Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 #include <stdio.h>
     13 #include <limits.h>
     14 
     15 #include "vpx/vpx_encoder.h"
     16 #include "vpx_mem/vpx_mem.h"
     17 #include "vpx_ports/mem_ops.h"
     18 
     19 #include "vp9/common/vp9_entropy.h"
     20 #include "vp9/common/vp9_entropymode.h"
     21 #include "vp9/common/vp9_entropymv.h"
     22 #include "vp9/common/vp9_mvref_common.h"
     23 #include "vp9/common/vp9_pragmas.h"
     24 #include "vp9/common/vp9_pred_common.h"
     25 #include "vp9/common/vp9_seg_common.h"
     26 #include "vp9/common/vp9_systemdependent.h"
     27 #include "vp9/common/vp9_tile_common.h"
     28 
     29 #include "vp9/encoder/vp9_cost.h"
     30 #include "vp9/encoder/vp9_bitstream.h"
     31 #include "vp9/encoder/vp9_encodemv.h"
     32 #include "vp9/encoder/vp9_mcomp.h"
     33 #include "vp9/encoder/vp9_segmentation.h"
     34 #include "vp9/encoder/vp9_subexp.h"
     35 #include "vp9/encoder/vp9_tokenize.h"
     36 #include "vp9/encoder/vp9_write_bit_buffer.h"
     37 
     38 static struct vp9_token intra_mode_encodings[INTRA_MODES];
     39 static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
     40 static struct vp9_token partition_encodings[PARTITION_TYPES];
     41 static struct vp9_token inter_mode_encodings[INTER_MODES];
     42 
     43 void vp9_entropy_mode_init() {
     44   vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
     45   vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
     46   vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
     47   vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
     48 }
     49 
     50 static void write_intra_mode(vp9_writer *w, MB_PREDICTION_MODE mode,
     51                              const vp9_prob *probs) {
     52   vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
     53 }
     54 
     55 static void write_inter_mode(vp9_writer *w, MB_PREDICTION_MODE mode,
     56                              const vp9_prob *probs) {
     57   assert(is_inter_mode(mode));
     58   vp9_write_token(w, vp9_inter_mode_tree, probs,
     59                   &inter_mode_encodings[INTER_OFFSET(mode)]);
     60 }
     61 
     62 static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
     63                                 int data, int max) {
     64   vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
     65 }
     66 
     67 static void prob_diff_update(const vp9_tree_index *tree,
     68                              vp9_prob probs[/*n - 1*/],
     69                              const unsigned int counts[/*n - 1*/],
     70                              int n, vp9_writer *w) {
     71   int i;
     72   unsigned int branch_ct[32][2];
     73 
     74   // Assuming max number of probabilities <= 32
     75   assert(n <= 32);
     76 
     77   vp9_tree_probs_from_distribution(tree, branch_ct, counts);
     78   for (i = 0; i < n - 1; ++i)
     79     vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
     80 }
     81 
     82 static void write_selected_tx_size(const VP9_COMP *cpi,
     83                                    TX_SIZE tx_size, BLOCK_SIZE bsize,
     84                                    vp9_writer *w) {
     85   const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
     86   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
     87   const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
     88                                                  &cpi->common.fc.tx_probs);
     89   vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
     90   if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
     91     vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
     92     if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
     93       vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
     94   }
     95 }
     96 
     97 static int write_skip(const VP9_COMP *cpi, int segment_id, const MODE_INFO *mi,
     98                       vp9_writer *w) {
     99   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    100   if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
    101     return 1;
    102   } else {
    103     const int skip = mi->mbmi.skip;
    104     vp9_write(w, skip, vp9_get_skip_prob(&cpi->common, xd));
    105     return skip;
    106   }
    107 }
    108 
    109 static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
    110   int k;
    111 
    112   for (k = 0; k < SKIP_CONTEXTS; ++k)
    113     vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
    114 }
    115 
    116 static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
    117   int j;
    118   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
    119     prob_diff_update(vp9_switchable_interp_tree,
    120                      cm->fc.switchable_interp_prob[j],
    121                      cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
    122 }
    123 
    124 static void pack_mb_tokens(vp9_writer *w,
    125                            TOKENEXTRA **tp, const TOKENEXTRA *stop) {
    126   TOKENEXTRA *p = *tp;
    127 
    128   while (p < stop && p->token != EOSB_TOKEN) {
    129     const int t = p->token;
    130     const struct vp9_token *const a = &vp9_coef_encodings[t];
    131     const vp9_extra_bit *const b = &vp9_extra_bits[t];
    132     int i = 0;
    133     int v = a->value;
    134     int n = a->len;
    135 
    136     /* skip one or two nodes */
    137     if (p->skip_eob_node) {
    138       n -= p->skip_eob_node;
    139       i = 2 * p->skip_eob_node;
    140     }
    141 
    142     // TODO(jbb): expanding this can lead to big gains.  It allows
    143     // much better branch prediction and would enable us to avoid numerous
    144     // lookups and compares.
    145 
    146     // If we have a token that's in the constrained set, the coefficient tree
    147     // is split into two treed writes.  The first treed write takes care of the
    148     // unconstrained nodes.  The second treed write takes care of the
    149     // constrained nodes.
