1 /* 2 * Wrapper functions for OpenSSL libcrypto 3 * Copyright (c) 2004-2015, Jouni Malinen <j (at) w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 */ 8 9 #include "includes.h" 10 #include <openssl/opensslv.h> 11 #include <openssl/err.h> 12 #include <openssl/des.h> 13 #include <openssl/aes.h> 14 #include <openssl/bn.h> 15 #include <openssl/evp.h> 16 #include <openssl/dh.h> 17 #include <openssl/hmac.h> 18 #include <openssl/rand.h> 19 #ifdef CONFIG_OPENSSL_CMAC 20 #include <openssl/cmac.h> 21 #endif /* CONFIG_OPENSSL_CMAC */ 22 #ifdef CONFIG_ECC 23 #include <openssl/ec.h> 24 #endif /* CONFIG_ECC */ 25 26 #include "common.h" 27 #include "wpabuf.h" 28 #include "dh_group5.h" 29 #include "sha1.h" 30 #include "sha256.h" 31 #include "sha384.h" 32 #include "crypto.h" 33 34 static BIGNUM * get_group5_prime(void) 35 { 36 #ifdef OPENSSL_IS_BORINGSSL 37 static const unsigned char RFC3526_PRIME_1536[] = { 38 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, 39 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, 40 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, 41 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, 42 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, 43 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, 44 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, 45 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, 46 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, 47 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, 48 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, 49 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, 50 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, 51 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, 52 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, 53 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 54 }; 55 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL); 56 #else /* OPENSSL_IS_BORINGSSL */ 57 return get_rfc3526_prime_1536(NULL); 58 #endif /* OPENSSL_IS_BORINGSSL */ 59 } 60 61 #ifdef OPENSSL_NO_SHA256 62 #define NO_SHA256_WRAPPER 63 #endif 64 65 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem, 66 const u8 *addr[], const size_t *len, u8 *mac) 67 { 68 EVP_MD_CTX ctx; 69 size_t i; 70 unsigned int mac_len; 71 72 EVP_MD_CTX_init(&ctx); 73 if (!EVP_DigestInit_ex(&ctx, type, NULL)) { 74 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s", 75 ERR_error_string(ERR_get_error(), NULL)); 76 return -1; 77 } 78 for (i = 0; i < num_elem; i++) { 79 if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) { 80 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate " 81 "failed: %s", 82 ERR_error_string(ERR_get_error(), NULL)); 83 return -1; 84 } 85 } 86 if (!EVP_DigestFinal(&ctx, mac, &mac_len)) { 87 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s", 88 ERR_error_string(ERR_get_error(), NULL)); 89 return -1; 90 } 91 92 return 0; 93 } 94 95 96 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 97 { 98 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac); 99 } 100 101 102 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) 103 { 104 u8 pkey[8], next, tmp; 105 int i; 106 DES_key_schedule ks; 107 108 /* Add parity bits to the key */ 109 next = 0; 110 for (i = 0; i < 7; i++) { 111 tmp = key[i]; 112 pkey[i] = (tmp >> i) | next | 1; 113 next = tmp << (7 - i); 114 } 115 pkey[i] = next | 1; 116 117 DES_set_key((DES_cblock *) &pkey, &ks); 118 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks, 119 DES_ENCRYPT); 120 } 121 122 123 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 124 u8 *data, size_t data_len) 125 { 126 #ifdef OPENSSL_NO_RC4 127 return -1; 128 #else /* OPENSSL_NO_RC4 */ 129 EVP_CIPHER_CTX ctx; 130 int outl; 131 int res = -1; 132 unsigned char skip_buf[16]; 133 134 EVP_CIPHER_CTX_init(&ctx); 135 if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) || 136 !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) || 137 !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) || 138 !