Home | History | Annotate | Download | only in Sema
      1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for statements.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTDiagnostic.h"
     17 #include "clang/AST/CharUnits.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/AST/ExprObjC.h"
     23 #include "clang/AST/RecursiveASTVisitor.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/AST/StmtObjC.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/AST/TypeOrdering.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "clang/Lex/Preprocessor.h"
     30 #include "clang/Sema/Initialization.h"
     31 #include "clang/Sema/Lookup.h"
     32 #include "clang/Sema/Scope.h"
     33 #include "clang/Sema/ScopeInfo.h"
     34 #include "llvm/ADT/ArrayRef.h"
     35 #include "llvm/ADT/DenseMap.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/ADT/SmallPtrSet.h"
     38 #include "llvm/ADT/SmallString.h"
     39 #include "llvm/ADT/SmallVector.h"
     40 using namespace clang;
     41 using namespace sema;
     42 
     43 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
     44   if (FE.isInvalid())
     45     return StmtError();
     46 
     47   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
     48                            /*DiscardedValue*/ true);
     49   if (FE.isInvalid())
     50     return StmtError();
     51 
     52   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
     53   // void expression for its side effects.  Conversion to void allows any
     54   // operand, even incomplete types.
     55 
     56   // Same thing in for stmt first clause (when expr) and third clause.
     57   return StmtResult(FE.getAs<Stmt>());
     58 }
     59 
     60 
     61 StmtResult Sema::ActOnExprStmtError() {
     62   DiscardCleanupsInEvaluationContext();
     63   return StmtError();
     64 }
     65 
     66 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
     67                                bool HasLeadingEmptyMacro) {
     68   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
     69 }
     70 
     71 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
     72                                SourceLocation EndLoc) {
     73   DeclGroupRef DG = dg.get();
     74 
     75   // If we have an invalid decl, just return an error.
     76   if (DG.isNull()) return StmtError();
     77 
     78   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
     79 }
     80 
     81 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
     82   DeclGroupRef DG = dg.get();
     83 
     84   // If we don't have a declaration, or we have an invalid declaration,
     85   // just return.
     86   if (DG.isNull() || !DG.isSingleDecl())
     87     return;
     88 
     89   Decl *decl = DG.getSingleDecl();
     90   if (!decl || decl->isInvalidDecl())
     91     return;
     92 
     93   // Only variable declarations are permitted.
     94   VarDecl *var = dyn_cast<VarDecl>(decl);
     95   if (!var) {
     96     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
     97     decl->setInvalidDecl();
     98     return;
     99   }
    100 
    101   // foreach variables are never actually initialized in the way that
    102   // the parser came up with.
    103   var->setInit(nullptr);
    104 
    105   // In ARC, we don't need to retain the iteration variable of a fast
    106   // enumeration loop.  Rather than actually trying to catch that
    107   // during declaration processing, we remove the consequences here.
    108   if (getLangOpts().ObjCAutoRefCount) {
    109     QualType type = var->getType();
    110 
    111     // Only do this if we inferred the lifetime.  Inferred lifetime
    112     // will show up as a local qualifier because explicit lifetime
    113     // should have shown up as an AttributedType instead.
    114     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
    115       // Add 'const' and mark the variable as pseudo-strong.
    116       var->setType(type.withConst());
    117       var->setARCPseudoStrong(true);
    118     }
    119   }
    120 }
    121 
    122 /// \brief Diagnose unused comparisons, both builtin and overloaded operators.
    123 /// For '==' and '!=', suggest fixits for '=' or '|='.
    124 ///
    125 /// Adding a cast to void (or other expression wrappers) will prevent the
    126 /// warning from firing.
    127 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
    128   SourceLocation Loc;
    129   bool IsNotEqual, CanAssign, IsRelational;
    130 
    131   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
    132     if (!Op->isComparisonOp())
    133       return false;
    134 
    135     IsRelational = Op->isRelationalOp();
    136     Loc = Op->getOperatorLoc();
    137     IsNotEqual = Op->getOpcode() == BO_NE;
    138     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
    139   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
    140     switch (Op->getOperator()) {
    141     default:
    142       return false;
    143     case OO_EqualEqual:
    144     case OO_ExclaimEqual:
    145       IsRelational = false;
    146       break;
    147     case OO_Less:
    148     case OO_Greater:
    149     case OO_GreaterEqual:
    150     case OO_LessEqual:
    151       IsRelational = true;
    152       break;
    153     }
    154 
    155     Loc = Op->getOperatorLoc();
    156     IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
    157     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
    158   } else {
    159     // Not a typo-prone comparison.
    160     return false;
    161   }
    162 
    163   // Suppress warnings when the operator, suspicious as it may be, comes from
    164   // a macro expansion.
    165   if (S.SourceMgr.isMacroBodyExpansion(Loc))
    166     return false;
    167 
    168   S.Diag(Loc, diag::warn_unused_comparison)
    169     << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
    170 
    171   // If the LHS is a plausible entity to assign to, provide a fixit hint to
    172   // correct common typos.
    173   if (!IsRelational && CanAssign) {
    174     if (IsNotEqual)
    175       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
    176         << FixItHint::CreateReplacement(Loc, "|=");
    177     else
    178       S.Diag(Loc, diag::note_equality_comparison_to_assign)
    179         << FixItHint::CreateReplacement(Loc, "=");
    180   }
    181 
    182   return true;
    183 }
    184 
    185 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
    186   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
    187     return DiagnoseUnusedExprResult(Label->getSubStmt());
    188 
    189   const Expr *E = dyn_cast_or_null<Expr>(S);
    190   if (!E)
    191     return;
    192 
    193   // If we are in an unevaluated expression context, then there can be no unused
    194   // results because the results aren't expected to be used in the first place.
    195   if (isUnevaluatedContext())
    196     return;
    197 
    198   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
    199   // In most cases, we don't want to warn if the expression is written in a
    200   // macro body, or if the macro comes from a system header. If the offending
    201   // expression is a call to a function with the warn_unused_result attribute,
    202   // we warn no matter the location. Because of the order in which the various
    203   // checks need to happen, we factor out the macro-related test here.
    204   bool ShouldSuppress =
    205       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
    206       SourceMgr.isInSystemMacro(ExprLoc);
    207 
    208   const Expr *WarnExpr;
    209   SourceLocation Loc;
    210   SourceRange R1, R2;
    211   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
    212     return;
    213 
    214   // If this is a GNU statement expression expanded from a macro, it is probably
    215   // unused because it is a function-like macro that can be used as either an
    216   // expression or statement.  Don't warn, because it is almost certainly a
    217   // false positive.
    218   if (isa<StmtExpr>(E) && Loc.isMacroID())
    219     return;
    220 
    221   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
    222   // That macro is frequently used to suppress "unused parameter" warnings,
    223   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
    224   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
    225     SourceLocation SpellLoc = Loc;
    226     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
    227       return;
    228   }
    229 
    230   // Okay, we have an unused result.  Depending on what the base expression is,
    231   // we might want to make a more specific diagnostic.  Check for one of these
    232   // cases now.
    233   unsigned DiagID = diag::warn_unused_expr;
    234   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
    235     E = Temps->getSubExpr();
    236   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
    237     E = TempExpr->getSubExpr();
    238 
    239   if (DiagnoseUnusedComparison(*this, E))
    240     return;
    241 
    242   E = WarnExpr;
    243   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    244     if (E->getType()->isVoidType())
    245       return;
    246 
    247     // If the callee has attribute pure, const, or warn_unused_result, warn with
    248     // a more specific message to make it clear what is happening. If the call
    249     // is written in a macro body, only warn if it has the warn_unused_result
    250     // attribute.
    251     if (const Decl *FD = CE->getCalleeDecl()) {
    252       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
    253       if (Func ? Func->hasUnusedResultAttr()
    254                : FD->hasAttr<WarnUnusedResultAttr>()) {
    255         Diag(Loc, diag::warn_unused_result) << R1 << R2;
    256         return;
    257       }
    258       if (ShouldSuppress)
    259         return;
    260       if (FD->hasAttr<PureAttr>()) {
    261         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
    262         return;
    263       }
    264       if (FD->hasAttr<ConstAttr>()) {
    265         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
    266         return;
    267       }
    268     }
    269   } else if (ShouldSuppress)
    270     return;
    271 
    272   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
    273     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
    274       Diag(Loc, diag::err_arc_unused_init_message) << R1;
    275       return;
    276     }
    277     const ObjCMethodDecl *MD = ME->getMethodDecl();
    278     if (MD) {
    279       if (MD->hasAttr<WarnUnusedResultAttr>()) {
    280         Diag(Loc, diag::warn_unused_result) << R1 << R2;
    281         return;
    282       }
    283     }
    284   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
    285     const Expr *Source = POE->getSyntacticForm();
    286     if (isa<ObjCSubscriptRefExpr>(Source))
    287       DiagID = diag::warn_unused_container_subscript_expr;
    288     else
    289       DiagID = diag::warn_unused_property_expr;
    290   } else if (const CXXFunctionalCastExpr *FC
    291                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
    292     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
    293         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
    294       return;
    295   }
    296   // Diagnose "(void*) blah" as a typo for "(void) blah".
    297   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
    298     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
    299     QualType T = TI->getType();
    300 
    301     // We really do want to use the non-canonical type here.
    302     if (T == Context.VoidPtrTy) {
    303       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
    304 
    305       Diag(Loc, diag::warn_unused_voidptr)
    306         << FixItHint::CreateRemoval(TL.getStarLoc());
    307       return;
    308     }
    309   }
    310 
    311   if (E->isGLValue() && E->getType().isVolatileQualified()) {
    312     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
    313     return;
    314   }
    315 
    316   DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
    317 }
    318 
    319 void Sema::ActOnStartOfCompoundStmt() {
    320   PushCompoundScope();
    321 }
    322 
    323 void Sema::ActOnFinishOfCompoundStmt() {
    324   PopCompoundScope();
    325 }
    326 
    327 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
    328   return getCurFunction()->CompoundScopes.back();
    329 }
    330 
    331 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
    332                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
    333   const unsigned NumElts = Elts.size();
    334 
    335   // If we're in C89 mode, check that we don't have any decls after stmts.  If
    336   // so, emit an extension diagnostic.
    337   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
    338     // Note that __extension__ can be around a decl.
    339     unsigned i = 0;
    340     // Skip over all declarations.
    341     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
    342       /*empty*/;
    343 
    344     // We found the end of the list or a statement.  Scan for another declstmt.
    345     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
    346       /*empty*/;
    347 
    348     if (i != NumElts) {
    349       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
    350       Diag(D->getLocation(), diag::ext_mixed_decls_code);
    351     }
    352   }
    353   // Warn about unused expressions in statements.
    354   for (unsigned i = 0; i != NumElts; ++i) {
    355     // Ignore statements that are last in a statement expression.
    356     if (isStmtExpr && i == NumElts - 1)
    357       continue;
    358 
    359     DiagnoseUnusedExprResult(Elts[i]);
    360   }
    361 
    362   // Check for suspicious empty body (null statement) in `for' and `while'
    363   // statements.  Don't do anything for template instantiations, this just adds
    364   // noise.
    365   if (NumElts != 0 && !CurrentInstantiationScope &&
    366       getCurCompoundScope().HasEmptyLoopBodies) {
    367     for (unsigned i = 0; i != NumElts - 1; ++i)
    368       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
    369   }
    370 
    371   return new (Context) CompoundStmt(Context, Elts, L, R);
    372 }
    373 
    374 StmtResult
    375 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
    376                     SourceLocation DotDotDotLoc, Expr *RHSVal,
    377                     SourceLocation ColonLoc) {
    378   assert(LHSVal && "missing expression in case statement");
    379 
    380   if (getCurFunction()->SwitchStack.empty()) {
    381     Diag(CaseLoc, diag::err_case_not_in_switch);
    382     return StmtError();
    383   }
    384 
    385   ExprResult LHS =
    386       CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
    387         if (!getLangOpts().CPlusPlus11)
    388           return VerifyIntegerConstantExpression(E);
    389         if (Expr *CondExpr =
    390                 getCurFunction()->SwitchStack.back()->getCond()) {
    391           QualType CondType = CondExpr->getType();
    392           llvm::APSInt TempVal;
    393           return CheckConvertedConstantExpression(E, CondType, TempVal,
    394                                                         CCEK_CaseValue);
    395         }
    396         return ExprError();
    397       });
    398   if (LHS.isInvalid())
    399     return StmtError();
    400   LHSVal = LHS.get();
    401 
    402   if (!getLangOpts().CPlusPlus11) {
    403     // C99 6.8.4.2p3: The expression shall be an integer constant.
    404     // However, GCC allows any evaluatable integer expression.
    405     if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
    406       LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
    407       if (!LHSVal)
    408         return StmtError();
    409     }
    410 
    411     // GCC extension: The expression shall be an integer constant.
    412 
    413     if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
    414       RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
    415       // Recover from an error by just forgetting about it.
    416     }
    417   }
    418 
    419   LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
    420                                  getLangOpts().CPlusPlus11);
    421   if (LHS.isInvalid())
    422     return StmtError();
    423 
    424   auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
    425                                           getLangOpts().CPlusPlus11)
    426                     : ExprResult();
    427   if (RHS.isInvalid())
    428     return StmtError();
    429 
    430   CaseStmt *CS = new (Context)
    431       CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
    432   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
    433   return CS;
    434 }
    435 
    436 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
    437 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
    438   DiagnoseUnusedExprResult(SubStmt);
    439 
    440   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
    441   CS->setSubStmt(SubStmt);
    442 }
    443 
    444 StmtResult
    445 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
    446                        Stmt *SubStmt, Scope *CurScope) {
    447   DiagnoseUnusedExprResult(SubStmt);
    448 
    449   if (getCurFunction()->SwitchStack.empty()) {
    450     Diag(DefaultLoc, diag::err_default_not_in_switch);
    451     return SubStmt;
    452   }
    453 
    454   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
    455   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
    456   return DS;
    457 }
    458 
    459 StmtResult
    460 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
    461                      SourceLocation ColonLoc, Stmt *SubStmt) {
    462   // If the label was multiply defined, reject it now.
    463   if (TheDecl->getStmt()) {
    464     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
    465     Diag(TheDecl->getLocation(), diag::note_previous_definition);
    466     return SubStmt;
    467   }
    468 
    469   // Otherwise, things are good.  Fill in the declaration and return it.
    470   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
    471   TheDecl->setStmt(LS);
    472   if (!TheDecl->isGnuLocal()) {
    473     TheDecl->setLocStart(IdentLoc);
    474     if (!TheDecl->isMSAsmLabel()) {
    475       // Don't update the location of MS ASM labels.  These will result in
    476       // a diagnostic, and changing the location here will mess that up.
    477       TheDecl->setLocation(IdentLoc);
    478     }
    479   }
    480   return LS;
    481 }
    482 
    483 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
    484                                      ArrayRef<const Attr*> Attrs,
    485                                      Stmt *SubStmt) {
    486   // Fill in the declaration and return it.
    487   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
    488   return LS;
    489 }
    490 
    491 StmtResult
    492 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
    493                   Stmt *thenStmt, SourceLocation ElseLoc,
    494                   Stmt *elseStmt) {
    495   ExprResult CondResult(CondVal.release());
    496 
    497   VarDecl *ConditionVar = nullptr;
    498   if (CondVar) {
    499     ConditionVar = cast<VarDecl>(CondVar);
    500     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
    501     CondResult = ActOnFinishFullExpr(CondResult.get(), IfLoc);
    502   }
    503   Expr *ConditionExpr = CondResult.getAs<Expr>();
    504   if (ConditionExpr) {
    505     DiagnoseUnusedExprResult(thenStmt);
    506 
    507     if (!elseStmt) {
    508       DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
    509                             diag::warn_empty_if_body);
    510     }
    511 
    512     DiagnoseUnusedExprResult(elseStmt);
    513   } else {
    514     // Create a dummy Expr for the condition for error recovery
    515     ConditionExpr = new (Context) OpaqueValueExpr(SourceLocation(),
    516                                                   Context.BoolTy, VK_RValue);
    517   }
    518 
    519   return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
    520                               thenStmt, ElseLoc, elseStmt);
    521 }
    522 
    523 namespace {
    524   struct CaseCompareFunctor {
    525     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
    526                     const llvm::APSInt &RHS) {
    527       return LHS.first < RHS;
    528     }
    529     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
    530                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
    531       return LHS.first < RHS.first;
    532     }
    533     bool operator()(const llvm::APSInt &LHS,
    534                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
    535       return LHS < RHS.first;
    536     }
    537   };
    538 }
    539 
    540 /// CmpCaseVals - Comparison predicate for sorting case values.
