Home | History | Annotate | Download | only in dec
      1 // Copyright 2010 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Frame-reconstruction function. Memory allocation.
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include <stdlib.h>
     15 #include "./vp8i.h"
     16 #include "../utils/utils.h"
     17 
     18 #define ALIGN_MASK (32 - 1)
     19 
     20 static void ReconstructRow(const VP8Decoder* const dec,
     21                            const VP8ThreadContext* ctx);  // TODO(skal): remove
     22 
     23 //------------------------------------------------------------------------------
     24 // Filtering
     25 
     26 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary
     27 // for caching, given a filtering level.
     28 // Simple filter:  up to 2 luma samples are read and 1 is written.
     29 // Complex filter: up to 4 luma samples are read and 3 are written. Same for
     30 //                 U/V, so it's 8 samples total (because of the 2x upsampling).
     31 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
     32 
     33 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
     34   const VP8ThreadContext* const ctx = &dec->thread_ctx_;
     35   const int cache_id = ctx->id_;
     36   const int y_bps = dec->cache_y_stride_;
     37   const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
     38   uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
     39   const int ilevel = f_info->f_ilevel_;
     40   const int limit = f_info->f_limit_;
     41   if (limit == 0) {
     42     return;
     43   }
     44   assert(limit >= 3);
     45   if (dec->filter_type_ == 1) {   // simple
     46     if (mb_x > 0) {
     47       VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
     48     }
     49     if (f_info->f_inner_) {
     50       VP8SimpleHFilter16i(y_dst, y_bps, limit);
     51     }
     52     if (mb_y > 0) {
     53       VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
     54     }
     55     if (f_info->f_inner_) {
     56       VP8SimpleVFilter16i(y_dst, y_bps, limit);
     57     }
     58   } else {    // complex
     59     const int uv_bps = dec->cache_uv_stride_;
     60     uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
     61     uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
     62     const int hev_thresh = f_info->hev_thresh_;
     63     if (mb_x > 0) {
     64       VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
     65       VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
     66     }
     67     if (f_info->f_inner_) {
     68       VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
     69       VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
     70     }
     71     if (mb_y > 0) {
     72       VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
     73       VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
     74     }
     75     if (f_info->f_inner_) {
     76       VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
     77       VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
     78     }
     79   }
     80 }
     81 
     82 // Filter the decoded macroblock row (if needed)
     83 static void FilterRow(const VP8Decoder* const dec) {
     84   int mb_x;
     85   const int mb_y = dec->thread_ctx_.mb_y_;
     86   assert(dec->thread_ctx_.filter_row_);
     87   for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
     88     DoFilter(dec, mb_x, mb_y);
     89   }
     90 }
     91 
     92 //------------------------------------------------------------------------------
     93 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
     94 
     95 static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
     96   if (dec->filter_type_ > 0) {
     97     int s;
     98     const VP8FilterHeader* const hdr = &dec->filter_hdr_;
     99     for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
    100       int i4x4;
    101       // First, compute the initial level
    102       int base_level;
    103       if (dec->segment_hdr_.use_segment_) {
    104         base_level = dec->segment_hdr_.filter_strength_[s];
    105         if (!dec->segment_hdr_.absolute_delta_) {
    106           base_level += hdr->level_;
    107         }
    108       } else {
    109         base_level = hdr->level_;
    110       }
    111       for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
    112         VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
    113         int level = base_level;
    114         if (hdr->use_lf_delta_) {
    115           // TODO(skal): only CURRENT is handled for now.