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1)) 139 goto out; 140 141 while (skip >= sizeof(skip_buf)) { 142 size_t len = skip; 143 if (len > sizeof(skip_buf)) 144 len = sizeof(skip_buf); 145 if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len)) 146 goto out; 147 skip -= len; 148 } 149 150 if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len)) 151 res = 0; 152 153 out: 154 EVP_CIPHER_CTX_cleanup(&ctx); 155 return res; 156 #endif /* OPENSSL_NO_RC4 */ 157 } 158 159 160 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 161 { 162 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac); 163 } 164 165 166 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 167 { 168 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac); 169 } 170 171 172 #ifndef NO_SHA256_WRAPPER 173 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 174 u8 *mac) 175 { 176 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac); 177 } 178 #endif /* NO_SHA256_WRAPPER */ 179 180 181 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen) 182 { 183 switch (keylen) { 184 case 16: 185 return EVP_aes_128_ecb(); 186 #ifndef OPENSSL_IS_BORINGSSL 187 case 24: 188 return EVP_aes_192_ecb(); 189 #endif /* OPENSSL_IS_BORINGSSL */ 190 case 32: 191 return EVP_aes_256_ecb(); 192 } 193 194 return NULL; 195 } 196 197 198 void * aes_encrypt_init(const u8 *key, size_t len) 199 { 200 EVP_CIPHER_CTX *ctx; 201 const EVP_CIPHER *type; 202 203 type = aes_get_evp_cipher(len); 204 if (type == NULL) 205 return NULL; 206 207 ctx = os_malloc(sizeof(*ctx)); 208 if (ctx == NULL) 209 return NULL; 210 EVP_CIPHER_CTX_init(ctx); 211 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) { 212 os_free(ctx); 213 return NULL; 214 } 215 EVP_CIPHER_CTX_set_padding(ctx, 0); 216 return ctx; 217 } 218 219 220 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) 221 { 222 EVP_CIPHER_CTX *c = ctx; 223 int clen = 16; 224 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) { 225 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s", 226 ERR_error_string(ERR_get_error(), NULL)); 227 } 228 } 229 230 231 void aes_encrypt_deinit(void *ctx) 232 { 233 EVP_CIPHER_CTX *c = ctx; 234 u8 buf[16]; 235 int len = sizeof(buf); 236 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) { 237 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: " 238 "%s", ERR_error_string(ERR_get_error(), NULL)); 239 } 240 if (len != 0) { 241 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " 242 "in AES encrypt", len); 243 } 244 EVP_CIPHER_CTX_cleanup(c); 245 bin_clear_free(c, sizeof(*c)); 246 } 247 248 249 void * aes_decrypt_init(const u8 *key, size_t len) 250 { 251 EVP_CIPHER_CTX *ctx; 252 const EVP_CIPHER *type; 253 254 type = aes_get_evp_cipher(len); 255 if (type == NULL) 256 return NULL; 257 258 ctx = os_malloc(sizeof(*ctx)); 259 if (ctx == NULL) 260 return NULL; 261 EVP_CIPHER_CTX_init(ctx); 262 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) { 263 os_free(ctx); 264 return NULL; 265 } 266 EVP_CIPHER_CTX_set_padding(ctx, 0); 267 return ctx; 268 } 269 270 271 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) 272 { 273 EVP_CIPHER_CTX *c = ctx; 274 int plen = 16; 275 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) { 276 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s", 277 ERR_error_string(ERR_get_error(), NULL)); 278 } 279 } 280 281 282 void aes_decrypt_deinit(void *ctx) 283 { 284 EVP_CIPHER_CTX *c = ctx; 285 u8 buf[16]; 286 int len = sizeof(buf); 287 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) { 288 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: " 289 "%s", ERR_error_string(ERR_get_error(), NULL)); 290 } 291 if (len != 0) { 292 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " 293 "in AES decrypt", len); 294 } 295 EVP_CIPHER_CTX_cleanup(c); 296 bin_clear_free(c, sizeof(*c)); 297 } 298 299 300 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher) 301 { 302 AES_KEY actx; 303 int res; 304 305 if (AES_set_encrypt_key(kek, kek_len << 3, &actx)) 306 return -1; 307 res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8); 308 OPENSSL_cleanse(&actx, sizeof(actx)); 309 return res <= 0 ? -1 : 0; 310 } 311 312 313 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher, 314 u8 *plain) 315 { 316 AES_KEY actx; 317 int res; 318 319 if (AES_set_decrypt_key(kek, kek_len << 3, &actx)) 320 return -1; 321 res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8); 322 