Home | History | Annotate | Download | only in libpixelflinger
      1 /* libs/pixelflinger/trap.cpp
      2 **
      3 ** Copyright 2006, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 #include <assert.h>
     19 #include <stdio.h>
     20 #include <stdlib.h>
     21 
     22 #include "trap.h"
     23 #include "picker.h"
     24 
     25 #include <cutils/log.h>
     26 #include <cutils/memory.h>
     27 
     28 namespace android {
     29 
     30 // ----------------------------------------------------------------------------
     31 
     32 // enable to see triangles edges
     33 #define DEBUG_TRANGLES  0
     34 
     35 // ----------------------------------------------------------------------------
     36 
     37 static void pointx_validate(void *con, const GGLcoord* c, GGLcoord r);
     38 static void pointx(void *con, const GGLcoord* c, GGLcoord r);
     39 static void aa_pointx(void *con, const GGLcoord* c, GGLcoord r);
     40 static void aa_nice_pointx(void *con, const GGLcoord* c, GGLcoord r);
     41 
     42 static void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
     43 static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
     44 static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
     45 
     46 static void recti_validate(void* c, GGLint l, GGLint t, GGLint r, GGLint b);
     47 static void recti(void* c, GGLint l, GGLint t, GGLint r, GGLint b);
     48 
     49 static void trianglex_validate(void*,
     50         const GGLcoord*, const GGLcoord*, const GGLcoord*);
     51 static void trianglex_small(void*,
     52         const GGLcoord*, const GGLcoord*, const GGLcoord*);
     53 static void trianglex_big(void*,
     54         const GGLcoord*, const GGLcoord*, const GGLcoord*);
     55 static void aa_trianglex(void*,
     56         const GGLcoord*, const GGLcoord*, const GGLcoord*);
     57 static void trianglex_debug(void* con,
     58         const GGLcoord*, const GGLcoord*, const GGLcoord*);
     59 
     60 static void aapolyx(void* con,
     61         const GGLcoord* pts, int count);
     62 
     63 static inline int min(int a, int b) CONST;
     64 static inline int max(int a, int b) CONST;
     65 static inline int min(int a, int b, int c) CONST;
     66 static inline int max(int a, int b, int c) CONST;
     67 
     68 // ----------------------------------------------------------------------------
     69 #if 0
     70 #pragma mark -
     71 #pragma mark Tools
     72 #endif
     73 
     74 inline int min(int a, int b) {
     75     return a<b ? a : b;
     76 }
     77 inline int max(int a, int b) {
     78     return a<b ? b : a;
     79 }
     80 inline int min(int a, int b, int c) {
     81     return min(a,min(b,c));
     82 }
     83 inline int max(int a, int b, int c) {
     84     return max(a,max(b,c));
     85 }
     86 
     87 template <typename T>
     88 static inline void swap(T& a, T& b) {
     89     T t(a);
     90     a = b;
     91     b = t;
     92 }
     93 
     94 static void
     95 triangle_dump_points( const GGLcoord*  v0,
     96                       const GGLcoord*  v1,
     97                       const GGLcoord*  v2 )
     98 {
     99     float tri = 1.0f / TRI_ONE;
    100     ALOGD("  P0=(%.3f, %.3f)  [%08x, %08x]\n"
    101           "  P1=(%.3f, %.3f)  [%08x, %08x]\n"
    102           "  P2=(%.3f, %.3f)  [%08x, %08x]\n",
    103           v0[0]*tri, v0[1]*tri, v0[0], v0[1],
    104           v1[0]*tri, v1[1]*tri, v1[0], v1[1],
    105           v2[0]*tri, v2[1]*tri, v2[0], v2[1] );
    106 }
    107 
    108 // ----------------------------------------------------------------------------
    109 #if 0
    110 #pragma mark -
    111 #pragma mark Misc
    112 #endif
    113 
    114 void ggl_init_trap(context_t* c)
    115 {
    116     ggl_state_changed(c, GGL_PIXEL_PIPELINE_STATE|GGL_TMU_STATE|GGL_CB_STATE);
    117 }
    118 
    119 void ggl_state_changed(context_t* c, int flags)
    120 {
    121     if (ggl_likely(!c->dirty)) {
    122         c->procs.pointx     = pointx_validate;
    123         c->procs.linex      = linex_validate;
    124         c->procs.recti      = recti_validate;
    125         c->procs.trianglex  = trianglex_validate;
    126     }
    127     c->dirty |= uint32_t(flags);
    128 }
    129 
    130 // ----------------------------------------------------------------------------
    131 #if 0
    132 #pragma mark -
    133 #pragma mark Point
    134 #endif
    135 
    136 void pointx_validate(void *con, const GGLcoord* v, GGLcoord rad)
    137 {
    138     GGL_CONTEXT(c, con);
    139     ggl_pick(c);
    140     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
    141         if (c->state.enables & GGL_ENABLE_POINT_AA_NICE) {
    142             c->procs.pointx = aa_nice_pointx;
    143         } else {
    144             c->procs.pointx = aa_pointx;
    145         }
    146     } else {
    147         c->procs.pointx = pointx;
    148     }
    149     c->procs.pointx(con, v, rad);
    150 }
    151 
    152 void pointx(void *con, const GGLcoord* v, GGLcoord rad)
    153 {
    154     GGL_CONTEXT(c, con);
    155     GGLcoord halfSize = TRI_ROUND(rad) >> 1;
    156     if (halfSize == 0)
    157         halfSize = TRI_HALF;
    158     GGLcoord xc = v[0];
    159     GGLcoord yc = v[1];
    160     if (halfSize & TRI_HALF) { // size odd
    161         xc = TRI_FLOOR(xc) + TRI_HALF;
    162         yc = TRI_FLOOR(yc) + TRI_HALF;
    163     } else { // size even
    164         xc = TRI_ROUND(xc);
    165         yc = TRI_ROUND(yc);
    166     }
    167     GGLint l = (xc - halfSize) >> TRI_FRACTION_BITS;
    168     GGLint t = (yc - halfSize) >> TRI_FRACTION_BITS;
    169     GGLint r = (xc + halfSize) >> TRI_FRACTION_BITS;
    170     GGLint b = (yc + halfSize) >> TRI_FRACTION_BITS;
    171     recti(c, l, t, r, b);
    172 }
    173 
    174 // This way of computing the coverage factor, is more accurate and gives
    175 // better results for small circles, but it is also a lot slower.
