Home | History | Annotate | Download | only in hwui
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "OpenGLRenderer"
     18 
     19 #include <math.h>
     20 #include <stdlib.h>
     21 #include <string.h>
     22 
     23 #include <utils/Log.h>
     24 
     25 #include <SkMatrix.h>
     26 
     27 #include "Matrix.h"
     28 
     29 namespace android {
     30 namespace uirenderer {
     31 
     32 ///////////////////////////////////////////////////////////////////////////////
     33 // Defines
     34 ///////////////////////////////////////////////////////////////////////////////
     35 
     36 static const float EPSILON = 0.0000001f;
     37 
     38 ///////////////////////////////////////////////////////////////////////////////
     39 // Matrix
     40 ///////////////////////////////////////////////////////////////////////////////
     41 
     42 const Matrix4& Matrix4::identity() {
     43     static Matrix4 sIdentity;
     44     return sIdentity;
     45 }
     46 
     47 void Matrix4::loadIdentity() {
     48     data[kScaleX]       = 1.0f;
     49     data[kSkewY]        = 0.0f;
     50     data[2]             = 0.0f;
     51     data[kPerspective0] = 0.0f;
     52 
     53     data[kSkewX]        = 0.0f;
     54     data[kScaleY]       = 1.0f;
     55     data[6]             = 0.0f;
     56     data[kPerspective1] = 0.0f;
     57 
     58     data[8]             = 0.0f;
     59     data[9]             = 0.0f;
     60     data[kScaleZ]       = 1.0f;
     61     data[11]            = 0.0f;
     62 
     63     data[kTranslateX]   = 0.0f;
     64     data[kTranslateY]   = 0.0f;
     65     data[kTranslateZ]   = 0.0f;
     66     data[kPerspective2] = 1.0f;
     67 
     68     mType = kTypeIdentity | kTypeRectToRect;
     69 }
     70 
     71 static bool isZero(float f) {
     72     return fabs(f) <= EPSILON;
     73 }
     74 
     75 uint8_t Matrix4::getType() const {
     76     if (mType & kTypeUnknown) {
     77         mType = kTypeIdentity;
     78 
     79         if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
     80                 data[kPerspective2] != 1.0f) {
     81             mType |= kTypePerspective;
     82         }
     83 
     84         if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
     85             mType |= kTypeTranslate;
     86         }
     87 
     88         float m00 = data[kScaleX];
     89         float m01 = data[kSkewX];
     90         float m10 = data[kSkewY];
     91         float m11 = data[kScaleY];
     92         float m32 = data[kTranslateZ];
     93 
     94         if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
     95             mType |= kTypeAffine;
     96         }
     97 
     98         if (m00 != 1.0f || m11 != 1.0f) {
     99             mType |= kTypeScale;
    100         }
    101 
    102         // The following section determines whether the matrix will preserve
    103         // rectangles. For instance, a rectangle transformed by a pure
    104         // translation matrix will result in a rectangle. A rectangle
    105         // transformed by a 45 degrees rotation matrix is not a rectangle.
    106         // If the matrix has a perspective component then we already know
    107         // it doesn't preserve rectangles.
    108         if (!(mType & kTypePerspective)) {
    109             if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
    110                     (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
    111                 mType |= kTypeRectToRect;
    112             }
    113         }
    114     }
    115     return mType;
    116 }
    117 
    118 uint8_t Matrix4::getGeometryType() const {
    119     return getType() & sGeometryMask;
    120 }
    121 
    122 bool Matrix4::rectToRect() const {
    123     return getType() & kTypeRectToRect;
    124 }
    125 
    126 bool Matrix4::positiveScale() const {
    127     return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
    128 }
    129 
    130 bool Matrix4::changesBounds() const {
    131     return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
    132 }
    133 
    134 bool Matrix4::isPureTranslate() const {
    135     // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
    136     // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
    137     return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
    138 }
    139 
    140 bool Matrix4::isSimple() const {
    141     return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
    142 }
    143 
    144 bool Matrix4::isIdentity() const {
    145     return getGeometryType() == kTypeIdentity;
    146 }
    147 
    148 bool Matrix4::isPerspective() const {
    149     return getType() & kTypePerspective;
    150 }
    151 
    152 void Matrix4::load(const float* v) {
    153     memcpy(data, v, sizeof(data));
    154     mType = kTypeUnknown;
    155 }
    156 
    157 void Matrix4::load(const Matrix4& v) {
    158     *this = v;
    159 }
    160 
    161 void Matrix4::load(const SkMatrix& v) {
    162     memset(data, 0, sizeof(data));
    163 
    164     data[kScaleX]     = v[SkMatrix::kMScaleX];
    165     data[kSkewX]      = v[SkMatrix::kMSkewX];
    166     data[kTranslateX] = v[SkMatrix::kMTransX];
    167 
    168     data[kSkewY]      = v[SkMatrix::kMSkewY];
    169     data[kScaleY]     = v[SkMatrix::kMScaleY];
    170     data[kTranslateY] = v[SkMatrix::kMTransY];
    171 
    172     data[kPerspective0]  = v[SkMatrix::kMPersp0];
    173     data[kPerspective1]  = v[SkMatrix::kMPersp1];
    174     data[kPerspective2]  = v[SkMatrix::kMPersp2];
    175 
    176     data[kScaleZ] = 1.0f;
    177 
    178     // NOTE: The flags are compatible between SkMatrix and this class.