OPENSSL_cleanse(&actx, sizeof(actx)); 323 return res <= 0 ? -1 : 0; 324 } 325 326 327 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) 328 { 329 EVP_CIPHER_CTX ctx; 330 int clen, len; 331 u8 buf[16]; 332 333 EVP_CIPHER_CTX_init(&ctx); 334 if (EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1) 335 return -1; 336 EVP_CIPHER_CTX_set_padding(&ctx, 0); 337 338 clen = data_len; 339 if (EVP_EncryptUpdate(&ctx, data, &clen, data, data_len) != 1 || 340 clen != (int) data_len) 341 return -1; 342 343 len = sizeof(buf); 344 if (EVP_EncryptFinal_ex(&ctx, buf, &len) != 1 || len != 0) 345 return -1; 346 EVP_CIPHER_CTX_cleanup(&ctx); 347 348 return 0; 349 } 350 351 352 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) 353 { 354 EVP_CIPHER_CTX ctx; 355 int plen, len; 356 u8 buf[16]; 357 358 EVP_CIPHER_CTX_init(&ctx); 359 if (EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1) 360 return -1; 361 EVP_CIPHER_CTX_set_padding(&ctx, 0); 362 363 plen = data_len; 364 if (EVP_DecryptUpdate(&ctx, data, &plen, data, data_len) != 1 || 365 plen != (int) data_len) 366 return -1; 367 368 len = sizeof(buf); 369 if (EVP_DecryptFinal_ex(&ctx, buf, &len) != 1 || len != 0) 370 return -1; 371 EVP_CIPHER_CTX_cleanup(&ctx); 372 373 return 0; 374 } 375 376 377 int crypto_mod_exp(const u8 *base, size_t base_len, 378 const u8 *power, size_t power_len, 379 const u8 *modulus, size_t modulus_len, 380 u8 *result, size_t *result_len) 381 { 382 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result; 383 int ret = -1; 384 BN_CTX *ctx; 385 386 ctx = BN_CTX_new(); 387 if (ctx == NULL) 388 return -1; 389 390 bn_base = BN_bin2bn(base, base_len, NULL); 391 bn_exp = BN_bin2bn(power, power_len, NULL); 392 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL); 393 bn_result = BN_new(); 394 395 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL || 396 bn_result == NULL) 397 goto error; 398 399 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1) 400 goto error; 401 402 *result_len = BN_bn2bin(bn_result, result); 403 ret = 0; 404 405 error: 406 BN_clear_free(bn_base); 407 BN_clear_free(bn_exp); 408 BN_clear_free(bn_modulus); 409 BN_clear_free(bn_result); 410 BN_CTX_free(ctx); 411 return ret; 412 } 413 414 415 struct crypto_cipher { 416 EVP_CIPHER_CTX enc; 417 EVP_CIPHER_CTX dec; 418 }; 419 420 421 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 422 const u8 *iv, const u8 *key, 423 size_t key_len) 424 { 425 struct crypto_cipher *ctx; 426 const EVP_CIPHER *cipher; 427 428 ctx = os_zalloc(sizeof(*ctx)); 429 if (ctx == NULL) 430 return NULL; 431 432 switch (alg) { 433 #ifndef OPENSSL_NO_RC4 434 case CRYPTO_CIPHER_ALG_RC4: 435 cipher = EVP_rc4(); 436 break; 437 #endif /* OPENSSL_NO_RC4 */ 438 #ifndef OPENSSL_NO_AES 439 case CRYPTO_CIPHER_ALG_AES: 440 switch (key_len) { 441 case 16: 442 cipher = EVP_aes_128_cbc(); 443 break; 444 #ifndef OPENSSL_IS_BORINGSSL 445 case 24: 446 cipher = EVP_aes_192_cbc(); 447 break; 448 #endif /* OPENSSL_IS_BORINGSSL */ 449 case 32: 450 cipher = EVP_aes_256_cbc(); 451 break; 452 default: 453 os_free(ctx); 454 return NULL; 455 } 456 break; 457 #endif /* OPENSSL_NO_AES */ 458 #ifndef OPENSSL_NO_DES 459 case CRYPTO_CIPHER_ALG_3DES: 460 cipher = EVP_des_ede3_cbc(); 461 break; 462 case CRYPTO_CIPHER_ALG_DES: 463 cipher = EVP_des_cbc(); 464 break; 465 #endif /* OPENSSL_NO_DES */ 466 #ifndef OPENSSL_NO_RC2 467 case CRYPTO_CIPHER_ALG_RC2: 468 cipher = EVP_rc2_ecb(); 469 break; 470 #endif /* OPENSSL_NO_RC2 */ 471 default: 472 os_free(ctx); 473 return NULL; 474 } 475 476 EVP_CIPHER_CTX_init(&ctx->enc); 477 EVP_CIPHER_CTX_set_padding(&ctx->enc, 0); 478 if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) || 479 !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) || 480 !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) { 481 EVP_CIPHER_CTX_cleanup(&ctx->enc); 482 os_free(ctx); 483 return NULL; 484 } 485 486 EVP_CIPHER_CTX_init(&ctx->dec); 487 EVP_CIPHER_CTX_set_padding(&ctx->dec, 0); 488 if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) || 489 !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) || 490 !