    176 // Here we use super-sampling.
    177 static int32_t coverageNice(GGLcoord x, GGLcoord y,
    178         GGLcoord rmin, GGLcoord rmax, GGLcoord rr)
    179 {
    180     const GGLcoord d2 = x*x + y*y;
    181     if (d2 >= rmax) return 0;
    182     if (d2 < rmin)  return 0x7FFF;
    183 
    184     const int kSamples              =  4;
    185     const int kInc                  =  4;    // 1/4 = 0.25
    186     const int kCoverageUnit         =  1;    // 1/(4^2) = 0.0625
    187     const GGLcoord kCoordOffset     = -6;    // -0.375
    188 
    189     int hits = 0;
    190     int x_sample = x + kCoordOffset;
    191     for (int i=0 ; i<kSamples ; i++, x_sample += kInc) {
    192         const int xval = rr - (x_sample * x_sample);
    193         int y_sample = y + kCoordOffset;
    194         for (int j=0 ; j<kSamples ; j++, y_sample += kInc) {
    195             if (xval - (y_sample * y_sample) > 0)
    196                 hits += kCoverageUnit;
    197         }
    198     }
    199     return min(0x7FFF, hits << (15 - kSamples));
    200 }
    201 
    202 
    203 void aa_nice_pointx(void *con, const GGLcoord* v, GGLcoord size)
    204 {
    205     GGL_CONTEXT(c, con);
    206 
    207     GGLcoord rad = ((size + 1)>>1);
    208     GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS;
    209     GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS;
    210     GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
    211     GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
    212     GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF;
    213     GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF;
    214 
    215     // scissor...
    216     if (l < GGLint(c->state.scissor.left)) {
    217         xstart += TRI_FROM_INT(c->state.scissor.left-l);
    218         l = GGLint(c->state.scissor.left);
    219     }
    220     if (t < GGLint(c->state.scissor.top)) {
    221         ystart += TRI_FROM_INT(c->state.scissor.top-t);
    222         t = GGLint(c->state.scissor.top);
    223     }
    224     if (r > GGLint(c->state.scissor.right)) {
    225         r = GGLint(c->state.scissor.right);
    226     }
    227     if (b > GGLint(c->state.scissor.bottom)) {
    228         b = GGLint(c->state.scissor.bottom);
    229     }
    230 
    231     int xc = r - l;
    232     int yc = b - t;
    233     if (xc>0 && yc>0) {
    234         int16_t* covPtr = c->state.buffers.coverage;
    235         const int32_t sqr2Over2 = 0xC; // rounded up
    236         GGLcoord rr = rad*rad;
    237         GGLcoord rmin = (rad - sqr2Over2)*(rad - sqr2Over2);
    238         GGLcoord rmax = (rad + sqr2Over2)*(rad + sqr2Over2);
    239         GGLcoord y = ystart;
    240         c->iterators.xl = l;
    241         c->iterators.xr = r;
    242         c->init_y(c, t);
    243         do {
    244             // compute coverage factors for each pixel
    245             GGLcoord x = xstart;
    246             for (int i=l ; i<r ; i++) {
    247                 covPtr[i] = coverageNice(x, y, rmin, rmax, rr);
    248                 x += TRI_ONE;
    249             }
    250             y += TRI_ONE;
    251             c->scanline(c);
    252             c->step_y(c);
    253         } while (--yc);
    254     }
    255 }
    256 
    257 // This is a cheap way of computing the coverage factor for a circle.
    258 // We just lerp between the circles of radii r-sqrt(2)/2 and r+sqrt(2)/2
    259 static inline int32_t coverageFast(GGLcoord x, GGLcoord y,
    260         GGLcoord rmin, GGLcoord rmax, GGLcoord scale)
    261 {
    262     const GGLcoord d2 = x*x + y*y;
    263     if (d2 >= rmax) return 0;
    264     if (d2 < rmin)  return 0x7FFF;
    265     return 0x7FFF - (d2-rmin)*scale;
    266 }
    267 
    268 void aa_pointx(void *con, const GGLcoord* v, GGLcoord size)
    269 {
    270     GGL_CONTEXT(c, con);
    271 
    272     GGLcoord rad = ((size + 1)>>1);
    273     GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS;
    274     GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS;
    275     GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
    276     GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
    277     GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF;
    278     GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF;
    279 
    280     // scissor...
