1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for statements. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprObjC.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/AST/TypeOrdering.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Sema/Initialization.h" 31 #include "clang/Sema/Lookup.h" 32 #include "clang/Sema/Scope.h" 33 #include "clang/Sema/ScopeInfo.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallString.h" 39 #include "llvm/ADT/SmallVector.h" 40 using namespace clang; 41 using namespace sema; 42 43 StmtResult Sema::ActOnExprStmt(ExprResult FE) { 44 if (FE.isInvalid()) 45 return StmtError(); 46 47 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), 48 /*DiscardedValue*/ true); 49 if (FE.isInvalid()) 50 return StmtError(); 51 52 // C99 6.8.3p2: The expression in an expression statement is evaluated as a 53 // void expression for its side effects. Conversion to void allows any 54 // operand, even incomplete types. 55 56 // Same thing in for stmt first clause (when expr) and third clause. 57 return StmtResult(FE.getAs<Stmt>()); 58 } 59 60 61 StmtResult Sema::ActOnExprStmtError() { 62 DiscardCleanupsInEvaluationContext(); 63 return StmtError(); 64 } 65 66 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, 67 bool HasLeadingEmptyMacro) { 68 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); 69 } 70 71 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, 72 SourceLocation EndLoc) { 73 DeclGroupRef DG = dg.get(); 74 75 // If we have an invalid decl, just return an error. 76 if (DG.isNull()) return StmtError(); 77 78 return new (Context) DeclStmt(DG, StartLoc, EndLoc); 79 } 80 81 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { 82 DeclGroupRef DG = dg.get(); 83 84 // If we don't have a declaration, or we have an invalid declaration, 85 // just return. 86 if (DG.isNull() || !DG.isSingleDecl()) 87 return; 88 89 Decl *decl = DG.getSingleDecl(); 90 if (!decl || decl->isInvalidDecl()) 91 return; 92 93 // Only variable declarations are permitted. 94 VarDecl *var = dyn_cast<VarDecl>(decl); 95 if (!var) { 96 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); 97 decl->setInvalidDecl(); 98 return; 99 } 100 101 // foreach variables are never actually initialized in the way that 102 // the parser came up with. 103 var->setInit(nullptr); 104 105 // In ARC, we don't need to retain the iteration variable of a fast 106 // enumeration loop. Rather than actually trying to catch that 107 // during declaration processing, we remove the consequences here. 108 if (getLangOpts().ObjCAutoRefCount) { 109 QualType type = var->getType(); 110 111 // Only do this if we inferred the lifetime. Inferred lifetime 112 // will show up as a local qualifier because explicit lifetime 113 // should have shown up as an AttributedType instead. 114 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { 115 // Add 'const' and mark the variable as pseudo-strong. 116 var->setType(type.withConst()); 117 var->setARCPseudoStrong(true); 118 } 119 } 120 } 121 122 /// \brief Diagnose unused comparisons, both builtin and overloaded operators. 123 /// For '==' and '!=', suggest fixits for '=' or '|='. 124 /// 125 /// Adding a cast to void (or other expression wrappers) will prevent the 126 /// warning from firing. 127 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { 128 SourceLocation Loc; 129 bool IsNotEqual, CanAssign, IsRelational; 130 131 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { 132 if (!Op->isComparisonOp()) 133 return false; 134 135 IsRelational = Op->isRelationalOp(); 136 Loc = Op->getOperatorLoc(); 137 IsNotEqual = Op->getOpcode() == BO_NE; 138 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); 139 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { 140 switch (Op->getOperator()) { 141 default: 142 return false; 143 case OO_EqualEqual: 144 case OO_ExclaimEqual: 145 IsRelational = false; 146 break; 147 case OO_Less: 148 case OO_Greater: 149 case OO_GreaterEqual: 150 case OO_LessEqual: 151 IsRelational = true; 152 break; 153 } 154 155 Loc = Op->getOperatorLoc(); 156 IsNotEqual = Op->getOperator() == OO_ExclaimEqual; 157 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); 158 } else { 159 // Not a typo-prone comparison. 160 return false; 161 } 162 163 // Suppress warnings when the operator, suspicious as it may be, comes from 164 // a macro expansion. 165 if (S.SourceMgr.isMacroBodyExpansion(Loc)) 166 return false; 167 168 S.Diag(Loc, diag::warn_unused_comparison) 169 << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange(); 170 171 // If the LHS is a plausible entity to assign to, provide a fixit hint to 172 // correct common typos. 173 if (!IsRelational && CanAssign) { 174 if (IsNotEqual) 175 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) 176 << FixItHint::CreateReplacement(Loc, "|="); 177 else 178 S.Diag(Loc, diag::note_equality_comparison_to_assign) 179 << FixItHint::CreateReplacement(Loc, "="); 180 } 181 182 return true; 183 } 184 185 void Sema::DiagnoseUnusedExprResult(const Stmt *S) { 186 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S)) 187 return DiagnoseUnusedExprResult(Label->getSubStmt()); 188 189 const Expr *E = dyn_cast_or_null<Expr>(S); 190 if (!E) 191 return; 192 193 // If we are in an unevaluated expression context, then there can be no unused 194 // results because the results aren't expected to be used in the first place. 195 if (isUnevaluatedContext()) 196 return; 197 198 SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); 199 // In most cases, we don't want to warn if the expression is written in a 200 // macro body, or if the macro comes from a system header. If the offending 201 // expression is a call to a function with the warn_unused_result attribute, 202 // we warn no matter the location. Because of the order in which the various 203 // checks need to happen, we factor out the macro-related test here. 204 bool ShouldSuppress = 205 SourceMgr.isMacroBodyExpansion(ExprLoc) || 206 SourceMgr.isInSystemMacro(ExprLoc); 207 208 const Expr *WarnExpr; 209 SourceLocation Loc; 210 SourceRange R1, R2; 211 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context)) 212 return; 213 214 // If this is a GNU statement expression expanded from a macro, it is probably 215 // unused because it is a function-like macro that can be used as either an 216 // expression or statement. Don't warn, because it is almost certainly a 217 // false positive. 218 if (isa<StmtExpr>(E) && Loc.isMacroID()) 219 return; 220 221 // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. 222 // That macro is frequently used to suppress "unused parameter" warnings, 223 // but its implementation makes clang's -Wunused-value fire. Prevent this. 224 if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) { 225 SourceLocation SpellLoc = Loc; 226 if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER")) 227 return; 228 } 229 230 // Okay, we have an unused result. Depending on what the base expression is, 231 // we might want to make a more specific diagnostic. Check for one of these 232 // cases now. 233 unsigned DiagID = diag::warn_unused_expr; 234 if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E)) 235 E = Temps->getSubExpr(); 236 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E)) 237 E = TempExpr->getSubExpr(); 238 239 if (DiagnoseUnusedComparison(*this, E)) 240 return; 241 242 E = WarnExpr; 243 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 244 if (E->getType()->isVoidType()) 245 return; 246 247 // If the callee has attribute pure, const, or warn_unused_result, warn with 248 // a more specific message to make it clear what is happening. If the call 249 // is written in a macro body, only warn if it has the warn_unused_result 250 // attribute. 251 if (const Decl *FD = CE->getCalleeDecl()) { 252 const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD); 253 if (Func ? Func->hasUnusedResultAttr() 254 : FD->hasAttr<WarnUnusedResultAttr>()) { 255 Diag(Loc, diag::warn_unused_result) << R1 << R2; 256 return; 257 } 258 if (ShouldSuppress) 259 return; 260 if (FD->hasAttr<PureAttr>()) { 261 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; 262 return; 263 } 264 if (FD->hasAttr<ConstAttr>()) { 265 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; 266 return; 267 } 268 } 269 } else if (ShouldSuppress) 270 return; 271 272 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) { 273 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { 274 Diag(Loc, diag::err_arc_unused_init_message) << R1; 275 return; 276 } 277 const ObjCMethodDecl *MD = ME->getMethodDecl(); 278 if (MD) { 279 if (MD->hasAttr<WarnUnusedResultAttr>()) { 280 Diag(Loc, diag::warn_unused_result) << R1 << R2; 281 return; 282 } 283 } 284 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 285 const Expr *Source = POE->getSyntacticForm(); 286 if (isa<ObjCSubscriptRefExpr>(Source)) 287 DiagID = diag::warn_unused_container_subscript_expr; 288 else 289 DiagID = diag::warn_unused_property_expr; 290 } else if (const CXXFunctionalCastExpr *FC 291 = dyn_cast<CXXFunctionalCastExpr>(E)) { 292 if (isa<CXXConstructExpr>(FC->getSubExpr()) || 293 isa<CXXTemporaryObjectExpr>(FC->getSubExpr())) 294 return; 295 } 296 // Diagnose "(void*) blah" as a typo for "(void) blah". 297 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) { 298 TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); 299 QualType T = TI->getType(); 300 301 // We really do want to use the non-canonical type here. 302 if (T == Context.VoidPtrTy) { 303 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); 304 305 Diag(Loc, diag::warn_unused_voidptr) 306 << FixItHint::CreateRemoval(TL.getStarLoc()); 307 return; 308 } 309 } 310 311 if (E->isGLValue() && E->getType().isVolatileQualified()) { 312 Diag(Loc, diag::warn_unused_volatile) << R1 << R2; 313 return; 314 } 315 316 DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2); 317 } 318 319 void Sema::ActOnStartOfCompoundStmt() { 320 PushCompoundScope(); 321 } 322 323 void Sema::ActOnFinishOfCompoundStmt() { 324 PopCompoundScope(); 325 } 326 327 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { 328 return getCurFunction()->CompoundScopes.back(); 329 } 330 331 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, 332 ArrayRef<Stmt *> Elts, bool isStmtExpr) { 333 const unsigned NumElts = Elts.size(); 334 335 // If we're in C89 mode, check that we don't have any decls after stmts. If 336 // so, emit an extension diagnostic. 337 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) { 338 // Note that __extension__ can be around a decl. 339 unsigned i = 0; 340 // Skip over all declarations. 341 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) 342 /*empty*/; 343 344 // We found the end of the list or a statement. Scan for another declstmt. 345 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) 346 /*empty*/; 347 348 if (i != NumElts) { 349 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); 350 Diag(D->getLocation(), diag::ext_mixed_decls_code); 351 } 352 } 353 // Warn about unused expressions in statements. 354 for (unsigned i = 0; i != NumElts; ++i) { 355 // Ignore statements that are last in a statement expression. 356 if (isStmtExpr && i == NumElts - 1) 357 continue; 358 359 DiagnoseUnusedExprResult(Elts[i]); 360 } 361 362 // Check for suspicious empty body (null statement) in `for' and `while' 363 // statements. Don't do anything for template instantiations, this just adds 364 // noise. 365 if (NumElts != 0 && !CurrentInstantiationScope && 366 getCurCompoundScope().HasEmptyLoopBodies) { 367 for (unsigned i = 0; i != NumElts - 1; ++i) 368 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); 369 } 370 371 return new (Context) CompoundStmt(Context, Elts, L, R); 372 } 373 374 StmtResult 375 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal, 376 SourceLocation DotDotDotLoc, Expr *RHSVal, 377 SourceLocation ColonLoc) { 378 assert(LHSVal && "missing expression in case statement"); 379 380 if (getCurFunction()->SwitchStack.empty()) { 381 Diag(CaseLoc, diag::err_case_not_in_switch); 382 return StmtError(); 383 } 384 385 ExprResult LHS = 386 CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) { 387 if (!getLangOpts().CPlusPlus11) 388 return VerifyIntegerConstantExpression(E); 389 if (Expr *CondExpr = 390 getCurFunction()->SwitchStack.back()->getCond()) { 391 QualType CondType = CondExpr->getType(); 392 llvm::APSInt TempVal; 393 return CheckConvertedConstantExpression(E, CondType, TempVal, 394 CCEK_CaseValue); 395 } 396 return ExprError(); 397 }); 398 if (LHS.isInvalid()) 399 return StmtError(); 400 LHSVal = LHS.get(); 401 402 if (!getLangOpts().CPlusPlus11) { 403 // C99 6.8.4.2p3: The expression shall be an integer constant. 404 // However, GCC allows any evaluatable integer expression. 405 if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) { 406 LHSVal = VerifyIntegerConstantExpression(LHSVal).get(); 407 if (!LHSVal) 408 return StmtError(); 409 } 410 411 // GCC extension: The expression shall be an integer constant. 412 413 if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) { 414 RHSVal = VerifyIntegerConstantExpression(RHSVal).get(); 415 // Recover from an error by just forgetting about it. 416 } 417 } 418 419 LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false, 420 getLangOpts().CPlusPlus11); 421 if (LHS.isInvalid()) 422 return StmtError(); 423 424 auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false, 425 getLangOpts().CPlusPlus11) 426 : ExprResult(); 427 if (RHS.isInvalid()) 428 return StmtError(); 429 430 CaseStmt *CS = new (Context) 431 CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc); 432 getCurFunction()->SwitchStack.back()->addSwitchCase(CS); 433 return CS; 434 } 435 436 /// ActOnCaseStmtBody - This installs a statement as the body of a case. 437 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) { 438 DiagnoseUnusedExprResult(SubStmt); 439 440 CaseStmt *CS = static_cast<CaseStmt*>(caseStmt); 441 CS->setSubStmt(SubStmt); 442 } 443 444 StmtResult 445 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, 446 Stmt *SubStmt, Scope *CurScope) { 447 DiagnoseUnusedExprResult(SubStmt); 448 449 if (getCurFunction()->SwitchStack.empty()) { 450 Diag(DefaultLoc, diag::err_default_not_in_switch); 451 return SubStmt; 452 } 453 454 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); 455 getCurFunction()->SwitchStack.back()->addSwitchCase(DS); 456 return DS; 457 } 458 459 StmtResult 460 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, 461 SourceLocation ColonLoc, Stmt *SubStmt) { 462 // If the label was multiply defined, reject it now. 463 if (TheDecl->getStmt()) { 464 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); 465 Diag(TheDecl->getLocation(), diag::note_previous_definition); 466 return SubStmt; 467 } 468 469 // Otherwise, things are good. Fill in the declaration and return it. 470 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); 471 TheDecl->setStmt(LS); 472 if (!TheDecl->isGnuLocal()) { 473 TheDecl->setLocStart(IdentLoc); 474 if (!TheDecl->isMSAsmLabel()) { 475 // Don't update the location of MS ASM labels. These will result in 476 // a diagnostic, and changing the location here will mess that up. 477 TheDecl->setLocation(IdentLoc); 478 } 479 } 480 return LS; 481 } 482 483 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc, 484 ArrayRef<const Attr*> Attrs, 485 Stmt *SubStmt) { 486 // Fill in the declaration and return it. 487 AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt); 488 return LS; 489 } 490 491 StmtResult 492 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar, 493 Stmt *thenStmt, SourceLocation ElseLoc, 494 Stmt *elseStmt) { 495 ExprResult CondResult(CondVal.release()); 496 497 VarDecl *ConditionVar = nullptr; 498 if (CondVar) { 499 ConditionVar = cast<VarDecl>(CondVar); 500 CondResult = CheckConditionVariable(ConditionVar, IfLoc, true); 501 CondResult = ActOnFinishFullExpr(CondResult.get(), IfLoc); 502 } 503 Expr *ConditionExpr = CondResult.getAs<Expr>(); 504 if (ConditionExpr) { 505 DiagnoseUnusedExprResult(thenStmt); 506 507 if (!elseStmt) { 508 DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt, 509 diag::warn_empty_if_body); 510 } 511 512 DiagnoseUnusedExprResult(elseStmt); 513 } else { 514 // Create a dummy Expr for the condition for error recovery 515 ConditionExpr = new (Context) OpaqueValueExpr(SourceLocation(), 516 Context.BoolTy, VK_RValue); 517 } 518 519 return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr, 520 thenStmt, ElseLoc, elseStmt); 521 } 522 523 namespace { 524 struct CaseCompareFunctor { 525 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 526 const llvm::APSInt &RHS) { 527 return LHS.first < RHS; 528 } 529 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 530 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 531 return LHS.first < RHS.first; 532 } 533 bool operator()(const llvm::APSInt &LHS, 534 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 535 return LHS < RHS.first; 536 } 537 }; 538 } 539 540 /// CmpCaseVals - Comparison predicate for sorting case values. 