    150     if (t >= TWO_TOKEN && t < EOB_TOKEN) {
    151       int len = UNCONSTRAINED_NODES - p->skip_eob_node;
    152       int bits = v >> (n - len);
    153       vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
    154       vp9_write_tree(w, vp9_coef_con_tree,
    155                      vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
    156                      v, n - len, 0);
    157     } else {
    158       vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
    159     }
    160 
    161     if (b->base_val) {
    162       const int e = p->extra, l = b->len;
    163 
    164       if (l) {
    165         const unsigned char *pb = b->prob;
    166         int v = e >> 1;
    167         int n = l;              /* number of bits in v, assumed nonzero */
    168         int i = 0;
    169 
    170         do {
    171           const int bb = (v >> --n) & 1;
    172           vp9_write(w, bb, pb[i >> 1]);
    173           i = b->tree[i + bb];
    174         } while (n);
    175       }
    176 
    177       vp9_write_bit(w, e & 1);
    178     }
    179     ++p;
    180   }
    181 
    182   *tp = p + (p->token == EOSB_TOKEN);
    183 }
    184 
    185 static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
    186                              int segment_id) {
    187   if (seg->enabled && seg->update_map)
    188     vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
    189 }
    190 
    191 // This function encodes the reference frame
    192 static void write_ref_frames(const VP9_COMP *cpi, vp9_writer *w) {
    193   const VP9_COMMON *const cm = &cpi->common;
    194   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    195   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
    196   const int is_compound = has_second_ref(mbmi);
    197   const int segment_id = mbmi->segment_id;
    198 
    199   // If segment level coding of this signal is disabled...
    200   // or the segment allows multiple reference frame options
    201   if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
    202     assert(!is_compound);
    203     assert(mbmi->ref_frame[0] ==
    204                vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
    205   } else {
    206     // does the feature use compound prediction or not
    207     // (if not specified at the frame/segment level)
    208     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
    209       vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
    210     } else {
    211       assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
    212     }
    213 
    214     if (is_compound) {
    215       vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
    216                 vp9_get_pred_prob_comp_ref_p(cm, xd));
    217     } else {
    218       const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
    219       vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
    220       if (bit0) {
    221         const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
    222         vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
    223       }
    224     }
    225   }
    226 }
    227 
    228 static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
    229                                 vp9_writer *w) {
    230   VP9_COMMON *const cm = &cpi->common;
    231   const nmv_context *nmvc = &cm->fc.nmvc;
    232   const MACROBLOCK *const x = &cpi->mb;
    233   const MACROBLOCKD *const xd = &x->e_mbd;
    234   const struct segmentation *const seg = &cm->seg;
    235   const MB_MODE_INFO *const mbmi = &mi->mbmi;
    236   const MB_PREDICTION_MODE mode = mbmi->mode;
    237   const int segment_id = mbmi->segment_id;
    238   const BLOCK_SIZE bsize = mbmi->sb_type;
    239   const int allow_hp = cm->allow_high_precision_mv;
    240   const int is_inter = is_inter_block(mbmi);
    241   const int is_compound = has_second_ref(mbmi);
    242   int skip, ref;
    243 
    244   if (seg->update_map) {
    245     if (seg->temporal_update) {
    246       const int pred_flag = mbmi->seg_id_predicted;
    247       vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
    248       vp9_write(w, pred_flag, pred_prob);
    249       if (!pred_flag)
    250         write_segment_id(w, seg, segment_id);
    251     } else {
    252       write_segment_id(w, seg, segment_id);
    253     }
    254   }
    255 
    256   skip = write_skip(cpi, segment_id, mi, w);
    257 
    258   if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
    259     vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
    260 
    261   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
    262       !(is_inter &&
    263         (skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
    264     write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
    265   }
    266 
    267   if (!is_inter) {
    268     if (bsize >= BLOCK_8X8) {
    269       write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
    270     } else {
    271       int idx, idy;
    272       const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
    273       const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
    274       for (idy = 0; idy < 2; idy += num_4x4_h) {
    275         for (idx = 0; idx < 2; idx += num_4x4_w) {
    276           const MB_PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
    277           write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
    278         }
    279       }
    280     }
    281     write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
    282   } else {
    283     const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
    284     const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
    285     write_ref_frames(cpi, w);
    286 
    287     // If segment skip is not enabled code the mode.
