Home | History | Annotate | Download | only in smp
      1 /******************************************************************************
      2  *
      3  *  Copyright (C) 1999-2012 Broadcom Corporation
      4  *
      5  *  Licensed under the Apache License, Version 2.0 (the "License");
      6  *  you may not use this file except in compliance with the License.
      7  *  You may obtain a copy of the License at:
      8  *
      9  *  http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  *  Unless required by applicable law or agreed to in writing, software
     12  *  distributed under the License is distributed on an "AS IS" BASIS,
     13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  *  See the License for the specific language governing permissions and
     15  *  limitations under the License.
     16  *
     17  ******************************************************************************/
     18 
     19 /******************************************************************************
     20  *
     21  *  This file contains security manager protocol utility functions
     22  *
     23  ******************************************************************************/
     24 #include "bt_target.h"
     25 
     26 #if SMP_INCLUDED == TRUE
     27 #if SMP_DEBUG == TRUE
     28     #include <stdio.h>
     29 #endif
     30 #include <string.h>
     31 #include "bt_utils.h"
     32 #include "btm_ble_api.h"
     33 #include "smp_int.h"
     34 #include "btm_int.h"
     35 #include "btm_ble_int.h"
     36 #include "hcimsgs.h"
     37 #include "aes.h"
     38 #include "p_256_ecc_pp.h"
     39 #include "device/include/controller.h"
     40 
     41 #ifndef SMP_MAX_ENC_REPEAT
     42   #define SMP_MAX_ENC_REPEAT  3
     43 #endif
     44 
     45 static void smp_rand_back(tBTM_RAND_ENC *p);
     46 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
     47 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
     48 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p);
     49 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p);
     50 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p);
     51 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p);
     52 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p);
     53 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p);
     54 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p);
     55 static BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output);
     56 static void smp_continue_private_key_creation(tSMP_CB *p_cb, tBTM_RAND_ENC *p);
     57 static void smp_process_private_key(tSMP_CB *p_cb);
     58 static void smp_finish_nonce_generation(tSMP_CB *p_cb);
     59 static void smp_process_new_nonce(tSMP_CB *p_cb);
     60 
     61 static const tSMP_ACT smp_encrypt_action[] =
     62 {
     63     smp_generate_compare,           /* SMP_GEN_COMPARE */
     64     smp_generate_confirm,          /* SMP_GEN_CONFIRM*/
     65     smp_generate_stk,               /* SMP_GEN_STK*/
     66     smp_generate_ltk_cont,          /* SMP_GEN_LTK */
     67     smp_generate_ltk,               /* SMP_GEN_DIV_LTK */
     68     smp_generate_rand_vector,        /* SMP_GEN_RAND_V */
     69     smp_generate_y,                  /* SMP_GEN_EDIV */
     70     smp_generate_passkey,           /* SMP_GEN_TK */
     71     smp_generate_srand_mrand_confirm, /* SMP_GEN_SRAND_MRAND */
     72     smp_generate_rand_cont         /* SMP_GEN_SRAND_MRAND_CONT */
     73 };
     74 
     75 #define SMP_PASSKEY_MASK    0xfff00000
     76 
     77 void smp_debug_print_nbyte_little_endian(UINT8 *p, const UINT8 *key_name, UINT8 len)
     78 {
     79 #if SMP_DEBUG == TRUE
     80     int     ind, x;
     81     int     col_count = 32;
     82     int     row_count;
     83     UINT8   p_buf[512];
     84 
     85     SMP_TRACE_WARNING("%s(LSB ~ MSB):", key_name);
     86     memset(p_buf, 0, sizeof(p_buf));
     87     row_count = len % col_count ? len / col_count + 1: len / col_count;
     88 
     89     ind = 0;
     90     for (int row = 0; row <  row_count; row++)
     91     {
     92         for (int column = 0, x = 0; (ind < len) && (column < col_count); column++, ind++)
     93         {
     94             x += sprintf((char *)&p_buf[x], "%02x ", p[ind]);
     95         }
     96         SMP_TRACE_WARNING("  [%03d]: %s", row * col_count, p_buf);
     97     }
     98 #endif
     99 }
    100 
    101 void smp_debug_print_nbyte_big_endian (UINT8 *p, const UINT8 *key_name, UINT8 len)
    102 {
    103 #if SMP_DEBUG == TRUE
    104     UINT8  p_buf[512];
    105 
    106     SMP_TRACE_WARNING("%s(MSB ~ LSB):", key_name);
    107     memset(p_buf, 0, sizeof(p_buf));
    108     nrows = len % ncols ? len / ncols + 1: len / ncols;
    109 
    110     int ind = 0;
    111     int  ncols = 32; /* num entries in one line */
    112     int  nrows;      /* num lines */
    113     int  x;
    114 
    115     for (int row = 0; row <  nrows; row++)
    116     {
    117         for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++)
    118         {
    119             x += sprintf ((char *)&p_buf[len-x-1], "%02x ", p[ind]);
    120         }
    121         SMP_TRACE_WARNING("[%03d]: %s", row * ncols, p_buf);
    122     }
    123 #endif
    124 }
    125 
    126 /*******************************************************************************
    127 **
    128 ** Function         smp_encrypt_data
    129 **
    130 ** Description      This function is called to encrypt data.
    131 **                  It uses AES-128 encryption algorithm.
    132 **                  Plain_text is encrypted using key, the result is at p_out.
    133 **
    134 ** Returns          void
    135 **
    136 *******************************************************************************/
    137 BOOLEAN smp_encrypt_data (UINT8 *key, UINT8 key_len,
    138                           UINT8 *plain_text, UINT8 pt_len,
    139                           tSMP_ENC *p_out)
    140 {
    141     aes_context ctx;
    142     UINT8 *p_start = NULL;
    143     UINT8 *p = NULL;
    144     UINT8 *p_rev_data = NULL;    /* input data in big endilan format */
    145     UINT8 *p_rev_key = NULL;     /* input key in big endilan format */
    146     UINT8 *p_rev_output = NULL;  /* encrypted output in big endilan format */
    147 
    148     SMP_TRACE_DEBUG ("%s", __func__);
    149     if ( (p_out == NULL ) || (key_len != SMP_ENCRYT_KEY_SIZE) )
    150     {
    151         SMP_TRACE_ERROR ("%s failed", __func__);
    152         return FALSE;
    153     }
    154 
    155     if ((p_start = (UINT8 *)GKI_getbuf((SMP_ENCRYT_DATA_SIZE*4))) == NULL)
    156     {
    157         SMP_TRACE_ERROR ("%s failed unable to allocate buffer", __func__);
    158         return FALSE;
    159     }
    160 
    161     if (pt_len > SMP_ENCRYT_DATA_SIZE)
    162         pt_len = SMP_ENCRYT_DATA_SIZE;
    163 
    164     memset(p_start, 0, SMP_ENCRYT_DATA_SIZE * 4);
    165     p = p_start;
    166     ARRAY_TO_STREAM (p, plain_text, pt_len); /* byte 0 to byte 15 */
    167     p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */
    168     REVERSE_ARRAY_TO_STREAM (p, p_start, SMP_ENCRYT_DATA_SIZE);  /* byte 16 to byte 31 */
    169     p_rev_key = p; /* start at byte 32 */
    170     REVERSE_ARRAY_TO_STREAM (p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */
    171 
    172 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
    173     smp_debug_print_nbyte_little_endian(key, (const UINT8 *)"Key", SMP_ENCRYT_KEY_SIZE);
    174     smp_debug_print_nbyte_little_endian(p_start, (const UINT8 *)"Plain text", SMP_ENCRYT_DATA_SIZE);
    175 #endif
    176     p_rev_output = p;
    177     aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx);
    178     aes_encrypt(p_rev_data, p, &ctx);  /* outputs in byte 48 to byte 63 */
    179 
    180     p = p_out->param_buf;
    181     REVERSE_ARRAY_TO_STREAM (p, p_rev_output, SMP_ENCRYT_DATA_SIZE);
    182 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
    183     smp_debug_print_nbyte_little_endian(p_out->param_buf, (const UINT8 *)"Encrypted text", SMP_ENCRYT_KEY_SIZE);
    184 #endif
    185 
    186     p_out->param_len = SMP_ENCRYT_KEY_SIZE;
    187     p_out->status = HCI_SUCCESS;
    188     p_out->opcode =  HCI_BLE_ENCRYPT;
    189 
    190     GKI_freebuf(p_start);
    191 
    192     return TRUE;
    193 }
    194 
    195 /*******************************************************************************
    196 **
    197 ** Function         smp_generate_passkey
    198 **
    199 ** Description      This function is called to generate passkey.
    200 **
    201 ** Returns          void
    202 **
    203 *******************************************************************************/
    204 void smp_generate_passkey(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    205 {
    206     UNUSED(p_data);
    207 
    208     SMP_TRACE_DEBUG ("%s", __func__);
    209     p_cb->rand_enc_proc_state = SMP_GEN_TK;
    210 
    211     /* generate MRand or SRand */
    212     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    213         smp_rand_back(NULL);
    214 }
    215 
    216 /*******************************************************************************
    217 **
    218 ** Function         smp_proc_passkey
    219 **
    220 ** Description      This function is called to process a passkey.
    221 **
    222 ** Returns          void
    223 **
    224 *******************************************************************************/
    225 void smp_proc_passkey(tSMP_CB *p_cb , tBTM_RAND_ENC *p)
    226 {
    227     UINT8   *tt = p_cb->tk;
    228     tSMP_KEY    key;
    229     UINT32  passkey; /* 19655 test number; */
    230     UINT8 *pp = p->param_buf;
    231 
    232     SMP_TRACE_DEBUG ("%s", __func__);
    233     STREAM_TO_UINT32(passkey, pp);
    234     passkey &= ~SMP_PASSKEY_MASK;
    235 
    236     /* truncate by maximum value */
    237     while (passkey > BTM_MAX_PASSKEY_VAL)
    238         passkey >>= 1;
    239 
    240     /* save the TK */
    241     memset(p_cb->tk, 0, BT_OCTET16_LEN);
    242     UINT32_TO_STREAM(tt, passkey);
    243 
    244     key.key_type = SMP_KEY_TYPE_TK;
    245     key.p_data  = p_cb->tk;
    246 
    247     if (p_cb->p_callback)
    248     {
    249         (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, (tSMP_EVT_DATA *)&passkey);
    250     }
    251 
    252     if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP)
    253     {
    254         smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey);
    255     }
    256     else
    257     {
    258         smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA *)&key);
    259     }
    260 }
    261 
    262 /*******************************************************************************
    263 **
    264 ** Function         smp_generate_stk
    265 **
    266 ** Description      This function is called to generate STK calculated by running
    267 **                  AES with the TK value as key and a concatenation of the random
    268 **                  values.