541 /// 542 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, 543 const std::pair<llvm::APSInt, CaseStmt*>& rhs) { 544 if (lhs.first < rhs.first) 545 return true; 546 547 if (lhs.first == rhs.first && 548 lhs.second->getCaseLoc().getRawEncoding() 549 < rhs.second->getCaseLoc().getRawEncoding()) 550 return true; 551 return false; 552 } 553 554 /// CmpEnumVals - Comparison predicate for sorting enumeration values. 555 /// 556 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 557 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 558 { 559 return lhs.first < rhs.first; 560 } 561 562 /// EqEnumVals - Comparison preficate for uniqing enumeration values. 563 /// 564 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 565 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 566 { 567 return lhs.first == rhs.first; 568 } 569 570 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of 571 /// potentially integral-promoted expression @p expr. 572 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) { 573 if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr)) 574 expr = cleanups->getSubExpr(); 575 while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) { 576 if (impcast->getCastKind() != CK_IntegralCast) break; 577 expr = impcast->getSubExpr(); 578 } 579 return expr->getType(); 580 } 581 582 StmtResult 583 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond, 584 Decl *CondVar) { 585 ExprResult CondResult; 586 587 VarDecl *ConditionVar = nullptr; 588 if (CondVar) { 589 ConditionVar = cast<VarDecl>(CondVar); 590 CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false); 591 if (CondResult.isInvalid()) 592 return StmtError(); 593 594 Cond = CondResult.get(); 595 } 596 597 if (!Cond) 598 return StmtError(); 599 600 class SwitchConvertDiagnoser : public ICEConvertDiagnoser { 601 Expr *Cond; 602 603 public: 604 SwitchConvertDiagnoser(Expr *Cond) 605 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), 606 Cond(Cond) {} 607 608 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 609 QualType T) override { 610 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; 611 } 612 613 SemaDiagnosticBuilder diagnoseIncomplete( 614 Sema &S, SourceLocation Loc, QualType T) override { 615 return S.Diag(Loc, diag::err_switch_incomplete_class_type) 616 << T << Cond->getSourceRange(); 617 } 618 619 SemaDiagnosticBuilder diagnoseExplicitConv( 620 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 621 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; 622 } 623 624 SemaDiagnosticBuilder noteExplicitConv( 625 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 626 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 627 << ConvTy->isEnumeralType() << ConvTy; 628 } 629 630 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 631 QualType T) override { 632 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; 633 } 634 635 SemaDiagnosticBuilder noteAmbiguous( 636 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 637 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 638 << ConvTy->isEnumeralType() << ConvTy; 639 } 640 641 SemaDiagnosticBuilder diagnoseConversion( 642 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 643 llvm_unreachable("conversion functions are permitted"); 644 } 645 } SwitchDiagnoser(Cond); 646 647 CondResult = 648 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); 649 if (CondResult.isInvalid()) return StmtError(); 650 Cond = CondResult.get(); 651 652 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. 653 CondResult = UsualUnaryConversions(Cond); 654 if (CondResult.isInvalid()) return StmtError(); 655 Cond = CondResult.get(); 656 657 CondResult = ActOnFinishFullExpr(Cond, SwitchLoc); 658 if (CondResult.isInvalid()) 659 return StmtError(); 660 Cond = CondResult.get(); 661 662 getCurFunction()->setHasBranchIntoScope(); 663 664 SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond); 665 getCurFunction()->SwitchStack.push_back(SS); 666 return SS; 667 } 668 669 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { 670 Val = Val.extOrTrunc(BitWidth); 671 Val.setIsSigned(IsSigned); 672 } 673 674 /// Check the specified case value is in range for the given unpromoted switch 675 /// type. 676 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, 677 unsigned UnpromotedWidth, bool UnpromotedSign) { 678 // If the case value was signed and negative and the switch expression is 679 // unsigned, don't bother to warn: this is implementation-defined behavior. 680 // FIXME: Introduce a second, default-ignored warning for this case? 681 if (UnpromotedWidth < Val.getBitWidth()) { 682 llvm::APSInt ConvVal(Val); 683 AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign); 684 AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned()); 685 // FIXME: Use different diagnostics for overflow in conversion to promoted 686 // type versus "switch expression cannot have this value". Use proper 687 // IntRange checking rather than just looking at the unpromoted type here. 688 if (ConvVal != Val) 689 S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10) 690 << ConvVal.toString(10); 691 } 692 } 693 694 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; 695 696 /// Returns true if we should emit a diagnostic about this case expression not 697 /// being a part of the enum used in the switch controlling expression. 698 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, 699 const EnumDecl *ED, 700 const Expr *CaseExpr, 701 EnumValsTy::iterator &EI, 702 EnumValsTy::iterator &EIEnd, 703 const llvm::APSInt &Val) { 704 if (const DeclRefExpr *DRE = 705 dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) { 706 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 707 QualType VarType = VD->getType(); 708 QualType EnumType = S.Context.getTypeDeclType(ED); 709 if (VD->hasGlobalStorage() && VarType.isConstQualified() && 710 S.Context.hasSameUnqualifiedType(EnumType, VarType)) 711 return false; 712 } 713 } 714 715 if (ED->hasAttr<FlagEnumAttr>()) { 716 return !S.IsValueInFlagEnum(ED, Val, false); 717 } else { 718 while (EI != EIEnd && EI->first < Val) 719 EI++; 720 721 if (EI != EIEnd && EI->first == Val) 722 return false; 723 } 724 725 return true; 726 } 727 728 StmtResult 729 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, 730 Stmt *BodyStmt) { 731 SwitchStmt *SS = cast<SwitchStmt>(Switch); 732 assert(SS == getCurFunction()->SwitchStack.back() && 733 "switch stack missing push/pop!"); 734 735 getCurFunction()->SwitchStack.pop_back(); 736 737 if (!BodyStmt) return StmtError(); 738 SS->setBody(BodyStmt, SwitchLoc); 739 740 Expr *CondExpr = SS->getCond(); 741 if (!CondExpr) return StmtError(); 742 743 QualType CondType = CondExpr->getType(); 744 745 Expr *CondExprBeforePromotion = CondExpr; 746 QualType CondTypeBeforePromotion = 747 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); 748 749 // C++ 6.4.2.p2: 750 // Integral promotions are performed (on the switch condition). 751 // 752 // A case value unrepresentable by the original switch condition 753 // type (before the promotion) doesn't make sense, even when it can 754 // be represented by the promoted type. Therefore we need to find 755 // the pre-promotion type of the switch condition. 756 if (!CondExpr->isTypeDependent()) { 757 // We have already converted the expression to an integral or enumeration 758 // type, when we started the switch statement. If we don't have an 759 // appropriate type now, just return an error. 760 if (!CondType->isIntegralOrEnumerationType()) 761 return StmtError(); 762 763 if (CondExpr->isKnownToHaveBooleanValue()) { 764 // switch(bool_expr) {...} is often a programmer error, e.g. 765 // switch(n && mask) { ... } // Doh - should be "n & mask". 766 // One can always use an if statement instead of switch(bool_expr). 767 Diag(SwitchLoc, diag::warn_bool_switch_condition) 768 << CondExpr->getSourceRange(); 769 } 770 } 771 772 // Get the bitwidth of the switched-on value after promotions. We must 773 // convert the integer case values to this width before comparison. 774 bool HasDependentValue 775 = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); 776 unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType); 777 bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); 778 779 // Get the width and signedness that the condition might actually have, for 780 // warning purposes. 781 // FIXME: Grab an IntRange for the condition rather than using the unpromoted 782 // type. 783 unsigned CondWidthBeforePromotion 784 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); 785 bool CondIsSignedBeforePromotion 786 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); 787 788 // Accumulate all of the case values in a vector so that we can sort them 789 // and detect duplicates. This vector contains the APInt for the case after 790 // it has been converted to the condition type. 791 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; 792 CaseValsTy CaseVals; 793 794 // Keep track of any GNU case ranges we see. The APSInt is the low value. 795 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; 796 CaseRangesTy CaseRanges; 797 798 DefaultStmt *TheDefaultStmt = nullptr; 799 800 bool CaseListIsErroneous = false; 801 802 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; 803 SC = SC->getNextSwitchCase()) { 804 805 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { 806 if (TheDefaultStmt) { 807 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); 808 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); 809 810 // FIXME: Remove the default statement from the switch block so that 811 // we'll return a valid AST. This requires recursing down the AST and 812 // finding it, not something we are set up to do right now. For now, 813 // just lop the entire switch stmt out of the AST. 814 CaseListIsErroneous = true; 815 } 816 TheDefaultStmt = DS; 817 818 } else { 819 CaseStmt *CS = cast<CaseStmt>(SC); 820 821 Expr *Lo = CS->getLHS(); 822 823 if (Lo->isTypeDependent() || Lo->isValueDependent()) { 824 HasDependentValue = true; 825 break; 826 } 827 828 llvm::APSInt LoVal; 829 830 if (getLangOpts().CPlusPlus11) { 831 // C++11 [stmt.switch]p2: the constant-expression shall be a converted 832 // constant expression of the promoted type of the switch condition. 833 ExprResult ConvLo = 834 CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue); 835 if (ConvLo.isInvalid()) { 836 CaseListIsErroneous = true; 837 continue; 838 } 839 Lo = ConvLo.get(); 840 } else { 841 // We already verified that the expression has a i-c-e value (C99 842 // 6.8.4.2p3) - get that value now. 843 LoVal = Lo->EvaluateKnownConstInt(Context); 844 845 // If the LHS is not the same type as the condition, insert an implicit 846 // cast. 847 Lo = DefaultLvalueConversion(Lo).get(); 848 Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get(); 849 } 850 851 // Check the unconverted value is within the range of possible values of 852 // the switch expression. 853 checkCaseValue(*this, Lo->getLocStart(), LoVal, 854 CondWidthBeforePromotion, CondIsSignedBeforePromotion); 855 856 // Convert the value to the same width/sign as the condition. 857 AdjustAPSInt(LoVal, CondWidth, CondIsSigned); 858 859 CS->setLHS(Lo); 860 861 // If this is a case range, remember it in CaseRanges, otherwise CaseVals. 862 if (CS->getRHS()) { 863 if (CS->getRHS()->isTypeDependent() || 864 CS->getRHS()->isValueDependent()) { 865 HasDependentValue = true; 866 break; 867 } 868 CaseRanges.push_back(std::make_pair(LoVal, CS)); 869 } else 870 CaseVals.push_back(std::make_pair(LoVal, CS)); 871 } 872 } 873 874 if (!HasDependentValue) { 875 // If we don't have a default statement, check whether the 876 // condition is constant. 877 llvm::APSInt ConstantCondValue; 878 bool HasConstantCond = false; 879 if (!HasDependentValue && !TheDefaultStmt) { 880 HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context, 881 Expr::SE_AllowSideEffects); 882 assert(!HasConstantCond || 883 (ConstantCondValue.getBitWidth() == CondWidth && 884 ConstantCondValue.isSigned() == CondIsSigned)); 885 } 886 bool ShouldCheckConstantCond = HasConstantCond; 887 888 // Sort all the scalar case values so we can easily detect duplicates. 889 std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); 890 891 if (!CaseVals.empty()) { 892 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { 893 if (ShouldCheckConstantCond && 894 CaseVals[i].first == ConstantCondValue) 895 ShouldCheckConstantCond = false; 896 897 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { 898 // If we have a duplicate, report it. 899 // First, determine if either case value has a name 900 StringRef PrevString, CurrString; 901 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); 902 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); 903 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) { 904 PrevString = DeclRef->getDecl()->getName(); 905 } 906 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) { 907 CurrString = DeclRef->getDecl()->getName(); 908 } 909 SmallString<16> CaseValStr; 910 CaseVals[i-1].first.toString(CaseValStr); 911 912 if (PrevString == CurrString) 913 Diag(CaseVals[i].second->getLHS()->getLocStart(), 914 diag::err_duplicate_case) << 915 (PrevString.empty() ? StringRef(CaseValStr) : PrevString); 916 else 917 Diag(CaseVals[i].second->getLHS()->getLocStart(), 918 diag::err_duplicate_case_differing_expr) << 919 (PrevString.empty() ? StringRef(CaseValStr) : PrevString) << 920 (CurrString.empty() ? StringRef(CaseValStr) : CurrString) << 921 CaseValStr; 922 923 Diag(CaseVals[i-1].second->getLHS()->getLocStart(), 924 diag::note_duplicate_case_prev); 925 // FIXME: We really want to remove the bogus case stmt from the 926 // substmt, but we have no way to do this right now. 927 CaseListIsErroneous = true; 928 } 929 } 930 } 931 932 // Detect duplicate case ranges, which usually don't exist at all in 933 // the first place. 934 if (!CaseRanges.empty()) { 935 // Sort all the case ranges by their low value so we can easily detect 936 // overlaps between ranges. 937 std::stable_sort(CaseRanges.begin(), CaseRanges.end()); 938 939 // Scan the ranges, computing the high values and removing empty ranges. 940 std::vector<llvm::APSInt> HiVals; 941 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 942 llvm::APSInt &LoVal = CaseRanges[i].first; 943 CaseStmt *CR = CaseRanges[i].second; 944 Expr *Hi = CR->getRHS(); 945 llvm::APSInt HiVal; 946 947 if (getLangOpts().CPlusPlus11) { 948 // C++11 [stmt.switch]p2: the constant-expression shall be a converted 949 // constant expression of the promoted type of the switch condition. 950 ExprResult ConvHi = 951 CheckConvertedConstantExpression(Hi, CondType, HiVal, 952 CCEK_CaseValue); 953 if (ConvHi.isInvalid()) { 954 CaseListIsErroneous = true; 955 continue; 956 } 957 Hi = ConvHi.get(); 958 } else { 959 HiVal = Hi->EvaluateKnownConstInt(Context); 960 961 // If the RHS is not the same type as the condition, insert an 962 // implicit cast. 963 Hi = DefaultLvalueConversion(Hi).get(); 964 Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get(); 965 } 966 967 // Check the unconverted value is within the range of possible values of 968 // the switch expression. 969 checkCaseValue(*this, Hi->getLocStart(), HiVal, 970 CondWidthBeforePromotion, CondIsSignedBeforePromotion); 971 972 // Convert the value to the same width/sign as the condition. 973 AdjustAPSInt(HiVal, CondWidth, CondIsSigned); 974 975 CR->setRHS(Hi); 976 977 // If the low value is bigger than the high value, the case is empty. 978 if (LoVal > HiVal) { 979 Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range) 980 << SourceRange(CR->getLHS()->getLocStart(), 981 Hi->getLocEnd()); 982 CaseRanges.erase(CaseRanges.begin()+i); 983 --i, --e; 984 continue; 985 } 986 987 if (ShouldCheckConstantCond && 988 LoVal <= ConstantCondValue && 989 ConstantCondValue <= HiVal) 990 ShouldCheckConstantCond = false; 991 992 HiVals.push_back(HiVal); 993 } 994 995 // Rescan the ranges, looking for overlap with singleton values and other 996 // ranges. Since the range list is sorted, we only need to compare case 997 // ranges with their neighbors. 998 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 999 llvm::APSInt &CRLo = CaseRanges[i].first; 1000 llvm::APSInt &CRHi = HiVals[i]; 1001 CaseStmt *CR = CaseRanges[i].second; 1002 1003 // Check to see whether the case range overlaps with any 1004 // singleton cases. 1005 CaseStmt *OverlapStmt = nullptr; 1006 llvm::APSInt OverlapVal(32); 1007 1008 // Find the smallest value >= the lower bound. If I is in the 1009 // case range, then we have overlap. 1010 CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), 1011 CaseVals.end(), CRLo, 1012 CaseCompareFunctor()); 1013 if (I != CaseVals.end() && I->first < CRHi) { 1014 OverlapVal = I->first; // Found overlap with scalar. 1015 OverlapStmt = I->second; 1016 } 1017 1018 // Find the smallest value bigger than the upper bound. 1019 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); 1020 if (I != CaseVals.begin() && (I-1)->first >= CRLo) { 1021 OverlapVal = (I-1)->first; // Found overlap with scalar. 1022 OverlapStmt = (I-1)->second; 1023 } 1024 1025 // Check to see if this case stmt overlaps with the subsequent 1026 // case range. 1027 if (i && CRLo <= HiVals[i-1]) { 1028 OverlapVal = HiVals[i-1]; // Found overlap with range. 