Home | History | Annotate | Download | only in bits
      1 // Multimap implementation -*- C++ -*-
      2 
      3 // Copyright (C) 2001-2013 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /*
     26  *
     27  * Copyright (c) 1994
     28  * Hewlett-Packard Company
     29  *
     30  * Permission to use, copy, modify, distribute and sell this software
     31  * and its documentation for any purpose is hereby granted without fee,
     32  * provided that the above copyright notice appear in all copies and
     33  * that both that copyright notice and this permission notice appear
     34  * in supporting documentation.  Hewlett-Packard Company makes no
     35  * representations about the suitability of this software for any
     36  * purpose.  It is provided "as is" without express or implied warranty.
     37  *
     38  *
     39  * Copyright (c) 1996,1997
     40  * Silicon Graphics Computer Systems, Inc.
     41  *
     42  * Permission to use, copy, modify, distribute and sell this software
     43  * and its documentation for any purpose is hereby granted without fee,
     44  * provided that the above copyright notice appear in all copies and
     45  * that both that copyright notice and this permission notice appear
     46  * in supporting documentation.  Silicon Graphics makes no
     47  * representations about the suitability of this software for any
     48  * purpose.  It is provided "as is" without express or implied warranty.
     49  */
     50 
     51 /** @file bits/stl_multimap.h
     52  *  This is an internal header file, included by other library headers.
     53  *  Do not attempt to use it directly. @headername{map}
     54  */
     55 
     56 #ifndef _STL_MULTIMAP_H
     57 #define _STL_MULTIMAP_H 1
     58 
     59 #include <bits/concept_check.h>
     60 #if __cplusplus >= 201103L
     61 #include <initializer_list>
     62 #endif
     63 
     64 namespace std _GLIBCXX_VISIBILITY(default)
     65 {
     66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
     67 
     68   /**
     69    *  @brief A standard container made up of (key,value) pairs, which can be
     70    *  retrieved based on a key, in logarithmic time.
     71    *
     72    *  @ingroup associative_containers
     73    *
     74    *  @tparam _Key  Type of key objects.
     75    *  @tparam  _Tp  Type of mapped objects.
     76    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
     77    *  @tparam _Alloc  Allocator type, defaults to
     78    *                  allocator<pair<const _Key, _Tp>.
     79    *
     80    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
     81    *  <a href="tables.html#66">reversible container</a>, and an
     82    *  <a href="tables.html#69">associative container</a> (using equivalent
     83    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
     84    *  is T, and the value_type is std::pair<const Key,T>.
     85    *
     86    *  Multimaps support bidirectional iterators.
     87    *
     88    *  The private tree data is declared exactly the same way for map and
     89    *  multimap; the distinction is made entirely in how the tree functions are
     90    *  called (*_unique versus *_equal, same as the standard).
     91   */
     92   template <typename _Key, typename _Tp,
     93 	    typename _Compare = std::less<_Key>,
     94 	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
     95     class multimap
     96     {
     97     public:
     98       typedef _Key                                          key_type;
     99       typedef _Tp                                           mapped_type;
    100       typedef std::pair<const _Key, _Tp>                    value_type;
    101       typedef _Compare                                      key_compare;
    102       typedef _Alloc                                        allocator_type;
    103 
    104     private:
    105       // concept requirements
    106       typedef typename _Alloc::value_type                   _Alloc_value_type;
    107       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
    108       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
    109 				_BinaryFunctionConcept)
    110       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
    111 
    112     public:
    113       class value_compare
    114       : public std::binary_function<value_type, value_type, bool>
    115       {
    116 	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
    117       protected:
    118 	_Compare comp;
    119 
    120 	value_compare(_Compare __c)
    121 	: comp(__c) { }
    122 
    123       public:
    124 	bool operator()(const value_type& __x, const value_type& __y) const
    125 	{ return comp(__x.first, __y.first); }
    126       };
    127 
    128     private:
    129       /// This turns a red-black tree into a [multi]map.
    130       typedef typename _Alloc::template rebind<value_type>::other
    131         _Pair_alloc_type;
    132 
    133       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
    134 		       key_compare, _Pair_alloc_type> _Rep_type;
    135       /// The actual tree structure.