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) { 491 EVP_CIPHER_CTX_cleanup(&ctx->enc); 492 EVP_CIPHER_CTX_cleanup(&ctx->dec); 493 os_free(ctx); 494 return NULL; 495 } 496 497 return ctx; 498 } 499 500 501 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, 502 u8 *crypt, size_t len) 503 { 504 int outl; 505 if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len)) 506 return -1; 507 return 0; 508 } 509 510 511 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, 512 u8 *plain, size_t len) 513 { 514 int outl; 515 outl = len; 516 if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len)) 517 return -1; 518 return 0; 519 } 520 521 522 void crypto_cipher_deinit(struct crypto_cipher *ctx) 523 { 524 EVP_CIPHER_CTX_cleanup(&ctx->enc); 525 EVP_CIPHER_CTX_cleanup(&ctx->dec); 526 os_free(ctx); 527 } 528 529 530 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ) 531 { 532 DH *dh; 533 struct wpabuf *pubkey = NULL, *privkey = NULL; 534 size_t publen, privlen; 535 536 *priv = NULL; 537 *publ = NULL; 538 539 dh = DH_new(); 540 if (dh == NULL) 541 return NULL; 542 543 dh->g = BN_new(); 544 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) 545 goto err; 546 547 dh->p = get_group5_prime(); 548 if (dh->p == NULL) 549 goto err; 550 551 if (DH_generate_key(dh) != 1) 552 goto err; 553 554 publen = BN_num_bytes(dh->pub_key); 555 pubkey = wpabuf_alloc(publen); 556 if (pubkey == NULL) 557 goto err; 558 privlen = BN_num_bytes(dh->priv_key); 559 privkey = wpabuf_alloc(privlen); 560 if (privkey == NULL) 561 goto err; 562 563 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen)); 564 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen)); 565 566 *priv = privkey; 567 *publ = pubkey; 568 return dh; 569 570 err: 571 wpabuf_clear_free(pubkey); 572 wpabuf_clear_free(privkey); 573 DH_free(dh); 574 return NULL; 575 } 576 577 578 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ) 579 { 580 DH *dh; 581 582 dh = DH_new(); 583 if (dh == NULL) 584 return NULL; 585 586 dh->g = BN_new(); 587 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) 588 goto err; 589 590 dh->p = get_group5_prime(); 591 if (dh->p == NULL) 592 goto err; 593 594 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL); 595 if (dh->priv_key == NULL) 596 goto err; 597 598 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL); 599 if (dh->pub_key == NULL) 600 goto err; 601 602 if (DH_generate_key(dh) != 1) 603 goto err; 604 605 return dh; 606 607 err: 608 DH_free(dh); 609 return NULL; 610 } 611 612 613 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public, 614 const struct wpabuf *own_private) 615 { 616 BIGNUM *pub_key; 617 struct wpabuf *res = NULL; 618 size_t rlen; 619 DH *dh = ctx; 620 int keylen; 621 622 if (ctx == NULL) 623 return NULL; 624 625 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public), 626 NULL); 627 if (pub_key == NULL) 628 return NULL; 629 630 rlen = DH_size(dh); 631 res = wpabuf_alloc(rlen); 632 if (res == NULL) 633 goto err; 634 635 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh); 636 if (keylen < 0) 637 goto err; 638 wpabuf_put(res, keylen); 639 BN_clear_free(pub_key); 640 641 return res; 642 643 err: 644 BN_clear_free(pub_key); 645 wpabuf_clear_free(res); 646 return NULL; 647 } 648 649 650 void dh5_free(void *ctx) 651 { 652 DH *dh; 653 if (ctx == NULL) 654 return; 655 dh = ctx; 656 DH_free(dh); 657 } 658 659 660 struct crypto_hash { 661 HMAC_CTX ctx; 662 }; 663 664 665 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 666 size_t key_len) 667 { 668 struct crypto_hash *ctx; 669 const EVP_MD *md; 670 671 switch (alg) { 672 #ifndef OPENSSL_NO_MD5 673 case CRYPTO_HASH_ALG_HMAC_MD5: 674 md = EVP_md5(); 675 break; 676 #endif /* OPENSSL_NO_MD5 */ 677 #ifndef OPENSSL_NO_SHA 678 case CRYPTO_HASH_ALG_HMAC_SHA1: 679 md = EVP_sha1(); 680 break; 681 #endif /* OPENSSL_NO_SHA */ 682 #ifndef OPENSSL_NO_SHA256 683 #ifdef CONFIG_SHA256 684 case CRYPTO_HASH_ALG_HMAC_SHA256: 685 md = EVP_sha256(); 686 break; 687 #endif /* CONFIG_SHA256 */ 688 #endif /* OPENSSL_NO_SHA256 */ 689 default: 690 return NULL; 691 } 692 693 ctx = os_zalloc(sizeof(*ctx)); 694 if (ctx == NULL) 695 return NULL; 696 HMAC_CTX_init(&ctx->ctx); 697 698 #if OPENSSL_VERSION_NUMBER < 0x00909000 699 HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL); 700 #else /* openssl < 0.9.9 */ 701 