1029 OverlapStmt = CaseRanges[i-1].second; 1030 } 1031 1032 if (OverlapStmt) { 1033 // If we have a duplicate, report it. 1034 Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case) 1035 << OverlapVal.toString(10); 1036 Diag(OverlapStmt->getLHS()->getLocStart(), 1037 diag::note_duplicate_case_prev); 1038 // FIXME: We really want to remove the bogus case stmt from the 1039 // substmt, but we have no way to do this right now. 1040 CaseListIsErroneous = true; 1041 } 1042 } 1043 } 1044 1045 // Complain if we have a constant condition and we didn't find a match. 1046 if (!CaseListIsErroneous && ShouldCheckConstantCond) { 1047 // TODO: it would be nice if we printed enums as enums, chars as 1048 // chars, etc. 1049 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) 1050 << ConstantCondValue.toString(10) 1051 << CondExpr->getSourceRange(); 1052 } 1053 1054 // Check to see if switch is over an Enum and handles all of its 1055 // values. We only issue a warning if there is not 'default:', but 1056 // we still do the analysis to preserve this information in the AST 1057 // (which can be used by flow-based analyes). 1058 // 1059 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); 1060 1061 // If switch has default case, then ignore it. 1062 if (!CaseListIsErroneous && !HasConstantCond && ET) { 1063 const EnumDecl *ED = ET->getDecl(); 1064 EnumValsTy EnumVals; 1065 1066 // Gather all enum values, set their type and sort them, 1067 // allowing easier comparison with CaseVals. 1068 for (auto *EDI : ED->enumerators()) { 1069 llvm::APSInt Val = EDI->getInitVal(); 1070 AdjustAPSInt(Val, CondWidth, CondIsSigned); 1071 EnumVals.push_back(std::make_pair(Val, EDI)); 1072 } 1073 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals); 1074 auto EI = EnumVals.begin(), EIEnd = 1075 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1076 1077 // See which case values aren't in enum. 1078 for (CaseValsTy::const_iterator CI = CaseVals.begin(); 1079 CI != CaseVals.end(); CI++) { 1080 Expr *CaseExpr = CI->second->getLHS(); 1081 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1082 CI->first)) 1083 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1084 << CondTypeBeforePromotion; 1085 } 1086 1087 // See which of case ranges aren't in enum 1088 EI = EnumVals.begin(); 1089 for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); 1090 RI != CaseRanges.end(); RI++) { 1091 Expr *CaseExpr = RI->second->getLHS(); 1092 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1093 RI->first)) 1094 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1095 << CondTypeBeforePromotion; 1096 1097 llvm::APSInt Hi = 1098 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1099 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1100 1101 CaseExpr = RI->second->getRHS(); 1102 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1103 Hi)) 1104 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1105 << CondTypeBeforePromotion; 1106 } 1107 1108 // Check which enum vals aren't in switch 1109 auto CI = CaseVals.begin(); 1110 auto RI = CaseRanges.begin(); 1111 bool hasCasesNotInSwitch = false; 1112 1113 SmallVector<DeclarationName,8> UnhandledNames; 1114 1115 for (EI = EnumVals.begin(); EI != EIEnd; EI++){ 1116 // Drop unneeded case values 1117 while (CI != CaseVals.end() && CI->first < EI->first) 1118 CI++; 1119 1120 if (CI != CaseVals.end() && CI->first == EI->first) 1121 continue; 1122 1123 // Drop unneeded case ranges 1124 for (; RI != CaseRanges.end(); RI++) { 1125 llvm::APSInt Hi = 1126 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1127 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1128 if (EI->first <= Hi) 1129 break; 1130 } 1131 1132 if (RI == CaseRanges.end() || EI->first < RI->first) { 1133 hasCasesNotInSwitch = true; 1134 UnhandledNames.push_back(EI->second->getDeclName()); 1135 } 1136 } 1137 1138 if (TheDefaultStmt && UnhandledNames.empty()) 1139 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); 1140 1141 // Produce a nice diagnostic if multiple values aren't handled. 1142 if (!UnhandledNames.empty()) { 1143 DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(), 1144 TheDefaultStmt ? diag::warn_def_missing_case 1145 : diag::warn_missing_case) 1146 << (int)UnhandledNames.size(); 1147 1148 for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3); 1149 I != E; ++I) 1150 DB << UnhandledNames[I]; 1151 } 1152 1153 if (!hasCasesNotInSwitch) 1154 SS->setAllEnumCasesCovered(); 1155 } 1156 } 1157 1158 if (BodyStmt) 1159 DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt, 1160 diag::warn_empty_switch_body); 1161 1162 // FIXME: If the case list was broken is some way, we don't have a good system 1163 // to patch it up. Instead, just return the whole substmt as broken. 1164 if (CaseListIsErroneous) 1165 return StmtError(); 1166 1167 return SS; 1168 } 1169 1170 void 1171 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, 1172 Expr *SrcExpr) { 1173 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc())) 1174 return; 1175 1176 if (const EnumType *ET = DstType->getAs<EnumType>()) 1177 if (!Context.hasSameUnqualifiedType(SrcType, DstType) && 1178 SrcType->isIntegerType()) { 1179 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && 1180 SrcExpr->isIntegerConstantExpr(Context)) { 1181 // Get the bitwidth of the enum value before promotions. 1182 unsigned DstWidth = Context.getIntWidth(DstType); 1183 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); 1184 1185 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); 1186 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); 1187 const EnumDecl *ED = ET->getDecl(); 1188 1189 if (ED->hasAttr<FlagEnumAttr>()) { 1190 if (!IsValueInFlagEnum(ED, RhsVal, true)) 1191 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1192 << DstType.getUnqualifiedType(); 1193 } else { 1194 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> 1195 EnumValsTy; 1196 EnumValsTy EnumVals; 1197 1198 // Gather all enum values, set their type and sort them, 1199 // allowing easier comparison with rhs constant. 1200 for (auto *EDI : ED->enumerators()) { 1201 llvm::APSInt Val = EDI->getInitVal(); 1202 AdjustAPSInt(Val, DstWidth, DstIsSigned); 1203 EnumVals.push_back(std::make_pair(Val, EDI)); 1204 } 1205 if (EnumVals.empty()) 1206 return; 1207 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals); 1208 EnumValsTy::iterator EIend = 1209 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1210 1211 // See which values aren't in the enum. 1212 EnumValsTy::const_iterator EI = EnumVals.begin(); 1213 while (EI != EIend && EI->first < RhsVal) 1214 EI++; 1215 if (EI == EIend || EI->first != RhsVal) { 1216 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1217 << DstType.getUnqualifiedType(); 1218 } 1219 } 1220 } 1221 } 1222 } 1223 1224 StmtResult 1225 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, 1226 Decl *CondVar, Stmt *Body) { 1227 ExprResult CondResult(Cond.release()); 1228 1229 VarDecl *ConditionVar = nullptr; 1230 if (CondVar) { 1231 ConditionVar = cast<VarDecl>(CondVar); 1232 CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true); 1233 CondResult = ActOnFinishFullExpr(CondResult.get(), WhileLoc); 1234 if (CondResult.isInvalid()) 1235 return StmtError(); 1236 } 1237 Expr *ConditionExpr = CondResult.get(); 1238 if (!ConditionExpr) 1239 return StmtError(); 1240 CheckBreakContinueBinding(ConditionExpr); 1241 1242 DiagnoseUnusedExprResult(Body); 1243 1244 if (isa<NullStmt>(Body)) 1245 getCurCompoundScope().setHasEmptyLoopBodies(); 1246 1247 return new (Context) 1248 WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc); 1249 } 1250 1251 StmtResult 1252 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, 1253 SourceLocation WhileLoc, SourceLocation CondLParen, 1254 Expr *Cond, SourceLocation CondRParen) { 1255 assert(Cond && "ActOnDoStmt(): missing expression"); 1256 1257 CheckBreakContinueBinding(Cond); 1258 ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc); 1259 if (CondResult.isInvalid()) 1260 return StmtError(); 1261 Cond = CondResult.get(); 1262 1263 CondResult = ActOnFinishFullExpr(Cond, DoLoc); 1264 if (CondResult.isInvalid()) 1265 return StmtError(); 1266 Cond = CondResult.get(); 1267 1268 DiagnoseUnusedExprResult(Body); 1269 1270 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); 1271 } 1272 1273 namespace { 1274 // This visitor will traverse a conditional statement and store all 1275 // the evaluated decls into a vector. Simple is set to true if none 1276 // of the excluded constructs are used. 1277 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> { 1278 llvm::SmallPtrSetImpl<VarDecl*> &Decls; 1279 SmallVectorImpl<SourceRange> &Ranges; 1280 bool Simple; 1281 public: 1282 typedef EvaluatedExprVisitor<DeclExtractor> Inherited; 1283 1284 DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls, 1285 SmallVectorImpl<SourceRange> &Ranges) : 1286 Inherited(S.Context), 1287 Decls(Decls), 1288 Ranges(Ranges), 1289 Simple(true) {} 1290 1291 bool isSimple() { return Simple; } 1292 1293 // Replaces the method in EvaluatedExprVisitor. 1294 void VisitMemberExpr(MemberExpr* E) { 1295 Simple = false; 1296 } 1297 1298 // Any Stmt not whitelisted will cause the condition to be marked complex. 1299 void VisitStmt(Stmt *S) { 1300 Simple = false; 1301 } 1302 1303 void VisitBinaryOperator(BinaryOperator *E) { 1304 Visit(E->getLHS()); 1305 Visit(E->getRHS()); 1306 } 1307 1308 void VisitCastExpr(CastExpr *E) { 1309 Visit(E->getSubExpr()); 1310 } 1311 1312 void VisitUnaryOperator(UnaryOperator *E) { 1313 // Skip checking conditionals with derefernces. 1314 if (E->getOpcode() == UO_Deref) 1315 Simple = false; 1316 else 1317 Visit(E->getSubExpr()); 1318 } 1319 1320 void VisitConditionalOperator(ConditionalOperator *E) { 1321 Visit(E->getCond()); 1322 Visit(E->getTrueExpr()); 1323 Visit(E->getFalseExpr()); 1324 } 1325 1326 void VisitParenExpr(ParenExpr *E) { 1327 Visit(E->getSubExpr()); 1328 } 1329 1330 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 1331 Visit(E->getOpaqueValue()->getSourceExpr()); 1332 Visit(E->getFalseExpr()); 1333 } 1334 1335 void VisitIntegerLiteral(IntegerLiteral *E) { } 1336 void VisitFloatingLiteral(FloatingLiteral *E) { } 1337 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } 1338 void VisitCharacterLiteral(CharacterLiteral *E) { } 1339 void VisitGNUNullExpr(GNUNullExpr *E) { } 1340 void VisitImaginaryLiteral(ImaginaryLiteral *E) { } 1341 1342 void VisitDeclRefExpr(DeclRefExpr *E) { 1343 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); 1344 if (!VD) return; 1345 1346 Ranges.push_back(E->getSourceRange()); 1347 1348 Decls.insert(VD); 1349 } 1350 1351 }; // end class DeclExtractor 1352 1353 // DeclMatcher checks to see if the decls are used in a non-evaluated 1354 // context. 1355 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { 1356 llvm::SmallPtrSetImpl<VarDecl*> &Decls; 1357 bool FoundDecl; 1358 1359 public: 1360 typedef EvaluatedExprVisitor<DeclMatcher> Inherited; 1361 1362 DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls, 1363 Stmt *Statement) : 1364 Inherited(S.Context), Decls(Decls), FoundDecl(false) { 1365 if (!Statement) return; 1366 1367 Visit(Statement); 1368 } 1369 1370 void VisitReturnStmt(ReturnStmt *S) { 1371 FoundDecl = true; 1372 } 1373 1374 void VisitBreakStmt(BreakStmt *S) { 1375 FoundDecl = true; 1376 } 1377 1378 void VisitGotoStmt(GotoStmt *S) { 1379 FoundDecl = true; 1380 } 1381 1382 void VisitCastExpr(CastExpr *E) { 1383 if (E->getCastKind() == CK_LValueToRValue) 1384 CheckLValueToRValueCast(E->getSubExpr()); 1385 else 1386 Visit(E->getSubExpr()); 1387 } 1388 1389 void CheckLValueToRValueCast(Expr *E) { 1390 E = E->IgnoreParenImpCasts(); 1391 1392 if (isa<DeclRefExpr>(E)) { 1393 return; 1394 } 1395 1396 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 1397 Visit(CO->getCond()); 1398 CheckLValueToRValueCast(CO->getTrueExpr()); 1399 CheckLValueToRValueCast(CO->getFalseExpr()); 1400 return; 1401 } 1402 1403 if (BinaryConditionalOperator *BCO = 1404 dyn_cast<BinaryConditionalOperator>(E)) { 1405 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); 1406 CheckLValueToRValueCast(BCO->getFalseExpr()); 1407 return; 1408 } 1409 1410 Visit(E); 1411 } 1412 1413 void VisitDeclRefExpr(DeclRefExpr *E) { 1414 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) 1415 if (Decls.count(VD)) 1416 FoundDecl = true; 1417 } 1418 1419 bool FoundDeclInUse() { return FoundDecl; } 1420 1421 }; // end class DeclMatcher 1422 1423 void CheckForLoopConditionalStatement(Sema &S, Expr *Second, 1424 Expr *Third, Stmt *Body) { 1425 // Condition is empty 1426 if (!Second) return; 1427 1428 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body, 1429 Second->getLocStart())) 1430 return; 1431 1432 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); 1433 llvm::SmallPtrSet<VarDecl*, 8> Decls; 1434 SmallVector<SourceRange, 10> Ranges; 1435 DeclExtractor DE(S, Decls, Ranges); 1436 DE.Visit(Second); 1437 1438 // Don't analyze complex conditionals. 1439 if (!DE.isSimple()) return; 1440 1441 // No decls found. 1442 if (Decls.size() == 0) return; 1443 1444 // Don't warn on volatile, static, or global variables. 1445 for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(), 1446 E = Decls.end(); 1447 I != E; ++I) 1448 if ((*I)->getType().isVolatileQualified() || 1449 (*I)->hasGlobalStorage()) return; 1450 1451 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || 1452 DeclMatcher(S, Decls, Third).FoundDeclInUse() || 1453 DeclMatcher(S, Decls, Body).FoundDeclInUse()) 1454 return; 1455 1456 // Load decl names into diagnostic. 1457 if (Decls.size() > 4) 1458 PDiag << 0; 1459 else { 1460 PDiag << Decls.size(); 1461 for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(), 1462 E = Decls.end(); 1463 I != E; ++I) 1464 PDiag << (*I)->getDeclName(); 1465 } 1466 1467 // Load SourceRanges into diagnostic if there is room. 1468 // Otherwise, load the SourceRange of the conditional expression. 1469 if (Ranges.size() <= PartialDiagnostic::MaxArguments) 1470 for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(), 1471 E = Ranges.end(); 1472 I != E; ++I) 1473 PDiag << *I; 1474 else 1475 PDiag << Second->getSourceRange(); 1476 1477 S.Diag(Ranges.begin()->getBegin(), PDiag); 1478 } 1479 1480 // If Statement is an incemement or decrement, return true and sets the 1481 // variables Increment and DRE. 1482 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, 1483 DeclRefExpr *&DRE) { 1484 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) { 1485 switch (UO->getOpcode()) { 1486 default: return false; 1487 case UO_PostInc: 1488 case UO_PreInc: 1489 Increment = true; 1490 break; 1491 case UO_PostDec: 1492 case UO_PreDec: 1493 Increment = false; 1494 break; 1495 } 1496 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 1497 return DRE; 1498 } 1499 1500 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) { 1501 FunctionDecl *FD = Call->getDirectCallee(); 1502 if (!FD || !FD->isOverloadedOperator()) return false; 1503 switch (FD->getOverloadedOperator()) { 1504 default: return false; 1505 case OO_PlusPlus: 1506 Increment = true; 1507 break; 1508 case OO_MinusMinus: 1509 Increment = false; 1510 break; 1511 } 1512 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0)); 1513 return DRE; 1514 } 1515 1516 return false; 1517 } 1518 1519 // A visitor to determine if a continue or break statement is a 1520 // subexpression. 1521 class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> { 1522 SourceLocation BreakLoc; 1523 SourceLocation ContinueLoc; 1524 public: 1525 BreakContinueFinder(Sema &S, Stmt* Body) : 1526 Inherited(S.Context) { 1527 Visit(Body); 1528 } 1529 1530 typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited; 1531 1532 void VisitContinueStmt(ContinueStmt* E) { 1533 ContinueLoc = E->getContinueLoc(); 1534 } 1535 1536 void VisitBreakStmt(BreakStmt* E) { 1537 BreakLoc = E->getBreakLoc(); 1538 } 1539 1540 bool ContinueFound() { return ContinueLoc.isValid(); } 1541 bool BreakFound() { return BreakLoc.isValid(); } 1542 SourceLocation GetContinueLoc() { return ContinueLoc; } 1543 SourceLocation GetBreakLoc() { return BreakLoc; } 1544 1545 }; // end class BreakContinueFinder 1546 1547 // Emit a warning when a loop increment/decrement appears twice per loop 1548 // iteration. The conditions which trigger this warning are: 1549 // 1) The last statement in the loop body and the third expression in the 1550 // for loop are both increment or both decrement of the same variable 1551 // 2) No continue statements in the loop body. 1552 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { 1553 // Return when there is nothing to check. 1554 if (!Body || !Third) return; 1555 1556 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration, 1557 Third->getLocStart())) 1558 return; 1559 1560 // Get the last statement from the loop body. 1561 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body); 1562 if (!CS || CS->body_empty()) return; 1563 Stmt *LastStmt = CS->body_back(); 1564 if (!LastStmt) return; 1565 1566 bool LoopIncrement, LastIncrement; 1567 DeclRefExpr *LoopDRE, *LastDRE; 1568 1569 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; 1570 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; 1571 1572 // Check that the two statements are both increments or both decrements 1573 // on the same variable. 