    116           level += hdr->ref_lf_delta_[0];
    117           if (i4x4) {
    118             level += hdr->mode_lf_delta_[0];
    119           }
    120         }
    121         level = (level < 0) ? 0 : (level > 63) ? 63 : level;
    122         if (level > 0) {
    123           int ilevel = level;
    124           if (hdr->sharpness_ > 0) {
    125             if (hdr->sharpness_ > 4) {
    126               ilevel >>= 2;
    127             } else {
    128               ilevel >>= 1;
    129             }
    130             if (ilevel > 9 - hdr->sharpness_) {
    131               ilevel = 9 - hdr->sharpness_;
    132             }
    133           }
    134           if (ilevel < 1) ilevel = 1;
    135           info->f_ilevel_ = ilevel;
    136           info->f_limit_ = 2 * level + ilevel;
    137           info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
    138         } else {
    139           info->f_limit_ = 0;  // no filtering
    140         }
    141         info->f_inner_ = i4x4;
    142       }
    143     }
    144   }
    145 }
    146 
    147 //------------------------------------------------------------------------------
    148 // Dithering
    149 
    150 #define DITHER_AMP_TAB_SIZE 12
    151 static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
    152   // roughly, it's dqm->uv_mat_[1]
    153   8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
    154 };
    155 
    156 void VP8InitDithering(const WebPDecoderOptions* const options,
    157                       VP8Decoder* const dec) {
    158   assert(dec != NULL);
    159   if (options != NULL) {
    160     const int d = options->dithering_strength;
    161     const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
    162     const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
    163     if (f > 0) {
    164       int s;
    165       int all_amp = 0;
    166       for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
    167         VP8QuantMatrix* const dqm = &dec->dqm_[s];
    168         if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
    169           // TODO(skal): should we specially dither more for uv_quant_ < 0?
    170           const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
    171           dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
    172         }
    173         all_amp |= dqm->dither_;
    174       }
    175       if (all_amp != 0) {
    176         VP8InitRandom(&dec->dithering_rg_, 1.0f);
    177         dec->dither_ = 1;
    178       }
    179     }
    180 #if WEBP_DECODER_ABI_VERSION > 0x0204
    181     // potentially allow alpha dithering
    182     dec->alpha_dithering_ = options->alpha_dithering_strength;
    183     if (dec->alpha_dithering_ > 100) {
    184       dec->alpha_dithering_ = 100;
    185     } else if (dec->alpha_dithering_ < 0) {
    186       dec->alpha_dithering_ = 0;
    187     }
    188 #endif
    189   }
    190 }
    191 
    192 // minimal amp that will provide a non-zero dithering effect
    193 #define MIN_DITHER_AMP 4
    194 #define DITHER_DESCALE 4
    195 #define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1))
    196 #define DITHER_AMP_BITS 8
    197 #define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS)
    198 
    199 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
    200   int i, j;
    201   for (j = 0; j < 8; ++j) {
    202     for (i = 0; i < 8; ++i) {
    203       // TODO: could be made faster with SSE2
    204       const int bits =
    205           VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER;
    206       // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
    207       const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE;
    208       const int v = (int)dst[i] + delta;
    209       dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v;
    210     }
    211     dst += bps;
    212   }
    213 }
    214 
    215 static void DitherRow(VP8Decoder* const dec) {
    216   int mb_x;
    217   assert(dec->dither_);
    218   for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
    219     const VP8ThreadContext* const ctx = &dec->thread_ctx_;
    220     const VP8MBData* const data = ctx->mb_data_ + mb_x;
    221     const int cache_id = ctx->id_;
    222     const int uv_bps = dec->cache_uv_stride_;
    223     if (data->dither_ >= MIN_DITHER_AMP) {
    224       uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
    225       uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
    226       Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
    227       Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
    228     }
    229   }
    230 }
    231 
    232 //------------------------------------------------------------------------------
    233 // This function is called after a row of macroblocks is finished decoding.
    234 // It also takes into account the following restrictions:
    235 //  * In case of in-loop filtering, we must hold off sending some of the bottom
    236 //    pixels as they are yet unfiltered. They will be when the next macroblock
    237 //    row is decoded. Meanwhile, we must preserve them by rotating them in the
    238 //    cache area. This doesn't hold for the very bottom row of the uncropped
    239 //    picture of course.
    240 //  * we must clip the remaining pixels against the cropping area. The VP8Io
    241 //    struct must have the following fields set correctly before calling put():
    242 
    243 #define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB
    244 
    245 // Finalize and transmit a complete row. Return false in case of user-abort.