    541 ///
    542 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
    543                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
    544   if (lhs.first < rhs.first)
    545     return true;
    546 
    547   if (lhs.first == rhs.first &&
    548       lhs.second->getCaseLoc().getRawEncoding()
    549        < rhs.second->getCaseLoc().getRawEncoding())
    550     return true;
    551   return false;
    552 }
    553 
    554 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
    555 ///
    556 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
    557                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
    558 {
    559   return lhs.first < rhs.first;
    560 }
    561 
    562 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
    563 ///
    564 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
    565                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
    566 {
    567   return lhs.first == rhs.first;
    568 }
    569 
    570 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
    571 /// potentially integral-promoted expression @p expr.
    572 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
    573   if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
    574     expr = cleanups->getSubExpr();
    575   while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
    576     if (impcast->getCastKind() != CK_IntegralCast) break;
    577     expr = impcast->getSubExpr();
    578   }
    579   return expr->getType();
    580 }
    581 
    582 StmtResult
    583 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
    584                              Decl *CondVar) {
    585   ExprResult CondResult;
    586 
    587   VarDecl *ConditionVar = nullptr;
    588   if (CondVar) {
    589     ConditionVar = cast<VarDecl>(CondVar);
    590     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
    591     if (CondResult.isInvalid())
    592       return StmtError();
    593 
    594     Cond = CondResult.get();
    595   }
    596 
    597   if (!Cond)
    598     return StmtError();
    599 
    600   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
    601     Expr *Cond;
    602 
    603   public:
    604     SwitchConvertDiagnoser(Expr *Cond)
    605         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
    606           Cond(Cond) {}
    607 
    608     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
    609                                          QualType T) override {
    610       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
    611     }
    612 
    613     SemaDiagnosticBuilder diagnoseIncomplete(
    614         Sema &S, SourceLocation Loc, QualType T) override {
    615       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
    616                << T << Cond->getSourceRange();
    617     }
    618 
    619     SemaDiagnosticBuilder diagnoseExplicitConv(
    620         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
    621       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
    622     }
    623 
    624     SemaDiagnosticBuilder noteExplicitConv(
    625         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
    626       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
    627         << ConvTy->isEnumeralType() << ConvTy;
    628     }
    629 
    630     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
    631                                             QualType T) override {
    632       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
    633     }
    634 
    635     SemaDiagnosticBuilder noteAmbiguous(
    636         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
    637       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
    638       << ConvTy->isEnumeralType() << ConvTy;
    639     }
    640 
    641     SemaDiagnosticBuilder diagnoseConversion(
    642         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
    643       llvm_unreachable("conversion functions are permitted");
    644     }
    645   } SwitchDiagnoser(Cond);
    646 
    647   CondResult =
    648       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
    649   if (CondResult.isInvalid()) return StmtError();
    650   Cond = CondResult.get();
    651 
    652   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
    653   CondResult = UsualUnaryConversions(Cond);
    654   if (CondResult.isInvalid()) return StmtError();
    655   Cond = CondResult.get();
    656 
    657   CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
    658   if (CondResult.isInvalid())
    659     return StmtError();
    660   Cond = CondResult.get();
    661 
    662   getCurFunction()->setHasBranchIntoScope();
    663 
    664   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
    665   getCurFunction()->SwitchStack.push_back(SS);
    666   return SS;
    667 }
    668 
    669 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
    670   Val = Val.extOrTrunc(BitWidth);
    671   Val.setIsSigned(IsSigned);
    672 }
    673 
    674 /// Check the specified case value is in range for the given unpromoted switch
    675 /// type.
    676 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
    677                            unsigned UnpromotedWidth, bool UnpromotedSign) {
    678   // If the case value was signed and negative and the switch expression is
    679   // unsigned, don't bother to warn: this is implementation-defined behavior.
    680   // FIXME: Introduce a second, default-ignored warning for this case?
    681   if (UnpromotedWidth < Val.getBitWidth()) {
    682     llvm::APSInt ConvVal(Val);
    683     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
    684     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
    685     // FIXME: Use different diagnostics for overflow  in conversion to promoted
    686     // type versus "switch expression cannot have this value". Use proper
    687     // IntRange checking rather than just looking at the unpromoted type here.
    688     if (ConvVal != Val)
    689       S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
    690                                                   << ConvVal.toString(10);
    691   }
    692 }
    693 
    694 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
    695 
    696 /// Returns true if we should emit a diagnostic about this case expression not
    697 /// being a part of the enum used in the switch controlling expression.
    698 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
    699                                               const EnumDecl *ED,
    700                                               const Expr *CaseExpr,
    701                                               EnumValsTy::iterator &EI,
    702                                               EnumValsTy::iterator &EIEnd,
    703                                               const llvm::APSInt &Val) {
    704   if (const DeclRefExpr *DRE =
    705           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
    706     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
    707       QualType VarType = VD->getType();
    708       QualType EnumType = S.Context.getTypeDeclType(ED);
    709       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
    710           S.Context.hasSameUnqualifiedType(EnumType, VarType))
    711         return false;
    712     }
    713   }
    714 
    715   if (ED->hasAttr<FlagEnumAttr>()) {
    716     return !S.IsValueInFlagEnum(ED, Val, false);
    717   } else {
    718     while (EI != EIEnd && EI->first < Val)
    719       EI++;
    720 
    721     if (EI != EIEnd && EI->first == Val)
    722       return false;
    723   }
    724 
    725   return true;
    726 }
    727 
    728 StmtResult
    729 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
    730                             Stmt *BodyStmt) {
    731   SwitchStmt *SS = cast<SwitchStmt>(Switch);
    732   assert(SS == getCurFunction()->SwitchStack.back() &&
    733          "switch stack missing push/pop!");
    734 
    735   getCurFunction()->SwitchStack.pop_back();
    736 
    737   if (!BodyStmt) return StmtError();
    738   SS->setBody(BodyStmt, SwitchLoc);
    739 
    740   Expr *CondExpr = SS->getCond();
    741   if (!CondExpr) return StmtError();
    742 
    743   QualType CondType = CondExpr->getType();
    744 
    745   Expr *CondExprBeforePromotion = CondExpr;
    746   QualType CondTypeBeforePromotion =
    747       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
    748 
    749   // C++ 6.4.2.p2:
    750   // Integral promotions are performed (on the switch condition).
    751   //
    752   // A case value unrepresentable by the original switch condition
    753   // type (before the promotion) doesn't make sense, even when it can
    754   // be represented by the promoted type.  Therefore we need to find
    755   // the pre-promotion type of the switch condition.
    756   if (!CondExpr->isTypeDependent()) {
    757     // We have already converted the expression to an integral or enumeration
    758     // type, when we started the switch statement. If we don't have an
    759     // appropriate type now, just return an error.
    760     if (!CondType->isIntegralOrEnumerationType())
    761       return StmtError();
    762 
    763     if (CondExpr->isKnownToHaveBooleanValue()) {
    764       // switch(bool_expr) {...} is often a programmer error, e.g.
    765       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
    766       // One can always use an if statement instead of switch(bool_expr).
    767       Diag(SwitchLoc, diag::warn_bool_switch_condition)
    768           << CondExpr->getSourceRange();
    769     }
    770   }
    771 
    772   // Get the bitwidth of the switched-on value after promotions. We must
    773   // convert the integer case values to this width before comparison.
    774   bool HasDependentValue
    775     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
    776   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
    777   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
    778 
    779   // Get the width and signedness that the condition might actually have, for
    780   // warning purposes.
    781   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
    782   // type.
    783   unsigned CondWidthBeforePromotion
    784     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
    785   bool CondIsSignedBeforePromotion
    786     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
    787 
    788   // Accumulate all of the case values in a vector so that we can sort them
    789   // and detect duplicates.  This vector contains the APInt for the case after
    790   // it has been converted to the condition type.
    791   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
    792   CaseValsTy CaseVals;
    793 
    794   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
    795   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
    796   CaseRangesTy CaseRanges;
    797 
    798   DefaultStmt *TheDefaultStmt = nullptr;
    799 
    800   bool CaseListIsErroneous = false;
    801 
    802   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
    803        SC = SC->getNextSwitchCase()) {
    804 
    805     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
    806       if (TheDefaultStmt) {
    807         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
    808         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
    809 
    810         // FIXME: Remove the default statement from the switch block so that
    811         // we'll return a valid AST.  This requires recursing down the AST and
    812         // finding it, not something we are set up to do right now.  For now,
    813         // just lop the entire switch stmt out of the AST.
    814         CaseListIsErroneous = true;
    815       }
    816       TheDefaultStmt = DS;
    817 
    818     } else {
    819       CaseStmt *CS = cast<CaseStmt>(SC);
    820 
    821       Expr *Lo = CS->getLHS();
    822 
    823       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
    824         HasDependentValue = true;
    825         break;
    826       }
    827 
    828       llvm::APSInt LoVal;
    829 
    830       if (getLangOpts().CPlusPlus11) {
    831         // C++11 [stmt.switch]p2: the constant-expression shall be a converted
    832         // constant expression of the promoted type of the switch condition.
    833         ExprResult ConvLo =
    834           CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
    835         if (ConvLo.isInvalid()) {
    836           CaseListIsErroneous = true;
    837           continue;
    838         }
    839         Lo = ConvLo.get();
    840       } else {
    841         // We already verified that the expression has a i-c-e value (C99
    842         // 6.8.4.2p3) - get that value now.
    843         LoVal = Lo->EvaluateKnownConstInt(Context);
    844 
    845         // If the LHS is not the same type as the condition, insert an implicit
    846         // cast.
    847         Lo = DefaultLvalueConversion(Lo).get();
    848         Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
    849       }
    850 
    851       // Check the unconverted value is within the range of possible values of
    852       // the switch expression.
    853       checkCaseValue(*this, Lo->getLocStart(), LoVal,
    854                      CondWidthBeforePromotion, CondIsSignedBeforePromotion);
    855 
    856       // Convert the value to the same width/sign as the condition.
    857       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
    858 
    859       CS->setLHS(Lo);
    860 
    861       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
    862       if (CS->getRHS()) {
    863         if (CS->getRHS()->isTypeDependent() ||
    864             CS->getRHS()->isValueDependent()) {
    865           HasDependentValue = true;
    866           break;
    867         }
    868         CaseRanges.push_back(std::make_pair(LoVal, CS));
    869       } else
    870         CaseVals.push_back(std::make_pair(LoVal, CS));
    871     }
    872   }
    873 
    874   if (!HasDependentValue) {
    875     // If we don't have a default statement, check whether the
    876     // condition is constant.
    877     llvm::APSInt ConstantCondValue;
    878     bool HasConstantCond = false;
    879     if (!HasDependentValue && !TheDefaultStmt) {
    880       HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
    881                                                 Expr::SE_AllowSideEffects);
    882       assert(!HasConstantCond ||
    883              (ConstantCondValue.getBitWidth() == CondWidth &&
    884               ConstantCondValue.isSigned() == CondIsSigned));
    885     }
    886     bool ShouldCheckConstantCond = HasConstantCond;
    887 
    888     // Sort all the scalar case values so we can easily detect duplicates.
    889     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
    890 
    891     if (!CaseVals.empty()) {
    892       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
    893         if (ShouldCheckConstantCond &&
    894             CaseVals[i].first == ConstantCondValue)
    895           ShouldCheckConstantCond = false;
    896 
    897         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
    898           // If we have a duplicate, report it.
    899           // First, determine if either case value has a name
    900           StringRef PrevString, CurrString;
    901           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
    902           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
    903           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
    904             PrevString = DeclRef->getDecl()->getName();
    905           }
    906           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
    907             CurrString = DeclRef->getDecl()->getName();
    908           }
    909           SmallString<16> CaseValStr;
    910           CaseVals[i-1].first.toString(CaseValStr);
    911 
    912           if (PrevString == CurrString)
    913             Diag(CaseVals[i].second->getLHS()->getLocStart(),
    914                  diag::err_duplicate_case) <<
    915                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
    916           else
    917             Diag(CaseVals[i].second->getLHS()->getLocStart(),
    918                  diag::err_duplicate_case_differing_expr) <<
    919                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
    920                  (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
    921                  CaseValStr;
    922 
    923           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
    924                diag::note_duplicate_case_prev);
    925           // FIXME: We really want to remove the bogus case stmt from the
    926           // substmt, but we have no way to do this right now.
    927           CaseListIsErroneous = true;
    928         }
    929       }
    930     }
    931 
    932     // Detect duplicate case ranges, which usually don't exist at all in
    933     // the first place.
    934     if (!CaseRanges.empty()) {
    935       // Sort all the case ranges by their low value so we can easily detect
    936       // overlaps between ranges.
    937       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
    938 
    939       // Scan the ranges, computing the high values and removing empty ranges.
    940       std::vector<llvm::APSInt> HiVals;
    941       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
    942         llvm::APSInt &LoVal = CaseRanges[i].first;
    943         CaseStmt *CR = CaseRanges[i].second;
    944         Expr *Hi = CR->getRHS();
    945         llvm::APSInt HiVal;
    946 
    947         if (getLangOpts().CPlusPlus11) {
    948           // C++11 [stmt.switch]p2: the constant-expression shall be a converted
    949           // constant expression of the promoted type of the switch condition.
    950           ExprResult ConvHi =
    951             CheckConvertedConstantExpression(Hi, CondType, HiVal,
    952                                              CCEK_CaseValue);
    953           if (ConvHi.isInvalid()) {
    954             CaseListIsErroneous = true;
    955             continue;
    956           }
    957           Hi = ConvHi.get();
    958         } else {
    959           HiVal = Hi->EvaluateKnownConstInt(Context);
    960 
    961           // If the RHS is not the same type as the condition, insert an
    962           // implicit cast.
    963           Hi = DefaultLvalueConversion(Hi).get();
    964           Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
    965         }
    966 
    967         // Check the unconverted value is within the range of possible values of
    968         // the switch expression.
    969         checkCaseValue(*this, Hi->getLocStart(), HiVal,
    970                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
    971 
    972         // Convert the value to the same width/sign as the condition.
    973         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
    974 
    975         CR->setRHS(Hi);
    976 
    977         // If the low value is bigger than the high value, the case is empty.
    978         if (LoVal > HiVal) {
    979           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
    980             << SourceRange(CR->getLHS()->getLocStart(),
    981                            Hi->getLocEnd());
    982           CaseRanges.erase(CaseRanges.begin()+i);
    983           --i, --e;
    984           continue;
    985         }
    986 
    987         if (ShouldCheckConstantCond &&
    988             LoVal <= ConstantCondValue &&
    989             ConstantCondValue <= HiVal)
    990           ShouldCheckConstantCond = false;
    991 
    992         HiVals.push_back(HiVal);
    993       }
    994 
    995       // Rescan the ranges, looking for overlap with singleton values and other
    996       // ranges.  Since the range list is sorted, we only need to compare case
    997       // ranges with their neighbors.
    998       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
    999         llvm::APSInt &CRLo = CaseRanges[i].first;
   1000         llvm::APSInt &CRHi = HiVals[i];
   1001         CaseStmt *CR = CaseRanges[i].second;
   1002 
   1003         // Check to see whether the case range overlaps with any
   1004         // singleton cases.
   1005         CaseStmt *OverlapStmt = nullptr;
   1006         llvm::APSInt OverlapVal(32);
   1007 
   1008         // Find the smallest value >= the lower bound.  If I is in the
   1009         // case range, then we have overlap.
   1010         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
   1011                                                   CaseVals.end(), CRLo,
   1012                                                   CaseCompareFunctor());
   1013         if (I != CaseVals.end() && I->first < CRHi) {
   1014           OverlapVal  = I->first;   // Found overlap with scalar.
   1015           OverlapStmt = I->second;
   1016         }
   1017 
   1018         // Find the smallest value bigger than the upper bound.
   1019         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
   1020         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
   1021           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
   1022           OverlapStmt = (I-1)->second;
   1023         }
   1024 
   1025         // Check to see if this case stmt overlaps with the subsequent
   1026         // case range.
   1027         if (i && CRLo <= HiVals[i-1]) {
   1028           OverlapVal  = HiVals[i-1];       // Found overlap with range.
   1029           OverlapStmt = CaseRanges[i-1].second;
   1030         }
   1031 
   1032         if (OverlapStmt) {
   1033           // If we have a duplicate, report it.
   1034           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
   1035             << OverlapVal.toString(10);
   1036           Diag(OverlapStmt->getLHS()->getLocStart(),
   1037                diag::note_duplicate_case_prev);
   1038           // FIXME: We really want to remove the bogus case stmt from the
   1039           // substmt, but we have no way to do this right now.
   1040           CaseListIsErroneous = true;
   1041         }
   1042       }
   1043     }
   1044 
   1045     // Complain if we have a constant condition and we didn't find a match.
   1046     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
   1047       // TODO: it would be nice if we printed enums as enums, chars as
   1048       // chars, etc.
