Home | History | Annotate | Download | only in src
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifdef ENABLE_GDB_JIT_INTERFACE
      6 #include "src/v8.h"
      7 
      8 #include "src/base/bits.h"
      9 #include "src/base/platform/platform.h"
     10 #include "src/bootstrapper.h"
     11 #include "src/compiler.h"
     12 #include "src/frames-inl.h"
     13 #include "src/frames.h"
     14 #include "src/gdb-jit.h"
     15 #include "src/global-handles.h"
     16 #include "src/messages.h"
     17 #include "src/natives.h"
     18 #include "src/ostreams.h"
     19 #include "src/scopes.h"
     20 
     21 namespace v8 {
     22 namespace internal {
     23 
     24 #ifdef __APPLE__
     25 #define __MACH_O
     26 class MachO;
     27 class MachOSection;
     28 typedef MachO DebugObject;
     29 typedef MachOSection DebugSection;
     30 #else
     31 #define __ELF
     32 class ELF;
     33 class ELFSection;
     34 typedef ELF DebugObject;
     35 typedef ELFSection DebugSection;
     36 #endif
     37 
     38 class Writer BASE_EMBEDDED {
     39  public:
     40   explicit Writer(DebugObject* debug_object)
     41       : debug_object_(debug_object),
     42         position_(0),
     43         capacity_(1024),
     44         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
     45   }
     46 
     47   ~Writer() {
     48     free(buffer_);
     49   }
     50 
     51   uintptr_t position() const {
     52     return position_;
     53   }
     54 
     55   template<typename T>
     56   class Slot {
     57    public:
     58     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
     59 
     60     T* operator-> () {
     61       return w_->RawSlotAt<T>(offset_);
     62     }
     63 
     64     void set(const T& value) {
     65       *w_->RawSlotAt<T>(offset_) = value;
     66     }
     67 
     68     Slot<T> at(int i) {
     69       return Slot<T>(w_, offset_ + sizeof(T) * i);
     70     }
     71 
     72    private:
     73     Writer* w_;
     74     uintptr_t offset_;
     75   };
     76 
     77   template<typename T>
     78   void Write(const T& val) {
     79     Ensure(position_ + sizeof(T));
     80     *RawSlotAt<T>(position_) = val;
     81     position_ += sizeof(T);
     82   }
     83 
     84   template<typename T>
     85   Slot<T> SlotAt(uintptr_t offset) {
     86     Ensure(offset + sizeof(T));
     87     return Slot<T>(this, offset);
     88   }
     89 
     90   template<typename T>
     91   Slot<T> CreateSlotHere() {
     92     return CreateSlotsHere<T>(1);
     93   }
     94 
     95   template<typename T>
     96   Slot<T> CreateSlotsHere(uint32_t count) {
     97     uintptr_t slot_position = position_;
     98     position_ += sizeof(T) * count;
     99     Ensure(position_);
    100     return SlotAt<T>(slot_position);
    101   }
    102 
    103   void Ensure(uintptr_t pos) {
    104     if (capacity_ < pos) {
    105       while (capacity_ < pos) capacity_ *= 2;
    106       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
    107     }
    108   }
    109 
    110   DebugObject* debug_object() { return debug_object_; }
    111 
    112   byte* buffer() { return buffer_; }
    113 
    114   void Align(uintptr_t align) {
    115     uintptr_t delta = position_ % align;
    116     if (delta == 0) return;
    117     uintptr_t padding = align - delta;
    118     Ensure(position_ += padding);
    119     DCHECK((position_ % align) == 0);
    120   }
    121 
    122   void WriteULEB128(uintptr_t value) {
    123     do {
    124       uint8_t byte = value & 0x7F;
    125       value >>= 7;
    126       if (value != 0) byte |= 0x80;
    127       Write<uint8_t>(byte);
    128     } while (value != 0);
    129   }
    130 
    131   void WriteSLEB128(intptr_t value) {
    132     bool more = true;
    133     while (more) {
    134       int8_t byte = value & 0x7F;
    135       bool byte_sign = byte & 0x40;
    136       value >>= 7;
    137 
    138       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
    139         more = false;
    140       } else {
    141         byte |= 0x80;
    142       }
    143 
    144       Write<int8_t>(byte);
    145     }
    146   }
    147 
    148   void WriteString(const char* str) {
    149     do {
    150       Write<char>(*str);
    151     } while (*str++);
    152   }
    153 
    154  private:
    155   template<typename T> friend class Slot;
    156 
    157   template<typename T>
    158   T* RawSlotAt(uintptr_t offset) {
    159     DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
    160     return reinterpret_cast<T*>(&buffer_[offset]);
    161   }
    162 
    163   DebugObject* debug_object_;
    164   uintptr_t position_;
    165   uintptr_t capacity_;
    166   byte* buffer_;
    167 };
    168 
    169 class ELFStringTable;
    170 
    171 template<typename THeader>
    172 class DebugSectionBase : public ZoneObject {
    173  public:
    174   virtual ~DebugSectionBase() { }
    175 
    176   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
    177     uintptr_t start = writer->position();
    178     if (WriteBodyInternal(writer)) {
    179       uintptr_t end = writer->position();
    180       header->offset = start;
    181 #if defined(__MACH_O)
    182       header->addr = 0;
    183 #endif
    184       header->size = end - start;
    185     }
    186   }
    187 
    188   virtual bool WriteBodyInternal(Writer* writer) {
    189     return false;
    190   }
    191 
    192   typedef THeader Header;
    193 };
    194 
    195 
    196 struct MachOSectionHeader {
    197   char sectname[16];
    198   char segname[16];
    199 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    200   uint32_t addr;
    201   uint32_t size;
    202 #else
    203   uint64_t addr;
    204   uint64_t size;
    205 #endif
    206   uint32_t offset;
    207   uint32_t align;
    208   uint32_t reloff;
    209   uint32_t nreloc;
    210   uint32_t flags;
    211   uint32_t reserved1;
    212   uint32_t reserved2;
    213 };
    214 
    215 
    216 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
    217  public:
    218   enum Type {
    219     S_REGULAR = 0x0u,
    220     S_ATTR_COALESCED = 0xbu,
    221     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
    222     S_ATTR_DEBUG = 0x02000000u,
    223     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
    224   };
    225 
    226   MachOSection(const char* name, const char* segment, uint32_t align,
    227                uint32_t flags)
    228       : name_(name), segment_(segment), align_(align), flags_(flags) {
    229     if (align_ != 0) {
    230       DCHECK(base::bits::IsPowerOfTwo32(align));
    231       align_ = WhichPowerOf2(align_);
    232     }
    233   }
    234 
    235   virtual ~MachOSection() { }
    236 
    237   virtual void PopulateHeader(Writer::Slot<Header> header) {
    238     header->addr = 0;
    239     header->size = 0;
    240     header->offset = 0;
    241     header->align = align_;
    242     header->reloff = 0;
    243     header->nreloc = 0;
    244     header->flags = flags_;
    245     header->reserved1 = 0;
    246     header->reserved2 = 0;
    247     memset(header->sectname, 0, sizeof(header->sectname));
    248     memset(header->segname, 0, sizeof(header->segname));
    249     DCHECK(strlen(name_) < sizeof(header->sectname));
    250     DCHECK(strlen(segment_) < sizeof(header->segname));
    251     strncpy(header->sectname, name_, sizeof(header->sectname));
    252     strncpy(header->segname, segment_, sizeof(header->segname));
    253   }
    254 
    255  private:
    256   const char* name_;
    257   const char* segment_;
    258   uint32_t align_;
    259   uint32_t flags_;
    260 };
    261 
    262 
    263 struct ELFSectionHeader {
    264   uint32_t name;
    265   uint32_t type;
    266   uintptr_t flags;
    267   uintptr_t address;
    268   uintptr_t offset;
    269   uintptr_t size;
    270   uint32_t link;
    271   uint32_t info;
    272   uintptr_t alignment;
    273   uintptr_t entry_size;
    274 };
    275 
    276 
    277 #if defined(__ELF)
    278 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
    279  public:
    280   enum Type {
    281     TYPE_NULL = 0,
    282     TYPE_PROGBITS = 1,
    283     TYPE_SYMTAB = 2,
    284     TYPE_STRTAB = 3,
    285     TYPE_RELA = 4,
    286     TYPE_HASH = 5,
    287     TYPE_DYNAMIC = 6,
    288     TYPE_NOTE = 7,
    289     TYPE_NOBITS = 8,
    290     TYPE_REL = 9,
    291     TYPE_SHLIB = 10,
    292     TYPE_DYNSYM = 11,
    293     TYPE_LOPROC = 0x70000000,
    294     TYPE_X86_64_UNWIND = 0x70000001,
    295     TYPE_HIPROC = 0x7fffffff,
    296     TYPE_LOUSER = 0x80000000,
    297     TYPE_HIUSER = 0xffffffff
    298   };
    299 
    300   enum Flags {
    301     FLAG_WRITE = 1,
    302     FLAG_ALLOC = 2,
    303     FLAG_EXEC = 4
    304   };
    305 
    306   enum SpecialIndexes {
    307     INDEX_ABSOLUTE = 0xfff1
    308   };
    309 
    310   ELFSection(const char* name, Type type, uintptr_t align)
    311       : name_(name), type_(type), align_(align) { }
    312 
    313   virtual ~ELFSection() { }
    314 
    315   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
    316 
    317   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    318     uintptr_t start = w->position();
    319     if (WriteBodyInternal(w)) {
    320       uintptr_t end = w->position();
    321       header->offset = start;
    322       header->size = end - start;
    323     }
    324   }
    325 
    326   virtual bool WriteBodyInternal(Writer* w) {
    327     return false;
    328   }
    329 
    330   uint16_t index() const { return index_; }
    331   void set_index(uint16_t index) { index_ = index; }
    332 
    333  protected:
    334   virtual void PopulateHeader(Writer::Slot<Header> header) {
    335     header->flags = 0;
    336     header->address = 0;
    337     header->offset = 0;
    338     header->size = 0;
    339     header->link = 0;
    340     header->info = 0;
    341     header->entry_size = 0;
    342   }
    343 
    344  private:
    345   const char* name_;
    346   Type type_;
    347   uintptr_t align_;
    348   uint16_t index_;
    349 };
    350 #endif  // defined(__ELF)
    351 