    179     //       However, SkMatrix::getType() does not return the flag
    180     //       kRectStaysRect. The return value is masked with 0xF
    181     //       so we need the extra rectStaysRect() check
    182     mType = v.getType();
    183     if (v.rectStaysRect()) {
    184         mType |= kTypeRectToRect;
    185     }
    186 }
    187 
    188 void Matrix4::copyTo(SkMatrix& v) const {
    189     v.reset();
    190 
    191     v.set(SkMatrix::kMScaleX, data[kScaleX]);
    192     v.set(SkMatrix::kMSkewX,  data[kSkewX]);
    193     v.set(SkMatrix::kMTransX, data[kTranslateX]);
    194 
    195     v.set(SkMatrix::kMSkewY,  data[kSkewY]);
    196     v.set(SkMatrix::kMScaleY, data[kScaleY]);
    197     v.set(SkMatrix::kMTransY, data[kTranslateY]);
    198 
    199     v.set(SkMatrix::kMPersp0, data[kPerspective0]);
    200     v.set(SkMatrix::kMPersp1, data[kPerspective1]);
    201     v.set(SkMatrix::kMPersp2, data[kPerspective2]);
    202 }
    203 
    204 void Matrix4::loadInverse(const Matrix4& v) {
    205     // Fast case for common translation matrices
    206     if (v.isPureTranslate()) {
    207         // Reset the matrix
    208         // Unnamed fields are never written to except by
    209         // loadIdentity(), they don't need to be reset
    210         data[kScaleX]       = 1.0f;
    211         data[kSkewX]        = 0.0f;
    212 
    213         data[kScaleY]       = 1.0f;
    214         data[kSkewY]        = 0.0f;
    215 
    216         data[kScaleZ]       = 1.0f;
    217 
    218         data[kPerspective0] = 0.0f;
    219         data[kPerspective1] = 0.0f;
    220         data[kPerspective2] = 1.0f;
    221 
    222         // No need to deal with kTranslateZ because isPureTranslate()
    223         // only returns true when the kTranslateZ component is 0
    224         data[kTranslateX]   = -v.data[kTranslateX];
    225         data[kTranslateY]   = -v.data[kTranslateY];
    226         data[kTranslateZ]   = 0.0f;
    227 
    228         // A "pure translate" matrix can be identity or translation
    229         mType = v.getType();
    230         return;
    231     }
    232 
    233     double scale = 1.0 /
    234             (v.data[kScaleX] * ((double) v.data[kScaleY]  * v.data[kPerspective2] -
    235                     (double) v.data[kTranslateY] * v.data[kPerspective1]) +
    236              v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
    237                      (double) v.data[kSkewY] * v.data[kPerspective2]) +
    238              v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
    239                      (double) v.data[kScaleY] * v.data[kPerspective0]));
    240 
    241     data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
    242             v.data[kTranslateY] * v.data[kPerspective1]) * scale;
    243     data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
    244             v.data[kSkewX]  * v.data[kPerspective2]) * scale;
    245     data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
    246             v.data[kTranslateX] * v.data[kScaleY]) * scale;
    247 
    248     data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
    249             v.data[kSkewY]  * v.data[kPerspective2]) * scale;
    250     data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
    251             v.data[kTranslateX] * v.data[kPerspective0]) * scale;
    252     data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
    253             v.data[kScaleX] * v.data[kTranslateY]) * scale;
    254 
    255     data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
    256             v.data[kScaleY] * v.data[kPerspective0]) * scale;
    257     data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
    258             v.data[kScaleX] * v.data[kPerspective1]) * scale;
    259     data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
    260             v.data[kSkewX] * v.data[kSkewY]) * scale;
    261 
    262     mType = kTypeUnknown;
    263 }
    264 
    265 void Matrix4::copyTo(float* v) const {
    266     memcpy(v, data, sizeof(data));
    267 }
    268 
    269 float Matrix4::getTranslateX() const {
    270     return data[kTranslateX];
    271 }
    272 
    273 float Matrix4::getTranslateY() const {