    136       _Rep_type _M_t;
    137 
    138     public:
    139       // many of these are specified differently in ISO, but the following are
    140       // "functionally equivalent"
    141       typedef typename _Pair_alloc_type::pointer         pointer;
    142       typedef typename _Pair_alloc_type::const_pointer   const_pointer;
    143       typedef typename _Pair_alloc_type::reference       reference;
    144       typedef typename _Pair_alloc_type::const_reference const_reference;
    145       typedef typename _Rep_type::iterator               iterator;
    146       typedef typename _Rep_type::const_iterator         const_iterator;
    147       typedef typename _Rep_type::size_type              size_type;
    148       typedef typename _Rep_type::difference_type        difference_type;
    149       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
    150       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
    151 
    152       // [23.3.2] construct/copy/destroy
    153       // (get_allocator() is also listed in this section)
    154       /**
    155        *  @brief  Default constructor creates no elements.
    156        */
    157       multimap()
    158       : _M_t() { }
    159 
    160       /**
    161        *  @brief  Creates a %multimap with no elements.
    162        *  @param  __comp  A comparison object.
    163        *  @param  __a  An allocator object.
    164        */
    165       explicit
    166       multimap(const _Compare& __comp,
    167 	       const allocator_type& __a = allocator_type())
    168       : _M_t(__comp, _Pair_alloc_type(__a)) { }
    169 
    170       /**
    171        *  @brief  %Multimap copy constructor.
    172        *  @param  __x  A %multimap of identical element and allocator types.
    173        *
    174        *  The newly-created %multimap uses a copy of the allocation object
    175        *  used by @a __x.
    176        */
    177       multimap(const multimap& __x)
    178       : _M_t(__x._M_t) { }
    179 
    180 #if __cplusplus >= 201103L
    181       /**
    182        *  @brief  %Multimap move constructor.
    183        *  @param   __x  A %multimap of identical element and allocator types.
    184        *
    185        *  The newly-created %multimap contains the exact contents of @a __x.
    186        *  The contents of @a __x are a valid, but unspecified %multimap.
    187        */
    188       multimap(multimap&& __x)
    189       noexcept(is_nothrow_copy_constructible<_Compare>::value)
    190       : _M_t(std::move(__x._M_t)) { }
    191 
    192       /**
    193        *  @brief  Builds a %multimap from an initializer_list.
    194        *  @param  __l  An initializer_list.
    195        *  @param  __comp  A comparison functor.
    196        *  @param  __a  An allocator object.
    197        *
    198        *  Create a %multimap consisting of copies of the elements from
    199        *  the initializer_list.  This is linear in N if the list is already
    200        *  sorted, and NlogN otherwise (where N is @a __l.size()).
    201        */
    202       multimap(initializer_list<value_type> __l,
    203 	       const _Compare& __comp = _Compare(),
    204 	       const allocator_type& __a = allocator_type())
    205       : _M_t(__comp, _Pair_alloc_type(__a))
    206       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
    207 #endif
    208 
    209       /**
    210        *  @brief  Builds a %multimap from a range.
    211        *  @param  __first  An input iterator.
    212        *  @param  __last  An input iterator.
    213        *
    214        *  Create a %multimap consisting of copies of the elements from
    215        *  [__first,__last).  This is linear in N if the range is already sorted,
    216        *  and NlogN otherwise (where N is distance(__first,__last)).
    217        */
    218       template<typename _InputIterator>
    219         multimap(_InputIterator __first, _InputIterator __last)
    220 	: _M_t()
    221         { _M_t._M_insert_equal(__first, __last); }
    222 
    223       /**
    224        *  @brief  Builds a %multimap from a range.
    225        *  @param  __first  An input iterator.
    226        *  @param  __last  An input iterator.
    227        *  @param  __comp  A comparison functor.
    228        *  @param  __a  An allocator object.
    229        *
    230        *  Create a %multimap consisting of copies of the elements from
    231        *  [__first,__last).  This is linear in N if the range is already sorted,
    232        *  and NlogN otherwise (where N is distance(__first,__last)).