    352 
    353 #if defined(__MACH_O)
    354 class MachOTextSection : public MachOSection {
    355  public:
    356   MachOTextSection(uintptr_t align,
    357                    uintptr_t addr,
    358                    uintptr_t size)
    359       : MachOSection("__text",
    360                      "__TEXT",
    361                      align,
    362                      MachOSection::S_REGULAR |
    363                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
    364                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
    365         addr_(addr),
    366         size_(size) { }
    367 
    368  protected:
    369   virtual void PopulateHeader(Writer::Slot<Header> header) {
    370     MachOSection::PopulateHeader(header);
    371     header->addr = addr_;
    372     header->size = size_;
    373   }
    374 
    375  private:
    376   uintptr_t addr_;
    377   uintptr_t size_;
    378 };
    379 #endif  // defined(__MACH_O)
    380 
    381 
    382 #if defined(__ELF)
    383 class FullHeaderELFSection : public ELFSection {
    384  public:
    385   FullHeaderELFSection(const char* name,
    386                        Type type,
    387                        uintptr_t align,
    388                        uintptr_t addr,
    389                        uintptr_t offset,
    390                        uintptr_t size,
    391                        uintptr_t flags)
    392       : ELFSection(name, type, align),
    393         addr_(addr),
    394         offset_(offset),
    395         size_(size),
    396         flags_(flags) { }
    397 
    398  protected:
    399   virtual void PopulateHeader(Writer::Slot<Header> header) {
    400     ELFSection::PopulateHeader(header);
    401     header->address = addr_;
    402     header->offset = offset_;
    403     header->size = size_;
    404     header->flags = flags_;
    405   }
    406 
    407  private:
    408   uintptr_t addr_;
    409   uintptr_t offset_;
    410   uintptr_t size_;
    411   uintptr_t flags_;
    412 };
    413 
    414 
    415 class ELFStringTable : public ELFSection {
    416  public:
    417   explicit ELFStringTable(const char* name)
    418       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
    419   }
    420 
    421   uintptr_t Add(const char* str) {
    422     if (*str == '\0') return 0;
    423 
    424     uintptr_t offset = size_;
    425     WriteString(str);
    426     return offset;
    427   }
    428 
    429   void AttachWriter(Writer* w) {
    430     writer_ = w;
    431     offset_ = writer_->position();
    432 
    433     // First entry in the string table should be an empty string.
    434     WriteString("");
    435   }
    436 
    437   void DetachWriter() {
    438     writer_ = NULL;
    439   }
    440 
    441   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    442     DCHECK(writer_ == NULL);
    443     header->offset = offset_;
    444     header->size = size_;
    445   }
    446 
    447  private:
    448   void WriteString(const char* str) {
    449     uintptr_t written = 0;
    450     do {
    451       writer_->Write(*str);
    452       written++;
    453     } while (*str++);
    454     size_ += written;
    455   }
    456 
    457   Writer* writer_;
    458 
    459   uintptr_t offset_;
    460   uintptr_t size_;
    461 };
    462 
    463 
    464 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
    465                                 ELFStringTable* strtab) {
    466   header->name = strtab->Add(name_);
    467   header->type = type_;
    468   header->alignment = align_;
    469   PopulateHeader(header);
    470 }
    471 #endif  // defined(__ELF)
    472 
    473 
    474 #if defined(__MACH_O)
    475 class MachO BASE_EMBEDDED {
    476  public:
    477   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
    478 
    479   uint32_t AddSection(MachOSection* section) {
    480     sections_.Add(section, zone_);
    481     return sections_.length() - 1;
    482   }
    483 
    484   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
    485     Writer::Slot<MachOHeader> header = WriteHeader(w);
    486     uintptr_t load_command_start = w->position();
    487     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
    488                                                                 code_start,
    489                                                                 code_size);
    490     WriteSections(w, cmd, header, load_command_start);
    491   }
    492 
    493  private:
    494   struct MachOHeader {
    495     uint32_t magic;
    496     uint32_t cputype;
    497     uint32_t cpusubtype;
    498     uint32_t filetype;
    499     uint32_t ncmds;
    500     uint32_t sizeofcmds;
    501     uint32_t flags;
    502 #if V8_TARGET_ARCH_X64
    503     uint32_t reserved;
    504 #endif
    505   };
    506 
    507   struct MachOSegmentCommand {
    508     uint32_t cmd;
    509     uint32_t cmdsize;
    510     char segname[16];
    511 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    512     uint32_t vmaddr;
    513     uint32_t vmsize;
    514     uint32_t fileoff;
    515     uint32_t filesize;
    516 #else
    517     uint64_t vmaddr;
    518     uint64_t vmsize;
    519     uint64_t fileoff;
    520     uint64_t filesize;
    521 #endif
    522     uint32_t maxprot;
    523     uint32_t initprot;
    524     uint32_t nsects;
    525     uint32_t flags;
    526   };
    527 
    528   enum MachOLoadCommandCmd {
    529     LC_SEGMENT_32 = 0x00000001u,
    530     LC_SEGMENT_64 = 0x00000019u
    531   };
    532 
    533 
    534   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
    535     DCHECK(w->position() == 0);
    536     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
    537 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    538     header->magic = 0xFEEDFACEu;
    539     header->cputype = 7;  // i386
    540     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    541 #elif V8_TARGET_ARCH_X64
    542     header->magic = 0xFEEDFACFu;
    543     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
    544     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    545     header->reserved = 0;
    546 #else
    547 #error Unsupported target architecture.
    548 #endif
    549     header->filetype = 0x1;  // MH_OBJECT
    550     header->ncmds = 1;
    551     header->sizeofcmds = 0;
    552     header->flags = 0;
    553     return header;
    554   }
    555 
    556 
    557   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
    558                                                         uintptr_t code_start,
    559                                                         uintptr_t code_size) {
    560     Writer::Slot<MachOSegmentCommand> cmd =
    561         w->CreateSlotHere<MachOSegmentCommand>();
    562 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    563     cmd->cmd = LC_SEGMENT_32;
    564 #else
    565     cmd->cmd = LC_SEGMENT_64;
    566 #endif
    567     cmd->vmaddr = code_start;
    568     cmd->vmsize = code_size;
    569     cmd->fileoff = 0;
    570     cmd->filesize = 0;
    571     cmd->maxprot = 7;
    572     cmd->initprot = 7;
    573     cmd->flags = 0;
    574     cmd->nsects = sections_.length();
    575     memset(cmd->segname, 0, 16);
    576     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
    577         cmd->nsects;
    578     return cmd;
    579   }
    580 
    581 
    582   void WriteSections(Writer* w,
    583                      Writer::Slot<MachOSegmentCommand> cmd,
    584                      Writer::Slot<MachOHeader> header,
    585                      uintptr_t load_command_start) {
    586     Writer::Slot<MachOSection::Header> headers =
    587         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
    588     cmd->fileoff = w->position();
    589     header->sizeofcmds = w->position() - load_command_start;
    590     for (int section = 0; section < sections_.length(); ++section) {
    591       sections_[section]->PopulateHeader(headers.at(section));
    592       sections_[section]->WriteBody(headers.at(section), w);
    593     }
    594     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
    595   }
    596 
    597   Zone* zone_;
    598   ZoneList<MachOSection*> sections_;
    599 };
    600 #endif  // defined(__MACH_O)
    601 
    602 
    603 #if defined(__ELF)
    604 class ELF BASE_EMBEDDED {
    605  public:
    606   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
    607     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
    608     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
    609   }
    610 
    611   void Write(Writer* w) {
    612     WriteHeader(w);
    613     WriteSectionTable(w);
    614     WriteSections(w);
    615   }
    616 
    617   ELFSection* SectionAt(uint32_t index) {
    618     return sections_[index];
    619   }
    620 
    621   uint32_t AddSection(ELFSection* section) {
    622     sections_.Add(section, zone_);
    623     section->set_index(sections_.length() - 1);
    624     return sections_.length() - 1;
    625   }
    626 
    627  private:
    628   struct ELFHeader {
    629     uint8_t ident[16];
    630     uint16_t type;
    631     uint16_t machine;
    632     uint32_t version;
    633     uintptr_t entry;
    634     uintptr_t pht_offset;
    635     uintptr_t sht_offset;
    636     uint32_t flags;
    637     uint16_t header_size;
    638     uint16_t pht_entry_size;
    639     uint16_t pht_entry_num;
    640     uint16_t sht_entry_size;
    641     uint16_t sht_entry_num;
    642     uint16_t sht_strtab_index;
    643   };
    644 
    645 
    646   void WriteHeader(Writer* w) {
    647     DCHECK(w->position() == 0);
    648     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
    649 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
    650      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
    651     const uint8_t ident[16] =
    652         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    653 #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT
    654     const uint8_t ident[16] =
    655         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    656 #else
    657 #error Unsupported target architecture.