1574 if (LoopIncrement != LastIncrement || 1575 LoopDRE->getDecl() != LastDRE->getDecl()) return; 1576 1577 if (BreakContinueFinder(S, Body).ContinueFound()) return; 1578 1579 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) 1580 << LastDRE->getDecl() << LastIncrement; 1581 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) 1582 << LoopIncrement; 1583 } 1584 1585 } // end namespace 1586 1587 1588 void Sema::CheckBreakContinueBinding(Expr *E) { 1589 if (!E || getLangOpts().CPlusPlus) 1590 return; 1591 BreakContinueFinder BCFinder(*this, E); 1592 Scope *BreakParent = CurScope->getBreakParent(); 1593 if (BCFinder.BreakFound() && BreakParent) { 1594 if (BreakParent->getFlags() & Scope::SwitchScope) { 1595 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch); 1596 } else { 1597 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner) 1598 << "break"; 1599 } 1600 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { 1601 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner) 1602 << "continue"; 1603 } 1604 } 1605 1606 StmtResult 1607 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, 1608 Stmt *First, FullExprArg second, Decl *secondVar, 1609 FullExprArg third, 1610 SourceLocation RParenLoc, Stmt *Body) { 1611 if (!getLangOpts().CPlusPlus) { 1612 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { 1613 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 1614 // declare identifiers for objects having storage class 'auto' or 1615 // 'register'. 1616 for (auto *DI : DS->decls()) { 1617 VarDecl *VD = dyn_cast<VarDecl>(DI); 1618 if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage()) 1619 VD = nullptr; 1620 if (!VD) { 1621 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for); 1622 DI->setInvalidDecl(); 1623 } 1624 } 1625 } 1626 } 1627 1628 CheckBreakContinueBinding(second.get()); 1629 CheckBreakContinueBinding(third.get()); 1630 1631 CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body); 1632 CheckForRedundantIteration(*this, third.get(), Body); 1633 1634 ExprResult SecondResult(second.release()); 1635 VarDecl *ConditionVar = nullptr; 1636 if (secondVar) { 1637 ConditionVar = cast<VarDecl>(secondVar); 1638 SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true); 1639 SecondResult = ActOnFinishFullExpr(SecondResult.get(), ForLoc); 1640 if (SecondResult.isInvalid()) 1641 return StmtError(); 1642 } 1643 1644 Expr *Third = third.release().getAs<Expr>(); 1645 1646 DiagnoseUnusedExprResult(First); 1647 DiagnoseUnusedExprResult(Third); 1648 DiagnoseUnusedExprResult(Body); 1649 1650 if (isa<NullStmt>(Body)) 1651 getCurCompoundScope().setHasEmptyLoopBodies(); 1652 1653 return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar, 1654 Third, Body, ForLoc, LParenLoc, RParenLoc); 1655 } 1656 1657 /// In an Objective C collection iteration statement: 1658 /// for (x in y) 1659 /// x can be an arbitrary l-value expression. Bind it up as a 1660 /// full-expression. 1661 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { 1662 // Reduce placeholder expressions here. Note that this rejects the 1663 // use of pseudo-object l-values in this position. 1664 ExprResult result = CheckPlaceholderExpr(E); 1665 if (result.isInvalid()) return StmtError(); 1666 E = result.get(); 1667 1668 ExprResult FullExpr = ActOnFinishFullExpr(E); 1669 if (FullExpr.isInvalid()) 1670 return StmtError(); 1671 return StmtResult(static_cast<Stmt*>(FullExpr.get())); 1672 } 1673 1674 ExprResult 1675 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) { 1676 if (!collection) 1677 return ExprError(); 1678 1679 ExprResult result = CorrectDelayedTyposInExpr(collection); 1680 if (!result.isUsable()) 1681 return ExprError(); 1682 collection = result.get(); 1683 1684 // Bail out early if we've got a type-dependent expression. 1685 if (collection->isTypeDependent()) return collection; 1686 1687 // Perform normal l-value conversion. 1688 result = DefaultFunctionArrayLvalueConversion(collection); 1689 if (result.isInvalid()) 1690 return ExprError(); 1691 collection = result.get(); 1692 1693 // The operand needs to have object-pointer type. 1694 // TODO: should we do a contextual conversion? 1695 const ObjCObjectPointerType *pointerType = 1696 collection->getType()->getAs<ObjCObjectPointerType>(); 1697 if (!pointerType) 1698 return Diag(forLoc, diag::err_collection_expr_type) 1699 << collection->getType() << collection->getSourceRange(); 1700 1701 // Check that the operand provides 1702 // - countByEnumeratingWithState:objects:count: 1703 const ObjCObjectType *objectType = pointerType->getObjectType(); 1704 ObjCInterfaceDecl *iface = objectType->getInterface(); 1705 1706 // If we have a forward-declared type, we can't do this check. 1707 // Under ARC, it is an error not to have a forward-declared class. 1708 if (iface && 1709 (getLangOpts().ObjCAutoRefCount 1710 ? RequireCompleteType(forLoc, QualType(objectType, 0), 1711 diag::err_arc_collection_forward, collection) 1712 : !isCompleteType(forLoc, QualType(objectType, 0)))) { 1713 // Otherwise, if we have any useful type information, check that 1714 // the type declares the appropriate method. 1715 } else if (iface || !objectType->qual_empty()) { 1716 IdentifierInfo *selectorIdents[] = { 1717 &Context.Idents.get("countByEnumeratingWithState"), 1718 &Context.Idents.get("objects"), 1719 &Context.Idents.get("count") 1720 }; 1721 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]); 1722 1723 ObjCMethodDecl *method = nullptr; 1724 1725 // If there's an interface, look in both the public and private APIs. 1726 if (iface) { 1727 method = iface->lookupInstanceMethod(selector); 1728 if (!method) method = iface->lookupPrivateMethod(selector); 1729 } 1730 1731 // Also check protocol qualifiers. 1732 if (!method) 1733 method = LookupMethodInQualifiedType(selector, pointerType, 1734 /*instance*/ true); 1735 1736 // If we didn't find it anywhere, give up. 1737 if (!method) { 1738 Diag(forLoc, diag::warn_collection_expr_type) 1739 << collection->getType() << selector << collection->getSourceRange(); 1740 } 1741 1742 // TODO: check for an incompatible signature? 1743 } 1744 1745 // Wrap up any cleanups in the expression. 1746 return collection; 1747 } 1748 1749 StmtResult 1750 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, 1751 Stmt *First, Expr *collection, 1752 SourceLocation RParenLoc) { 1753 1754 ExprResult CollectionExprResult = 1755 CheckObjCForCollectionOperand(ForLoc, collection); 1756 1757 if (First) { 1758 QualType FirstType; 1759 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { 1760 if (!DS->isSingleDecl()) 1761 return StmtError(Diag((*DS->decl_begin())->getLocation(), 1762 diag::err_toomany_element_decls)); 1763 1764 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl()); 1765 if (!D || D->isInvalidDecl()) 1766 return StmtError(); 1767 1768 FirstType = D->getType(); 1769 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 1770 // declare identifiers for objects having storage class 'auto' or 1771 // 'register'. 1772 if (!D->hasLocalStorage()) 1773 return StmtError(Diag(D->getLocation(), 1774 diag::err_non_local_variable_decl_in_for)); 1775 1776 // If the type contained 'auto', deduce the 'auto' to 'id'. 1777 if (FirstType->getContainedAutoType()) { 1778 OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(), 1779 VK_RValue); 1780 Expr *DeducedInit = &OpaqueId; 1781 if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) == 1782 DAR_Failed) 1783 DiagnoseAutoDeductionFailure(D, DeducedInit); 1784 if (FirstType.isNull()) { 1785 D->setInvalidDecl(); 1786 return StmtError(); 1787 } 1788 1789 D->setType(FirstType); 1790 1791 if (ActiveTemplateInstantiations.empty()) { 1792 SourceLocation Loc = 1793 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 1794 Diag(Loc, diag::warn_auto_var_is_id) 1795 << D->getDeclName(); 1796 } 1797 } 1798 1799 } else { 1800 Expr *FirstE = cast<Expr>(First); 1801 if (!FirstE->isTypeDependent() && !FirstE->isLValue()) 1802 return StmtError(Diag(First->getLocStart(), 1803 diag::err_selector_element_not_lvalue) 1804 << First->getSourceRange()); 1805 1806 FirstType = static_cast<Expr*>(First)->getType(); 1807 if (FirstType.isConstQualified()) 1808 Diag(ForLoc, diag::err_selector_element_const_type) 1809 << FirstType << First->getSourceRange(); 1810 } 1811 if (!FirstType->isDependentType() && 1812 !FirstType->isObjCObjectPointerType() && 1813 !FirstType->isBlockPointerType()) 1814 return StmtError(Diag(ForLoc, diag::err_selector_element_type) 1815 << FirstType << First->getSourceRange()); 1816 } 1817 1818 if (CollectionExprResult.isInvalid()) 1819 return StmtError(); 1820 1821 CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get()); 1822 if (CollectionExprResult.isInvalid()) 1823 return StmtError(); 1824 1825 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(), 1826 nullptr, ForLoc, RParenLoc); 1827 } 1828 1829 /// Finish building a variable declaration for a for-range statement. 1830 /// \return true if an error occurs. 1831 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, 1832 SourceLocation Loc, int DiagID) { 1833 if (Decl->getType()->isUndeducedType()) { 1834 ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init); 1835 if (!Res.isUsable()) { 1836 Decl->setInvalidDecl(); 1837 return true; 1838 } 1839 Init = Res.get(); 1840 } 1841 1842 // Deduce the type for the iterator variable now rather than leaving it to 1843 // AddInitializerToDecl, so we can produce a more suitable diagnostic. 1844 QualType InitType; 1845 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) || 1846 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) == 1847 Sema::DAR_Failed) 1848 SemaRef.Diag(Loc, DiagID) << Init->getType(); 1849 if (InitType.isNull()) { 1850 Decl->setInvalidDecl(); 1851 return true; 1852 } 1853 Decl->setType(InitType); 1854 1855 // In ARC, infer lifetime. 1856 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if 1857 // we're doing the equivalent of fast iteration. 1858 if (SemaRef.getLangOpts().ObjCAutoRefCount && 1859 SemaRef.inferObjCARCLifetime(Decl)) 1860 Decl->setInvalidDecl(); 1861 1862 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false, 1863 /*TypeMayContainAuto=*/false); 1864 SemaRef.FinalizeDeclaration(Decl); 1865 SemaRef.CurContext->addHiddenDecl(Decl); 1866 return false; 1867 } 1868 1869 namespace { 1870 // An enum to represent whether something is dealing with a call to begin() 1871 // or a call to end() in a range-based for loop. 1872 enum BeginEndFunction { 1873 BEF_begin, 1874 BEF_end 1875 }; 1876 1877 /// Produce a note indicating which begin/end function was implicitly called 1878 /// by a C++11 for-range statement. This is often not obvious from the code, 1879 /// nor from the diagnostics produced when analysing the implicit expressions 1880 /// required in a for-range statement. 1881 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, 1882 BeginEndFunction BEF) { 1883 CallExpr *CE = dyn_cast<CallExpr>(E); 1884 if (!CE) 1885 return; 1886 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1887 if (!D) 1888 return; 1889 SourceLocation Loc = D->getLocation(); 1890 1891 std::string Description; 1892 bool IsTemplate = false; 1893 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { 1894 Description = SemaRef.getTemplateArgumentBindingsText( 1895 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); 1896 IsTemplate = true; 1897 } 1898 1899 SemaRef.Diag(Loc, diag::note_for_range_begin_end) 1900 << BEF << IsTemplate << Description << E->getType(); 1901 } 1902 1903 /// Build a variable declaration for a for-range statement. 1904 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, 1905 QualType Type, const char *Name) { 1906 DeclContext *DC = SemaRef.CurContext; 1907 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); 1908 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); 1909 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, 1910 TInfo, SC_None); 1911 Decl->setImplicit(); 1912 return Decl; 1913 } 1914 1915 } 1916 1917 static bool ObjCEnumerationCollection(Expr *Collection) { 1918 return !Collection->isTypeDependent() 1919 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; 1920 } 1921 1922 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement. 1923 /// 1924 /// C++11 [stmt.ranged]: 1925 /// A range-based for statement is equivalent to 1926 /// 1927 /// { 1928 /// auto && __range = range-init; 1929 /// for ( auto __begin = begin-expr, 1930 /// __end = end-expr; 1931 /// __begin != __end; 1932 /// ++__begin ) { 1933 /// for-range-declaration = *__begin; 1934 /// statement 1935 /// } 1936 /// } 1937 /// 1938 /// The body of the loop is not available yet, since it cannot be analysed until 1939 /// we have determined the type of the for-range-declaration. 1940 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, 1941 SourceLocation CoawaitLoc, Stmt *First, 1942 SourceLocation ColonLoc, Expr *Range, 1943 SourceLocation RParenLoc, 1944 BuildForRangeKind Kind) { 1945 if (!First) 1946 return StmtError(); 1947 1948 if (Range && ObjCEnumerationCollection(Range)) 1949 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); 1950 1951 DeclStmt *DS = dyn_cast<DeclStmt>(First); 1952 assert(DS && "first part of for range not a decl stmt"); 1953 1954 if (!DS->isSingleDecl()) { 1955 Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range); 1956 return StmtError(); 1957 } 1958 1959 Decl *LoopVar = DS->getSingleDecl(); 1960 if (LoopVar->isInvalidDecl() || !Range || 1961 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { 1962 LoopVar->setInvalidDecl(); 1963 return StmtError(); 1964 } 1965 1966 // Coroutines: 'for co_await' implicitly co_awaits its range. 1967 if (CoawaitLoc.isValid()) { 1968 ExprResult Coawait = ActOnCoawaitExpr(S, CoawaitLoc, Range); 1969 if (Coawait.isInvalid()) return StmtError(); 1970 Range = Coawait.get(); 1971 } 1972 1973 // Build auto && __range = range-init 1974 SourceLocation RangeLoc = Range->getLocStart(); 1975 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, 1976 Context.getAutoRRefDeductType(), 1977 "__range"); 1978 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, 1979 diag::err_for_range_deduction_failure)) { 1980 LoopVar->setInvalidDecl(); 1981 return StmtError(); 1982 } 1983 1984 // Claim the type doesn't contain auto: we've already done the checking. 1985 DeclGroupPtrTy RangeGroup = 1986 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1), 1987 /*TypeMayContainAuto=*/ false); 1988 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); 1989 if (RangeDecl.isInvalid()) { 1990 LoopVar->setInvalidDecl(); 1991 return StmtError(); 1992 } 1993 1994 return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(), 1995 /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr, 1996 /*Inc=*/nullptr, DS, RParenLoc, Kind); 1997 } 1998 1999 /// \brief Create the initialization, compare, and increment steps for 2000 /// the range-based for loop expression. 2001 /// This function does not handle array-based for loops, 2002 /// which are created in Sema::BuildCXXForRangeStmt. 2003 /// 2004 /// \returns a ForRangeStatus indicating success or what kind of error occurred. 2005 /// BeginExpr and EndExpr are set and FRS_Success is returned on success; 2006 /// CandidateSet and BEF are set and some non-success value is returned on 2007 /// failure. 2008 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, 2009 Expr *BeginRange, Expr *EndRange, 2010 QualType RangeType, 2011 VarDecl *BeginVar, 2012 VarDecl *EndVar, 2013 SourceLocation ColonLoc, 2014 OverloadCandidateSet *CandidateSet, 2015 ExprResult *BeginExpr, 2016 ExprResult *EndExpr, 2017 BeginEndFunction *BEF) { 2018 DeclarationNameInfo BeginNameInfo( 2019 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); 2020 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), 2021 ColonLoc); 2022 2023 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, 2024 Sema::LookupMemberName); 2025 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); 2026 2027 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { 2028 // - if _RangeT is a class type, the unqualified-ids begin and end are 2029 // looked up in the scope of class _RangeT as if by class member access 2030 // lookup (3.4.5), and if either (or both) finds at least one 2031 // declaration, begin-expr and end-expr are __range.begin() and 2032 // __range.end(), respectively; 2033 SemaRef.LookupQualifiedName(BeginMemberLookup, D); 2034 SemaRef.LookupQualifiedName(EndMemberLookup, D); 2035 2036 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { 2037 SourceLocation RangeLoc = BeginVar->getLocation(); 2038 *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin; 2039 2040 SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch) 2041 << RangeLoc << BeginRange->getType() << *BEF; 2042 return Sema::FRS_DiagnosticIssued; 2043 } 2044 } else { 2045 // - otherwise, begin-expr and end-expr are begin(__range) and 2046 // end(__range), respectively, where begin and end are looked up with 2047 // argument-dependent lookup (3.4.2). For the purposes of this name 2048 // lookup, namespace std is an associated namespace. 