    233        */
    234       template<typename _InputIterator>
    235         multimap(_InputIterator __first, _InputIterator __last,
    236 		 const _Compare& __comp,
    237 		 const allocator_type& __a = allocator_type())
    238 	: _M_t(__comp, _Pair_alloc_type(__a))
    239         { _M_t._M_insert_equal(__first, __last); }
    240 
    241       // FIXME There is no dtor declared, but we should have something generated
    242       // by Doxygen.  I don't know what tags to add to this paragraph to make
    243       // that happen:
    244       /**
    245        *  The dtor only erases the elements, and note that if the elements
    246        *  themselves are pointers, the pointed-to memory is not touched in any
    247        *  way.  Managing the pointer is the user's responsibility.
    248        */
    249 
    250       /**
    251        *  @brief  %Multimap assignment operator.
    252        *  @param  __x  A %multimap of identical element and allocator types.
    253        *
    254        *  All the elements of @a __x are copied, but unlike the copy
    255        *  constructor, the allocator object is not copied.
    256        */
    257       multimap&
    258       operator=(const multimap& __x)
    259       {
    260 	_M_t = __x._M_t;
    261 	return *this;
    262       }
    263 
    264 #if __cplusplus >= 201103L
    265       /**
    266        *  @brief  %Multimap move assignment operator.
    267        *  @param  __x  A %multimap of identical element and allocator types.
    268        *
    269        *  The contents of @a __x are moved into this multimap (without copying).
    270        *  @a __x is a valid, but unspecified multimap.
    271        */
    272       multimap&
    273       operator=(multimap&& __x)
    274       {
    275 	// NB: DR 1204.
    276 	// NB: DR 675.
    277 	this->clear();
    278 	this->swap(__x);
    279 	return *this;
    280       }
    281 
    282       /**
    283        *  @brief  %Multimap list assignment operator.
    284        *  @param  __l  An initializer_list.
    285        *
    286        *  This function fills a %multimap with copies of the elements
    287        *  in the initializer list @a __l.
    288        *
    289        *  Note that the assignment completely changes the %multimap and
    290        *  that the resulting %multimap's size is the same as the number
    291        *  of elements assigned.  Old data may be lost.
    292        */
    293       multimap&
    294       operator=(initializer_list<value_type> __l)
    295       {
    296 	this->clear();
    297 	this->insert(__l.begin(), __l.end());
    298 	return *this;
    299       }
    300 #endif
    301 
    302       /// Get a copy of the memory allocation object.
    303       allocator_type
    304       get_allocator() const _GLIBCXX_NOEXCEPT
    305       { return allocator_type(_M_t.get_allocator()); }
    306 
    307       // iterators
    308       /**
    309        *  Returns a read/write iterator that points to the first pair in the
    310        *  %multimap.  Iteration is done in ascending order according to the
    311        *  keys.
    312        */
    313       iterator
    314       begin() _GLIBCXX_NOEXCEPT
    315       { return _M_t.begin(); }
    316 
    317       /**
    318        *  Returns a read-only (constant) iterator that points to the first pair
    319        *  in the %multimap.  Iteration is done in ascending order according to
    320        *  the keys.
    321        */
    322       const_iterator
    323       begin() const _GLIBCXX_NOEXCEPT
    324       { return _M_t.begin(); }
    325 
    326       /**
    327        *  Returns a read/write iterator that points one past the last pair in
    328        *  the %multimap.  Iteration is done in ascending order according to the
    329        *  keys.
    330        */
    331       iterator
    332       end() _GLIBCXX_NOEXCEPT
    333       { return _M_t.end(); }
    334 
    335       /**
    336        *  Returns a read-only (constant) iterator that points one past the last
    337        *  pair in the %multimap.  Iteration is done in ascending order according
    338        *  to the keys.
    339        */
    340       const_iterator
    341       end() const _GLIBCXX_NOEXCEPT
    342       { return _M_t.end(); }
    343 
    344       /**
    345        *  Returns a read/write reverse iterator that points to the last pair in
    346        *  the %multimap.  Iteration is done in descending order according to the
    347        *  keys.
    348        */
    349       reverse_iterator
    350       rbegin() _GLIBCXX_NOEXCEPT
    351       { return _M_t.rbegin(); }
    352 
    353       /**
    354        *  Returns a read-only (constant) reverse iterator that points to the
    355        *  last pair in the %multimap.  Iteration is done in descending order
    356        *  according to the keys.