    288     if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
    289       if (bsize >= BLOCK_8X8) {
    290         write_inter_mode(w, mode, inter_probs);
    291         ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(mode)];
    292       }
    293     }
    294 
    295     if (cm->interp_filter == SWITCHABLE) {
    296       const int ctx = vp9_get_pred_context_switchable_interp(xd);
    297       vp9_write_token(w, vp9_switchable_interp_tree,
    298                       cm->fc.switchable_interp_prob[ctx],
    299                       &switchable_interp_encodings[mbmi->interp_filter]);
    300     } else {
    301       assert(mbmi->interp_filter == cm->interp_filter);
    302     }
    303 
    304     if (bsize < BLOCK_8X8) {
    305       const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
    306       const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
    307       int idx, idy;
    308       for (idy = 0; idy < 2; idy += num_4x4_h) {
    309         for (idx = 0; idx < 2; idx += num_4x4_w) {
    310           const int j = idy * 2 + idx;
    311           const MB_PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
    312           write_inter_mode(w, b_mode, inter_probs);
    313           ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
    314           if (b_mode == NEWMV) {
    315             for (ref = 0; ref < 1 + is_compound; ++ref)
    316               vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
    317                             &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
    318                             nmvc, allow_hp);
    319           }
    320         }
    321       }
    322     } else {
    323       if (mode == NEWMV) {
    324         for (ref = 0; ref < 1 + is_compound; ++ref)
    325           vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
    326                         &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
    327                         allow_hp);
    328       }
    329     }
    330   }
    331 }
    332 
    333 static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
    334                               vp9_writer *w) {
    335   const VP9_COMMON *const cm = &cpi->common;
    336   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    337   const struct segmentation *const seg = &cm->seg;
    338   const MODE_INFO *const mi = mi_8x8[0];
    339   const MODE_INFO *const above_mi = mi_8x8[-xd->mi_stride];
    340   const MODE_INFO *const left_mi = xd->left_available ? mi_8x8[-1] : NULL;
    341   const MB_MODE_INFO *const mbmi = &mi->mbmi;
    342   const BLOCK_SIZE bsize = mbmi->sb_type;
    343 
    344   if (seg->update_map)
    345     write_segment_id(w, seg, mbmi->segment_id);
    346 
    347   write_skip(cpi, mbmi->segment_id, mi, w);
    348 
    349   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
    350     write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
    351 
    352   if (bsize >= BLOCK_8X8) {
    353     write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
    354   } else {
    355     const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
    356     const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
    357     int idx, idy;
    358 
    359     for (idy = 0; idy < 2; idy += num_4x4_h) {
    360       for (idx = 0; idx < 2; idx += num_4x4_w) {
    361         const int block = idy * 2 + idx;
    362         write_intra_mode(w, mi->bmi[block].as_mode,
    363                          get_y_mode_probs(mi, above_mi, left_mi, block));
    364       }
    365     }
    366   }
    367 
    368   write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
    369 }
    370 
    371 static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
    372                           vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
    373                           int mi_row, int mi_col) {
    374   VP9_COMMON *const cm = &cpi->common;
    375   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    376   MODE_INFO *m;
    377 
    378   xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
    379   m = xd->mi[0];
    380 
    381   set_mi_row_col(xd, tile,
    382                  mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
    383                  mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
    384                  cm->mi_rows, cm->mi_cols);
    385   if (frame_is_intra_only(cm)) {
    386     write_mb_modes_kf(cpi, xd->mi, w);
    387   } else {
    388     pack_inter_mode_mvs(cpi, m, w);
    389   }
    390 
    391   assert(*tok < tok_end);
    392   pack_mb_tokens(w, tok, tok_end);
    393 }
    394 
    395 static void write_partition(VP9_COMMON *cm, MACROBLOCKD *xd,
    396                             int hbs, int mi_row, int mi_col,
    397                             PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
    398   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
    399   const vp9_prob *const probs = get_partition_probs(cm, ctx);
    400   const int has_rows = (mi_row + hbs) < cm->mi_rows;
    401   const int has_cols = (mi_col + hbs) < cm->mi_cols;
    402 
    403   if (has_rows && has_cols) {
    404     vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
    405   } else if (!has_rows && has_cols) {
    406     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
    407     vp9_write(w, p == PARTITION_SPLIT, probs[1]);
    408   } else if (has_rows && !has_cols) {
    409     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
    410     vp9_write(w, p == PARTITION_SPLIT, probs[2]);
    411   } else {
    412     assert(p == PARTITION_SPLIT);
    413   }
    414 }
    415 
    416 static void write_modes_sb(VP9_COMP *cpi,
    417                            const TileInfo *const tile,
    418                            vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
    419                            int mi_row, int mi_col, BLOCK_SIZE bsize) {
    420   VP9_COMMON *const cm = &cpi->common;
    421   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    422 
    423   const int bsl = b_width_log2(bsize);
    424   const int bs = (1 << bsl) / 4;
    425   PARTITION_TYPE partition;
    426   BLOCK_SIZE subsize;
    427   MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
    428 
    429   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
    430     return;
    431 
    432   partition = partition_lookup[bsl][m->mbmi.sb_type];
    433   write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
    434   subsize = get_subsize(bsize, partition);
    435   if (subsize < BLOCK_8X8) {
    436     write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
    437   } else {
    438     switch (partition) {
    439       case PARTITION_NONE:
    440         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
    441         break;
    442       case PARTITION_HORZ:
    443         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
    444         if (mi_row + bs < cm->mi_rows)