    269 **
    270 ** Returns          void
    271 **
    272 *******************************************************************************/
    273 void smp_generate_stk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    274 {
    275     UNUSED(p_data);
    276 
    277     tSMP_ENC output;
    278     tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
    279 
    280     SMP_TRACE_DEBUG ("%s", __func__);
    281 
    282     if (p_cb->le_secure_connections_mode_is_used)
    283     {
    284         SMP_TRACE_WARNING ("FOR LE SC LTK IS USED INSTEAD OF STK");
    285         output.param_len = SMP_ENCRYT_KEY_SIZE;
    286         output.status = HCI_SUCCESS;
    287         output.opcode =  HCI_BLE_ENCRYPT;
    288         memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE);
    289     }
    290     else if (!smp_calculate_legacy_short_term_key(p_cb, &output))
    291     {
    292         SMP_TRACE_ERROR("%s failed", __func__);
    293         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    294         return;
    295     }
    296 
    297     smp_process_stk(p_cb, &output);
    298 }
    299 
    300 /*******************************************************************************
    301 **
    302 ** Function         smp_generate_srand_mrand_confirm
    303 **
    304 ** Description      This function is called to start the second pairing phase by
    305 **                  start generating random number.
    306 **
    307 **
    308 ** Returns          void
    309 **
    310 *******************************************************************************/
    311 void smp_generate_srand_mrand_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    312 {
    313     UNUSED(p_data);
    314 
    315     SMP_TRACE_DEBUG ("%s", __func__);
    316     p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND;
    317     /* generate MRand or SRand */
    318     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    319         smp_rand_back(NULL);
    320 }
    321 
    322 /*******************************************************************************
    323 **
    324 ** Function         smp_generate_rand_cont
    325 **
    326 ** Description      This function is called to generate another 64 bits random for
    327 **                  MRand or Srand.
    328 **
    329 ** Returns          void
    330 **
    331 *******************************************************************************/
    332 void smp_generate_rand_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    333 {
    334     UNUSED(p_data);
    335 
    336     SMP_TRACE_DEBUG ("%s", __func__);
    337     p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND_CONT;
    338     /* generate 64 MSB of MRand or SRand */
    339     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    340         smp_rand_back(NULL);
    341 }
    342 
    343 /*******************************************************************************
    344 **
    345 ** Function         smp_generate_ltk
    346 **
    347 ** Description      This function is called:
    348 **                  - in legacy pairing - to calculate LTK, starting with DIV
    349 **                    generation;
    350 **                  - in LE Secure Connections pairing over LE transport - to process LTK
    351 **                    already generated to encrypt LE link;
    352 **                  - in LE Secure Connections pairing over BR/EDR transport - to start
    353 **                    BR/EDR Link Key processing.
    354 **
    355 ** Returns          void
    356 **
    357 *******************************************************************************/
    358 void smp_generate_ltk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    359 {
    360     UNUSED(p_data);
    361 
    362     BOOLEAN div_status;
    363     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
    364     if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING)
    365     {
    366         smp_br_process_link_key(p_cb, NULL);
    367         return;
    368     }
    369     else if (p_cb->le_secure_connections_mode_is_used)
    370     {
    371         smp_process_secure_connection_long_term_key();
    372         return;
    373     }
    374 
    375     div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
    376 
    377     if (div_status)
    378     {
    379         smp_generate_ltk_cont(p_cb, NULL);
    380     }
    381     else
    382     {
    383         SMP_TRACE_DEBUG ("Generate DIV for LTK");
    384         p_cb->rand_enc_proc_state = SMP_GEN_DIV_LTK;
    385         /* generate MRand or SRand */
    386         if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    387             smp_rand_back(NULL);
    388     }
    389 }
    390 
    391 /*******************************************************************************
    392 **
    393 ** Function         smp_compute_csrk
    394 **
    395 ** Description      This function is called to calculate CSRK
    396 **
    397 **
    398 ** Returns          void
    399 **
    400 *******************************************************************************/
    401 void smp_compute_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    402 {
    403     UNUSED(p_data);
    404 
    405     BT_OCTET16  er;
    406     UINT8       buffer[4]; /* for (r || DIV)  r=1*/
    407     UINT16      r=1;
    408     UINT8       *p=buffer;
    409     tSMP_ENC    output;
    410     tSMP_STATUS   status = SMP_PAIR_FAIL_UNKNOWN;
    411 
    412     SMP_TRACE_DEBUG ("smp_compute_csrk div=%x", p_cb->div);
    413     BTM_GetDeviceEncRoot(er);
    414     /* CSRK = d1(ER, DIV, 1) */
    415     UINT16_TO_STREAM(p, p_cb->div);
    416     UINT16_TO_STREAM(p, r);
    417 
    418     if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output))
    419     {
    420         SMP_TRACE_ERROR("smp_generate_csrk failed");
    421         if (p_cb->smp_over_br)
    422         {
    423             smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status);
    424         }
    425         else
    426         {
    427             smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    428         }
    429     }
    430     else
    431     {
    432         memcpy((void *)p_cb->csrk, output.param_buf, BT_OCTET16_LEN);
    433         smp_send_csrk_info(p_cb, NULL);
    434     }
    435 }
    436 
    437 /*******************************************************************************
    438 **
    439 ** Function         smp_generate_csrk
    440 **
    441 ** Description      This function is called to calculate CSRK, starting with DIV
    442 **                  generation.
    443 **
    444 **
    445 ** Returns          void
    446 **
    447 *******************************************************************************/
    448 void smp_generate_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    449 {
    450     UNUSED(p_data);
    451 
    452     BOOLEAN     div_status;
    453 
    454     SMP_TRACE_DEBUG ("smp_generate_csrk");
    455 
    456     div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
    457     if (div_status)
    458     {
    459         smp_compute_csrk(p_cb, NULL);
    460     }
    461     else
    462     {
    463         SMP_TRACE_DEBUG ("Generate DIV for CSRK");
    464         p_cb->rand_enc_proc_state = SMP_GEN_DIV_CSRK;
    465         if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    466             smp_rand_back(NULL);
    467     }
    468 }
    469 
    470 /*******************************************************************************
    471 ** Function         smp_concatenate_peer
    472 **                  add pairing command sent from local device into p1.
    473 *******************************************************************************/
    474 void smp_concatenate_local( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
    475 {
    476     UINT8   *p = *p_data;
    477 
    478     SMP_TRACE_DEBUG ("%s", __func__);
    479     UINT8_TO_STREAM(p, op_code);
    480     UINT8_TO_STREAM(p, p_cb->local_io_capability);
    481     UINT8_TO_STREAM(p, p_cb->loc_oob_flag);
    482     UINT8_TO_STREAM(p, p_cb->loc_auth_req);
    483     UINT8_TO_STREAM(p, p_cb->loc_enc_size);
    484     UINT8_TO_STREAM(p, p_cb->local_i_key);
    485     UINT8_TO_STREAM(p, p_cb->local_r_key);
    486 
    487     *p_data = p;
    488 }
    489 
    490 /*******************************************************************************
    491 ** Function         smp_concatenate_peer
    492 **                  add pairing command received from peer device into p1.
    493 *******************************************************************************/
    494 void smp_concatenate_peer( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
    495 {
    496     UINT8   *p = *p_data;
    497 
    498     SMP_TRACE_DEBUG ("smp_concatenate_peer ");
    499     UINT8_TO_STREAM(p, op_code);
    500     UINT8_TO_STREAM(p, p_cb->peer_io_caps);
    501     UINT8_TO_STREAM(p, p_cb->peer_oob_flag);
    502     UINT8_TO_STREAM(p, p_cb->peer_auth_req);
    503     UINT8_TO_STREAM(p, p_cb->peer_enc_size);
    504     UINT8_TO_STREAM(p, p_cb->peer_i_key);
    505     UINT8_TO_STREAM(p, p_cb->peer_r_key);
    506 
    507     *p_data = p;
    508 }
    509 
    510 /*******************************************************************************
    511 **
    512 ** Function         smp_gen_p1_4_confirm
    513 **
    514 ** Description      Generate Confirm/Compare Step1:
    515 **                  p1 = pres || preq || rat' || iat'
    516 **
    517 ** Returns          void
    518 **
    519 *******************************************************************************/
    520 void smp_gen_p1_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p1)
    521 {
    522     UINT8 *p = (UINT8 *)p1;
    523     tBLE_ADDR_TYPE    addr_type = 0;
    524     BD_ADDR           remote_bda;
    525 
    526     SMP_TRACE_DEBUG ("smp_gen_p1_4_confirm");
    527 
    528     if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type))
    529     {
    530         SMP_TRACE_ERROR("can not generate confirm for unknown device");
    531         return;
    532     }
    533 
    534     BTM_ReadConnectionAddr( p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type);
    535 
    536     if (p_cb->role == HCI_ROLE_MASTER)
    537     {
    538         /* LSB : rat': initiator's(local) address type */
    539         UINT8_TO_STREAM(p, p_cb->addr_type);
    540         /* LSB : iat': responder's address type */
    541         UINT8_TO_STREAM(p, addr_type);
    542         /* concatinate preq */
    543         smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
    544         /* concatinate pres */
    545         smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
    546     }
    547     else
    548     {
    549         /* LSB : iat': initiator's address type */
    550         UINT8_TO_STREAM(p, addr_type);
    551         /* LSB : rat': responder's(local) address type */
    552         UINT8_TO_STREAM(p, p_cb->addr_type);
    553         /* concatinate preq */
    554         smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
    555         /* concatinate pres */
    556         smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
    557     }
    558 #if SMP_DEBUG == TRUE
    559     SMP_TRACE_DEBUG("p1 = pres || preq || rat' || iat'");
    560     smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1", 16);
    561 #endif
    562 }
    563 
    564 /*******************************************************************************
    565 **
    566 ** Function         smp_gen_p2_4_confirm
    567 **
    568 ** Description      Generate Confirm/Compare Step2:
    569 **                  p2 = padding || ia || ra
    570 **
    571 ** Returns          void
    572 **
    573 *******************************************************************************/
    574 void smp_gen_p2_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p2)
    575 {
    576     UINT8       *p = (UINT8 *)p2;
    577     BD_ADDR     remote_bda;
    578     tBLE_ADDR_TYPE  addr_type = 0;
    579 
    580     if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type))
    581     {
    582         SMP_TRACE_ERROR("can not generate confirm p2 for unknown device");
    583         return;
    584     }
    585 
    586     SMP_TRACE_DEBUG ("smp_gen_p2_4_confirm");
    587 
    588     memset(p, 0, sizeof(BT_OCTET16));
    589 
    590     if (p_cb->role == HCI_ROLE_MASTER)
    591     {
    592         /* LSB ra */
    593         BDADDR_TO_STREAM(p, remote_bda);
    594         /* ia */
    595         BDADDR_TO_STREAM(p, p_cb->local_bda);
    596     }
    597     else
    598     {
    599         /* LSB ra */
    600         BDADDR_TO_STREAM(p, p_cb->local_bda);
    601         /* ia */
    602         BDADDR_TO_STREAM(p, remote_bda);
    603     }
    604 #if SMP_DEBUG == TRUE
    605     SMP_TRACE_DEBUG("p2 = padding || ia || ra");
    606     smp_debug_print_nbyte_little_endian(p2, (const UINT8 *)"p2", 16);
    607 #endif
    608 }
    609 
    610 /*******************************************************************************
    611 **
    612 ** Function         smp_calculate_comfirm
    613 **
    614 ** Description      This function is called to calculate Confirm value.