   1049       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
   1050         << ConstantCondValue.toString(10)
   1051         << CondExpr->getSourceRange();
   1052     }
   1053 
   1054     // Check to see if switch is over an Enum and handles all of its
   1055     // values.  We only issue a warning if there is not 'default:', but
   1056     // we still do the analysis to preserve this information in the AST
   1057     // (which can be used by flow-based analyes).
   1058     //
   1059     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
   1060 
   1061     // If switch has default case, then ignore it.
   1062     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
   1063       const EnumDecl *ED = ET->getDecl();
   1064       EnumValsTy EnumVals;
   1065 
   1066       // Gather all enum values, set their type and sort them,
   1067       // allowing easier comparison with CaseVals.
   1068       for (auto *EDI : ED->enumerators()) {
   1069         llvm::APSInt Val = EDI->getInitVal();
   1070         AdjustAPSInt(Val, CondWidth, CondIsSigned);
   1071         EnumVals.push_back(std::make_pair(Val, EDI));
   1072       }
   1073       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
   1074       auto EI = EnumVals.begin(), EIEnd =
   1075         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
   1076 
   1077       // See which case values aren't in enum.
   1078       for (CaseValsTy::const_iterator CI = CaseVals.begin();
   1079           CI != CaseVals.end(); CI++) {
   1080         Expr *CaseExpr = CI->second->getLHS();
   1081         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1082                                               CI->first))
   1083           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1084             << CondTypeBeforePromotion;
   1085       }
   1086 
   1087       // See which of case ranges aren't in enum
   1088       EI = EnumVals.begin();
   1089       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
   1090           RI != CaseRanges.end(); RI++) {
   1091         Expr *CaseExpr = RI->second->getLHS();
   1092         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1093                                               RI->first))
   1094           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1095             << CondTypeBeforePromotion;
   1096 
   1097         llvm::APSInt Hi =
   1098           RI->second->getRHS()->EvaluateKnownConstInt(Context);
   1099         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
   1100 
   1101         CaseExpr = RI->second->getRHS();
   1102         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1103                                               Hi))
   1104           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1105             << CondTypeBeforePromotion;
   1106       }
   1107 
   1108       // Check which enum vals aren't in switch
   1109       auto CI = CaseVals.begin();
   1110       auto RI = CaseRanges.begin();
   1111       bool hasCasesNotInSwitch = false;
   1112 
   1113       SmallVector<DeclarationName,8> UnhandledNames;
   1114 
   1115       for (EI = EnumVals.begin(); EI != EIEnd; EI++){
   1116         // Drop unneeded case values
   1117         while (CI != CaseVals.end() && CI->first < EI->first)
   1118           CI++;
   1119 
   1120         if (CI != CaseVals.end() && CI->first == EI->first)
   1121           continue;
   1122 
   1123         // Drop unneeded case ranges
   1124         for (; RI != CaseRanges.end(); RI++) {
   1125           llvm::APSInt Hi =
   1126             RI->second->getRHS()->EvaluateKnownConstInt(Context);
   1127           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
   1128           if (EI->first <= Hi)
   1129             break;
   1130         }
   1131 
   1132         if (RI == CaseRanges.end() || EI->first < RI->first) {
   1133           hasCasesNotInSwitch = true;
   1134           UnhandledNames.push_back(EI->second->getDeclName());
   1135         }
   1136       }
   1137 
   1138       if (TheDefaultStmt && UnhandledNames.empty())
   1139         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
   1140 
   1141       // Produce a nice diagnostic if multiple values aren't handled.
   1142       if (!UnhandledNames.empty()) {
   1143         DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
   1144                                     TheDefaultStmt ? diag::warn_def_missing_case
   1145                                                    : diag::warn_missing_case)
   1146                                << (int)UnhandledNames.size();
   1147 
   1148         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
   1149              I != E; ++I)
   1150           DB << UnhandledNames[I];
   1151       }
   1152 
   1153       if (!hasCasesNotInSwitch)
   1154         SS->setAllEnumCasesCovered();
   1155     }
   1156   }
   1157 
   1158   if (BodyStmt)
   1159     DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
   1160                           diag::warn_empty_switch_body);
   1161 
   1162   // FIXME: If the case list was broken is some way, we don't have a good system
   1163   // to patch it up.  Instead, just return the whole substmt as broken.
   1164   if (CaseListIsErroneous)
   1165     return StmtError();
   1166 
   1167   return SS;
   1168 }
   1169 
   1170 void
   1171 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
   1172                              Expr *SrcExpr) {
   1173   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
   1174     return;
   1175 
   1176   if (const EnumType *ET = DstType->getAs<EnumType>())
   1177     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
   1178         SrcType->isIntegerType()) {
   1179       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
   1180           SrcExpr->isIntegerConstantExpr(Context)) {
   1181         // Get the bitwidth of the enum value before promotions.
   1182         unsigned DstWidth = Context.getIntWidth(DstType);
   1183         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
   1184 
   1185         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
   1186         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
   1187         const EnumDecl *ED = ET->getDecl();
   1188 
   1189         if (ED->hasAttr<FlagEnumAttr>()) {
   1190           if (!IsValueInFlagEnum(ED, RhsVal, true))
   1191             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
   1192               << DstType.getUnqualifiedType();
   1193         } else {
   1194           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
   1195               EnumValsTy;
   1196           EnumValsTy EnumVals;
   1197 
   1198           // Gather all enum values, set their type and sort them,
   1199           // allowing easier comparison with rhs constant.
   1200           for (auto *EDI : ED->enumerators()) {
   1201             llvm::APSInt Val = EDI->getInitVal();
   1202             AdjustAPSInt(Val, DstWidth, DstIsSigned);
   1203             EnumVals.push_back(std::make_pair(Val, EDI));
   1204           }
   1205           if (EnumVals.empty())
   1206             return;
   1207           std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
   1208           EnumValsTy::iterator EIend =
   1209               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
   1210 
   1211           // See which values aren't in the enum.
   1212           EnumValsTy::const_iterator EI = EnumVals.begin();
   1213           while (EI != EIend && EI->first < RhsVal)
   1214             EI++;
   1215           if (EI == EIend || EI->first != RhsVal) {
   1216             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
   1217                 << DstType.getUnqualifiedType();
   1218           }
   1219         }
   1220       }
   1221     }
   1222 }
   1223 
   1224 StmtResult
   1225 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
   1226                      Decl *CondVar, Stmt *Body) {
   1227   ExprResult CondResult(Cond.release());
   1228 
   1229   VarDecl *ConditionVar = nullptr;
   1230   if (CondVar) {
   1231     ConditionVar = cast<VarDecl>(CondVar);
   1232     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
   1233     CondResult = ActOnFinishFullExpr(CondResult.get(), WhileLoc);
   1234     if (CondResult.isInvalid())
   1235       return StmtError();
   1236   }
   1237   Expr *ConditionExpr = CondResult.get();
   1238   if (!ConditionExpr)
   1239     return StmtError();
   1240   CheckBreakContinueBinding(ConditionExpr);
   1241 
   1242   DiagnoseUnusedExprResult(Body);
   1243 
   1244   if (isa<NullStmt>(Body))
   1245     getCurCompoundScope().setHasEmptyLoopBodies();
   1246 
   1247   return new (Context)
   1248       WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
   1249 }
   1250 
   1251 StmtResult
   1252 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
   1253                   SourceLocation WhileLoc, SourceLocation CondLParen,
   1254                   Expr *Cond, SourceLocation CondRParen) {
   1255   assert(Cond && "ActOnDoStmt(): missing expression");
   1256 
   1257   CheckBreakContinueBinding(Cond);
   1258   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
   1259   if (CondResult.isInvalid())
   1260     return StmtError();
   1261   Cond = CondResult.get();
   1262 
   1263   CondResult = ActOnFinishFullExpr(Cond, DoLoc);
   1264   if (CondResult.isInvalid())
   1265     return StmtError();
   1266   Cond = CondResult.get();
   1267 
   1268   DiagnoseUnusedExprResult(Body);
   1269 
   1270   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
   1271 }
   1272 
   1273 namespace {
   1274   // This visitor will traverse a conditional statement and store all
   1275   // the evaluated decls into a vector.  Simple is set to true if none
   1276   // of the excluded constructs are used.
   1277   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
   1278     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
   1279     SmallVectorImpl<SourceRange> &Ranges;
   1280     bool Simple;
   1281   public:
   1282     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
   1283 
   1284     DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
   1285                   SmallVectorImpl<SourceRange> &Ranges) :
   1286         Inherited(S.Context),
   1287         Decls(Decls),
   1288         Ranges(Ranges),
   1289         Simple(true) {}
   1290 
   1291     bool isSimple() { return Simple; }
   1292 
   1293     // Replaces the method in EvaluatedExprVisitor.
   1294     void VisitMemberExpr(MemberExpr* E) {
   1295       Simple = false;
   1296     }
   1297 
   1298     // Any Stmt not whitelisted will cause the condition to be marked complex.
   1299     void VisitStmt(Stmt *S) {
   1300       Simple = false;
   1301     }
   1302 
   1303     void VisitBinaryOperator(BinaryOperator *E) {
   1304       Visit(E->getLHS());
   1305       Visit(E->getRHS());
   1306     }
   1307 
   1308     void VisitCastExpr(CastExpr *E) {
   1309       Visit(E->getSubExpr());
   1310     }
   1311 
   1312     void VisitUnaryOperator(UnaryOperator *E) {
   1313       // Skip checking conditionals with derefernces.
   1314       if (E->getOpcode() == UO_Deref)
   1315         Simple = false;
   1316       else
   1317         Visit(E->getSubExpr());
   1318     }
   1319 
   1320     void VisitConditionalOperator(ConditionalOperator *E) {
   1321       Visit(E->getCond());
   1322       Visit(E->getTrueExpr());
   1323       Visit(E->getFalseExpr());
   1324     }
   1325 
   1326     void VisitParenExpr(ParenExpr *E) {
   1327       Visit(E->getSubExpr());
   1328     }
   1329 
   1330     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
   1331       Visit(E->getOpaqueValue()->getSourceExpr());
   1332       Visit(E->getFalseExpr());
   1333     }
   1334 
   1335     void VisitIntegerLiteral(IntegerLiteral *E) { }
   1336     void VisitFloatingLiteral(FloatingLiteral *E) { }
   1337     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
   1338     void VisitCharacterLiteral(CharacterLiteral *E) { }
   1339     void VisitGNUNullExpr(GNUNullExpr *E) { }
   1340     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
   1341 
   1342     void VisitDeclRefExpr(DeclRefExpr *E) {
   1343       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
   1344       if (!VD) return;
   1345 
   1346       Ranges.push_back(E->getSourceRange());
   1347 
   1348       Decls.insert(VD);
   1349     }
   1350 
   1351   }; // end class DeclExtractor
   1352 
   1353   // DeclMatcher checks to see if the decls are used in a non-evaluated
   1354   // context.
   1355   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
   1356     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
   1357     bool FoundDecl;
   1358 
   1359   public:
   1360     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
   1361 
   1362     DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
   1363                 Stmt *Statement) :
   1364         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
   1365       if (!Statement) return;
   1366 
   1367       Visit(Statement);
   1368     }
   1369 
   1370     void VisitReturnStmt(ReturnStmt *S) {
   1371       FoundDecl = true;
   1372     }
   1373 
   1374     void VisitBreakStmt(BreakStmt *S) {
   1375       FoundDecl = true;
   1376     }
   1377 
   1378     void VisitGotoStmt(GotoStmt *S) {
   1379       FoundDecl = true;
   1380     }
   1381 
   1382     void VisitCastExpr(CastExpr *E) {
   1383       if (E->getCastKind() == CK_LValueToRValue)
   1384         CheckLValueToRValueCast(E->getSubExpr());
   1385       else
   1386         Visit(E->getSubExpr());
   1387     }
   1388 
   1389     void CheckLValueToRValueCast(Expr *E) {
   1390       E = E->IgnoreParenImpCasts();
   1391 
   1392       if (isa<DeclRefExpr>(E)) {
   1393         return;
   1394       }
   1395 
   1396       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   1397         Visit(CO->getCond());
   1398         CheckLValueToRValueCast(CO->getTrueExpr());
   1399         CheckLValueToRValueCast(CO->getFalseExpr());
   1400         return;
   1401       }
   1402 
   1403       if (BinaryConditionalOperator *BCO =
   1404               dyn_cast<BinaryConditionalOperator>(E)) {
   1405         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
   1406         CheckLValueToRValueCast(BCO->getFalseExpr());
   1407         return;
   1408       }
   1409 
   1410       Visit(E);
   1411     }
   1412 
   1413     void VisitDeclRefExpr(DeclRefExpr *E) {
   1414       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   1415         if (Decls.count(VD))
   1416           FoundDecl = true;
   1417     }
   1418 
   1419     bool FoundDeclInUse() { return FoundDecl; }
   1420 
   1421   };  // end class DeclMatcher
   1422 
   1423   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
   1424                                         Expr *Third, Stmt *Body) {
   1425     // Condition is empty
   1426     if (!Second) return;
   1427 
   1428     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
   1429                           Second->getLocStart()))
   1430       return;
   1431 
   1432     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
   1433     llvm::SmallPtrSet<VarDecl*, 8> Decls;
   1434     SmallVector<SourceRange, 10> Ranges;
   1435     DeclExtractor DE(S, Decls, Ranges);
   1436     DE.Visit(Second);
   1437 
   1438     // Don't analyze complex conditionals.
   1439     if (!DE.isSimple()) return;
   1440 
   1441     // No decls found.
   1442     if (Decls.size() == 0) return;
   1443 
   1444     // Don't warn on volatile, static, or global variables.
   1445     for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
   1446                                                    E = Decls.end();
   1447          I != E; ++I)
   1448       if ((*I)->getType().isVolatileQualified() ||
   1449           (*I)->hasGlobalStorage()) return;
   1450 
   1451     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
   1452         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
   1453         DeclMatcher(S, Decls, Body).FoundDeclInUse())
   1454       return;
   1455 
   1456     // Load decl names into diagnostic.
   1457     if (Decls.size() > 4)
   1458       PDiag << 0;
   1459     else {
   1460       PDiag << Decls.size();
   1461       for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
   1462                                                      E = Decls.end();
   1463            I != E; ++I)
   1464         PDiag << (*I)->getDeclName();
   1465     }
   1466 
   1467     // Load SourceRanges into diagnostic if there is room.
   1468     // Otherwise, load the SourceRange of the conditional expression.
   1469     if (Ranges.size() <= PartialDiagnostic::MaxArguments)
   1470       for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
   1471                                                   E = Ranges.end();
   1472            I != E; ++I)
   1473         PDiag << *I;
   1474     else
   1475       PDiag << Second->getSourceRange();
   1476 
   1477     S.Diag(Ranges.begin()->getBegin(), PDiag);
   1478   }
   1479 
   1480   // If Statement is an incemement or decrement, return true and sets the
   1481   // variables Increment and DRE.
   1482   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
   1483                             DeclRefExpr *&DRE) {
   1484     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
   1485       switch (UO->getOpcode()) {
   1486         default: return false;
   1487         case UO_PostInc:
   1488         case UO_PreInc:
   1489           Increment = true;
   1490           break;
   1491         case UO_PostDec:
   1492         case UO_PreDec:
   1493           Increment = false;
   1494           break;
   1495       }
   1496       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
   1497       return DRE;
   1498     }
   1499 
   1500     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
   1501       FunctionDecl *FD = Call->getDirectCallee();
   1502       if (!FD || !FD->isOverloadedOperator()) return false;
   1503       switch (FD->getOverloadedOperator()) {
   1504         default: return false;
   1505         case OO_PlusPlus:
   1506           Increment = true;
   1507           break;
   1508         case OO_MinusMinus:
   1509           Increment = false;
   1510           break;
   1511       }
   1512       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
   1513       return DRE;
   1514     }
   1515 
   1516     return false;
   1517   }
   1518 
   1519   // A visitor to determine if a continue or break statement is a
   1520   // subexpression.
   1521   class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
   1522     SourceLocation BreakLoc;
   1523     SourceLocation ContinueLoc;
   1524   public:
   1525     BreakContinueFinder(Sema &S, Stmt* Body) :
   1526         Inherited(S.Context) {
   1527       Visit(Body);
   1528     }
   1529 
   1530     typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
   1531 
   1532     void VisitContinueStmt(ContinueStmt* E) {
   1533       ContinueLoc = E->getContinueLoc();
   1534     }
   1535 
   1536     void VisitBreakStmt(BreakStmt* E) {
   1537       BreakLoc = E->getBreakLoc();
   1538     }
   1539 
   1540     bool ContinueFound() { return ContinueLoc.isValid(); }
   1541     bool BreakFound() { return BreakLoc.isValid(); }
   1542     SourceLocation GetContinueLoc() { return ContinueLoc; }
   1543     SourceLocation GetBreakLoc() { return BreakLoc; }
   1544 
   1545   };  // end class BreakContinueFinder
   1546 
   1547   // Emit a warning when a loop increment/decrement appears twice per loop
   1548   // iteration.  The conditions which trigger this warning are:
   1549   // 1) The last statement in the loop body and the third expression in the
   1550   //    for loop are both increment or both decrement of the same variable
   1551   // 2) No continue statements in the loop body.