    357        */
    358       const_reverse_iterator
    359       rbegin() const _GLIBCXX_NOEXCEPT
    360       { return _M_t.rbegin(); }
    361 
    362       /**
    363        *  Returns a read/write reverse iterator that points to one before the
    364        *  first pair in the %multimap.  Iteration is done in descending order
    365        *  according to the keys.
    366        */
    367       reverse_iterator
    368       rend() _GLIBCXX_NOEXCEPT
    369       { return _M_t.rend(); }
    370 
    371       /**
    372        *  Returns a read-only (constant) reverse iterator that points to one
    373        *  before the first pair in the %multimap.  Iteration is done in
    374        *  descending order according to the keys.
    375        */
    376       const_reverse_iterator
    377       rend() const _GLIBCXX_NOEXCEPT
    378       { return _M_t.rend(); }
    379 
    380 #if __cplusplus >= 201103L
    381       /**
    382        *  Returns a read-only (constant) iterator that points to the first pair
    383        *  in the %multimap.  Iteration is done in ascending order according to
    384        *  the keys.
    385        */
    386       const_iterator
    387       cbegin() const noexcept
    388       { return _M_t.begin(); }
    389 
    390       /**
    391        *  Returns a read-only (constant) iterator that points one past the last
    392        *  pair in the %multimap.  Iteration is done in ascending order according
    393        *  to the keys.
    394        */
    395       const_iterator
    396       cend() const noexcept
    397       { return _M_t.end(); }
    398 
    399       /**
    400        *  Returns a read-only (constant) reverse iterator that points to the
    401        *  last pair in the %multimap.  Iteration is done in descending order
    402        *  according to the keys.
    403        */
    404       const_reverse_iterator
    405       crbegin() const noexcept
    406       { return _M_t.rbegin(); }
    407 
    408       /**
    409        *  Returns a read-only (constant) reverse iterator that points to one
    410        *  before the first pair in the %multimap.  Iteration is done in
    411        *  descending order according to the keys.
    412        */
    413       const_reverse_iterator
    414       crend() const noexcept
    415       { return _M_t.rend(); }
    416 #endif
    417 
    418       // capacity
    419       /** Returns true if the %multimap is empty.  */
    420       bool
    421       empty() const _GLIBCXX_NOEXCEPT
    422       { return _M_t.empty(); }
    423 
    424       /** Returns the size of the %multimap.  */
    425       size_type
    426       size() const _GLIBCXX_NOEXCEPT
    427       { return _M_t.size(); }
    428 
    429       /** Returns the maximum size of the %multimap.  */
    430       size_type
    431       max_size() const _GLIBCXX_NOEXCEPT
    432       { return _M_t.max_size(); }
    433 
    434       // modifiers
    435 #if __cplusplus >= 201103L
    436       /**
    437        *  @brief Build and insert a std::pair into the %multimap.
    438        *
    439        *  @param __args  Arguments used to generate a new pair instance (see
    440        *	        std::piecewise_contruct for passing arguments to each
    441        *	        part of the pair constructor).
    442        *
    443        *  @return An iterator that points to the inserted (key,value) pair.
    444        *
    445        *  This function builds and inserts a (key, value) %pair into the
    446        *  %multimap.
    447        *  Contrary to a std::map the %multimap does not rely on unique keys and
    448        *  thus multiple pairs with the same key can be inserted.
    449        *
    450        *  Insertion requires logarithmic time.
    451        */
    452       template<typename... _Args>
    453 	iterator
    454 	emplace(_Args&&... __args)
    455 	{ return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
    456 
    457       /**
    458        *  @brief Builds and inserts a std::pair into the %multimap.
    459        *
    460        *  @param  __pos  An iterator that serves as a hint as to where the pair
    461        *                should be inserted.
    462        *  @param  __args  Arguments used to generate a new pair instance (see
    463        *	         std::piecewise_contruct for passing arguments to each
    464        *	         part of the pair constructor).
    465        *  @return An iterator that points to the inserted (key,value) pair.
    466        *
    467        *  This function inserts a (key, value) pair into the %multimap.