    658 #endif
    659     memcpy(header->ident, ident, 16);
    660     header->type = 1;
    661 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    662     header->machine = 3;
    663 #elif V8_TARGET_ARCH_X64
    664     // Processor identification value for x64 is 62 as defined in
    665     //    System V ABI, AMD64 Supplement
    666     //    http://www.x86-64.org/documentation/abi.pdf
    667     header->machine = 62;
    668 #elif V8_TARGET_ARCH_ARM
    669     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
    670     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
    671     header->machine = 40;
    672 #else
    673 #error Unsupported target architecture.
    674 #endif
    675     header->version = 1;
    676     header->entry = 0;
    677     header->pht_offset = 0;
    678     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
    679     header->flags = 0;
    680     header->header_size = sizeof(ELFHeader);
    681     header->pht_entry_size = 0;
    682     header->pht_entry_num = 0;
    683     header->sht_entry_size = sizeof(ELFSection::Header);
    684     header->sht_entry_num = sections_.length();
    685     header->sht_strtab_index = 1;
    686   }
    687 
    688   void WriteSectionTable(Writer* w) {
    689     // Section headers table immediately follows file header.
    690     DCHECK(w->position() == sizeof(ELFHeader));
    691 
    692     Writer::Slot<ELFSection::Header> headers =
    693         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
    694 
    695     // String table for section table is the first section.
    696     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
    697     strtab->AttachWriter(w);
    698     for (int i = 0, length = sections_.length();
    699          i < length;
    700          i++) {
    701       sections_[i]->PopulateHeader(headers.at(i), strtab);
    702     }
    703     strtab->DetachWriter();
    704   }
    705 
    706   int SectionHeaderPosition(uint32_t section_index) {
    707     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
    708   }
    709 
    710   void WriteSections(Writer* w) {
    711     Writer::Slot<ELFSection::Header> headers =
    712         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
    713 
    714     for (int i = 0, length = sections_.length();
    715          i < length;
    716          i++) {
    717       sections_[i]->WriteBody(headers.at(i), w);
    718     }
    719   }
    720 
    721   Zone* zone_;
    722   ZoneList<ELFSection*> sections_;
    723 };
    724 
    725 
    726 class ELFSymbol BASE_EMBEDDED {
    727  public:
    728   enum Type {
    729     TYPE_NOTYPE = 0,
    730     TYPE_OBJECT = 1,
    731     TYPE_FUNC = 2,
    732     TYPE_SECTION = 3,
    733     TYPE_FILE = 4,
    734     TYPE_LOPROC = 13,
    735     TYPE_HIPROC = 15
    736   };
    737 
    738   enum Binding {
    739     BIND_LOCAL = 0,
    740     BIND_GLOBAL = 1,
    741     BIND_WEAK = 2,
    742     BIND_LOPROC = 13,
    743     BIND_HIPROC = 15
    744   };
    745 
    746   ELFSymbol(const char* name,
    747             uintptr_t value,
    748             uintptr_t size,
    749             Binding binding,
    750             Type type,
    751             uint16_t section)
    752       : name(name),
    753         value(value),
    754         size(size),
    755         info((binding << 4) | type),
    756         other(0),
    757         section(section) {
    758   }
    759 
    760   Binding binding() const {
    761     return static_cast<Binding>(info >> 4);
    762   }
    763 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
    764      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
    765   struct SerializedLayout {
    766     SerializedLayout(uint32_t name,
    767                      uintptr_t value,
    768                      uintptr_t size,
    769                      Binding binding,
    770                      Type type,
    771                      uint16_t section)
    772         : name(name),
    773           value(value),
    774           size(size),
    775           info((binding << 4) | type),
    776           other(0),
    777           section(section) {
    778     }
    779 
    780     uint32_t name;
    781     uintptr_t value;
    782     uintptr_t size;
    783     uint8_t info;
    784     uint8_t other;
    785     uint16_t section;
    786   };
    787 #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT
    788   struct SerializedLayout {
    789     SerializedLayout(uint32_t name,
    790                      uintptr_t value,
    791                      uintptr_t size,
    792                      Binding binding,
    793                      Type type,
    794                      uint16_t section)
    795         : name(name),
    796           info((binding << 4) | type),
    797           other(0),
    798           section(section),
    799           value(value),
    800           size(size) {
    801     }
    802 
    803     uint32_t name;
    804     uint8_t info;
    805     uint8_t other;
    806     uint16_t section;
    807     uintptr_t value;
    808     uintptr_t size;
    809   };
    810 #endif
    811 
    812   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
    813     // Convert symbol names from strings to indexes in the string table.
    814     s->name = t->Add(name);
    815     s->value = value;
    816     s->size = size;
    817     s->info = info;
    818     s->other = other;
    819     s->section = section;
    820   }
    821 
    822  private:
    823   const char* name;
    824   uintptr_t value;
    825   uintptr_t size;
    826   uint8_t info;
    827   uint8_t other;
    828   uint16_t section;
    829 };
    830 
    831 
    832 class ELFSymbolTable : public ELFSection {
    833  public:
    834   ELFSymbolTable(const char* name, Zone* zone)
    835       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
    836         locals_(1, zone),
    837         globals_(1, zone) {
    838   }
    839 
    840   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    841     w->Align(header->alignment);
    842     int total_symbols = locals_.length() + globals_.length() + 1;
    843     header->offset = w->position();
    844 
    845     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
    846         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
    847 
    848     header->size = w->position() - header->offset;
    849 
    850     // String table for this symbol table should follow it in the section table.
    851     ELFStringTable* strtab =
    852         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
    853     strtab->AttachWriter(w);
    854     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
    855                                                   0,
    856                                                   0,
    857                                                   ELFSymbol::BIND_LOCAL,
    858                                                   ELFSymbol::TYPE_NOTYPE,
    859                                                   0));
    860     WriteSymbolsList(&locals_, symbols.at(1), strtab);
    861     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
    862     strtab->DetachWriter();
    863   }
    864 
    865   void Add(const ELFSymbol& symbol, Zone* zone) {
    866     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
    867       locals_.Add(symbol, zone);
    868     } else {
    869       globals_.Add(symbol, zone);
    870     }
    871   }
    872 
    873  protected:
    874   virtual void PopulateHeader(Writer::Slot<Header> header) {
    875     ELFSection::PopulateHeader(header);
    876     // We are assuming that string table will follow symbol table.
    877     header->link = index() + 1;
    878     header->info = locals_.length() + 1;
    879     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
    880   }
    881 
    882  private:
    883   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
    884                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
    885                         ELFStringTable* strtab) {
    886     for (int i = 0, len = src->length();
    887          i < len;
    888          i++) {
    889       src->at(i).Write(dst.at(i), strtab);
    890     }
    891   }
    892 
    893   ZoneList<ELFSymbol> locals_;
    894   ZoneList<ELFSymbol> globals_;
    895 };
    896 #endif  // defined(__ELF)
    897 
    898 
    899 class LineInfo : public Malloced {
    900  public:
    901   LineInfo() : pc_info_(10) {}
    902 
    903   void SetPosition(intptr_t pc, int pos, bool is_statement) {
    904     AddPCInfo(PCInfo(pc, pos, is_statement));
    905   }
    906 
    907   struct PCInfo {
    908     PCInfo(intptr_t pc, int pos, bool is_statement)
    909         : pc_(pc), pos_(pos), is_statement_(is_statement) {}
    910 
    911     intptr_t pc_;
    912     int pos_;
    913     bool is_statement_;
    914   };
    915 
    916   List<PCInfo>* pc_info() { return &pc_info_; }
    917 
    918  private:
    919   void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }
    920 
    921   List<PCInfo> pc_info_;
    922 };
    923 
    924 
    925 class CodeDescription BASE_EMBEDDED {
    926  public:
    927 #if V8_TARGET_ARCH_X64
    928   enum StackState {
    929     POST_RBP_PUSH,
    930     POST_RBP_SET,
    931     POST_RBP_POP,
    932     STACK_STATE_MAX
    933   };
    934 #endif
    935 
    936   CodeDescription(const char* name, Code* code, Handle<Script> script,
    937                   LineInfo* lineinfo, GDBJITInterface::CodeTag tag,
    938                   CompilationInfo* info)
    939       : name_(name),
    940         code_(code),
    941         script_(script),
    942         lineinfo_(lineinfo),
    943         tag_(tag),
    944         info_(info) {}
    945 
    946   const char* name() const {
    947     return name_;
    948   }
    949 
    950   LineInfo* lineinfo() const { return lineinfo_; }
    951 
    952   GDBJITInterface::CodeTag tag() const {
    953     return tag_;
    954   }
    955 
    956   CompilationInfo* info() const {
    957     return info_;
    958   }
    959 
    960   bool IsInfoAvailable() const {
    961     return info_ != NULL;
    962   }
    963 
    964   uintptr_t CodeStart() const {
    965     return reinterpret_cast<uintptr_t>(code_->instruction_start());
    966   }
    967 
    968   uintptr_t CodeEnd() const {
    969     return reinterpret_cast<uintptr_t>(code_->instruction_end());
    970   }
    971 
    972   uintptr_t CodeSize() const {
    973     return CodeEnd() - CodeStart();
    974   }
    975 
    976   bool IsLineInfoAvailable() {
    977     return !script_.is_null() &&
    978         script_->source()->IsString() &&
    979         script_->HasValidSource() &&
    980         script_->name()->IsString() &&
    981         lineinfo_ != NULL;
    982   }
    983 
    984 #if V8_TARGET_ARCH_X64
    985   uintptr_t GetStackStateStartAddress(StackState state) const {
    986     DCHECK(state < STACK_STATE_MAX);
    987     return stack_state_start_addresses_[state];
    988   }
    989 
    990   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
    991     DCHECK(state < STACK_STATE_MAX);
    992     stack_state_start_addresses_[state] = addr;
    993   }
    994 #endif
    995 
    996   SmartArrayPointer<char> GetFilename() {
    997     return String::cast(script_->name())->ToCString();
    998   }
    999 
   1000   int GetScriptLineNumber(int pos) {
   1001     return script_->GetLineNumber(pos) + 1;
   1002   }
   1003 
   1004 
   1005  private:
   1006   const char* name_;
   1007   Code* code_;
   1008   Handle<Script> script_;
   1009   LineInfo* lineinfo_;
   1010   GDBJITInterface::CodeTag tag_;
   1011   CompilationInfo* info_;
   1012 #if V8_TARGET_ARCH_X64
   1013   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
   1014 #endif
   1015 };
   1016 
   1017 #if defined(__ELF)
   1018 static void CreateSymbolsTable(CodeDescription* desc,
   1019                                Zone* zone,
   1020                                ELF* elf,
   1021                                int text_section_index) {
   1022   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
   1023   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
   1024 
   1025   // Symbol table should be followed by the linked string table.