    274     return data[kTranslateY];
    275 }
    276 
    277 void Matrix4::multiply(float v) {
    278     for (int i = 0; i < 16; i++) {
    279         data[i] *= v;
    280     }
    281     mType = kTypeUnknown;
    282 }
    283 
    284 void Matrix4::loadTranslate(float x, float y, float z) {
    285     loadIdentity();
    286 
    287     data[kTranslateX] = x;
    288     data[kTranslateY] = y;
    289     data[kTranslateZ] = z;
    290 
    291     mType = kTypeTranslate | kTypeRectToRect;
    292 }
    293 
    294 void Matrix4::loadScale(float sx, float sy, float sz) {
    295     loadIdentity();
    296 
    297     data[kScaleX] = sx;
    298     data[kScaleY] = sy;
    299     data[kScaleZ] = sz;
    300 
    301     mType = kTypeScale | kTypeRectToRect;
    302 }
    303 
    304 void Matrix4::loadSkew(float sx, float sy) {
    305     loadIdentity();
    306 
    307     data[kScaleX]       = 1.0f;
    308     data[kSkewX]        = sx;
    309     data[kTranslateX]   = 0.0f;
    310 
    311     data[kSkewY]        = sy;
    312     data[kScaleY]       = 1.0f;
    313     data[kTranslateY]   = 0.0f;
    314 
    315     data[kPerspective0] = 0.0f;
    316     data[kPerspective1] = 0.0f;
    317     data[kPerspective2] = 1.0f;
    318 
    319     mType = kTypeUnknown;
    320 }
    321 
    322 void Matrix4::loadRotate(float angle) {
    323     angle *= float(M_PI / 180.0f);
    324     float c = cosf(angle);
    325     float s = sinf(angle);
    326 
    327     loadIdentity();
    328 
    329     data[kScaleX]     = c;
    330     data[kSkewX]      = -s;
    331 
    332     data[kSkewY]      = s;
    333     data[kScaleY]     = c;
    334 
    335     mType = kTypeUnknown;
    336 }
    337 
    338 void Matrix4::loadRotate(float angle, float x, float y, float z) {
    339     data[kPerspective0]  = 0.0f;
    340     data[kPerspective1]  = 0.0f;
    341     data[11]             = 0.0f;
    342     data[kTranslateX]    = 0.0f;
    343     data[kTranslateY]    = 0.0f;
    344     data[kTranslateZ]    = 0.0f;
    345     data[kPerspective2]  = 1.0f;
    346 
    347     angle *= float(M_PI / 180.0f);
    348     float c = cosf(angle);
    349     float s = sinf(angle);
    350 
    351     const float length = sqrtf(x * x + y * y + z * z);
    352     float recipLen = 1.0f / length;
    353     x *= recipLen;
    354     y *= recipLen;
    355     z *= recipLen;
    356 
    357     const float nc = 1.0f - c;
    358     const float xy = x * y;
    359     const float yz = y * z;
    360     const float zx = z * x;
    361     const float xs = x * s;
    362     const float ys = y * s;
    363     const float zs = z * s;
    364 
    365     data[kScaleX] = x * x * nc +  c;
    366     data[kSkewX]  =    xy * nc - zs;
    367     data[8]       =    zx * nc + ys;
    368     data[kSkewY]  =    xy * nc + zs;
    369     data[kScaleY] = y * y * nc +  c;
    370     data[9]       =    yz * nc - xs;
    371     data[2]       =    zx * nc - ys;
    372     data[6]       =    yz * nc + xs;
    373     data[kScaleZ] = z * z * nc +  c;
    374 
    375     mType = kTypeUnknown;
    376 }
    377 
    378 void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
    379     for (int i = 0 ; i < 4 ; i++) {
    380         float x = 0;
    381         float y = 0;
    382         float z = 0;
    383         float w = 0;
    384 
    385         for (int j = 0 ; j < 4 ; j++) {
    386             const float e = v.get(i, j);
    387             x += u.get(j, 0) * e;
    388             y += u.get(j, 1) * e;
    389             z += u.get(j, 2) * e;
    390             w += u.get(j, 3) * e;
    391         }
    392 
    393         set(i, 0, x);
    394         set(i, 1, y);
    395         set(i, 2, z);
    396         set(i, 3, w);
    397     }
    398 
    399     mType = kTypeUnknown;
    400 }
    401 
    402 void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
    403     loadIdentity();
    404 
    405     data[kScaleX] = 2.0f / (right - left);
    406     data[kScaleY] = 2.0f / (top - bottom);
    407     data[kScaleZ] = -2.0f / (far - near);
    408     data[kTranslateX] = -(right + left) / (right - left);
    409     data[kTranslateY] = -(top + bottom) / (top - bottom);
