Home | History | Annotate | Download | only in tr1_impl
      1 // TR1 functional header -*- C++ -*-
      2 
      3 // Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /** @file tr1_impl/functional
     26  *  This is an internal header file, included by other library headers.
     27  *  You should not attempt to use it directly.
     28  */
     29 
     30 namespace std
     31 {
     32 _GLIBCXX_BEGIN_NAMESPACE_TR1
     33 
     34   template<typename _MemberPointer>
     35     class _Mem_fn;
     36 
     37   /**
     38    *  Actual implementation of _Has_result_type, which uses SFINAE to
     39    *  determine if the type _Tp has a publicly-accessible member type
     40    *  result_type.
     41   */
     42   template<typename _Tp>
     43     class _Has_result_type_helper : __sfinae_types
     44     {
     45       template<typename _Up>
     46         struct _Wrap_type
     47 	{ };
     48 
     49       template<typename _Up>
     50         static __one __test(_Wrap_type<typename _Up::result_type>*);
     51 
     52       template<typename _Up>
     53         static __two __test(...);
     54 
     55     public:
     56       static const bool value = sizeof(__test<_Tp>(0)) == 1;
     57     };
     58 
     59   template<typename _Tp>
     60     struct _Has_result_type
     61     : integral_constant<bool,
     62 	      _Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
     63     { };
     64 
     65   /**
     66    *  
     67   */
     68   /// If we have found a result_type, extract it.
     69   template<bool _Has_result_type, typename _Functor>
     70     struct _Maybe_get_result_type
     71     { };
     72 
     73   template<typename _Functor>
     74     struct _Maybe_get_result_type<true, _Functor>
     75     {
     76       typedef typename _Functor::result_type result_type;
     77     };
     78 
     79   /**
     80    *  Base class for any function object that has a weak result type, as
     81    *  defined in 3.3/3 of TR1.
     82   */
     83   template<typename _Functor>
     84     struct _Weak_result_type_impl
     85     : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
     86     {
     87     };
     88 
     89   /// Retrieve the result type for a function type.
     90   template<typename _Res, typename... _ArgTypes> 
     91     struct _Weak_result_type_impl<_Res(_ArgTypes...)>
     92     {
     93       typedef _Res result_type;
     94     };
     95 
     96   /// Retrieve the result type for a function reference.
     97   template<typename _Res, typename... _ArgTypes> 
     98     struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
     99     {
    100       typedef _Res result_type;
    101     };
    102 
    103   /// Retrieve the result type for a function pointer.
    104   template<typename _Res, typename... _ArgTypes> 
    105     struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
    106     {
    107       typedef _Res result_type;
    108     };
    109 
    110   /// Retrieve result type for a member function pointer. 
    111   template<typename _Res, typename _Class, typename... _ArgTypes> 
    112     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
    113     {
    114       typedef _Res result_type;
    115     };
    116 
    117   /// Retrieve result type for a const member function pointer. 
    118   template<typename _Res, typename _Class, typename... _ArgTypes> 
    119     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
    120     {
    121       typedef _Res result_type;
    122     };
    123 
    124   /// Retrieve result type for a volatile member function pointer. 
    125   template<typename _Res, typename _Class, typename... _ArgTypes> 
    126     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
    127     {
    128       typedef _Res result_type;
    129     };
    130 
    131   /// Retrieve result type for a const volatile member function pointer. 
    132   template<typename _Res, typename _Class, typename... _ArgTypes> 
    133     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)const volatile>
    134     {
    135       typedef _Res result_type;
    136     };
    137 
    138   /**
    139    *  Strip top-level cv-qualifiers from the function object and let
    140    *  _Weak_result_type_impl perform the real work.
    141   */
    142   template<typename _Functor>
    143     struct _Weak_result_type
    144     : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
    145     {
    146     };
    147 
    148   template<typename _Signature>
    149     class result_of;
    150 
    151   /**
    152    *  Actual implementation of result_of. When _Has_result_type is
    153    *  true, gets its result from _Weak_result_type. Otherwise, uses
    154    *  the function object's member template result to extract the
    155    *  result type.
    156   */
    157   template<bool _Has_result_type, typename _Signature>
    158     struct _Result_of_impl;
    159 
    160   // Handle member data pointers using _Mem_fn's logic
    161   template<typename _Res, typename _Class, typename _T1>
    162     struct _Result_of_impl<false, _Res _Class::*(_T1)>
    163     {
    164       typedef typename _Mem_fn<_Res _Class::*>
    165                 ::template _Result_type<_T1>::type type;
    166     };
    167 
    168   /**
    169    * Determine whether we can determine a result type from @c Functor 
    170    * alone.
    171    */ 
    172   template<typename _Functor, typename... _ArgTypes>
    173     class result_of<_Functor(_ArgTypes...)>
    174     : public _Result_of_impl<
    175                _Has_result_type<_Weak_result_type<_Functor> >::value,
    176                _Functor(_ArgTypes...)>
    177     {
    178     };
    179 
    180   /// We already know the result type for @c Functor; use it.
    181   template<typename _Functor, typename... _ArgTypes>
    182     struct _Result_of_impl<true, _Functor(_ArgTypes...)>
    183     {
    184       typedef typename _Weak_result_type<_Functor>::result_type type;
    185     };
    186 
    187   /**
    188    * We need to compute the result type for this invocation the hard 
    189    * way.
    190    */
    191   template<typename _Functor, typename... _ArgTypes>
    192     struct _Result_of_impl<false, _Functor(_ArgTypes...)>
    193     {
    194       typedef typename _Functor
    195                 ::template result<_Functor(_ArgTypes...)>::type type;
    196     };
    197 
    198   /**
    199    * It is unsafe to access ::result when there are zero arguments, so we 
    200    * return @c void instead.
    201    */
    202   template<typename _Functor>
    203     struct _Result_of_impl<false, _Functor()>
    204     {
    205       typedef void type;
    206     };
    207 
    208   /// Determines if the type _Tp derives from unary_function.
    209   template<typename _Tp>
    210     struct _Derives_from_unary_function : __sfinae_types
    211     {
    212     private:
    213       template<typename _T1, typename _Res>
    214         static __one __test(const volatile unary_function<_T1, _Res>*);
    215 
    216       // It's tempting to change "..." to const volatile void*, but
    217       // that fails when _Tp is a function type.
    218       static __two __test(...);
    219 
    220     public:
    221       static const bool value = sizeof(__test((_Tp*)0)) == 1;
    222     };
    223 
    224   /// Determines if the type _Tp derives from binary_function.
    225   template<typename _Tp>
    226     struct _Derives_from_binary_function : __sfinae_types
    227     {
    228     private:
    229       template<typename _T1, typename _T2, typename _Res>
    230         static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
    231 
    232       // It's tempting to change "..." to const volatile void*, but
    233       // that fails when _Tp is a function type.
    234       static __two __test(...);
    235 
    236     public:
    237       static const bool value = sizeof(__test((_Tp*)0)) == 1;
    238     };
    239 
    240   /// Turns a function type into a function pointer type
    241   template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
    242     struct _Function_to_function_pointer
    243     {
    244       typedef _Tp type;
    245     };
    246 
    247   template<typename _Tp>
    248     struct _Function_to_function_pointer<_Tp, true>
    249     {
    250       typedef _Tp* type;
    251     };
    252 
    253   /**
    254    * Invoke a function object, which may be either a member pointer or a
    255    * function object. The first parameter will tell which.
    256    */
    257   template<typename _Functor, typename... _Args>
    258     inline
    259     typename __gnu_cxx::__enable_if<
    260              (!is_member_pointer<_Functor>::value
    261               && !is_function<_Functor>::value
    262               && !is_function<typename remove_pointer<_Functor>::type>::value),
    263              typename result_of<_Functor(_Args...)>::type
    264            >::__type
    265     __invoke(_Functor& __f, _Args&... __args)
    266     {
    267       return __f(__args...);
    268     }
    269 
    270   template<typename _Functor, typename... _Args>
    271     inline
    272     typename __gnu_cxx::__enable_if<
    273              (is_member_pointer<_Functor>::value
    274               && !is_function<_Functor>::value
    275               && !is_function<typename remove_pointer<_Functor>::type>::value),
    276              typename result_of<_Functor(_Args...)>::type
    277            >::__type
    278     __invoke(_Functor& __f, _Args&... __args)
    279     {
    280       return mem_fn(__f)(__args...);
    281     }
    282 
    283   // To pick up function references (that will become function pointers)
    284   template<typename _Functor, typename... _Args>
    285     inline
    286     typename __gnu_cxx::__enable_if<
    287              (is_pointer<_Functor>::value
    288               && is_function<typename remove_pointer<_Functor>::type>::value),
    289              typename result_of<_Functor(_Args...)>::type
    290            >::__type
    291     __invoke(_Functor __f, _Args&... __args)
    292     {
    293       return __f(__args...);
    294     }
    295 
    296   /**
    297    *  Knowing which of unary_function and binary_function _Tp derives
    298    *  from, derives from the same and ensures that reference_wrapper
    299    *  will have a weak result type. See cases below.