if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) { 702 bin_clear_free(ctx, sizeof(*ctx)); 703 return NULL; 704 } 705 #endif /* openssl < 0.9.9 */ 706 707 return ctx; 708 } 709 710 711 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len) 712 { 713 if (ctx == NULL) 714 return; 715 HMAC_Update(&ctx->ctx, data, len); 716 } 717 718 719 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len) 720 { 721 unsigned int mdlen; 722 int res; 723 724 if (ctx == NULL) 725 return -2; 726 727 if (mac == NULL || len == NULL) { 728 bin_clear_free(ctx, sizeof(*ctx)); 729 return 0; 730 } 731 732 mdlen = *len; 733 #if OPENSSL_VERSION_NUMBER < 0x00909000 734 HMAC_Final(&ctx->ctx, mac, &mdlen); 735 res = 1; 736 #else /* openssl < 0.9.9 */ 737 res = HMAC_Final(&ctx->ctx, mac, &mdlen); 738 #endif /* openssl < 0.9.9 */ 739 HMAC_CTX_cleanup(&ctx->ctx); 740 bin_clear_free(ctx, sizeof(*ctx)); 741 742 if (res == 1) { 743 *len = mdlen; 744 return 0; 745 } 746 747 return -1; 748 } 749 750 751 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key, 752 size_t key_len, size_t num_elem, 753 const u8 *addr[], const size_t *len, u8 *mac, 754 unsigned int mdlen) 755 { 756 HMAC_CTX ctx; 757 size_t i; 758 int res; 759 760 HMAC_CTX_init(&ctx); 761 #if OPENSSL_VERSION_NUMBER < 0x00909000 762 HMAC_Init_ex(&ctx, key, key_len, type, NULL); 763 #else /* openssl < 0.9.9 */ 764 if (HMAC_Init_ex(&ctx, key, key_len, type, NULL) != 1) 765 return -1; 766 #endif /* openssl < 0.9.9 */ 767 768 for (i = 0; i < num_elem; i++) 769 HMAC_Update(&ctx, addr[i], len[i]); 770 771 #if OPENSSL_VERSION_NUMBER < 0x00909000 772 HMAC_Final(&ctx, mac, &mdlen); 773 res = 1; 774 #else /* openssl < 0.9.9 */ 775 res = HMAC_Final(&ctx, mac, &mdlen); 776 #endif /* openssl < 0.9.9 */ 777 HMAC_CTX_cleanup(&ctx); 778 779 return res == 1 ? 0 : -1; 780 } 781 782 783 #ifndef CONFIG_FIPS 784 785 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem, 786 const u8 *addr[], const size_t *len, u8 *mac) 787 { 788 return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len, 789 mac, 16); 790 } 791 792 793 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len, 794 u8 *mac) 795 { 796 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac); 797 } 798 799 #endif /* CONFIG_FIPS */ 800 801 802 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len, 803 int iterations, u8 *buf, size_t buflen) 804 { 805 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid, 806 ssid_len, iterations, buflen, buf) != 1) 807 return -1; 808 return 0; 809 } 810 811 812 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, 813 const u8 *addr[], const size_t *len, u8 *mac) 814 { 815 return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr, 816 len, mac, 20); 817 } 818 819 820 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, 821 u8 *mac) 822 { 823 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); 824 } 825 826 827 #ifdef CONFIG_SHA256 828 829 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, 830 const u8 *addr[], const size_t *len, u8 *mac) 831 { 832 return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr, 833 len, mac, 32); 834 } 835 836 837 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, 838 size_t data_len, u8 *mac) 839 { 840 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); 841 } 842 843 #endif /* CONFIG_SHA256 */ 844 845 846 #ifdef CONFIG_SHA384 847 848 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem, 849 const u8 *addr[], const size_t *len, u8 *mac) 850 { 851 return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr, 852 len, mac, 32); 853 } 854 855 856 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data, 857 size_t data_len, u8 *mac) 858 { 859 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac); 860 } 861 862 #endif /* CONFIG_SHA384 */ 863 864 865 int crypto_get_random(void *buf, size_t len) 866 { 867 if (RAND_bytes(buf, len) != 1) 868 return -1; 869 return 0; 870 } 871 872 873 #ifdef CONFIG_OPENSSL_CMAC 874 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem, 875 const u8 *addr[], const size_t *len, u8 *mac) 876 { 877 CMAC_CTX *ctx; 878 int ret = -1; 879 size_t outlen, i; 880 881 ctx = CMAC_CTX_new(); 882 if (ctx == NULL) 883 return -1; 884 885 if (key_len == 