Home | History | Annotate | Download | only in python2.7
      1 /* The PyObject_ memory family:  high-level object memory interfaces.
      2    See pymem.h for the low-level PyMem_ family.
      3 */
      4 
      5 #ifndef Py_OBJIMPL_H
      6 #define Py_OBJIMPL_H
      7 
      8 #include "pymem.h"
      9 
     10 #ifdef __cplusplus
     11 extern "C" {
     12 #endif
     13 
     14 /* BEWARE:
     15 
     16    Each interface exports both functions and macros.  Extension modules should
     17    use the functions, to ensure binary compatibility across Python versions.
     18    Because the Python implementation is free to change internal details, and
     19    the macros may (or may not) expose details for speed, if you do use the
     20    macros you must recompile your extensions with each Python release.
     21 
     22    Never mix calls to PyObject_ memory functions with calls to the platform
     23    malloc/realloc/ calloc/free, or with calls to PyMem_.
     24 */
     25 
     26 /*
     27 Functions and macros for modules that implement new object types.
     28 
     29  - PyObject_New(type, typeobj) allocates memory for a new object of the given
     30    type, and initializes part of it.  'type' must be the C structure type used
     31    to represent the object, and 'typeobj' the address of the corresponding
     32    type object.  Reference count and type pointer are filled in; the rest of
     33    the bytes of the object are *undefined*!  The resulting expression type is
     34    'type *'.  The size of the object is determined by the tp_basicsize field
     35    of the type object.
     36 
     37  - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
     38    object with room for n items.  In addition to the refcount and type pointer
     39    fields, this also fills in the ob_size field.
     40 
     41  - PyObject_Del(op) releases the memory allocated for an object.  It does not
     42    run a destructor -- it only frees the memory.  PyObject_Free is identical.
     43 
     44  - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
     45    allocate memory.  Instead of a 'type' parameter, they take a pointer to a
     46    new object (allocated by an arbitrary allocator), and initialize its object
     47    header fields.
     48 
     49 Note that objects created with PyObject_{New, NewVar} are allocated using the
     50 specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
     51 enabled.  In addition, a special debugging allocator is used if PYMALLOC_DEBUG
     52 is also #defined.
     53 
     54 In case a specific form of memory management is needed (for example, if you
     55 must use the platform malloc heap(s), or shared memory, or C++ local storage or
     56 operator new), you must first allocate the object with your custom allocator,
     57 then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
     58 specific fields:  reference count, type pointer, possibly others.  You should
     59 be aware that Python no control over these objects because they don't
     60 cooperate with the Python memory manager.  Such objects may not be eligible
     61 for automatic garbage collection and you have to make sure that they are
     62 released accordingly whenever their destructor gets called (cf. the specific
     63 form of memory management you're using).
     64 
     65 Unless you have specific memory management requirements, use
     66 PyObject_{New, NewVar, Del}.
     67 */
     68 
     69 /*
     70  * Raw object memory interface
     71  * ===========================
     72  */
     73 
     74 /* Functions to call the same malloc/realloc/free as used by Python's
     75    object allocator.  If WITH_PYMALLOC is enabled, these may differ from
     76    the platform malloc/realloc/free.  The Python object allocator is
     77    designed for fast, cache-conscious allocation of many "small" objects,
     78    and with low hidden memory overhead.
     79 
     80    PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
     81 
     82    PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
     83    PyObject_Realloc(p != NULL, 0) does not return  NULL, or free the memory
     84    at p.
     85 
     86    Returned pointers must be checked for NULL explicitly; no action is
     87    performed on failure other than to return NULL (no warning it printed, no
     88    exception is set, etc).
     89 
     90    For allocating objects, use PyObject_{New, NewVar} instead whenever
     91    possible.  The PyObject_{Malloc, Realloc, Free} family is exposed
     92    so that you can exploit Python's small-block allocator for non-object
     93    uses.  If you must use these routines to allocate object memory, make sure
     94    the object gets initialized via PyObject_{Init, InitVar} after obtaining
     95    the raw memory.