    281     if (l < GGLint(c->state.scissor.left)) {
    282         xstart += TRI_FROM_INT(c->state.scissor.left-l);
    283         l = GGLint(c->state.scissor.left);
    284     }
    285     if (t < GGLint(c->state.scissor.top)) {
    286         ystart += TRI_FROM_INT(c->state.scissor.top-t);
    287         t = GGLint(c->state.scissor.top);
    288     }
    289     if (r > GGLint(c->state.scissor.right)) {
    290         r = GGLint(c->state.scissor.right);
    291     }
    292     if (b > GGLint(c->state.scissor.bottom)) {
    293         b = GGLint(c->state.scissor.bottom);
    294     }
    295 
    296     int xc = r - l;
    297     int yc = b - t;
    298     if (xc>0 && yc>0) {
    299         int16_t* covPtr = c->state.buffers.coverage;
    300         rad <<= 4;
    301         const int32_t sqr2Over2 = 0xB5;    // fixed-point 24.8
    302         GGLcoord rmin = rad - sqr2Over2;
    303         GGLcoord rmax = rad + sqr2Over2;
    304         GGLcoord scale;
    305         rmin *= rmin;
    306         rmax *= rmax;
    307         scale = 0x800000 / (rmax - rmin);
    308         rmin >>= 8;
    309         rmax >>= 8;
    310 
    311         GGLcoord y = ystart;
    312         c->iterators.xl = l;
    313         c->iterators.xr = r;
    314         c->init_y(c, t);
    315 
    316         do {
    317             // compute coverage factors for each pixel
    318             GGLcoord x = xstart;
    319             for (int i=l ; i<r ; i++) {
    320                 covPtr[i] = coverageFast(x, y, rmin, rmax, scale);
    321                 x += TRI_ONE;
    322             }
    323             y += TRI_ONE;
    324             c->scanline(c);
    325             c->step_y(c);
    326         } while (--yc);
    327     }
    328 }
    329 
    330 // ----------------------------------------------------------------------------
    331 #if 0
    332 #pragma mark -
    333 #pragma mark Line
    334 #endif
    335 
    336 void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w)
    337 {
    338     GGL_CONTEXT(c, con);
    339     ggl_pick(c);
    340     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
    341         c->procs.linex = aa_linex;
    342     } else {
    343         c->procs.linex = linex;
    344     }
    345     c->procs.linex(con, v0, v1, w);
    346 }
    347 
    348 static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width)
    349 {
    350     GGL_CONTEXT(c, con);
    351     GGLcoord v[4][2];
    352     v[0][0] = v0[0];    v[0][1] = v0[1];
    353     v[1][0] = v1[0];    v[1][1] = v1[1];
    354     v0 = v[0];
    355     v1 = v[1];
    356     const GGLcoord dx = abs(v0[0] - v1[0]);
    357     const GGLcoord dy = abs(v0[1] - v1[1]);
    358     GGLcoord nx, ny;
    359     nx = ny = 0;
    360 
    361     GGLcoord halfWidth = TRI_ROUND(width) >> 1;
    362     if (halfWidth == 0)
    363         halfWidth = TRI_HALF;
    364 
    365     ((dx > dy) ? ny : nx) = halfWidth;
    366     v[2][0] = v1[0];    v[2][1] = v1[1];
    367     v[3][0] = v0[0];    v[3][1] = v0[1];
    368     v[0][0] += nx;      v[0][1] += ny;
    369     v[1][0] += nx;      v[1][1] += ny;
    370     v[2][0] -= nx;      v[2][1] -= ny;
    371     v[3][0] -= nx;      v[3][1] -= ny;
    372     trianglex_big(con, v[0], v[1], v[2]);
    373     trianglex_big(con, v[0], v[2], v[3]);
    374 }
    375 
    376 static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width)
    377 {
    378     GGL_CONTEXT(c, con);
    379     GGLcoord v[4][2];
    380     v[0][0] = v0[0];    v[0][1] = v0[1];
    381     v[1][0] = v1[0];    v[1][1] = v1[1];
    382     v0 = v[0];
    383     v1 = v[1];
    384 
    385     const GGLcoord dx = v0[0] - v1[0];
    386     const GGLcoord dy = v0[1] - v1[1];
    387     GGLcoord nx = -dy;
    388     GGLcoord ny =  dx;
    389 
    390     // generally, this will be well below 1.0
    391     const GGLfixed norm = gglMulx(width, gglSqrtRecipx(nx*nx+ny*ny), 4);
    392     nx = gglMulx(nx, norm, 21);
    393     ny = gglMulx(ny, norm, 21);
    394 
    395     v[2][0] = v1[0];    v[2][1] = v1[1];
    396     v[3][0] = v0[0];    v[3][1] = v0[1];
    397     v[0][0] += nx;      v[0][1] += ny;
    398     v[1][0] += nx;      v[1][1] += ny;
    399     v[2][0] -= nx;      v[2][1] -= ny;
    400     v[3][0] -= nx;      v[3][1] -= ny;
    401     aapolyx(con, v[0], 4);
    402 }
    403 
    404 
    405 // ----------------------------------------------------------------------------
    406 #if 0
    407 #pragma mark -
    408 #pragma mark Rect
    409 #endif
    410 
    411 void recti_validate(void *con, GGLint l, GGLint t, GGLint r, GGLint b)
    412 {
    413     GGL_CONTEXT(c, con);
    414     ggl_pick(c);
    415     c->procs.recti = recti;
    416     c->procs.recti(con, l, t, r, b);
    417 }
    418 
    419 void recti(void* con, GGLint l, GGLint t, GGLint r, GGLint b)
    420 {
    421     GGL_CONTEXT(c, con);
    422 
    423     // scissor...
    424     if (l < GGLint(c->state.scissor.left))
    425         l = GGLint(c->state.scissor.left);
    426     if (t < GGLint(c->state.scissor.top))
    427         t = GGLint(c->state.scissor.top);
    428     if (r > GGLint(c->state.scissor.right))
    429         r = GGLint(c->state.scissor.right);
    430     if (b > GGLint(c->state.scissor.bottom))
    431         b = GGLint(c->state.scissor.bottom);
    432 
    433     int xc = r - l;
    434     int yc = b - t;
    435     if (xc>0 && yc>0) {
    436         c->iterators.xl = l;
    437         c->iterators.xr = r;
    438         c->init_y(c, t);
    439         c->rect(c, yc);
    440     }
    441 }
    442 
    443 // ----------------------------------------------------------------------------
    444 #if 0
    445 #pragma mark -
    446 #pragma mark Triangle / Debugging
    447 #endif
    448 
    449 static void scanline_set(context_t* c)
    450 {
    451     int32_t x = c->iterators.xl;
    452     size_t ct = c->iterators.xr - x;
    453     int32_t y = c->iterators.y;
    454     surface_t* cb = &(c->state.buffers.color);
    455     const GGLFormat* fp = &(c->formats[cb->format]);
    456     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
    457                             (x + (cb->stride * y)) * fp->size;
    458     const size_t size = ct * fp->size;
    459     memset(dst, 0xFF, size);
    460 }
    461 
    462 static void trianglex_debug(void* con,
    463         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
    464 {
    465     GGL_CONTEXT(c, con);
    466     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
    467         aa_trianglex(con,v0,v1,v2);
    468     } else {
    469         trianglex_big(con,v0,v1,v2);
    470     }
    471 	void (*save_scanline)(context_t*)  = c->scanline;
    472     c->scanline = scanline_set;
    473     linex(con, v0, v1, TRI_ONE);
    474     linex(con, v1, v2, TRI_ONE);
    475     linex(con, v2, v0, TRI_ONE);
    476     c->scanline = save_scanline;
    477 }
    478 
    479 static void trianglex_xor(void* con,
    480         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
    481 {
    482     trianglex_big(con,v0,v1,v2);
    483     trianglex_small(con,v0,v1,v2);
    484 }
    485 
    486 // ----------------------------------------------------------------------------
    487 #if 0
    488 #pragma mark -
    489 #pragma mark Triangle
    490 #endif
    491 
    492 void trianglex_validate(void *con,
    493         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
    494 {
    495     GGL_CONTEXT(c, con);
    496     ggl_pick(c);
    497     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
    498         c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : aa_trianglex;
    499     } else {
    500         c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : trianglex_big;
    501     }
    502     c->procs.trianglex(con, v0, v1, v2);
    503 }
    504 
    505 // ----------------------------------------------------------------------------
    506 
    507 void trianglex_small(void* con,
    508         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
    509 {
    510     GGL_CONTEXT(c, con);
    511 
    512     // vertices are in 28.4 fixed point, which allows
    513     // us to use 32 bits multiplies below.