   1026   elf->AddSection(symtab);
   1027   elf->AddSection(strtab);
   1028 
   1029   symtab->Add(ELFSymbol("V8 Code",
   1030                         0,
   1031                         0,
   1032                         ELFSymbol::BIND_LOCAL,
   1033                         ELFSymbol::TYPE_FILE,
   1034                         ELFSection::INDEX_ABSOLUTE),
   1035               zone);
   1036 
   1037   symtab->Add(ELFSymbol(desc->name(),
   1038                         0,
   1039                         desc->CodeSize(),
   1040                         ELFSymbol::BIND_GLOBAL,
   1041                         ELFSymbol::TYPE_FUNC,
   1042                         text_section_index),
   1043               zone);
   1044 }
   1045 #endif  // defined(__ELF)
   1046 
   1047 
   1048 class DebugInfoSection : public DebugSection {
   1049  public:
   1050   explicit DebugInfoSection(CodeDescription* desc)
   1051 #if defined(__ELF)
   1052       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
   1053 #else
   1054       : MachOSection("__debug_info",
   1055                      "__DWARF",
   1056                      1,
   1057                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1058 #endif
   1059         desc_(desc) { }
   1060 
   1061   // DWARF2 standard
   1062   enum DWARF2LocationOp {
   1063     DW_OP_reg0 = 0x50,
   1064     DW_OP_reg1 = 0x51,
   1065     DW_OP_reg2 = 0x52,
   1066     DW_OP_reg3 = 0x53,
   1067     DW_OP_reg4 = 0x54,
   1068     DW_OP_reg5 = 0x55,
   1069     DW_OP_reg6 = 0x56,
   1070     DW_OP_reg7 = 0x57,
   1071     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
   1072   };
   1073 
   1074   enum DWARF2Encoding {
   1075     DW_ATE_ADDRESS = 0x1,
   1076     DW_ATE_SIGNED = 0x5
   1077   };
   1078 
   1079   bool WriteBodyInternal(Writer* w) {
   1080     uintptr_t cu_start = w->position();
   1081     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
   1082     uintptr_t start = w->position();
   1083     w->Write<uint16_t>(2);  // DWARF version.
   1084     w->Write<uint32_t>(0);  // Abbreviation table offset.
   1085     w->Write<uint8_t>(sizeof(intptr_t));
   1086 
   1087     w->WriteULEB128(1);  // Abbreviation code.
   1088     w->WriteString(desc_->GetFilename().get());
   1089     w->Write<intptr_t>(desc_->CodeStart());
   1090     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1091     w->Write<uint32_t>(0);
   1092 
   1093     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
   1094     w->WriteULEB128(3);
   1095     w->Write<uint8_t>(kPointerSize);
   1096     w->WriteString("v8value");
   1097 
   1098     if (desc_->IsInfoAvailable()) {
   1099       Scope* scope = desc_->info()->scope();
   1100       w->WriteULEB128(2);
   1101       w->WriteString(desc_->name());
   1102       w->Write<intptr_t>(desc_->CodeStart());
   1103       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1104       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
   1105       uintptr_t fb_block_start = w->position();
   1106 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
   1107       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
   1108 #elif V8_TARGET_ARCH_X64
   1109       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
   1110 #elif V8_TARGET_ARCH_ARM
   1111       UNIMPLEMENTED();
   1112 #elif V8_TARGET_ARCH_MIPS
   1113       UNIMPLEMENTED();
   1114 #elif V8_TARGET_ARCH_MIPS64
   1115       UNIMPLEMENTED();
   1116 #else
   1117 #error Unsupported target architecture.
   1118 #endif
   1119       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
   1120 
   1121       int params = scope->num_parameters();
   1122       int slots = scope->num_stack_slots();
   1123       int context_slots = scope->ContextLocalCount();
   1124       // The real slot ID is internal_slots + context_slot_id.
   1125       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1126       int locals = scope->StackLocalCount();
   1127       int current_abbreviation = 4;
   1128 
   1129       for (int param = 0; param < params; ++param) {
   1130         w->WriteULEB128(current_abbreviation++);
   1131         w->WriteString(
   1132             scope->parameter(param)->name()->ToCString(DISALLOW_NULLS).get());
   1133         w->Write<uint32_t>(ty_offset);
   1134         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1135         uintptr_t block_start = w->position();
   1136         w->Write<uint8_t>(DW_OP_fbreg);
   1137         w->WriteSLEB128(
   1138           JavaScriptFrameConstants::kLastParameterOffset +
   1139               kPointerSize * (params - param - 1));
   1140         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1141       }
   1142 
   1143       EmbeddedVector<char, 256> buffer;
   1144       StringBuilder builder(buffer.start(), buffer.length());
   1145 
   1146       for (int slot = 0; slot < slots; ++slot) {
   1147         w->WriteULEB128(current_abbreviation++);
   1148         builder.Reset();
   1149         builder.AddFormatted("slot%d", slot);
   1150         w->WriteString(builder.Finalize());
   1151       }
   1152 
   1153       // See contexts.h for more information.
   1154       DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
   1155       DCHECK(Context::CLOSURE_INDEX == 0);
   1156       DCHECK(Context::PREVIOUS_INDEX == 1);
   1157       DCHECK(Context::EXTENSION_INDEX == 2);
   1158       DCHECK(Context::GLOBAL_OBJECT_INDEX == 3);
   1159       w->WriteULEB128(current_abbreviation++);
   1160       w->WriteString(".closure");
   1161       w->WriteULEB128(current_abbreviation++);
   1162       w->WriteString(".previous");
   1163       w->WriteULEB128(current_abbreviation++);
   1164       w->WriteString(".extension");
   1165       w->WriteULEB128(current_abbreviation++);
   1166       w->WriteString(".global");
   1167 
   1168       for (int context_slot = 0;
   1169            context_slot < context_slots;
   1170            ++context_slot) {
   1171         w->WriteULEB128(current_abbreviation++);
   1172         builder.Reset();
   1173         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
   1174         w->WriteString(builder.Finalize());
   1175       }
   1176 
   1177       ZoneList<Variable*> stack_locals(locals, scope->zone());
   1178       ZoneList<Variable*> context_locals(context_slots, scope->zone());
   1179       scope->CollectStackAndContextLocals(&stack_locals, &context_locals);
   1180       for (int local = 0; local < locals; ++local) {
   1181         w->WriteULEB128(current_abbreviation++);
   1182         w->WriteString(
   1183             stack_locals[local]->name()->ToCString(DISALLOW_NULLS).get());
   1184         w->Write<uint32_t>(ty_offset);
   1185         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1186         uintptr_t block_start = w->position();
   1187         w->Write<uint8_t>(DW_OP_fbreg);
   1188         w->WriteSLEB128(
   1189           JavaScriptFrameConstants::kLocal0Offset -
   1190               kPointerSize * local);
   1191         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1192       }
   1193 
   1194       {
   1195         w->WriteULEB128(current_abbreviation++);
   1196         w->WriteString("__function");
   1197         w->Write<uint32_t>(ty_offset);
   1198         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1199         uintptr_t block_start = w->position();
   1200         w->Write<uint8_t>(DW_OP_fbreg);
   1201         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
   1202         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1203       }
   1204 
   1205       {
   1206         w->WriteULEB128(current_abbreviation++);
   1207         w->WriteString("__context");
   1208         w->Write<uint32_t>(ty_offset);
   1209         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1210         uintptr_t block_start = w->position();
   1211         w->Write<uint8_t>(DW_OP_fbreg);
   1212         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
   1213         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1214       }
   1215 
   1216       w->WriteULEB128(0);  // Terminate the sub program.