   1552   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
   1553     // Return when there is nothing to check.
   1554     if (!Body || !Third) return;
   1555 
   1556     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
   1557                           Third->getLocStart()))
   1558       return;
   1559 
   1560     // Get the last statement from the loop body.
   1561     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
   1562     if (!CS || CS->body_empty()) return;
   1563     Stmt *LastStmt = CS->body_back();
   1564     if (!LastStmt) return;
   1565 
   1566     bool LoopIncrement, LastIncrement;
   1567     DeclRefExpr *LoopDRE, *LastDRE;
   1568 
   1569     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
   1570     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
   1571 
   1572     // Check that the two statements are both increments or both decrements
   1573     // on the same variable.
   1574     if (LoopIncrement != LastIncrement ||
   1575         LoopDRE->getDecl() != LastDRE->getDecl()) return;
   1576 
   1577     if (BreakContinueFinder(S, Body).ContinueFound()) return;
   1578 
   1579     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
   1580          << LastDRE->getDecl() << LastIncrement;
   1581     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
   1582          << LoopIncrement;
   1583   }
   1584 
   1585 } // end namespace
   1586 
   1587 
   1588 void Sema::CheckBreakContinueBinding(Expr *E) {
   1589   if (!E || getLangOpts().CPlusPlus)
   1590     return;
   1591   BreakContinueFinder BCFinder(*this, E);
   1592   Scope *BreakParent = CurScope->getBreakParent();
   1593   if (BCFinder.BreakFound() && BreakParent) {
   1594     if (BreakParent->getFlags() & Scope::SwitchScope) {
   1595       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
   1596     } else {
   1597       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
   1598           << "break";
   1599     }
   1600   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
   1601     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
   1602         << "continue";
   1603   }
   1604 }
   1605 
   1606 StmtResult
   1607 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
   1608                    Stmt *First, FullExprArg second, Decl *secondVar,
   1609                    FullExprArg third,
   1610                    SourceLocation RParenLoc, Stmt *Body) {
   1611   if (!getLangOpts().CPlusPlus) {
   1612     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
   1613       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
   1614       // declare identifiers for objects having storage class 'auto' or
   1615       // 'register'.
   1616       for (auto *DI : DS->decls()) {
   1617         VarDecl *VD = dyn_cast<VarDecl>(DI);
   1618         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
   1619           VD = nullptr;
   1620         if (!VD) {
   1621           Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
   1622           DI->setInvalidDecl();
   1623         }
   1624       }
   1625     }
   1626   }
   1627 
   1628   CheckBreakContinueBinding(second.get());
   1629   CheckBreakContinueBinding(third.get());
   1630 
   1631   CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
   1632   CheckForRedundantIteration(*this, third.get(), Body);
   1633 
   1634   ExprResult SecondResult(second.release());
   1635   VarDecl *ConditionVar = nullptr;
   1636   if (secondVar) {
   1637     ConditionVar = cast<VarDecl>(secondVar);
   1638     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
   1639     SecondResult = ActOnFinishFullExpr(SecondResult.get(), ForLoc);
   1640     if (SecondResult.isInvalid())
   1641       return StmtError();
   1642   }
   1643 
   1644   Expr *Third  = third.release().getAs<Expr>();
   1645 
   1646   DiagnoseUnusedExprResult(First);
   1647   DiagnoseUnusedExprResult(Third);
   1648   DiagnoseUnusedExprResult(Body);
   1649 
   1650   if (isa<NullStmt>(Body))
   1651     getCurCompoundScope().setHasEmptyLoopBodies();
   1652 
   1653   return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
   1654                                Third, Body, ForLoc, LParenLoc, RParenLoc);
   1655 }
   1656 
   1657 /// In an Objective C collection iteration statement:
   1658 ///   for (x in y)
   1659 /// x can be an arbitrary l-value expression.  Bind it up as a
   1660 /// full-expression.
   1661 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
   1662   // Reduce placeholder expressions here.  Note that this rejects the
   1663   // use of pseudo-object l-values in this position.
   1664   ExprResult result = CheckPlaceholderExpr(E);
   1665   if (result.isInvalid()) return StmtError();
   1666   E = result.get();
   1667 
   1668   ExprResult FullExpr = ActOnFinishFullExpr(E);
   1669   if (FullExpr.isInvalid())
   1670     return StmtError();
   1671   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
   1672 }
   1673 
   1674 ExprResult
   1675 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
   1676   if (!collection)
   1677     return ExprError();
   1678 
   1679   ExprResult result = CorrectDelayedTyposInExpr(collection);
   1680   if (!result.isUsable())
   1681     return ExprError();
   1682   collection = result.get();
   1683 
   1684   // Bail out early if we've got a type-dependent expression.
   1685   if (collection->isTypeDependent()) return collection;
   1686 
   1687   // Perform normal l-value conversion.
   1688   result = DefaultFunctionArrayLvalueConversion(collection);
   1689   if (result.isInvalid())
   1690     return ExprError();
   1691   collection = result.get();
   1692 
   1693   // The operand needs to have object-pointer type.
   1694   // TODO: should we do a contextual conversion?
   1695   const ObjCObjectPointerType *pointerType =
   1696     collection->getType()->getAs<ObjCObjectPointerType>();
   1697   if (!pointerType)
   1698     return Diag(forLoc, diag::err_collection_expr_type)
   1699              << collection->getType() << collection->getSourceRange();
   1700 
   1701   // Check that the operand provides
   1702   //   - countByEnumeratingWithState:objects:count:
   1703   const ObjCObjectType *objectType = pointerType->getObjectType();
   1704   ObjCInterfaceDecl *iface = objectType->getInterface();
   1705 
   1706   // If we have a forward-declared type, we can't do this check.
   1707   // Under ARC, it is an error not to have a forward-declared class.
   1708   if (iface &&
   1709       (getLangOpts().ObjCAutoRefCount
   1710            ? RequireCompleteType(forLoc, QualType(objectType, 0),
   1711                                  diag::err_arc_collection_forward, collection)
   1712            : !isCompleteType(forLoc, QualType(objectType, 0)))) {
   1713     // Otherwise, if we have any useful type information, check that
   1714     // the type declares the appropriate method.
   1715   } else if (iface || !objectType->qual_empty()) {
   1716     IdentifierInfo *selectorIdents[] = {
   1717       &Context.Idents.get("countByEnumeratingWithState"),
   1718       &Context.Idents.get("objects"),
   1719       &Context.Idents.get("count")
   1720     };
   1721     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
   1722 
   1723     ObjCMethodDecl *method = nullptr;
   1724 
   1725     // If there's an interface, look in both the public and private APIs.
   1726     if (iface) {
   1727       method = iface->lookupInstanceMethod(selector);
   1728       if (!method) method = iface->lookupPrivateMethod(selector);
   1729     }
   1730 
   1731     // Also check protocol qualifiers.
   1732     if (!method)
   1733       method = LookupMethodInQualifiedType(selector, pointerType,
   1734                                            /*instance*/ true);
   1735 
   1736     // If we didn't find it anywhere, give up.
   1737     if (!method) {
   1738       Diag(forLoc, diag::warn_collection_expr_type)
   1739         << collection->getType() << selector << collection->getSourceRange();
   1740     }
   1741 
   1742     // TODO: check for an incompatible signature?
   1743   }
   1744 
   1745   // Wrap up any cleanups in the expression.
   1746   return collection;
   1747 }
   1748 
   1749 StmtResult
   1750 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
   1751                                  Stmt *First, Expr *collection,
   1752                                  SourceLocation RParenLoc) {
   1753 
   1754   ExprResult CollectionExprResult =
   1755     CheckObjCForCollectionOperand(ForLoc, collection);
   1756 
   1757   if (First) {
   1758     QualType FirstType;
   1759     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
   1760       if (!DS->isSingleDecl())
   1761         return StmtError(Diag((*DS->decl_begin())->getLocation(),
   1762                          diag::err_toomany_element_decls));
   1763 
   1764       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
   1765       if (!D || D->isInvalidDecl())
   1766         return StmtError();
   1767 
   1768       FirstType = D->getType();
   1769       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
   1770       // declare identifiers for objects having storage class 'auto' or
   1771       // 'register'.
   1772       if (!D->hasLocalStorage())
   1773         return StmtError(Diag(D->getLocation(),
   1774                               diag::err_non_local_variable_decl_in_for));
   1775 
   1776       // If the type contained 'auto', deduce the 'auto' to 'id'.
   1777       if (FirstType->getContainedAutoType()) {
   1778         OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
   1779                                  VK_RValue);
   1780         Expr *DeducedInit = &OpaqueId;
   1781         if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
   1782                 DAR_Failed)
   1783           DiagnoseAutoDeductionFailure(D, DeducedInit);
   1784         if (FirstType.isNull()) {
   1785           D->setInvalidDecl();
   1786           return StmtError();
   1787         }
   1788 
   1789         D->setType(FirstType);
   1790 
   1791         if (ActiveTemplateInstantiations.empty()) {
   1792           SourceLocation Loc =
   1793               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
   1794           Diag(Loc, diag::warn_auto_var_is_id)
   1795             << D->getDeclName();
   1796         }
   1797       }
   1798 
   1799     } else {
   1800       Expr *FirstE = cast<Expr>(First);
   1801       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
   1802         return StmtError(Diag(First->getLocStart(),
   1803                    diag::err_selector_element_not_lvalue)
   1804           << First->getSourceRange());
   1805 
   1806       FirstType = static_cast<Expr*>(First)->getType();
   1807       if (FirstType.isConstQualified())
   1808         Diag(ForLoc, diag::err_selector_element_const_type)
   1809           << FirstType << First->getSourceRange();
   1810     }
   1811     if (!FirstType->isDependentType() &&
   1812         !FirstType->isObjCObjectPointerType() &&
   1813         !FirstType->isBlockPointerType())
   1814         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
   1815                            << FirstType << First->getSourceRange());
   1816   }
   1817 
   1818   if (CollectionExprResult.isInvalid())
   1819     return StmtError();
   1820 
   1821   CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
   1822   if (CollectionExprResult.isInvalid())
   1823     return StmtError();
   1824 
   1825   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
   1826                                              nullptr, ForLoc, RParenLoc);
   1827 }
   1828 
   1829 /// Finish building a variable declaration for a for-range statement.
   1830 /// \return true if an error occurs.
   1831 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
   1832                                   SourceLocation Loc, int DiagID) {
   1833   if (Decl->getType()->isUndeducedType()) {
   1834     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
   1835     if (!Res.isUsable()) {
   1836       Decl->setInvalidDecl();
   1837       return true;
   1838     }
   1839     Init = Res.get();
   1840   }
   1841 
   1842   // Deduce the type for the iterator variable now rather than leaving it to
   1843   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
   1844   QualType InitType;
   1845   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
   1846       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
   1847           Sema::DAR_Failed)
   1848     SemaRef.Diag(Loc, DiagID) << Init->getType();
   1849   if (InitType.isNull()) {
   1850     Decl->setInvalidDecl();
   1851     return true;
   1852   }
   1853   Decl->setType(InitType);
   1854 
   1855   // In ARC, infer lifetime.
   1856   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
   1857   // we're doing the equivalent of fast iteration.
   1858   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
   1859       SemaRef.inferObjCARCLifetime(Decl))
   1860     Decl->setInvalidDecl();
   1861 
   1862   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
   1863                                /*TypeMayContainAuto=*/false);
   1864   SemaRef.FinalizeDeclaration(Decl);
   1865   SemaRef.CurContext->addHiddenDecl(Decl);
   1866   return false;
   1867 }
   1868 
   1869 namespace {
   1870 // An enum to represent whether something is dealing with a call to begin()
   1871 // or a call to end() in a range-based for loop.
   1872 enum BeginEndFunction {
   1873   BEF_begin,
   1874   BEF_end
   1875 };
   1876 
   1877 /// Produce a note indicating which begin/end function was implicitly called
   1878 /// by a C++11 for-range statement. This is often not obvious from the code,
   1879 /// nor from the diagnostics produced when analysing the implicit expressions
   1880 /// required in a for-range statement.
   1881 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
   1882                                   BeginEndFunction BEF) {
   1883   CallExpr *CE = dyn_cast<CallExpr>(E);
   1884   if (!CE)
   1885     return;
   1886   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1887   if (!D)
   1888     return;
   1889   SourceLocation Loc = D->getLocation();
   1890 
   1891   std::string Description;
   1892   bool IsTemplate = false;
   1893   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
   1894     Description = SemaRef.getTemplateArgumentBindingsText(
   1895       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
   1896     IsTemplate = true;
   1897   }
   1898 
   1899   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
   1900     << BEF << IsTemplate << Description << E->getType();
   1901 }
   1902 
   1903 /// Build a variable declaration for a for-range statement.
   1904 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
   1905                               QualType Type, const char *Name) {
   1906   DeclContext *DC = SemaRef.CurContext;
   1907   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
   1908   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
   1909   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
   1910                                   TInfo, SC_None);
   1911   Decl->setImplicit();
   1912   return Decl;
   1913 }
   1914 
   1915 }
   1916 
   1917 static bool ObjCEnumerationCollection(Expr *Collection) {
   1918   return !Collection->isTypeDependent()
   1919           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
   1920 }
   1921 
   1922 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
   1923 ///
   1924 /// C++11 [stmt.ranged]:
   1925 ///   A range-based for statement is equivalent to
   1926 ///
   1927 ///   {
   1928 ///     auto && __range = range-init;
   1929 ///     for ( auto __begin = begin-expr,
   1930 ///           __end = end-expr;
   1931 ///           __begin != __end;
   1932 ///           ++__begin ) {
   1933 ///       for-range-declaration = *__begin;
   1934 ///       statement
   1935 ///     }
   1936 ///   }
   1937 ///
   1938 /// The body of the loop is not available yet, since it cannot be analysed until
   1939 /// we have determined the type of the for-range-declaration.
   1940 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
   1941                                       SourceLocation CoawaitLoc, Stmt *First,
   1942                                       SourceLocation ColonLoc, Expr *Range,
   1943                                       SourceLocation RParenLoc,
   1944                                       BuildForRangeKind Kind) {
   1945   if (!First)
   1946     return StmtError();
   1947 
   1948   if (Range && ObjCEnumerationCollection(Range))
   1949     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
   1950 
   1951   DeclStmt *DS = dyn_cast<DeclStmt>(First);
   1952   assert(DS && "first part of for range not a decl stmt");
   1953 
   1954   if (!DS->isSingleDecl()) {
   1955     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
   1956     return StmtError();
   1957   }
   1958 
   1959   Decl *LoopVar = DS->getSingleDecl();
   1960   if (LoopVar->isInvalidDecl() || !Range ||
   1961       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
   1962     LoopVar->setInvalidDecl();
   1963     return StmtError();
   1964   }
   1965 
   1966   // Coroutines: 'for co_await' implicitly co_awaits its range.
   1967   if (CoawaitLoc.isValid()) {
   1968     ExprResult Coawait = ActOnCoawaitExpr(S, CoawaitLoc, Range);
   1969     if (Coawait.isInvalid()) return StmtError();
   1970     Range = Coawait.get();
   1971   }
   1972 
   1973   // Build  auto && __range = range-init
   1974   SourceLocation RangeLoc = Range->getLocStart();
   1975   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
   1976                                            Context.getAutoRRefDeductType(),
   1977                                            "__range");
   1978   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
   1979                             diag::err_for_range_deduction_failure)) {
   1980     LoopVar->setInvalidDecl();
   1981     return StmtError();
   1982   }
   1983 
   1984   // Claim the type doesn't contain auto: we've already done the checking.
   1985   DeclGroupPtrTy RangeGroup =
   1986       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
   1987                            /*TypeMayContainAuto=*/ false);
   1988   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
   1989   if (RangeDecl.isInvalid()) {
   1990     LoopVar->setInvalidDecl();
   1991     return StmtError();
   1992   }
   1993 
   1994   return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(),
   1995                               /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
   1996                               /*Inc=*/nullptr, DS, RParenLoc, Kind);
   1997 }
   1998 
   1999 /// \brief Create the initialization, compare, and increment steps for
   2000 /// the range-based for loop expression.
   2001 /// This function does not handle array-based for loops,
   2002 /// which are created in Sema::BuildCXXForRangeStmt.