    615 **
    616 ** Returns          void
    617 **
    618 *******************************************************************************/
    619 void smp_calculate_comfirm (tSMP_CB *p_cb, BT_OCTET16 rand, BD_ADDR bda)
    620 {
    621     UNUSED(bda);
    622 
    623     BT_OCTET16      p1;
    624     tSMP_ENC       output;
    625     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
    626 
    627     SMP_TRACE_DEBUG ("smp_calculate_comfirm ");
    628     /* generate p1 = pres || preq || rat' || iat' */
    629     smp_gen_p1_4_confirm(p_cb, p1);
    630 
    631     /* p1 = rand XOR p1 */
    632     smp_xor_128(p1, rand);
    633 
    634     smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1' = r XOR p1", 16);
    635 
    636     /* calculate e(k, r XOR p1), where k = TK */
    637     if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, &output))
    638     {
    639         SMP_TRACE_ERROR("smp_generate_csrk failed");
    640         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    641     }
    642     else
    643     {
    644         smp_calculate_comfirm_cont(p_cb, &output);
    645     }
    646 }
    647 
    648 /*******************************************************************************
    649 **
    650 ** Function         smp_calculate_comfirm_cont
    651 **
    652 ** Description      This function is called when SConfirm/MConfirm is generated
    653 **                  proceed to send the Confirm request/response to peer device.
    654 **
    655 ** Returns          void
    656 **
    657 *******************************************************************************/
    658 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p)
    659 {
    660     BT_OCTET16    p2;
    661     tSMP_ENC      output;
    662     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
    663 
    664     SMP_TRACE_DEBUG ("smp_calculate_comfirm_cont ");
    665 #if SMP_DEBUG == TRUE
    666     SMP_TRACE_DEBUG("Confirm step 1 p1' = e(k, r XOR p1)  Generated");
    667     smp_debug_print_nbyte_little_endian (p->param_buf, (const UINT8 *)"C1", 16);
    668 #endif
    669 
    670     smp_gen_p2_4_confirm(p_cb, p2);
    671 
    672     /* calculate p2 = (p1' XOR p2) */
    673     smp_xor_128(p2, p->param_buf);
    674     smp_debug_print_nbyte_little_endian ((UINT8 *)p2, (const UINT8 *)"p2' = C1 xor p2", 16);
    675 
    676     /* calculate: Confirm = E(k, p1' XOR p2) */
    677     if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, &output))
    678     {
    679         SMP_TRACE_ERROR("smp_calculate_comfirm_cont failed");
    680         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    681     }
    682     else
    683     {
    684         switch (p_cb->rand_enc_proc_state)
    685         {
    686             case SMP_GEN_CONFIRM:
    687                 smp_process_confirm(p_cb, &output);
    688                 break;
    689 
    690             case SMP_GEN_COMPARE:
    691                 smp_process_compare(p_cb, &output);
    692                 break;
    693         }
    694     }
    695 }
    696 
    697 /*******************************************************************************
    698 **
    699 ** Function         smp_generate_confirm
    700 **
    701 ** Description      This function is called when a 48 bits random number is generated
    702 **                  as SRand or MRand, continue to calculate Sconfirm or MConfirm.
    703 **
    704 ** Returns          void
    705 **
    706 *******************************************************************************/
    707 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    708 {
    709     UNUSED(p_data);
    710 
    711     SMP_TRACE_DEBUG ("%s", __func__);
    712     p_cb->rand_enc_proc_state = SMP_GEN_CONFIRM;
    713     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rand,  (const UINT8 *)"local rand", 16);
    714     smp_calculate_comfirm(p_cb, p_cb->rand, p_cb->pairing_bda);
    715 }
    716 
    717 /*******************************************************************************
    718 **
    719 ** Function         smp_generate_compare
    720 **
    721 ** Description      This function is called to generate SConfirm for Slave device,
    722 **                  or MSlave for Master device. This function can be also used for
    723 **                  generating Compare number for confirm value check.
    724 **
    725 ** Returns          void
    726 **
    727 *******************************************************************************/
    728 void smp_generate_compare (tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    729 {
    730     UNUSED(p_data);
    731 
    732     SMP_TRACE_DEBUG ("smp_generate_compare ");
    733     p_cb->rand_enc_proc_state = SMP_GEN_COMPARE;
    734     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rrand,  (const UINT8 *)"peer rand", 16);
    735     smp_calculate_comfirm(p_cb, p_cb->rrand, p_cb->local_bda);
    736 }
    737 
    738 /*******************************************************************************
    739 **
    740 ** Function         smp_process_confirm
    741 **
    742 ** Description      This function is called when SConfirm/MConfirm is generated
    743 **                  proceed to send the Confirm request/response to peer device.
    744 **
    745 ** Returns          void
    746 **
    747 *******************************************************************************/
    748 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p)
    749 {
    750     tSMP_KEY    key;
    751 
    752     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
    753     memcpy(p_cb->confirm, p->param_buf, BT_OCTET16_LEN);
    754 
    755 #if (SMP_DEBUG == TRUE)
    756     SMP_TRACE_DEBUG("Confirm  Generated");
    757     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->confirm,  (const UINT8 *)"Confirm", 16);
    758 #endif
    759 
    760     key.key_type = SMP_KEY_TYPE_CFM;
    761     key.p_data = p->param_buf;
    762     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
    763 }
    764 
    765 /*******************************************************************************
    766 **
    767 ** Function         smp_process_compare
    768 **
    769 ** Description      This function is called when Compare is generated using the
    770 **                  RRand and local BDA, TK information.
    771 **
    772 ** Returns          void
    773 **
    774 *******************************************************************************/
    775 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p)
    776 {
    777     tSMP_KEY    key;
    778 
    779     SMP_TRACE_DEBUG ("smp_process_compare ");
    780 #if (SMP_DEBUG == TRUE)
    781     SMP_TRACE_DEBUG("Compare Generated");
    782     smp_debug_print_nbyte_little_endian (p->param_buf,  (const UINT8 *)"Compare", 16);
    783 #endif
    784     key.key_type = SMP_KEY_TYPE_CMP;
    785     key.p_data   = p->param_buf;
    786 
    787     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
    788 }
    789 
    790 /*******************************************************************************
    791 **
    792 ** Function         smp_process_stk
    793 **
    794 ** Description      This function is called when STK is generated
    795 **                  proceed to send the encrypt the link using STK.
    796 **
    797 ** Returns          void
    798 **
    799 *******************************************************************************/
    800 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p)
    801 {
    802     tSMP_KEY    key;
    803 
    804     SMP_TRACE_DEBUG ("smp_process_stk ");
    805 #if (SMP_DEBUG == TRUE)
    806     SMP_TRACE_ERROR("STK Generated");
    807 #endif
    808     smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf);
    809 
    810     key.key_type = SMP_KEY_TYPE_STK;
    811     key.p_data   = p->param_buf;
    812 
    813     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
    814 }
    815 
    816 /*******************************************************************************
    817 **
    818 ** Function         smp_generate_ltk_cont
    819 **
    820 ** Description      This function is to calculate LTK = d1(ER, DIV, 0)= e(ER, DIV)
    821 **
    822 ** Returns          void
    823 **
    824 *******************************************************************************/
    825 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    826 {
    827     UNUSED(p_data);
    828 
    829     BT_OCTET16  er;
    830     tSMP_ENC    output;
    831     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
    832 
    833     SMP_TRACE_DEBUG ("%s", __func__);
    834     BTM_GetDeviceEncRoot(er);
    835 
    836     /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/
    837     if (!SMP_Encrypt(er, BT_OCTET16_LEN, (UINT8 *)&p_cb->div,
    838                      sizeof(UINT16), &output))
    839     {
    840         SMP_TRACE_ERROR("%s failed", __func__);
    841         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    842     }
    843     else
    844     {
    845         /* mask the LTK */
    846         smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf);
    847         memcpy((void *)p_cb->ltk, output.param_buf, BT_OCTET16_LEN);
    848         smp_generate_rand_vector(p_cb, NULL);
    849     }
    850 }
    851 
    852 /*******************************************************************************
    853 **
    854 ** Function         smp_generate_y
    855 **
    856 ** Description      This function is to proceed generate Y = E(DHK, Rand)
    857 **
    858 ** Returns          void
    859 **
    860 *******************************************************************************/
    861 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p)
    862 {
    863     UNUSED(p);
    864 
    865     BT_OCTET16  dhk;
    866     tSMP_ENC   output;
    867     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
    868 
    869 
    870     SMP_TRACE_DEBUG ("smp_generate_y ");
    871     BTM_GetDeviceDHK(dhk);
    872 
    873     if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, p_cb->enc_rand,
    874                      BT_OCTET8_LEN, &output))
    875     {
    876         SMP_TRACE_ERROR("smp_generate_y failed");
    877         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    878     }
    879     else
    880     {
    881         smp_process_ediv(p_cb, &output);
    882     }
    883 }
    884 
    885 /*******************************************************************************
    886 **
    887 ** Function         smp_generate_rand_vector
    888 **
    889 ** Description      This function is called when LTK is generated, send state machine
    890 **                  event to SMP.