    445           write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
    446         break;
    447       case PARTITION_VERT:
    448         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
    449         if (mi_col + bs < cm->mi_cols)
    450           write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
    451         break;
    452       case PARTITION_SPLIT:
    453         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
    454         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
    455                        subsize);
    456         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
    457                        subsize);
    458         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
    459                        subsize);
    460         break;
    461       default:
    462         assert(0);
    463     }
    464   }
    465 
    466   // update partition context
    467   if (bsize >= BLOCK_8X8 &&
    468       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
    469     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
    470 }
    471 
    472 static void write_modes(VP9_COMP *cpi,
    473                         const TileInfo *const tile,
    474                         vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
    475   int mi_row, mi_col;
    476 
    477   for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
    478        mi_row += MI_BLOCK_SIZE) {
    479     vp9_zero(cpi->mb.e_mbd.left_seg_context);
    480     for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
    481          mi_col += MI_BLOCK_SIZE)
    482       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
    483                      BLOCK_64X64);
    484   }
    485 }
    486 
    487 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
    488                                     vp9_coeff_stats *coef_branch_ct) {
    489   vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
    490   vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
    491   unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
    492       cpi->common.counts.eob_branch[tx_size];
    493   int i, j, k, l, m;
    494 
    495   for (i = 0; i < PLANE_TYPES; ++i) {
    496     for (j = 0; j < REF_TYPES; ++j) {
    497       for (k = 0; k < COEF_BANDS; ++k) {
    498         for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
    499           vp9_tree_probs_from_distribution(vp9_coef_tree,
    500                                            coef_branch_ct[i][j][k][l],
    501                                            coef_counts[i][j][k][l]);
    502           coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
    503                                              coef_branch_ct[i][j][k][l][0][0];
    504           for (m = 0; m < UNCONSTRAINED_NODES; ++m)
    505             coef_probs[i][j][k][l][m] = get_binary_prob(
    506                                             coef_branch_ct[i][j][k][l][m][0],
    507                                             coef_branch_ct[i][j][k][l][m][1]);
    508         }
    509       }
    510     }
    511   }
    512 }
    513 
    514 static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
    515                                      TX_SIZE tx_size,
    516                                      vp9_coeff_stats *frame_branch_ct) {
    517   vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
    518   vp9_coeff_probs_model *old_frame_coef_probs =
    519       cpi->common.fc.coef_probs[tx_size];
    520   const vp9_prob upd = DIFF_UPDATE_PROB;
    521   const int entropy_nodes_update = UNCONSTRAINED_NODES;
    522   int i, j, k, l, t;
    523   switch (cpi->sf.use_fast_coef_updates) {
    524     case 0: {
    525       /* dry run to see if there is any udpate at all needed */
    526       int savings = 0;
    527       int update[2] = {0, 0};
    528       for (i = 0; i < PLANE_TYPES; ++i) {
    529         for (j = 0; j < REF_TYPES; ++j) {
    530           for (k = 0; k < COEF_BANDS; ++k) {
    531             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
    532               for (t = 0; t < entropy_nodes_update; ++t) {
    533                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    534                 const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
    535                 int s;
    536                 int u = 0;
    537                 if (t == PIVOT_NODE)
    538                   s = vp9_prob_diff_update_savings_search_model(
    539                       frame_branch_ct[i][j][k][l][0],
    540                       old_frame_coef_probs[i][j][k][l], &newp, upd);
    541                 else
    542                   s = vp9_prob_diff_update_savings_search(
    543                       frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
    544                 if (s > 0 && newp != oldp)
    545                   u = 1;
    546                 if (u)
    547                   savings += s - (int)(vp9_cost_zero(upd));
    548                 else
    549                   savings -= (int)(vp9_cost_zero(upd));
    550                 update[u]++;
    551               }
    552             }
    553           }
    554         }
    555       }
    556 
    557       // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
    558       /* Is coef updated at all */
    559       if (update[1] == 0 || savings < 0) {
    560         vp9_write_bit(bc, 0);
    561         return;
    562       }
    563       vp9_write_bit(bc, 1);
    564       for (i = 0; i < PLANE_TYPES; ++i) {
    565         for (j = 0; j < REF_TYPES; ++j) {
    566           for (k = 0; k < COEF_BANDS; ++k) {
    567             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
    568               // calc probs and branch cts for this frame only
    569               for (t = 0; t < entropy_nodes_update; ++t) {
    570                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    571                 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
    572                 const vp9_prob upd = DIFF_UPDATE_PROB;
    573                 int s;
    574                 int u = 0;
    575                 if (t == PIVOT_NODE)
    576                   s = vp9_prob_diff_update_savings_search_model(
    577                       frame_branch_ct[i][j][k][l][0],
    578                       old_frame_coef_probs[i][j][k][l], &newp, upd);
    579                 else
    580                   s = vp9_prob_diff_update_savings_search(
    581                       frame_branch_ct[i][j][k][l][t],
    582                       *oldp, &newp, upd);
    583                 if (s > 0 && newp != *oldp)
    584                   u = 1;
    585                 vp9_write(bc, u, upd);
    586                 if (u) {
    587                   /* send/use new probability */
    588                   vp9_write_prob_diff_update(bc, newp, *oldp);
    589                   *oldp = newp;
    590                 }
    591               }
    592             }
    593           }
    594         }