   2003 ///
   2004 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
   2005 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
   2006 /// CandidateSet and BEF are set and some non-success value is returned on
   2007 /// failure.
   2008 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef,
   2009                                             Expr *BeginRange, Expr *EndRange,
   2010                                             QualType RangeType,
   2011                                             VarDecl *BeginVar,
   2012                                             VarDecl *EndVar,
   2013                                             SourceLocation ColonLoc,
   2014                                             OverloadCandidateSet *CandidateSet,
   2015                                             ExprResult *BeginExpr,
   2016                                             ExprResult *EndExpr,
   2017                                             BeginEndFunction *BEF) {
   2018   DeclarationNameInfo BeginNameInfo(
   2019       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
   2020   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
   2021                                   ColonLoc);
   2022 
   2023   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
   2024                                  Sema::LookupMemberName);
   2025   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
   2026 
   2027   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
   2028     // - if _RangeT is a class type, the unqualified-ids begin and end are
   2029     //   looked up in the scope of class _RangeT as if by class member access
   2030     //   lookup (3.4.5), and if either (or both) finds at least one
   2031     //   declaration, begin-expr and end-expr are __range.begin() and
   2032     //   __range.end(), respectively;
   2033     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
   2034     SemaRef.LookupQualifiedName(EndMemberLookup, D);
   2035 
   2036     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
   2037       SourceLocation RangeLoc = BeginVar->getLocation();
   2038       *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin;
   2039 
   2040       SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
   2041           << RangeLoc << BeginRange->getType() << *BEF;
   2042       return Sema::FRS_DiagnosticIssued;
   2043     }
   2044   } else {
   2045     // - otherwise, begin-expr and end-expr are begin(__range) and
   2046     //   end(__range), respectively, where begin and end are looked up with
   2047     //   argument-dependent lookup (3.4.2). For the purposes of this name
   2048     //   lookup, namespace std is an associated namespace.
   2049 
   2050   }
   2051 
   2052   *BEF = BEF_begin;
   2053   Sema::ForRangeStatus RangeStatus =
   2054       SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
   2055                                         BeginMemberLookup, CandidateSet,
   2056                                         BeginRange, BeginExpr);
   2057 
   2058   if (RangeStatus != Sema::FRS_Success) {
   2059     if (RangeStatus == Sema::FRS_DiagnosticIssued)
   2060       SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range)
   2061           << ColonLoc << BEF_begin << BeginRange->getType();
   2062     return RangeStatus;
   2063   }
   2064   if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
   2065                             diag::err_for_range_iter_deduction_failure)) {
   2066     NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
   2067     return Sema::FRS_DiagnosticIssued;
   2068   }
   2069 
   2070   *BEF = BEF_end;
   2071   RangeStatus =
   2072       SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
   2073                                         EndMemberLookup, CandidateSet,
   2074                                         EndRange, EndExpr);
   2075   if (RangeStatus != Sema::FRS_Success) {
   2076     if (RangeStatus == Sema::FRS_DiagnosticIssued)
   2077       SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range)
   2078           << ColonLoc << BEF_end << EndRange->getType();
   2079     return RangeStatus;
   2080   }
   2081   if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
   2082                             diag::err_for_range_iter_deduction_failure)) {
   2083     NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
   2084     return Sema::FRS_DiagnosticIssued;
   2085   }
   2086   return Sema::FRS_Success;
   2087 }
   2088 
   2089 /// Speculatively attempt to dereference an invalid range expression.
   2090 /// If the attempt fails, this function will return a valid, null StmtResult
   2091 /// and emit no diagnostics.
   2092 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
   2093                                                  SourceLocation ForLoc,
   2094                                                  SourceLocation CoawaitLoc,
   2095                                                  Stmt *LoopVarDecl,
   2096                                                  SourceLocation ColonLoc,
   2097                                                  Expr *Range,
   2098                                                  SourceLocation RangeLoc,
   2099                                                  SourceLocation RParenLoc) {
   2100   // Determine whether we can rebuild the for-range statement with a
   2101   // dereferenced range expression.
   2102   ExprResult AdjustedRange;
   2103   {
   2104     Sema::SFINAETrap Trap(SemaRef);
   2105 
   2106     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
   2107     if (AdjustedRange.isInvalid())
   2108       return StmtResult();
   2109 
   2110     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
   2111         S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(),
   2112         RParenLoc, Sema::BFRK_Check);
   2113     if (SR.isInvalid())
   2114       return StmtResult();
   2115   }
   2116 
   2117   // The attempt to dereference worked well enough that it could produce a valid
   2118   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
   2119   // case there are any other (non-fatal) problems with it.
   2120   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
   2121     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
   2122   return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl,
   2123                                       ColonLoc, AdjustedRange.get(), RParenLoc,
   2124                                       Sema::BFRK_Rebuild);
   2125 }
   2126 
   2127 namespace {
   2128 /// RAII object to automatically invalidate a declaration if an error occurs.
   2129 struct InvalidateOnErrorScope {
   2130   InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
   2131       : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
   2132   ~InvalidateOnErrorScope() {
   2133     if (Enabled && Trap.hasErrorOccurred())
   2134       D->setInvalidDecl();
   2135   }
   2136 
   2137   DiagnosticErrorTrap Trap;
   2138   Decl *D;
   2139   bool Enabled;
   2140 };
   2141 }
   2142 
   2143 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
   2144 StmtResult
   2145 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc,
   2146                            SourceLocation ColonLoc,
   2147                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
   2148                            Expr *Inc, Stmt *LoopVarDecl,
   2149                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
   2150   // FIXME: This should not be used during template instantiation. We should
   2151   // pick up the set of unqualified lookup results for the != and + operators
   2152   // in the initial parse.
   2153   //
   2154   // Testcase (accepts-invalid):
   2155   //   template<typename T> void f() { for (auto x : T()) {} }
   2156   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
   2157   //   bool operator!=(N::X, N::X); void operator++(N::X);
   2158   //   void g() { f<N::X>(); }
   2159   Scope *S = getCurScope();
   2160 
   2161   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
   2162   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
   2163   QualType RangeVarType = RangeVar->getType();
   2164 
   2165   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
   2166   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
   2167 
   2168   // If we hit any errors, mark the loop variable as invalid if its type
   2169   // contains 'auto'.
   2170   InvalidateOnErrorScope Invalidate(*this, LoopVar,
   2171                                     LoopVar->getType()->isUndeducedType());
   2172 
   2173   StmtResult BeginEndDecl = BeginEnd;
   2174   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
   2175 
   2176   if (RangeVarType->isDependentType()) {
   2177     // The range is implicitly used as a placeholder when it is dependent.
   2178     RangeVar->markUsed(Context);
   2179 
   2180     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
   2181     // them in properly when we instantiate the loop.
   2182     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
   2183       LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
   2184   } else if (!BeginEndDecl.get()) {
   2185     SourceLocation RangeLoc = RangeVar->getLocation();
   2186 
   2187     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
   2188 
   2189     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
   2190                                                 VK_LValue, ColonLoc);
   2191     if (BeginRangeRef.isInvalid())
   2192       return StmtError();
   2193 
   2194     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
   2195                                               VK_LValue, ColonLoc);
   2196     if (EndRangeRef.isInvalid())
   2197       return StmtError();
   2198 
   2199     QualType AutoType = Context.getAutoDeductType();
   2200     Expr *Range = RangeVar->getInit();
   2201     if (!Range)
   2202       return StmtError();
   2203     QualType RangeType = Range->getType();
   2204 
   2205     if (RequireCompleteType(RangeLoc, RangeType,
   2206                             diag::err_for_range_incomplete_type))
   2207       return StmtError();
   2208 
   2209     // Build auto __begin = begin-expr, __end = end-expr.
   2210     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
   2211                                              "__begin");
   2212     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
   2213                                            "__end");
   2214 
   2215     // Build begin-expr and end-expr and attach to __begin and __end variables.
   2216     ExprResult BeginExpr, EndExpr;
   2217     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
   2218       // - if _RangeT is an array type, begin-expr and end-expr are __range and
   2219       //   __range + __bound, respectively, where __bound is the array bound. If
   2220       //   _RangeT is an array of unknown size or an array of incomplete type,
   2221       //   the program is ill-formed;
   2222 
   2223       // begin-expr is __range.
   2224       BeginExpr = BeginRangeRef;
   2225       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
   2226                                 diag::err_for_range_iter_deduction_failure)) {
   2227         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2228         return StmtError();
   2229       }
   2230 
   2231       // Find the array bound.
   2232       ExprResult BoundExpr;
   2233       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
   2234         BoundExpr = IntegerLiteral::Create(
   2235             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
   2236       else if (const VariableArrayType *VAT =
   2237                dyn_cast<VariableArrayType>(UnqAT))
   2238         BoundExpr = VAT->getSizeExpr();
   2239       else {
   2240         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
   2241         // UnqAT is not incomplete and Range is not type-dependent.
   2242         llvm_unreachable("Unexpected array type in for-range");
   2243       }
   2244 
   2245       // end-expr is __range + __bound.
   2246       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
   2247                            BoundExpr.get());
   2248       if (EndExpr.isInvalid())
   2249         return StmtError();
   2250       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
   2251                                 diag::err_for_range_iter_deduction_failure)) {
   2252         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2253         return StmtError();
   2254       }
   2255     } else {
   2256       OverloadCandidateSet CandidateSet(RangeLoc,
   2257                                         OverloadCandidateSet::CSK_Normal);
   2258       BeginEndFunction BEFFailure;
   2259       ForRangeStatus RangeStatus =
   2260           BuildNonArrayForRange(*this, BeginRangeRef.get(),
   2261                                 EndRangeRef.get(), RangeType,
   2262                                 BeginVar, EndVar, ColonLoc, &CandidateSet,
   2263                                 &BeginExpr, &EndExpr, &BEFFailure);
   2264 
   2265       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
   2266           BEFFailure == BEF_begin) {
   2267         // If the range is being built from an array parameter, emit a
   2268         // a diagnostic that it is being treated as a pointer.
   2269         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
   2270           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
   2271             QualType ArrayTy = PVD->getOriginalType();
   2272             QualType PointerTy = PVD->getType();
   2273             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
   2274               Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
   2275                 << RangeLoc << PVD << ArrayTy << PointerTy;
   2276               Diag(PVD->getLocation(), diag::note_declared_at);
   2277               return StmtError();
   2278             }
   2279           }
   2280         }
   2281 
   2282         // If building the range failed, try dereferencing the range expression
   2283         // unless a diagnostic was issued or the end function is problematic.
   2284         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
   2285                                                        CoawaitLoc,
   2286                                                        LoopVarDecl, ColonLoc,
   2287                                                        Range, RangeLoc,
   2288                                                        RParenLoc);
   2289         if (SR.isInvalid() || SR.isUsable())
   2290           return SR;
   2291       }
   2292 
   2293       // Otherwise, emit diagnostics if we haven't already.
   2294       if (RangeStatus == FRS_NoViableFunction) {
   2295         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
   2296         Diag(Range->getLocStart(), diag::err_for_range_invalid)
   2297             << RangeLoc << Range->getType() << BEFFailure;
   2298         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
   2299       }
   2300       // Return an error if no fix was discovered.
   2301       if (RangeStatus != FRS_Success)
   2302         return StmtError();
   2303     }
   2304 
   2305     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
   2306            "invalid range expression in for loop");
   2307 
   2308     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
   2309     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
   2310     if (!Context.hasSameType(BeginType, EndType)) {
   2311       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
   2312         << BeginType << EndType;
   2313       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2314       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2315     }
   2316 
   2317     Decl *BeginEndDecls[] = { BeginVar, EndVar };
   2318     // Claim the type doesn't contain auto: we've already done the checking.
   2319     DeclGroupPtrTy BeginEndGroup =
   2320         BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
   2321                              /*TypeMayContainAuto=*/ false);
   2322     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
   2323 
   2324     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
   2325     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2326                                            VK_LValue, ColonLoc);
   2327     if (BeginRef.isInvalid())
   2328       return StmtError();
   2329 
   2330     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
   2331                                          VK_LValue, ColonLoc);
   2332     if (EndRef.isInvalid())
   2333       return StmtError();
   2334 
   2335     // Build and check __begin != __end expression.
   2336     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
   2337                            BeginRef.get(), EndRef.get());
   2338     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
   2339     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
   2340     if (NotEqExpr.isInvalid()) {
   2341       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2342         << RangeLoc << 0 << BeginRangeRef.get()->getType();
   2343       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2344       if (!Context.hasSameType(BeginType, EndType))
   2345         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2346       return StmtError();
   2347     }
   2348 
   2349     // Build and check ++__begin expression.
   2350     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2351                                 VK_LValue, ColonLoc);
   2352     if (BeginRef.isInvalid())
   2353       return StmtError();
   2354 
   2355     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
   2356     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
   2357       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
   2358     if (!IncrExpr.isInvalid())
   2359       IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
   2360     if (IncrExpr.isInvalid()) {
   2361       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2362         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
   2363       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2364       return StmtError();
   2365     }
   2366 
   2367     // Build and check *__begin  expression.
   2368     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2369                                 VK_LValue, ColonLoc);
   2370     if (BeginRef.isInvalid())
   2371       return StmtError();
   2372 
   2373     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
   2374     if (DerefExpr.isInvalid()) {
   2375       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2376         << RangeLoc << 1 << BeginRangeRef.get()->getType();
   2377       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2378       return StmtError();
   2379     }
   2380 
   2381     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
   2382     // trying to determine whether this would be a valid range.
   2383     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
   2384       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
   2385                            /*TypeMayContainAuto=*/true);
   2386       if (LoopVar->isInvalidDecl())
   2387         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2388     }
   2389   }
   2390 
   2391   // Don't bother to actually allocate the result if we're just trying to
   2392   // determine whether it would be valid.
   2393   if (Kind == BFRK_Check)
   2394     return StmtResult();
   2395 
   2396   return new (Context) CXXForRangeStmt(
   2397       RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
   2398       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
   2399       ColonLoc, RParenLoc);
   2400 }
   2401 
   2402 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
   2403 /// statement.
   2404 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
   2405   if (!S || !B)
   2406     return StmtError();
   2407   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
   2408 
   2409   ForStmt->setBody(B);
   2410   return S;
   2411 }
   2412 
   2413 // Warn when the loop variable is a const reference that creates a copy.
   2414 // Suggest using the non-reference type for copies.  If a copy can be prevented
   2415 // suggest the const reference type that would do so.
   2416 // For instance, given "for (const &Foo : Range)", suggest
   2417 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
   2418 // possible, also suggest "for (const &Bar : Range)" if this type prevents
   2419 // the copy altogether.
   2420 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
   2421                                                     const VarDecl *VD,
   2422                                                     QualType RangeInitType) {
   2423   const Expr *InitExpr = VD->getInit();
   2424   if (!InitExpr)
   2425     return;
   2426 
   2427   QualType VariableType = VD->getType();
   2428 
   2429   const MaterializeTemporaryExpr *MTE =
   2430       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
   2431 
   2432   // No copy made.
   2433   if (!MTE)
   2434     return;
   2435 
   2436   const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
   2437 
   2438   // Searching for either UnaryOperator for dereference of a pointer or
   2439   // CXXOperatorCallExpr for handling iterators.
   2440   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
   2441     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
   2442       E = CCE->getArg(0);
   2443     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
   2444       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
   2445       E = ME->getBase();
   2446     } else {
   2447       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
   2448       E = MTE->GetTemporaryExpr();
   2449     }
   2450     E = E->IgnoreImpCasts();
   2451   }
   2452 
   2453   bool ReturnsReference = false;
   2454   if (isa<UnaryOperator>(E)) {
   2455     ReturnsReference = true;
   2456   } else {
   2457     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
   2458     const FunctionDecl *FD = Call->getDirectCallee();
   2459     QualType ReturnType = FD->getReturnType();
   2460     ReturnsReference = ReturnType->isReferenceType();
   2461   }
   2462 
   2463   if (ReturnsReference) {
   2464     // Loop variable creates a temporary.  Suggest either to go with
   2465     // non-reference loop variable to indiciate a copy is made, or
   2466     // the correct time to bind a const reference.
   2467     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
   2468         << VD << VariableType << E->getType();
   2469     QualType NonReferenceType = VariableType.getNonReferenceType();
   2470     NonReferenceType.removeLocalConst();
   2471     QualType NewReferenceType =
   2472         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
   2473     SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
   2474         << NonReferenceType << NewReferenceType << VD->getSourceRange();
   2475   } else {
   2476     // The range always returns a copy, so a temporary is always created.
   2477     // Suggest removing the reference from the loop variable.