    300    */
    301   template<bool _Unary, bool _Binary, typename _Tp>
    302     struct _Reference_wrapper_base_impl;
    303 
    304   // Not a unary_function or binary_function, so try a weak result type.
    305   template<typename _Tp>
    306     struct _Reference_wrapper_base_impl<false, false, _Tp>
    307     : _Weak_result_type<_Tp>
    308     { };
    309 
    310   // unary_function but not binary_function
    311   template<typename _Tp>
    312     struct _Reference_wrapper_base_impl<true, false, _Tp>
    313     : unary_function<typename _Tp::argument_type,
    314 		     typename _Tp::result_type>
    315     { };
    316 
    317   // binary_function but not unary_function
    318   template<typename _Tp>
    319     struct _Reference_wrapper_base_impl<false, true, _Tp>
    320     : binary_function<typename _Tp::first_argument_type,
    321 		      typename _Tp::second_argument_type,
    322 		      typename _Tp::result_type>
    323     { };
    324 
    325   // Both unary_function and binary_function. Import result_type to
    326   // avoid conflicts.
    327    template<typename _Tp>
    328     struct _Reference_wrapper_base_impl<true, true, _Tp>
    329     : unary_function<typename _Tp::argument_type,
    330 		     typename _Tp::result_type>,
    331       binary_function<typename _Tp::first_argument_type,
    332 		      typename _Tp::second_argument_type,
    333 		      typename _Tp::result_type>
    334     {
    335       typedef typename _Tp::result_type result_type;
    336     };
    337 
    338   /**
    339    *  Derives from unary_function or binary_function when it
    340    *  can. Specializations handle all of the easy cases. The primary
    341    *  template determines what to do with a class type, which may
    342    *  derive from both unary_function and binary_function.
    343   */
    344   template<typename _Tp>
    345     struct _Reference_wrapper_base
    346     : _Reference_wrapper_base_impl<
    347       _Derives_from_unary_function<_Tp>::value,
    348       _Derives_from_binary_function<_Tp>::value,
    349       _Tp>
    350     { };
    351 
    352   // - a function type (unary)
    353   template<typename _Res, typename _T1>
    354     struct _Reference_wrapper_base<_Res(_T1)>
    355     : unary_function<_T1, _Res>
    356     { };
    357 
    358   // - a function type (binary)
    359   template<typename _Res, typename _T1, typename _T2>
    360     struct _Reference_wrapper_base<_Res(_T1, _T2)>
    361     : binary_function<_T1, _T2, _Res>
    362     { };
    363 
    364   // - a function pointer type (unary)
    365   template<typename _Res, typename _T1>
    366     struct _Reference_wrapper_base<_Res(*)(_T1)>
    367     : unary_function<_T1, _Res>
    368     { };
    369 
    370   // - a function pointer type (binary)
    371   template<typename _Res, typename _T1, typename _T2>
    372     struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
    373     : binary_function<_T1, _T2, _Res>
    374     { };
    375 
    376   // - a pointer to member function type (unary, no qualifiers)
    377   template<typename _Res, typename _T1>
    378     struct _Reference_wrapper_base<_Res (_T1::*)()>
    379     : unary_function<_T1*, _Res>
    380     { };
    381 
    382   // - a pointer to member function type (binary, no qualifiers)
    383   template<typename _Res, typename _T1, typename _T2>
    384     struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
    385     : binary_function<_T1*, _T2, _Res>
    386     { };
    387 
    388   // - a pointer to member function type (unary, const)
    389   template<typename _Res, typename _T1>
    390     struct _Reference_wrapper_base<_Res (_T1::*)() const>
    391     : unary_function<const _T1*, _Res>
    392     { };
    393 
    394   // - a pointer to member function type (binary, const)
    395   template<typename _Res, typename _T1, typename _T2>
    396     struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
    397     : binary_function<const _T1*, _T2, _Res>
    398     { };
    399 
    400   // - a pointer to member function type (unary, volatile)
    401   template<typename _Res, typename _T1>
    402     struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
    403     : unary_function<volatile _T1*, _Res>
    404     { };
    405 
    406   // - a pointer to member function type (binary, volatile)
    407   template<typename _Res, typename _T1, typename _T2>
    408     struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
    409     : binary_function<volatile _T1*, _T2, _Res>
    410     { };
    411 
    412   // - a pointer to member function type (unary, const volatile)
    413   template<typename _Res, typename _T1>
    414     struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
    415     : unary_function<const volatile _T1*, _Res>
    416     { };
    417 
    418   // - a pointer to member function type (binary, const volatile)
    419   template<typename _Res, typename _T1, typename _T2>
    420     struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
    421     : binary_function<const volatile _T1*, _T2, _Res>
    422     { };
    423 
    424   /// reference_wrapper
    425   template<typename _Tp>
    426     class reference_wrapper
    427     : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
    428     {
    429       // If _Tp is a function type, we can't form result_of<_Tp(...)>,
    430       // so turn it into a function pointer type.
    431       typedef typename _Function_to_function_pointer<_Tp>::type
    432         _M_func_type;
    433 
    434       _Tp* _M_data;
    435     public:
    436       typedef _Tp type;
    437 
    438       explicit
    439       reference_wrapper(_Tp& __indata): _M_data(&__indata)
    440       { }
    441 
    442       reference_wrapper(const reference_wrapper<_Tp>& __inref):
    443       _M_data(__inref._M_data)
    444       { }
    445 
    446       reference_wrapper&
    447       operator=(const reference_wrapper<_Tp>& __inref)
    448       {
    449         _M_data = __inref._M_data;
    450         return *this;
    451       }
    452 
    453       operator _Tp&() const
    454       { return this->get(); }
    455 
    456       _Tp&
    457       get() const
    458       { return *_M_data; }
    459 
    460       template<typename... _Args>
    461         typename result_of<_M_func_type(_Args...)>::type
    462         operator()(_Args&... __args) const
    463         {
    464 	  return __invoke(get(), __args...);
    465 	}
    466     };
    467 
    468 
    469   // Denotes a reference should be taken to a variable.
    470   template<typename _Tp>
    471     inline reference_wrapper<_Tp>
    472     ref(_Tp& __t)
    473     { return reference_wrapper<_Tp>(__t); }
    474 
    475   // Denotes a const reference should be taken to a variable.
    476   template<typename _Tp>
    477     inline reference_wrapper<const _Tp>
    478     cref(const _Tp& __t)
    479     { return reference_wrapper<const _Tp>(__t); }
    480 
    481   template<typename _Tp>
    482     inline reference_wrapper<_Tp>
    483     ref(reference_wrapper<_Tp> __t)
    484     { return ref(__t.get()); }
    485 
    486   template<typename _Tp>
    487     inline reference_wrapper<const _Tp>
    488     cref(reference_wrapper<_Tp> __t)
    489     { return cref(__t.get()); }
    490 
    491   template<typename _Tp, bool>
    492     struct _Mem_fn_const_or_non
    493     {
    494       typedef const _Tp& type;
    495     };
    496 
    497   template<typename _Tp>
    498     struct _Mem_fn_const_or_non<_Tp, false>
    499     {
    500       typedef _Tp& type;
    501     };
    502 
    503   /**
    504    * Derives from @c unary_function or @c binary_function, or perhaps
    505    * nothing, depending on the number of arguments provided. The
    506    * primary template is the basis case, which derives nothing.
    507    */
    508   template<typename _Res, typename... _ArgTypes> 
    509     struct _Maybe_unary_or_binary_function { };
    510 
    511   /// Derives from @c unary_function, as appropriate. 
    512   template<typename _Res, typename _T1> 
    513     struct _Maybe_unary_or_binary_function<_Res, _T1>
    514     : std::unary_function<_T1, _Res> { };
    515 
    516   /// Derives from @c binary_function, as appropriate. 
    517   template<typename _Res, typename _T1, typename _T2> 
    518     struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
    519     : std::binary_function<_T1, _T2, _Res> { };
    520 
    521   /// Implementation of @c mem_fn for member function pointers.
    522   template<typename _Res, typename _Class, typename... _ArgTypes>
    523     class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
    524     : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
    525     {
    526       typedef _Res (_Class::*_Functor)(_ArgTypes...);
    527 
    528       template<typename _Tp>
    529         _Res
    530         _M_call(_Tp& __object, const volatile _Class *, 
    531                 _ArgTypes... __args) const
    532         { return (__object.*__pmf)(__args...); }
    533 
    534       template<typename _Tp>
    535         _Res
    536         _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
    537         { return ((*__ptr).*__pmf)(__args...); }
    538 
    539     public:
    540       typedef _Res result_type;
    541 
    542       explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
    543 
    544       // Handle objects
    545       _Res
    546       operator()(_Class& __object, _ArgTypes... __args) const
    547       { return (__object.*__pmf)(__args...); }
    548 
    549       // Handle pointers
    550       _Res
    551       operator()(_Class* __object, _ArgTypes... __args) const
    552       { return (__object->*__pmf)(__args...); }
    553 
    554       // Handle smart pointers, references and pointers to derived
    555       template<typename _Tp>
    556         _Res
    557 	operator()(_Tp& __object, _ArgTypes... __args) const
    558         { return _M_call(__object, &__object, __args...); }
    559 
    560     private:
    561       _Functor __pmf;
    562     };
    563 
    564   /// Implementation of @c mem_fn for const member function pointers.