32) { 886 if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL)) 887 goto fail; 888 } else if (key_len == 16) { 889 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL)) 890 goto fail; 891 } else { 892 goto fail; 893 } 894 for (i = 0; i < num_elem; i++) { 895 if (!CMAC_Update(ctx, addr[i], len[i])) 896 goto fail; 897 } 898 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16) 899 goto fail; 900 901 ret = 0; 902 fail: 903 CMAC_CTX_free(ctx); 904 return ret; 905 } 906 907 908 int omac1_aes_128_vector(const u8 *key, size_t num_elem, 909 const u8 *addr[], const size_t *len, u8 *mac) 910 { 911 return omac1_aes_vector(key, 16, num_elem, addr, len, mac); 912 } 913 914 915 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac) 916 { 917 return omac1_aes_128_vector(key, 1, &data, &data_len, mac); 918 } 919 920 921 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac) 922 { 923 return omac1_aes_vector(key, 32, 1, &data, &data_len, mac); 924 } 925 #endif /* CONFIG_OPENSSL_CMAC */ 926 927 928 struct crypto_bignum * crypto_bignum_init(void) 929 { 930 return (struct crypto_bignum *) BN_new(); 931 } 932 933 934 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len) 935 { 936 BIGNUM *bn = BN_bin2bn(buf, len, NULL); 937 return (struct crypto_bignum *) bn; 938 } 939 940 941 void crypto_bignum_deinit(struct crypto_bignum *n, int clear) 942 { 943 if (clear) 944 BN_clear_free((BIGNUM *) n); 945 else 946 BN_free((BIGNUM *) n); 947 } 948 949 950 int crypto_bignum_to_bin(const struct crypto_bignum *a, 951 u8 *buf, size_t buflen, size_t padlen) 952 { 953 int num_bytes, offset; 954 955 if (padlen > buflen) 956 return -1; 957 958 num_bytes = BN_num_bytes((const BIGNUM *) a); 959 if ((size_t) num_bytes > buflen) 960 return -1; 961 if (padlen > (size_t) num_bytes) 962 offset = padlen - num_bytes; 963 else 964 offset = 0; 965 966 os_memset(buf, 0, offset); 967 BN_bn2bin((const BIGNUM *) a, buf + offset); 968 969 return num_bytes + offset; 970 } 971 972 973 int crypto_bignum_add(const struct crypto_bignum *a, 974 const struct crypto_bignum *b, 975 struct crypto_bignum *c) 976 { 977 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 978 0 : -1; 979 } 980 981 982 int crypto_bignum_mod(const struct crypto_bignum *a, 983 const struct crypto_bignum *b, 984 struct crypto_bignum *c) 985 { 986 int res; 987 BN_CTX *bnctx; 988 989 bnctx = BN_CTX_new(); 990 if (bnctx == NULL) 991 return -1; 992 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b, 993 bnctx); 994 BN_CTX_free(bnctx); 995 996 return res ? 0 : -1; 997 } 998 999 1000 int crypto_bignum_exptmod(const struct crypto_bignum *a, 1001 const struct crypto_bignum *b, 1002 const struct crypto_bignum *c, 1003 struct crypto_bignum *d) 1004 { 1005 int res; 1006 BN_CTX *bnctx; 1007 1008 bnctx = BN_CTX_new(); 1009 if (bnctx == NULL) 1010 return -1; 1011 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, 1012 (const BIGNUM *) c, bnctx); 1013 BN_CTX_free(bnctx); 1014 1015 return res ? 0 : -1; 1016 } 1017 1018 1019 int crypto_bignum_inverse(const struct crypto_bignum *a, 1020 const struct crypto_bignum *b, 1021 struct crypto_bignum *c) 1022 { 1023 BIGNUM *res; 1024 BN_CTX *bnctx; 1025 1026 bnctx = BN_CTX_new(); 1027 if (bnctx == NULL) 1028 return -1; 1029 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a, 1030 (const BIGNUM *) b, bnctx); 1031 BN_CTX_free(bnctx); 1032 1033 return res ? 0 : -1; 1034 } 1035 1036 1037 int crypto_bignum_sub(const struct crypto_bignum *a, 1038 const struct crypto_bignum *b, 1039 struct crypto_bignum *c) 1040 { 1041 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 1042 0 : -1; 1043 } 1044 1045 1046 int crypto_bignum_div(const struct crypto_bignum *a, 1047 const struct crypto_bignum *b, 1048 struct crypto_bignum *c) 1049 { 1050 int res; 1051 1052 BN_CTX *bnctx; 1053 1054 bnctx = BN_CTX_new(); 1055 if (bnctx == NULL) 1056 return -1; 1057 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a, 1058 (const BIGNUM *) b, bnctx); 1059 BN_CTX_free(bnctx); 1060 1061 return res ? 