   2478     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
   2479         << VD << RangeInitType;
   2480     QualType NonReferenceType = VariableType.getNonReferenceType();
   2481     NonReferenceType.removeLocalConst();
   2482     SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
   2483         << NonReferenceType << VD->getSourceRange();
   2484   }
   2485 }
   2486 
   2487 // Warns when the loop variable can be changed to a reference type to
   2488 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
   2489 // "for (const Foo &x : Range)" if this form does not make a copy.
   2490 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
   2491                                                 const VarDecl *VD) {
   2492   const Expr *InitExpr = VD->getInit();
   2493   if (!InitExpr)
   2494     return;
   2495 
   2496   QualType VariableType = VD->getType();
   2497 
   2498   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
   2499     if (!CE->getConstructor()->isCopyConstructor())
   2500       return;
   2501   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
   2502     if (CE->getCastKind() != CK_LValueToRValue)
   2503       return;
   2504   } else {
   2505     return;
   2506   }
   2507 
   2508   // TODO: Determine a maximum size that a POD type can be before a diagnostic
   2509   // should be emitted.  Also, only ignore POD types with trivial copy
   2510   // constructors.
   2511   if (VariableType.isPODType(SemaRef.Context))
   2512     return;
   2513 
   2514   // Suggest changing from a const variable to a const reference variable
   2515   // if doing so will prevent a copy.
   2516   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
   2517       << VD << VariableType << InitExpr->getType();
   2518   SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
   2519       << SemaRef.Context.getLValueReferenceType(VariableType)
   2520       << VD->getSourceRange();
   2521 }
   2522 
   2523 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
   2524 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
   2525 ///    using "const foo x" to show that a copy is made
   2526 /// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
   2527 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
   2528 ///    prevent the copy.
   2529 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
   2530 ///    Suggest "const foo &x" to prevent the copy.
   2531 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
   2532                                            const CXXForRangeStmt *ForStmt) {
   2533   if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
   2534                               ForStmt->getLocStart()) &&
   2535       SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
   2536                               ForStmt->getLocStart()) &&
   2537       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
   2538                               ForStmt->getLocStart())) {
   2539     return;
   2540   }
   2541 
   2542   const VarDecl *VD = ForStmt->getLoopVariable();
   2543   if (!VD)
   2544     return;
   2545 
   2546   QualType VariableType = VD->getType();
   2547 
   2548   if (VariableType->isIncompleteType())
   2549     return;
   2550 
   2551   const Expr *InitExpr = VD->getInit();
   2552   if (!InitExpr)
   2553     return;
   2554 
   2555   if (VariableType->isReferenceType()) {
   2556     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
   2557                                             ForStmt->getRangeInit()->getType());
   2558   } else if (VariableType.isConstQualified()) {
   2559     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
   2560   }
   2561 }
   2562 
   2563 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
   2564 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
   2565 /// body cannot be performed until after the type of the range variable is
   2566 /// determined.
   2567 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
   2568   if (!S || !B)
   2569     return StmtError();
   2570 
   2571   if (isa<ObjCForCollectionStmt>(S))
   2572     return FinishObjCForCollectionStmt(S, B);
   2573 
   2574   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
   2575   ForStmt->setBody(B);
   2576 
   2577   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
   2578                         diag::warn_empty_range_based_for_body);
   2579 
   2580   DiagnoseForRangeVariableCopies(*this, ForStmt);
   2581 
   2582   return S;
   2583 }
   2584 
   2585 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
   2586                                SourceLocation LabelLoc,
   2587                                LabelDecl *TheDecl) {
   2588   getCurFunction()->setHasBranchIntoScope();
   2589   TheDecl->markUsed(Context);
   2590   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
   2591 }
   2592 
   2593 StmtResult
   2594 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
   2595                             Expr *E) {
   2596   // Convert operand to void*
   2597   if (!E->isTypeDependent()) {
   2598     QualType ETy = E->getType();
   2599     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
   2600     ExprResult ExprRes = E;
   2601     AssignConvertType ConvTy =
   2602       CheckSingleAssignmentConstraints(DestTy, ExprRes);
   2603     if (ExprRes.isInvalid())
   2604       return StmtError();
   2605     E = ExprRes.get();
   2606     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
   2607       return StmtError();
   2608   }
   2609 
   2610   ExprResult ExprRes = ActOnFinishFullExpr(E);
   2611   if (ExprRes.isInvalid())
   2612     return StmtError();
   2613   E = ExprRes.get();
   2614 
   2615   getCurFunction()->setHasIndirectGoto();
   2616 
   2617   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
   2618 }
   2619 
   2620 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
   2621                                      const Scope &DestScope) {
   2622   if (!S.CurrentSEHFinally.empty() &&
   2623       DestScope.Contains(*S.CurrentSEHFinally.back())) {
   2624     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
   2625   }
   2626 }
   2627 
   2628 StmtResult
   2629 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
   2630   Scope *S = CurScope->getContinueParent();
   2631   if (!S) {
   2632     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
   2633     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
   2634   }
   2635   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
   2636 
   2637   return new (Context) ContinueStmt(ContinueLoc);
   2638 }
   2639 
   2640 StmtResult
   2641 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
   2642   Scope *S = CurScope->getBreakParent();
   2643   if (!S) {
   2644     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
   2645     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
   2646   }
   2647   if (S->isOpenMPLoopScope())
   2648     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
   2649                      << "break");
   2650   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
   2651 
   2652   return new (Context) BreakStmt(BreakLoc);
   2653 }
   2654 
   2655 /// \brief Determine whether the given expression is a candidate for
   2656 /// copy elision in either a return statement or a throw expression.
   2657 ///
   2658 /// \param ReturnType If we're determining the copy elision candidate for
   2659 /// a return statement, this is the return type of the function. If we're
   2660 /// determining the copy elision candidate for a throw expression, this will
   2661 /// be a NULL type.
   2662 ///
   2663 /// \param E The expression being returned from the function or block, or
   2664 /// being thrown.
   2665 ///
   2666 /// \param AllowFunctionParameter Whether we allow function parameters to
   2667 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
   2668 /// we re-use this logic to determine whether we should try to move as part of
   2669 /// a return or throw (which does allow function parameters).
   2670 ///
   2671 /// \returns The NRVO candidate variable, if the return statement may use the
   2672 /// NRVO, or NULL if there is no such candidate.
   2673 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
   2674                                        Expr *E,
   2675                                        bool AllowFunctionParameter) {
   2676   if (!getLangOpts().CPlusPlus)
   2677     return nullptr;
   2678 
   2679   // - in a return statement in a function [where] ...
   2680   // ... the expression is the name of a non-volatile automatic object ...
   2681   DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
   2682   if (!DR || DR->refersToEnclosingVariableOrCapture())
   2683     return nullptr;
   2684   VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
   2685   if (!VD)
   2686     return nullptr;
   2687 
   2688   if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
   2689     return VD;
   2690   return nullptr;
   2691 }
   2692 
   2693 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
   2694                                   bool AllowFunctionParameter) {
   2695   QualType VDType = VD->getType();
   2696   // - in a return statement in a function with ...
   2697   // ... a class return type ...
   2698   if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
   2699     if (!ReturnType->isRecordType())
   2700       return false;
   2701     // ... the same cv-unqualified type as the function return type ...
   2702     if (!VDType->isDependentType() &&
   2703         !Context.hasSameUnqualifiedType(ReturnType, VDType))
   2704       return false;
   2705   }
   2706 
   2707   // ...object (other than a function or catch-clause parameter)...
   2708   if (VD->getKind() != Decl::Var &&
   2709       !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
   2710     return false;
   2711   if (VD->isExceptionVariable()) return false;
   2712 
   2713   // ...automatic...
   2714   if (!VD->hasLocalStorage()) return false;
   2715 
   2716   // ...non-volatile...
   2717   if (VD->getType().isVolatileQualified()) return false;
   2718 
   2719   // __block variables can't be allocated in a way that permits NRVO.
   2720   if (VD->hasAttr<BlocksAttr>()) return false;
   2721 
   2722   // Variables with higher required alignment than their type's ABI
   2723   // alignment cannot use NRVO.
   2724   if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
   2725       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
   2726     return false;
   2727 
   2728   return true;
   2729 }
   2730 
   2731 /// \brief Perform the initialization of a potentially-movable value, which
   2732 /// is the result of return value.
   2733 ///
   2734 /// This routine implements C++0x [class.copy]p33, which attempts to treat
   2735 /// returned lvalues as rvalues in certain cases (to prefer move construction),
   2736 /// then falls back to treating them as lvalues if that failed.
   2737 ExprResult
   2738 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
   2739                                       const VarDecl *NRVOCandidate,
   2740                                       QualType ResultType,
   2741                                       Expr *Value,
   2742                                       bool AllowNRVO) {
   2743   // C++0x [class.copy]p33:
   2744   //   When the criteria for elision of a copy operation are met or would
   2745   //   be met save for the fact that the source object is a function
   2746   //   parameter, and the object to be copied is designated by an lvalue,
   2747   //   overload resolution to select the constructor for the copy is first
   2748   //   performed as if the object were designated by an rvalue.
   2749   ExprResult Res = ExprError();
   2750   if (AllowNRVO &&
   2751       (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
   2752     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
   2753                               Value->getType(), CK_NoOp, Value, VK_XValue);
   2754 
   2755     Expr *InitExpr = &AsRvalue;
   2756     InitializationKind Kind
   2757       = InitializationKind::CreateCopy(Value->getLocStart(),
   2758                                        Value->getLocStart());
   2759     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
   2760 
   2761     //   [...] If overload resolution fails, or if the type of the first
   2762     //   parameter of the selected constructor is not an rvalue reference
   2763     //   to the object's type (possibly cv-qualified), overload resolution
   2764     //   is performed again, considering the object as an lvalue.
   2765     if (Seq) {
   2766       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
   2767            StepEnd = Seq.step_end();
   2768            Step != StepEnd; ++Step) {
   2769         if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
   2770           continue;
   2771 
   2772         CXXConstructorDecl *Constructor
   2773         = cast<CXXConstructorDecl>(Step->Function.Function);
   2774 
   2775         const RValueReferenceType *RRefType
   2776           = Constructor->getParamDecl(0)->getType()
   2777                                                  ->getAs<RValueReferenceType>();
   2778 
   2779         // If we don't meet the criteria, break out now.
   2780         if (!RRefType ||
   2781             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
   2782                             Context.getTypeDeclType(Constructor->getParent())))
   2783           break;
   2784 
   2785         // Promote "AsRvalue" to the heap, since we now need this
   2786         // expression node to persist.
   2787         Value = ImplicitCastExpr::Create(Context, Value->getType(),
   2788                                          CK_NoOp, Value, nullptr, VK_XValue);
   2789 
   2790         // Complete type-checking the initialization of the return type
   2791         // using the constructor we found.
   2792         Res = Seq.Perform(*this, Entity, Kind, Value);
   2793       }
   2794     }
   2795   }
   2796 
   2797   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
   2798   // above, or overload resolution failed. Either way, we need to try
   2799   // (again) now with the return value expression as written.
   2800   if (Res.isInvalid())
   2801     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
   2802 
   2803   return Res;
   2804 }
   2805 
   2806 /// \brief Determine whether the declared return type of the specified function
   2807 /// contains 'auto'.
   2808 static bool hasDeducedReturnType(FunctionDecl *FD) {
   2809   const FunctionProtoType *FPT =
   2810       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
   2811   return FPT->getReturnType()->isUndeducedType();
   2812 }
   2813 
   2814 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
   2815 /// for capturing scopes.
   2816 ///
   2817 StmtResult
   2818 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
   2819   // If this is the first return we've seen, infer the return type.
   2820   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
   2821   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
   2822   QualType FnRetType = CurCap->ReturnType;
   2823   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
   2824 
   2825   if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
   2826     // In C++1y, the return type may involve 'auto'.
   2827     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
   2828     FunctionDecl *FD = CurLambda->CallOperator;
   2829     if (CurCap->ReturnType.isNull())
   2830       CurCap->ReturnType = FD->getReturnType();
   2831 
   2832     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
   2833     assert(AT && "lost auto type from lambda return type");
   2834     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
   2835       FD->setInvalidDecl();
   2836       return StmtError();
   2837     }
   2838     CurCap->ReturnType = FnRetType = FD->getReturnType();
   2839   } else if (CurCap->HasImplicitReturnType) {
   2840     // For blocks/lambdas with implicit return types, we check each return
   2841     // statement individually, and deduce the common return type when the block
   2842     // or lambda is completed.
   2843     // FIXME: Fold this into the 'auto' codepath above.
   2844     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
   2845       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
   2846       if (Result.isInvalid())
   2847         return StmtError();
   2848       RetValExp = Result.get();
   2849 
   2850       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
   2851       // when deducing a return type for a lambda-expression (or by extension
   2852       // for a block). These rules differ from the stated C++11 rules only in
   2853       // that they remove top-level cv-qualifiers.
   2854       if (!CurContext->isDependentContext())
   2855         FnRetType = RetValExp->getType().getUnqualifiedType();
   2856       else
   2857         FnRetType = CurCap->ReturnType = Context.DependentTy;
   2858     } else {
   2859       if (RetValExp) {
   2860         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
   2861         // initializer list, because it is not an expression (even
   2862         // though we represent it as one). We still deduce 'void'.
   2863         Diag(ReturnLoc, diag::err_lambda_return_init_list)
   2864           << RetValExp->getSourceRange();
   2865       }
   2866 
   2867       FnRetType = Context.VoidTy;
   2868     }
   2869 
   2870     // Although we'll properly infer the type of the block once it's completed,
   2871     // make sure we provide a return type now for better error recovery.
   2872     if (CurCap->ReturnType.isNull())
   2873       CurCap->ReturnType = FnRetType;
   2874   }
   2875   assert(!FnRetType.isNull());
   2876 
   2877   if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
   2878     if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
   2879       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
   2880       return StmtError();
   2881     }
   2882   } else if (CapturedRegionScopeInfo *CurRegion =
   2883                  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
   2884     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
   2885     return StmtError();
   2886   } else {
   2887     assert(CurLambda && "unknown kind of captured scope");
   2888     if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
   2889             ->getNoReturnAttr()) {
   2890       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
   2891       return StmtError();
   2892     }
   2893   }
   2894 
   2895   // Otherwise, verify that this result type matches the previous one.  We are
   2896   // pickier with blocks than for normal functions because we don't have GCC
   2897   // compatibility to worry about here.
   2898   const VarDecl *NRVOCandidate = nullptr;
   2899   if (FnRetType->isDependentType()) {
   2900     // Delay processing for now.  TODO: there are lots of dependent
   2901     // types we can conclusively prove aren't void.
   2902   } else if (FnRetType->isVoidType()) {
   2903     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
   2904         !(getLangOpts().CPlusPlus &&
   2905           (RetValExp->isTypeDependent() ||
   2906            RetValExp->getType()->isVoidType()))) {
   2907       if (!getLangOpts().CPlusPlus &&
   2908           RetValExp->getType()->isVoidType())
   2909         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
   2910       else {
   2911         Diag(ReturnLoc, diag::err_return_block_has_expr);
   2912         RetValExp = nullptr;
   2913       }
   2914     }
   2915   } else if (!RetValExp) {
   2916     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
   2917   } else if (!RetValExp->isTypeDependent()) {
   2918     // we have a non-void block with an expression, continue checking
   2919 
   2920     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
   2921     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
   2922     // function return.
   2923 
   2924     // In C++ the return statement is handled via a copy initialization.
   2925     // the C version of which boils down to CheckSingleAssignmentConstraints.
   2926     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   2927     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
   2928                                                                    FnRetType,
   2929                                                       NRVOCandidate != nullptr);
   2930     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
   2931                                                      FnRetType, RetValExp);
   2932     if (Res.isInvalid()) {
   2933       // FIXME: Cleanup temporaries here, anyway?
   2934       return StmtError();
   2935     }
   2936     RetValExp = Res.get();
   2937     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
   2938   } else {
   2939     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   2940   }
   2941 
   2942   if (RetValExp) {
   2943     ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   2944     if (ER.isInvalid())
   2945       return StmtError();
   2946     RetValExp = ER.get();
   2947   }
   2948   ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
   2949                                                 NRVOCandidate);
   2950 
   2951   // If we need to check for the named return value optimization,
   2952   // or if we need to infer the return type,
   2953   // save the return statement in our scope for later processing.
   2954   if (CurCap->HasImplicitReturnType || NRVOCandidate)
   2955     FunctionScopes.back()->Returns.push_back(Result);
   2956 
   2957   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
   2958     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
   2959 
   2960   return Result;
   2961 }
   2962 
   2963 namespace {
   2964 /// \brief Marks all typedefs in all local classes in a type referenced.