    246 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
    247   int ok = 1;
    248   const VP8ThreadContext* const ctx = &dec->thread_ctx_;
    249   const int cache_id = ctx->id_;
    250   const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
    251   const int ysize = extra_y_rows * dec->cache_y_stride_;
    252   const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
    253   const int y_offset = cache_id * 16 * dec->cache_y_stride_;
    254   const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
    255   uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
    256   uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
    257   uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
    258   const int mb_y = ctx->mb_y_;
    259   const int is_first_row = (mb_y == 0);
    260   const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
    261 
    262   if (dec->mt_method_ == 2) {
    263     ReconstructRow(dec, ctx);
    264   }
    265 
    266   if (ctx->filter_row_) {
    267     FilterRow(dec);
    268   }
    269 
    270   if (dec->dither_) {
    271     DitherRow(dec);
    272   }
    273 
    274   if (io->put != NULL) {
    275     int y_start = MACROBLOCK_VPOS(mb_y);
    276     int y_end = MACROBLOCK_VPOS(mb_y + 1);
    277     if (!is_first_row) {
    278       y_start -= extra_y_rows;
    279       io->y = ydst;
    280       io->u = udst;
    281       io->v = vdst;
    282     } else {
    283       io->y = dec->cache_y_ + y_offset;
    284       io->u = dec->cache_u_ + uv_offset;
    285       io->v = dec->cache_v_ + uv_offset;
    286     }
    287 
    288     if (!is_last_row) {
    289       y_end -= extra_y_rows;
    290     }
    291     if (y_end > io->crop_bottom) {
    292       y_end = io->crop_bottom;    // make sure we don't overflow on last row.
    293     }
    294     io->a = NULL;
    295     if (dec->alpha_data_ != NULL && y_start < y_end) {
    296       // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a
    297       // good idea.
    298       io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
    299       if (io->a == NULL) {
    300         return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
    301                            "Could not decode alpha data.");
    302       }
    303     }
    304     if (y_start < io->crop_top) {
    305       const int delta_y = io->crop_top - y_start;
    306       y_start = io->crop_top;
    307       assert(!(delta_y & 1));
    308       io->y += dec->cache_y_stride_ * delta_y;
    309       io->u += dec->cache_uv_stride_ * (delta_y >> 1);
    310       io->v += dec->cache_uv_stride_ * (delta_y >> 1);
    311       if (io->a != NULL) {
    312         io->a += io->width * delta_y;
    313       }
    314     }
    315     if (y_start < y_end) {
    316       io->y += io->crop_left;
    317       io->u += io->crop_left >> 1;
    318       io->v += io->crop_left >> 1;
    319       if (io->a != NULL) {
    320         io->a += io->crop_left;
    321       }
    322       io->mb_y = y_start - io->crop_top;
    323       io->mb_w = io->crop_right - io->crop_left;
    324       io->mb_h = y_end - y_start;
    325       ok = io->put(io);
    326     }
    327   }
    328   // rotate top samples if needed
    329   if (cache_id + 1 == dec->num_caches_) {
    330     if (!is_last_row) {
    331       memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
    332       memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
    333       memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
    334     }
    335   }
    336 
    337   return ok;
    338 }
    339 
    340 #undef MACROBLOCK_VPOS
    341 
    342 //------------------------------------------------------------------------------
    343 
    344 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
    345   int ok = 1;
    346   VP8ThreadContext* const ctx = &dec->thread_ctx_;
    347   const int filter_row =
    348       (dec->filter_type_ > 0) &&
    349       (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
    350   if (dec->mt_method_ == 0) {
    351     // ctx->id_ and ctx->f_info_ are already set
    352     ctx->mb_y_ = dec->mb_y_;
    353     ctx->filter_row_ = filter_row;
    354     ReconstructRow(dec, ctx);
    355     ok = FinishRow(dec, io);
    356   } else {
    357     WebPWorker* const worker = &dec->worker_;
    358     // Finish previous job *before* updating context
    359     ok &= WebPGetWorkerInterface()->Sync(worker);
    360     assert(worker->status_ == OK);
    361     if (ok) {   // spawn a new deblocking/output job
    362       ctx->io_ = *io;
    363       ctx->id_ = dec->cache_id_;
    364       ctx->mb_y_ = dec->mb_y_;
    365       ctx->filter_row_ = filter_row;
    366       if (dec->mt_method_ == 2) {  // swap macroblock data
    367         VP8MBData* const tmp = ctx->mb_data_;
    368         ctx->mb_data_ = dec->mb_data_;
    369         dec->mb_data_ = tmp;
    370       } else {
    371         // perform reconstruction directly in main thread
    372         ReconstructRow(dec, ctx);
    373       }
    374       if (filter_row) {            // swap filter info
    375         VP8FInfo* const tmp = ctx->f_info_;
    376         ctx->f_info_ = dec->f_info_;
    377         dec->f_info_ = tmp;
    378       }
    379       // (reconstruct)+filter in parallel
    380       WebPGetWorkerInterface()->Launch(worker);
    381       if (++dec->cache_id_ == dec->num_caches_) {
    382         dec->cache_id_ = 0;
    383       }
    384     }
    385   }
    386   return ok;
    387 }
    388 
    389 //------------------------------------------------------------------------------
    390 // Finish setting up the decoding parameter once user's setup() is called.