    468        *  Contrary to a std::map the %multimap does not rely on unique keys and
    469        *  thus multiple pairs with the same key can be inserted.
    470        *  Note that the first parameter is only a hint and can potentially
    471        *  improve the performance of the insertion process.  A bad hint would
    472        *  cause no gains in efficiency.
    473        *
    474        *  For more on @a hinting, see:
    475        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
    476        *
    477        *  Insertion requires logarithmic time (if the hint is not taken).
    478        */
    479       template<typename... _Args>
    480 	iterator
    481 	emplace_hint(const_iterator __pos, _Args&&... __args)
    482 	{
    483 	  return _M_t._M_emplace_hint_equal(__pos,
    484 					    std::forward<_Args>(__args)...);
    485 	}
    486 #endif
    487 
    488       /**
    489        *  @brief Inserts a std::pair into the %multimap.
    490        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
    491        *             of pairs).
    492        *  @return An iterator that points to the inserted (key,value) pair.
    493        *
    494        *  This function inserts a (key, value) pair into the %multimap.
    495        *  Contrary to a std::map the %multimap does not rely on unique keys and
    496        *  thus multiple pairs with the same key can be inserted.
    497        *
    498        *  Insertion requires logarithmic time.
    499        */
    500       iterator
    501       insert(const value_type& __x)
    502       { return _M_t._M_insert_equal(__x); }
    503 
    504 #if __cplusplus >= 201103L
    505       template<typename _Pair, typename = typename
    506 	       std::enable_if<std::is_constructible<value_type,
    507 						    _Pair&&>::value>::type>
    508         iterator
    509         insert(_Pair&& __x)
    510         { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); }
    511 #endif
    512 
    513       /**
    514        *  @brief Inserts a std::pair into the %multimap.
    515        *  @param  __position  An iterator that serves as a hint as to where the
    516        *                      pair should be inserted.
    517        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
    518        *               of pairs).
    519        *  @return An iterator that points to the inserted (key,value) pair.
    520        *
    521        *  This function inserts a (key, value) pair into the %multimap.
    522        *  Contrary to a std::map the %multimap does not rely on unique keys and
    523        *  thus multiple pairs with the same key can be inserted.
    524        *  Note that the first parameter is only a hint and can potentially
    525        *  improve the performance of the insertion process.  A bad hint would
    526        *  cause no gains in efficiency.
    527        *
    528        *  For more on @a hinting, see:
    529        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
    530        *
    531        *  Insertion requires logarithmic time (if the hint is not taken).
    532        */
    533       iterator
    534 #if __cplusplus >= 201103L
    535       insert(const_iterator __position, const value_type& __x)
    536 #else
    537       insert(iterator __position, const value_type& __x)
    538 #endif
    539       { return _M_t._M_insert_equal_(__position, __x); }
    540 
    541 #if __cplusplus >= 201103L
    542       template<typename _Pair, typename = typename
    543 	       std::enable_if<std::is_constructible<value_type,
    544 						    _Pair&&>::value>::type>
    545         iterator
    546         insert(const_iterator __position, _Pair&& __x)
    547         { return _M_t._M_insert_equal_(__position,
    548 				       std::forward<_Pair>(__x)); }
    549 #endif
    550 
    551       /**
    552        *  @brief A template function that attempts to insert a range
    553        *  of elements.
    554        *  @param  __first  Iterator pointing to the start of the range to be
    555        *                   inserted.
    556        *  @param  __last  Iterator pointing to the end of the range.
    557        *
    558        *  Complexity similar to that of the range constructor.
    559        */
    560       template<typename _InputIterator>
    561         void
    562         insert(_InputIterator __first, _InputIterator __last)
    563         { _M_t._M_insert_equal(__first, __last); }
    564 
    565 #if __cplusplus >= 201103L
    566       /**
    567        *  @brief Attempts to insert a list of std::pairs into the %multimap.
    568        *  @param  __l  A std::initializer_list<value_type> of pairs to be
    569        *               inserted.
    570        *
    571        *  Complexity similar to that of the range constructor.
    572        */
    573       void
    574       insert(initializer_list<value_type> __l)
    575       { this->insert(__l.begin(), __l.end()); }
    576 #endif
    577 
    578 #if __cplusplus >= 201103L
    579       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    580       // DR 130. Associative erase should return an iterator.