    891 **
    892 ** Returns          void
    893 **
    894 *******************************************************************************/
    895 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p)
    896 {
    897     UNUSED(p);
    898 
    899     /* generate EDIV and rand now */
    900     /* generate random vector */
    901     SMP_TRACE_DEBUG ("smp_generate_rand_vector ");
    902     p_cb->rand_enc_proc_state = SMP_GEN_RAND_V;
    903     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    904         smp_rand_back(NULL);
    905 }
    906 
    907 /*******************************************************************************
    908 **
    909 ** Function         smp_process_ediv
    910 **
    911 ** Description      This function is to calculate EDIV = Y xor DIV
    912 **
    913 ** Returns          void
    914 **
    915 *******************************************************************************/
    916 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p)
    917 {
    918     tSMP_KEY    key;
    919     UINT8 *pp= p->param_buf;
    920     UINT16  y;
    921 
    922     SMP_TRACE_DEBUG ("smp_process_ediv ");
    923     STREAM_TO_UINT16(y, pp);
    924 
    925     /* EDIV = Y xor DIV */
    926     p_cb->ediv = p_cb->div ^ y;
    927     /* send LTK ready */
    928     SMP_TRACE_ERROR("LTK ready");
    929     key.key_type = SMP_KEY_TYPE_LTK;
    930     key.p_data   = p->param_buf;
    931 
    932     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
    933 }
    934 
    935 /*******************************************************************************
    936 **
    937 ** Function         smp_calculate_legacy_short_term_key
    938 **
    939 ** Description      The function calculates legacy STK.
    940 **
    941 ** Returns          FALSE if out of resources, TRUE in other cases.
    942 **
    943 *******************************************************************************/
    944 BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output)
    945 {
    946     BT_OCTET16 ptext;
    947     UINT8 *p = ptext;
    948 
    949     SMP_TRACE_DEBUG ("%s", __func__);
    950     memset(p, 0, BT_OCTET16_LEN);
    951     if (p_cb->role == HCI_ROLE_MASTER)
    952     {
    953         memcpy(p, p_cb->rand, BT_OCTET8_LEN);
    954         memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN);
    955     }
    956     else
    957     {
    958         memcpy(p, p_cb->rrand, BT_OCTET8_LEN);
    959         memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN);
    960     }
    961 
    962     BOOLEAN encrypted;
    963     /* generate STK = Etk(rand|rrand)*/
    964     encrypted = SMP_Encrypt( p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output);
    965     if (!encrypted)
    966     {
    967         SMP_TRACE_ERROR("%s failed", __func__);
    968     }
    969     return encrypted;
    970 }
    971 
    972 /*******************************************************************************
    973 **
    974 ** Function         smp_create_private_key
    975 **
    976 ** Description      This function is called to create private key used to
    977 **                  calculate public key and DHKey.
    978 **                  The function starts private key creation requesting controller
    979 **                  to generate [0-7] octets of private key.
    980 **
    981 ** Returns          void
    982 **
    983 *******************************************************************************/
    984 void smp_create_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    985 {
    986     SMP_TRACE_DEBUG ("%s",__FUNCTION__);
    987     p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_0_7;
    988     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    989         smp_rand_back(NULL);
    990 }
    991 
    992 /*******************************************************************************
    993 **
    994 ** Function         smp_use_oob_private_key
    995 **
    996 ** Description      This function is called
    997 **                  - to save the secret key used to calculate the public key used
    998 **                    in calculations of commitment sent OOB to a peer
    999 **                  - to use this secret key to recalculate the public key and
   1000 **                    start the process of sending this public key to the peer
   1001 **                  if secret/public keys have to be reused.
   1002 **                  If the keys aren't supposed to be reused, continue from the
   1003 **                  point from which request for OOB data was issued.
   1004 **
   1005 ** Returns          void
   1006 **
   1007 *******************************************************************************/
   1008 void smp_use_oob_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
   1009 {
   1010     SMP_TRACE_DEBUG ("%s req_oob_type: %d, role: %d",
   1011                       __func__, p_cb->req_oob_type, p_cb->role);
   1012 
   1013     switch (p_cb->req_oob_type)
   1014     {
   1015         case SMP_OOB_BOTH:
   1016         case SMP_OOB_LOCAL:
   1017             SMP_TRACE_DEBUG("%s restore secret key", __func__)
   1018             memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used, BT_OCTET32_LEN);
   1019             smp_process_private_key(p_cb);
   1020             break;
   1021         default:
   1022             SMP_TRACE_DEBUG("%s create secret key anew", __func__);
   1023             smp_set_state(SMP_STATE_PAIR_REQ_RSP);
   1024             smp_decide_association_model(p_cb, NULL);
   1025             break;
   1026     }
   1027 }
   1028 
   1029 /*******************************************************************************
   1030 **
   1031 ** Function         smp_continue_private_key_creation
   1032 **
   1033 ** Description      This function is used to continue private key creation.
   1034 **
   1035 ** Returns          void
   1036 **
   1037 *******************************************************************************/
   1038 void smp_continue_private_key_creation (tSMP_CB *p_cb, tBTM_RAND_ENC *p)
   1039 {
   1040     UINT8   state = p_cb->rand_enc_proc_state & ~0x80;
   1041     SMP_TRACE_DEBUG ("%s state=0x%x", __func__, state);
   1042 
   1043     switch (state)
   1044     {
   1045         case SMP_GENERATE_PRIVATE_KEY_0_7:
   1046             memcpy((void *)p_cb->private_key, p->param_buf, p->param_len);
   1047             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_8_15;
   1048             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   1049                 smp_rand_back(NULL);
   1050             break;
   1051 
   1052         case SMP_GENERATE_PRIVATE_KEY_8_15:
   1053             memcpy((void *)&p_cb->private_key[8], p->param_buf, p->param_len);
   1054             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_16_23;
   1055             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   1056                 smp_rand_back(NULL);
   1057             break;
   1058 
   1059         case SMP_GENERATE_PRIVATE_KEY_16_23:
   1060             memcpy((void *)&p_cb->private_key[16], p->param_buf, p->param_len);
   1061             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_24_31;
   1062             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   1063                 smp_rand_back(NULL);
   1064             break;
   1065 
   1066         case SMP_GENERATE_PRIVATE_KEY_24_31:
   1067             memcpy((void *)&p_cb->private_key[24], p->param_buf, p->param_len);
   1068             smp_process_private_key (p_cb);
   1069             break;
   1070 
   1071         default:
   1072             break;
   1073     }
   1074 
   1075     return;
   1076 }
   1077 
   1078 /*******************************************************************************
   1079 **
   1080 ** Function         smp_process_private_key
   1081 **
   1082 ** Description      This function processes private key.
   1083 **                  It calculates public key and notifies SM that private key /
   1084 **                  public key pair is created.
   1085 **
   1086 ** Returns          void
   1087 **
   1088 *******************************************************************************/
   1089 void smp_process_private_key(tSMP_CB *p_cb)
   1090 {
   1091     Point       public_key;
   1092     BT_OCTET32  private_key;
   1093 
   1094     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1095 
   1096     memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
   1097     ECC_PointMult(&public_key, &(curve_p256.G), (DWORD*) private_key, KEY_LENGTH_DWORDS_P256);
   1098     memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN);
   1099     memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN);
   1100 
   1101     smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
   1102                                          BT_OCTET32_LEN);
   1103     smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.x, (const UINT8 *)"local public(x)",
   1104                                          BT_OCTET32_LEN);
   1105     smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.y, (const UINT8 *)"local public(y)",
   1106                                          BT_OCTET32_LEN);
   1107     p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY;
   1108     smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL);
   1109 }
   1110 
   1111 /*******************************************************************************
   1112 **
   1113 ** Function         smp_compute_dhkey
   1114 **
   1115 ** Description      The function:
   1116 **                  - calculates a new public key using as input local private
   1117 **                    key and peer public key;
   1118 **                  - saves the new public key x-coordinate as DHKey.
   1119 **
   1120 ** Returns          void
   1121 **
   1122 *******************************************************************************/
   1123 void smp_compute_dhkey (tSMP_CB *p_cb)
   1124 {
   1125     Point       peer_publ_key, new_publ_key;
   1126     BT_OCTET32  private_key;
   1127 
   1128     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1129 
   1130     memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
   1131     memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN);
   1132     memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN);
   1133 
   1134     ECC_PointMult(&new_publ_key, &peer_publ_key, (DWORD*) private_key, KEY_LENGTH_DWORDS_P256);
   1135 
   1136     memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN);
   1137 
   1138     smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Old DHKey",
   1139                                          BT_OCTET32_LEN);
   1140 
   1141     smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
   1142                                          BT_OCTET32_LEN);
   1143     smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.x, (const UINT8 *)"rem public(x)",
   1144                                          BT_OCTET32_LEN);
   1145     smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.y, (const UINT8 *)"rem public(y)",
   1146                                          BT_OCTET32_LEN);
   1147     smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Reverted DHKey",
   1148                                          BT_OCTET32_LEN);
   1149 }
   1150 
   1151 /*******************************************************************************
   1152 **
   1153 ** Function         smp_calculate_local_commitment
   1154 **
   1155 ** Description      The function calculates and saves local commmitment in CB.