2049 2050 } 2051 2052 *BEF = BEF_begin; 2053 Sema::ForRangeStatus RangeStatus = 2054 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo, 2055 BeginMemberLookup, CandidateSet, 2056 BeginRange, BeginExpr); 2057 2058 if (RangeStatus != Sema::FRS_Success) { 2059 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2060 SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range) 2061 << ColonLoc << BEF_begin << BeginRange->getType(); 2062 return RangeStatus; 2063 } 2064 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, 2065 diag::err_for_range_iter_deduction_failure)) { 2066 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); 2067 return Sema::FRS_DiagnosticIssued; 2068 } 2069 2070 *BEF = BEF_end; 2071 RangeStatus = 2072 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo, 2073 EndMemberLookup, CandidateSet, 2074 EndRange, EndExpr); 2075 if (RangeStatus != Sema::FRS_Success) { 2076 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2077 SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range) 2078 << ColonLoc << BEF_end << EndRange->getType(); 2079 return RangeStatus; 2080 } 2081 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, 2082 diag::err_for_range_iter_deduction_failure)) { 2083 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); 2084 return Sema::FRS_DiagnosticIssued; 2085 } 2086 return Sema::FRS_Success; 2087 } 2088 2089 /// Speculatively attempt to dereference an invalid range expression. 2090 /// If the attempt fails, this function will return a valid, null StmtResult 2091 /// and emit no diagnostics. 2092 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, 2093 SourceLocation ForLoc, 2094 SourceLocation CoawaitLoc, 2095 Stmt *LoopVarDecl, 2096 SourceLocation ColonLoc, 2097 Expr *Range, 2098 SourceLocation RangeLoc, 2099 SourceLocation RParenLoc) { 2100 // Determine whether we can rebuild the for-range statement with a 2101 // dereferenced range expression. 2102 ExprResult AdjustedRange; 2103 { 2104 Sema::SFINAETrap Trap(SemaRef); 2105 2106 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); 2107 if (AdjustedRange.isInvalid()) 2108 return StmtResult(); 2109 2110 StmtResult SR = SemaRef.ActOnCXXForRangeStmt( 2111 S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(), 2112 RParenLoc, Sema::BFRK_Check); 2113 if (SR.isInvalid()) 2114 return StmtResult(); 2115 } 2116 2117 // The attempt to dereference worked well enough that it could produce a valid 2118 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in 2119 // case there are any other (non-fatal) problems with it. 2120 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) 2121 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); 2122 return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl, 2123 ColonLoc, AdjustedRange.get(), RParenLoc, 2124 Sema::BFRK_Rebuild); 2125 } 2126 2127 namespace { 2128 /// RAII object to automatically invalidate a declaration if an error occurs. 2129 struct InvalidateOnErrorScope { 2130 InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled) 2131 : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {} 2132 ~InvalidateOnErrorScope() { 2133 if (Enabled && Trap.hasErrorOccurred()) 2134 D->setInvalidDecl(); 2135 } 2136 2137 DiagnosticErrorTrap Trap; 2138 Decl *D; 2139 bool Enabled; 2140 }; 2141 } 2142 2143 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement. 2144 StmtResult 2145 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, 2146 SourceLocation ColonLoc, 2147 Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond, 2148 Expr *Inc, Stmt *LoopVarDecl, 2149 SourceLocation RParenLoc, BuildForRangeKind Kind) { 2150 // FIXME: This should not be used during template instantiation. We should 2151 // pick up the set of unqualified lookup results for the != and + operators 2152 // in the initial parse. 2153 // 2154 // Testcase (accepts-invalid): 2155 // template<typename T> void f() { for (auto x : T()) {} } 2156 // namespace N { struct X { X begin(); X end(); int operator*(); }; } 2157 // bool operator!=(N::X, N::X); void operator++(N::X); 2158 // void g() { f<N::X>(); } 2159 Scope *S = getCurScope(); 2160 2161 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl); 2162 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl()); 2163 QualType RangeVarType = RangeVar->getType(); 2164 2165 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl); 2166 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl()); 2167 2168 // If we hit any errors, mark the loop variable as invalid if its type 2169 // contains 'auto'. 2170 InvalidateOnErrorScope Invalidate(*this, LoopVar, 2171 LoopVar->getType()->isUndeducedType()); 2172 2173 StmtResult BeginEndDecl = BeginEnd; 2174 ExprResult NotEqExpr = Cond, IncrExpr = Inc; 2175 2176 if (RangeVarType->isDependentType()) { 2177 // The range is implicitly used as a placeholder when it is dependent. 2178 RangeVar->markUsed(Context); 2179 2180 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill 2181 // them in properly when we instantiate the loop. 2182 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) 2183 LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy)); 2184 } else if (!BeginEndDecl.get()) { 2185 SourceLocation RangeLoc = RangeVar->getLocation(); 2186 2187 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); 2188 2189 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2190 VK_LValue, ColonLoc); 2191 if (BeginRangeRef.isInvalid()) 2192 return StmtError(); 2193 2194 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2195 VK_LValue, ColonLoc); 2196 if (EndRangeRef.isInvalid()) 2197 return StmtError(); 2198 2199 QualType AutoType = Context.getAutoDeductType(); 2200 Expr *Range = RangeVar->getInit(); 2201 if (!Range) 2202 return StmtError(); 2203 QualType RangeType = Range->getType(); 2204 2205 if (RequireCompleteType(RangeLoc, RangeType, 2206 diag::err_for_range_incomplete_type)) 2207 return StmtError(); 2208 2209 // Build auto __begin = begin-expr, __end = end-expr. 2210 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2211 "__begin"); 2212 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2213 "__end"); 2214 2215 // Build begin-expr and end-expr and attach to __begin and __end variables. 2216 ExprResult BeginExpr, EndExpr; 2217 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { 2218 // - if _RangeT is an array type, begin-expr and end-expr are __range and 2219 // __range + __bound, respectively, where __bound is the array bound. If 2220 // _RangeT is an array of unknown size or an array of incomplete type, 2221 // the program is ill-formed; 2222 2223 // begin-expr is __range. 2224 BeginExpr = BeginRangeRef; 2225 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, 2226 diag::err_for_range_iter_deduction_failure)) { 2227 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2228 return StmtError(); 2229 } 2230 2231 // Find the array bound. 2232 ExprResult BoundExpr; 2233 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT)) 2234 BoundExpr = IntegerLiteral::Create( 2235 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc); 2236 else if (const VariableArrayType *VAT = 2237 dyn_cast<VariableArrayType>(UnqAT)) 2238 BoundExpr = VAT->getSizeExpr(); 2239 else { 2240 // Can't be a DependentSizedArrayType or an IncompleteArrayType since 2241 // UnqAT is not incomplete and Range is not type-dependent. 2242 llvm_unreachable("Unexpected array type in for-range"); 2243 } 2244 2245 // end-expr is __range + __bound. 2246 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), 2247 BoundExpr.get()); 2248 if (EndExpr.isInvalid()) 2249 return StmtError(); 2250 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, 2251 diag::err_for_range_iter_deduction_failure)) { 2252 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2253 return StmtError(); 2254 } 2255 } else { 2256 OverloadCandidateSet CandidateSet(RangeLoc, 2257 OverloadCandidateSet::CSK_Normal); 2258 BeginEndFunction BEFFailure; 2259 ForRangeStatus RangeStatus = 2260 BuildNonArrayForRange(*this, BeginRangeRef.get(), 2261 EndRangeRef.get(), RangeType, 2262 BeginVar, EndVar, ColonLoc, &CandidateSet, 2263 &BeginExpr, &EndExpr, &BEFFailure); 2264 2265 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && 2266 BEFFailure == BEF_begin) { 2267 // If the range is being built from an array parameter, emit a 2268 // a diagnostic that it is being treated as a pointer. 2269 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) { 2270 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 2271 QualType ArrayTy = PVD->getOriginalType(); 2272 QualType PointerTy = PVD->getType(); 2273 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { 2274 Diag(Range->getLocStart(), diag::err_range_on_array_parameter) 2275 << RangeLoc << PVD << ArrayTy << PointerTy; 2276 Diag(PVD->getLocation(), diag::note_declared_at); 2277 return StmtError(); 2278 } 2279 } 2280 } 2281 2282 // If building the range failed, try dereferencing the range expression 2283 // unless a diagnostic was issued or the end function is problematic. 2284 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, 2285 CoawaitLoc, 2286 LoopVarDecl, ColonLoc, 2287 Range, RangeLoc, 2288 RParenLoc); 2289 if (SR.isInvalid() || SR.isUsable()) 2290 return SR; 2291 } 2292 2293 // Otherwise, emit diagnostics if we haven't already. 2294 if (RangeStatus == FRS_NoViableFunction) { 2295 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); 2296 Diag(Range->getLocStart(), diag::err_for_range_invalid) 2297 << RangeLoc << Range->getType() << BEFFailure; 2298 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range); 2299 } 2300 // Return an error if no fix was discovered. 2301 if (RangeStatus != FRS_Success) 2302 return StmtError(); 2303 } 2304 2305 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && 2306 "invalid range expression in for loop"); 2307 2308 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. 2309 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); 2310 if (!Context.hasSameType(BeginType, EndType)) { 2311 Diag(RangeLoc, diag::err_for_range_begin_end_types_differ) 2312 << BeginType << EndType; 2313 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2314 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2315 } 2316 2317 Decl *BeginEndDecls[] = { BeginVar, EndVar }; 2318 // Claim the type doesn't contain auto: we've already done the checking. 2319 DeclGroupPtrTy BeginEndGroup = 2320 BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2), 2321 /*TypeMayContainAuto=*/ false); 2322 BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc); 2323 2324 const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); 2325 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2326 VK_LValue, ColonLoc); 2327 if (BeginRef.isInvalid()) 2328 return StmtError(); 2329 2330 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), 2331 VK_LValue, ColonLoc); 2332 if (EndRef.isInvalid()) 2333 return StmtError(); 2334 2335 // Build and check __begin != __end expression. 2336 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, 2337 BeginRef.get(), EndRef.get()); 2338 NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get()); 2339 NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get()); 2340 if (NotEqExpr.isInvalid()) { 2341 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2342 << RangeLoc << 0 << BeginRangeRef.get()->getType(); 2343 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2344 if (!Context.hasSameType(BeginType, EndType)) 2345 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2346 return StmtError(); 2347 } 2348 2349 // Build and check ++__begin expression. 2350 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2351 VK_LValue, ColonLoc); 2352 if (BeginRef.isInvalid()) 2353 return StmtError(); 2354 2355 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); 2356 if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) 2357 IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get()); 2358 if (!IncrExpr.isInvalid()) 2359 IncrExpr = ActOnFinishFullExpr(IncrExpr.get()); 2360 if (IncrExpr.isInvalid()) { 2361 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2362 << RangeLoc << 2 << BeginRangeRef.get()->getType() ; 2363 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2364 return StmtError(); 2365 } 2366 2367 // Build and check *__begin expression. 2368 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2369 VK_LValue, ColonLoc); 2370 if (BeginRef.isInvalid()) 2371 return StmtError(); 2372 2373 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); 2374 if (DerefExpr.isInvalid()) { 2375 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2376 << RangeLoc << 1 << BeginRangeRef.get()->getType(); 2377 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2378 return StmtError(); 2379 } 2380 2381 // Attach *__begin as initializer for VD. Don't touch it if we're just 2382 // trying to determine whether this would be a valid range. 2383 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 2384 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false, 2385 /*TypeMayContainAuto=*/true); 2386 if (LoopVar->isInvalidDecl()) 2387 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2388 } 2389 } 2390 2391 // Don't bother to actually allocate the result if we're just trying to 2392 // determine whether it would be valid. 2393 if (Kind == BFRK_Check) 2394 return StmtResult(); 2395 2396 return new (Context) CXXForRangeStmt( 2397 RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(), 2398 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, 2399 ColonLoc, RParenLoc); 2400 } 2401 2402 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach 2403 /// statement. 2404 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) { 2405 if (!S || !B) 2406 return StmtError(); 2407 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S); 2408 2409 ForStmt->setBody(B); 2410 return S; 2411 } 2412 2413 // Warn when the loop variable is a const reference that creates a copy. 2414 // Suggest using the non-reference type for copies. If a copy can be prevented 2415 // suggest the const reference type that would do so. 2416 // For instance, given "for (const &Foo : Range)", suggest 2417 // "for (const Foo : Range)" to denote a copy is made for the loop. If 2418 // possible, also suggest "for (const &Bar : Range)" if this type prevents 2419 // the copy altogether. 2420 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, 2421 const VarDecl *VD, 2422 QualType RangeInitType) { 2423 const Expr *InitExpr = VD->getInit(); 2424 if (!InitExpr) 2425 return; 2426 2427 QualType VariableType = VD->getType(); 2428 2429 const MaterializeTemporaryExpr *MTE = 2430 dyn_cast<MaterializeTemporaryExpr>(InitExpr); 2431 2432 // No copy made. 2433 if (!MTE) 2434 return; 2435 2436 const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts(); 2437 2438 // Searching for either UnaryOperator for dereference of a pointer or 2439 // CXXOperatorCallExpr for handling iterators. 2440 while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) { 2441 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) { 2442 E = CCE->getArg(0); 2443 } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) { 2444 const MemberExpr *ME = cast<MemberExpr>(Call->getCallee()); 2445 E = ME->getBase(); 2446 } else { 2447 const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 2448 E = MTE->GetTemporaryExpr(); 2449 } 2450 E = E->IgnoreImpCasts(); 2451 } 2452 2453 bool ReturnsReference = false; 2454 if (isa<UnaryOperator>(E)) { 2455 ReturnsReference = true; 2456 } else { 2457 const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E); 2458 const FunctionDecl *FD = Call->getDirectCallee(); 2459 QualType ReturnType = FD->getReturnType(); 2460 ReturnsReference = ReturnType->isReferenceType(); 2461 } 2462 2463 if (ReturnsReference) { 2464 // Loop variable creates a temporary. Suggest either to go with 2465 // non-reference loop variable to indiciate a copy is made, or 2466 // the correct time to bind a const reference. 2467 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy) 2468 << VD << VariableType << E->getType(); 2469 QualType NonReferenceType = VariableType.getNonReferenceType(); 2470 NonReferenceType.removeLocalConst(); 2471 QualType NewReferenceType = 2472 SemaRef.Context.getLValueReferenceType(E->getType().withConst()); 2473 SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference) 2474 << NonReferenceType << NewReferenceType << VD->getSourceRange(); 2475 } else { 2476 // The range always returns a copy, so a temporary is always created. 2477 // Suggest removing the reference from the loop variable. 2478 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy) 2479 << VD << RangeInitType; 2480 QualType NonReferenceType = VariableType.getNonReferenceType(); 2481 NonReferenceType.removeLocalConst(); 2482 SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type) 2483 << NonReferenceType << VD->getSourceRange(); 2484 } 2485 } 2486 2487 // Warns when the loop variable can be changed to a reference type to 2488 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest 2489 // "for (const Foo &x : Range)" if this form does not make a copy. 2490 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, 2491 const VarDecl *VD) { 2492 const Expr *InitExpr = VD->getInit(); 2493 if (!InitExpr) 2494 return; 2495 2496 QualType VariableType = VD->getType(); 2497 2498 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) { 2499 if (!CE->getConstructor()->isCopyConstructor()) 2500 return; 2501 } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) { 2502 if (CE->getCastKind() != CK_LValueToRValue) 2503 return; 2504 } else { 2505 return; 2506 } 2507 2508 // TODO: Determine a maximum size that a POD type can be before a diagnostic 2509 // should be emitted. Also, only ignore POD types with trivial copy 2510 // constructors. 