    514     int32_t x0 = v0[0];
    515     int32_t y0 = v0[1];
    516     int32_t x1 = v1[0];
    517     int32_t y1 = v1[1];
    518     int32_t x2 = v2[0];
    519     int32_t y2 = v2[1];
    520 
    521     int32_t dx01 = x0 - x1;
    522     int32_t dy20 = y2 - y0;
    523     int32_t dy01 = y0 - y1;
    524     int32_t dx20 = x2 - x0;
    525 
    526     // The code below works only with CCW triangles
    527     // so if we get a CW triangle, we need to swap two of its vertices
    528     if (dx01*dy20 < dy01*dx20) {
    529         swap(x0, x1);
    530         swap(y0, y1);
    531         dx01 = x0 - x1;
    532         dy01 = y0 - y1;
    533         dx20 = x2 - x0;
    534         dy20 = y2 - y0;
    535     }
    536     int32_t dx12 = x1 - x2;
    537     int32_t dy12 = y1 - y2;
    538 
    539     // bounding box & scissor
    540     const int32_t bminx = TRI_FLOOR(min(x0, x1, x2)) >> TRI_FRACTION_BITS;
    541     const int32_t bminy = TRI_FLOOR(min(y0, y1, y2)) >> TRI_FRACTION_BITS;
    542     const int32_t bmaxx = TRI_CEIL( max(x0, x1, x2)) >> TRI_FRACTION_BITS;
    543     const int32_t bmaxy = TRI_CEIL( max(y0, y1, y2)) >> TRI_FRACTION_BITS;
    544     const int32_t minx = max(bminx, c->state.scissor.left);
    545     const int32_t miny = max(bminy, c->state.scissor.top);
    546     const int32_t maxx = min(bmaxx, c->state.scissor.right);
    547     const int32_t maxy = min(bmaxy, c->state.scissor.bottom);
    548     if ((minx >= maxx) || (miny >= maxy))
    549         return; // too small or clipped out...
    550 
    551     // step equations to the bounding box and snap to pixel center
    552     const int32_t my = (miny << TRI_FRACTION_BITS) + TRI_HALF;
    553     const int32_t mx = (minx << TRI_FRACTION_BITS) + TRI_HALF;
    554     int32_t ey0 = dy01 * (x0 - mx) - dx01 * (y0 - my);
    555     int32_t ey1 = dy12 * (x1 - mx) - dx12 * (y1 - my);
    556     int32_t ey2 = dy20 * (x2 - mx) - dx20 * (y2 - my);
    557 
    558     // right-exclusive fill rule, to avoid rare cases
    559     // of over drawing
    560     if (dy01<0 || (dy01 == 0 && dx01>0)) ey0++;
    561     if (dy12<0 || (dy12 == 0 && dx12>0)) ey1++;
    562     if (dy20<0 || (dy20 == 0 && dx20>0)) ey2++;
    563 
    564     c->init_y(c, miny);
    565     for (int32_t y = miny; y < maxy; y++) {
    566         register int32_t ex0 = ey0;
    567         register int32_t ex1 = ey1;
    568         register int32_t ex2 = ey2;
    569         register int32_t xl, xr;
    570         for (xl=minx ; xl<maxx ; xl++) {
    571             if (ex0>0 && ex1>0 && ex2>0)
    572                 break; // all strictly positive
    573             ex0 -= dy01 << TRI_FRACTION_BITS;
    574             ex1 -= dy12 << TRI_FRACTION_BITS;
    575             ex2 -= dy20 << TRI_FRACTION_BITS;
    576         }
    577         xr = xl;
    578         for ( ; xr<maxx ; xr++) {
    579             if (!(ex0>0 && ex1>0 && ex2>0))
    580                 break; // not all strictly positive
    581             ex0 -= dy01 << TRI_FRACTION_BITS;
    582             ex1 -= dy12 << TRI_FRACTION_BITS;
    583             ex2 -= dy20 << TRI_FRACTION_BITS;
    584         }
    585 
    586         if (xl < xr) {
    587             c->iterators.xl = xl;
    588             c->iterators.xr = xr;
    589             c->scanline(c);
    590         }
    591         c->step_y(c);
    592 
    593         ey0 += dx01 << TRI_FRACTION_BITS;
    594         ey1 += dx12 << TRI_FRACTION_BITS;
    595         ey2 += dx20 << TRI_FRACTION_BITS;
    596     }
    597 }
    598 
    599 // ----------------------------------------------------------------------------
    600 #if 0
    601 #pragma mark -
    602 #endif
    603 
    604 // the following routine fills a triangle via edge stepping, which
    605 // unfortunately requires divisions in the setup phase to get right,
    606 // it should probably only be used for relatively large trianges
    607 
    608 
    609 // x = y*DX/DY    (ou DX and DY are constants, DY > 0, et y >= 0)
    610 //
    611 // for an equation of the type:
    612 //      x' = y*K/2^p     (with K and p constants "carefully chosen")
    613 //
    614 // We can now do a DDA without precision loss. We define 'e' by:
    615 //      x' - x = y*(DX/DY - K/2^p) = y*e
    616 //
    617 // If we choose K = round(DX*2^p/DY) then,
    618 //      abs(e) <= 1/2^(p+1) by construction
    619 //
    620 // therefore abs(x'-x) = y*abs(e) <= y/2^(p+1) <= DY/2^(p+1) <= DMAX/2^(p+1)
    621 //
    622 // which means that if DMAX <= 2^p, therefore abs(x-x') <= 1/2, including
    623 // at the last line. In fact, it's even a strict inequality except in one
    624 // extrem case (DY == DMAX et e = +/- 1/2)
    625 //
    626 // Applying that to our coordinates, we need 2^p >= 4096*16 = 65536
    627 // so p = 16 is enough, we're so lucky!