     96 */
     97 PyAPI_FUNC(void *) PyObject_Malloc(size_t);
     98 PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
     99 PyAPI_FUNC(void) PyObject_Free(void *);
    100 
    101 
    102 /* Macros */
    103 #ifdef WITH_PYMALLOC
    104 #ifdef PYMALLOC_DEBUG   /* WITH_PYMALLOC && PYMALLOC_DEBUG */
    105 PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
    106 PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
    107 PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
    108 PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
    109 PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
    110 PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
    111 PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes);
    112 PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes);
    113 PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p);
    114 PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p);
    115 PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes);
    116 PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes);
    117 PyAPI_FUNC(void) _PyMem_DebugFree(void *p);
    118 #define PyObject_MALLOC         _PyObject_DebugMalloc
    119 #define PyObject_Malloc         _PyObject_DebugMalloc
    120 #define PyObject_REALLOC        _PyObject_DebugRealloc
    121 #define PyObject_Realloc        _PyObject_DebugRealloc
    122 #define PyObject_FREE           _PyObject_DebugFree
    123 #define PyObject_Free           _PyObject_DebugFree
    124 
    125 #else   /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
    126 #define PyObject_MALLOC         PyObject_Malloc
    127 #define PyObject_REALLOC        PyObject_Realloc
    128 #define PyObject_FREE           PyObject_Free
    129 #endif
    130 
    131 #else   /* ! WITH_PYMALLOC */
    132 #define PyObject_MALLOC         PyMem_MALLOC
    133 #define PyObject_REALLOC        PyMem_REALLOC
    134 #define PyObject_FREE           PyMem_FREE
    135 
    136 #endif  /* WITH_PYMALLOC */
    137 
    138 #define PyObject_Del            PyObject_Free
    139 #define PyObject_DEL            PyObject_FREE
    140 
    141 /* for source compatibility with 2.2 */
    142 #define _PyObject_Del           PyObject_Free
    143 
    144 /*
    145  * Generic object allocator interface
    146  * ==================================
    147  */
    148 
    149 /* Functions */
    150 PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
    151 PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
    152                                                  PyTypeObject *, Py_ssize_t);
    153 PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
    154 PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
    155 
    156 #define PyObject_New(type, typeobj) \
    157                 ( (type *) _PyObject_New(typeobj) )
    158 #define PyObject_NewVar(type, typeobj, n) \
    159                 ( (type *) _PyObject_NewVar((typeobj), (n)) )
    160 
    161 /* Macros trading binary compatibility for speed. See also pymem.h.
    162    Note that these macros expect non-NULL object pointers.*/
    163 #define PyObject_INIT(op, typeobj) \
    164     ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
    165 #define PyObject_INIT_VAR(op, typeobj, size) \
    166     ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
    167 
    168 #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
    169 
    170 /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
    171    vrbl-size object with nitems items, exclusive of gc overhead (if any).  The
    172    value is rounded up to the closest multiple of sizeof(void *), in order to
    173    ensure that pointer fields at the end of the object are correctly aligned
    174    for the platform (this is of special importance for subclasses of, e.g.,
    175    str or long, so that pointers can be stored after the embedded data).
    176 
    177    Note that there's no memory wastage in doing this, as malloc has to
    178    return (at worst) pointer-aligned memory anyway.
    179 */
    180 #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
    181 #   error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
    182 #endif
    183 
    184 #define _PyObject_VAR_SIZE(typeobj, nitems)     \
    185     (size_t)                                    \
    186     ( ( (typeobj)->tp_basicsize +               \
    187         (nitems)*(typeobj)->tp_itemsize +       \
    188         (SIZEOF_VOID_P - 1)                     \
    189       ) & ~(SIZEOF_VOID_P - 1)                  \
    190     )
    191 
    192 #define PyObject_NEW(type, typeobj) \
    193 ( (type *) PyObject_Init( \
    194     (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
    195 
    196 #define PyObject_NEW_VAR(type, typeobj, n) \
    197 ( (type *) PyObject_InitVar( \
    198       (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
    199       (typeobj), (n)) )
    200 
    201 /* This example code implements an object constructor with a custom
    202    allocator, where PyObject_New is inlined, and shows the important
    203    distinction between two steps (at least):
    204        1) the actual allocation of the object storage;
    205        2) the initialization of the Python specific fields
    206       in this storage with PyObject_{Init, InitVar}.
    207 
    208    PyObject *
    209    YourObject_New(...)
    210    {
    211        PyObject *op;
    212 
    213        op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
    214        if (op == NULL)
    215        return PyErr_NoMemory();
    216 
    217        PyObject_Init(op, &YourTypeStruct);
    218 
    219        op->ob_field = value;
    220        ...