    565   template<typename _Res, typename _Class, typename... _ArgTypes>
    566     class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
    567     : public _Maybe_unary_or_binary_function<_Res, const _Class*, 
    568 					     _ArgTypes...>
    569     {
    570       typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
    571 
    572       template<typename _Tp>
    573         _Res
    574         _M_call(_Tp& __object, const volatile _Class *, 
    575                 _ArgTypes... __args) const
    576         { return (__object.*__pmf)(__args...); }
    577 
    578       template<typename _Tp>
    579         _Res
    580         _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
    581         { return ((*__ptr).*__pmf)(__args...); }
    582 
    583     public:
    584       typedef _Res result_type;
    585 
    586       explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
    587 
    588       // Handle objects
    589       _Res
    590       operator()(const _Class& __object, _ArgTypes... __args) const
    591       { return (__object.*__pmf)(__args...); }
    592 
    593       // Handle pointers
    594       _Res
    595       operator()(const _Class* __object, _ArgTypes... __args) const
    596       { return (__object->*__pmf)(__args...); }
    597 
    598       // Handle smart pointers, references and pointers to derived
    599       template<typename _Tp>
    600         _Res operator()(_Tp& __object, _ArgTypes... __args) const
    601         { return _M_call(__object, &__object, __args...); }
    602 
    603     private:
    604       _Functor __pmf;
    605     };
    606 
    607   /// Implementation of @c mem_fn for volatile member function pointers.
    608   template<typename _Res, typename _Class, typename... _ArgTypes>
    609     class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
    610     : public _Maybe_unary_or_binary_function<_Res, volatile _Class*, 
    611 					     _ArgTypes...>
    612     {
    613       typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
    614 
    615       template<typename _Tp>
    616         _Res
    617         _M_call(_Tp& __object, const volatile _Class *, 
    618                 _ArgTypes... __args) const
    619         { return (__object.*__pmf)(__args...); }
    620 
    621       template<typename _Tp>
    622         _Res
    623         _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
    624         { return ((*__ptr).*__pmf)(__args...); }
    625 
    626     public:
    627       typedef _Res result_type;
    628 
    629       explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
    630 
    631       // Handle objects
    632       _Res
    633       operator()(volatile _Class& __object, _ArgTypes... __args) const
    634       { return (__object.*__pmf)(__args...); }
    635 
    636       // Handle pointers
    637       _Res
    638       operator()(volatile _Class* __object, _ArgTypes... __args) const
    639       { return (__object->*__pmf)(__args...); }
    640 
    641       // Handle smart pointers, references and pointers to derived
    642       template<typename _Tp>
    643         _Res
    644 	operator()(_Tp& __object, _ArgTypes... __args) const
    645         { return _M_call(__object, &__object, __args...); }
    646 
    647     private:
    648       _Functor __pmf;
    649     };
    650 
    651   /// Implementation of @c mem_fn for const volatile member function pointers.
    652   template<typename _Res, typename _Class, typename... _ArgTypes>
    653     class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
    654     : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*, 
    655 					     _ArgTypes...>
    656     {
    657       typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
    658 
    659       template<typename _Tp>
    660         _Res
    661         _M_call(_Tp& __object, const volatile _Class *, 
    662                 _ArgTypes... __args) const
    663         { return (__object.*__pmf)(__args...); }
    664 
    665       template<typename _Tp>
    666         _Res
    667         _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
    668         { return ((*__ptr).*__pmf)(__args...); }
    669 
    670     public:
    671       typedef _Res result_type;
    672 
    673       explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
    674 
    675       // Handle objects
    676       _Res 
    677       operator()(const volatile _Class& __object, _ArgTypes... __args) const
    678       { return (__object.*__pmf)(__args...); }
    679 
    680       // Handle pointers
    681       _Res 
    682       operator()(const volatile _Class* __object, _ArgTypes... __args) const
    683       { return (__object->*__pmf)(__args...); }
    684 
    685       // Handle smart pointers, references and pointers to derived
    686       template<typename _Tp>
    687         _Res operator()(_Tp& __object, _ArgTypes... __args) const
    688         { return _M_call(__object, &__object, __args...); }
    689 
    690     private:
    691       _Functor __pmf;
    692     };
    693 
    694 
    695   template<typename _Res, typename _Class>
    696     class _Mem_fn<_Res _Class::*>
    697     {
    698       // This bit of genius is due to Peter Dimov, improved slightly by
    699       // Douglas Gregor.
    700       template<typename _Tp>
    701         _Res&
    702         _M_call(_Tp& __object, _Class *) const
    703         { return __object.*__pm; }
    704 
    705       template<typename _Tp, typename _Up>
    706         _Res&
    707         _M_call(_Tp& __object, _Up * const *) const
    708         { return (*__object).*__pm; }
    709 
    710       template<typename _Tp, typename _Up>
    711         const _Res&
    712         _M_call(_Tp& __object, const _Up * const *) const
    713         { return (*__object).*__pm; }
    714 
    715       template<typename _Tp>
    716         const _Res&
    717         _M_call(_Tp& __object, const _Class *) const
    718         { return __object.*__pm; }
    719 
    720       template<typename _Tp>
    721         const _Res&
    722         _M_call(_Tp& __ptr, const volatile void*) const
    723         { return (*__ptr).*__pm; }
    724 
    725       template<typename _Tp> static _Tp& __get_ref();
    726 
    727       template<typename _Tp>
    728         static __sfinae_types::__one __check_const(_Tp&, _Class*);
    729       template<typename _Tp, typename _Up>
    730         static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
    731       template<typename _Tp, typename _Up>
    732         static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
    733       template<typename _Tp>
    734         static __sfinae_types::__two __check_const(_Tp&, const _Class*);
    735       template<typename _Tp>
    736         static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
    737 
    738     public:
    739       template<typename _Tp>
    740         struct _Result_type
    741 	: _Mem_fn_const_or_non<_Res,
    742 	  (sizeof(__sfinae_types::__two)
    743 	   == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
    744         { };
    745 
    746       template<typename _Signature>
    747         struct result;
    748 
    749       template<typename _CVMem, typename _Tp>
    750         struct result<_CVMem(_Tp)>
    751 	: public _Result_type<_Tp> { };
    752 
    753       template<typename _CVMem, typename _Tp>
    754         struct result<_CVMem(_Tp&)>
    755 	: public _Result_type<_Tp> { };
    756 
    757       explicit
    758       _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
    759 
    760       // Handle objects
    761       _Res&
    762       operator()(_Class& __object) const
    763       { return __object.*__pm; }
    764 
    765       const _Res&
    766       operator()(const _Class& __object) const
    767       { return __object.*__pm; }
    768 
    769       // Handle pointers
    770       _Res&
    771       operator()(_Class* __object) const
    772       { return __object->*__pm; }
    773 
    774       const _Res&
    775       operator()(const _Class* __object) const
    776       { return __object->*__pm; }
    777 
    778       // Handle smart pointers and derived
    779       template<typename _Tp>
    780         typename _Result_type<_Tp>::type
    781         operator()(_Tp& __unknown) const
    782         { return _M_call(__unknown, &__unknown); }
    783 
    784     private:
    785       _Res _Class::*__pm;
    786     };
    787 
    788   /**
    789    *  @brief Returns a function object that forwards to the member
    790    *  pointer @a pm.
    791    */
    792   template<typename _Tp, typename _Class>
    793     inline _Mem_fn<_Tp _Class::*>
    794     mem_fn(_Tp _Class::* __pm)
    795     {
    796       return _Mem_fn<_Tp _Class::*>(__pm);
    797     }
    798 
    799   /**
    800    *  @brief Determines if the given type _Tp is a function object
    801    *  should be treated as a subexpression when evaluating calls to
    802    *  function objects returned by bind(). [TR1 3.6.1]
    803    */
    804   template<typename _Tp>
    805     struct is_bind_expression
    806     { static const bool value = false; };
    807 
    808   template<typename _Tp>
    809     const bool is_bind_expression<_Tp>::value;
    810 
    811   /**
    812    *  @brief Determines if the given type _Tp is a placeholder in a
    813    *  bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
    814    */
    815   template<typename _Tp>
    816     struct is_placeholder
    817     { static const int value = 0; };
    818 
    819   template<typename _Tp>
    820     const int is_placeholder<_Tp>::value;
    821 
    822   /// The type of placeholder objects defined by libstdc++.
    823   template<int _Num> struct _Placeholder { };
    824 
    825   /** @namespace std::placeholders
    826    *  @brief ISO C++ 0x entities sub namespace for functional.
    827    *
    828    *  Define a large number of placeholders. There is no way to
    829    *  simplify this with variadic templates, because we're introducing
    830    *  unique names for each.