    595       }
    596       return;
    597     }
    598 
    599     case 1:
    600     case 2: {
    601       const int prev_coef_contexts_to_update =
    602           cpi->sf.use_fast_coef_updates == 2 ? COEFF_CONTEXTS >> 1
    603                                              : COEFF_CONTEXTS;
    604       const int coef_band_to_update =
    605           cpi->sf.use_fast_coef_updates == 2 ? COEF_BANDS >> 1
    606                                              : COEF_BANDS;
    607       int updates = 0;
    608       int noupdates_before_first = 0;
    609       for (i = 0; i < PLANE_TYPES; ++i) {
    610         for (j = 0; j < REF_TYPES; ++j) {
    611           for (k = 0; k < COEF_BANDS; ++k) {
    612             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
    613               // calc probs and branch cts for this frame only
    614               for (t = 0; t < entropy_nodes_update; ++t) {
    615                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    616                 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
    617                 int s;
    618                 int u = 0;
    619                 if (l >= prev_coef_contexts_to_update ||
    620                     k >= coef_band_to_update) {
    621                   u = 0;
    622                 } else {
    623                   if (t == PIVOT_NODE)
    624                     s = vp9_prob_diff_update_savings_search_model(
    625                         frame_branch_ct[i][j][k][l][0],
    626                         old_frame_coef_probs[i][j][k][l], &newp, upd);
    627                   else
    628                     s = vp9_prob_diff_update_savings_search(
    629                         frame_branch_ct[i][j][k][l][t],
    630                         *oldp, &newp, upd);
    631                   if (s > 0 && newp != *oldp)
    632                     u = 1;
    633                 }
    634                 updates += u;
    635                 if (u == 0 && updates == 0) {
    636                   noupdates_before_first++;
    637                   continue;
    638                 }
    639                 if (u == 1 && updates == 1) {
    640                   int v;
    641                   // first update
    642                   vp9_write_bit(bc, 1);
    643                   for (v = 0; v < noupdates_before_first; ++v)
    644                     vp9_write(bc, 0, upd);
    645                 }
    646                 vp9_write(bc, u, upd);
    647                 if (u) {
    648                   /* send/use new probability */
    649                   vp9_write_prob_diff_update(bc, newp, *oldp);
    650                   *oldp = newp;
    651                 }
    652               }
    653             }
    654           }
    655         }
    656       }
    657       if (updates == 0) {
    658         vp9_write_bit(bc, 0);  // no updates
    659       }
    660       return;
    661     }
    662 
    663     default:
    664       assert(0);
    665   }
    666 }
    667 
    668 static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
    669   const TX_MODE tx_mode = cpi->common.tx_mode;
    670   const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
    671   TX_SIZE tx_size;
    672   vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
    673 
    674   vp9_clear_system_state();
    675 
    676   for (tx_size = TX_4X4; tx_size <= TX_32X32; ++tx_size)
    677     build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size]);
    678 
    679   for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
    680     update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size]);
    681 }
    682 
    683 static void encode_loopfilter(struct loopfilter *lf,
    684                               struct vp9_write_bit_buffer *wb) {
    685   int i;
    686 
    687   // Encode the loop filter level and type
    688   vp9_wb_write_literal(wb, lf->filter_level, 6);
    689   vp9_wb_write_literal(wb, lf->sharpness_level, 3);
    690 
    691   // Write out loop filter deltas applied at the MB level based on mode or
    692   // ref frame (if they are enabled).
    693   vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
    694 
    695   if (lf->mode_ref_delta_enabled) {
    696     vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
    697     if (lf->mode_ref_delta_update) {
    698       for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
    699         const int delta = lf->ref_deltas[i];
    700         const int changed = delta != lf->last_ref_deltas[i];
    701         vp9_wb_write_bit(wb, changed);
    702         if (changed) {
    703           lf->last_ref_deltas[i] = delta;
    704           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
    705           vp9_wb_write_bit(wb, delta < 0);
    706         }
    707       }
    708 
    709       for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
    710         const int delta = lf->mode_deltas[i];
    711         const int changed = delta != lf->last_mode_deltas[i];
    712         vp9_wb_write_bit(wb, changed);
    713         if (changed) {
    714           lf->last_mode_deltas[i] = delta;
    715           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
    716           vp9_wb_write_bit(wb, delta < 0);
    717         }
    718       }
    719     }
    720   }
    721 }
    722 
    723 static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
    724   if (delta_q != 0) {
    725     vp9_wb_write_bit(wb, 1);
    726     vp9_wb_write_literal(wb, abs(delta_q), 4);
    727     vp9_wb_write_bit(wb, delta_q < 0);
    728   } else {
    729     vp9_wb_write_bit(wb, 0);
    730   }
    731 }
    732 
    733 static void encode_quantization(VP9_COMMON *cm,
    734                                 struct vp9_write_bit_buffer *wb) {
    735   vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
    736   write_delta_q(wb, cm->y_dc_delta_q);
    737   write_delta_q(wb, cm->uv_dc_delta_q);
    738   write_delta_q(wb, cm->uv_ac_delta_q);
    739 }
    740 
    741 
    742 static void encode_segmentation(VP9_COMP *cpi,
    743                                 struct vp9_write_bit_buffer *wb) {
    744   int i, j;
    745 
    746   struct segmentation *seg = &cpi->common.seg;
    747 
    748   vp9_wb_write_bit(wb, seg->enabled);
    749   if (!seg->enabled)
    750     return;
    751 
    752   // Segmentation map
    753   vp9_wb_write_bit(wb, seg->update_map);
    754   if (seg->update_map) {
    755     // Select the coding strategy (temporal or spatial)
    756     vp9_choose_segmap_coding_method(cpi);
    757     // Write out probabilities used to decode unpredicted  macro-block segments
    758     for (i = 0; i < SEG_TREE_PROBS; i++) {
    759       const int prob = seg->tree_probs[i];
    760       const int update = prob != MAX_PROB;
    761       vp9_wb_write_bit(wb, update);
    762       if (update)
    763         vp9_wb_write_literal(wb, prob, 8);
    764     }
    765 
    766     // Write out the chosen coding method.