   1156 **
   1157 ** Returns          void
   1158 **
   1159 *******************************************************************************/
   1160 void smp_calculate_local_commitment(tSMP_CB *p_cb)
   1161 {
   1162     UINT8 random_input;
   1163 
   1164     SMP_TRACE_DEBUG("%s", __FUNCTION__);
   1165 
   1166     switch (p_cb->selected_association_model)
   1167     {
   1168         case SMP_MODEL_SEC_CONN_JUSTWORKS:
   1169         case SMP_MODEL_SEC_CONN_NUM_COMP:
   1170             if (p_cb->role  == HCI_ROLE_MASTER)
   1171                 SMP_TRACE_WARNING ("local commitment calc on master is not expected \
   1172                                     for Just Works/Numeric Comparison models");
   1173             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0,
   1174                              p_cb->commitment);
   1175             break;
   1176         case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
   1177         case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
   1178             random_input = smp_calculate_random_input(p_cb->local_random, p_cb->round);
   1179             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
   1180                              random_input, p_cb->commitment);
   1181             break;
   1182         case SMP_MODEL_SEC_CONN_OOB:
   1183             SMP_TRACE_WARNING ("local commitment calc is expected for OOB model BEFORE pairing");
   1184             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0,
   1185                              p_cb->commitment);
   1186             break;
   1187         default:
   1188             SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
   1189                              p_cb->selected_association_model);
   1190             return;
   1191     }
   1192 
   1193     SMP_TRACE_EVENT ("local commitment calculation is completed");
   1194 }
   1195 
   1196 /*******************************************************************************
   1197 **
   1198 ** Function         smp_calculate_peer_commitment
   1199 **
   1200 ** Description      The function calculates and saves peer commmitment at the
   1201 **                  provided output buffer.
   1202 **
   1203 ** Returns          void
   1204 **
   1205 *******************************************************************************/
   1206 void smp_calculate_peer_commitment(tSMP_CB *p_cb, BT_OCTET16 output_buf)
   1207 {
   1208     UINT8 ri;
   1209 
   1210     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1211 
   1212     switch (p_cb->selected_association_model)
   1213     {
   1214         case SMP_MODEL_SEC_CONN_JUSTWORKS:
   1215         case SMP_MODEL_SEC_CONN_NUM_COMP:
   1216             if (p_cb->role  == HCI_ROLE_SLAVE)
   1217                 SMP_TRACE_WARNING ("peer commitment calc on slave is not expected \
   1218                 for Just Works/Numeric Comparison models");
   1219             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, 0,
   1220                              output_buf);
   1221             break;
   1222         case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
   1223         case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
   1224             ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round);
   1225             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, ri,
   1226                              output_buf);
   1227             break;
   1228         case SMP_MODEL_SEC_CONN_OOB:
   1229             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, p_cb->peer_random, 0,
   1230                              output_buf);
   1231             break;
   1232         default:
   1233             SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
   1234                              p_cb->selected_association_model);
   1235             return;
   1236     }
   1237 
   1238     SMP_TRACE_EVENT ("peer commitment calculation is completed");
   1239 }
   1240 
   1241 /*******************************************************************************
   1242 **
   1243 ** Function         smp_calculate_f4
   1244 **
   1245 ** Description      The function calculates
   1246 **                  C = f4(U, V, X, Z) = AES-CMAC (U||V||Z)
   1247 **                                               X
   1248 **                  where
   1249 **                  input:  U is 256 bit,
   1250 **                          V is 256 bit,
   1251 **                          X is 128 bit,
   1252 **                          Z is 8 bit,
   1253 **                  output: C is 128 bit.
   1254 **
   1255 ** Returns          void
   1256 **
   1257 ** Note             The LSB is the first octet, the MSB is the last octet of
   1258 **                  the AES-CMAC input/output stream.
   1259 **
   1260 *******************************************************************************/
   1261 void smp_calculate_f4(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 z, UINT8 *c)
   1262 {
   1263     UINT8   msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + 1 /* Z size */;
   1264     UINT8   msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1];
   1265     UINT8   key[BT_OCTET16_LEN];
   1266     UINT8   cmac[BT_OCTET16_LEN];
   1267     UINT8   *p = NULL;
   1268 #if SMP_DEBUG == TRUE
   1269     UINT8   *p_prnt = NULL;
   1270 #endif
   1271 
   1272     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1273 
   1274 #if SMP_DEBUG == TRUE
   1275     p_prnt = u;
   1276     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
   1277     p_prnt = v;
   1278     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
   1279     p_prnt = x;
   1280     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
   1281     p_prnt = &z;
   1282     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Z", 1);
   1283 #endif
   1284 
   1285     p = msg;
   1286     UINT8_TO_STREAM(p, z);
   1287     ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
   1288     ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
   1289 #if SMP_DEBUG == TRUE
   1290     p_prnt = msg;
   1291     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
   1292 #endif
   1293 
   1294     p = key;
   1295     ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
   1296 #if SMP_DEBUG == TRUE
   1297     p_prnt = key;
   1298     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
   1299 #endif
   1300 
   1301     aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac);
   1302 #if SMP_DEBUG == TRUE
   1303     p_prnt = cmac;
   1304     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES_CMAC", BT_OCTET16_LEN);
   1305 #endif
   1306 
   1307     p = c;
   1308     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   1309 }
   1310 
   1311 /*******************************************************************************
   1312 **
   1313 ** Function         smp_calculate_numeric_comparison_display_number
   1314 **
   1315 ** Description      The function calculates and saves number to display in numeric
   1316 **                  comparison association mode.
   1317 **
   1318 ** Returns          void
   1319 **
   1320 *******************************************************************************/
   1321 void smp_calculate_numeric_comparison_display_number(tSMP_CB *p_cb,
   1322                                                      tSMP_INT_DATA *p_data)
   1323 {
   1324     SMP_TRACE_DEBUG ("%s", __func__);
   1325 
   1326     if (p_cb->role == HCI_ROLE_MASTER)
   1327     {
   1328         p_cb->number_to_display =
   1329             smp_calculate_g2(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
   1330                              p_cb->rrand);
   1331     }
   1332     else
   1333     {
   1334         p_cb->number_to_display =
   1335             smp_calculate_g2(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand,
   1336                              p_cb->rand);
   1337     }
   1338 
   1339     if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1))
   1340     {
   1341         UINT8 reason;
   1342         reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN;
   1343         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason);
   1344         return;
   1345     }
   1346 
   1347     SMP_TRACE_EVENT("Number to display in numeric comparison = %d", p_cb->number_to_display);
   1348     p_cb->cb_evt = SMP_NC_REQ_EVT;
   1349     smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display);
   1350     return;
   1351 }
   1352 
   1353 /*******************************************************************************
   1354 **
   1355 ** Function         smp_calculate_g2
   1356 **
   1357 ** Description      The function calculates
   1358 **                  g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6
   1359 **                                           X
   1360 **                  and
   1361 **                  Vres = g2(U, V, X, Y) mod 10**6
   1362 **                  where
   1363 **                  input:  U     is 256 bit,
   1364 **                          V     is 256 bit,
   1365 **                          X     is 128 bit,
   1366 **                          Y     is 128 bit,
   1367 **
   1368 ** Returns          Vres.
   1369 **                  Expected value has to be in the range [0 - 999999] i.e. [0 - 0xF423F].
   1370 **                  Vres = 1000000 means that the calculation fails.
   1371 **
   1372 ** Note             The LSB is the first octet, the MSB is the last octet of
   1373 **                  the AES-CMAC input/output stream.
   1374 **
   1375 *******************************************************************************/
   1376 UINT32 smp_calculate_g2(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 *y)
   1377 {
   1378     UINT8   msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */
   1379                       + BT_OCTET16_LEN /* Y size */;
   1380     UINT8   msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN];
   1381     UINT8   key[BT_OCTET16_LEN];
   1382     UINT8   cmac[BT_OCTET16_LEN];
   1383     UINT8   *p = NULL;
   1384     UINT32  vres;
   1385 #if SMP_DEBUG == TRUE
   1386     UINT8   *p_prnt = NULL;
   1387 #endif
   1388 
   1389     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1390 
   1391     p = msg;
   1392     ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN);
   1393     ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
   1394     ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
   1395 #if SMP_DEBUG == TRUE
   1396     p_prnt = u;
   1397     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
   1398     p_prnt = v;
   1399     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
   1400     p_prnt = x;
   1401     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
   1402     p_prnt = y;
   1403     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Y", BT_OCTET16_LEN);
   1404 #endif
   1405 
   1406     p = key;
   1407     ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
   1408 #if SMP_DEBUG == TRUE
   1409     p_prnt = key;
   1410     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
   1411 #endif
   1412 
   1413     if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
   1414     {
   1415         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
   1416         return (BTM_MAX_PASSKEY_VAL + 1);
   1417     }
   1418 
   1419 #if SMP_DEBUG == TRUE
   1420     p_prnt = cmac;
   1421     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   1422 #endif
   1423 
   1424     /* vres = cmac mod 2**32 mod 10**6 */
   1425     p = &cmac[0];
   1426     STREAM_TO_UINT32(vres, p);
   1427 #if SMP_DEBUG == TRUE
   1428     p_prnt = (UINT8 *) &vres;
   1429     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32", 4);
   1430 #endif
   1431 
   1432     while (vres > BTM_MAX_PASSKEY_VAL)
   1433         vres -= (BTM_MAX_PASSKEY_VAL + 1);
   1434 #if SMP_DEBUG == TRUE
   1435     p_prnt = (UINT8 *) &vres;
   1436     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32 mod 10**6", 4);
   1437 #endif
   1438 
   1439     SMP_TRACE_ERROR("Value for numeric comparison = %d", vres);
   1440     return vres;
   1441 }
   1442 
   1443 /*******************************************************************************
   1444 **
   1445 ** Function         smp_calculate_f5
   1446 **
   1447 ** Description      The function provides two AES-CMAC that are supposed to be used as
   1448 **                  - MacKey (MacKey is used in pairing DHKey check calculation);
   1449 **                  - LTK (LTK is used to ecrypt the link after completion of Phase 2
   1450 **                    and on reconnection, to derive BR/EDR LK).
   1451 **                  The function inputs are W, N1, N2, A1, A2.