    628 
    629 const int TRI_ITERATORS_BITS = 16;
    630 
    631 struct Edge
    632 {
    633   int32_t  x;      // edge position in 16.16 coordinates
    634   int32_t  x_incr; // on each step, increment x by that amount
    635   int32_t  y_top;  // starting scanline, 16.4 format
    636   int32_t  y_bot;
    637 };
    638 
    639 static void
    640 edge_dump( Edge*  edge )
    641 {
    642   ALOGI( "  top=%d (%.3f)  bot=%d (%.3f)  x=%d (%.3f)  ix=%d (%.3f)",
    643         edge->y_top, edge->y_top/float(TRI_ONE),
    644 		edge->y_bot, edge->y_bot/float(TRI_ONE),
    645 		edge->x, edge->x/float(FIXED_ONE),
    646 		edge->x_incr, edge->x_incr/float(FIXED_ONE) );
    647 }
    648 
    649 static void
    650 triangle_dump_edges( Edge*  edges,
    651                      int            count )
    652 {
    653     ALOGI( "%d edge%s:\n", count, count == 1 ? "" : "s" );
    654 	for ( ; count > 0; count--, edges++ )
    655 	  edge_dump( edges );
    656 }
    657 
    658 // the following function sets up an edge, it assumes
    659 // that ymin and ymax are in already in the 'reduced'
    660 // format
    661 static __attribute__((noinline))
    662 void edge_setup(
    663         Edge*           edges,
    664         int*            pcount,
    665         const GGLcoord* p1,
    666         const GGLcoord* p2,
    667         int32_t         ymin,
    668         int32_t         ymax )
    669 {
    670 	const GGLfixed*  top = p1;
    671 	const GGLfixed*  bot = p2;
    672 	Edge*    edge = edges + *pcount;
    673 
    674 	if (top[1] > bot[1]) {
    675         swap(top, bot);
    676 	}
    677 
    678 	int  y1 = top[1] | 1;
    679 	int  y2 = bot[1] | 1;
    680 	int  dy = y2 - y1;
    681 
    682 	if ( dy == 0 || y1 > ymax || y2 < ymin )
    683 		return;
    684 
    685 	if ( y1 > ymin )
    686 		ymin = TRI_SNAP_NEXT_HALF(y1);
    687 
    688 	if ( y2 < ymax )
    689 		ymax = TRI_SNAP_PREV_HALF(y2);
    690 
    691 	if ( ymin > ymax )  // when the edge doesn't cross any scanline
    692 	  return;
    693 
    694 	const int x1 = top[0];
    695 	const int dx = bot[0] - x1;
    696     const int shift = TRI_ITERATORS_BITS - TRI_FRACTION_BITS;
    697 
    698 	// setup edge fields
    699     // We add 0.5 to edge->x here because it simplifies the rounding
    700     // in triangle_sweep_edges() -- this doesn't change the ordering of 'x'
    701 	edge->x      = (x1 << shift) + (1LU << (TRI_ITERATORS_BITS-1));
    702 	edge->x_incr = 0;
    703 	edge->y_top  = ymin;
    704 	edge->y_bot  = ymax;
    705 
    706 	if (ggl_likely(ymin <= ymax && dx)) {
    707         edge->x_incr = gglDivQ16(dx, dy);
    708     }
    709     if (ggl_likely(y1 < ymin)) {
    710         int32_t xadjust = (edge->x_incr * (ymin-y1)) >> TRI_FRACTION_BITS;
    711         edge->x += xadjust;
    712     }
    713 
    714 	++*pcount;
    715 }
    716 
    717 
    718 static void
    719 triangle_sweep_edges( Edge*  left,
    720                       Edge*  right,
    721 					  int            ytop,
    722 					  int            ybot,
    723 					  context_t*     c )
    724 {
    725     int count = ((ybot - ytop)>>TRI_FRACTION_BITS) + 1;
    726     if (count<=0) return;
    727 
    728     // sort the edges horizontally
    729     if ((left->x > right->x) ||
    730         ((left->x == right->x) && (left->x_incr > right->x_incr))) {
    731         swap(left, right);
    732     }
    733 
    734     int left_x = left->x;
    735     int right_x = right->x;
    736     const int left_xi = left->x_incr;
    737     const int right_xi  = right->x_incr;
    738     left->x  += left_xi * count;
    739     right->x += right_xi * count;
    740 
    741 	const int xmin = c->state.scissor.left;
    742 	const int xmax = c->state.scissor.right;
    743     do {
    744         // horizontal scissoring
    745         const int32_t xl = max(left_x  >> TRI_ITERATORS_BITS, xmin);
    746         const int32_t xr = min(right_x >> TRI_ITERATORS_BITS, xmax);
    747         left_x  += left_xi;
    748         right_x += right_xi;
    749         // invoke the scanline rasterizer
    750         if (ggl_likely(xl < xr)) {
    751             c->iterators.xl = xl;
    752             c->iterators.xr = xr;
    753             c->scanline(c);
    754         }
    755 		c->step_y(c);
    756 	} while (--count);
    757 }
    758 
    759 
    760 void trianglex_big(void* con,
    761         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
    762 {
    763     GGL_CONTEXT(c, con);
    764 
    765     Edge edges[3];
    766 	int num_edges = 0;
    767 	int32_t ymin = TRI_FROM_INT(c->state.scissor.top)    + TRI_HALF;
    768 	int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom) - TRI_HALF;
    769 
    770 	edge_setup( edges, &num_edges, v0, v1, ymin, ymax );
    771 	edge_setup( edges, &num_edges, v0, v2, ymin, ymax );
    772 	edge_setup( edges, &num_edges, v1, v2, ymin, ymax );
    773 
    774     if (ggl_unlikely(num_edges<2))  // for really tiny triangles that don't
    775 		return;                     // cross any scanline centers
    776 
    777     Edge* left  = &edges[0];
    778     Edge* right = &edges[1];
    779     Edge* other = &edges[2];
    780     int32_t y_top = min(left->y_top, right->y_top);
    781     int32_t y_bot = max(left->y_bot, right->y_bot);
    782 
    783 	if (ggl_likely(num_edges==3)) {
    784         y_top = min(y_top, edges[2].y_top);
    785         y_bot = max(y_bot, edges[2].y_bot);