    391 
    392 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
    393   // Call setup() first. This may trigger additional decoding features on 'io'.
    394   // Note: Afterward, we must call teardown() no matter what.
    395   if (io->setup != NULL && !io->setup(io)) {
    396     VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
    397     return dec->status_;
    398   }
    399 
    400   // Disable filtering per user request
    401   if (io->bypass_filtering) {
    402     dec->filter_type_ = 0;
    403   }
    404   // TODO(skal): filter type / strength / sharpness forcing
    405 
    406   // Define the area where we can skip in-loop filtering, in case of cropping.
    407   //
    408   // 'Simple' filter reads two luma samples outside of the macroblock
    409   // and filters one. It doesn't filter the chroma samples. Hence, we can
    410   // avoid doing the in-loop filtering before crop_top/crop_left position.
    411   // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
    412   // Means: there's a dependency chain that goes all the way up to the
    413   // top-left corner of the picture (MB #0). We must filter all the previous
    414   // macroblocks.
    415   // TODO(skal): add an 'approximate_decoding' option, that won't produce
    416   // a 1:1 bit-exactness for complex filtering?
    417   {
    418     const int extra_pixels = kFilterExtraRows[dec->filter_type_];
    419     if (dec->filter_type_ == 2) {
    420       // For complex filter, we need to preserve the dependency chain.
    421       dec->tl_mb_x_ = 0;
    422       dec->tl_mb_y_ = 0;
    423     } else {
    424       // For simple filter, we can filter only the cropped region.
    425       // We include 'extra_pixels' on the other side of the boundary, since
    426       // vertical or horizontal filtering of the previous macroblock can
    427       // modify some abutting pixels.
    428       dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
    429       dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
    430       if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
    431       if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
    432     }
    433     // We need some 'extra' pixels on the right/bottom.
    434     dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
    435     dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
    436     if (dec->br_mb_x_ > dec->mb_w_) {
    437       dec->br_mb_x_ = dec->mb_w_;
    438     }
    439     if (dec->br_mb_y_ > dec->mb_h_) {
    440       dec->br_mb_y_ = dec->mb_h_;
    441     }
    442   }
    443   PrecomputeFilterStrengths(dec);
    444   return VP8_STATUS_OK;
    445 }
    446 
    447 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
    448   int ok = 1;
    449   if (dec->mt_method_ > 0) {
    450     ok = WebPGetWorkerInterface()->Sync(&dec->worker_);
    451   }
    452 
    453   if (io->teardown != NULL) {
    454     io->teardown(io);
    455   }
    456   return ok;
    457 }
    458 
    459 //------------------------------------------------------------------------------
    460 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
    461 //
    462 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges
    463 // immediately, and needs to wait for first few rows of the next macroblock to
    464 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
    465 // on strength).
    466 // With two threads, the vertical positions of the rows being decoded are:
    467 // Decode:  [ 0..15][16..31][32..47][48..63][64..79][...
    468 // Deblock:         [ 0..11][12..27][28..43][44..59][...
    469 // If we use two threads and two caches of 16 pixels, the sequence would be:
    470 // Decode:  [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
    471 // Deblock:         [ 0..11][12..27!!][-4..11][12..27][...
    472 // The problem occurs during row [12..15!!] that both the decoding and
    473 // deblocking threads are writing simultaneously.
    474 // With 3 cache lines, one get a safe write pattern:
    475 // Decode:  [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
    476 // Deblock:         [ 0..11][12..27][28..43][-4..11][12..27][28...