    767     vp9_wb_write_bit(wb, seg->temporal_update);
    768     if (seg->temporal_update) {
    769       for (i = 0; i < PREDICTION_PROBS; i++) {
    770         const int prob = seg->pred_probs[i];
    771         const int update = prob != MAX_PROB;
    772         vp9_wb_write_bit(wb, update);
    773         if (update)
    774           vp9_wb_write_literal(wb, prob, 8);
    775       }
    776     }
    777   }
    778 
    779   // Segmentation data
    780   vp9_wb_write_bit(wb, seg->update_data);
    781   if (seg->update_data) {
    782     vp9_wb_write_bit(wb, seg->abs_delta);
    783 
    784     for (i = 0; i < MAX_SEGMENTS; i++) {
    785       for (j = 0; j < SEG_LVL_MAX; j++) {
    786         const int active = vp9_segfeature_active(seg, i, j);
    787         vp9_wb_write_bit(wb, active);
    788         if (active) {
    789           const int data = vp9_get_segdata(seg, i, j);
    790           const int data_max = vp9_seg_feature_data_max(j);
    791 
    792           if (vp9_is_segfeature_signed(j)) {
    793             encode_unsigned_max(wb, abs(data), data_max);
    794             vp9_wb_write_bit(wb, data < 0);
    795           } else {
    796             encode_unsigned_max(wb, data, data_max);
    797           }
    798         }
    799       }
    800     }
    801   }
    802 }
    803 
    804 
    805 static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
    806   // Mode
    807   vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
    808   if (cm->tx_mode >= ALLOW_32X32)
    809     vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
    810 
    811   // Probabilities
    812   if (cm->tx_mode == TX_MODE_SELECT) {
    813     int i, j;
    814     unsigned int ct_8x8p[TX_SIZES - 3][2];
    815     unsigned int ct_16x16p[TX_SIZES - 2][2];
    816     unsigned int ct_32x32p[TX_SIZES - 1][2];
    817 
    818 
    819     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    820       tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
    821       for (j = 0; j < TX_SIZES - 3; j++)
    822         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
    823     }
    824 
    825     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    826       tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
    827       for (j = 0; j < TX_SIZES - 2; j++)
    828         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
    829                                   ct_16x16p[j]);
    830     }
    831 
    832     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    833       tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
    834       for (j = 0; j < TX_SIZES - 1; j++)
    835         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
    836                                   ct_32x32p[j]);
    837     }
    838   }
    839 }
    840 
    841 static void write_interp_filter(INTERP_FILTER filter,
    842                                 struct vp9_write_bit_buffer *wb) {
    843   const int filter_to_literal[] = { 1, 0, 2, 3 };
    844 
    845   vp9_wb_write_bit(wb, filter == SWITCHABLE);
    846   if (filter != SWITCHABLE)
    847     vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
    848 }
    849 
    850 static void fix_interp_filter(VP9_COMMON *cm) {
    851   if (cm->interp_filter == SWITCHABLE) {
    852     // Check to see if only one of the filters is actually used
    853     int count[SWITCHABLE_FILTERS];
    854     int i, j, c = 0;
    855     for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
    856       count[i] = 0;
    857       for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
    858         count[i] += cm->counts.switchable_interp[j][i];
    859       c += (count[i] > 0);
    860     }
    861     if (c == 1) {
    862       // Only one filter is used. So set the filter at frame level
    863       for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
    864         if (count[i]) {
    865           cm->interp_filter = i;
    866           break;
    867         }
    868       }
    869     }
    870   }
    871 }
    872 
    873 static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
    874   int min_log2_tile_cols, max_log2_tile_cols, ones;
    875   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
    876 
    877   // columns
    878   ones = cm->log2_tile_cols - min_log2_tile_cols;
    879   while (ones--)
    880     vp9_wb_write_bit(wb, 1);
    881 
    882   if (cm->log2_tile_cols < max_log2_tile_cols)
    883     vp9_wb_write_bit(wb, 0);
    884 
    885   // rows
    886   vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
    887   if (cm->log2_tile_rows != 0)
    888     vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
    889 }
    890 
    891 static int get_refresh_mask(VP9_COMP *cpi) {
    892     // Should the GF or ARF be updated using the transmitted frame or buffer
    893 #if CONFIG_MULTIPLE_ARF
    894     if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
    895         !cpi->refresh_alt_ref_frame) {
    896 #else
    897     if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
    898         !cpi->use_svc) {
    899 #endif
    900       // Preserve the previously existing golden frame and update the frame in
    901       // the alt ref slot instead. This is highly specific to the use of
    902       // alt-ref as a forward reference, and this needs to be generalized as
    903       // other uses are implemented (like RTC/temporal scaling)
    904       //
    905       // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
    906       // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
    907       // be done outside of the recode loop.
    908       return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
    909              (cpi->refresh_golden_frame << cpi->alt_fb_idx);
    910     } else {
    911       int arf_idx = cpi->alt_fb_idx;
    912 #if CONFIG_MULTIPLE_ARF
    913       // Determine which ARF buffer to use to encode this ARF frame.
    914       if (cpi->multi_arf_enabled) {
    915         int sn = cpi->sequence_number;
    916         arf_idx = (cpi->frame_coding_order[sn] < 0) ?