    581       /**
    582        *  @brief Erases an element from a %multimap.
    583        *  @param  __position  An iterator pointing to the element to be erased.
    584        *  @return An iterator pointing to the element immediately following
    585        *          @a position prior to the element being erased. If no such
    586        *          element exists, end() is returned.
    587        *
    588        *  This function erases an element, pointed to by the given iterator,
    589        *  from a %multimap.  Note that this function only erases the element,
    590        *  and that if the element is itself a pointer, the pointed-to memory is
    591        *  not touched in any way.  Managing the pointer is the user's
    592        *  responsibility.
    593        */
    594       iterator
    595       erase(const_iterator __position)
    596       { return _M_t.erase(__position); }
    597 
    598       // LWG 2059.
    599       _GLIBCXX_ABI_TAG_CXX11
    600       iterator
    601       erase(iterator __position)
    602       { return _M_t.erase(__position); }
    603 #else
    604       /**
    605        *  @brief Erases an element from a %multimap.
    606        *  @param  __position  An iterator pointing to the element to be erased.
    607        *
    608        *  This function erases an element, pointed to by the given iterator,
    609        *  from a %multimap.  Note that this function only erases the element,
    610        *  and that if the element is itself a pointer, the pointed-to memory is
    611        *  not touched in any way.  Managing the pointer is the user's
    612        *  responsibility.
    613        */
    614       void
    615       erase(iterator __position)
    616       { _M_t.erase(__position); }
    617 #endif
    618 
    619       /**
    620        *  @brief Erases elements according to the provided key.
    621        *  @param  __x  Key of element to be erased.
    622        *  @return  The number of elements erased.
    623        *
    624        *  This function erases all elements located by the given key from a
    625        *  %multimap.
    626        *  Note that this function only erases the element, and that if
    627        *  the element is itself a pointer, the pointed-to memory is not touched
    628        *  in any way.  Managing the pointer is the user's responsibility.
    629        */
    630       size_type
    631       erase(const key_type& __x)
    632       { return _M_t.erase(__x); }
    633 
    634 #if __cplusplus >= 201103L
    635       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    636       // DR 130. Associative erase should return an iterator.
    637       /**
    638        *  @brief Erases a [first,last) range of elements from a %multimap.
    639        *  @param  __first  Iterator pointing to the start of the range to be
    640        *                   erased.
    641        *  @param __last Iterator pointing to the end of the range to be
    642        *                erased .
    643        *  @return The iterator @a __last.
    644        *
    645        *  This function erases a sequence of elements from a %multimap.
    646        *  Note that this function only erases the elements, and that if
    647        *  the elements themselves are pointers, the pointed-to memory is not
    648        *  touched in any way.  Managing the pointer is the user's
    649        *  responsibility.
    650        */
    651       iterator
    652       erase(const_iterator __first, const_iterator __last)
    653       { return _M_t.erase(__first, __last); }
    654 #else
    655       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    656       // DR 130. Associative erase should return an iterator.
    657       /**
    658        *  @brief Erases a [first,last) range of elements from a %multimap.
    659        *  @param  __first  Iterator pointing to the start of the range to be
    660        *                 erased.
    661        *  @param __last Iterator pointing to the end of the range to
    662        *                be erased.
    663        *
    664        *  This function erases a sequence of elements from a %multimap.
    665        *  Note that this function only erases the elements, and that if
    666        *  the elements themselves are pointers, the pointed-to memory is not
    667        *  touched in any way.  Managing the pointer is the user's
    668        *  responsibility.
    669        */
    670       void
    671       erase(iterator __first, iterator __last)
    672       { _M_t.erase(__first, __last); }
    673 #endif
    674 
    675       /**
    676        *  @brief  Swaps data with another %multimap.
    677        *  @param  __x  A %multimap of the same element and allocator types.
    678        *
    679        *  This exchanges the elements between two multimaps in constant time.
    680        *  (It is only swapping a pointer, an integer, and an instance of
    681        *  the @c Compare type (which itself is often stateless and empty), so it
    682        *  should be quite fast.)
    683        *  Note that the global std::swap() function is specialized such that
    684        *  std::swap(m1,m2) will feed to this function.