    477 // Note that multi-threaded output _without_ deblocking can make use of two
    478 // cache lines of 16 pixels only, since there's no lagging behind. The decoding
    479 // and output process have non-concurrent writing:
    480 // Decode:  [ 0..15][16..31][ 0..15][16..31][...
    481 // io->put:         [ 0..15][16..31][ 0..15][...
    482 
    483 #define MT_CACHE_LINES 3
    484 #define ST_CACHE_LINES 1   // 1 cache row only for single-threaded case
    485 
    486 // Initialize multi/single-thread worker
    487 static int InitThreadContext(VP8Decoder* const dec) {
    488   dec->cache_id_ = 0;
    489   if (dec->mt_method_ > 0) {
    490     WebPWorker* const worker = &dec->worker_;
    491     if (!WebPGetWorkerInterface()->Reset(worker)) {
    492       return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
    493                          "thread initialization failed.");
    494     }
    495     worker->data1 = dec;
    496     worker->data2 = (void*)&dec->thread_ctx_.io_;
    497     worker->hook = (WebPWorkerHook)FinishRow;
    498     dec->num_caches_ =
    499       (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
    500   } else {
    501     dec->num_caches_ = ST_CACHE_LINES;
    502   }
    503   return 1;
    504 }
    505 
    506 int VP8GetThreadMethod(const WebPDecoderOptions* const options,
    507                        const WebPHeaderStructure* const headers,
    508                        int width, int height) {
    509   if (options == NULL || options->use_threads == 0) {
    510     return 0;
    511   }
    512   (void)headers;
    513   (void)width;
    514   (void)height;
    515   assert(headers == NULL || !headers->is_lossless);
    516 #if defined(WEBP_USE_THREAD)
    517   if (width < MIN_WIDTH_FOR_THREADS) return 0;
    518   // TODO(skal): tune the heuristic further
    519 #if 0
    520   if (height < 2 * width) return 2;
    521 #endif
    522   return 2;
    523 #else   // !WEBP_USE_THREAD
    524   return 0;
    525 #endif
    526 }
    527 
    528 #undef MT_CACHE_LINES
    529 #undef ST_CACHE_LINES
    530 
    531 //------------------------------------------------------------------------------
    532 // Memory setup
    533 
    534 static int AllocateMemory(VP8Decoder* const dec) {
    535   const int num_caches = dec->num_caches_;
    536   const int mb_w = dec->mb_w_;
    537   // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
    538   const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
    539   const size_t top_size = sizeof(VP8TopSamples) * mb_w;
    540   const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
    541   const size_t f_info_size =
    542       (dec->filter_type_ > 0) ?
    543           mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
    544         : 0;
    545   const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
    546   const size_t mb_data_size =
    547       (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
    548   const size_t cache_height = (16 * num_caches
    549                             + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
    550   const size_t cache_size = top_size * cache_height;
    551   // alpha_size is the only one that scales as width x height.
    552   const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
    553       (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
    554   const uint64_t needed = (uint64_t)intra_pred_mode_size
    555                         + top_size + mb_info_size + f_info_size
    556                         + yuv_size + mb_data_size
    557                         + cache_size + alpha_size + ALIGN_MASK;
    558   uint8_t* mem;
    559 
    560   if (needed != (size_t)needed) return 0;  // check for overflow
    561   if (needed > dec->mem_size_) {
    562     WebPSafeFree(dec->mem_);
    563     dec->mem_size_ = 0;
    564     dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
    565     if (dec->mem_ == NULL) {
    566       return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
    567                          "no memory during frame initialization.");
    568     }
    569     // down-cast is ok, thanks to WebPSafeAlloc() above.
    570     dec->mem_size_ = (size_t)needed;
    571   }
    572 
    573   mem = (uint8_t*)dec->mem_;
    574   dec->intra_t_ = (uint8_t*)mem;
    575   mem += intra_pred_mode_size;
    576 
    577   dec->yuv_t_ = (VP8TopSamples*)mem;
    578   mem += top_size;
    579 
    580   dec->mb_info_ = ((VP8MB*)mem) + 1;
    581   mem += mb_info_size;
    582 
    583   dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
    584   mem += f_info_size;
    585   dec->thread_ctx_.id_ = 0;
    586   dec->thread_ctx_.f_info_ = dec->f_info_;
    587   if (dec->mt_method_ > 0) {
    588     // secondary cache line. The deblocking process need to make use of the
    589     // filtering strength from previous macroblock row, while the new ones
    590     // are being decoded in parallel. We'll just swap the pointers.