    917             cpi->arf_buffer_idx[sn + 1] :
    918             cpi->arf_buffer_idx[sn];
    919       }
    920 #endif
    921       return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
    922              (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
    923              (cpi->refresh_alt_ref_frame << arf_idx);
    924     }
    925 }
    926 
    927 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
    928   VP9_COMMON *const cm = &cpi->common;
    929   vp9_writer residual_bc;
    930 
    931   int tile_row, tile_col;
    932   TOKENEXTRA *tok[4][1 << 6], *tok_end;
    933   size_t total_size = 0;
    934   const int tile_cols = 1 << cm->log2_tile_cols;
    935   const int tile_rows = 1 << cm->log2_tile_rows;
    936 
    937   vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) *
    938              mi_cols_aligned_to_sb(cm->mi_cols));
    939 
    940   tok[0][0] = cpi->tok;
    941   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
    942     if (tile_row)
    943       tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
    944                          cpi->tok_count[tile_row - 1][tile_cols - 1];
    945 
    946     for (tile_col = 1; tile_col < tile_cols; tile_col++)
    947       tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
    948                                 cpi->tok_count[tile_row][tile_col - 1];
    949   }
    950 
    951   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
    952     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
    953       TileInfo tile;
    954 
    955       vp9_tile_init(&tile, cm, tile_row, tile_col);
    956       tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
    957 
    958       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
    959         vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
    960       else
    961         vp9_start_encode(&residual_bc, data_ptr + total_size);
    962 
    963       write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
    964       assert(tok[tile_row][tile_col] == tok_end);
    965       vp9_stop_encode(&residual_bc);
    966       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
    967         // size of this tile
    968         mem_put_be32(data_ptr + total_size, residual_bc.pos);
    969         total_size += 4;
    970       }
    971 
    972       total_size += residual_bc.pos;
    973     }
    974   }
    975 
    976   return total_size;
    977 }
    978 
    979 static void write_display_size(const VP9_COMMON *cm,
    980                                struct vp9_write_bit_buffer *wb) {
    981   const int scaling_active = cm->width != cm->display_width ||
    982                              cm->height != cm->display_height;
    983   vp9_wb_write_bit(wb, scaling_active);
    984   if (scaling_active) {
    985     vp9_wb_write_literal(wb, cm->display_width - 1, 16);
    986     vp9_wb_write_literal(wb, cm->display_height - 1, 16);
    987   }
    988 }
    989 
    990 static void write_frame_size(const VP9_COMMON *cm,
    991                              struct vp9_write_bit_buffer *wb) {
    992   vp9_wb_write_literal(wb, cm->width - 1, 16);
    993   vp9_wb_write_literal(wb, cm->height - 1, 16);
    994 
    995   write_display_size(cm, wb);
    996 }
    997 
    998 static void write_frame_size_with_refs(VP9_COMP *cpi,
    999                                        struct vp9_write_bit_buffer *wb) {
   1000   VP9_COMMON *const cm = &cpi->common;
   1001   int found = 0;
   1002 
   1003   MV_REFERENCE_FRAME ref_frame;
   1004   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
   1005     YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
   1006     found = cm->width == cfg->y_crop_width &&
   1007             cm->height == cfg->y_crop_height;
   1008 
   1009     // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
   1010     // in a better way.
   1011     if (cpi->use_svc) {
   1012       found = 0;
   1013     }
   1014     vp9_wb_write_bit(wb, found);
   1015     if (found) {
   1016       break;
   1017     }
   1018   }
   1019 
   1020   if (!found) {
   1021     vp9_wb_write_literal(wb, cm->width - 1, 16);
   1022     vp9_wb_write_literal(wb, cm->height - 1, 16);
   1023   }
   1024 
   1025   write_display_size(cm, wb);
   1026 }
   1027 
   1028 static void write_sync_code(struct vp9_write_bit_buffer *wb) {
   1029   vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
   1030   vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
   1031   vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
   1032 }
   1033 
   1034 static void write_uncompressed_header(VP9_COMP *cpi,
   1035                                       struct vp9_write_bit_buffer *wb) {
   1036   VP9_COMMON *const cm = &cpi->common;
   1037 
   1038   vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
   1039 
   1040   // bitstream version.