   1217     }
   1218 
   1219     w->WriteULEB128(0);  // Terminate the compile unit.
   1220     size.set(static_cast<uint32_t>(w->position() - start));
   1221     return true;
   1222   }
   1223 
   1224  private:
   1225   CodeDescription* desc_;
   1226 };
   1227 
   1228 
   1229 class DebugAbbrevSection : public DebugSection {
   1230  public:
   1231   explicit DebugAbbrevSection(CodeDescription* desc)
   1232 #ifdef __ELF
   1233       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
   1234 #else
   1235       : MachOSection("__debug_abbrev",
   1236                      "__DWARF",
   1237                      1,
   1238                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1239 #endif
   1240         desc_(desc) { }
   1241 
   1242   // DWARF2 standard, figure 14.
   1243   enum DWARF2Tags {
   1244     DW_TAG_FORMAL_PARAMETER = 0x05,
   1245     DW_TAG_POINTER_TYPE = 0xf,
   1246     DW_TAG_COMPILE_UNIT = 0x11,
   1247     DW_TAG_STRUCTURE_TYPE = 0x13,
   1248     DW_TAG_BASE_TYPE = 0x24,
   1249     DW_TAG_SUBPROGRAM = 0x2e,
   1250     DW_TAG_VARIABLE = 0x34
   1251   };
   1252 
   1253   // DWARF2 standard, figure 16.
   1254   enum DWARF2ChildrenDetermination {
   1255     DW_CHILDREN_NO = 0,
   1256     DW_CHILDREN_YES = 1
   1257   };
   1258 
   1259   // DWARF standard, figure 17.
   1260   enum DWARF2Attribute {
   1261     DW_AT_LOCATION = 0x2,
   1262     DW_AT_NAME = 0x3,
   1263     DW_AT_BYTE_SIZE = 0xb,
   1264     DW_AT_STMT_LIST = 0x10,
   1265     DW_AT_LOW_PC = 0x11,
   1266     DW_AT_HIGH_PC = 0x12,
   1267     DW_AT_ENCODING = 0x3e,
   1268     DW_AT_FRAME_BASE = 0x40,
   1269     DW_AT_TYPE = 0x49
   1270   };
   1271 
   1272   // DWARF2 standard, figure 19.
   1273   enum DWARF2AttributeForm {
   1274     DW_FORM_ADDR = 0x1,
   1275     DW_FORM_BLOCK4 = 0x4,
   1276     DW_FORM_STRING = 0x8,
   1277     DW_FORM_DATA4 = 0x6,
   1278     DW_FORM_BLOCK = 0x9,
   1279     DW_FORM_DATA1 = 0xb,
   1280     DW_FORM_FLAG = 0xc,
   1281     DW_FORM_REF4 = 0x13
   1282   };
   1283 
   1284   void WriteVariableAbbreviation(Writer* w,
   1285                                  int abbreviation_code,
   1286                                  bool has_value,
   1287                                  bool is_parameter) {
   1288     w->WriteULEB128(abbreviation_code);
   1289     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
   1290     w->Write<uint8_t>(DW_CHILDREN_NO);
   1291     w->WriteULEB128(DW_AT_NAME);
   1292     w->WriteULEB128(DW_FORM_STRING);
   1293     if (has_value) {
   1294       w->WriteULEB128(DW_AT_TYPE);
   1295       w->WriteULEB128(DW_FORM_REF4);
   1296       w->WriteULEB128(DW_AT_LOCATION);
   1297       w->WriteULEB128(DW_FORM_BLOCK4);
   1298     }
   1299     w->WriteULEB128(0);
   1300     w->WriteULEB128(0);
   1301   }
   1302 
   1303   bool WriteBodyInternal(Writer* w) {
   1304     int current_abbreviation = 1;
   1305     bool extra_info = desc_->IsInfoAvailable();
   1306     DCHECK(desc_->IsLineInfoAvailable());
   1307     w->WriteULEB128(current_abbreviation++);
   1308     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
   1309     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
   1310     w->WriteULEB128(DW_AT_NAME);
   1311     w->WriteULEB128(DW_FORM_STRING);
   1312     w->WriteULEB128(DW_AT_LOW_PC);
   1313     w->WriteULEB128(DW_FORM_ADDR);
   1314     w->WriteULEB128(DW_AT_HIGH_PC);
   1315     w->WriteULEB128(DW_FORM_ADDR);
   1316     w->WriteULEB128(DW_AT_STMT_LIST);
   1317     w->WriteULEB128(DW_FORM_DATA4);
   1318     w->WriteULEB128(0);
   1319     w->WriteULEB128(0);
   1320 
   1321     if (extra_info) {
   1322       Scope* scope = desc_->info()->scope();
   1323       int params = scope->num_parameters();
   1324       int slots = scope->num_stack_slots();
   1325       int context_slots = scope->ContextLocalCount();
   1326       // The real slot ID is internal_slots + context_slot_id.
   1327       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1328       int locals = scope->StackLocalCount();
   1329       // Total children is params + slots + context_slots + internal_slots +
   1330       // locals + 2 (__function and __context).
   1331 
   1332       // The extra duplication below seems to be necessary to keep
   1333       // gdb from getting upset on OSX.
   1334       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
   1335       w->WriteULEB128(DW_TAG_SUBPROGRAM);
   1336       w->Write<uint8_t>(DW_CHILDREN_YES);
   1337       w->WriteULEB128(DW_AT_NAME);
   1338       w->WriteULEB128(DW_FORM_STRING);
   1339       w->WriteULEB128(DW_AT_LOW_PC);
   1340       w->WriteULEB128(DW_FORM_ADDR);
   1341       w->WriteULEB128(DW_AT_HIGH_PC);
   1342       w->WriteULEB128(DW_FORM_ADDR);
   1343       w->WriteULEB128(DW_AT_FRAME_BASE);
   1344       w->WriteULEB128(DW_FORM_BLOCK4);
   1345       w->WriteULEB128(0);
   1346       w->WriteULEB128(0);
   1347 
   1348       w->WriteULEB128(current_abbreviation++);
   1349       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
   1350       w->Write<uint8_t>(DW_CHILDREN_NO);
   1351       w->WriteULEB128(DW_AT_BYTE_SIZE);
   1352       w->WriteULEB128(DW_FORM_DATA1);
   1353       w->WriteULEB128(DW_AT_NAME);
   1354       w->WriteULEB128(DW_FORM_STRING);
   1355       w->WriteULEB128(0);
   1356       w->WriteULEB128(0);
   1357 
   1358       for (int param = 0; param < params; ++param) {
   1359         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
   1360       }
   1361 
   1362       for (int slot = 0; slot < slots; ++slot) {
   1363         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1364       }
   1365 
   1366       for (int internal_slot = 0;
   1367            internal_slot < internal_slots;
   1368            ++internal_slot) {
   1369         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1370       }
   1371 
   1372       for (int context_slot = 0;
   1373            context_slot < context_slots;
   1374            ++context_slot) {
   1375         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1376       }
   1377 
   1378       for (int local = 0; local < locals; ++local) {
   1379         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1380       }
   1381 
   1382       // The function.
   1383       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1384 
   1385       // The context.
   1386       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1387 
   1388       w->WriteULEB128(0);  // Terminate the sibling list.
   1389     }
   1390 
   1391     w->WriteULEB128(0);  // Terminate the table.
   1392     return true;
   1393   }
   1394 
   1395  private:
   1396   CodeDescription* desc_;
   1397 };
   1398 
   1399 
   1400 class DebugLineSection : public DebugSection {
   1401  public:
   1402   explicit DebugLineSection(CodeDescription* desc)
   1403 #ifdef __ELF
   1404       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
   1405 #else
   1406       : MachOSection("__debug_line",
   1407                      "__DWARF",
   1408                      1,
   1409                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1410 #endif
   1411         desc_(desc) { }
   1412 
   1413   // DWARF2 standard, figure 34.
   1414   enum DWARF2Opcodes {
   1415     DW_LNS_COPY = 1,
   1416     DW_LNS_ADVANCE_PC = 2,
   1417     DW_LNS_ADVANCE_LINE = 3,
   1418     DW_LNS_SET_FILE = 4,
   1419     DW_LNS_SET_COLUMN = 5,
   1420     DW_LNS_NEGATE_STMT = 6
   1421   };
   1422 
   1423   // DWARF2 standard, figure 35.
   1424   enum DWARF2ExtendedOpcode {
   1425     DW_LNE_END_SEQUENCE = 1,
   1426     DW_LNE_SET_ADDRESS = 2,
   1427     DW_LNE_DEFINE_FILE = 3
   1428   };
   1429 
   1430   bool WriteBodyInternal(Writer* w) {
   1431     // Write prologue.
   1432     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
   1433     uintptr_t start = w->position();
   1434 
   1435     // Used for special opcodes
   1436     const int8_t line_base = 1;
   1437     const uint8_t line_range = 7;
   1438     const int8_t max_line_incr = (line_base + line_range - 1);
   1439     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
   1440 
   1441     w->Write<uint16_t>(2);  // Field version.