    591     dec->thread_ctx_.f_info_ += mb_w;
    592   }
    593 
    594   mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
    595   assert((yuv_size & ALIGN_MASK) == 0);
    596   dec->yuv_b_ = (uint8_t*)mem;
    597   mem += yuv_size;
    598 
    599   dec->mb_data_ = (VP8MBData*)mem;
    600   dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
    601   if (dec->mt_method_ == 2) {
    602     dec->thread_ctx_.mb_data_ += mb_w;
    603   }
    604   mem += mb_data_size;
    605 
    606   dec->cache_y_stride_ = 16 * mb_w;
    607   dec->cache_uv_stride_ = 8 * mb_w;
    608   {
    609     const int extra_rows = kFilterExtraRows[dec->filter_type_];
    610     const int extra_y = extra_rows * dec->cache_y_stride_;
    611     const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
    612     dec->cache_y_ = ((uint8_t*)mem) + extra_y;
    613     dec->cache_u_ = dec->cache_y_
    614                   + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
    615     dec->cache_v_ = dec->cache_u_
    616                   + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
    617     dec->cache_id_ = 0;
    618   }
    619   mem += cache_size;
    620 
    621   // alpha plane
    622   dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
    623   mem += alpha_size;
    624   assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
    625 
    626   // note: left/top-info is initialized once for all.
    627   memset(dec->mb_info_ - 1, 0, mb_info_size);
    628   VP8InitScanline(dec);   // initialize left too.
    629 
    630   // initialize top
    631   memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
    632 
    633   return 1;
    634 }
    635 
    636 static void InitIo(VP8Decoder* const dec, VP8Io* io) {
    637   // prepare 'io'
    638   io->mb_y = 0;
    639   io->y = dec->cache_y_;
    640   io->u = dec->cache_u_;
    641   io->v = dec->cache_v_;
    642   io->y_stride = dec->cache_y_stride_;
    643   io->uv_stride = dec->cache_uv_stride_;
    644   io->a = NULL;
    645 }
    646 
    647 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
    648   if (!InitThreadContext(dec)) return 0;  // call first. Sets dec->num_caches_.
    649   if (!AllocateMemory(dec)) return 0;
    650   InitIo(dec, io);
    651   VP8DspInit();  // Init critical function pointers and look-up tables.
    652   return 1;
    653 }
    654 
    655 //------------------------------------------------------------------------------
    656 // Main reconstruction function.
    657 
    658 static const int kScan[16] = {
    659   0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
    660   0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
    661   0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
    662   0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
    663 };
    664 
    665 static int CheckMode(int mb_x, int mb_y, int mode) {
    666   if (mode == B_DC_PRED) {
    667     if (mb_x == 0) {
    668       return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
    669     } else {
    670       return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
    671     }
    672   }
    673   return mode;
    674 }
    675 
    676 static void Copy32b(uint8_t* dst, uint8_t* src) {
    677   memcpy(dst, src, 4);
    678 }
    679 
    680 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
    681                                     uint8_t* const dst) {
    682   switch (bits >> 30) {
    683     case 3:
    684       VP8Transform(src, dst, 0);
    685       break;
    686     case 2:
    687       VP8TransformAC3(src, dst);
    688       break;
    689     case 1:
    690       VP8TransformDC(src, dst);
    691       break;
    692     default:
    693       break;
    694   }
    695 }
    696 
    697 static void DoUVTransform(uint32_t bits, const int16_t* const src,
    698                           uint8_t* const dst) {
    699   if (bits & 0xff) {    // any non-zero coeff at all?
    700     if (bits & 0xaa) {  // any non-zero AC coefficient?