    685        */
    686       void
    687       swap(multimap& __x)
    688       { _M_t.swap(__x._M_t); }
    689 
    690       /**
    691        *  Erases all elements in a %multimap.  Note that this function only
    692        *  erases the elements, and that if the elements themselves are pointers,
    693        *  the pointed-to memory is not touched in any way.  Managing the pointer
    694        *  is the user's responsibility.
    695        */
    696       void
    697       clear() _GLIBCXX_NOEXCEPT
    698       { _M_t.clear(); }
    699 
    700       // observers
    701       /**
    702        *  Returns the key comparison object out of which the %multimap
    703        *  was constructed.
    704        */
    705       key_compare
    706       key_comp() const
    707       { return _M_t.key_comp(); }
    708 
    709       /**
    710        *  Returns a value comparison object, built from the key comparison
    711        *  object out of which the %multimap was constructed.
    712        */
    713       value_compare
    714       value_comp() const
    715       { return value_compare(_M_t.key_comp()); }
    716 
    717       // multimap operations
    718       /**
    719        *  @brief Tries to locate an element in a %multimap.
    720        *  @param  __x  Key of (key, value) pair to be located.
    721        *  @return  Iterator pointing to sought-after element,
    722        *           or end() if not found.
    723        *
    724        *  This function takes a key and tries to locate the element with which
    725        *  the key matches.  If successful the function returns an iterator
    726        *  pointing to the sought after %pair.  If unsuccessful it returns the
    727        *  past-the-end ( @c end() ) iterator.
    728        */
    729       iterator
    730       find(const key_type& __x)
    731       { return _M_t.find(__x); }
    732 
    733       /**
    734        *  @brief Tries to locate an element in a %multimap.
    735        *  @param  __x  Key of (key, value) pair to be located.
    736        *  @return  Read-only (constant) iterator pointing to sought-after
    737        *           element, or end() if not found.
    738        *
    739        *  This function takes a key and tries to locate the element with which
    740        *  the key matches.  If successful the function returns a constant
    741        *  iterator pointing to the sought after %pair.  If unsuccessful it
    742        *  returns the past-the-end ( @c end() ) iterator.
    743        */
    744       const_iterator
    745       find(const key_type& __x) const
    746       { return _M_t.find(__x); }
    747 
    748       /**
    749        *  @brief Finds the number of elements with given key.
    750        *  @param  __x  Key of (key, value) pairs to be located.
    751        *  @return Number of elements with specified key.
    752        */
    753       size_type
    754       count(const key_type& __x) const
    755       { return _M_t.count(__x); }
    756 
    757       /**
    758        *  @brief Finds the beginning of a subsequence matching given key.
    759        *  @param  __x  Key of (key, value) pair to be located.
    760        *  @return  Iterator pointing to first element equal to or greater
    761        *           than key, or end().
    762        *
    763        *  This function returns the first element of a subsequence of elements
    764        *  that matches the given key.  If unsuccessful it returns an iterator
    765        *  pointing to the first element that has a greater value than given key
    766        *  or end() if no such element exists.
    767        */
    768       iterator
    769       lower_bound(const key_type& __x)
    770       { return _M_t.lower_bound(__x); }
    771 
    772       /**
    773        *  @brief Finds the beginning of a subsequence matching given key.
    774        *  @param  __x  Key of (key, value) pair to be located.
    775        *  @return  Read-only (constant) iterator pointing to first element
    776        *           equal to or greater than key, or end().
    777        *
    778        *  This function returns the first element of a subsequence of
    779        *  elements that matches the given key.  If unsuccessful the
    780        *  iterator will point to the next greatest element or, if no
    781        *  such greater element exists, to end().
    782        */
    783       const_iterator
    784       lower_bound(const key_type& __x) const
    785       { return _M_t.lower_bound(__x); }
    786 
    787       /**
    788        *  @brief Finds the end of a subsequence matching given key.
    789        *  @param  __x  Key of (key, value) pair to be located.
    790        *  @return Iterator pointing to the first element
    791        *          greater than key, or end().
    792        */
    793       iterator
    794       upper_bound(const key_type& __x)
    795       { return _M_t.upper_bound(__x); }
    796 
    797       /**
    798        *  @brief Finds the end of a subsequence matching given key.