    786 		if (edges[0].y_top > y_top) {
    787             other = &edges[0];
    788             left  = &edges[2];
    789 		} else if (edges[1].y_top > y_top) {
    790             other = &edges[1];
    791             right = &edges[2];
    792 		}
    793     }
    794 
    795     c->init_y(c, y_top >> TRI_FRACTION_BITS);
    796 
    797     int32_t y_mid = min(left->y_bot, right->y_bot);
    798     triangle_sweep_edges( left, right, y_top, y_mid, c );
    799 
    800     // second scanline sweep loop, if necessary
    801     y_mid += TRI_ONE;
    802     if (y_mid <= y_bot) {
    803         ((left->y_bot == y_bot) ? right : left) = other;
    804         if (other->y_top < y_mid) {
    805             other->x += other->x_incr;
    806         }
    807         triangle_sweep_edges( left, right, y_mid, y_bot, c );
    808     }
    809 }
    810 
    811 void aa_trianglex(void* con,
    812         const GGLcoord* a, const GGLcoord* b, const GGLcoord* c)
    813 {
    814     GGLcoord pts[6] = { a[0], a[1], b[0], b[1], c[0], c[1] };
    815     aapolyx(con, pts, 3);
    816 }
    817 
    818 // ----------------------------------------------------------------------------
    819 #if 0
    820 #pragma mark -
    821 #endif
    822 
    823 struct AAEdge
    824 {
    825     GGLfixed x;         // edge position in 12.16 coordinates
    826     GGLfixed x_incr;    // on each y step, increment x by that amount
    827     GGLfixed y_incr;    // on each x step, increment y by that amount
    828     int16_t y_top;      // starting scanline, 12.4 format
    829     int16_t y_bot;      // starting scanline, 12.4 format
    830     void dump();
    831 };
    832 
    833 void AAEdge::dump()
    834 {
    835     float tri  = 1.0f / TRI_ONE;
    836     float iter = 1.0f / (1<<TRI_ITERATORS_BITS);
    837     float fix  = 1.0f / FIXED_ONE;
    838     ALOGD(   "x=%08x (%.3f), "
    839             "x_incr=%08x (%.3f), y_incr=%08x (%.3f), "
    840             "y_top=%08x (%.3f), y_bot=%08x (%.3f) ",
    841         x, x*fix,
    842         x_incr, x_incr*iter,
    843         y_incr, y_incr*iter,
    844         y_top, y_top*tri,
    845         y_bot, y_bot*tri );
    846 }
    847 
    848 // the following function sets up an edge, it assumes
    849 // that ymin and ymax are in already in the 'reduced'
    850 // format
    851 static __attribute__((noinline))
    852 void aa_edge_setup(
    853         AAEdge*         edges,
    854         int*            pcount,
    855         const GGLcoord* p1,
    856         const GGLcoord* p2,
    857         int32_t         ymin,
    858         int32_t         ymax )
    859 {
    860     const GGLfixed*  top = p1;
    861     const GGLfixed*  bot = p2;
    862     AAEdge* edge = edges + *pcount;
    863 
    864     if (top[1] > bot[1])
    865         swap(top, bot);
    866 
    867     int  y1 = top[1];
    868     int  y2 = bot[1];
    869     int  dy = y2 - y1;
    870 
    871     if (dy==0 || y1>ymax || y2<ymin)
    872         return;
    873 
    874     if (y1 > ymin)
    875         ymin = y1;
    876 
    877     if (y2 < ymax)
    878         ymax = y2;
    879 
    880     const int x1 = top[0];
    881     const int dx = bot[0] - x1;
    882     const int shift = FIXED_BITS - TRI_FRACTION_BITS;
    883 
    884     // setup edge fields
    885     edge->x      = x1 << shift;
    886     edge->x_incr = 0;
    887     edge->y_top  = ymin;
    888     edge->y_bot  = ymax;
    889     edge->y_incr = 0x7FFFFFFF;
    890 
    891     if (ggl_likely(ymin <= ymax && dx)) {
    892         edge->x_incr = gglDivQ16(dx, dy);
    893         if (dx != 0) {
    894             edge->y_incr = abs(gglDivQ16(dy, dx));
    895         }
    896     }
    897     if (ggl_likely(y1 < ymin)) {
    898         int32_t xadjust = (edge->x_incr * (ymin-y1))
    899                 >> (TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS);
    900         edge->x += xadjust;
    901     }
    902 
    903     ++*pcount;
    904 }
    905 
    906 
    907 typedef int (*compar_t)(const void*, const void*);
    908 static int compare_edges(const AAEdge *e0, const AAEdge *e1) {
    909     if (e0->y_top > e1->y_top)      return 1;
    910     if (e0->y_top < e1->y_top)      return -1;
    911     if (e0->x > e1->x)              return 1;
    912     if (e0->x < e1->x)              return -1;
    913     if (e0->x_incr > e1->x_incr)    return 1;
    914     if (e0->x_incr < e1->x_incr)    return -1;
    915     return 0; // same edges, should never happen
    916 }
    917 
    918 static inline
    919 void SET_COVERAGE(int16_t*& p, int32_t value, ssize_t n)
    920 {
    921     android_memset16((uint16_t*)p, value, n*2);
    922     p += n;
    923 }
    924 
    925 static inline
    926 void ADD_COVERAGE(int16_t*& p, int32_t value)
    927 {
    928     value = *p + value;
    929     if (value >= 0x8000)
    930         value = 0x7FFF;
    931     *p++ = value;
    932 }
    933 
    934 static inline
    935 void SUB_COVERAGE(int16_t*& p, int32_t value)
    936 {
    937     value = *p - value;
    938     value &= ~(value>>31);
    939     *p++ = value;
    940 }
    941 
    942 void aapolyx(void* con,
    943         const GGLcoord* pts, int count)
    944 {
    945     /*
    946      * NOTE: This routine assumes that the polygon has been clipped to the
    947      * viewport already, that is, no vertex lies outside of the framebuffer.
