt;
    179             if (pinTs(&quadT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(quadT, pt)) {
    180                 fIntersections->insert(quadT, lineT, pt);
    181             }
    182         }
    183         checkCoincident();
    184         return fIntersections->used();
    185     }
    186 
    187     int horizontalIntersect(double axisIntercept, double roots[2]) {
    188         double D = fQuad[2].fY;  // f
    189         double E = fQuad[1].fY;  // e
    190         double F = fQuad[0].fY;  // d
    191         D += F - 2 * E;         // D = d - 2*e + f
    192         E -= F;                 // E = -(d - e)
    193         F -= axisIntercept;
    194         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
    195     }
    196 
    197     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
    198         addExactHorizontalEndPoints(left, right, axisIntercept);
    199         if (fAllowNear) {
    200             addNearHorizontalEndPoints(left, right, axisIntercept);
    201         }
    202         double rootVals[2];
    203         int roots = horizontalIntersect(axisIntercept, rootVals);
    204         for (int index = 0; index < roots; ++index) {
    205             double quadT = rootVals[index];
    206             SkDPoint pt = fQuad.ptAtT(quadT);
    207             double lineT = (pt.fX - left) / (right - left);
    208             if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
    209                 fIntersections->insert(quadT, lineT, pt);
    210             }
    211         }
    212         if (flipped) {
    213             fIntersections->flip();
    214         }
    215         checkCoincident();
    216         return fIntersections->used();
    217     }
    218 
    219     bool uniqueAnswer(double quadT, const SkDPoint& pt) {
    220         for (int inner = 0; inner < fIntersections->used(); ++inner) {
    221             if (fIntersections->pt(inner) != pt) {
    222                 continue;
    223             }
    224             double existingQuadT = (*fIntersections)[0][inner];
    225             if (quadT == existingQuadT) {
    226                 return false;
    227             }
    228             // check if midway on quad is also same point. If so, discard this
    229             double quadMidT = (existingQuadT + quadT) / 2;
    230             SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
    231             if (quadMidPt.approximatelyEqual(pt)) {
    232                 return false;
    233             }
    234         }
    235 #if ONE_OFF_DEBUG
    236         SkDPoint qPt = fQuad.ptAtT(quadT);
    237         SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
    238                 qPt.fX, qPt.fY);
    239 #endif
    240         return true;
    241     }
    242 
    243     int verticalIntersect(double axisIntercept, double roots[2]) {
    244         double D = fQuad[2].fX;  // f
    245         double E = fQuad[1].fX;  // e
    246         double F = fQuad[0].fX;  // d
    247         D += F - 2 * E;         // D = d - 2*e + f
    248         E -= F;                 // E = -(d - e)
    249         F -= axisIntercept;
    250         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
    251     }
    252 
    253     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
    254         addExactVerticalEndPoints(top, bottom, axisIntercept);
    255         if (fAllowNear) {
    256             addNearVerticalEndPoints(top, bottom, axisIntercept);
    257         }
    258         double rootVals[2];
    259         int roots = verticalIntersect(axisIntercept, rootVals);
    260         for (int index = 0; index < roots; ++index) {
    261             double quadT = rootVals[index];
    262             SkDPoint pt = fQuad.ptAtT(quadT);
    263             double lineT = (pt.fY - top) / (bottom - top);
    264             if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
    265                 fIntersections->insert(quadT, lineT, pt);
    266             }
    267         }
    268         if (flipped) {
    269             fIntersections->flip();
    270         }
    271         checkCoincident();
    272         return fIntersections->used();
    273     }
    274 
    275 protected:
    276     // add endpoints first to get zero and one t values exactly
    277     void addExactEndPoints() {
    278         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    279             double lineT = fLine->exactPoint(fQuad[qIndex]);
    280             if (lineT < 0) {
    281                 continue;
    282             }
    283             double quadT = (double) (qIndex >> 1);
    284             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    285         }
    286     }
    287 
    288     void addNearEndPoints() {
    289         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    290             double quadT = (double) (qIndex >> 1);
    291             if (fIntersections->hasT(quadT)) {
    292                 continue;
    293             }
    294             double lineT = fLine->nearPoint(fQuad[qIndex], NULL);
    295             if (lineT < 0) {
    296                 continue;
    297             }
    298             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    299         }
    300         // FIXME: see if line end is nearly on quad
    301     }
    302 
    303     void addExactHorizontalEndPoints(double left, double right, double y) {
    304         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    305             double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
    306             if (lineT < 0) {
    307                 continue;