   2965 ///
   2966 /// In a function like
   2967 /// auto f() {
   2968 ///   struct S { typedef int a; };
   2969 ///   return S();
   2970 /// }
   2971 ///
   2972 /// the local type escapes and could be referenced in some TUs but not in
   2973 /// others. Pretend that all local typedefs are always referenced, to not warn
   2974 /// on this. This isn't necessary if f has internal linkage, or the typedef
   2975 /// is private.
   2976 class LocalTypedefNameReferencer
   2977     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
   2978 public:
   2979   LocalTypedefNameReferencer(Sema &S) : S(S) {}
   2980   bool VisitRecordType(const RecordType *RT);
   2981 private:
   2982   Sema &S;
   2983 };
   2984 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
   2985   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
   2986   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
   2987       R->isDependentType())
   2988     return true;
   2989   for (auto *TmpD : R->decls())
   2990     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
   2991       if (T->getAccess() != AS_private || R->hasFriends())
   2992         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
   2993   return true;
   2994 }
   2995 }
   2996 
   2997 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
   2998   TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
   2999   while (auto ATL = TL.getAs<AttributedTypeLoc>())
   3000     TL = ATL.getModifiedLoc().IgnoreParens();
   3001   return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
   3002 }
   3003 
   3004 /// Deduce the return type for a function from a returned expression, per
   3005 /// C++1y [dcl.spec.auto]p6.
   3006 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
   3007                                             SourceLocation ReturnLoc,
   3008                                             Expr *&RetExpr,
   3009                                             AutoType *AT) {
   3010   TypeLoc OrigResultType = getReturnTypeLoc(FD);
   3011   QualType Deduced;
   3012 
   3013   if (RetExpr && isa<InitListExpr>(RetExpr)) {
   3014     //  If the deduction is for a return statement and the initializer is
   3015     //  a braced-init-list, the program is ill-formed.
   3016     Diag(RetExpr->getExprLoc(),
   3017          getCurLambda() ? diag::err_lambda_return_init_list
   3018                         : diag::err_auto_fn_return_init_list)
   3019         << RetExpr->getSourceRange();
   3020     return true;
   3021   }
   3022 
   3023   if (FD->isDependentContext()) {
   3024     // C++1y [dcl.spec.auto]p12:
   3025     //   Return type deduction [...] occurs when the definition is
   3026     //   instantiated even if the function body contains a return
   3027     //   statement with a non-type-dependent operand.
   3028     assert(AT->isDeduced() && "should have deduced to dependent type");
   3029     return false;
   3030   }
   3031 
   3032   if (RetExpr) {
   3033     //  Otherwise, [...] deduce a value for U using the rules of template
   3034     //  argument deduction.
   3035     DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
   3036 
   3037     if (DAR == DAR_Failed && !FD->isInvalidDecl())
   3038       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
   3039         << OrigResultType.getType() << RetExpr->getType();
   3040 
   3041     if (DAR != DAR_Succeeded)
   3042       return true;
   3043 
   3044     // If a local type is part of the returned type, mark its fields as
   3045     // referenced.
   3046     LocalTypedefNameReferencer Referencer(*this);
   3047     Referencer.TraverseType(RetExpr->getType());
   3048   } else {
   3049     //  In the case of a return with no operand, the initializer is considered
   3050     //  to be void().
   3051     //
   3052     // Deduction here can only succeed if the return type is exactly 'cv auto'
   3053     // or 'decltype(auto)', so just check for that case directly.
   3054     if (!OrigResultType.getType()->getAs<AutoType>()) {
   3055       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
   3056         << OrigResultType.getType();
   3057       return true;
   3058     }
   3059     // We always deduce U = void in this case.
   3060     Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
   3061     if (Deduced.isNull())
   3062       return true;
   3063   }
   3064 
   3065   //  If a function with a declared return type that contains a placeholder type
   3066   //  has multiple return statements, the return type is deduced for each return
   3067   //  statement. [...] if the type deduced is not the same in each deduction,
   3068   //  the program is ill-formed.
   3069   if (AT->isDeduced() && !FD->isInvalidDecl()) {
   3070     AutoType *NewAT = Deduced->getContainedAutoType();
   3071     CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
   3072                                    AT->getDeducedType());
   3073     CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
   3074                                    NewAT->getDeducedType());
   3075     if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
   3076       const LambdaScopeInfo *LambdaSI = getCurLambda();
   3077       if (LambdaSI && LambdaSI->HasImplicitReturnType) {
   3078         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
   3079           << NewAT->getDeducedType() << AT->getDeducedType()
   3080           << true /*IsLambda*/;
   3081       } else {
   3082         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
   3083           << (AT->isDecltypeAuto() ? 1 : 0)
   3084           << NewAT->getDeducedType() << AT->getDeducedType();
   3085       }
   3086       return true;
   3087     }
   3088   } else if (!FD->isInvalidDecl()) {
   3089     // Update all declarations of the function to have the deduced return type.
   3090     Context.adjustDeducedFunctionResultType(FD, Deduced);
   3091   }
   3092 
   3093   return false;
   3094 }
   3095 
   3096 StmtResult
   3097 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
   3098                       Scope *CurScope) {
   3099   StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
   3100   if (R.isInvalid()) {
   3101     return R;
   3102   }
   3103 
   3104   if (VarDecl *VD =
   3105       const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
   3106     CurScope->addNRVOCandidate(VD);
   3107   } else {
   3108     CurScope->setNoNRVO();
   3109   }
   3110 
   3111   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
   3112 
   3113   return R;
   3114 }
   3115 
   3116 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
   3117   // Check for unexpanded parameter packs.
   3118   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
   3119     return StmtError();
   3120 
   3121   if (isa<CapturingScopeInfo>(getCurFunction()))
   3122     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
   3123 
   3124   QualType FnRetType;
   3125   QualType RelatedRetType;
   3126   const AttrVec *Attrs = nullptr;
   3127   bool isObjCMethod = false;
   3128 
   3129   if (const FunctionDecl *FD = getCurFunctionDecl()) {
   3130     FnRetType = FD->getReturnType();
   3131     if (FD->hasAttrs())
   3132       Attrs = &FD->getAttrs();
   3133     if (FD->isNoReturn())
   3134       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
   3135         << FD->getDeclName();
   3136   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
   3137     FnRetType = MD->getReturnType();
   3138     isObjCMethod = true;
   3139     if (MD->hasAttrs())
   3140       Attrs = &MD->getAttrs();
   3141     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
   3142       // In the implementation of a method with a related return type, the
   3143       // type used to type-check the validity of return statements within the
   3144       // method body is a pointer to the type of the class being implemented.
   3145       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
   3146       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
   3147     }
   3148   } else // If we don't have a function/method context, bail.
   3149     return StmtError();
   3150 
   3151   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
   3152   // deduction.
   3153   if (getLangOpts().CPlusPlus14) {
   3154     if (AutoType *AT = FnRetType->getContainedAutoType()) {
   3155       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
   3156       if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
   3157         FD->setInvalidDecl();
   3158         return StmtError();
   3159       } else {
   3160         FnRetType = FD->getReturnType();
   3161       }
   3162     }
   3163   }
   3164 
   3165   bool HasDependentReturnType = FnRetType->isDependentType();
   3166 
   3167   ReturnStmt *Result = nullptr;
   3168   if (FnRetType->isVoidType()) {
   3169     if (RetValExp) {
   3170       if (isa<InitListExpr>(RetValExp)) {
   3171         // We simply never allow init lists as the return value of void
   3172         // functions. This is compatible because this was never allowed before,
   3173         // so there's no legacy code to deal with.
   3174         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3175         int FunctionKind = 0;
   3176         if (isa<ObjCMethodDecl>(CurDecl))
   3177           FunctionKind = 1;
   3178         else if (isa<CXXConstructorDecl>(CurDecl))
   3179           FunctionKind = 2;
   3180         else if (isa<CXXDestructorDecl>(CurDecl))
   3181           FunctionKind = 3;
   3182 
   3183         Diag(ReturnLoc, diag::err_return_init_list)
   3184           << CurDecl->getDeclName() << FunctionKind
   3185           << RetValExp->getSourceRange();
   3186 
   3187         // Drop the expression.
   3188         RetValExp = nullptr;
   3189       } else if (!RetValExp->isTypeDependent()) {
   3190         // C99 6.8.6.4p1 (ext_ since GCC warns)
   3191         unsigned D = diag::ext_return_has_expr;
   3192         if (RetValExp->getType()->isVoidType()) {
   3193           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3194           if (isa<CXXConstructorDecl>(CurDecl) ||
   3195               isa<CXXDestructorDecl>(CurDecl))
   3196             D = diag::err_ctor_dtor_returns_void;
   3197           else
   3198             D = diag::ext_return_has_void_expr;
   3199         }
   3200         else {
   3201           ExprResult Result = RetValExp;
   3202           Result = IgnoredValueConversions(Result.get());
   3203           if (Result.isInvalid())
   3204             return StmtError();
   3205           RetValExp = Result.get();
   3206           RetValExp = ImpCastExprToType(RetValExp,
   3207                                         Context.VoidTy, CK_ToVoid).get();
   3208         }
   3209         // return of void in constructor/destructor is illegal in C++.
   3210         if (D == diag::err_ctor_dtor_returns_void) {
   3211           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3212           Diag(ReturnLoc, D)
   3213             << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
   3214             << RetValExp->getSourceRange();
   3215         }
   3216         // return (some void expression); is legal in C++.
   3217         else if (D != diag::ext_return_has_void_expr ||
   3218                  !getLangOpts().CPlusPlus) {
   3219           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3220 
   3221           int FunctionKind = 0;
   3222           if (isa<ObjCMethodDecl>(CurDecl))
   3223             FunctionKind = 1;
   3224           else if (isa<CXXConstructorDecl>(CurDecl))
   3225             FunctionKind = 2;
   3226           else if (isa<CXXDestructorDecl>(CurDecl))
   3227             FunctionKind = 3;
   3228 
   3229           Diag(ReturnLoc, D)
   3230             << CurDecl->getDeclName() << FunctionKind
   3231             << RetValExp->getSourceRange();
   3232         }
   3233       }
   3234 
   3235       if (RetValExp) {
   3236         ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   3237         if (ER.isInvalid())
   3238           return StmtError();
   3239         RetValExp = ER.get();
   3240       }
   3241     }
   3242 
   3243     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
   3244   } else if (!RetValExp && !HasDependentReturnType) {
   3245     FunctionDecl *FD = getCurFunctionDecl();
   3246 
   3247     unsigned DiagID;
   3248     if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
   3249       // C++11 [stmt.return]p2
   3250       DiagID = diag::err_constexpr_return_missing_expr;
   3251       FD->setInvalidDecl();
   3252     } else if (getLangOpts().C99) {
   3253       // C99 6.8.6.4p1 (ext_ since GCC warns)
   3254       DiagID = diag::ext_return_missing_expr;
   3255     } else {
   3256       // C90 6.6.6.4p4
   3257       DiagID = diag::warn_return_missing_expr;
   3258     }
   3259 
   3260     if (FD)
   3261       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
   3262     else
   3263       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
   3264 
   3265     Result = new (Context) ReturnStmt(ReturnLoc);
   3266   } else {
   3267     assert(RetValExp || HasDependentReturnType);
   3268     const VarDecl *NRVOCandidate = nullptr;
   3269 
   3270     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
   3271 
   3272     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
   3273     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
   3274     // function return.
   3275 
   3276     // In C++ the return statement is handled via a copy initialization,
   3277     // the C version of which boils down to CheckSingleAssignmentConstraints.
   3278     if (RetValExp)
   3279       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   3280     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
   3281       // we have a non-void function with an expression, continue checking
   3282       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
   3283                                                                      RetType,
   3284                                                       NRVOCandidate != nullptr);
   3285       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
   3286                                                        RetType, RetValExp);
   3287       if (Res.isInvalid()) {
   3288         // FIXME: Clean up temporaries here anyway?
   3289         return StmtError();
   3290       }
   3291       RetValExp = Res.getAs<Expr>();
   3292 
   3293       // If we have a related result type, we need to implicitly
   3294       // convert back to the formal result type.  We can't pretend to
   3295       // initialize the result again --- we might end double-retaining
   3296       // --- so instead we initialize a notional temporary.
   3297       if (!RelatedRetType.isNull()) {
   3298         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
   3299                                                             FnRetType);
   3300         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
   3301         if (Res.isInvalid()) {
   3302           // FIXME: Clean up temporaries here anyway?
   3303           return StmtError();
   3304         }
   3305         RetValExp = Res.getAs<Expr>();
   3306       }
   3307 
   3308       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
   3309                          getCurFunctionDecl());
   3310     }
   3311 
   3312     if (RetValExp) {
   3313       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   3314       if (ER.isInvalid())
   3315         return StmtError();
   3316       RetValExp = ER.get();
   3317     }
   3318     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
   3319   }
   3320 
   3321   // If we need to check for the named return value optimization, save the
   3322   // return statement in our scope for later processing.
   3323   if (Result->getNRVOCandidate())
   3324     FunctionScopes.back()->Returns.push_back(Result);
   3325 
   3326   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
   3327     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
   3328 
   3329   return Result;
   3330 }
   3331 
   3332 StmtResult
   3333 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
   3334                            SourceLocation RParen, Decl *Parm,
   3335                            Stmt *Body) {
   3336   VarDecl *Var = cast_or_null<VarDecl>(Parm);
   3337   if (Var && Var->isInvalidDecl())
   3338     return StmtError();
   3339 
   3340   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
   3341 }
   3342 
   3343 StmtResult
   3344 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
   3345   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
   3346 }
   3347 
   3348 StmtResult
   3349 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
   3350                          MultiStmtArg CatchStmts, Stmt *Finally) {
   3351   if (!getLangOpts().ObjCExceptions)
   3352     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
   3353 
   3354   getCurFunction()->setHasBranchProtectedScope();
   3355   unsigned NumCatchStmts = CatchStmts.size();
   3356   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
   3357                                NumCatchStmts, Finally);
   3358 }
   3359 
   3360 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
   3361   if (Throw) {
   3362     ExprResult Result = DefaultLvalueConversion(Throw);
   3363     if (Result.isInvalid())
   3364       return StmtError();
   3365 
   3366     Result = ActOnFinishFullExpr(Result.get());
   3367     if (Result.isInvalid())
   3368       return StmtError();
   3369     Throw = Result.get();
   3370 
   3371     QualType ThrowType = Throw->getType();
   3372     // Make sure the expression type is an ObjC pointer or "void *".
   3373     if (!ThrowType->isDependentType() &&
   3374         !ThrowType->isObjCObjectPointerType()) {
   3375       const PointerType *PT = ThrowType->getAs<PointerType>();
   3376       if (!PT || !PT->getPointeeType()->isVoidType())
   3377         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
   3378                          << Throw->getType() << Throw->getSourceRange());
   3379     }
   3380   }
   3381 
   3382   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
   3383 }
   3384 
   3385 StmtResult
   3386 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
   3387                            Scope *CurScope) {
   3388   if (!getLangOpts().ObjCExceptions)
   3389     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
   3390 
   3391   if (!Throw) {
   3392     // @throw without an expression designates a rethrow (which must occur
   3393     // in the context of an @catch clause).
   3394     Scope *AtCatchParent = CurScope;
   3395     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
   3396       AtCatchParent = AtCatchParent->getParent();
   3397     if (!AtCatchParent)
   3398       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
   3399   }
   3400   return BuildObjCAtThrowStmt(AtLoc, Throw);
   3401 }
   3402 
   3403 ExprResult
   3404 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
   3405   ExprResult result = DefaultLvalueConversion(operand);
   3406   if (result.isInvalid())
   3407     return ExprError();
   3408   operand = result.get();
   3409 
   3410   // Make sure the expression type is an ObjC pointer or "void *".
   3411   QualType type = operand->getType();
   3412   if (!type->isDependentType() &&
   3413       !type->isObjCObjectPointerType()) {
   3414     const PointerType *pointerType = type->getAs<PointerType>();
   3415     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
   3416       if (getLangOpts().CPlusPlus) {
   3417         if (RequireCompleteType(atLoc, type,
   3418                                 diag::err_incomplete_receiver_type))
   3419           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3420                    << type << operand->getSourceRange();
   3421 
   3422         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
   3423         if (!result.isUsable())
   3424           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3425                    << type << operand->getSourceRange();
   3426 
   3427         operand = result.get();
   3428       } else {
   3429           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3430                    << type << operand->getSourceRange();
   3431       }
   3432     }
   3433   }
   3434 
   3435   // The operand to @synchronized is a full-expression.
   3436   return ActOnFinishFullExpr(operand);
   3437 }
   3438 
   3439 StmtResult
   3440 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
   3441                                   Stmt *SyncBody) {
   3442   // We can't jump into or indirect-jump out of a @synchronized block.
