Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkDashPathPriv.h"
      9 #include "SkPathMeasure.h"
     10 
     11 static inline int is_even(int x) {
     12     return (~x) << 31;
     13 }
     14 
     15 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
     16                                     int32_t* index, int count) {
     17     for (int i = 0; i < count; ++i) {
     18         if (phase > intervals[i]) {
     19             phase -= intervals[i];
     20         } else {
     21             *index = i;
     22             return intervals[i] - phase;
     23         }
     24     }
     25     // If we get here, phase "appears" to be larger than our length. This
     26     // shouldn't happen with perfect precision, but we can accumulate errors
     27     // during the initial length computation (rounding can make our sum be too
     28     // big or too small. In that event, we just have to eat the error here.
     29     *index = 0;
     30     return intervals[0];
     31 }
     32 
     33 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
     34                                     SkScalar* initialDashLength, int32_t* initialDashIndex,
     35                                     SkScalar* intervalLength, SkScalar* adjustedPhase) {
     36     SkScalar len = 0;
     37     for (int i = 0; i < count; i++) {
     38         len += intervals[i];
     39     }
     40     *intervalLength = len;
     41 
     42     // watch out for values that might make us go out of bounds
     43     if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
     44 
     45         // Adjust phase to be between 0 and len, "flipping" phase if negative.
     46         // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
     47         if (adjustedPhase) {
     48             if (phase < 0) {
     49                 phase = -phase;
     50                 if (phase > len) {
     51                     phase = SkScalarMod(phase, len);
     52                 }
     53                 phase = len - phase;
     54 
     55                 // Due to finite precision, it's possible that phase == len,
     56                 // even after the subtract (if len >>> phase), so fix that here.
     57                 // This fixes http://crbug.com/124652 .
     58                 SkASSERT(phase <= len);
     59                 if (phase == len) {
     60                     phase = 0;
     61                 }
     62             } else if (phase >= len) {
     63                 phase = SkScalarMod(phase, len);
     64             }
     65             *adjustedPhase = phase;
     66         }
     67         SkASSERT(phase >= 0 && phase < len);
     68 
     69         *initialDashLength = find_first_interval(intervals, phase,
     70                                                 initialDashIndex, count);
     71 
     72         SkASSERT(*initialDashLength >= 0);
     73         SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
     74     } else {
     75         *initialDashLength = -1;    // signal bad dash intervals
     76     }
     77 }
     78 
     79 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
     80     SkScalar radius = SkScalarHalf(rec.getWidth());
     81     if (0 == radius) {
     82         radius = SK_Scalar1;    // hairlines
     83     }
     84     if (SkPaint::kMiter_Join == rec.getJoin()) {
     85         radius = SkScalarMul(radius, rec.getMiter());
     86     }
     87     rect->outset(radius, radius);
     88 }
     89 
     90 // Only handles lines for now. If returns true, dstPath is the new (smaller)
     91 // path. If returns false, then dstPath parameter is ignored.
     92 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
     93                       const SkRect* cullRect, SkScalar intervalLength,
     94                       SkPath* dstPath) {
     95     if (NULL == cullRect) {
     96         return false;
     97     }
     98 
     99     SkPoint pts[2];
    100     if (!srcPath.isLine(pts)) {
    101         return false;
    102     }
    103 
    104     SkRect bounds = *cullRect;
    105     outset_for_stroke(&bounds, rec);
    106 
    107     SkScalar dx = pts[1].x() - pts[0].x();
    108     SkScalar dy = pts[1].y() - pts[0].y();
    109 
    110     // just do horizontal lines for now (lazy)
    111     if (dy) {
    112         return false;
    113     }
    114 
    115     SkScalar minX = pts[0].fX;
    116     SkScalar maxX = pts[1].fX;
    117 
    118     if (dx < 0) {
    119         SkTSwap(minX, maxX);
    120     }
    121 
    122     SkASSERT(minX <= maxX);
    123     if (maxX < bounds.fLeft || minX > bounds.fRight) {
    124         return false;
    125     }
    126 
    127     // Now we actually perform the chop, removing the excess to the left and
    128     // right of the bounds (keeping our new line "in phase" with the dash,
    129     // hence the (mod intervalLength).