   1041   // 00 - profile 0. 4:2:0 only
   1042   // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
   1043   vp9_wb_write_bit(wb, cm->version);
   1044   vp9_wb_write_bit(wb, 0);
   1045 
   1046   vp9_wb_write_bit(wb, 0);
   1047   vp9_wb_write_bit(wb, cm->frame_type);
   1048   vp9_wb_write_bit(wb, cm->show_frame);
   1049   vp9_wb_write_bit(wb, cm->error_resilient_mode);
   1050 
   1051   if (cm->frame_type == KEY_FRAME) {
   1052     const COLOR_SPACE cs = UNKNOWN;
   1053     write_sync_code(wb);
   1054     vp9_wb_write_literal(wb, cs, 3);
   1055     if (cs != SRGB) {
   1056       vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
   1057       if (cm->version == 1) {
   1058         vp9_wb_write_bit(wb, cm->subsampling_x);
   1059         vp9_wb_write_bit(wb, cm->subsampling_y);
   1060         vp9_wb_write_bit(wb, 0);  // has extra plane
   1061       }
   1062     } else {
   1063       assert(cm->version == 1);
   1064       vp9_wb_write_bit(wb, 0);  // has extra plane
   1065     }
   1066 
   1067     write_frame_size(cm, wb);
   1068   } else {
   1069     if (!cm->show_frame)
   1070       vp9_wb_write_bit(wb, cm->intra_only);
   1071 
   1072     if (!cm->error_resilient_mode)
   1073       vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
   1074 
   1075     if (cm->intra_only) {
   1076       write_sync_code(wb);
   1077 
   1078       vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
   1079       write_frame_size(cm, wb);
   1080     } else {
   1081       MV_REFERENCE_FRAME ref_frame;
   1082       vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
   1083       for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
   1084         vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
   1085                              REF_FRAMES_LOG2);
   1086         vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
   1087       }
   1088 
   1089       write_frame_size_with_refs(cpi, wb);
   1090 
   1091       vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
   1092 
   1093       fix_interp_filter(cm);
   1094       write_interp_filter(cm->interp_filter, wb);
   1095     }
   1096   }
   1097 
   1098   if (!cm->error_resilient_mode) {
   1099     vp9_wb_write_bit(wb, cm->refresh_frame_context);
   1100     vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
   1101   }
   1102 
   1103   vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
   1104 
   1105   encode_loopfilter(&cm->lf, wb);
   1106   encode_quantization(cm, wb);
   1107   encode_segmentation(cpi, wb);
   1108 
   1109   write_tile_info(cm, wb);
   1110 }
   1111 
   1112 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
   1113   VP9_COMMON *const cm = &cpi->common;
   1114   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   1115   FRAME_CONTEXT *const fc = &cm->fc;
   1116   vp9_writer header_bc;
   1117 
   1118   vp9_start_encode(&header_bc, data);
   1119 
   1120   if (xd->lossless)
   1121     cm->tx_mode = ONLY_4X4;
   1122   else
   1123     encode_txfm_probs(cm, &header_bc);
   1124 
   1125   update_coef_probs(cpi, &header_bc);
   1126   update_skip_probs(cm, &header_bc);
   1127 
   1128   if (!frame_is_intra_only(cm)) {
   1129     int i;
   1130 
   1131     for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
   1132       prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
   1133                        cm->counts.inter_mode[i], INTER_MODES, &header_bc);
   1134 
   1135     vp9_zero(cm->counts.inter_mode);
   1136 
   1137     if (cm->interp_filter == SWITCHABLE)
   1138       update_switchable_interp_probs(cm, &header_bc);
   1139 
   1140     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
   1141       vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
   1142                                 cm->counts.intra_inter[i]);
   1143 
   1144     if (cm->allow_comp_inter_inter) {
   1145       const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
   1146       const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
   1147 
   1148       vp9_write_bit(&header_bc, use_compound_pred);
   1149       if (use_compound_pred) {
   1150         vp9_write_bit(&header_bc, use_hybrid_pred);
   1151         if (use_hybrid_pred)
   1152           for (i = 0; i < COMP_INTER_CONTEXTS; i++)
   1153             vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
   1154                                       cm->counts.comp_inter[i]);
   1155       }
   1156     }
   1157 
   1158     if (cm->reference_mode != COMPOUND_REFERENCE) {
   1159       for (i = 0; i < REF_CONTEXTS; i++) {
   1160         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
   1161                                   cm->counts.single_ref[i][0]);
   1162         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
   1163                                   cm->counts.single_ref[i][1]);
   1164       }
   1165     }
   1166 
   1167     if (cm->reference_mode != SINGLE_REFERENCE)
   1168       for (i = 0; i < REF_CONTEXTS; i++)
   1169         vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
   1170                                   cm->counts.comp_ref[i]);
   1171 
   1172     for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
   1173       prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
   1174                        cm->counts.y_mode[i], INTRA_MODES, &header_bc);
   1175 
   1176     for (i = 0; i < PARTITION_CONTEXTS; ++i)
   1177       prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
   1178                        cm->counts.partition[i], PARTITION_TYPES, &header_bc);
   1179 
   1180     vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
   1181   }
   1182 
   1183   vp9_stop_encode(&header_bc);
   1184   assert(header_bc.pos <= 0xffff);
   1185 
   1186   return header_bc.pos;
   1187 }
   1188 
   1189 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
   1190   uint8_t *data = dest;
   1191   size_t first_part_size, uncompressed_hdr_size;
   1192   struct vp9_write_bit_buffer wb = {data, 0};
   1193   struct vp9_write_bit_buffer saved_wb;
   1194 
   1195   write_uncompressed_header(cpi, &wb);
   1196   saved_wb = wb;
   1197   vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
   1198 
   1199   uncompressed_hdr_size = vp9_rb_bytes_written(&wb);
   1200   data += uncompressed_hdr_size;
   1201 
   1202   vp9_compute_update_table();
   1203 
   1204   vp9_clear_system_state();
   1205 
   1206   first_part_size = write_compressed_header(cpi, data);
   1207   data += first_part_size;
   1208   // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
   1209   vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
   1210 
   1211   data += encode_tiles(cpi, data);
   1212 
   1213   *size = data - dest;
   1214 }
   1215 
   1216