    831    */
    832   namespace placeholders 
    833   { 
    834     namespace 
    835     {
    836       _Placeholder<1> _1;
    837       _Placeholder<2> _2;
    838       _Placeholder<3> _3;
    839       _Placeholder<4> _4;
    840       _Placeholder<5> _5;
    841       _Placeholder<6> _6;
    842       _Placeholder<7> _7;
    843       _Placeholder<8> _8;
    844       _Placeholder<9> _9;
    845       _Placeholder<10> _10;
    846       _Placeholder<11> _11;
    847       _Placeholder<12> _12;
    848       _Placeholder<13> _13;
    849       _Placeholder<14> _14;
    850       _Placeholder<15> _15;
    851       _Placeholder<16> _16;
    852       _Placeholder<17> _17;
    853       _Placeholder<18> _18;
    854       _Placeholder<19> _19;
    855       _Placeholder<20> _20;
    856       _Placeholder<21> _21;
    857       _Placeholder<22> _22;
    858       _Placeholder<23> _23;
    859       _Placeholder<24> _24;
    860       _Placeholder<25> _25;
    861       _Placeholder<26> _26;
    862       _Placeholder<27> _27;
    863       _Placeholder<28> _28;
    864       _Placeholder<29> _29;
    865     } 
    866   }
    867 
    868   /**
    869    *  Partial specialization of is_placeholder that provides the placeholder
    870    *  number for the placeholder objects defined by libstdc++.
    871    */
    872   template<int _Num>
    873     struct is_placeholder<_Placeholder<_Num> >
    874     { static const int value = _Num; };
    875 
    876   template<int _Num>
    877     const int is_placeholder<_Placeholder<_Num> >::value;
    878 
    879   /**
    880    * Stores a tuple of indices. Used by bind() to extract the elements
    881    * in a tuple. 
    882    */
    883   template<int... _Indexes>
    884     struct _Index_tuple { };
    885 
    886   /// Builds an _Index_tuple<0, 1, 2, ..., _Num-1>.
    887   template<std::size_t _Num, typename _Tuple = _Index_tuple<> >
    888     struct _Build_index_tuple;
    889  
    890   template<std::size_t _Num, int... _Indexes> 
    891     struct _Build_index_tuple<_Num, _Index_tuple<_Indexes...> >
    892     : _Build_index_tuple<_Num - 1, 
    893                          _Index_tuple<_Indexes..., sizeof...(_Indexes)> >
    894     {
    895     };
    896 
    897   template<int... _Indexes>
    898     struct _Build_index_tuple<0, _Index_tuple<_Indexes...> >
    899     {
    900       typedef _Index_tuple<_Indexes...> __type;
    901     };
    902 
    903   /** 
    904    * Used by _Safe_tuple_element to indicate that there is no tuple
    905    * element at this position.
    906    */
    907   struct _No_tuple_element;
    908 
    909   /**
    910    * Implementation helper for _Safe_tuple_element. This primary
    911    * template handles the case where it is safe to use @c
    912    * tuple_element.
    913    */
    914   template<int __i, typename _Tuple, bool _IsSafe>
    915     struct _Safe_tuple_element_impl
    916     : tuple_element<__i, _Tuple> { };
    917 
    918   /**
    919    * Implementation helper for _Safe_tuple_element. This partial
    920    * specialization handles the case where it is not safe to use @c
    921    * tuple_element. We just return @c _No_tuple_element.
    922    */
    923   template<int __i, typename _Tuple>
    924     struct _Safe_tuple_element_impl<__i, _Tuple, false>
    925     {
    926       typedef _No_tuple_element type;
    927     };
    928 
    929   /**
    930    * Like tuple_element, but returns @c _No_tuple_element when
    931    * tuple_element would return an error.
    932    */
    933  template<int __i, typename _Tuple>
    934    struct _Safe_tuple_element
    935    : _Safe_tuple_element_impl<__i, _Tuple, 
    936                               (__i >= 0 && __i < tuple_size<_Tuple>::value)>
    937    {
    938    };
    939 
    940   /**
    941    *  Maps an argument to bind() into an actual argument to the bound
    942    *  function object [TR1 3.6.3/5]. Only the first parameter should
    943    *  be specified: the rest are used to determine among the various
    944    *  implementations. Note that, although this class is a function
    945    *  object, it isn't entirely normal because it takes only two
    946    *  parameters regardless of the number of parameters passed to the
    947    *  bind expression. The first parameter is the bound argument and
    948    *  the second parameter is a tuple containing references to the
    949    *  rest of the arguments.
    950    */
    951   template<typename _Arg,
    952            bool _IsBindExp = is_bind_expression<_Arg>::value,
    953            bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
    954     class _Mu;
    955 
    956   /**
    957    *  If the argument is reference_wrapper<_Tp>, returns the
    958    *  underlying reference. [TR1 3.6.3/5 bullet 1]
    959    */
    960   template<typename _Tp>
    961     class _Mu<reference_wrapper<_Tp>, false, false>
    962     {
    963     public:
    964       typedef _Tp& result_type;
    965 
    966       /* Note: This won't actually work for const volatile
    967        * reference_wrappers, because reference_wrapper::get() is const
    968        * but not volatile-qualified. This might be a defect in the TR.
    969        */
    970       template<typename _CVRef, typename _Tuple>
    971         result_type
    972         operator()(_CVRef& __arg, const _Tuple&) const volatile
    973         { return __arg.get(); }
    974     };
    975 
    976   /**
    977    *  If the argument is a bind expression, we invoke the underlying
    978    *  function object with the same cv-qualifiers as we are given and
    979    *  pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
    980    */
    981   template<typename _Arg>
    982     class _Mu<_Arg, true, false>
    983     {
    984     public:
    985       template<typename _Signature> class result;
    986 
    987       // Determine the result type when we pass the arguments along. This
    988       // involves passing along the cv-qualifiers placed on _Mu and
    989       // unwrapping the argument bundle.
    990       template<typename _CVMu, typename _CVArg, typename... _Args>
    991         class result<_CVMu(_CVArg, tuple<_Args...>)>
    992 	: public result_of<_CVArg(_Args...)> { };
    993 
    994       template<typename _CVArg, typename... _Args>
    995         typename result_of<_CVArg(_Args...)>::type
    996         operator()(_CVArg& __arg,
    997 		   const tuple<_Args...>& __tuple) const volatile
    998         {
    999 	  // Construct an index tuple and forward to __call
   1000 	  typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
   1001 	    _Indexes;
   1002 	  return this->__call(__arg, __tuple, _Indexes());
   1003 	}
   1004 
   1005     private:
   1006       // Invokes the underlying function object __arg by unpacking all
   1007       // of the arguments in the tuple. 
   1008       template<typename _CVArg, typename... _Args, int... _Indexes>
   1009         typename result_of<_CVArg(_Args...)>::type
   1010         __call(_CVArg& __arg, const tuple<_Args...>& __tuple,
   1011 	       const _Index_tuple<_Indexes...>&) const volatile
   1012         {
   1013 	  return __arg(_GLIBCXX_TR1 get<_Indexes>(__tuple)...);
   1014 	}
   1015     };
   1016 
   1017   /**
   1018    *  If the argument is a placeholder for the Nth argument, returns
   1019    *  a reference to the Nth argument to the bind function object.
   1020    *  [TR1 3.6.3/5 bullet 3]
   1021    */
   1022   template<typename _Arg>
   1023     class _Mu<_Arg, false, true>
   1024     {
   1025     public:
   1026       template<typename _Signature> class result;
   1027 
   1028       template<typename _CVMu, typename _CVArg, typename _Tuple>
   1029         class result<_CVMu(_CVArg, _Tuple)>
   1030         {
   1031 	  // Add a reference, if it hasn't already been done for us.
   1032 	  // This allows us to be a little bit sloppy in constructing
   1033 	  // the tuple that we pass to result_of<...>.
   1034 	  typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
   1035 						- 1), _Tuple>::type
   1036 	    __base_type;
   1037 
   1038 	public:
   1039 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
   1040 	  typedef typename add_lvalue_reference<__base_type>::type type;
   1041 #else
   1042 	  typedef typename add_reference<__base_type>::type type;
   1043 #endif
   1044 	};
   1045 
   1046       template<typename _Tuple>
   1047         typename result<_Mu(_Arg, _Tuple)>::type
   1048         operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
   1049         {
   1050 	  return ::std::_GLIBCXX_TR1 get<(is_placeholder<_Arg>::value
   1051 					  - 1)>(__tuple);
   1052 	}
   1053     };
   1054 
   1055   /**
   1056    *  If the argument is just a value, returns a reference to that
   1057    *  value. The cv-qualifiers on the reference are the same as the
   1058    *  cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
   1059    */
   1060   template<typename _Arg>
   1061     class _Mu<_Arg, false, false>
   1062     {
   1063     public:
   1064       template<typename _Signature> struct result;
   1065 
   1066       template<typename _CVMu, typename _CVArg, typename _Tuple>
   1067         struct result<_CVMu(_CVArg, _Tuple)>
   1068         {
   1069 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
   1070 	  typedef typename add_lvalue_reference<_CVArg>::type type;
   1071 #else
   1072 	  typedef typename add_reference<_CVArg>::type type;
   1073 #endif
   1074 	};
   1075 
   1076       // Pick up the cv-qualifiers of the argument
   1077       template<typename _CVArg, typename _Tuple>
   1078         _CVArg&
   1079         operator()(_CVArg& __arg, const _Tuple&) const volatile
   1080         { return __arg; }
   1081     };
   1082 
   1083   /**
   1084    *  Maps member pointers into instances of _Mem_fn but leaves all
   1085    *  other function objects untouched. Used by tr1::bind(). The
   1086    *  primary template handles the non--member-pointer case.