    948      * If this happens, the code below won't corrupt memory but the
    949      * coverage values may not be correct.
    950      */
    951 
    952     GGL_CONTEXT(c, con);
    953 
    954     // we do only quads for now (it's used for thick lines)
    955     if ((count>4) || (count<2)) return;
    956 
    957     // take scissor into account
    958     const int xmin = c->state.scissor.left;
    959     const int xmax = c->state.scissor.right;
    960     if (xmin >= xmax) return;
    961 
    962     // generate edges from the vertices
    963     int32_t ymin = TRI_FROM_INT(c->state.scissor.top);
    964     int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom);
    965     if (ymin >= ymax) return;
    966 
    967     AAEdge edges[4];
    968     int num_edges = 0;
    969     GGLcoord const * p = pts;
    970     for (int i=0 ; i<count-1 ; i++, p+=2) {
    971         aa_edge_setup(edges, &num_edges, p, p+2, ymin, ymax);
    972     }
    973     aa_edge_setup(edges, &num_edges, p, pts, ymin, ymax );
    974     if (ggl_unlikely(num_edges<2))
    975         return;
    976 
    977     // sort the edge list top to bottom, left to right.
    978     qsort(edges, num_edges, sizeof(AAEdge), (compar_t)compare_edges);
    979 
    980     int16_t* const covPtr = c->state.buffers.coverage;
    981     memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr));
    982 
    983     // now, sweep all edges in order
    984     // start with the 2 first edges. We know that they share their top
    985     // vertex, by construction.
    986     int i = 2;
    987     AAEdge* left  = &edges[0];
    988     AAEdge* right = &edges[1];
    989     int32_t yt = left->y_top;
    990     GGLfixed l = left->x;
    991     GGLfixed r = right->x;
    992     int retire = 0;
    993     int16_t* coverage;
    994 
    995     // at this point we can initialize the rasterizer
    996     c->init_y(c, yt>>TRI_FRACTION_BITS);
    997     c->iterators.xl = xmax;
    998     c->iterators.xr = xmin;
    999 
   1000     do {
   1001         int32_t y = min(min(left->y_bot, right->y_bot), TRI_FLOOR(yt + TRI_ONE));
   1002         const int32_t shift = TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS;
   1003         const int cf_shift = (1 + TRI_FRACTION_BITS*2 + TRI_ITERATORS_BITS - 15);
   1004 
   1005         // compute xmin and xmax for the left edge
   1006         GGLfixed l_min = gglMulAddx(left->x_incr, y - left->y_top, left->x, shift);
   1007         GGLfixed l_max = l;
   1008         l = l_min;
   1009         if (l_min > l_max)
   1010             swap(l_min, l_max);
   1011 
   1012         // compute xmin and xmax for the right edge
   1013         GGLfixed r_min = gglMulAddx(right->x_incr, y - right->y_top, right->x, shift);
   1014         GGLfixed r_max = r;
   1015         r = r_min;
   1016         if (r_min > r_max)
   1017             swap(r_min, r_max);
   1018 
   1019         // make sure we're not touching coverage values outside of the
   1020         // framebuffer
   1021         l_min &= ~(l_min>>31);
   1022         r_min &= ~(r_min>>31);
   1023         l_max &= ~(l_max>>31);
   1024         r_max &= ~(r_max>>31);
   1025         if (gglFixedToIntFloor(l_min) >= xmax) l_min = gglIntToFixed(xmax)-1;
   1026         if (gglFixedToIntFloor(r_min) >= xmax) r_min = gglIntToFixed(xmax)-1;
   1027         if (gglFixedToIntCeil(l_max) >= xmax)  l_max = gglIntToFixed(xmax)-1;
   1028         if (gglFixedToIntCeil(r_max) >= xmax)  r_max = gglIntToFixed(xmax)-1;
   1029 
   1030         // compute the integer versions of the above
   1031         const GGLfixed l_min_i = gglFloorx(l_min);
   1032         const GGLfixed l_max_i = gglCeilx (l_max);
   1033         const GGLfixed r_min_i = gglFloorx(r_min);
   1034         const GGLfixed r_max_i = gglCeilx (r_max);
   1035 
   1036         // clip horizontally using the scissor
   1037         const int xml = max(xmin, gglFixedToIntFloor(l_min_i));
   1038         const int xmr = min(xmax, gglFixedToIntFloor(r_max_i));
   1039 
   1040         // if we just stepped to a new scanline, render the previous one.