    130 
    131     if (minX < bounds.fLeft) {
    132         minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
    133                                           intervalLength);
    134     }
    135     if (maxX > bounds.fRight) {
    136         maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
    137                                            intervalLength);
    138     }
    139 
    140     SkASSERT(maxX >= minX);
    141     if (dx < 0) {
    142         SkTSwap(minX, maxX);
    143     }
    144     pts[0].fX = minX;
    145     pts[1].fX = maxX;
    146 
    147     dstPath->moveTo(pts[0]);
    148     dstPath->lineTo(pts[1]);
    149     return true;
    150 }
    151 
    152 class SpecialLineRec {
    153 public:
    154     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
    155               int intervalCount, SkScalar intervalLength) {
    156         if (rec->isHairlineStyle() || !src.isLine(fPts)) {
    157             return false;
    158         }
    159 
    160         // can relax this in the future, if we handle square and round caps
    161         if (SkPaint::kButt_Cap != rec->getCap()) {
    162             return false;
    163         }
    164 
    165         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
    166 
    167         fTangent = fPts[1] - fPts[0];
    168         if (fTangent.isZero()) {
    169             return false;
    170         }
    171 
    172         fPathLength = pathLength;
    173         fTangent.scale(SkScalarInvert(pathLength));
    174         fTangent.rotateCCW(&fNormal);
    175         fNormal.scale(SkScalarHalf(rec->getWidth()));
    176 
    177         // now estimate how many quads will be added to the path
    178         //     resulting segments = pathLen * intervalCount / intervalLen
    179         //     resulting points = 4 * segments
    180 
    181         SkScalar ptCount = SkScalarMulDiv(pathLength,
    182                                           SkIntToScalar(intervalCount),
    183                                           intervalLength);
    184         int n = SkScalarCeilToInt(ptCount) << 2;
    185         dst->incReserve(n);
    186 
    187         // we will take care of the stroking
    188         rec->setFillStyle();
    189         return true;
    190     }
    191 
    192     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
    193         SkASSERT(d0 < fPathLength);
    194         // clamp the segment to our length
    195         if (d1 > fPathLength) {
    196             d1 = fPathLength;
    197         }
    198 
    199         SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
    200         SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
    201         SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
    202         SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
    203 
    204         SkPoint pts[4];
    205         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
    206         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
    207         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
    208         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo
    209 
    210         path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
    211     }
    212 
    213 private:
    214     SkPoint fPts[2];
    215     SkVector fTangent;
    216     SkVector fNormal;
    217     SkScalar fPathLength;
    218 };
    219 
    220 
    221 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
    222                                 const SkRect* cullRect, const SkScalar aIntervals[],
    223                                 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
    224                                 SkScalar intervalLength) {
    225 
    226     // we do nothing if the src wants to be filled, or if our dashlength is 0
    227     if (rec->isFillStyle() || initialDashLength < 0) {
    228         return false;
    229     }
    230 
    231     const SkScalar* intervals = aIntervals;
    232     SkScalar        dashCount = 0;
    233     int             segCount = 0;
    234 
    235     SkPath cullPathStorage;
    236     const SkPath* srcPtr = &src;
    237     if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
    238         srcPtr = &cullPathStorage;
    239     }
    240 
    241     SpecialLineRec lineRec;
    242     bool specialLine = lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
    243 
    244     SkPathMeasure   meas(*srcPtr, false);
    245 
    246     do {
    247         bool        skipFirstSegment = meas.isClosed();
    248         bool        addedSegment = false;
    249         SkScalar    length = meas.getLength();
    250         int         index = initialDashIndex;
    251 
    252         // Since the path length / dash length ratio may be arbitrarily large, we can exert
    253         // significant memory pressure while attempting to build the filtered path. To avoid this,
    254         // we simply give up dashing beyond a certain threshold.
    255         //
    256         // The original bug report (http://crbug.com/165432) is based on a path yielding more than
    257         // 90 million dash segments and crashing the memory allocator. A limit of 1 million
    258         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
    259         // maximum dash memory overhead at roughly 17MB per path.
    260         static const SkScalar kMaxDashCount = 1000000;
    261         dashCount += length * (count >> 1) / intervalLength;
    262         if (dashCount > kMaxDashCount) {
    263             dst->reset();
    264             return false;
    265         }
    266 
    267         // Using double precision to avoid looping indefinitely due to single precision rounding
    268         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
    269         double  distance = 0;
    270         double  dlen = initialDashLength;
    271 
    272         while (distance < length) {
    273             SkASSERT(dlen >= 0);
    274             addedSegment = false;
    275             if (is_even(index) && dlen > 0 && !skipFirstSegment) {
    276                 addedSegment = true;
    277                 ++segCount;
    278 
    279                 if (specialLine) {
    280                     lineRec.addSegment(SkDoubleToScalar(distance),
    281                                        SkDoubleToScalar(distance + dlen),
    282                                        dst);
    283                 } else {
    284                     meas.getSegment(SkDoubleToScalar(distance),
    285                                     SkDoubleToScalar(distance + dlen),
    286                                     dst, true);
    287                 }
    288             }
    289             distance += dlen;
    290 
    291             // clear this so we only respect it the first time around
    292             skipFirstSegment = false;
    293 
    294             // wrap around our intervals array if necessary
    295             index += 1;
    296             SkASSERT(index <= count);
    297             if (index == count) {
    298                 index = 0;
    299             }
    300 
    301             // fetch our next dlen
    302             dlen = intervals[index];
    303         }
    304 
    305         // extend if we ended on a segment and we need to join up with the (skipped) initial segment
    306         if (meas.isClosed() && is_even(initialDashIndex) &&
    307             initialDashLength > 0) {
    308             meas.getSegment(0, initialDashLength, dst, !addedSegment);
    309             ++segCount;
    310         }
    311     } while (meas.nextContour());
    312 
    313     if (segCount > 1) {
    314         dst->setConvexity(SkPath::kConcave_Convexity);
    315     }
    316 
    317     return true;
    318 }
    319 
    320 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
    321                                 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
    322     SkScalar initialDashLength = 0;
    323     int32_t initialDashIndex = 0;
    324     SkScalar intervalLength = 0;
    325     CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
    326                        &initialDashLength, &initialDashIndex, &intervalLength);
    327     return FilterDashPath(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
    328                           initialDashIndex, intervalLength);
    329 }
    330