   3443   getCurFunction()->setHasBranchProtectedScope();
   3444   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
   3445 }
   3446 
   3447 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
   3448 /// and creates a proper catch handler from them.
   3449 StmtResult
   3450 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
   3451                          Stmt *HandlerBlock) {
   3452   // There's nothing to test that ActOnExceptionDecl didn't already test.
   3453   return new (Context)
   3454       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
   3455 }
   3456 
   3457 StmtResult
   3458 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
   3459   getCurFunction()->setHasBranchProtectedScope();
   3460   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
   3461 }
   3462 
   3463 namespace {
   3464 class CatchHandlerType {
   3465   QualType QT;
   3466   unsigned IsPointer : 1;
   3467 
   3468   // This is a special constructor to be used only with DenseMapInfo's
   3469   // getEmptyKey() and getTombstoneKey() functions.
   3470   friend struct llvm::DenseMapInfo<CatchHandlerType>;
   3471   enum Unique { ForDenseMap };
   3472   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
   3473 
   3474 public:
   3475   /// Used when creating a CatchHandlerType from a handler type; will determine
   3476   /// whether the type is a pointer or reference and will strip off the top
   3477   /// level pointer and cv-qualifiers.
   3478   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
   3479     if (QT->isPointerType())
   3480       IsPointer = true;
   3481 
   3482     if (IsPointer || QT->isReferenceType())
   3483       QT = QT->getPointeeType();
   3484     QT = QT.getUnqualifiedType();
   3485   }
   3486 
   3487   /// Used when creating a CatchHandlerType from a base class type; pretends the
   3488   /// type passed in had the pointer qualifier, does not need to get an
   3489   /// unqualified type.
   3490   CatchHandlerType(QualType QT, bool IsPointer)
   3491       : QT(QT), IsPointer(IsPointer) {}
   3492 
   3493   QualType underlying() const { return QT; }
   3494   bool isPointer() const { return IsPointer; }
   3495 
   3496   friend bool operator==(const CatchHandlerType &LHS,
   3497                          const CatchHandlerType &RHS) {
   3498     // If the pointer qualification does not match, we can return early.
   3499     if (LHS.IsPointer != RHS.IsPointer)
   3500       return false;
   3501     // Otherwise, check the underlying type without cv-qualifiers.
   3502     return LHS.QT == RHS.QT;
   3503   }
   3504 };
   3505 } // namespace
   3506 
   3507 namespace llvm {
   3508 template <> struct DenseMapInfo<CatchHandlerType> {
   3509   static CatchHandlerType getEmptyKey() {
   3510     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
   3511                        CatchHandlerType::ForDenseMap);
   3512   }
   3513 
   3514   static CatchHandlerType getTombstoneKey() {
   3515     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
   3516                        CatchHandlerType::ForDenseMap);
   3517   }
   3518 
   3519   static unsigned getHashValue(const CatchHandlerType &Base) {
   3520     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
   3521   }
   3522 
   3523   static bool isEqual(const CatchHandlerType &LHS,
   3524                       const CatchHandlerType &RHS) {
   3525     return LHS == RHS;
   3526   }
   3527 };
   3528 
   3529 // It's OK to treat CatchHandlerType as a POD type.
   3530 template <> struct isPodLike<CatchHandlerType> {
   3531   static const bool value = true;
   3532 };
   3533 }
   3534 
   3535 namespace {
   3536 class CatchTypePublicBases {
   3537   ASTContext &Ctx;
   3538   const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
   3539   const bool CheckAgainstPointer;
   3540 
   3541   CXXCatchStmt *FoundHandler;
   3542   CanQualType FoundHandlerType;
   3543 
   3544 public:
   3545   CatchTypePublicBases(
   3546       ASTContext &Ctx,
   3547       const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
   3548       : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
   3549         FoundHandler(nullptr) {}
   3550 
   3551   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
   3552   CanQualType getFoundHandlerType() const { return FoundHandlerType; }
   3553 
   3554   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
   3555     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
   3556       CatchHandlerType Check(S->getType(), CheckAgainstPointer);
   3557       auto M = TypesToCheck;
   3558       auto I = M.find(Check);
   3559       if (I != M.end()) {
   3560         FoundHandler = I->second;
   3561         FoundHandlerType = Ctx.getCanonicalType(S->getType());
   3562         return true;
   3563       }
   3564     }
   3565     return false;
   3566   }
   3567 };
   3568 }
   3569 
   3570 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
   3571 /// handlers and creates a try statement from them.
   3572 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
   3573                                   ArrayRef<Stmt *> Handlers) {
   3574   // Don't report an error if 'try' is used in system headers.
   3575   if (!getLangOpts().CXXExceptions &&
   3576       !getSourceManager().isInSystemHeader(TryLoc))
   3577     Diag(TryLoc, diag::err_exceptions_disabled) << "try";
   3578 
   3579   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
   3580     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
   3581 
   3582   sema::FunctionScopeInfo *FSI = getCurFunction();
   3583 
   3584   // C++ try is incompatible with SEH __try.
   3585   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
   3586     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
   3587     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
   3588   }
   3589 
   3590   const unsigned NumHandlers = Handlers.size();
   3591   assert(!Handlers.empty() &&
   3592          "The parser shouldn't call this if there are no handlers.");
   3593 
   3594   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
   3595   for (unsigned i = 0; i < NumHandlers; ++i) {
   3596     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
   3597 
   3598     // Diagnose when the handler is a catch-all handler, but it isn't the last
   3599     // handler for the try block. [except.handle]p5. Also, skip exception
   3600     // declarations that are invalid, since we can't usefully report on them.
   3601     if (!H->getExceptionDecl()) {
   3602       if (i < NumHandlers - 1)
   3603         return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
   3604       continue;
   3605     } else if (H->getExceptionDecl()->isInvalidDecl())
   3606       continue;
   3607 
   3608     // Walk the type hierarchy to diagnose when this type has already been
   3609     // handled (duplication), or cannot be handled (derivation inversion). We
   3610     // ignore top-level cv-qualifiers, per [except.handle]p3
   3611     CatchHandlerType HandlerCHT =
   3612         (QualType)Context.getCanonicalType(H->getCaughtType());
   3613 
   3614     // We can ignore whether the type is a reference or a pointer; we need the
   3615     // underlying declaration type in order to get at the underlying record
   3616     // decl, if there is one.
   3617     QualType Underlying = HandlerCHT.underlying();
   3618     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
   3619       if (!RD->hasDefinition())
   3620         continue;
   3621       // Check that none of the public, unambiguous base classes are in the
   3622       // map ([except.handle]p1). Give the base classes the same pointer
   3623       // qualification as the original type we are basing off of. This allows
   3624       // comparison against the handler type using the same top-level pointer
   3625       // as the original type.
   3626       CXXBasePaths Paths;
   3627       Paths.setOrigin(RD);
   3628       CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
   3629       if (RD->lookupInBases(CTPB, Paths)) {
   3630         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
   3631         if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
   3632           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
   3633                diag::warn_exception_caught_by_earlier_handler)
   3634               << H->getCaughtType();
   3635           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
   3636                 diag::note_previous_exception_handler)
   3637               << Problem->getCaughtType();
   3638         }
   3639       }
   3640     }
   3641 
   3642     // Add the type the list of ones we have handled; diagnose if we've already
   3643     // handled it.
   3644     auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
   3645     if (!R.second) {
   3646       const CXXCatchStmt *Problem = R.first->second;
   3647       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
   3648            diag::warn_exception_caught_by_earlier_handler)
   3649           << H->getCaughtType();
   3650       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
   3651            diag::note_previous_exception_handler)
   3652           << Problem->getCaughtType();
   3653     }
   3654   }
   3655 
   3656   FSI->setHasCXXTry(TryLoc);
   3657 
   3658   return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
   3659 }
   3660 
   3661 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
   3662                                   Stmt *TryBlock, Stmt *Handler) {
   3663   assert(TryBlock && Handler);
   3664 
   3665   sema::FunctionScopeInfo *FSI = getCurFunction();
   3666 
   3667   // SEH __try is incompatible with C++ try. Borland appears to support this,
   3668   // however.
   3669   if (!getLangOpts().Borland) {
   3670     if (FSI->FirstCXXTryLoc.isValid()) {
   3671       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
   3672       Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
   3673     }
   3674   }
   3675 
   3676   FSI->setHasSEHTry(TryLoc);
   3677 
   3678   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
   3679   // track if they use SEH.
   3680   DeclContext *DC = CurContext;
   3681   while (DC && !DC->isFunctionOrMethod())
   3682     DC = DC->getParent();
   3683   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
   3684   if (FD)
   3685     FD->setUsesSEHTry(true);
   3686   else
   3687     Diag(TryLoc, diag::err_seh_try_outside_functions);
   3688 
   3689   // Reject __try on unsupported targets.
   3690   if (!Context.getTargetInfo().isSEHTrySupported())
   3691     Diag(TryLoc, diag::err_seh_try_unsupported);
   3692 
   3693   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
   3694 }
   3695 
   3696 StmtResult
   3697 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
   3698                           Expr *FilterExpr,
   3699                           Stmt *Block) {
   3700   assert(FilterExpr && Block);
   3701 
   3702   if(!FilterExpr->getType()->isIntegerType()) {
   3703     return StmtError(Diag(FilterExpr->getExprLoc(),
   3704                      diag::err_filter_expression_integral)
   3705                      << FilterExpr->getType());
   3706   }
   3707 
   3708   return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
   3709 }
   3710 
   3711 void Sema::ActOnStartSEHFinallyBlock() {
   3712   CurrentSEHFinally.push_back(CurScope);
   3713 }
   3714 
   3715 void Sema::ActOnAbortSEHFinallyBlock() {
   3716   CurrentSEHFinally.pop_back();
   3717 }
   3718 
   3719 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
   3720   assert(Block);
   3721   CurrentSEHFinally.pop_back();
   3722   return SEHFinallyStmt::Create(Context, Loc, Block);
   3723 }
   3724 
   3725 StmtResult
   3726 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
   3727   Scope *SEHTryParent = CurScope;
   3728   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
   3729     SEHTryParent = SEHTryParent->getParent();
   3730   if (!SEHTryParent)
   3731     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
   3732   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
   3733 
   3734   return new (Context) SEHLeaveStmt(Loc);
   3735 }
   3736 
   3737 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
   3738                                             bool IsIfExists,
   3739                                             NestedNameSpecifierLoc QualifierLoc,
   3740                                             DeclarationNameInfo NameInfo,
   3741                                             Stmt *Nested)
   3742 {
   3743   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
   3744                                              QualifierLoc, NameInfo,
   3745                                              cast<CompoundStmt>(Nested));
   3746 }
   3747 
   3748 
   3749 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
   3750                                             bool IsIfExists,
   3751                                             CXXScopeSpec &SS,
   3752                                             UnqualifiedId &Name,
   3753                                             Stmt *Nested) {
   3754   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
   3755                                     SS.getWithLocInContext(Context),
   3756                                     GetNameFromUnqualifiedId(Name),
   3757                                     Nested);
   3758 }
   3759 
   3760 RecordDecl*
   3761 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
   3762                                    unsigned NumParams) {
   3763   DeclContext *DC = CurContext;
   3764   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
   3765     DC = DC->getParent();
   3766 
   3767   RecordDecl *RD = nullptr;
   3768   if (getLangOpts().CPlusPlus)
   3769     RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
   3770                                /*Id=*/nullptr);
   3771   else
   3772     RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
   3773 
   3774   RD->setCapturedRecord();
   3775   DC->addDecl(RD);
   3776   RD->setImplicit();
   3777   RD->startDefinition();
   3778 
   3779   assert(NumParams > 0 && "CapturedStmt requires context parameter");
   3780   CD = CapturedDecl::Create(Context, CurContext, NumParams);
   3781   DC->addDecl(CD);
   3782   return RD;
   3783 }
   3784 
   3785 static void buildCapturedStmtCaptureList(
   3786     SmallVectorImpl<CapturedStmt::Capture> &Captures,
   3787     SmallVectorImpl<Expr *> &CaptureInits,
   3788     ArrayRef<CapturingScopeInfo::Capture> Candidates) {
   3789 
   3790   typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
   3791   for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
   3792 
   3793     if (Cap->isThisCapture()) {
   3794       Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
   3795                                                CapturedStmt::VCK_This));
   3796       CaptureInits.push_back(Cap->getInitExpr());
   3797       continue;
   3798     } else if (Cap->isVLATypeCapture()) {
   3799       Captures.push_back(
   3800           CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
   3801       CaptureInits.push_back(nullptr);
   3802       continue;
   3803     }
   3804 
   3805     Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
   3806                                              Cap->isReferenceCapture()
   3807                                                  ? CapturedStmt::VCK_ByRef
   3808                                                  : CapturedStmt::VCK_ByCopy,
   3809                                              Cap->getVariable()));
   3810     CaptureInits.push_back(Cap->getInitExpr());
   3811   }
   3812 }
   3813 
   3814 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
   3815                                     CapturedRegionKind Kind,
   3816                                     unsigned NumParams) {
   3817   CapturedDecl *CD = nullptr;
   3818   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
   3819 
   3820   // Build the context parameter
   3821   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
   3822   IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3823   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3824   ImplicitParamDecl *Param
   3825     = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3826   DC->addDecl(Param);
   3827 
   3828   CD->setContextParam(0, Param);
   3829 
   3830   // Enter the capturing scope for this captured region.
   3831   PushCapturedRegionScope(CurScope, CD, RD, Kind);
   3832 
   3833   if (CurScope)
   3834     PushDeclContext(CurScope, CD);
   3835   else
   3836     CurContext = CD;
   3837 
   3838   PushExpressionEvaluationContext(PotentiallyEvaluated);
   3839 }
   3840 
   3841 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
   3842                                     CapturedRegionKind Kind,
   3843                                     ArrayRef<CapturedParamNameType> Params) {
   3844   CapturedDecl *CD = nullptr;
   3845   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
   3846 
   3847   // Build the context parameter
   3848   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
   3849   bool ContextIsFound = false;
   3850   unsigned ParamNum = 0;
   3851   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
   3852                                                  E = Params.end();
   3853        I != E; ++I, ++ParamNum) {
   3854     if (I->second.isNull()) {
   3855       assert(!ContextIsFound &&
   3856              "null type has been found already for '__context' parameter");
   3857       IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3858       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3859       ImplicitParamDecl *Param
   3860         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3861       DC->addDecl(Param);
   3862       CD->setContextParam(ParamNum, Param);
   3863       ContextIsFound = true;
   3864     } else {
   3865       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
   3866       ImplicitParamDecl *Param
   3867         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
   3868       DC->addDecl(Param);
   3869       CD->setParam(ParamNum, Param);
   3870     }
   3871   }
   3872   assert(ContextIsFound && "no null type for '__context' parameter");
   3873   if (!ContextIsFound) {
   3874     // Add __context implicitly if it is not specified.
   3875     IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3876     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3877     ImplicitParamDecl *Param =
   3878         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3879     DC->addDecl(Param);
   3880     CD->setContextParam(ParamNum, Param);
   3881   }
   3882   // Enter the capturing scope for this captured region.
   3883   PushCapturedRegionScope(CurScope, CD, RD, Kind);
   3884 
   3885   if (CurScope)
   3886     PushDeclContext(CurScope, CD);
   3887   else
   3888     CurContext = CD;
   3889 
   3890   PushExpressionEvaluationContext(PotentiallyEvaluated);
   3891 }
   3892 
   3893 void Sema::ActOnCapturedRegionError() {
   3894   DiscardCleanupsInEvaluationContext();
   3895   PopExpressionEvaluationContext();
   3896 
   3897   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
   3898   RecordDecl *Record = RSI->TheRecordDecl;
   3899   Record->setInvalidDecl();
   3900 
   3901   SmallVector<Decl*, 4> Fields(Record->fields());
   3902   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
   3903               SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
   3904 
   3905   PopDeclContext();
   3906   PopFunctionScopeInfo();
   3907 }
   3908 
   3909 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
   3910   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
   3911 
   3912   SmallVector<CapturedStmt::Capture, 4> Captures;
   3913   SmallVector<Expr *, 4> CaptureInits;
   3914   buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
   3915 
   3916   CapturedDecl *CD = RSI->TheCapturedDecl;
   3917   RecordDecl *RD = RSI->TheRecordDecl;
   3918 
   3919   CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
   3920                                            RSI->CapRegionKind, Captures,
   3921                                            CaptureInits, CD, RD);
   3922 
   3923   CD->setBody(Res->getCapturedStmt());
   3924   RD->completeDefinition();
   3925 
   3926   DiscardCleanupsInEvaluationContext();
   3927   PopExpressionEvaluationContext();
   3928 
   3929   PopDeclContext();
   3930   PopFunctionScopeInfo();
   3931 
   3932   return Res;
   3933 }
   3934