   1442     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
   1443     uintptr_t prologue_start = w->position();
   1444     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
   1445     w->Write<uint8_t>(1);  // Field default_is_stmt.
   1446     w->Write<int8_t>(line_base);  // Field line_base.
   1447     w->Write<uint8_t>(line_range);  // Field line_range.
   1448     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
   1449     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
   1450     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
   1451     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
   1452     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
   1453     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
   1454     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
   1455     w->Write<uint8_t>(0);  // Empty include_directories sequence.
   1456     w->WriteString(desc_->GetFilename().get());  // File name.
   1457     w->WriteULEB128(0);  // Current directory.
   1458     w->WriteULEB128(0);  // Unknown modification time.
   1459     w->WriteULEB128(0);  // Unknown file size.
   1460     w->Write<uint8_t>(0);
   1461     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
   1462 
   1463     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
   1464     w->Write<intptr_t>(desc_->CodeStart());
   1465     w->Write<uint8_t>(DW_LNS_COPY);
   1466 
   1467     intptr_t pc = 0;
   1468     intptr_t line = 1;
   1469     bool is_statement = true;
   1470 
   1471     List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
   1472     pc_info->Sort(&ComparePCInfo);
   1473 
   1474     int pc_info_length = pc_info->length();
   1475     for (int i = 0; i < pc_info_length; i++) {
   1476       LineInfo::PCInfo* info = &pc_info->at(i);
   1477       DCHECK(info->pc_ >= pc);
   1478 
   1479       // Reduce bloating in the debug line table by removing duplicate line
   1480       // entries (per DWARF2 standard).
   1481       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
   1482       if (new_line == line) {
   1483         continue;
   1484       }
   1485 
   1486       // Mark statement boundaries.  For a better debugging experience, mark
   1487       // the last pc address in the function as a statement (e.g. "}"), so that
   1488       // a user can see the result of the last line executed in the function,
   1489       // should control reach the end.
   1490       if ((i+1) == pc_info_length) {
   1491         if (!is_statement) {
   1492           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1493         }
   1494       } else if (is_statement != info->is_statement_) {
   1495         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1496         is_statement = !is_statement;
   1497       }
   1498 
   1499       // Generate special opcodes, if possible.  This results in more compact
   1500       // debug line tables.  See the DWARF 2.0 standard to learn more about
   1501       // special opcodes.
   1502       uintptr_t pc_diff = info->pc_ - pc;
   1503       intptr_t line_diff = new_line - line;
   1504 
   1505       // Compute special opcode (see DWARF 2.0 standard)
   1506       intptr_t special_opcode = (line_diff - line_base) +
   1507                                 (line_range * pc_diff) + opcode_base;
   1508 
   1509       // If special_opcode is less than or equal to 255, it can be used as a
   1510       // special opcode.  If line_diff is larger than the max line increment
   1511       // allowed for a special opcode, or if line_diff is less than the minimum
   1512       // line that can be added to the line register (i.e. line_base), then
   1513       // special_opcode can't be used.
   1514       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
   1515           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
   1516         w->Write<uint8_t>(special_opcode);
   1517       } else {
   1518         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1519         w->WriteSLEB128(pc_diff);
   1520         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
   1521         w->WriteSLEB128(line_diff);
   1522         w->Write<uint8_t>(DW_LNS_COPY);
   1523       }
   1524 
   1525       // Increment the pc and line operands.
   1526       pc += pc_diff;
   1527       line += line_diff;
   1528     }
   1529     // Advance the pc to the end of the routine, since the end sequence opcode
   1530     // requires this.
   1531     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1532     w->WriteSLEB128(desc_->CodeSize() - pc);
   1533     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
   1534     total_length.set(static_cast<uint32_t>(w->position() - start));
   1535     return true;
   1536   }
   1537 
   1538  private:
   1539   void WriteExtendedOpcode(Writer* w,
   1540                            DWARF2ExtendedOpcode op,
   1541                            size_t operands_size) {
   1542     w->Write<uint8_t>(0);
   1543     w->WriteULEB128(operands_size + 1);
   1544     w->Write<uint8_t>(op);
   1545   }
   1546 
   1547   static int ComparePCInfo(const LineInfo::PCInfo* a,
   1548                            const LineInfo::PCInfo* b) {
   1549     if (a->pc_ == b->pc_) {
   1550       if (a->is_statement_ != b->is_statement_) {
   1551         return b->is_statement_ ? +1 : -1;
   1552       }
   1553       return 0;
   1554     } else if (a->pc_ > b->pc_) {
   1555       return +1;
   1556     } else {
   1557       return -1;
   1558     }
   1559   }
   1560 
   1561   CodeDescription* desc_;
   1562 };
   1563 
   1564 
   1565 #if V8_TARGET_ARCH_X64
   1566 
   1567 class UnwindInfoSection : public DebugSection {
   1568  public:
   1569   explicit UnwindInfoSection(CodeDescription* desc);
   1570   virtual bool WriteBodyInternal(Writer* w);
   1571 
   1572   int WriteCIE(Writer* w);
   1573   void WriteFDE(Writer* w, int);
   1574 
   1575   void WriteFDEStateOnEntry(Writer* w);
   1576   void WriteFDEStateAfterRBPPush(Writer* w);
   1577   void WriteFDEStateAfterRBPSet(Writer* w);
   1578   void WriteFDEStateAfterRBPPop(Writer* w);
   1579 
   1580   void WriteLength(Writer* w,
   1581                    Writer::Slot<uint32_t>* length_slot,
   1582                    int initial_position);
   1583 
   1584  private:
   1585   CodeDescription* desc_;
   1586 
   1587   // DWARF3 Specification, Table 7.23
   1588   enum CFIInstructions {
   1589     DW_CFA_ADVANCE_LOC = 0x40,
   1590     DW_CFA_OFFSET = 0x80,
   1591     DW_CFA_RESTORE = 0xC0,
   1592     DW_CFA_NOP = 0x00,
   1593     DW_CFA_SET_LOC = 0x01,
   1594     DW_CFA_ADVANCE_LOC1 = 0x02,
   1595     DW_CFA_ADVANCE_LOC2 = 0x03,
   1596     DW_CFA_ADVANCE_LOC4 = 0x04,
   1597     DW_CFA_OFFSET_EXTENDED = 0x05,
   1598     DW_CFA_RESTORE_EXTENDED = 0x06,
   1599     DW_CFA_UNDEFINED = 0x07,
   1600     DW_CFA_SAME_VALUE = 0x08,
   1601     DW_CFA_REGISTER = 0x09,
   1602     DW_CFA_REMEMBER_STATE = 0x0A,
   1603     DW_CFA_RESTORE_STATE = 0x0B,
   1604     DW_CFA_DEF_CFA = 0x0C,
   1605     DW_CFA_DEF_CFA_REGISTER = 0x0D,
   1606     DW_CFA_DEF_CFA_OFFSET = 0x0E,
   1607 
   1608     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
   1609     DW_CFA_EXPRESSION = 0x10,
   1610     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
   1611     DW_CFA_DEF_CFA_SF = 0x12,
   1612     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
   1613     DW_CFA_VAL_OFFSET = 0x14,
   1614     DW_CFA_VAL_OFFSET_SF = 0x15,
   1615     DW_CFA_VAL_EXPRESSION = 0x16
   1616   };
   1617 
   1618   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
   1619   enum RegisterMapping {
   1620     // Only the relevant ones have been added to reduce clutter.
   1621     AMD64_RBP = 6,
   1622     AMD64_RSP = 7,
   1623     AMD64_RA = 16
   1624   };
   1625 
   1626   enum CFIConstants {
   1627     CIE_ID = 0,
   1628     CIE_VERSION = 1,
   1629     CODE_ALIGN_FACTOR = 1,
   1630     DATA_ALIGN_FACTOR = 1,
   1631     RETURN_ADDRESS_REGISTER = AMD64_RA
   1632   };
   1633 };
   1634 
   1635 
   1636 void UnwindInfoSection::WriteLength(Writer* w,
   1637                                     Writer::Slot<uint32_t>* length_slot,
   1638                                     int initial_position) {
   1639   uint32_t align = (w->position() - initial_position) % kPointerSize;
   1640 
   1641   if (align != 0) {
   1642     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
   1643       w->Write<uint8_t>(DW_CFA_NOP);
   1644     }
   1645   }
   1646 
   1647   DCHECK((w->position() - initial_position) % kPointerSize == 0);
   1648   length_slot->set(w->position() - initial_position);
   1649 }
   1650 
   1651 
   1652 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
   1653 #ifdef __ELF
   1654     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
   1655 #else
   1656     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
   1657                    MachOSection::S_REGULAR),
   1658 #endif
   1659       desc_(desc) { }
   1660 
   1661 int UnwindInfoSection::WriteCIE(Writer* w) {
   1662   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
   1663   uint32_t cie_position = w->position();
   1664 
   1665   // Write out the CIE header. Currently no 'common instructions' are
   1666   // emitted onto the CIE; every FDE has its own set of instructions.
   1667 
   1668   w->Write<uint32_t>(CIE_ID);
   1669   w->Write<uint8_t>(CIE_VERSION);
   1670   w->Write<uint8_t>(0);  // Null augmentation string.