    701       VP8TransformUV(src, dst);   // note we don't use the AC3 variant for U/V
    702     } else {
    703       VP8TransformDCUV(src, dst);
    704     }
    705   }
    706 }
    707 
    708 static void ReconstructRow(const VP8Decoder* const dec,
    709                            const VP8ThreadContext* ctx) {
    710   int j;
    711   int mb_x;
    712   const int mb_y = ctx->mb_y_;
    713   const int cache_id = ctx->id_;
    714   uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
    715   uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
    716   uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
    717   for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
    718     const VP8MBData* const block = ctx->mb_data_ + mb_x;
    719 
    720     // Rotate in the left samples from previously decoded block. We move four
    721     // pixels at a time for alignment reason, and because of in-loop filter.
    722     if (mb_x > 0) {
    723       for (j = -1; j < 16; ++j) {
    724         Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
    725       }
    726       for (j = -1; j < 8; ++j) {
    727         Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
    728         Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
    729       }
    730     } else {
    731       for (j = 0; j < 16; ++j) {
    732         y_dst[j * BPS - 1] = 129;
    733       }
    734       for (j = 0; j < 8; ++j) {
    735         u_dst[j * BPS - 1] = 129;
    736         v_dst[j * BPS - 1] = 129;
    737       }
    738       // Init top-left sample on left column too
    739       if (mb_y > 0) {
    740         y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
    741       }
    742     }
    743     {
    744       // bring top samples into the cache
    745       VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
    746       const int16_t* const coeffs = block->coeffs_;
    747       uint32_t bits = block->non_zero_y_;
    748       int n;
    749 
    750       if (mb_y > 0) {
    751         memcpy(y_dst - BPS, top_yuv[0].y, 16);
    752         memcpy(u_dst - BPS, top_yuv[0].u, 8);
    753         memcpy(v_dst - BPS, top_yuv[0].v, 8);
    754       } else if (mb_x == 0) {
    755         // we only need to do this init once at block (0,0).
    756         // Afterward, it remains valid for the whole topmost row.
    757         memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
    758         memset(u_dst - BPS - 1, 127, 8 + 1);
    759         memset(v_dst - BPS - 1, 127, 8 + 1);
    760       }
    761 
    762       // predict and add residuals
    763       if (block->is_i4x4_) {   // 4x4
    764         uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
    765 
    766         if (mb_y > 0) {
    767           if (mb_x >= dec->mb_w_ - 1) {    // on rightmost border
    768             memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
    769           } else {
    770             memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
    771           }
    772         }
    773         // replicate the top-right pixels below
    774         top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
    775 
    776         // predict and add residuals for all 4x4 blocks in turn.
    777         for (n = 0; n < 16; ++n, bits <<= 2) {
    778           uint8_t* const dst = y_dst + kScan[n];
    779           VP8PredLuma4[block->imodes_[n]](dst);
    780           DoTransform(bits, coeffs + n * 16, dst);
    781         }
    782       } else {    // 16x16
    783         const int pred_func = CheckMode(mb_x, mb_y,
    784                                         block->imodes_[0]);
    785         VP8PredLuma16[pred_func](y_dst);
    786         if (bits != 0) {
    787           for (n = 0; n < 16; ++n, bits <<= 2) {
    788             DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
    789           }
    790         }
    791       }
    792       {
    793         // Chroma
    794         const uint32_t bits_uv = block->non_zero_uv_;
    795         const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
    796         VP8PredChroma8[pred_func](u_dst);
    797         VP8PredChroma8[pred_func](v_dst);
    798         DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
    799         DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
    800       }
    801 
    802       // stash away top samples for next block
    803       if (mb_y < dec->mb_h_ - 1) {
    804         memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
    805         memcpy(top_yuv[0].u, u_dst +  7 * BPS,  8);
    806         memcpy(top_yuv[0].v, v_dst +  7 * BPS,  8);
    807       }
    808     }
    809     // Transfer reconstructed samples from yuv_b_ cache to final destination.
    810     {
    811       const int y_offset = cache_id * 16 * dec->cache_y_stride_;
    812       const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
    813       uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
    814       uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
    815       uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
    816       for (j = 0; j < 16; ++j) {
    817         memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
    818       }
    819       for (j = 0; j < 8; ++j) {
    820         memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
    821         memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
    822       }
    823     }
    824   }
    825 }
    826 
    827 //------------------------------------------------------------------------------
    828 
    829