2511 if (VariableType.isPODType(SemaRef.Context)) 2512 return; 2513 2514 // Suggest changing from a const variable to a const reference variable 2515 // if doing so will prevent a copy. 2516 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy) 2517 << VD << VariableType << InitExpr->getType(); 2518 SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type) 2519 << SemaRef.Context.getLValueReferenceType(VariableType) 2520 << VD->getSourceRange(); 2521 } 2522 2523 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. 2524 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest 2525 /// using "const foo x" to show that a copy is made 2526 /// 2) for (const bar &x : foos) where bar is a temporary intialized by bar. 2527 /// Suggest either "const bar x" to keep the copying or "const foo& x" to 2528 /// prevent the copy. 2529 /// 3) for (const foo x : foos) where x is constructed from a reference foo. 2530 /// Suggest "const foo &x" to prevent the copy. 2531 static void DiagnoseForRangeVariableCopies(Sema &SemaRef, 2532 const CXXForRangeStmt *ForStmt) { 2533 if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy, 2534 ForStmt->getLocStart()) && 2535 SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy, 2536 ForStmt->getLocStart()) && 2537 SemaRef.Diags.isIgnored(diag::warn_for_range_copy, 2538 ForStmt->getLocStart())) { 2539 return; 2540 } 2541 2542 const VarDecl *VD = ForStmt->getLoopVariable(); 2543 if (!VD) 2544 return; 2545 2546 QualType VariableType = VD->getType(); 2547 2548 if (VariableType->isIncompleteType()) 2549 return; 2550 2551 const Expr *InitExpr = VD->getInit(); 2552 if (!InitExpr) 2553 return; 2554 2555 if (VariableType->isReferenceType()) { 2556 DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, 2557 ForStmt->getRangeInit()->getType()); 2558 } else if (VariableType.isConstQualified()) { 2559 DiagnoseForRangeConstVariableCopies(SemaRef, VD); 2560 } 2561 } 2562 2563 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement. 2564 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the 2565 /// body cannot be performed until after the type of the range variable is 2566 /// determined. 2567 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { 2568 if (!S || !B) 2569 return StmtError(); 2570 2571 if (isa<ObjCForCollectionStmt>(S)) 2572 return FinishObjCForCollectionStmt(S, B); 2573 2574 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S); 2575 ForStmt->setBody(B); 2576 2577 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, 2578 diag::warn_empty_range_based_for_body); 2579 2580 DiagnoseForRangeVariableCopies(*this, ForStmt); 2581 2582 return S; 2583 } 2584 2585 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, 2586 SourceLocation LabelLoc, 2587 LabelDecl *TheDecl) { 2588 getCurFunction()->setHasBranchIntoScope(); 2589 TheDecl->markUsed(Context); 2590 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); 2591 } 2592 2593 StmtResult 2594 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, 2595 Expr *E) { 2596 // Convert operand to void* 2597 if (!E->isTypeDependent()) { 2598 QualType ETy = E->getType(); 2599 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); 2600 ExprResult ExprRes = E; 2601 AssignConvertType ConvTy = 2602 CheckSingleAssignmentConstraints(DestTy, ExprRes); 2603 if (ExprRes.isInvalid()) 2604 return StmtError(); 2605 E = ExprRes.get(); 2606 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) 2607 return StmtError(); 2608 } 2609 2610 ExprResult ExprRes = ActOnFinishFullExpr(E); 2611 if (ExprRes.isInvalid()) 2612 return StmtError(); 2613 E = ExprRes.get(); 2614 2615 getCurFunction()->setHasIndirectGoto(); 2616 2617 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); 2618 } 2619 2620 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, 2621 const Scope &DestScope) { 2622 if (!S.CurrentSEHFinally.empty() && 2623 DestScope.Contains(*S.CurrentSEHFinally.back())) { 2624 S.Diag(Loc, diag::warn_jump_out_of_seh_finally); 2625 } 2626 } 2627 2628 StmtResult 2629 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { 2630 Scope *S = CurScope->getContinueParent(); 2631 if (!S) { 2632 // C99 6.8.6.2p1: A break shall appear only in or as a loop body. 2633 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); 2634 } 2635 CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S); 2636 2637 return new (Context) ContinueStmt(ContinueLoc); 2638 } 2639 2640 StmtResult 2641 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { 2642 Scope *S = CurScope->getBreakParent(); 2643 if (!S) { 2644 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. 2645 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); 2646 } 2647 if (S->isOpenMPLoopScope()) 2648 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt) 2649 << "break"); 2650 CheckJumpOutOfSEHFinally(*this, BreakLoc, *S); 2651 2652 return new (Context) BreakStmt(BreakLoc); 2653 } 2654 2655 /// \brief Determine whether the given expression is a candidate for 2656 /// copy elision in either a return statement or a throw expression. 2657 /// 2658 /// \param ReturnType If we're determining the copy elision candidate for 2659 /// a return statement, this is the return type of the function. If we're 2660 /// determining the copy elision candidate for a throw expression, this will 2661 /// be a NULL type. 2662 /// 2663 /// \param E The expression being returned from the function or block, or 2664 /// being thrown. 2665 /// 2666 /// \param AllowFunctionParameter Whether we allow function parameters to 2667 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but 2668 /// we re-use this logic to determine whether we should try to move as part of 2669 /// a return or throw (which does allow function parameters). 2670 /// 2671 /// \returns The NRVO candidate variable, if the return statement may use the 2672 /// NRVO, or NULL if there is no such candidate. 2673 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, 2674 Expr *E, 2675 bool AllowFunctionParameter) { 2676 if (!getLangOpts().CPlusPlus) 2677 return nullptr; 2678 2679 // - in a return statement in a function [where] ... 2680 // ... the expression is the name of a non-volatile automatic object ... 2681 DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()); 2682 if (!DR || DR->refersToEnclosingVariableOrCapture()) 2683 return nullptr; 2684 VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); 2685 if (!VD) 2686 return nullptr; 2687 2688 if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter)) 2689 return VD; 2690 return nullptr; 2691 } 2692 2693 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, 2694 bool AllowFunctionParameter) { 2695 QualType VDType = VD->getType(); 2696 // - in a return statement in a function with ... 2697 // ... a class return type ... 2698 if (!ReturnType.isNull() && !ReturnType->isDependentType()) { 2699 if (!ReturnType->isRecordType()) 2700 return false; 2701 // ... the same cv-unqualified type as the function return type ... 2702 if (!VDType->isDependentType() && 2703 !Context.hasSameUnqualifiedType(ReturnType, VDType)) 2704 return false; 2705 } 2706 2707 // ...object (other than a function or catch-clause parameter)... 2708 if (VD->getKind() != Decl::Var && 2709 !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar)) 2710 return false; 2711 if (VD->isExceptionVariable()) return false; 2712 2713 // ...automatic... 2714 if (!VD->hasLocalStorage()) return false; 2715 2716 // ...non-volatile... 2717 if (VD->getType().isVolatileQualified()) return false; 2718 2719 // __block variables can't be allocated in a way that permits NRVO. 2720 if (VD->hasAttr<BlocksAttr>()) return false; 2721 2722 // Variables with higher required alignment than their type's ABI 2723 // alignment cannot use NRVO. 2724 if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() && 2725 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType())) 2726 return false; 2727 2728 return true; 2729 } 2730 2731 /// \brief Perform the initialization of a potentially-movable value, which 2732 /// is the result of return value. 2733 /// 2734 /// This routine implements C++0x [class.copy]p33, which attempts to treat 2735 /// returned lvalues as rvalues in certain cases (to prefer move construction), 2736 /// then falls back to treating them as lvalues if that failed. 2737 ExprResult 2738 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity, 2739 const VarDecl *NRVOCandidate, 2740 QualType ResultType, 2741 Expr *Value, 2742 bool AllowNRVO) { 2743 // C++0x [class.copy]p33: 2744 // When the criteria for elision of a copy operation are met or would 2745 // be met save for the fact that the source object is a function 2746 // parameter, and the object to be copied is designated by an lvalue, 2747 // overload resolution to select the constructor for the copy is first 2748 // performed as if the object were designated by an rvalue. 2749 ExprResult Res = ExprError(); 2750 if (AllowNRVO && 2751 (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) { 2752 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, 2753 Value->getType(), CK_NoOp, Value, VK_XValue); 2754 2755 Expr *InitExpr = &AsRvalue; 2756 InitializationKind Kind 2757 = InitializationKind::CreateCopy(Value->getLocStart(), 2758 Value->getLocStart()); 2759 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 2760 2761 // [...] If overload resolution fails, or if the type of the first 2762 // parameter of the selected constructor is not an rvalue reference 2763 // to the object's type (possibly cv-qualified), overload resolution 2764 // is performed again, considering the object as an lvalue. 2765 if (Seq) { 2766 for (InitializationSequence::step_iterator Step = Seq.step_begin(), 2767 StepEnd = Seq.step_end(); 2768 Step != StepEnd; ++Step) { 2769 if (Step->Kind != InitializationSequence::SK_ConstructorInitialization) 2770 continue; 2771 2772 CXXConstructorDecl *Constructor 2773 = cast<CXXConstructorDecl>(Step->Function.Function); 2774 2775 const RValueReferenceType *RRefType 2776 = Constructor->getParamDecl(0)->getType() 2777 ->getAs<RValueReferenceType>(); 2778 2779 // If we don't meet the criteria, break out now. 2780 if (!RRefType || 2781 !Context.hasSameUnqualifiedType(RRefType->getPointeeType(), 2782 Context.getTypeDeclType(Constructor->getParent()))) 2783 break; 2784 2785 // Promote "AsRvalue" to the heap, since we now need this 2786 // expression node to persist. 2787 Value = ImplicitCastExpr::Create(Context, Value->getType(), 2788 CK_NoOp, Value, nullptr, VK_XValue); 2789 2790 // Complete type-checking the initialization of the return type 2791 // using the constructor we found. 2792 Res = Seq.Perform(*this, Entity, Kind, Value); 2793 } 2794 } 2795 } 2796 2797 // Either we didn't meet the criteria for treating an lvalue as an rvalue, 2798 // above, or overload resolution failed. Either way, we need to try 2799 // (again) now with the return value expression as written. 2800 if (Res.isInvalid()) 2801 Res = PerformCopyInitialization(Entity, SourceLocation(), Value); 2802 2803 return Res; 2804 } 2805 2806 /// \brief Determine whether the declared return type of the specified function 2807 /// contains 'auto'. 2808 static bool hasDeducedReturnType(FunctionDecl *FD) { 2809 const FunctionProtoType *FPT = 2810 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 2811 return FPT->getReturnType()->isUndeducedType(); 2812 } 2813 2814 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements 2815 /// for capturing scopes. 2816 /// 2817 StmtResult 2818 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { 2819 // If this is the first return we've seen, infer the return type. 2820 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. 2821 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction()); 2822 QualType FnRetType = CurCap->ReturnType; 2823 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap); 2824 2825 if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) { 2826 // In C++1y, the return type may involve 'auto'. 2827 // FIXME: Blocks might have a return type of 'auto' explicitly specified. 2828 FunctionDecl *FD = CurLambda->CallOperator; 2829 if (CurCap->ReturnType.isNull()) 2830 CurCap->ReturnType = FD->getReturnType(); 2831 2832 AutoType *AT = CurCap->ReturnType->getContainedAutoType(); 2833 assert(AT && "lost auto type from lambda return type"); 2834 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 2835 FD->setInvalidDecl(); 2836 return StmtError(); 2837 } 2838 CurCap->ReturnType = FnRetType = FD->getReturnType(); 2839 } else if (CurCap->HasImplicitReturnType) { 2840 // For blocks/lambdas with implicit return types, we check each return 2841 // statement individually, and deduce the common return type when the block 2842 // or lambda is completed. 2843 // FIXME: Fold this into the 'auto' codepath above. 2844 if (RetValExp && !isa<InitListExpr>(RetValExp)) { 2845 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); 2846 if (Result.isInvalid()) 2847 return StmtError(); 2848 RetValExp = Result.get(); 2849 2850 // DR1048: even prior to C++14, we should use the 'auto' deduction rules 2851 // when deducing a return type for a lambda-expression (or by extension 2852 // for a block). These rules differ from the stated C++11 rules only in 2853 // that they remove top-level cv-qualifiers. 2854 if (!CurContext->isDependentContext()) 2855 FnRetType = RetValExp->getType().getUnqualifiedType(); 2856 else 2857 FnRetType = CurCap->ReturnType = Context.DependentTy; 2858 } else { 2859 if (RetValExp) { 2860 // C++11 [expr.lambda.prim]p4 bans inferring the result from an 2861 // initializer list, because it is not an expression (even 2862 // though we represent it as one). We still deduce 'void'. 2863 Diag(ReturnLoc, diag::err_lambda_return_init_list) 2864 << RetValExp->getSourceRange(); 2865 } 2866 2867 FnRetType = Context.VoidTy; 2868 } 2869 2870 // Although we'll properly infer the type of the block once it's completed, 2871 // make sure we provide a return type now for better error recovery. 2872 if (CurCap->ReturnType.isNull()) 2873 CurCap->ReturnType = FnRetType; 2874 } 2875 assert(!FnRetType.isNull()); 2876 2877 if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) { 2878 if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) { 2879 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); 2880 return StmtError(); 2881 } 2882 } else if (CapturedRegionScopeInfo *CurRegion = 2883 dyn_cast<CapturedRegionScopeInfo>(CurCap)) { 2884 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); 2885 return StmtError(); 2886 } else { 2887 assert(CurLambda && "unknown kind of captured scope"); 2888 if (CurLambda->CallOperator->getType()->getAs<FunctionType>() 2889 ->getNoReturnAttr()) { 2890 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); 2891 return StmtError(); 2892 } 2893 } 2894 2895 // Otherwise, verify that this result type matches the previous one. We are 2896 // pickier with blocks than for normal functions because we don't have GCC 2897 // compatibility to worry about here. 2898 const VarDecl *NRVOCandidate = nullptr; 2899 if (FnRetType->isDependentType()) { 2900 // Delay processing for now. TODO: there are lots of dependent 2901 // types we can conclusively prove aren't void. 2902 } else if (FnRetType->isVoidType()) { 2903 if (RetValExp && !isa<InitListExpr>(RetValExp) && 2904 !(getLangOpts().CPlusPlus && 2905 (RetValExp->isTypeDependent() || 2906 RetValExp->getType()->isVoidType()))) { 2907 if (!getLangOpts().CPlusPlus && 2908 RetValExp->getType()->isVoidType()) 2909 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; 2910 else { 2911 Diag(ReturnLoc, diag::err_return_block_has_expr); 2912 RetValExp = nullptr; 2913 } 2914 } 2915 } else if (!RetValExp) { 2916 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); 2917 } else if (!RetValExp->isTypeDependent()) { 2918 // we have a non-void block with an expression, continue checking 2919 2920 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 2921 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 2922 // function return. 2923 2924 // In C++ the return statement is handled via a copy initialization. 2925 // the C version of which boils down to CheckSingleAssignmentConstraints. 2926 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false); 2927 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, 2928 FnRetType, 2929 NRVOCandidate != nullptr); 2930 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, 2931 FnRetType, RetValExp); 2932 if (Res.isInvalid()) { 2933 // FIXME: Cleanup temporaries here, anyway? 2934 return StmtError(); 2935 } 2936 RetValExp = Res.get(); 2937 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc); 2938 } else { 2939 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false); 2940 } 2941 2942 if (RetValExp) { 2943 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); 2944 if (ER.isInvalid()) 2945 return StmtError(); 2946 RetValExp = ER.get(); 2947 } 2948 ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 2949 NRVOCandidate); 2950 2951 // If we need to check for the named return value optimization, 2952 // or if we need to infer the return type, 2953 // save the return statement in our scope for later processing. 