0 : -1; 1062 } 1063 1064 1065 int crypto_bignum_mulmod(const struct crypto_bignum *a, 1066 const struct crypto_bignum *b, 1067 const struct crypto_bignum *c, 1068 struct crypto_bignum *d) 1069 { 1070 int res; 1071 1072 BN_CTX *bnctx; 1073 1074 bnctx = BN_CTX_new(); 1075 if (bnctx == NULL) 1076 return -1; 1077 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, 1078 (const BIGNUM *) c, bnctx); 1079 BN_CTX_free(bnctx); 1080 1081 return res ? 0 : -1; 1082 } 1083 1084 1085 int crypto_bignum_cmp(const struct crypto_bignum *a, 1086 const struct crypto_bignum *b) 1087 { 1088 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b); 1089 } 1090 1091 1092 int crypto_bignum_bits(const struct crypto_bignum *a) 1093 { 1094 return BN_num_bits((const BIGNUM *) a); 1095 } 1096 1097 1098 int crypto_bignum_is_zero(const struct crypto_bignum *a) 1099 { 1100 return BN_is_zero((const BIGNUM *) a); 1101 } 1102 1103 1104 int crypto_bignum_is_one(const struct crypto_bignum *a) 1105 { 1106 return BN_is_one((const BIGNUM *) a); 1107 } 1108 1109 1110 int crypto_bignum_legendre(const struct crypto_bignum *a, 1111 const struct crypto_bignum *p) 1112 { 1113 BN_CTX *bnctx; 1114 BIGNUM *exp = NULL, *tmp = NULL; 1115 int res = -2; 1116 1117 bnctx = BN_CTX_new(); 1118 if (bnctx == NULL) 1119 return -2; 1120 1121 exp = BN_new(); 1122 tmp = BN_new(); 1123 if (!exp || !tmp || 1124 /* exp = (p-1) / 2 */ 1125 !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) || 1126 !BN_rshift1(exp, exp) || 1127 !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p, 1128 bnctx)) 1129 goto fail; 1130 1131 if (BN_is_word(tmp, 1)) 1132 res = 1; 1133 else if (BN_is_zero(tmp)) 1134 res = 0; 1135 else 1136 res = -1; 1137 1138 fail: 1139 BN_clear_free(tmp); 1140 BN_clear_free(exp); 1141 BN_CTX_free(bnctx); 1142 return res; 1143 } 1144 1145 1146 #ifdef CONFIG_ECC 1147 1148 struct crypto_ec { 1149 EC_GROUP *group; 1150 BN_CTX *bnctx; 1151 BIGNUM *prime; 1152 BIGNUM *order; 1153 BIGNUM *a; 1154 BIGNUM *b; 1155 }; 1156 1157 struct crypto_ec * crypto_ec_init(int group) 1158 { 1159 struct crypto_ec *e; 1160 int nid; 1161 1162 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */ 1163 switch (group) { 1164 case 19: 1165 nid = NID_X9_62_prime256v1; 1166 break; 1167 case 20: 1168 nid = NID_secp384r1; 1169 break; 1170 case 21: 1171 nid = NID_secp521r1; 1172 break; 1173 case 25: 1174 nid = NID_X9_62_prime192v1; 1175 break; 1176 case 26: 1177 nid = NID_secp224r1; 1178 break; 1179 #ifdef NID_brainpoolP224r1 1180 case 27: 1181 nid = NID_brainpoolP224r1; 1182 break; 1183 #endif /* NID_brainpoolP224r1 */ 1184 #ifdef NID_brainpoolP256r1 1185 case 28: 1186 nid = NID_brainpoolP256r1; 1187 break; 1188 #endif /* NID_brainpoolP256r1 */ 1189 #ifdef NID_brainpoolP384r1 1190 case 29: 1191 nid = NID_brainpoolP384r1; 1192 break; 1193 #endif /* NID_brainpoolP384r1 */ 1194 #ifdef NID_brainpoolP512r1 1195 case 30: 1196 nid = NID_brainpoolP512r1; 1197 break; 1198 #endif /* NID_brainpoolP512r1 */ 1199 default: 1200 return NULL; 1201 } 1202 1203 e = os_zalloc(sizeof(*e)); 1204 if (e == NULL) 1205 return NULL; 1206 1207 e->bnctx = BN_CTX_new(); 1208 e->group = EC_GROUP_new_by_curve_name(nid); 1209 e->prime = BN_new(); 1210 e->order = BN_new(); 1211 e->a = BN_new(); 1212 e->b = BN_new(); 1213 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL || 1214 e->order == NULL || e->a == NULL || e->b == NULL || 1215 !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) || 1216 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) { 1217 crypto_ec_deinit(e); 1218 e = NULL; 1219 } 1220 1221 return e; 1222 } 1223 1224 1225 void crypto_ec_deinit(struct crypto_ec *e) 1226 { 1227 if (e == NULL) 1228 return; 1229 BN_clear_free(e->b); 1230 BN_clear_free(e->a); 1231 BN_clear_free(e->order); 1232 BN_clear_free(e->prime); 1233 EC_GROUP_free(e->group); 1234 BN_CTX_free(e->bnctx); 1235 os_free(e); 1236 } 1237 1238 1239 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e) 1240 { 1241 if (e == NULL) 1242 return NULL; 1243 return (struct crypto_ec_point *) EC_POINT_new(e->group); 1244 } 1245 1246 1247 size_t crypto_ec_prime_len(struct crypto_ec *e) 1248 { 1249 return BN_num_bytes(e->prime); 1250 } 1251 1252 1253 size_t crypto_ec_prime_len_bits(struct crypto_ec *e) 1254 { 1255 return BN_num_bits(e->prime); 1256 } 1257 1258 1259 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e) 1260 { 1261 return (const struct crypto_bignum *) e->prime; 