   1671   w->WriteSLEB128(CODE_ALIGN_FACTOR);
   1672   w->WriteSLEB128(DATA_ALIGN_FACTOR);
   1673   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
   1674 
   1675   WriteLength(w, &cie_length_slot, cie_position);
   1676 
   1677   return cie_position;
   1678 }
   1679 
   1680 
   1681 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
   1682   // The only FDE for this function. The CFA is the current RBP.
   1683   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
   1684   int fde_position = w->position();
   1685   w->Write<int32_t>(fde_position - cie_position + 4);
   1686 
   1687   w->Write<uintptr_t>(desc_->CodeStart());
   1688   w->Write<uintptr_t>(desc_->CodeSize());
   1689 
   1690   WriteFDEStateOnEntry(w);
   1691   WriteFDEStateAfterRBPPush(w);
   1692   WriteFDEStateAfterRBPSet(w);
   1693   WriteFDEStateAfterRBPPop(w);
   1694 
   1695   WriteLength(w, &fde_length_slot, fde_position);
   1696 }
   1697 
   1698 
   1699 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
   1700   // The first state, just after the control has been transferred to the the
   1701   // function.
   1702 
   1703   // RBP for this function will be the value of RSP after pushing the RBP
   1704   // for the previous function. The previous RBP has not been pushed yet.
   1705   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1706   w->WriteULEB128(AMD64_RSP);
   1707   w->WriteSLEB128(-kPointerSize);
   1708 
   1709   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
   1710   // and hence omitted from the next states.
   1711   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1712   w->WriteULEB128(AMD64_RA);
   1713   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
   1714 
   1715   // The RBP of the previous function is still in RBP.
   1716   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
   1717   w->WriteULEB128(AMD64_RBP);
   1718 
   1719   // Last location described by this entry.
   1720   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1721   w->Write<uint64_t>(
   1722       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
   1723 }
   1724 
   1725 
   1726 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
   1727   // The second state, just after RBP has been pushed.
   1728 
   1729   // RBP / CFA for this function is now the current RSP, so just set the
   1730   // offset from the previous rule (from -8) to 0.
   1731   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
   1732   w->WriteULEB128(0);
   1733 
   1734   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
   1735   // in this and the next state, and hence omitted in the next state.
   1736   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1737   w->WriteULEB128(AMD64_RBP);
   1738   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1739 
   1740   // Last location described by this entry.
   1741   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1742   w->Write<uint64_t>(
   1743       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
   1744 }
   1745 
   1746 
   1747 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
   1748   // The third state, after the RBP has been set.
   1749 
   1750   // The CFA can now directly be set to RBP.
   1751   w->Write<uint8_t>(DW_CFA_DEF_CFA);
   1752   w->WriteULEB128(AMD64_RBP);
   1753   w->WriteULEB128(0);
   1754 
   1755   // Last location described by this entry.
   1756   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1757   w->Write<uint64_t>(
   1758       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
   1759 }
   1760 
   1761 
   1762 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
   1763   // The fourth (final) state. The RBP has been popped (just before issuing a
   1764   // return).
   1765 
   1766   // The CFA can is now calculated in the same way as in the first state.
   1767   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1768   w->WriteULEB128(AMD64_RSP);
   1769   w->WriteSLEB128(-kPointerSize);
   1770 
   1771   // The RBP
   1772   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1773   w->WriteULEB128(AMD64_RBP);
   1774   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1775 
   1776   // Last location described by this entry.
   1777   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1778   w->Write<uint64_t>(desc_->CodeEnd());
   1779 }
   1780 
   1781 
   1782 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
   1783   uint32_t cie_position = WriteCIE(w);
   1784   WriteFDE(w, cie_position);
   1785   return true;
   1786 }
   1787 
   1788 
   1789 #endif  // V8_TARGET_ARCH_X64
   1790 
   1791 static void CreateDWARFSections(CodeDescription* desc,
   1792                                 Zone* zone,
   1793                                 DebugObject* obj) {
   1794   if (desc->IsLineInfoAvailable()) {
   1795     obj->AddSection(new(zone) DebugInfoSection(desc));
   1796     obj->AddSection(new(zone) DebugAbbrevSection(desc));
   1797     obj->AddSection(new(zone) DebugLineSection(desc));
   1798   }
   1799 #if V8_TARGET_ARCH_X64
   1800   obj->AddSection(new(zone) UnwindInfoSection(desc));
   1801 #endif
   1802 }
   1803 
   1804 
   1805 // -------------------------------------------------------------------
   1806 // Binary GDB JIT Interface as described in
   1807 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
   1808 extern "C" {
   1809   typedef enum {
   1810     JIT_NOACTION = 0,
   1811     JIT_REGISTER_FN,
   1812     JIT_UNREGISTER_FN
   1813   } JITAction;
   1814 
   1815   struct JITCodeEntry {
   1816     JITCodeEntry* next_;
   1817     JITCodeEntry* prev_;
   1818     Address symfile_addr_;
   1819     uint64_t symfile_size_;
   1820   };
   1821 
   1822   struct JITDescriptor {
   1823     uint32_t version_;
   1824     uint32_t action_flag_;
   1825     JITCodeEntry* relevant_entry_;
   1826     JITCodeEntry* first_entry_;
   1827   };
   1828 
   1829   // GDB will place breakpoint into this function.
   1830   // To prevent GCC from inlining or removing it we place noinline attribute
   1831   // and inline assembler statement inside.
   1832   void __attribute__((noinline)) __jit_debug_register_code() {
   1833     __asm__("");
   1834   }
   1835 
   1836   // GDB will inspect contents of this descriptor.
   1837   // Static initialization is necessary to prevent GDB from seeing
   1838   // uninitialized descriptor.
   1839   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
   1840 
   1841 #ifdef OBJECT_PRINT
   1842   void __gdb_print_v8_object(Object* object) {
   1843     OFStream os(stdout);
   1844     object->Print(os);
   1845     os << flush;
   1846   }
   1847 #endif
   1848 }
   1849 
   1850 
   1851 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
   1852                                      uintptr_t symfile_size) {
   1853   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
   1854       malloc(sizeof(JITCodeEntry) + symfile_size));
   1855 
   1856   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
   1857   entry->symfile_size_ = symfile_size;
   1858   MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
   1859 
   1860   entry->prev_ = entry->next_ = NULL;
   1861 
   1862   return entry;
   1863 }
   1864 
   1865 
   1866 static void DestroyCodeEntry(JITCodeEntry* entry) {
   1867   free(entry);
   1868 }
   1869 
   1870 
   1871 static void RegisterCodeEntry(JITCodeEntry* entry,
   1872                               bool dump_if_enabled,
   1873                               const char* name_hint) {
   1874 #if defined(DEBUG) && !V8_OS_WIN
   1875   static int file_num = 0;
   1876   if (FLAG_gdbjit_dump && dump_if_enabled) {
   1877     static const int kMaxFileNameSize = 64;
   1878     static const char* kElfFilePrefix = "/tmp/elfdump";
   1879     static const char* kObjFileExt = ".o";
   1880     char file_name[64];
   1881 
   1882     SNPrintF(Vector<char>(file_name, kMaxFileNameSize),
   1883              "%s%s%d%s",
   1884              kElfFilePrefix,
   1885              (name_hint != NULL) ? name_hint : "",
   1886              file_num++,
   1887              kObjFileExt);
   1888     WriteBytes(file_name, entry->symfile_addr_, entry->symfile_size_);
   1889   }
   1890 #endif
   1891 
   1892   entry->next_ = __jit_debug_descriptor.first_entry_;
   1893   if (entry->next_ != NULL) entry->next_->prev_ = entry;
   1894   __jit_debug_descriptor.first_entry_ =
   1895       __jit_debug_descriptor.relevant_entry_ = entry;
   1896 
   1897   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
   1898   __jit_debug_register_code();
   1899 }
   1900 
   1901 
   1902 static void UnregisterCodeEntry(JITCodeEntry* entry) {
   1903   if (entry->prev_ != NULL) {
   1904     entry->prev_->next_ = entry->next_;
   1905   } else {
   1906     __jit_debug_descriptor.first_entry_ = entry->next_;
   1907   }
   1908 
   1909   if (entry->next_ != NULL) {
   1910     entry->next_->prev_ = entry->prev_;
   1911   }
   1912 
   1913   __jit_debug_descriptor.relevant_entry_ = entry;
   1914   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
   1915   __jit_debug_register_code();
   1916 }
   1917 
   1918 
   1919 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
   1920 #ifdef __MACH_O
   1921   Zone zone(isolate);
   1922   MachO mach_o(&zone);
   1923   Writer w(&mach_o);
   1924 
   1925   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
   1926                                                 desc->CodeStart(),
   1927                                                 desc->CodeSize()));
   1928 
   1929   CreateDWARFSections(desc, &zone, &mach_o);
   1930 
   1931   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
   1932 #else
   1933   Zone zone(isolate);
   1934   ELF elf(&zone);
   1935   Writer w(&elf);
   1936 
   1937   int text_section_index = elf.AddSection(
   1938       new(&zone) FullHeaderELFSection(
   1939           ".text",
   1940           ELFSection::TYPE_NOBITS,
   1941           kCodeAlignment,
   1942           desc->CodeStart(),
   1943           0,
   1944           desc->CodeSize(),
   1945           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
   1946 
   1947   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
   1948 
   1949   CreateDWARFSections(desc, &zone, &elf);
   1950 
   1951   elf.Write(&w);
   1952 #endif
   1953 
   1954   return CreateCodeEntry(w.buffer(), w.position());
   1955 }
   1956 
   1957 
   1958 static bool SameCodeObjects(void* key1, void* key2) {
   1959   return key1 == key2;
   1960 }
   1961 
   1962 
   1963 static HashMap* GetEntries() {
   1964   static HashMap* entries = NULL;
   1965   if (entries == NULL) {
   1966     entries = new HashMap(&SameCodeObjects);
   1967   }
   1968   return entries;
   1969 }
   1970 
   1971 
   1972 static uint32_t HashForCodeObject(Code* code) {
   1973   static const uintptr_t kGoldenRatio = 2654435761u;
   1974   uintptr_t hash = reinterpret_cast<uintptr_t>(code->address());
   1975   return static_cast<uint32_t>((hash >> kCodeAlignmentBits) * kGoldenRatio);
   1976 }
   1977 
   1978 
   1979 static const intptr_t kLineInfoTag = 0x1;
   1980 
   1981 
   1982 static bool IsLineInfoTagged(void* ptr) {
   1983   return 0 != (reinterpret_cast<intptr_t>(ptr) & kLineInfoTag);
   1984 }
   1985 
   1986 
   1987 static void* TagLineInfo(LineInfo* ptr) {
   1988   return reinterpret_cast<void*>(
   1989       reinterpret_cast<intptr_t>(ptr) | kLineInfoTag);
   1990 }
   1991 
   1992 
   1993 static LineInfo* UntagLineInfo(void* ptr) {
   1994   return reinterpret_cast<LineInfo*>(reinterpret_cast<intptr_t>(ptr) &
   1995                                      ~kLineInfoTag);
   1996 }
   1997 
   1998 
   1999 void GDBJITInterface::AddCode(Handle<Name> name,
   2000                               Handle<Script> script,
   2001                               Handle<Code> code,
   2002                               CompilationInfo* info) {
   2003   if (!FLAG_gdbjit) return;
   2004 
   2005   Script::InitLineEnds(script);
   2006 
   2007   if (!name.is_null() && name->IsString()) {
   2008     SmartArrayPointer<char> name_cstring =
   2009         Handle<String>::cast(name)->ToCString(DISALLOW_NULLS);
   2010     AddCode(name_cstring.get(), *code, GDBJITInterface::FUNCTION, *script,
   2011             info);
   2012   } else {
   2013     AddCode("", *code, GDBJITInterface::FUNCTION, *script, info);
   2014   }
   2015 }
   2016 
   2017 
   2018 static void AddUnwindInfo(CodeDescription* desc) {
   2019 #if V8_TARGET_ARCH_X64
   2020   if (desc->tag() == GDBJITInterface::FUNCTION) {
   2021     // To avoid propagating unwinding information through
   2022     // compilation pipeline we use an approximation.