2954 if (CurCap->HasImplicitReturnType || NRVOCandidate) 2955 FunctionScopes.back()->Returns.push_back(Result); 2956 2957 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 2958 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 2959 2960 return Result; 2961 } 2962 2963 namespace { 2964 /// \brief Marks all typedefs in all local classes in a type referenced. 2965 /// 2966 /// In a function like 2967 /// auto f() { 2968 /// struct S { typedef int a; }; 2969 /// return S(); 2970 /// } 2971 /// 2972 /// the local type escapes and could be referenced in some TUs but not in 2973 /// others. Pretend that all local typedefs are always referenced, to not warn 2974 /// on this. This isn't necessary if f has internal linkage, or the typedef 2975 /// is private. 2976 class LocalTypedefNameReferencer 2977 : public RecursiveASTVisitor<LocalTypedefNameReferencer> { 2978 public: 2979 LocalTypedefNameReferencer(Sema &S) : S(S) {} 2980 bool VisitRecordType(const RecordType *RT); 2981 private: 2982 Sema &S; 2983 }; 2984 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) { 2985 auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl()); 2986 if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || 2987 R->isDependentType()) 2988 return true; 2989 for (auto *TmpD : R->decls()) 2990 if (auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 2991 if (T->getAccess() != AS_private || R->hasFriends()) 2992 S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false); 2993 return true; 2994 } 2995 } 2996 2997 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { 2998 TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens(); 2999 while (auto ATL = TL.getAs<AttributedTypeLoc>()) 3000 TL = ATL.getModifiedLoc().IgnoreParens(); 3001 return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc(); 3002 } 3003 3004 /// Deduce the return type for a function from a returned expression, per 3005 /// C++1y [dcl.spec.auto]p6. 3006 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, 3007 SourceLocation ReturnLoc, 3008 Expr *&RetExpr, 3009 AutoType *AT) { 3010 TypeLoc OrigResultType = getReturnTypeLoc(FD); 3011 QualType Deduced; 3012 3013 if (RetExpr && isa<InitListExpr>(RetExpr)) { 3014 // If the deduction is for a return statement and the initializer is 3015 // a braced-init-list, the program is ill-formed. 3016 Diag(RetExpr->getExprLoc(), 3017 getCurLambda() ? diag::err_lambda_return_init_list 3018 : diag::err_auto_fn_return_init_list) 3019 << RetExpr->getSourceRange(); 3020 return true; 3021 } 3022 3023 if (FD->isDependentContext()) { 3024 // C++1y [dcl.spec.auto]p12: 3025 // Return type deduction [...] occurs when the definition is 3026 // instantiated even if the function body contains a return 3027 // statement with a non-type-dependent operand. 3028 assert(AT->isDeduced() && "should have deduced to dependent type"); 3029 return false; 3030 } 3031 3032 if (RetExpr) { 3033 // Otherwise, [...] deduce a value for U using the rules of template 3034 // argument deduction. 3035 DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced); 3036 3037 if (DAR == DAR_Failed && !FD->isInvalidDecl()) 3038 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) 3039 << OrigResultType.getType() << RetExpr->getType(); 3040 3041 if (DAR != DAR_Succeeded) 3042 return true; 3043 3044 // If a local type is part of the returned type, mark its fields as 3045 // referenced. 3046 LocalTypedefNameReferencer Referencer(*this); 3047 Referencer.TraverseType(RetExpr->getType()); 3048 } else { 3049 // In the case of a return with no operand, the initializer is considered 3050 // to be void(). 3051 // 3052 // Deduction here can only succeed if the return type is exactly 'cv auto' 3053 // or 'decltype(auto)', so just check for that case directly. 3054 if (!OrigResultType.getType()->getAs<AutoType>()) { 3055 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) 3056 << OrigResultType.getType(); 3057 return true; 3058 } 3059 // We always deduce U = void in this case. 3060 Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy); 3061 if (Deduced.isNull()) 3062 return true; 3063 } 3064 3065 // If a function with a declared return type that contains a placeholder type 3066 // has multiple return statements, the return type is deduced for each return 3067 // statement. [...] if the type deduced is not the same in each deduction, 3068 // the program is ill-formed. 3069 if (AT->isDeduced() && !FD->isInvalidDecl()) { 3070 AutoType *NewAT = Deduced->getContainedAutoType(); 3071 CanQualType OldDeducedType = Context.getCanonicalFunctionResultType( 3072 AT->getDeducedType()); 3073 CanQualType NewDeducedType = Context.getCanonicalFunctionResultType( 3074 NewAT->getDeducedType()); 3075 if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) { 3076 const LambdaScopeInfo *LambdaSI = getCurLambda(); 3077 if (LambdaSI && LambdaSI->HasImplicitReturnType) { 3078 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) 3079 << NewAT->getDeducedType() << AT->getDeducedType() 3080 << true /*IsLambda*/; 3081 } else { 3082 Diag(ReturnLoc, diag::err_auto_fn_different_deductions) 3083 << (AT->isDecltypeAuto() ? 1 : 0) 3084 << NewAT->getDeducedType() << AT->getDeducedType(); 3085 } 3086 return true; 3087 } 3088 } else if (!FD->isInvalidDecl()) { 3089 // Update all declarations of the function to have the deduced return type. 3090 Context.adjustDeducedFunctionResultType(FD, Deduced); 3091 } 3092 3093 return false; 3094 } 3095 3096 StmtResult 3097 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, 3098 Scope *CurScope) { 3099 StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp); 3100 if (R.isInvalid()) { 3101 return R; 3102 } 3103 3104 if (VarDecl *VD = 3105 const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) { 3106 CurScope->addNRVOCandidate(VD); 3107 } else { 3108 CurScope->setNoNRVO(); 3109 } 3110 3111 CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent()); 3112 3113 return R; 3114 } 3115 3116 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { 3117 // Check for unexpanded parameter packs. 3118 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) 3119 return StmtError(); 3120 3121 if (isa<CapturingScopeInfo>(getCurFunction())) 3122 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp); 3123 3124 QualType FnRetType; 3125 QualType RelatedRetType; 3126 const AttrVec *Attrs = nullptr; 3127 bool isObjCMethod = false; 3128 3129 if (const FunctionDecl *FD = getCurFunctionDecl()) { 3130 FnRetType = FD->getReturnType(); 3131 if (FD->hasAttrs()) 3132 Attrs = &FD->getAttrs(); 3133 if (FD->isNoReturn()) 3134 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) 3135 << FD->getDeclName(); 3136 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { 3137 FnRetType = MD->getReturnType(); 3138 isObjCMethod = true; 3139 if (MD->hasAttrs()) 3140 Attrs = &MD->getAttrs(); 3141 if (MD->hasRelatedResultType() && MD->getClassInterface()) { 3142 // In the implementation of a method with a related return type, the 3143 // type used to type-check the validity of return statements within the 3144 // method body is a pointer to the type of the class being implemented. 3145 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); 3146 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); 3147 } 3148 } else // If we don't have a function/method context, bail. 3149 return StmtError(); 3150 3151 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing 3152 // deduction. 3153 if (getLangOpts().CPlusPlus14) { 3154 if (AutoType *AT = FnRetType->getContainedAutoType()) { 3155 FunctionDecl *FD = cast<FunctionDecl>(CurContext); 3156 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 3157 FD->setInvalidDecl(); 3158 return StmtError(); 3159 } else { 3160 FnRetType = FD->getReturnType(); 3161 } 3162 } 3163 } 3164 3165 bool HasDependentReturnType = FnRetType->isDependentType(); 3166 3167 ReturnStmt *Result = nullptr; 3168 if (FnRetType->isVoidType()) { 3169 if (RetValExp) { 3170 if (isa<InitListExpr>(RetValExp)) { 3171 // We simply never allow init lists as the return value of void 3172 // functions. This is compatible because this was never allowed before, 3173 // so there's no legacy code to deal with. 3174 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 3175 int FunctionKind = 0; 3176 if (isa<ObjCMethodDecl>(CurDecl)) 3177 FunctionKind = 1; 3178 else if (isa<CXXConstructorDecl>(CurDecl)) 3179 FunctionKind = 2; 3180 else if (isa<CXXDestructorDecl>(CurDecl)) 3181 FunctionKind = 3; 3182 3183 Diag(ReturnLoc, diag::err_return_init_list) 3184 << CurDecl->getDeclName() << FunctionKind 3185 << RetValExp->getSourceRange(); 3186 3187 // Drop the expression. 3188 RetValExp = nullptr; 3189 } else if (!RetValExp->isTypeDependent()) { 3190 // C99 6.8.6.4p1 (ext_ since GCC warns) 3191 unsigned D = diag::ext_return_has_expr; 3192 if (RetValExp->getType()->isVoidType()) { 3193 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 3194 if (isa<CXXConstructorDecl>(CurDecl) || 3195 isa<CXXDestructorDecl>(CurDecl)) 3196 D = diag::err_ctor_dtor_returns_void; 3197 else 3198 D = diag::ext_return_has_void_expr; 3199 } 3200 else { 3201 ExprResult Result = RetValExp; 3202 Result = IgnoredValueConversions(Result.get()); 3203 if (Result.isInvalid()) 3204 return StmtError(); 3205 RetValExp = Result.get(); 3206 RetValExp = ImpCastExprToType(RetValExp, 3207 Context.VoidTy, CK_ToVoid).get(); 3208 } 3209 // return of void in constructor/destructor is illegal in C++. 3210 if (D == diag::err_ctor_dtor_returns_void) { 3211 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 3212 Diag(ReturnLoc, D) 3213 << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl) 3214 << RetValExp->getSourceRange(); 3215 } 3216 // return (some void expression); is legal in C++. 3217 else if (D != diag::ext_return_has_void_expr || 3218 !getLangOpts().CPlusPlus) { 3219 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 3220 3221 int FunctionKind = 0; 3222 if (isa<ObjCMethodDecl>(CurDecl)) 3223 FunctionKind = 1; 3224 else if (isa<CXXConstructorDecl>(CurDecl)) 3225 FunctionKind = 2; 3226 else if (isa<CXXDestructorDecl>(CurDecl)) 3227 FunctionKind = 3; 3228 3229 Diag(ReturnLoc, D) 3230 << CurDecl->getDeclName() << FunctionKind 3231 << RetValExp->getSourceRange(); 3232 } 3233 } 3234 3235 if (RetValExp) { 3236 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); 3237 if (ER.isInvalid()) 3238 return StmtError(); 3239 RetValExp = ER.get(); 3240 } 3241 } 3242 3243 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr); 3244 } else if (!RetValExp && !HasDependentReturnType) { 3245 FunctionDecl *FD = getCurFunctionDecl(); 3246 3247 unsigned DiagID; 3248 if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { 3249 // C++11 [stmt.return]p2 3250 DiagID = diag::err_constexpr_return_missing_expr; 3251 FD->setInvalidDecl(); 3252 } else if (getLangOpts().C99) { 3253 // C99 6.8.6.4p1 (ext_ since GCC warns) 3254 DiagID = diag::ext_return_missing_expr; 3255 } else { 3256 // C90 6.6.6.4p4 3257 DiagID = diag::warn_return_missing_expr; 3258 } 3259 3260 if (FD) 3261 Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/; 3262 else 3263 Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/; 3264 3265 Result = new (Context) ReturnStmt(ReturnLoc); 3266 } else { 3267 assert(RetValExp || HasDependentReturnType); 3268 const VarDecl *NRVOCandidate = nullptr; 3269 3270 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; 3271 3272 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 3273 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 3274 // function return. 3275 3276 // In C++ the return statement is handled via a copy initialization, 3277 // the C version of which boils down to CheckSingleAssignmentConstraints. 3278 if (RetValExp) 3279 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false); 3280 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { 3281 // we have a non-void function with an expression, continue checking 3282 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, 3283 RetType, 3284 NRVOCandidate != nullptr); 3285 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, 3286 RetType, RetValExp); 3287 if (Res.isInvalid()) { 3288 // FIXME: Clean up temporaries here anyway? 3289 return StmtError(); 3290 } 3291 RetValExp = Res.getAs<Expr>(); 3292 3293 // If we have a related result type, we need to implicitly 3294 // convert back to the formal result type. We can't pretend to 3295 // initialize the result again --- we might end double-retaining 3296 // --- so instead we initialize a notional temporary. 3297 if (!RelatedRetType.isNull()) { 3298 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), 3299 FnRetType); 3300 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); 3301 if (Res.isInvalid()) { 3302 // FIXME: Clean up temporaries here anyway? 3303 return StmtError(); 3304 } 3305 RetValExp = Res.getAs<Expr>(); 3306 } 3307 3308 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs, 3309 getCurFunctionDecl()); 3310 } 3311 3312 if (RetValExp) { 3313 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); 3314 if (ER.isInvalid()) 3315 return StmtError(); 3316 RetValExp = ER.get(); 3317 } 3318 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate); 3319 } 3320 3321 // If we need to check for the named return value optimization, save the 3322 // return statement in our scope for later processing. 3323 if (Result->getNRVOCandidate()) 3324 FunctionScopes.back()->Returns.push_back(Result); 3325 3326 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 3327 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 3328 3329 return Result; 3330 } 3331 3332 StmtResult 3333 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, 3334 SourceLocation RParen, Decl *Parm, 3335 Stmt *Body) { 3336 VarDecl *Var = cast_or_null<VarDecl>(Parm); 3337 if (Var && Var->isInvalidDecl()) 3338 return StmtError(); 3339 3340 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body); 3341 } 3342 3343 StmtResult 3344 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { 3345 return new (Context) ObjCAtFinallyStmt(AtLoc, Body); 3346 } 3347 3348 StmtResult 3349 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, 3350 MultiStmtArg CatchStmts, Stmt *Finally) { 3351 if (!getLangOpts().ObjCExceptions) 3352 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try"; 3353 3354 getCurFunction()->setHasBranchProtectedScope(); 3355 unsigned NumCatchStmts = CatchStmts.size(); 3356 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(), 3357 NumCatchStmts, Finally); 3358 } 3359 3360 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) { 3361 if (Throw) { 3362 ExprResult Result = DefaultLvalueConversion(Throw); 3363 if (Result.isInvalid()) 3364 return StmtError(); 3365 3366 Result = ActOnFinishFullExpr(Result.get()); 3367 if (Result.isInvalid()) 3368 return StmtError(); 3369 Throw = Result.get(); 3370 3371 QualType ThrowType = Throw->getType(); 3372 // Make sure the expression type is an ObjC pointer or "void *". 3373 if (!ThrowType->isDependentType() && 3374 !ThrowType->isObjCObjectPointerType()) { 3375 const PointerType *PT = ThrowType->getAs<PointerType>(); 3376 if (!PT || !PT->getPointeeType()->isVoidType()) 3377 return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object) 3378 << Throw->getType() << Throw->getSourceRange()); 3379 } 3380 } 3381 3382 return new (Context) ObjCAtThrowStmt(AtLoc, Throw); 3383 } 3384 3385 StmtResult 3386 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, 3387 Scope *CurScope) { 3388 if (!getLangOpts().ObjCExceptions) 3389 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw"; 3390 3391 if (!Throw) { 3392 // @throw without an expression designates a rethrow (which must occur 3393 // in the context of an @catch clause). 3394 Scope *AtCatchParent = CurScope; 3395 while (AtCatchParent && !AtCatchParent->isAtCatchScope()) 3396 AtCatchParent = AtCatchParent->getParent(); 3397 if (!AtCatchParent) 3398 return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch)); 3399 } 3400 return BuildObjCAtThrowStmt(AtLoc, Throw); 3401 } 3402 3403 ExprResult 3404 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) { 3405 ExprResult result = DefaultLvalueConversion(operand); 3406 if (result.isInvalid()) 3407 return ExprError(); 3408 operand = result.get(); 3409 3410 // Make sure the expression type is an ObjC pointer or "void *". 3411 QualType type = operand->getType(); 3412 if (!type->isDependentType() && 3413 !type->isObjCObjectPointerType()) { 3414 const PointerType *pointerType = type->getAs<PointerType>(); 3415 if (!pointerType || !pointerType->getPointeeType()->isVoidType()) { 3416 if (getLangOpts().CPlusPlus) { 3417 if (RequireCompleteType(atLoc, type, 3418 diag::err_incomplete_receiver_type)) 3419 return Diag(atLoc, diag::error_objc_synchronized_expects_object) 3420 << type << operand->getSourceRange(); 3421 3422 ExprResult result = PerformContextuallyConvertToObjCPointer(operand); 3423 if (!result.isUsable()) 3424 return Diag(atLoc, diag::error_objc_synchronized_expects_object) 3425 << type << operand->getSourceRange(); 3426 3427 operand = result.get(); 3428 } else { 3429 return Diag(atLoc, diag::error_objc_synchronized_expects_object) 3430 << type << operand->getSourceRange(); 3431 } 3432 } 3433 } 3434 3435 // The operand to @synchronized is a full-expression. 