   1087    */
   1088   template<typename _Tp>
   1089     struct _Maybe_wrap_member_pointer
   1090     {
   1091       typedef _Tp type;
   1092       
   1093       static const _Tp&
   1094       __do_wrap(const _Tp& __x)
   1095       { return __x; }
   1096     };
   1097 
   1098   /**
   1099    *  Maps member pointers into instances of _Mem_fn but leaves all
   1100    *  other function objects untouched. Used by tr1::bind(). This
   1101    *  partial specialization handles the member pointer case.
   1102    */
   1103   template<typename _Tp, typename _Class>
   1104     struct _Maybe_wrap_member_pointer<_Tp _Class::*>
   1105     {
   1106       typedef _Mem_fn<_Tp _Class::*> type;
   1107       
   1108       static type
   1109       __do_wrap(_Tp _Class::* __pm)
   1110       { return type(__pm); }
   1111     };
   1112 
   1113   /// Type of the function object returned from bind().
   1114   template<typename _Signature>
   1115     struct _Bind;
   1116 
   1117    template<typename _Functor, typename... _Bound_args>
   1118     class _Bind<_Functor(_Bound_args...)>
   1119     : public _Weak_result_type<_Functor>
   1120     {
   1121       typedef _Bind __self_type;
   1122       typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type 
   1123         _Bound_indexes;
   1124 
   1125       _Functor _M_f;
   1126       tuple<_Bound_args...> _M_bound_args;
   1127 
   1128       // Call unqualified
   1129       template<typename... _Args, int... _Indexes>
   1130         typename result_of<
   1131                    _Functor(typename result_of<_Mu<_Bound_args> 
   1132                             (_Bound_args, tuple<_Args...>)>::type...)
   1133                  >::type
   1134         __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
   1135         {
   1136           return _M_f(_Mu<_Bound_args>()
   1137                       (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...);
   1138         }
   1139 
   1140       // Call as const
   1141       template<typename... _Args, int... _Indexes>
   1142         typename result_of<
   1143                    const _Functor(typename result_of<_Mu<_Bound_args> 
   1144                                     (const _Bound_args, tuple<_Args...>)
   1145                                   >::type...)>::type
   1146         __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
   1147         {
   1148           return _M_f(_Mu<_Bound_args>()
   1149                       (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...);
   1150         }
   1151 
   1152       // Call as volatile
   1153       template<typename... _Args, int... _Indexes>
   1154         typename result_of<
   1155                    volatile _Functor(typename result_of<_Mu<_Bound_args> 
   1156                                     (volatile _Bound_args, tuple<_Args...>)
   1157                                   >::type...)>::type
   1158         __call(const tuple<_Args...>& __args, 
   1159                _Index_tuple<_Indexes...>) volatile
   1160         {
   1161           return _M_f(_Mu<_Bound_args>()
   1162                       (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...);
   1163         }
   1164 
   1165       // Call as const volatile
   1166       template<typename... _Args, int... _Indexes>
   1167         typename result_of<
   1168                    const volatile _Functor(typename result_of<_Mu<_Bound_args> 
   1169                                     (const volatile _Bound_args, 
   1170                                      tuple<_Args...>)
   1171                                   >::type...)>::type
   1172         __call(const tuple<_Args...>& __args, 
   1173                _Index_tuple<_Indexes...>) const volatile
   1174         {
   1175           return _M_f(_Mu<_Bound_args>()
   1176                       (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...);
   1177         }
   1178 
   1179      public:
   1180       explicit _Bind(_Functor __f, _Bound_args... __bound_args)
   1181         : _M_f(__f), _M_bound_args(__bound_args...) { }
   1182 
   1183       // Call unqualified
   1184       template<typename... _Args>
   1185         typename result_of<
   1186                    _Functor(typename result_of<_Mu<_Bound_args> 
   1187                             (_Bound_args, tuple<_Args...>)>::type...)
   1188                  >::type
   1189         operator()(_Args&... __args)
   1190         {
   1191           return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes());
   1192         }
   1193 
   1194       // Call as const
   1195       template<typename... _Args>
   1196         typename result_of<
   1197                    const _Functor(typename result_of<_Mu<_Bound_args> 
   1198                             (const _Bound_args, tuple<_Args...>)>::type...)
   1199                  >::type
   1200         operator()(_Args&... __args) const
   1201         {
   1202           return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes());
   1203         }
   1204 
   1205 
   1206       // Call as volatile
   1207       template<typename... _Args>
   1208         typename result_of<
   1209                    volatile _Functor(typename result_of<_Mu<_Bound_args> 
   1210                             (volatile _Bound_args, tuple<_Args...>)>::type...)
   1211                  >::type
   1212         operator()(_Args&... __args) volatile
   1213         {
   1214           return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes());
   1215         }
   1216 
   1217 
   1218       // Call as const volatile
   1219       template<typename... _Args>
   1220         typename result_of<
   1221                    const volatile _Functor(typename result_of<_Mu<_Bound_args> 
   1222                             (const volatile _Bound_args, 
   1223                              tuple<_Args...>)>::type...)
   1224                  >::type
   1225         operator()(_Args&... __args) const volatile
   1226         {
   1227           return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes());
   1228         }
   1229     };
   1230 
   1231   /// Type of the function object returned from bind<R>().
   1232   template<typename _Result, typename _Signature>
   1233     struct _Bind_result;
   1234 
   1235   template<typename _Result, typename _Functor, typename... _Bound_args>
   1236     class _Bind_result<_Result, _Functor(_Bound_args...)>
   1237     {
   1238       typedef _Bind_result __self_type;
   1239       typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type 
   1240         _Bound_indexes;
   1241 
   1242       _Functor _M_f;
   1243       tuple<_Bound_args...> _M_bound_args;
   1244 
   1245       // Call unqualified
   1246       template<typename... _Args, int... _Indexes>
   1247         _Result
   1248         __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
   1249         {
   1250           return _M_f(_Mu<_Bound_args>()
   1251                       (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...);
   1252         }
   1253 
   1254       // Call as const
   1255       template<typename... _Args, int... _Indexes>
   1256         _Result
   1257         __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
   1258         {
   1259           return _M_f(_Mu<_Bound_args>()
   1260                       (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...);
   1261         }
   1262 
   1263       // Call as volatile
   1264       template<typename... _Args, int... _Indexes>
   1265         _Result
   1266         __call(const tuple<_Args...>& __args, 
   1267                _Index_tuple<_Indexes...>) volatile
   1268         {
   1269           return _M_f(_Mu<_Bound_args>()
   1270                       (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...);
   1271         }
   1272 
   1273       // Call as const volatile
   1274       template<typename... _Args, int... _Indexes>
   1275         _Result
   1276         __call(const tuple<_Args...>& __args, 
   1277                _Index_tuple<_Indexes...>) const volatile
   1278         {
   1279           return _M_f(_Mu<_Bound_args>()
   1280                       (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...);
   1281         }
   1282 
   1283     public:
   1284       typedef _Result result_type;
   1285 
   1286       explicit
   1287       _Bind_result(_Functor __f, _Bound_args... __bound_args)
   1288       : _M_f(__f), _M_bound_args(__bound_args...) { }
   1289 
   1290       // Call unqualified
   1291       template<typename... _Args>
   1292         result_type
   1293         operator()(_Args&... __args)
   1294         {
   1295           return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes());
   1296         }
   1297 
   1298       // Call as const
   1299       template<typename... _Args>
   1300         result_type
   1301         operator()(_Args&... __args) const
   1302         {
   1303           return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes());
   1304         }
   1305 
   1306       // Call as volatile
   1307       template<typename... _Args>
   1308         result_type
   1309         operator()(_Args&... __args) volatile
   1310         {
   1311           return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes());
   1312         }
   1313 
   1314       // Call as const volatile
   1315       template<typename... _Args>
   1316         result_type
   1317         operator()(_Args&... __args) const volatile
   1318         {
   1319           return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes());
   1320         }
   1321     };
   1322 
   1323   /// Class template _Bind is always a bind expression.
   1324   template<typename _Signature>
   1325     struct is_bind_expression<_Bind<_Signature> >
   1326     { static const bool value = true; };
   1327 
   1328   template<typename _Signature>
   1329     const bool is_bind_expression<_Bind<_Signature> >::value;
   1330 
   1331   /// Class template _Bind_result is always a bind expression.