   1452 **                  F5 rules:
   1453 **                  - the value used as key in MacKey/LTK (T) is calculated
   1454 **                    (function smp_calculate_f5_key(...));
   1455 **                    The formula is:
   1456 **                          T = AES-CMAC    (W)
   1457 **                                      salt
   1458 **                    where salt is internal parameter of smp_calculate_f5_key(...).
   1459 **                  - MacKey and LTK are calculated as AES-MAC values received with the
   1460 **                    key T calculated in the previous step and the plaintext message
   1461 **                    built from the external parameters N1, N2, A1, A2 and the internal
   1462 **                    parameters counter, keyID, length.
   1463 **                    The function smp_calculate_f5_mackey_or_long_term_key(...) is used in the
   1464 **                    calculations.
   1465 **                    The same formula is used in calculation of MacKey and LTK and the
   1466 **                    same parameter values except the value of the internal parameter
   1467 **                    counter:
   1468 **                    - in MacKey calculations the value is 0;
   1469 **                    - in LTK calculations the value is 1.
   1470 **                      MacKey  = AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256)
   1471 **                                        T
   1472 **                      LTK     = AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256)
   1473 **                                        T
   1474 **                  The parameters are
   1475 **                  input:
   1476 **                          W       is 256 bits,
   1477 **                          N1      is 128 bits,
   1478 **                          N2      is 128 bits,
   1479 **                          A1 is 56 bit,
   1480 **                          A2 is 56 bit.
   1481 **                  internal:
   1482 **                          Counter is 8 bits,  its value is 0 for MacKey,
   1483 **                                                          1 for LTK;
   1484 **                          KeyId   is 32 bits, its value is
   1485 **                                              0x62746c65 (MSB~LSB);
   1486 **                          Length  is 16 bits, its value is 0x0100
   1487 **                                              (MSB~LSB).
   1488 **                  output:
   1489 **                          MacKey  is 128 bits;
   1490 **                          LTK     is 128 bits
   1491 **
   1492 ** Returns          FALSE if out of resources, TRUE in other cases.
   1493 **
   1494 ** Note             The LSB is the first octet, the MSB is the last octet of
   1495 **                  the AES-CMAC input/output stream.
   1496 **
   1497 *******************************************************************************/
   1498 BOOLEAN smp_calculate_f5(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
   1499                          UINT8 *mac_key, UINT8 *ltk)
   1500 {
   1501     BT_OCTET16  t;    /* AES-CMAC output in smp_calculate_f5_key(...), key in */
   1502                       /* smp_calculate_f5_mackey_or_long_term_key(...) */
   1503 #if SMP_DEBUG == TRUE
   1504     UINT8   *p_prnt = NULL;
   1505 #endif
   1506     /* internal parameters: */
   1507 
   1508     /*
   1509         counter is 0 for MacKey,
   1510                 is 1 for LTK
   1511     */
   1512     UINT8   counter_mac_key[1]  = {0};
   1513     UINT8   counter_ltk[1]      = {1};
   1514     /*
   1515         keyID   62746c65
   1516     */
   1517     UINT8   key_id[4] = {0x65, 0x6c, 0x74, 0x62};
   1518     /*
   1519         length  0100
   1520     */
   1521     UINT8   length[2] = {0x00, 0x01};
   1522 
   1523     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1524 #if SMP_DEBUG == TRUE
   1525     p_prnt = w;
   1526     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
   1527     p_prnt = n1;
   1528     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
   1529     p_prnt = n2;
   1530     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
   1531     p_prnt = a1;
   1532     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
   1533     p_prnt = a2;
   1534     smp_debug_print_nbyte_little_endian (p_prnt,(const UINT8 *) "A2", 7);
   1535 #endif
   1536 
   1537     if (!smp_calculate_f5_key(w, t))
   1538     {
   1539         SMP_TRACE_ERROR("%s failed to calc T",__FUNCTION__);
   1540         return FALSE;
   1541     }
   1542 #if SMP_DEBUG == TRUE
   1543     p_prnt = t;
   1544     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
   1545 #endif
   1546 
   1547     if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1, n2, a1, a2,
   1548                                                   length, mac_key))
   1549     {
   1550         SMP_TRACE_ERROR("%s failed to calc MacKey", __FUNCTION__);
   1551         return FALSE;
   1552     }
   1553 #if SMP_DEBUG == TRUE
   1554     p_prnt = mac_key;
   1555     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"MacKey", BT_OCTET16_LEN);
   1556 #endif
   1557 
   1558     if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2, a1, a2,
   1559                                                   length, ltk))
   1560     {
   1561         SMP_TRACE_ERROR("%s failed to calc LTK",__FUNCTION__);
   1562         return FALSE;
   1563     }
   1564 #if SMP_DEBUG == TRUE
   1565     p_prnt = ltk;
   1566     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"LTK", BT_OCTET16_LEN);
   1567 #endif
   1568 
   1569     return TRUE;
   1570 }
   1571 
   1572 /*******************************************************************************
   1573 **
   1574 ** Function         smp_calculate_f5_mackey_or_long_term_key
   1575 **
   1576 ** Description      The function calculates the value of MacKey or LTK by the rules
   1577 **                  defined for f5 function.
   1578 **                  At the moment exactly the same formula is used to calculate
   1579 **                  LTK and MacKey.
   1580 **                  The difference is the value of input parameter Counter:
   1581 **                  - in MacKey calculations the value is 0;
   1582 **                  - in LTK calculations the value is 1.
   1583 **                  The formula:
   1584 **                  mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length)
   1585 **                                T
   1586 **                  where
   1587 **                  input:      T       is 256 bits;
   1588 **                              Counter is 8 bits, its value is 0 for MacKey,
   1589 **                                                              1 for LTK;
   1590 **                              keyID   is 32 bits, its value is 0x62746c65;
   1591 **                              N1      is 128 bits;
   1592 **                              N2      is 128 bits;
   1593 **                              A1      is 56 bits;
   1594 **                              A2      is 56 bits;
   1595 **                              Length  is 16 bits, its value is 0x0100
   1596 **                  output:     LTK     is 128 bit.
   1597 **
   1598 ** Returns          FALSE if out of resources, TRUE in other cases.
   1599 **
   1600 ** Note             The LSB is the first octet, the MSB is the last octet of
   1601 **                  the AES-CMAC input/output stream.
   1602 **
   1603 *******************************************************************************/
   1604 BOOLEAN smp_calculate_f5_mackey_or_long_term_key(UINT8 *t, UINT8 *counter,
   1605                                   UINT8 *key_id, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
   1606                                   UINT8 *length, UINT8 *mac)
   1607 {
   1608     UINT8   *p = NULL;
   1609     UINT8   cmac[BT_OCTET16_LEN];
   1610     UINT8   key[BT_OCTET16_LEN];
   1611     UINT8   msg_len = 1 /* Counter size */ + 4 /* keyID size */ +
   1612             BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
   1613             7 /* A1 size*/ + 7 /* A2 size*/ + 2 /* Length size */;
   1614     UINT8   msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2];
   1615     BOOLEAN ret = TRUE;
   1616 #if SMP_DEBUG == TRUE
   1617     UINT8   *p_prnt = NULL;
   1618 #endif
   1619 
   1620     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1621 #if SMP_DEBUG == TRUE
   1622     p_prnt = t;
   1623     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
   1624     p_prnt = counter;
   1625     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Counter", 1);
   1626     p_prnt = key_id;
   1627     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"KeyID", 4);
   1628     p_prnt = n1;
   1629     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
   1630     p_prnt = n2;
   1631     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
   1632     p_prnt = a1;
   1633     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
   1634     p_prnt = a2;
   1635     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A2", 7);
   1636     p_prnt = length;
   1637     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Length", 2);
   1638 #endif
   1639 
   1640     p = key;
   1641     ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN);
   1642 #if SMP_DEBUG == TRUE
   1643     p_prnt = key;
   1644     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
   1645 #endif
   1646     p = msg;
   1647     ARRAY_TO_STREAM(p, length, 2);
   1648     ARRAY_TO_STREAM(p, a2, 7);
   1649     ARRAY_TO_STREAM(p, a1, 7);
   1650     ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
   1651     ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
   1652     ARRAY_TO_STREAM(p, key_id, 4);
   1653     ARRAY_TO_STREAM(p, counter, 1);
   1654 #if SMP_DEBUG == TRUE
   1655     p_prnt = msg;
   1656     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
   1657 #endif
   1658 
   1659     if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
   1660     {
   1661         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
   1662         ret = FALSE;
   1663     }
   1664 
   1665 #if SMP_DEBUG == TRUE
   1666     p_prnt = cmac;
   1667     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   1668 #endif
   1669 
   1670     p = mac;
   1671     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   1672     return ret;
   1673 }
   1674 
   1675 /*******************************************************************************
   1676 **
   1677 ** Function         smp_calculate_f5_key
   1678 **
   1679 ** Description      The function calculates key T used in calculation of
   1680 **                  MacKey and LTK (f5 output is defined as MacKey || LTK).
   1681 **                  T = AES-CMAC    (W)
   1682 **                              salt
   1683 **                  where
   1684 **                  Internal:   salt    is 128 bit.
   1685 **                  input:      W       is 256 bit.
   1686 **                  Output:     T       is 128 bit.
   1687 **
   1688 ** Returns          FALSE if out of resources, TRUE in other cases.
   1689 **
   1690 ** Note             The LSB is the first octet, the MSB is the last octet of
   1691 **                  the AES-CMAC input/output stream.