1262 } 1263 1264 1265 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e) 1266 { 1267 return (const struct crypto_bignum *) e->order; 1268 } 1269 1270 1271 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear) 1272 { 1273 if (clear) 1274 EC_POINT_clear_free((EC_POINT *) p); 1275 else 1276 EC_POINT_free((EC_POINT *) p); 1277 } 1278 1279 1280 int crypto_ec_point_to_bin(struct crypto_ec *e, 1281 const struct crypto_ec_point *point, u8 *x, u8 *y) 1282 { 1283 BIGNUM *x_bn, *y_bn; 1284 int ret = -1; 1285 int len = BN_num_bytes(e->prime); 1286 1287 x_bn = BN_new(); 1288 y_bn = BN_new(); 1289 1290 if (x_bn && y_bn && 1291 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point, 1292 x_bn, y_bn, e->bnctx)) { 1293 if (x) { 1294 crypto_bignum_to_bin((struct crypto_bignum *) x_bn, 1295 x, len, len); 1296 } 1297 if (y) { 1298 crypto_bignum_to_bin((struct crypto_bignum *) y_bn, 1299 y, len, len); 1300 } 1301 ret = 0; 1302 } 1303 1304 BN_clear_free(x_bn); 1305 BN_clear_free(y_bn); 1306 return ret; 1307 } 1308 1309 1310 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 1311 const u8 *val) 1312 { 1313 BIGNUM *x, *y; 1314 EC_POINT *elem; 1315 int len = BN_num_bytes(e->prime); 1316 1317 x = BN_bin2bn(val, len, NULL); 1318 y = BN_bin2bn(val + len, len, NULL); 1319 elem = EC_POINT_new(e->group); 1320 if (x == NULL || y == NULL || elem == NULL) { 1321 BN_clear_free(x); 1322 BN_clear_free(y); 1323 EC_POINT_clear_free(elem); 1324 return NULL; 1325 } 1326 1327 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y, 1328 e->bnctx)) { 1329 EC_POINT_clear_free(elem); 1330 elem = NULL; 1331 } 1332 1333 BN_clear_free(x); 1334 BN_clear_free(y); 1335 1336 return (struct crypto_ec_point *) elem; 1337 } 1338 1339 1340 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 1341 const struct crypto_ec_point *b, 1342 struct crypto_ec_point *c) 1343 { 1344 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a, 1345 (const EC_POINT *) b, e->bnctx) ? 0 : -1; 1346 } 1347 1348 1349 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 1350 const struct crypto_bignum *b, 1351 struct crypto_ec_point *res) 1352 { 1353 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL, 1354 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx) 1355 ? 0 : -1; 1356 } 1357 1358 1359 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p) 1360 { 1361 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1; 1362 } 1363 1364 1365 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 1366 struct crypto_ec_point *p, 1367 const struct crypto_bignum *x, int y_bit) 1368 { 1369 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p, 1370 (const BIGNUM *) x, y_bit, 1371 e->bnctx) || 1372 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx)) 1373 return -1; 1374 return 0; 1375 } 1376 1377 1378 struct crypto_bignum * 1379 crypto_ec_point_compute_y_sqr(struct crypto_ec *e, 1380 const struct crypto_bignum *x) 1381 { 1382 BIGNUM *tmp, *tmp2, *y_sqr = NULL; 1383 1384 tmp = BN_new(); 1385 tmp2 = BN_new(); 1386 1387 /* y^2 = x^3 + ax + b */ 1388 if (tmp && tmp2 && 1389 BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) && 1390 BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) && 1391 BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) && 1392 BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) && 1393 BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) { 1394 y_sqr = tmp2; 1395 tmp2 = NULL; 1396 } 1397 1398 BN_clear_free(tmp); 1399 BN_clear_free(tmp2); 1400 1401 return (struct crypto_bignum *) y_sqr; 1402 } 1403 1404 1405 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 1406 const struct crypto_ec_point *p) 1407 { 1408 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p); 1409 } 1410 1411 1412 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 1413 const struct crypto_ec_point *p) 1414 { 1415 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, 1416 e->bnctx) == 1; 1417 } 1418 1419 1420 int crypto_ec_point_cmp(const struct crypto_ec *e, 1421 const struct crypto_ec_point *a, 1422 const struct crypto_ec_point *b) 1423 { 1424 return EC_POINT_cmp(e->group, (const EC_POINT *) a, 1425 (const EC_POINT *) b, e->bnctx); 1426 } 1427 1428 #endif /* CONFIG_ECC */ 1429