   1332   template<typename _Result, typename _Signature>
   1333     struct is_bind_expression<_Bind_result<_Result, _Signature> >
   1334     { static const bool value = true; };
   1335 
   1336   template<typename _Result, typename _Signature>
   1337     const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value;
   1338 
   1339   /// bind
   1340   template<typename _Functor, typename... _ArgTypes>
   1341     inline
   1342     _Bind<typename _Maybe_wrap_member_pointer<_Functor>::type(_ArgTypes...)>
   1343     bind(_Functor __f, _ArgTypes... __args)
   1344     {
   1345       typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
   1346       typedef typename __maybe_type::type __functor_type;
   1347       typedef _Bind<__functor_type(_ArgTypes...)> __result_type;
   1348       return __result_type(__maybe_type::__do_wrap(__f), __args...);
   1349     } 
   1350 
   1351   template<typename _Result, typename _Functor, typename... _ArgTypes>
   1352     inline
   1353     _Bind_result<_Result,
   1354 		 typename _Maybe_wrap_member_pointer<_Functor>::type
   1355                             (_ArgTypes...)>
   1356     bind(_Functor __f, _ArgTypes... __args)
   1357     {
   1358       typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
   1359       typedef typename __maybe_type::type __functor_type;
   1360       typedef _Bind_result<_Result, __functor_type(_ArgTypes...)>
   1361 	__result_type;
   1362       return __result_type(__maybe_type::__do_wrap(__f), __args...);
   1363     }
   1364 
   1365   /**
   1366    *  @brief Exception class thrown when class template function's
   1367    *  operator() is called with an empty target.
   1368    *
   1369    */
   1370   class bad_function_call : public std::exception { };
   1371 
   1372   /**
   1373    *  The integral constant expression 0 can be converted into a
   1374    *  pointer to this type. It is used by the function template to
   1375    *  accept NULL pointers.
   1376    */
   1377   struct _M_clear_type;
   1378 
   1379   /**
   1380    *  Trait identifying "location-invariant" types, meaning that the
   1381    *  address of the object (or any of its members) will not escape.
   1382    *  Also implies a trivial copy constructor and assignment operator.
   1383    */
   1384   template<typename _Tp>
   1385     struct __is_location_invariant
   1386     : integral_constant<bool,
   1387                         (is_pointer<_Tp>::value
   1388                          || is_member_pointer<_Tp>::value)>
   1389     {
   1390     };
   1391 
   1392   class _Undefined_class;
   1393 
   1394   union _Nocopy_types
   1395   {
   1396     void*       _M_object;
   1397     const void* _M_const_object;
   1398     void (*_M_function_pointer)();
   1399     void (_Undefined_class::*_M_member_pointer)();
   1400   };
   1401 
   1402   union _Any_data
   1403   {
   1404     void*       _M_access()       { return &_M_pod_data[0]; }
   1405     const void* _M_access() const { return &_M_pod_data[0]; }
   1406 
   1407     template<typename _Tp>
   1408       _Tp&
   1409       _M_access()
   1410       { return *static_cast<_Tp*>(_M_access()); }
   1411 
   1412     template<typename _Tp>
   1413       const _Tp&
   1414       _M_access() const
   1415       { return *static_cast<const _Tp*>(_M_access()); }
   1416 
   1417     _Nocopy_types _M_unused;
   1418     char _M_pod_data[sizeof(_Nocopy_types)];
   1419   };
   1420 
   1421   enum _Manager_operation
   1422   {
   1423     __get_type_info,
   1424     __get_functor_ptr,
   1425     __clone_functor,
   1426     __destroy_functor
   1427   };
   1428 
   1429   // Simple type wrapper that helps avoid annoying const problems
   1430   // when casting between void pointers and pointers-to-pointers.
   1431   template<typename _Tp>
   1432     struct _Simple_type_wrapper
   1433     {
   1434       _Simple_type_wrapper(_Tp __value) : __value(__value) { }
   1435 
   1436       _Tp __value;
   1437     };
   1438 
   1439   template<typename _Tp>
   1440     struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
   1441     : __is_location_invariant<_Tp>
   1442     {
   1443     };
   1444 
   1445   // Converts a reference to a function object into a callable
   1446   // function object.
   1447   template<typename _Functor>
   1448     inline _Functor&
   1449     __callable_functor(_Functor& __f)
   1450     { return __f; }
   1451 
   1452   template<typename _Member, typename _Class>
   1453     inline _Mem_fn<_Member _Class::*>
   1454     __callable_functor(_Member _Class::* &__p)
   1455     { return mem_fn(__p); }
   1456 
   1457   template<typename _Member, typename _Class>
   1458     inline _Mem_fn<_Member _Class::*>
   1459     __callable_functor(_Member _Class::* const &__p)
   1460     { return mem_fn(__p); }
   1461 
   1462   template<typename _Signature>
   1463     class function;
   1464 
   1465   /// Base class of all polymorphic function object wrappers.
   1466   class _Function_base
   1467   {
   1468   public:
   1469     static const std::size_t _M_max_size = sizeof(_Nocopy_types);
   1470     static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
   1471 
   1472     template<typename _Functor>
   1473       class _Base_manager
   1474       {
   1475       protected:
   1476 	static const bool __stored_locally =
   1477         (__is_location_invariant<_Functor>::value
   1478          && sizeof(_Functor) <= _M_max_size
   1479          && __alignof__(_Functor) <= _M_max_align
   1480          && (_M_max_align % __alignof__(_Functor) == 0));
   1481 	
   1482 	typedef integral_constant<bool, __stored_locally> _Local_storage;
   1483 
   1484 	// Retrieve a pointer to the function object
   1485 	static _Functor*
   1486 	_M_get_pointer(const _Any_data& __source)
   1487 	{
   1488 	  const _Functor* __ptr =
   1489 	    __stored_locally? &__source._M_access<_Functor>()
   1490 	    /* have stored a pointer */ : __source._M_access<_Functor*>();
   1491 	  return const_cast<_Functor*>(__ptr);
   1492 	}
   1493 
   1494 	// Clone a location-invariant function object that fits within
   1495 	// an _Any_data structure.
   1496 	static void
   1497 	_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
   1498 	{
   1499 	  new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
   1500 	}
   1501 
   1502 	// Clone a function object that is not location-invariant or
   1503 	// that cannot fit into an _Any_data structure.
   1504 	static void
   1505 	_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
   1506 	{
   1507 	  __dest._M_access<_Functor*>() =
   1508 	    new _Functor(*__source._M_access<_Functor*>());
   1509 	}
   1510 
   1511 	// Destroying a location-invariant object may still require
   1512 	// destruction.
   1513 	static void
   1514 	_M_destroy(_Any_data& __victim, true_type)
   1515 	{
   1516 	  __victim._M_access<_Functor>().~_Functor();
   1517 	}
   1518 	
   1519 	// Destroying an object located on the heap.
   1520 	static void
   1521 	_M_destroy(_Any_data& __victim, false_type)
   1522 	{
   1523 	  delete __victim._M_access<_Functor*>();
   1524 	}
   1525 	
   1526       public:
   1527 	static bool
   1528 	_M_manager(_Any_data& __dest, const _Any_data& __source,
   1529 		   _Manager_operation __op)
   1530 	{
   1531 	  switch (__op)
   1532 	    {
   1533 #ifdef __GXX_RTTI
   1534 	    case __get_type_info:
   1535 	      __dest._M_access<const type_info*>() = &typeid(_Functor);
   1536 	      break;
   1537 #endif
   1538 	    case __get_functor_ptr:
   1539 	      __dest._M_access<_Functor*>() = _M_get_pointer(__source);
   1540 	      break;
   1541 	      
   1542 	    case __clone_functor:
   1543 	      _M_clone(__dest, __source, _Local_storage());
   1544 	      break;
   1545 
   1546 	    case __destroy_functor:
   1547 	      _M_destroy(__dest, _Local_storage());
   1548 	      break;
   1549 	    }
   1550 	  return false;
   1551 	}
   1552 
   1553 	static void
   1554 	_M_init_functor(_Any_data& __functor, const _Functor& __f)
   1555 	{ _M_init_functor(__functor, __f, _Local_storage()); }
   1556 	
   1557 	template<typename _Signature>
   1558 	  static bool
   1559 	  _M_not_empty_function(const function<_Signature>& __f)
   1560 	  { return __f; }
   1561 
   1562 	template<typename _Tp>
   1563 	  static bool
   1564 	  _M_not_empty_function(const _Tp*& __fp)
   1565 	  { return __fp; }
   1566 
   1567 	template<typename _Class, typename _Tp>
   1568 	  static bool
   1569 	  _M_not_empty_function(_Tp _Class::* const& __mp)
   1570 	  { return __mp; }
   1571 
   1572 	template<typename _Tp>
   1573 	  static bool
   1574 	  _M_not_empty_function(const _Tp&)
   1575 	  { return true; }
   1576 
   1577       private:
   1578 	static void
   1579 	_M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
   1580 	{ new (__functor._M_access()) _Functor(__f); }
   1581 
   1582 	static void
   1583 	_M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
   1584 	{ __functor._M_access<_Functor*>() = new _Functor(__f); }
   1585       };
   1586 
   1587     template<typename _Functor>
   1588       class _Ref_manager : public _Base_manager<_Functor*>
   1589       {
   1590 	typedef _Function_base::_Base_manager<_Functor*> _Base;
   1591 
   1592     public:
   1593 	static bool
   1594 	_M_manager(_Any_data& __dest, const _Any_data& __source,
   1595 		   _Manager_operation __op)
   1596 	{
   1597 	  switch (__op)
   1598 	    {
   1599 #ifdef __GXX_RTTI
   1600 	    case __get_type_info:
   1601 	      __dest._M_access<const type_info*>() = &typeid(_Functor);
   1602 	      break;
   1603 #endif
   1604 	    case __get_functor_ptr:
   1605 	      __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
   1606 	      return is_const<_Functor>::value;
   1607 	      break;
   1608 	      
   1609 	    default:
   1610 	      _Base::_M_manager(__dest, __source, __op);
   1611 	    }
   1612 	  return false;
   1613 	}
   1614 
   1615 	static void
   1616 	_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
   1617 	{
   1618 	  // TBD: Use address_of function instead.