   1692 **
   1693 *******************************************************************************/
   1694 BOOLEAN smp_calculate_f5_key(UINT8 *w, UINT8 *t)
   1695 {
   1696     UINT8 *p = NULL;
   1697     /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */
   1698     /*
   1699         salt:   6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE
   1700     */
   1701     BT_OCTET16  salt = {
   1702         0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60,
   1703         0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C
   1704     };
   1705 #if SMP_DEBUG == TRUE
   1706     UINT8   *p_prnt = NULL;
   1707 #endif
   1708 
   1709     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1710 #if SMP_DEBUG == TRUE
   1711     p_prnt = salt;
   1712     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"salt", BT_OCTET16_LEN);
   1713     p_prnt = w;
   1714     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
   1715 #endif
   1716 
   1717     BT_OCTET16 key;
   1718     BT_OCTET32 msg;
   1719 
   1720     p = key;
   1721     ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN);
   1722     p = msg;
   1723     ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN);
   1724 #if SMP_DEBUG == TRUE
   1725     p_prnt = key;
   1726     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
   1727     p_prnt = msg;
   1728     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", BT_OCTET32_LEN);
   1729 #endif
   1730 
   1731     BT_OCTET16 cmac;
   1732     BOOLEAN ret = TRUE;
   1733     if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN, cmac))
   1734     {
   1735         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
   1736         ret = FALSE;
   1737     }
   1738 
   1739 #if SMP_DEBUG == TRUE
   1740     p_prnt = cmac;
   1741     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   1742 #endif
   1743 
   1744     p = t;
   1745     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   1746     return ret;
   1747 }
   1748 
   1749 /*******************************************************************************
   1750 **
   1751 ** Function         smp_calculate_local_dhkey_check
   1752 **
   1753 ** Description      The function calculates and saves local device DHKey check
   1754 **                  value in CB.
   1755 **                  Before doing this it calls smp_calculate_f5_mackey_and_long_term_key(...).
   1756 **                  to calculate MacKey and LTK.
   1757 **                  MacKey is used in dhkey calculation.
   1758 **
   1759 ** Returns          void
   1760 **
   1761 *******************************************************************************/
   1762 void smp_calculate_local_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
   1763 {
   1764     UINT8   iocap[3], a[7], b[7];
   1765 
   1766     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1767 
   1768     smp_calculate_f5_mackey_and_long_term_key(p_cb);
   1769 
   1770     smp_collect_local_io_capabilities(iocap, p_cb);
   1771 
   1772     smp_collect_local_ble_address(a, p_cb);
   1773     smp_collect_peer_ble_address(b, p_cb);
   1774     smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, iocap, a, b,
   1775                      p_cb->dhkey_check);
   1776 
   1777     SMP_TRACE_EVENT ("local DHKey check calculation is completed");
   1778 }
   1779 
   1780 /*******************************************************************************
   1781 **
   1782 ** Function         smp_calculate_peer_dhkey_check
   1783 **
   1784 ** Description      The function calculates peer device DHKey check value.
   1785 **
   1786 ** Returns          void
   1787 **
   1788 *******************************************************************************/
   1789 void smp_calculate_peer_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
   1790 {
   1791     UINT8       iocap[3], a[7], b[7];
   1792     BT_OCTET16  param_buf;
   1793     BOOLEAN     ret;
   1794     tSMP_KEY    key;
   1795     tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
   1796 
   1797     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1798 
   1799     smp_collect_peer_io_capabilities(iocap, p_cb);
   1800 
   1801     smp_collect_local_ble_address(a, p_cb);
   1802     smp_collect_peer_ble_address(b, p_cb);
   1803     ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, p_cb->local_random, iocap,
   1804                            b, a, param_buf);
   1805 
   1806     if (ret)
   1807     {
   1808         SMP_TRACE_EVENT ("peer DHKey check calculation is completed");
   1809 #if (SMP_DEBUG == TRUE)
   1810         smp_debug_print_nbyte_little_endian (param_buf, (const UINT8 *)"peer DHKey check",
   1811                                              BT_OCTET16_LEN);
   1812 #endif
   1813         key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK;
   1814         key.p_data   = param_buf;
   1815         smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key);
   1816     }
   1817     else
   1818     {
   1819         SMP_TRACE_EVENT ("peer DHKey check calculation failed");
   1820         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
   1821     }
   1822 }
   1823 
   1824 /*******************************************************************************
   1825 **
   1826 ** Function         smp_calculate_f6
   1827 **
   1828 ** Description      The function calculates
   1829 **                  C = f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMAC (N1||N2||R||IOcap||A1||A2)
   1830 **                                                                W
   1831 **                  where
   1832 **                  input:  W is 128 bit,
   1833 **                          N1 is 128 bit,
   1834 **                          N2 is 128 bit,
   1835 **                          R is 128 bit,
   1836 **                          IOcap is 24 bit,
   1837 **                          A1 is 56 bit,
   1838 **                          A2 is 56 bit,
   1839 **                  output: C is 128 bit.
   1840 **
   1841 ** Returns          FALSE if out of resources, TRUE in other cases.
   1842 **
   1843 ** Note             The LSB is the first octet, the MSB is the last octet of
   1844 **                  the AES-CMAC input/output stream.
   1845 **
   1846 *******************************************************************************/
   1847 BOOLEAN smp_calculate_f6(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *r, UINT8 *iocap, UINT8 *a1,
   1848                          UINT8 *a2, UINT8 *c)
   1849 {
   1850     UINT8   *p = NULL;
   1851     UINT8   msg_len = BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
   1852                       BT_OCTET16_LEN /* R size */ + 3 /* IOcap size */ + 7 /* A1 size*/
   1853                       + 7 /* A2 size*/;
   1854     UINT8   msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7];
   1855 #if SMP_DEBUG == TRUE
   1856     UINT8   *p_print = NULL;
   1857 #endif
   1858 
   1859     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1860 #if SMP_DEBUG == TRUE
   1861     p_print = w;
   1862     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
   1863     p_print = n1;
   1864     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N1", BT_OCTET16_LEN);
   1865     p_print = n2;
   1866     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N2", BT_OCTET16_LEN);
   1867     p_print = r;
   1868     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"R", BT_OCTET16_LEN);
   1869     p_print = iocap;
   1870     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"IOcap", 3);
   1871     p_print = a1;
   1872     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A1", 7);
   1873     p_print = a2;
   1874     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A2", 7);
   1875 #endif
   1876 
   1877     UINT8 cmac[BT_OCTET16_LEN];
   1878     UINT8 key[BT_OCTET16_LEN];
   1879 
   1880     p = key;
   1881     ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
   1882 #if SMP_DEBUG == TRUE
   1883     p_print = key;
   1884     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
   1885 #endif
   1886 
   1887     p = msg;
   1888     ARRAY_TO_STREAM(p, a2, 7);
   1889     ARRAY_TO_STREAM(p, a1, 7);
   1890     ARRAY_TO_STREAM(p, iocap, 3);
   1891     ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN);
   1892     ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
   1893     ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
   1894 #if SMP_DEBUG == TRUE
   1895     p_print = msg;
   1896     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"M", msg_len);
   1897 #endif
   1898 
   1899     BOOLEAN ret = TRUE;
   1900     if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
   1901     {
   1902         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
   1903         ret = FALSE;
   1904     }
   1905 
   1906 #if SMP_DEBUG == TRUE
   1907     p_print = cmac;
   1908     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   1909 #endif
   1910 
   1911     p = c;
   1912     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   1913     return ret;
   1914 }
   1915 
   1916 /*******************************************************************************
   1917 **
   1918 ** Function         smp_calculate_link_key_from_long_term_key
   1919 **
   1920 ** Description      The function calculates and saves BR/EDR link key derived from
   1921 **                  LE SC LTK.
   1922 **
   1923 ** Returns          FALSE if out of resources, TRUE in other cases.
   1924 **
   1925 *******************************************************************************/
   1926 BOOLEAN smp_calculate_link_key_from_long_term_key(tSMP_CB *p_cb)
   1927 {
   1928     tBTM_SEC_DEV_REC *p_dev_rec;
   1929     BD_ADDR bda_for_lk;
   1930     tBLE_ADDR_TYPE conn_addr_type;
   1931 
   1932     SMP_TRACE_DEBUG ("%s", __func__);
   1933 
   1934     if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC)
   1935     {
   1936         SMP_TRACE_DEBUG ("Use rcvd identity address as BD_ADDR of LK rcvd identity address");
   1937         memcpy(bda_for_lk, p_cb->id_addr, BD_ADDR_LEN);
   1938     }
   1939     else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, &conn_addr_type)) &&
   1940               conn_addr_type == BLE_ADDR_PUBLIC)
   1941     {
   1942         SMP_TRACE_DEBUG ("Use rcvd connection address as BD_ADDR of LK");
   1943     }
   1944     else
   1945     {
   1946         SMP_TRACE_WARNING ("Don't have peer public address to associate with LK");
   1947         return FALSE;
   1948     }
   1949 
   1950     if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL)
   1951     {
   1952         SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
   1953         return FALSE;
   1954     }
   1955 
   1956     BT_OCTET16 intermediate_link_key;
   1957     BOOLEAN ret = TRUE;
   1958 
   1959     ret = smp_calculate_h6(p_cb->ltk, (UINT8 *)"1pmt" /* reversed "tmp1" */,intermediate_link_key);
   1960     if (!ret)
   1961     {
   1962         SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__);
   1963         return ret;
   1964     }
   1965 
   1966     BT_OCTET16 link_key;
   1967     ret = smp_calculate_h6(intermediate_link_key, (UINT8 *) "rbel" /* reversed "lebr" */, link_key);
   1968     if (!ret)
   1969     {
   1970         SMP_TRACE_ERROR("%s failed", __func__);
   1971     }
   1972     else
   1973     {
   1974         UINT8 link_key_type;
   1975         if (btm_cb.security_mode == BTM_SEC_MODE_SC)
   1976         {
   1977             /* Secure Connections Only Mode */
   1978             link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
   1979         }
   1980         else if (controller_get_interface()->supports_secure_connections())
   1981         {
   1982             /* both transports are SC capable */
   1983             if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
   1984                 link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
   1985             else
   1986                 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256;
   1987         }
   1988         else if (btm_cb.security_mode == BTM_SEC_MODE_SP)
   1989         {
   1990             /* BR/EDR transport is SSP capable */
   1991             if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
   1992                 link_key_type = BTM_LKEY_TYPE_AUTH_COMB;
   1993             else
   1994                 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB;
   1995         }
   1996         else
   1997         {
   1998             SMP_TRACE_ERROR ("%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x",
   1999                  __func__, btm_cb.security_mode, p_dev_rec->sm4);
   2000             return FALSE;
   2001         }
   2002 
   2003         link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET;
   2004 
   2005         UINT8 *p;
   2006         BT_OCTET16 notif_link_key;
   2007         p = notif_link_key;
   2008         ARRAY16_TO_STREAM(p, link_key);
   2009 
   2010         btm_sec_link_key_notification (bda_for_lk, notif_link_key, link_key_type);
   2011 
   2012         SMP_TRACE_EVENT ("%s is completed", __func__);
   2013     }
   2014 
   2015     return ret;
   2016 }
   2017 
   2018 /*******************************************************************************
   2019 **
   2020 ** Function         smp_calculate_long_term_key_from_link_key
   2021 **
   2022 ** Description      The function calculates and saves SC LTK derived from BR/EDR
   2023 **                  link key.