    799        *  @param  __x  Key of (key, value) pair to be located.
    800        *  @return  Read-only (constant) iterator pointing to first iterator
    801        *           greater than key, or end().
    802        */
    803       const_iterator
    804       upper_bound(const key_type& __x) const
    805       { return _M_t.upper_bound(__x); }
    806 
    807       /**
    808        *  @brief Finds a subsequence matching given key.
    809        *  @param  __x  Key of (key, value) pairs to be located.
    810        *  @return  Pair of iterators that possibly points to the subsequence
    811        *           matching given key.
    812        *
    813        *  This function is equivalent to
    814        *  @code
    815        *    std::make_pair(c.lower_bound(val),
    816        *                   c.upper_bound(val))
    817        *  @endcode
    818        *  (but is faster than making the calls separately).
    819        */
    820       std::pair<iterator, iterator>
    821       equal_range(const key_type& __x)
    822       { return _M_t.equal_range(__x); }
    823 
    824       /**
    825        *  @brief Finds a subsequence matching given key.
    826        *  @param  __x  Key of (key, value) pairs to be located.
    827        *  @return  Pair of read-only (constant) iterators that possibly points
    828        *           to the subsequence matching given key.
    829        *
    830        *  This function is equivalent to
    831        *  @code
    832        *    std::make_pair(c.lower_bound(val),
    833        *                   c.upper_bound(val))
    834        *  @endcode
    835        *  (but is faster than making the calls separately).
    836        */
    837       std::pair<const_iterator, const_iterator>
    838       equal_range(const key_type& __x) const
    839       { return _M_t.equal_range(__x); }
    840 
    841       template<typename _K1, typename _T1, typename _C1, typename _A1>
    842         friend bool
    843         operator==(const multimap<_K1, _T1, _C1, _A1>&,
    844 		   const multimap<_K1, _T1, _C1, _A1>&);
    845 
    846       template<typename _K1, typename _T1, typename _C1, typename _A1>
    847         friend bool
    848         operator<(const multimap<_K1, _T1, _C1, _A1>&,
    849 		  const multimap<_K1, _T1, _C1, _A1>&);
    850   };
    851 
    852   /**
    853    *  @brief  Multimap equality comparison.
    854    *  @param  __x  A %multimap.
    855    *  @param  __y  A %multimap of the same type as @a __x.
    856    *  @return  True iff the size and elements of the maps are equal.
    857    *
    858    *  This is an equivalence relation.  It is linear in the size of the
    859    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
    860    *  and if corresponding elements compare equal.
    861   */
    862   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    863     inline bool
    864     operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
    865                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    866     { return __x._M_t == __y._M_t; }
    867 
    868   /**
    869    *  @brief  Multimap ordering relation.
    870    *  @param  __x  A %multimap.
    871    *  @param  __y  A %multimap of the same type as @a __x.
    872    *  @return  True iff @a x is lexicographically less than @a y.
    873    *
    874    *  This is a total ordering relation.  It is linear in the size of the
    875    *  multimaps.  The elements must be comparable with @c <.
    876    *
    877    *  See std::lexicographical_compare() for how the determination is made.
    878   */
    879   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    880     inline bool
    881     operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
    882               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    883     { return __x._M_t < __y._M_t; }
    884 
    885   /// Based on operator==
    886   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    887     inline bool
    888     operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
    889                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    890     { return !(__x == __y); }
    891 
    892   /// Based on operator<
    893   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    894     inline bool
    895     operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
    896               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    897     { return __y < __x; }
    898 
    899   /// Based on operator<
    900   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    901     inline bool
    902     operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
    903                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    904     { return !(__y < __x); }
    905 
    906   /// Based on operator<
    907   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    908     inline bool
    909     operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
    910                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    911     { return !(__x < __y); }
    912 
    913   /// See std::multimap::swap().
    914   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    915     inline void
    916     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
    917          multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    918     { __x.swap(__y); }
    919 
    920 _GLIBCXX_END_NAMESPACE_CONTAINER
    921 } // namespace std
    922 
    923 #endif /* _STL_MULTIMAP_H */
    924