   1619 	  _Base::_M_init_functor(__functor, &__f.get());
   1620 	}
   1621       };
   1622 
   1623     _Function_base() : _M_manager(0) { }
   1624     
   1625     ~_Function_base()
   1626     {
   1627       if (_M_manager)
   1628 	_M_manager(_M_functor, _M_functor, __destroy_functor);
   1629     }
   1630 
   1631 
   1632     bool _M_empty() const { return !_M_manager; }
   1633 
   1634     typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
   1635                                   _Manager_operation);
   1636 
   1637     _Any_data     _M_functor;
   1638     _Manager_type _M_manager;
   1639   };
   1640 
   1641   template<typename _Signature, typename _Functor>
   1642     class _Function_handler;
   1643 
   1644   template<typename _Res, typename _Functor, typename... _ArgTypes>
   1645     class _Function_handler<_Res(_ArgTypes...), _Functor>
   1646     : public _Function_base::_Base_manager<_Functor>
   1647     {
   1648       typedef _Function_base::_Base_manager<_Functor> _Base;
   1649 
   1650     public:
   1651       static _Res
   1652       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
   1653       {
   1654         return (*_Base::_M_get_pointer(__functor))(__args...);
   1655       }
   1656     };
   1657 
   1658   template<typename _Functor, typename... _ArgTypes>
   1659     class _Function_handler<void(_ArgTypes...), _Functor>
   1660     : public _Function_base::_Base_manager<_Functor>
   1661     {
   1662       typedef _Function_base::_Base_manager<_Functor> _Base;
   1663 
   1664      public:
   1665       static void
   1666       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
   1667       {
   1668         (*_Base::_M_get_pointer(__functor))(__args...);
   1669       }
   1670     };
   1671 
   1672   template<typename _Res, typename _Functor, typename... _ArgTypes>
   1673     class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
   1674     : public _Function_base::_Ref_manager<_Functor>
   1675     {
   1676       typedef _Function_base::_Ref_manager<_Functor> _Base;
   1677 
   1678      public:
   1679       static _Res
   1680       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
   1681       {
   1682         return 
   1683           __callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
   1684       }
   1685     };
   1686 
   1687   template<typename _Functor, typename... _ArgTypes>
   1688     class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
   1689     : public _Function_base::_Ref_manager<_Functor>
   1690     {
   1691       typedef _Function_base::_Ref_manager<_Functor> _Base;
   1692 
   1693      public:
   1694       static void
   1695       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
   1696       {
   1697         __callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
   1698       }
   1699     };
   1700 
   1701   template<typename _Class, typename _Member, typename _Res, 
   1702            typename... _ArgTypes>
   1703     class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
   1704     : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
   1705     {
   1706       typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
   1707         _Base;
   1708 
   1709      public:
   1710       static _Res
   1711       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
   1712       {
   1713         return _GLIBCXX_TR1
   1714 	  mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
   1715       }
   1716     };
   1717 
   1718   template<typename _Class, typename _Member, typename... _ArgTypes>
   1719     class _Function_handler<void(_ArgTypes...), _Member _Class::*>
   1720     : public _Function_base::_Base_manager<
   1721                  _Simple_type_wrapper< _Member _Class::* > >
   1722     {
   1723       typedef _Member _Class::* _Functor;
   1724       typedef _Simple_type_wrapper<_Functor> _Wrapper;
   1725       typedef _Function_base::_Base_manager<_Wrapper> _Base;
   1726 
   1727      public:
   1728       static bool
   1729       _M_manager(_Any_data& __dest, const _Any_data& __source,
   1730                  _Manager_operation __op)
   1731       {
   1732         switch (__op)
   1733 	  {
   1734 #ifdef __GXX_RTTI
   1735 	  case __get_type_info:
   1736 	    __dest._M_access<const type_info*>() = &typeid(_Functor);
   1737 	    break;
   1738 #endif	    
   1739 	  case __get_functor_ptr:
   1740 	    __dest._M_access<_Functor*>() =
   1741 	      &_Base::_M_get_pointer(__source)->__value;
   1742 	    break;
   1743 	    
   1744 	  default:
   1745 	    _Base::_M_manager(__dest, __source, __op);
   1746 	  }
   1747         return false;
   1748       }
   1749 
   1750       static void
   1751       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
   1752       {
   1753         _GLIBCXX_TR1
   1754 	  mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
   1755       }
   1756     };
   1757 
   1758   /// class function
   1759   template<typename _Res, typename... _ArgTypes>
   1760     class function<_Res(_ArgTypes...)>
   1761     : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
   1762       private _Function_base
   1763     {
   1764       /// This class is used to implement the safe_bool idiom.
   1765       struct _Hidden_type
   1766       {
   1767 	_Hidden_type* _M_bool;
   1768       };
   1769 
   1770       /// This typedef is used to implement the safe_bool idiom.
   1771       typedef _Hidden_type* _Hidden_type::* _Safe_bool;
   1772 
   1773       typedef _Res _Signature_type(_ArgTypes...);
   1774       
   1775       struct _Useless { };
   1776       
   1777     public:
   1778       typedef _Res result_type;
   1779       
   1780       // [3.7.2.1] construct/copy/destroy
   1781       
   1782       /**
   1783        *  @brief Default construct creates an empty function call wrapper.
   1784        *  @post @c !(bool)*this
   1785        */
   1786       function() : _Function_base() { }
   1787       
   1788       /**
   1789        *  @brief Default construct creates an empty function call wrapper.
   1790        *  @post @c !(bool)*this
   1791        */
   1792       function(_M_clear_type*) : _Function_base() { }
   1793       
   1794       /**
   1795        *  @brief %Function copy constructor.
   1796        *  @param x A %function object with identical call signature.
   1797        *  @pre @c (bool)*this == (bool)x
   1798        *
   1799        *  The newly-created %function contains a copy of the target of @a
   1800        *  x (if it has one).
   1801        */
   1802       function(const function& __x);
   1803       
   1804       /**
   1805        *  @brief Builds a %function that targets a copy of the incoming
   1806        *  function object.
   1807        *  @param f A %function object that is callable with parameters of
   1808        *  type @c T1, @c T2, ..., @c TN and returns a value convertible
   1809        *  to @c Res.
   1810        *
   1811        *  The newly-created %function object will target a copy of @a
   1812        *  f. If @a f is @c reference_wrapper<F>, then this function
   1813        *  object will contain a reference to the function object @c
   1814        *  f.get(). If @a f is a NULL function pointer or NULL
   1815        *  pointer-to-member, the newly-created object will be empty.
   1816        *
   1817        *  If @a f is a non-NULL function pointer or an object of type @c
   1818        *  reference_wrapper<F>, this function will not throw.
   1819        */
   1820       template<typename _Functor>
   1821         function(_Functor __f,
   1822                  typename __gnu_cxx::__enable_if<
   1823                            !is_integral<_Functor>::value, _Useless>::__type
   1824                    = _Useless());
   1825 
   1826       /**
   1827        *  @brief %Function assignment operator.
   1828        *  @param x A %function with identical call signature.
   1829        *  @post @c (bool)*this == (bool)x
   1830        *  @returns @c *this
   1831        *
   1832        *  The target of @a x is copied to @c *this. If @a x has no
   1833        *  target, then @c *this will be empty.
   1834        *
   1835        *  If @a x targets a function pointer or a reference to a function
   1836        *  object, then this operation will not throw an exception.
   1837        */
   1838       function&
   1839       operator=(const function& __x)
   1840       {
   1841         function(__x).swap(*this);
   1842         return *this;
   1843       }
   1844 
   1845       /**
   1846        *  @brief %Function assignment to zero.
   1847        *  @post @c !(bool)*this
   1848        *  @returns @c *this
   1849        *
   1850        *  The target of @a *this is deallocated, leaving it empty.
   1851        */
   1852       function&
   1853       operator=(_M_clear_type*)
   1854       {
   1855         if (_M_manager)
   1856 	  {
   1857 	    _M_manager(_M_functor, _M_functor, __destroy_functor);
   1858 	    _M_manager = 0;
   1859 	    _M_invoker = 0;
   1860 	  }
   1861         return *this;
   1862       }
   1863 
   1864       /**
   1865        *  @brief %Function assignment to a new target.
   1866        *  @param f A %function object that is callable with parameters of
   1867        *  type @c T1, @c T2, ..., @c TN and returns a value convertible
   1868        *  to @c Res.