   1041         // and clear the coverage buffer
   1042         if (retire) {
   1043             if (c->iterators.xl < c->iterators.xr)
   1044                 c->scanline(c);
   1045             c->step_y(c);
   1046             memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr));
   1047             c->iterators.xl = xml;
   1048             c->iterators.xr = xmr;
   1049         } else {
   1050             // update the horizontal range of this scanline
   1051             c->iterators.xl = min(c->iterators.xl, xml);
   1052             c->iterators.xr = max(c->iterators.xr, xmr);
   1053         }
   1054 
   1055         coverage = covPtr + gglFixedToIntFloor(l_min_i);
   1056         if (l_min_i == gglFloorx(l_max)) {
   1057 
   1058             /*
   1059              *  fully traverse this pixel vertically
   1060              *       l_max
   1061              *  +-----/--+  yt
   1062              *  |    /   |
   1063              *  |   /    |
   1064              *  |  /     |
   1065              *  +-/------+  y
   1066              *   l_min  (l_min_i + TRI_ONE)
   1067              */
   1068 
   1069             GGLfixed dx = l_max - l_min;
   1070             int32_t dy = y - yt;
   1071             int cf = gglMulx((dx >> 1) + (l_min_i + FIXED_ONE - l_max), dy,
   1072                 FIXED_BITS + TRI_FRACTION_BITS - 15);
   1073             ADD_COVERAGE(coverage, cf);
   1074             // all pixels on the right have cf = 1.0
   1075         } else {
   1076             /*
   1077              *  spans several pixels in one scanline
   1078              *            l_max
   1079              *  +--------+--/-----+  yt
   1080              *  |        |/       |
   1081              *  |       /|        |
   1082              *  |     /  |        |
   1083              *  +---/----+--------+  y
   1084              *   l_min (l_min_i + TRI_ONE)
   1085              */
   1086 
   1087             // handle the first pixel separately...
   1088             const int32_t y_incr = left->y_incr;
   1089             int32_t dx = TRI_FROM_FIXED(l_min_i - l_min) + TRI_ONE;
   1090             int32_t cf = (dx * dx * y_incr) >> cf_shift;
   1091             ADD_COVERAGE(coverage, cf);
   1092 
   1093             // following pixels get covered by y_incr, but we need
   1094             // to fix-up the cf to account for previous partial pixel
   1095             dx = TRI_FROM_FIXED(l_min - l_min_i);
   1096             cf -= (dx * dx * y_incr) >> cf_shift;
   1097             for (int x = l_min_i+FIXED_ONE ; x < l_max_i-FIXED_ONE ; x += FIXED_ONE) {
   1098                 cf += y_incr >> (TRI_ITERATORS_BITS-15);
   1099                 ADD_COVERAGE(coverage, cf);
   1100             }
   1101 
   1102             // and the last pixel
   1103             dx = TRI_FROM_FIXED(l_max - l_max_i) - TRI_ONE;
   1104             cf += (dx * dx * y_incr) >> cf_shift;
   1105             ADD_COVERAGE(coverage, cf);
   1106         }
   1107 
   1108         // now, fill up all fully covered pixels
   1109         coverage = covPtr + gglFixedToIntFloor(l_max_i);
   1110         int cf = ((y - yt) << (15 - TRI_FRACTION_BITS));
   1111         if (ggl_likely(cf >= 0x8000)) {
   1112             SET_COVERAGE(coverage, 0x7FFF, ((r_max - l_max_i)>>FIXED_BITS)+1);
   1113         } else {
   1114             for (int x=l_max_i ; x<r_max ; x+=FIXED_ONE) {
   1115                 ADD_COVERAGE(coverage, cf);
   1116             }
   1117         }
   1118 
   1119         // subtract the coverage of the right edge
   1120         coverage = covPtr + gglFixedToIntFloor(r_min_i);
   1121         if (r_min_i == gglFloorx(r_max)) {
   1122             GGLfixed dx = r_max - r_min;
   1123             int32_t dy = y - yt;
   1124             int cf = gglMulx((dx >> 1) + (r_min_i + FIXED_ONE - r_max), dy,
   1125                 FIXED_BITS + TRI_FRACTION_BITS - 15);
   1126             SUB_COVERAGE(coverage, cf);
   1127             // all pixels on the right have cf = 1.0
   1128         } else {
   1129             // handle the first pixel separately...
   1130             const int32_t y_incr = right->y_incr;
   1131             int32_t dx = TRI_FROM_FIXED(r_min_i - r_min) + TRI_ONE;
   1132             int32_t cf = (dx * dx * y_incr) >> cf_shift;
   1133             SUB_COVERAGE(coverage, cf);
   1134 
   1135             // following pixels get covered by y_incr, but we need
   1136             // to fix-up the cf to account for previous partial pixel
   1137             dx = TRI_FROM_FIXED(r_min - r_min_i);
   1138             cf -= (dx * dx * y_incr) >> cf_shift;
   1139             for (int x = r_min_i+FIXED_ONE ; x < r_max_i-FIXED_ONE ; x += FIXED_ONE) {
   1140                 cf += y_incr >> (TRI_ITERATORS_BITS-15);
   1141                 SUB_COVERAGE(coverage, cf);
   1142             }
   1143 
   1144             // and the last pixel
   1145             dx = TRI_FROM_FIXED(r_max - r_max_i) - TRI_ONE;
   1146             cf += (dx * dx * y_incr) >> cf_shift;
   1147             SUB_COVERAGE(coverage, cf);
   1148         }
   1149 
   1150         // did we reach the end of an edge? if so, get a new one.
   1151         if (y == left->y_bot || y == right->y_bot) {
   1152             // bail out if we're done
   1153             if (i>=num_edges)
   1154                 break;
   1155             if (y == left->y_bot)
   1156                 left = &edges[i++];
   1157             if (y == right->y_bot)
   1158                 right = &edges[i++];
   1159         }
   1160 
   1161         // next scanline
   1162         yt = y;
   1163 
   1164         // did we just finish a scanline?
   1165         retire = (y << (32-TRI_FRACTION_BITS)) == 0;
   1166     } while (true);
   1167 
   1168     // render the last scanline
   1169     if (c->iterators.xl < c->iterators.xr)
   1170         c->scanline(c);
   1171 }
   1172 
   1173 }; // namespace android
   1174