   2024 **
   2025 ** Returns          FALSE if out of resources, TRUE in other cases.
   2026 **
   2027 *******************************************************************************/
   2028 BOOLEAN smp_calculate_long_term_key_from_link_key(tSMP_CB *p_cb)
   2029 {
   2030     BOOLEAN ret = TRUE;
   2031     tBTM_SEC_DEV_REC *p_dev_rec;
   2032     UINT8 rev_link_key[16];
   2033 
   2034     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   2035 
   2036     if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL)
   2037     {
   2038         SMP_TRACE_ERROR("%s failed to find Security Record",__FUNCTION__);
   2039         return FALSE;
   2040     }
   2041 
   2042     UINT8 br_link_key_type;
   2043     if ((br_link_key_type = BTM_SecGetDeviceLinkKeyType (p_cb->pairing_bda))
   2044         == BTM_LKEY_TYPE_IGNORE)
   2045     {
   2046         SMP_TRACE_ERROR("%s failed to retrieve BR link type",__FUNCTION__);
   2047         return FALSE;
   2048     }
   2049 
   2050     if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) &&
   2051         (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256))
   2052     {
   2053         SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d",
   2054                          __FUNCTION__, br_link_key_type);
   2055         return FALSE;
   2056     }
   2057 
   2058     UINT8 *p1;
   2059     UINT8 *p2;
   2060     p1 = rev_link_key;
   2061     p2 = p_dev_rec->link_key;
   2062     REVERSE_ARRAY_TO_STREAM(p1, p2, 16);
   2063 
   2064     BT_OCTET16 intermediate_long_term_key;
   2065     /* "tmp2" obtained from the spec */
   2066     ret = smp_calculate_h6(rev_link_key, (UINT8 *) "2pmt" /* reversed "tmp2" */,
   2067                            intermediate_long_term_key);
   2068 
   2069     if (!ret)
   2070     {
   2071         SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key",__FUNCTION__);
   2072         return ret;
   2073     }
   2074 
   2075     /* "brle" obtained from the spec */
   2076     ret = smp_calculate_h6(intermediate_long_term_key, (UINT8 *) "elrb" /* reversed "brle" */,
   2077                            p_cb->ltk);
   2078 
   2079     if (!ret)
   2080     {
   2081         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
   2082     }
   2083     else
   2084     {
   2085         p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256)
   2086                            ? SMP_SEC_AUTHENTICATED : SMP_SEC_UNAUTHENTICATE;
   2087         SMP_TRACE_EVENT ("%s is completed",__FUNCTION__);
   2088     }
   2089 
   2090     return ret;
   2091 }
   2092 
   2093 /*******************************************************************************
   2094 **
   2095 ** Function         smp_calculate_h6
   2096 **
   2097 ** Description      The function calculates
   2098 **                  C = h6(W, KeyID) = AES-CMAC (KeyID)
   2099 **                                             W
   2100 **                  where
   2101 **                  input:  W is 128 bit,
   2102 **                          KeyId is 32 bit,
   2103 **                  output: C is 128 bit.
   2104 **
   2105 ** Returns          FALSE if out of resources, TRUE in other cases.
   2106 **
   2107 ** Note             The LSB is the first octet, the MSB is the last octet of
   2108 **                  the AES-CMAC input/output stream.
   2109 **
   2110 *******************************************************************************/
   2111 BOOLEAN smp_calculate_h6(UINT8 *w, UINT8 *keyid, UINT8 *c)
   2112 {
   2113 #if SMP_DEBUG == TRUE
   2114     UINT8   *p_print = NULL;
   2115 #endif
   2116 
   2117     SMP_TRACE_DEBUG ("%s",__FUNCTION__);
   2118 #if SMP_DEBUG == TRUE
   2119     p_print = w;
   2120     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
   2121     p_print = keyid;
   2122     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"keyID", 4);
   2123 #endif
   2124 
   2125     UINT8 *p = NULL;
   2126     UINT8 key[BT_OCTET16_LEN];
   2127 
   2128     p = key;
   2129     ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
   2130 
   2131 #if SMP_DEBUG == TRUE
   2132     p_print = key;
   2133     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
   2134 #endif
   2135 
   2136     UINT8 msg_len = 4 /* KeyID size */;
   2137     UINT8 msg[4];
   2138 
   2139     p = msg;
   2140     ARRAY_TO_STREAM(p, keyid, 4);
   2141 
   2142 #if SMP_DEBUG == TRUE
   2143     p_print = msg;
   2144     smp_debug_print_nbyte_little_endian (p_print,(const UINT8 *) "M", msg_len);
   2145 #endif
   2146 
   2147     BOOLEAN ret = TRUE;
   2148     UINT8 cmac[BT_OCTET16_LEN];
   2149     if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
   2150     {
   2151         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
   2152         ret = FALSE;
   2153     }
   2154 
   2155 #if SMP_DEBUG == TRUE
   2156     p_print = cmac;
   2157     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   2158 #endif
   2159 
   2160     p = c;
   2161     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   2162     return ret;
   2163 }
   2164 
   2165 /*******************************************************************************
   2166 **
   2167 ** Function         smp_start_nonce_generation
   2168 **
   2169 ** Description      This function starts nonce generation.
   2170 **
   2171 ** Returns          void
   2172 **
   2173 *******************************************************************************/
   2174 void smp_start_nonce_generation(tSMP_CB *p_cb)
   2175 {
   2176     SMP_TRACE_DEBUG("%s", __FUNCTION__);
   2177     p_cb->rand_enc_proc_state = SMP_GEN_NONCE_0_7;
   2178     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   2179         smp_rand_back(NULL);
   2180 }
   2181 
   2182 /*******************************************************************************
   2183 **
   2184 ** Function         smp_finish_nonce_generation
   2185 **
   2186 ** Description      This function finishes nonce generation.
   2187 **
   2188 ** Returns          void
   2189 **
   2190 *******************************************************************************/
   2191 void smp_finish_nonce_generation(tSMP_CB *p_cb)
   2192 {
   2193     SMP_TRACE_DEBUG("%s", __FUNCTION__);
   2194     p_cb->rand_enc_proc_state = SMP_GEN_NONCE_8_15;
   2195     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   2196         smp_rand_back(NULL);
   2197 }
   2198 
   2199 /*******************************************************************************
   2200 **
   2201 ** Function         smp_process_new_nonce
   2202 **
   2203 ** Description      This function notifies SM that it has new nonce.
   2204 **
   2205 ** Returns          void
   2206 **
   2207 *******************************************************************************/
   2208 void smp_process_new_nonce(tSMP_CB *p_cb)
   2209 {
   2210     SMP_TRACE_DEBUG ("%s round %d", __FUNCTION__, p_cb->round);
   2211     smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL);
   2212 }
   2213 
   2214 /*******************************************************************************
   2215 **
   2216 ** Function         smp_rand_back
   2217 **
   2218 ** Description      This function is to process the rand command finished,
   2219 **                  process the random/encrypted number for further action.
   2220 **
   2221 ** Returns          void
   2222 **
   2223 *******************************************************************************/
   2224 static void smp_rand_back(tBTM_RAND_ENC *p)
   2225 {
   2226     tSMP_CB *p_cb = &smp_cb;
   2227     UINT8   *pp = p->param_buf;
   2228     UINT8   failure = SMP_PAIR_FAIL_UNKNOWN;
   2229     UINT8   state = p_cb->rand_enc_proc_state & ~0x80;
   2230 
   2231     SMP_TRACE_DEBUG ("%s state=0x%x", __FUNCTION__, state);
   2232     if (p && p->status == HCI_SUCCESS)
   2233     {
   2234         switch (state)
   2235         {
   2236             case SMP_GEN_SRAND_MRAND:
   2237                 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
   2238                 smp_generate_rand_cont(p_cb, NULL);
   2239                 break;
   2240 
   2241             case SMP_GEN_SRAND_MRAND_CONT:
   2242                 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
   2243                 smp_generate_confirm(p_cb, NULL);
   2244                 break;
   2245 
   2246             case SMP_GEN_DIV_LTK:
   2247                 STREAM_TO_UINT16(p_cb->div, pp);
   2248                 smp_generate_ltk_cont(p_cb, NULL);
   2249                 break;
   2250 
   2251             case SMP_GEN_DIV_CSRK:
   2252                 STREAM_TO_UINT16(p_cb->div, pp);
   2253                 smp_compute_csrk(p_cb, NULL);
   2254                 break;
   2255 
   2256             case SMP_GEN_TK:
   2257                 smp_proc_passkey(p_cb, p);
   2258                 break;
   2259 
   2260             case SMP_GEN_RAND_V:
   2261                 memcpy(p_cb->enc_rand, p->param_buf, BT_OCTET8_LEN);
   2262                 smp_generate_y(p_cb, NULL);
   2263                 break;
   2264 
   2265             case SMP_GENERATE_PRIVATE_KEY_0_7:
   2266             case SMP_GENERATE_PRIVATE_KEY_8_15:
   2267             case SMP_GENERATE_PRIVATE_KEY_16_23:
   2268             case SMP_GENERATE_PRIVATE_KEY_24_31:
   2269                 smp_continue_private_key_creation(p_cb, p);
   2270                 break;
   2271 
   2272             case SMP_GEN_NONCE_0_7:
   2273                 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
   2274                 smp_finish_nonce_generation(p_cb);
   2275                 break;
   2276 
   2277             case SMP_GEN_NONCE_8_15:
   2278                 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
   2279                 smp_process_new_nonce(p_cb);
   2280                 break;
   2281         }
   2282 
   2283         return;
   2284     }
   2285 
   2286     SMP_TRACE_ERROR("%s key generation failed: (%d)", __FUNCTION__, p_cb->rand_enc_proc_state);
   2287     smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &failure);
   2288 }
   2289 
   2290 #endif
   2291 
   2292