    221        return op;
    222    }
    223 
    224    Note that in C++, the use of the new operator usually implies that
    225    the 1st step is performed automatically for you, so in a C++ class
    226    constructor you would start directly with PyObject_Init/InitVar
    227 */
    228 
    229 /*
    230  * Garbage Collection Support
    231  * ==========================
    232  */
    233 
    234 /* C equivalent of gc.collect(). */
    235 PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
    236 
    237 /* Test if a type has a GC head */
    238 #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
    239 
    240 /* Test if an object has a GC head */
    241 #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
    242     (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
    243 
    244 PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
    245 #define PyObject_GC_Resize(type, op, n) \
    246                 ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
    247 
    248 /* for source compatibility with 2.2 */
    249 #define _PyObject_GC_Del PyObject_GC_Del
    250 
    251 /* GC information is stored BEFORE the object structure. */
    252 typedef union _gc_head {
    253     struct {
    254         union _gc_head *gc_next;
    255         union _gc_head *gc_prev;
    256         Py_ssize_t gc_refs;
    257     } gc;
    258     long double dummy;  /* force worst-case alignment */
    259 #if defined(__MINGW32__)
    260 /* FIXME: what about 64-bit platforms ?
    261  * see http://mail.python.org/pipermail/python-dev/2009-July/090724.html
    262  */
    263 	double dummy1;
    264 #endif
    265 } PyGC_Head;
    266 
    267 extern PyGC_Head *_PyGC_generation0;
    268 
    269 #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
    270 
    271 #define _PyGC_REFS_UNTRACKED                    (-2)
    272 #define _PyGC_REFS_REACHABLE                    (-3)
    273 #define _PyGC_REFS_TENTATIVELY_UNREACHABLE      (-4)
    274 
    275 /* Tell the GC to track this object.  NB: While the object is tracked the
    276  * collector it must be safe to call the ob_traverse method. */
    277 #define _PyObject_GC_TRACK(o) do { \
    278     PyGC_Head *g = _Py_AS_GC(o); \
    279     if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
    280         Py_FatalError("GC object already tracked"); \
    281     g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
    282     g->gc.gc_next = _PyGC_generation0; \
    283     g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
    284     g->gc.gc_prev->gc.gc_next = g; \
    285     _PyGC_generation0->gc.gc_prev = g; \
    286     } while (0);
    287 
    288 /* Tell the GC to stop tracking this object.
    289  * gc_next doesn't need to be set to NULL, but doing so is a good
    290  * way to provoke memory errors if calling code is confused.
    291  */
    292 #define _PyObject_GC_UNTRACK(o) do { \
    293     PyGC_Head *g = _Py_AS_GC(o); \
    294     assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
    295     g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
    296     g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
    297     g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
    298     g->gc.gc_next = NULL; \
    299     } while (0);
    300 
    301 /* True if the object is currently tracked by the GC. */
    302 #define _PyObject_GC_IS_TRACKED(o) \
    303     ((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED)
    304 
    305 /* True if the object may be tracked by the GC in the future, or already is.
    306    This can be useful to implement some optimizations. */
    307 #define _PyObject_GC_MAY_BE_TRACKED(obj) \
    308     (PyObject_IS_GC(obj) && \
    309         (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj)))
    310 
    311 
    312 PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
    313 PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
    314 PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
    315 PyAPI_FUNC(void) PyObject_GC_Track(void *);
    316 PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
    317 PyAPI_FUNC(void) PyObject_GC_Del(void *);
    318 
    319 #define PyObject_GC_New(type, typeobj) \
    320                 ( (type *) _PyObject_GC_New(typeobj) )
    321 #define PyObject_GC_NewVar(type, typeobj, n) \
    322                 ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
    323 
    324 
    325 /* Utility macro to help write tp_traverse functions.
    326  * To use this macro, the tp_traverse function must name its arguments
    327  * "visit" and "arg".  This is intended to keep tp_traverse functions
    328  * looking as much alike as possible.
    329  */
    330 #define Py_VISIT(op)                                                    \
    331     do {                                                                \
    332         if (op) {                                                       \
    333             int vret = visit((PyObject *)(op), arg);                    \
    334             if (vret)                                                   \
    335                 return vret;                                            \
    336         }                                                               \
    337     } while (0)
    338 
    339 /* This is here for the sake of backwards compatibility.  Extensions that
    340  * use the old GC API will still compile but the objects will not be
    341  * tracked by the GC. */
    342 #define PyGC_HEAD_SIZE 0
    343 #define PyObject_GC_Init(op)
    344 #define PyObject_GC_Fini(op)
    345 #define PyObject_AS_GC(op) (op)
    346 #define PyObject_FROM_GC(op) (op)
    347 
    348 
    349 /* Test if a type supports weak references */
    350 #define PyType_SUPPORTS_WEAKREFS(t) \
    351     (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
    352      && ((t)->tp_weaklistoffset > 0))
    353 
    354 #define PyObject_GET_WEAKREFS_LISTPTR(o) \
    355     ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
    356 
    357 #ifdef __cplusplus
    358 }
    359 #endif
    360 #endif /* !Py_OBJIMPL_H */
    361