   2023     // For most use cases this should not affect usability.
   2024     static const int kFramePointerPushOffset = 1;
   2025     static const int kFramePointerSetOffset = 4;
   2026     static const int kFramePointerPopOffset = -3;
   2027 
   2028     uintptr_t frame_pointer_push_address =
   2029         desc->CodeStart() + kFramePointerPushOffset;
   2030 
   2031     uintptr_t frame_pointer_set_address =
   2032         desc->CodeStart() + kFramePointerSetOffset;
   2033 
   2034     uintptr_t frame_pointer_pop_address =
   2035         desc->CodeEnd() + kFramePointerPopOffset;
   2036 
   2037     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2038                                     frame_pointer_push_address);
   2039     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2040                                     frame_pointer_set_address);
   2041     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2042                                     frame_pointer_pop_address);
   2043   } else {
   2044     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2045                                     desc->CodeStart());
   2046     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2047                                     desc->CodeStart());
   2048     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2049                                     desc->CodeEnd());
   2050   }
   2051 #endif  // V8_TARGET_ARCH_X64
   2052 }
   2053 
   2054 
   2055 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
   2056 
   2057 
   2058 void GDBJITInterface::AddCode(const char* name,
   2059                               Code* code,
   2060                               GDBJITInterface::CodeTag tag,
   2061                               Script* script,
   2062                               CompilationInfo* info) {
   2063   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
   2064   DisallowHeapAllocation no_gc;
   2065 
   2066   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
   2067   if (e->value != NULL && !IsLineInfoTagged(e->value)) return;
   2068 
   2069   LineInfo* lineinfo = UntagLineInfo(e->value);
   2070   CodeDescription code_desc(name,
   2071                             code,
   2072                             script != NULL ? Handle<Script>(script)
   2073                                            : Handle<Script>(),
   2074                             lineinfo,
   2075                             tag,
   2076                             info);
   2077 
   2078   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
   2079     delete lineinfo;
   2080     GetEntries()->Remove(code, HashForCodeObject(code));
   2081     return;
   2082   }
   2083 
   2084   AddUnwindInfo(&code_desc);
   2085   Isolate* isolate = code->GetIsolate();
   2086   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
   2087   DCHECK(!IsLineInfoTagged(entry));
   2088 
   2089   delete lineinfo;
   2090   e->value = entry;
   2091 
   2092   const char* name_hint = NULL;
   2093   bool should_dump = false;
   2094   if (FLAG_gdbjit_dump) {
   2095     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
   2096       name_hint = name;
   2097       should_dump = true;
   2098     } else if (name != NULL) {
   2099       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
   2100       should_dump = (name_hint != NULL);
   2101     }
   2102   }
   2103   RegisterCodeEntry(entry, should_dump, name_hint);
   2104 }
   2105 
   2106 
   2107 void GDBJITInterface::RemoveCode(Code* code) {
   2108   if (!FLAG_gdbjit) return;
   2109 
   2110   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
   2111   HashMap::Entry* e = GetEntries()->Lookup(code,
   2112                                            HashForCodeObject(code),
   2113                                            false);
   2114   if (e == NULL) return;
   2115 
   2116   if (IsLineInfoTagged(e->value)) {
   2117     delete UntagLineInfo(e->value);
   2118   } else {
   2119     JITCodeEntry* entry = static_cast<JITCodeEntry*>(e->value);
   2120     UnregisterCodeEntry(entry);
   2121     DestroyCodeEntry(entry);
   2122   }
   2123   e->value = NULL;
   2124   GetEntries()->Remove(code, HashForCodeObject(code));
   2125 }
   2126 
   2127 
   2128 void GDBJITInterface::RemoveCodeRange(Address start, Address end) {
   2129   HashMap* entries = GetEntries();
   2130   Zone zone(Isolate::Current());
   2131   ZoneList<Code*> dead_codes(1, &zone);
   2132 
   2133   for (HashMap::Entry* e = entries->Start(); e != NULL; e = entries->Next(e)) {
   2134     Code* code = reinterpret_cast<Code*>(e->key);
   2135     if (code->address() >= start && code->address() < end) {
   2136       dead_codes.Add(code, &zone);
   2137     }
   2138   }
   2139 
   2140   for (int i = 0; i < dead_codes.length(); i++) {
   2141     RemoveCode(dead_codes.at(i));
   2142   }
   2143 }
   2144 
   2145 
   2146 static void RegisterDetailedLineInfo(Code* code, LineInfo* line_info) {
   2147   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
   2148   DCHECK(!IsLineInfoTagged(line_info));
   2149   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
   2150   DCHECK(e->value == NULL);
   2151   e->value = TagLineInfo(line_info);
   2152 }
   2153 
   2154 
   2155 void GDBJITInterface::EventHandler(const v8::JitCodeEvent* event) {
   2156   if (!FLAG_gdbjit) return;
   2157   switch (event->type) {
   2158     case v8::JitCodeEvent::CODE_ADDED: {
   2159       Code* code = Code::GetCodeFromTargetAddress(
   2160           reinterpret_cast<Address>(event->code_start));
   2161       if (code->kind() == Code::OPTIMIZED_FUNCTION ||
   2162           code->kind() == Code::FUNCTION) {
   2163         break;
   2164       }
   2165       EmbeddedVector<char, 256> buffer;
   2166       StringBuilder builder(buffer.start(), buffer.length());
   2167       builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
   2168       AddCode(builder.Finalize(), code, NON_FUNCTION, NULL, NULL);
   2169       break;
   2170     }
   2171     case v8::JitCodeEvent::CODE_MOVED:
   2172       break;
   2173     case v8::JitCodeEvent::CODE_REMOVED: {
   2174       Code* code = Code::GetCodeFromTargetAddress(
   2175           reinterpret_cast<Address>(event->code_start));
   2176       RemoveCode(code);
   2177       break;
   2178     }
   2179     case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
   2180       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
   2181       line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
   2182                              static_cast<int>(event->line_info.pos),
   2183                              event->line_info.position_type ==
   2184                                  v8::JitCodeEvent::STATEMENT_POSITION);
   2185       break;
   2186     }
   2187     case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
   2188       v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
   2189       mutable_event->user_data = new LineInfo();
   2190       break;
   2191     }
   2192     case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
   2193       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
   2194       Code* code = Code::GetCodeFromTargetAddress(
   2195           reinterpret_cast<Address>(event->code_start));
   2196       RegisterDetailedLineInfo(code, line_info);
   2197       break;
   2198     }
   2199   }
   2200 }
   2201 
   2202 
   2203 } }  // namespace v8::internal
   2204 #endif
   2205