    308             }
    309             double quadT = (double) (qIndex >> 1);
    310             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    311         }
    312     }
    313 
    314     void addNearHorizontalEndPoints(double left, double right, double y) {
    315         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    316             double quadT = (double) (qIndex >> 1);
    317             if (fIntersections->hasT(quadT)) {
    318                 continue;
    319             }
    320             double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
    321             if (lineT < 0) {
    322                 continue;
    323             }
    324             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    325         }
    326         // FIXME: see if line end is nearly on quad
    327     }
    328 
    329     void addExactVerticalEndPoints(double top, double bottom, double x) {
    330         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    331             double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
    332             if (lineT < 0) {
    333                 continue;
    334             }
    335             double quadT = (double) (qIndex >> 1);
    336             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    337         }
    338     }
    339 
    340     void addNearVerticalEndPoints(double top, double bottom, double x) {
    341         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    342             double quadT = (double) (qIndex >> 1);
    343             if (fIntersections->hasT(quadT)) {
    344                 continue;
    345             }
    346             double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
    347             if (lineT < 0) {
    348                 continue;
    349             }
    350             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    351         }
    352         // FIXME: see if line end is nearly on quad
    353     }
    354 
    355     double findLineT(double t) {
    356         SkDPoint xy = fQuad.ptAtT(t);
    357         double dx = (*fLine)[1].fX - (*fLine)[0].fX;
    358         double dy = (*fLine)[1].fY - (*fLine)[0].fY;
    359         if (fabs(dx) > fabs(dy)) {
    360             return (xy.fX - (*fLine)[0].fX) / dx;
    361         }
    362         return (xy.fY - (*fLine)[0].fY) / dy;
    363     }
    364 
    365     bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
    366         if (!approximately_one_or_less_double(*lineT)) {
    367             return false;
    368         }
    369         if (!approximately_zero_or_more_double(*lineT)) {
    370             return false;
    371         }
    372         double qT = *quadT = SkPinT(*quadT);
    373         double lT = *lineT = SkPinT(*lineT);
    374         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
    375             *pt = (*fLine).ptAtT(lT);
    376         } else if (ptSet == kPointUninitialized) {
    377             *pt = fQuad.ptAtT(qT);
    378         }
    379         SkPoint gridPt = pt->asSkPoint();
    380         if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[0].asSkPoint())) {
    381             *pt = (*fLine)[0];
    382             *lineT = 0;
    383         } else if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[1].asSkPoint())) {
    384             *pt = (*fLine)[1];
    385             *lineT = 1;
    386         }
    387         if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) {
    388             return false;
    389         }
    390         if (gridPt == fQuad[0].asSkPoint()) {
    391             *pt = fQuad[0];
    392             *quadT = 0;
    393         } else if (gridPt == fQuad[2].asSkPoint()) {
    394             *pt = fQuad[2];
    395             *quadT = 1;
    396         }
    397         return true;
    398     }
    399 
    400 private:
    401     const SkDQuad& fQuad;
    402     const SkDLine* fLine;
    403     SkIntersections* fIntersections;
    404     bool fAllowNear;
    405 };
    406 
    407 int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
    408                                 bool flipped) {
    409     SkDLine line = {{{ left, y }, { right, y }}};
    410     LineQuadraticIntersections q(quad, line, this);
    411     return q.horizontalIntersect(y, left, right, flipped);
    412 }
    413 
    414 int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
    415                               bool flipped) {
    416     SkDLine line = {{{ x, top }, { x, bottom }}};
    417     LineQuadraticIntersections q(quad, line, this);
    418     return q.verticalIntersect(x, top, bottom, flipped);
    419 }
    420 
    421 int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
    422     LineQuadraticIntersections q(quad, line, this);
    423     q.allowNear(fAllowNear);
    424     return q.intersect();
    425 }
    426 
    427 int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
    428     LineQuadraticIntersections q(quad, line, this);
    429     fUsed = q.intersectRay(fT[0]);
    430     for (int index = 0; index < fUsed; ++index) {
    431         fPt[index] = quad.ptAtT(fT[0][index]);
    432     }
    433     return fUsed;
    434 }
    435 
    436 int SkIntersections::HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots) {
    437     LineQuadraticIntersections q(quad);
    438     return q.horizontalIntersect(y, roots);
    439 }
    440 
    441 int SkIntersections::VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots) {
    442     LineQuadraticIntersections q(quad);
    443     return q.verticalIntersect(x, roots);
    444 }
    445