    410     data[kTranslateZ] = -(far + near) / (far - near);
    411 
    412     mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
    413 }
    414 
    415 float Matrix4::mapZ(const Vector3& orig) const {
    416     // duplicates logic for mapPoint3d's z coordinate
    417     return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
    418 }
    419 
    420 void Matrix4::mapPoint3d(Vector3& vec) const {
    421     //TODO: optimize simple case
    422     const Vector3 orig(vec);
    423     vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
    424     vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
    425     vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
    426 }
    427 
    428 #define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
    429 
    430 void Matrix4::mapPoint(float& x, float& y) const {
    431     if (isSimple()) {
    432         MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
    433         MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
    434         return;
    435     }
    436 
    437     float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
    438     float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
    439     float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
    440     if (dz) dz = 1.0f / dz;
    441 
    442     x = dx * dz;
    443     y = dy * dz;
    444 }
    445 
    446 void Matrix4::mapRect(Rect& r) const {
    447     if (isIdentity()) return;
    448 
    449     if (isSimple()) {
    450         MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
    451         MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
    452         MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
    453         MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
    454 
    455         if (r.left > r.right) {
    456             float x = r.left;
    457             r.left = r.right;
    458             r.right = x;
    459         }
    460 
    461         if (r.top > r.bottom) {
    462             float y = r.top;
    463             r.top = r.bottom;
    464             r.bottom = y;
    465         }
    466 
    467         return;
    468     }
    469 
    470     float vertices[] = {
    471         r.left, r.top,
    472         r.right, r.top,
    473         r.right, r.bottom,
    474         r.left, r.bottom
    475     };
    476 
    477     float x, y, z;
    478 
    479     for (int i = 0; i < 8; i+= 2) {
    480         float px = vertices[i];
    481         float py = vertices[i + 1];
    482 
    483         x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
    484         y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
    485         z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
    486         if (z) z = 1.0f / z;
    487 
    488         vertices[i] = x * z;
    489         vertices[i + 1] = y * z;
    490     }
    491 
    492     r.left = r.right = vertices[0];
    493     r.top = r.bottom = vertices[1];
    494 
    495     for (int i = 2; i < 8; i += 2) {
    496         x = vertices[i];
    497         y = vertices[i + 1];
    498 
    499         if (x < r.left) r.left = x;
    500         else if (x > r.right) r.right = x;
    501         if (y < r.top) r.top = y;
    502         else if (y > r.bottom) r.bottom = y;
    503     }
    504 }
    505 
    506 void Matrix4::decomposeScale(float& sx, float& sy) const {
    507     float len;
    508     len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
    509     sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
    510     len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
    511     sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
    512 }
    513 
    514 void Matrix4::dump(const char* label) const {
    515     ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
    516     ALOGD("  %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
    517     ALOGD("  %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
    518     ALOGD("  %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
    519     ALOGD("  %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
    520     ALOGD("]");
    521 }
    522 
    523 }; // namespace uirenderer
    524 }; // namespace android
    525