3436 return ActOnFinishFullExpr(operand); 3437 } 3438 3439 StmtResult 3440 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr, 3441 Stmt *SyncBody) { 3442 // We can't jump into or indirect-jump out of a @synchronized block. 3443 getCurFunction()->setHasBranchProtectedScope(); 3444 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody); 3445 } 3446 3447 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block 3448 /// and creates a proper catch handler from them. 3449 StmtResult 3450 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, 3451 Stmt *HandlerBlock) { 3452 // There's nothing to test that ActOnExceptionDecl didn't already test. 3453 return new (Context) 3454 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock); 3455 } 3456 3457 StmtResult 3458 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { 3459 getCurFunction()->setHasBranchProtectedScope(); 3460 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body); 3461 } 3462 3463 namespace { 3464 class CatchHandlerType { 3465 QualType QT; 3466 unsigned IsPointer : 1; 3467 3468 // This is a special constructor to be used only with DenseMapInfo's 3469 // getEmptyKey() and getTombstoneKey() functions. 3470 friend struct llvm::DenseMapInfo<CatchHandlerType>; 3471 enum Unique { ForDenseMap }; 3472 CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} 3473 3474 public: 3475 /// Used when creating a CatchHandlerType from a handler type; will determine 3476 /// whether the type is a pointer or reference and will strip off the top 3477 /// level pointer and cv-qualifiers. 3478 CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { 3479 if (QT->isPointerType()) 3480 IsPointer = true; 3481 3482 if (IsPointer || QT->isReferenceType()) 3483 QT = QT->getPointeeType(); 3484 QT = QT.getUnqualifiedType(); 3485 } 3486 3487 /// Used when creating a CatchHandlerType from a base class type; pretends the 3488 /// type passed in had the pointer qualifier, does not need to get an 3489 /// unqualified type. 3490 CatchHandlerType(QualType QT, bool IsPointer) 3491 : QT(QT), IsPointer(IsPointer) {} 3492 3493 QualType underlying() const { return QT; } 3494 bool isPointer() const { return IsPointer; } 3495 3496 friend bool operator==(const CatchHandlerType &LHS, 3497 const CatchHandlerType &RHS) { 3498 // If the pointer qualification does not match, we can return early. 3499 if (LHS.IsPointer != RHS.IsPointer) 3500 return false; 3501 // Otherwise, check the underlying type without cv-qualifiers. 3502 return LHS.QT == RHS.QT; 3503 } 3504 }; 3505 } // namespace 3506 3507 namespace llvm { 3508 template <> struct DenseMapInfo<CatchHandlerType> { 3509 static CatchHandlerType getEmptyKey() { 3510 return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), 3511 CatchHandlerType::ForDenseMap); 3512 } 3513 3514 static CatchHandlerType getTombstoneKey() { 3515 return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), 3516 CatchHandlerType::ForDenseMap); 3517 } 3518 3519 static unsigned getHashValue(const CatchHandlerType &Base) { 3520 return DenseMapInfo<QualType>::getHashValue(Base.underlying()); 3521 } 3522 3523 static bool isEqual(const CatchHandlerType &LHS, 3524 const CatchHandlerType &RHS) { 3525 return LHS == RHS; 3526 } 3527 }; 3528 3529 // It's OK to treat CatchHandlerType as a POD type. 3530 template <> struct isPodLike<CatchHandlerType> { 3531 static const bool value = true; 3532 }; 3533 } 3534 3535 namespace { 3536 class CatchTypePublicBases { 3537 ASTContext &Ctx; 3538 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck; 3539 const bool CheckAgainstPointer; 3540 3541 CXXCatchStmt *FoundHandler; 3542 CanQualType FoundHandlerType; 3543 3544 public: 3545 CatchTypePublicBases( 3546 ASTContext &Ctx, 3547 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C) 3548 : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C), 3549 FoundHandler(nullptr) {} 3550 3551 CXXCatchStmt *getFoundHandler() const { return FoundHandler; } 3552 CanQualType getFoundHandlerType() const { return FoundHandlerType; } 3553 3554 bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { 3555 if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { 3556 CatchHandlerType Check(S->getType(), CheckAgainstPointer); 3557 auto M = TypesToCheck; 3558 auto I = M.find(Check); 3559 if (I != M.end()) { 3560 FoundHandler = I->second; 3561 FoundHandlerType = Ctx.getCanonicalType(S->getType()); 3562 return true; 3563 } 3564 } 3565 return false; 3566 } 3567 }; 3568 } 3569 3570 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of 3571 /// handlers and creates a try statement from them. 3572 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, 3573 ArrayRef<Stmt *> Handlers) { 3574 // Don't report an error if 'try' is used in system headers. 3575 if (!getLangOpts().CXXExceptions && 3576 !getSourceManager().isInSystemHeader(TryLoc)) 3577 Diag(TryLoc, diag::err_exceptions_disabled) << "try"; 3578 3579 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 3580 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try"; 3581 3582 sema::FunctionScopeInfo *FSI = getCurFunction(); 3583 3584 // C++ try is incompatible with SEH __try. 3585 if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { 3586 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); 3587 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; 3588 } 3589 3590 const unsigned NumHandlers = Handlers.size(); 3591 assert(!Handlers.empty() && 3592 "The parser shouldn't call this if there are no handlers."); 3593 3594 llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; 3595 for (unsigned i = 0; i < NumHandlers; ++i) { 3596 CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]); 3597 3598 // Diagnose when the handler is a catch-all handler, but it isn't the last 3599 // handler for the try block. [except.handle]p5. Also, skip exception 3600 // declarations that are invalid, since we can't usefully report on them. 3601 if (!H->getExceptionDecl()) { 3602 if (i < NumHandlers - 1) 3603 return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all)); 3604 continue; 3605 } else if (H->getExceptionDecl()->isInvalidDecl()) 3606 continue; 3607 3608 // Walk the type hierarchy to diagnose when this type has already been 3609 // handled (duplication), or cannot be handled (derivation inversion). We 3610 // ignore top-level cv-qualifiers, per [except.handle]p3 3611 CatchHandlerType HandlerCHT = 3612 (QualType)Context.getCanonicalType(H->getCaughtType()); 3613 3614 // We can ignore whether the type is a reference or a pointer; we need the 3615 // underlying declaration type in order to get at the underlying record 3616 // decl, if there is one. 3617 QualType Underlying = HandlerCHT.underlying(); 3618 if (auto *RD = Underlying->getAsCXXRecordDecl()) { 3619 if (!RD->hasDefinition()) 3620 continue; 3621 // Check that none of the public, unambiguous base classes are in the 3622 // map ([except.handle]p1). Give the base classes the same pointer 3623 // qualification as the original type we are basing off of. This allows 3624 // comparison against the handler type using the same top-level pointer 3625 // as the original type. 3626 CXXBasePaths Paths; 3627 Paths.setOrigin(RD); 3628 CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer()); 3629 if (RD->lookupInBases(CTPB, Paths)) { 3630 const CXXCatchStmt *Problem = CTPB.getFoundHandler(); 3631 if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) { 3632 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 3633 diag::warn_exception_caught_by_earlier_handler) 3634 << H->getCaughtType(); 3635 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 3636 diag::note_previous_exception_handler) 3637 << Problem->getCaughtType(); 3638 } 3639 } 3640 } 3641 3642 // Add the type the list of ones we have handled; diagnose if we've already 3643 // handled it. 3644 auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H)); 3645 if (!R.second) { 3646 const CXXCatchStmt *Problem = R.first->second; 3647 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 3648 diag::warn_exception_caught_by_earlier_handler) 3649 << H->getCaughtType(); 3650 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 3651 diag::note_previous_exception_handler) 3652 << Problem->getCaughtType(); 3653 } 3654 } 3655 3656 FSI->setHasCXXTry(TryLoc); 3657 3658 return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers); 3659 } 3660 3661 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, 3662 Stmt *TryBlock, Stmt *Handler) { 3663 assert(TryBlock && Handler); 3664 3665 sema::FunctionScopeInfo *FSI = getCurFunction(); 3666 3667 // SEH __try is incompatible with C++ try. Borland appears to support this, 3668 // however. 3669 if (!getLangOpts().Borland) { 3670 if (FSI->FirstCXXTryLoc.isValid()) { 3671 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); 3672 Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'"; 3673 } 3674 } 3675 3676 FSI->setHasSEHTry(TryLoc); 3677 3678 // Reject __try in Obj-C methods, blocks, and captured decls, since we don't 3679 // track if they use SEH. 3680 DeclContext *DC = CurContext; 3681 while (DC && !DC->isFunctionOrMethod()) 3682 DC = DC->getParent(); 3683 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC); 3684 if (FD) 3685 FD->setUsesSEHTry(true); 3686 else 3687 Diag(TryLoc, diag::err_seh_try_outside_functions); 3688 3689 // Reject __try on unsupported targets. 3690 if (!Context.getTargetInfo().isSEHTrySupported()) 3691 Diag(TryLoc, diag::err_seh_try_unsupported); 3692 3693 return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler); 3694 } 3695 3696 StmtResult 3697 Sema::ActOnSEHExceptBlock(SourceLocation Loc, 3698 Expr *FilterExpr, 3699 Stmt *Block) { 3700 assert(FilterExpr && Block); 3701 3702 if(!FilterExpr->getType()->isIntegerType()) { 3703 return StmtError(Diag(FilterExpr->getExprLoc(), 3704 diag::err_filter_expression_integral) 3705 << FilterExpr->getType()); 3706 } 3707 3708 return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block); 3709 } 3710 3711 void Sema::ActOnStartSEHFinallyBlock() { 3712 CurrentSEHFinally.push_back(CurScope); 3713 } 3714 3715 void Sema::ActOnAbortSEHFinallyBlock() { 3716 CurrentSEHFinally.pop_back(); 3717 } 3718 3719 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { 3720 assert(Block); 3721 CurrentSEHFinally.pop_back(); 3722 return SEHFinallyStmt::Create(Context, Loc, Block); 3723 } 3724 3725 StmtResult 3726 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { 3727 Scope *SEHTryParent = CurScope; 3728 while (SEHTryParent && !SEHTryParent->isSEHTryScope()) 3729 SEHTryParent = SEHTryParent->getParent(); 3730 if (!SEHTryParent) 3731 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try)); 3732 CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent); 3733 3734 return new (Context) SEHLeaveStmt(Loc); 3735 } 3736 3737 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, 3738 bool IsIfExists, 3739 NestedNameSpecifierLoc QualifierLoc, 3740 DeclarationNameInfo NameInfo, 3741 Stmt *Nested) 3742 { 3743 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, 3744 QualifierLoc, NameInfo, 3745 cast<CompoundStmt>(Nested)); 3746 } 3747 3748 3749 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, 3750 bool IsIfExists, 3751 CXXScopeSpec &SS, 3752 UnqualifiedId &Name, 3753 Stmt *Nested) { 3754 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, 3755 SS.getWithLocInContext(Context), 3756 GetNameFromUnqualifiedId(Name), 3757 Nested); 3758 } 3759 3760 RecordDecl* 3761 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, 3762 unsigned NumParams) { 3763 DeclContext *DC = CurContext; 3764 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 3765 DC = DC->getParent(); 3766 3767 RecordDecl *RD = nullptr; 3768 if (getLangOpts().CPlusPlus) 3769 RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, 3770 /*Id=*/nullptr); 3771 else 3772 RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr); 3773 3774 RD->setCapturedRecord(); 3775 DC->addDecl(RD); 3776 RD->setImplicit(); 3777 RD->startDefinition(); 3778 3779 assert(NumParams > 0 && "CapturedStmt requires context parameter"); 3780 CD = CapturedDecl::Create(Context, CurContext, NumParams); 3781 DC->addDecl(CD); 3782 return RD; 3783 } 3784 3785 static void buildCapturedStmtCaptureList( 3786 SmallVectorImpl<CapturedStmt::Capture> &Captures, 3787 SmallVectorImpl<Expr *> &CaptureInits, 3788 ArrayRef<CapturingScopeInfo::Capture> Candidates) { 3789 3790 typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter; 3791 for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) { 3792 3793 if (Cap->isThisCapture()) { 3794 Captures.push_back(CapturedStmt::Capture(Cap->getLocation(), 3795 CapturedStmt::VCK_This)); 3796 CaptureInits.push_back(Cap->getInitExpr()); 3797 continue; 3798 } else if (Cap->isVLATypeCapture()) { 3799 Captures.push_back( 3800 CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType)); 3801 CaptureInits.push_back(nullptr); 3802 continue; 3803 } 3804 3805 Captures.push_back(CapturedStmt::Capture(Cap->getLocation(), 3806 Cap->isReferenceCapture() 3807 ? CapturedStmt::VCK_ByRef 3808 : CapturedStmt::VCK_ByCopy, 3809 Cap->getVariable())); 3810 CaptureInits.push_back(Cap->getInitExpr()); 3811 } 3812 } 3813 3814 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 3815 CapturedRegionKind Kind, 3816 unsigned NumParams) { 3817 CapturedDecl *CD = nullptr; 3818 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); 3819 3820 // Build the context parameter 3821 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 3822 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 3823 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 3824 ImplicitParamDecl *Param 3825 = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType); 3826 DC->addDecl(Param); 3827 3828 CD->setContextParam(0, Param); 3829 3830 // Enter the capturing scope for this captured region. 3831 PushCapturedRegionScope(CurScope, CD, RD, Kind); 3832 3833 if (CurScope) 3834 PushDeclContext(CurScope, CD); 3835 else 3836 CurContext = CD; 3837 3838 PushExpressionEvaluationContext(PotentiallyEvaluated); 3839 } 3840 3841 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 3842 CapturedRegionKind Kind, 3843 ArrayRef<CapturedParamNameType> Params) { 3844 CapturedDecl *CD = nullptr; 3845 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size()); 3846 3847 // Build the context parameter 3848 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 3849 bool ContextIsFound = false; 3850 unsigned ParamNum = 0; 3851 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), 3852 E = Params.end(); 3853 I != E; ++I, ++ParamNum) { 3854 if (I->second.isNull()) { 3855 assert(!ContextIsFound && 3856 "null type has been found already for '__context' parameter"); 3857 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 3858 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 3859 ImplicitParamDecl *Param 3860 = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType); 3861 DC->addDecl(Param); 3862 CD->setContextParam(ParamNum, Param); 3863 ContextIsFound = true; 3864 } else { 3865 IdentifierInfo *ParamName = &Context.Idents.get(I->first); 3866 ImplicitParamDecl *Param 3867 = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second); 3868 DC->addDecl(Param); 3869 CD->setParam(ParamNum, Param); 3870 } 3871 } 3872 assert(ContextIsFound && "no null type for '__context' parameter"); 3873 if (!ContextIsFound) { 3874 // Add __context implicitly if it is not specified. 3875 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 3876 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 3877 ImplicitParamDecl *Param = 3878 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType); 3879 DC->addDecl(Param); 3880 CD->setContextParam(ParamNum, Param); 3881 } 3882 // Enter the capturing scope for this captured region. 3883 PushCapturedRegionScope(CurScope, CD, RD, Kind); 3884 3885 if (CurScope) 3886 PushDeclContext(CurScope, CD); 3887 else 3888 CurContext = CD; 3889 3890 PushExpressionEvaluationContext(PotentiallyEvaluated); 3891 } 3892 3893 void Sema::ActOnCapturedRegionError() { 3894 DiscardCleanupsInEvaluationContext(); 3895 PopExpressionEvaluationContext(); 3896 3897 CapturedRegionScopeInfo *RSI = getCurCapturedRegion(); 3898 RecordDecl *Record = RSI->TheRecordDecl; 3899 Record->setInvalidDecl(); 3900 3901 SmallVector<Decl*, 4> Fields(Record->fields()); 3902 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields, 3903 SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr); 3904 3905 PopDeclContext(); 3906 PopFunctionScopeInfo(); 3907 } 3908 3909 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { 3910 CapturedRegionScopeInfo *RSI = getCurCapturedRegion(); 3911 3912 SmallVector<CapturedStmt::Capture, 4> Captures; 3913 SmallVector<Expr *, 4> CaptureInits; 3914 buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures); 3915 3916 CapturedDecl *CD = RSI->TheCapturedDecl; 3917 RecordDecl *RD = RSI->TheRecordDecl; 3918 3919 CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S, 3920 RSI->CapRegionKind, Captures, 3921 CaptureInits, CD, RD); 3922 3923 CD->setBody(Res->getCapturedStmt()); 3924 RD->completeDefinition(); 3925 3926 DiscardCleanupsInEvaluationContext(); 3927 PopExpressionEvaluationContext(); 3928 3929 PopDeclContext(); 3930 PopFunctionScopeInfo(); 3931 3932 return Res; 3933 } 3934