   1869        *  @return @c *this
   1870        *
   1871        *  This  %function object wrapper will target a copy of @a
   1872        *  f. If @a f is @c reference_wrapper<F>, then this function
   1873        *  object will contain a reference to the function object @c
   1874        *  f.get(). If @a f is a NULL function pointer or NULL
   1875        *  pointer-to-member, @c this object will be empty.
   1876        *
   1877        *  If @a f is a non-NULL function pointer or an object of type @c
   1878        *  reference_wrapper<F>, this function will not throw.
   1879        */
   1880       template<typename _Functor>
   1881         typename __gnu_cxx::__enable_if<!is_integral<_Functor>::value,
   1882 	                                function&>::__type
   1883 	operator=(_Functor __f)
   1884 	{
   1885 	  function(__f).swap(*this);
   1886 	  return *this;
   1887 	}
   1888 
   1889       // [3.7.2.2] function modifiers
   1890       
   1891       /**
   1892        *  @brief Swap the targets of two %function objects.
   1893        *  @param f A %function with identical call signature.
   1894        *
   1895        *  Swap the targets of @c this function object and @a f. This
   1896        *  function will not throw an exception.
   1897        */
   1898       void swap(function& __x)
   1899       {
   1900 	_Any_data __old_functor = _M_functor;
   1901 	_M_functor = __x._M_functor;
   1902 	__x._M_functor = __old_functor;
   1903 	_Manager_type __old_manager = _M_manager;
   1904 	_M_manager = __x._M_manager;
   1905 	__x._M_manager = __old_manager;
   1906 	_Invoker_type __old_invoker = _M_invoker;
   1907 	_M_invoker = __x._M_invoker;
   1908 	__x._M_invoker = __old_invoker;
   1909       }
   1910       
   1911       // [3.7.2.3] function capacity
   1912 
   1913       /**
   1914        *  @brief Determine if the %function wrapper has a target.
   1915        *
   1916        *  @return @c true when this %function object contains a target,
   1917        *  or @c false when it is empty.
   1918        *
   1919        *  This function will not throw an exception.
   1920        */
   1921       operator _Safe_bool() const
   1922       {
   1923         if (_M_empty())
   1924 	  return 0;
   1925 	else
   1926 	  return &_Hidden_type::_M_bool;
   1927       }
   1928 
   1929       // [3.7.2.4] function invocation
   1930 
   1931       /**
   1932        *  @brief Invokes the function targeted by @c *this.
   1933        *  @returns the result of the target.
   1934        *  @throws bad_function_call when @c !(bool)*this
   1935        *
   1936        *  The function call operator invokes the target function object
   1937        *  stored by @c this.
   1938        */
   1939       _Res operator()(_ArgTypes... __args) const;
   1940 
   1941 #ifdef __GXX_RTTI
   1942       // [3.7.2.5] function target access
   1943       /**
   1944        *  @brief Determine the type of the target of this function object
   1945        *  wrapper.
   1946        *
   1947        *  @returns the type identifier of the target function object, or
   1948        *  @c typeid(void) if @c !(bool)*this.
   1949        *
   1950        *  This function will not throw an exception.
   1951        */
   1952       const type_info& target_type() const;
   1953       
   1954       /**
   1955        *  @brief Access the stored target function object.
   1956        *
   1957        *  @return Returns a pointer to the stored target function object,
   1958        *  if @c typeid(Functor).equals(target_type()); otherwise, a NULL
   1959        *  pointer.
   1960        *
   1961        * This function will not throw an exception.
   1962        */
   1963       template<typename _Functor>       _Functor* target();
   1964       
   1965       /// @overload
   1966       template<typename _Functor> const _Functor* target() const;
   1967 #endif
   1968 
   1969     private:
   1970       // [3.7.2.6] undefined operators
   1971       template<typename _Function>
   1972 	void operator==(const function<_Function>&) const;
   1973       template<typename _Function>
   1974 	void operator!=(const function<_Function>&) const;
   1975 
   1976       typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
   1977       _Invoker_type _M_invoker;
   1978   };
   1979 
   1980   template<typename _Res, typename... _ArgTypes>
   1981     function<_Res(_ArgTypes...)>::
   1982     function(const function& __x)
   1983     : _Function_base()
   1984     {
   1985       if (__x)
   1986 	{
   1987 	  _M_invoker = __x._M_invoker;
   1988 	  _M_manager = __x._M_manager;
   1989 	  __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
   1990 	}
   1991     }
   1992 
   1993   template<typename _Res, typename... _ArgTypes>
   1994     template<typename _Functor>
   1995       function<_Res(_ArgTypes...)>::
   1996       function(_Functor __f,
   1997 	       typename __gnu_cxx::__enable_if<
   1998                        !is_integral<_Functor>::value, _Useless>::__type)
   1999       : _Function_base()
   2000       {
   2001 	typedef _Function_handler<_Signature_type, _Functor> _My_handler;
   2002 
   2003 	if (_My_handler::_M_not_empty_function(__f))
   2004 	  {
   2005 	    _M_invoker = &_My_handler::_M_invoke;
   2006 	    _M_manager = &_My_handler::_M_manager;
   2007 	    _My_handler::_M_init_functor(_M_functor, __f);
   2008 	  }
   2009       }
   2010 
   2011   template<typename _Res, typename... _ArgTypes>
   2012     _Res
   2013     function<_Res(_ArgTypes...)>::
   2014     operator()(_ArgTypes... __args) const
   2015     {
   2016       if (_M_empty())
   2017         {
   2018 #if __EXCEPTIONS
   2019           throw bad_function_call();
   2020 #else
   2021           __builtin_abort();
   2022 #endif
   2023         }
   2024       return _M_invoker(_M_functor, __args...);
   2025     }
   2026 
   2027 #ifdef __GXX_RTTI
   2028   template<typename _Res, typename... _ArgTypes>
   2029     const type_info&
   2030     function<_Res(_ArgTypes...)>::
   2031     target_type() const
   2032     {
   2033       if (_M_manager)
   2034         {
   2035           _Any_data __typeinfo_result;
   2036           _M_manager(__typeinfo_result, _M_functor, __get_type_info);
   2037           return *__typeinfo_result._M_access<const type_info*>();
   2038         }
   2039       else
   2040 	return typeid(void);
   2041     }
   2042 
   2043   template<typename _Res, typename... _ArgTypes>
   2044     template<typename _Functor>
   2045       _Functor*
   2046       function<_Res(_ArgTypes...)>::
   2047       target()
   2048       {
   2049 	if (typeid(_Functor) == target_type() && _M_manager)
   2050 	  {
   2051 	    _Any_data __ptr;
   2052 	    if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
   2053 		&& !is_const<_Functor>::value)
   2054 	      return 0;
   2055 	    else
   2056 	      return __ptr._M_access<_Functor*>();
   2057 	  }
   2058 	else
   2059 	  return 0;
   2060       }
   2061 
   2062   template<typename _Res, typename... _ArgTypes>
   2063     template<typename _Functor>
   2064       const _Functor*
   2065       function<_Res(_ArgTypes...)>::
   2066       target() const
   2067       {
   2068 	if (typeid(_Functor) == target_type() && _M_manager)
   2069 	  {
   2070 	    _Any_data __ptr;
   2071 	    _M_manager(__ptr, _M_functor, __get_functor_ptr);
   2072 	    return __ptr._M_access<const _Functor*>();
   2073 	  }
   2074 	else
   2075 	  return 0;
   2076       }
   2077 #endif
   2078 
   2079   // [3.7.2.7] null pointer comparisons
   2080 
   2081   /**
   2082    *  @brief Compares a polymorphic function object wrapper against 0
   2083    *  (the NULL pointer).
   2084    *  @returns @c true if the wrapper has no target, @c false otherwise
   2085    *
   2086    *  This function will not throw an exception.
   2087    */
   2088   template<typename _Signature>
   2089     inline bool
   2090     operator==(const function<_Signature>& __f, _M_clear_type*)
   2091     { return !__f; }
   2092 
   2093   /// @overload
   2094   template<typename _Signature>
   2095     inline bool
   2096     operator==(_M_clear_type*, const function<_Signature>& __f)
   2097     { return !__f; }
   2098 
   2099   /**
   2100    *  @brief Compares a polymorphic function object wrapper against 0
   2101    *  (the NULL pointer).
   2102    *  @returns @c false if the wrapper has no target, @c true otherwise
   2103    *
   2104    *  This function will not throw an exception.
   2105    */
   2106   template<typename _Signature>
   2107     inline bool
   2108     operator!=(const function<_Signature>& __f, _M_clear_type*)
   2109     { return __f; }
   2110 
   2111   /// @overload
   2112   template<typename _Signature>
   2113     inline bool
   2114     operator!=(_M_clear_type*, const function<_Signature>& __f)
   2115     { return __f; }
   2116 
   2117   // [3.7.2.8] specialized algorithms
   2118 
   2119   /**
   2120    *  @brief Swap the targets of two polymorphic function object wrappers.
   2121    *
   2122    *  This function will not throw an exception.
   2123    */
   2124   template<typename _Signature>
   2125     inline void
   2126     swap(function<_Signature>& __x, function<_Signature>& __y)
   2127     { __x.swap(__y); }
   2128 
   2129 _GLIBCXX_END_NAMESPACE_TR1
   2130 }
   2131