Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTConsumer.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/RecursiveASTVisitor.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/Basic/SourceManager.h"
     23 #include "clang/Sema/DeclSpec.h"
     24 #include "clang/Sema/ExternalSemaSource.h"
     25 #include "clang/Sema/Lookup.h"
     26 #include "clang/Sema/Scope.h"
     27 #include "clang/Sema/ScopeInfo.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/DenseSet.h"
     30 #include "TypeLocBuilder.h"
     31 
     32 using namespace clang;
     33 
     34 /// Check whether the given method, which must be in the 'init'
     35 /// family, is a valid member of that family.
     36 ///
     37 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     38 ///   if non-null, check this as if making a call to it with the given
     39 ///   receiver type
     40 ///
     41 /// \return true to indicate that there was an error and appropriate
     42 ///   actions were taken
     43 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     44                            QualType receiverTypeIfCall) {
     45   if (method->isInvalidDecl()) return true;
     46 
     47   // This castAs is safe: methods that don't return an object
     48   // pointer won't be inferred as inits and will reject an explicit
     49   // objc_method_family(init).
     50 
     51   // We ignore protocols here.  Should we?  What about Class?
     52 
     53   const ObjCObjectType *result =
     54       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
     55 
     56   if (result->isObjCId()) {
     57     return false;
     58   } else if (result->isObjCClass()) {
     59     // fall through: always an error
     60   } else {
     61     ObjCInterfaceDecl *resultClass = result->getInterface();
     62     assert(resultClass && "unexpected object type!");
     63 
     64     // It's okay for the result type to still be a forward declaration
     65     // if we're checking an interface declaration.
     66     if (!resultClass->hasDefinition()) {
     67       if (receiverTypeIfCall.isNull() &&
     68           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     69         return false;
     70 
     71     // Otherwise, we try to compare class types.
     72     } else {
     73       // If this method was declared in a protocol, we can't check
     74       // anything unless we have a receiver type that's an interface.
     75       const ObjCInterfaceDecl *receiverClass = nullptr;
     76       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     77         if (receiverTypeIfCall.isNull())
     78           return false;
     79 
     80         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     81           ->getInterfaceDecl();
     82 
     83         // This can be null for calls to e.g. id<Foo>.
     84         if (!receiverClass) return false;
     85       } else {
     86         receiverClass = method->getClassInterface();
     87         assert(receiverClass && "method not associated with a class!");
     88       }
     89 
     90       // If either class is a subclass of the other, it's fine.
     91       if (receiverClass->isSuperClassOf(resultClass) ||
     92           resultClass->isSuperClassOf(receiverClass))
     93         return false;
     94     }
     95   }
     96 
     97   SourceLocation loc = method->getLocation();
     98 
     99   // If we're in a system header, and this is not a call, just make
    100   // the method unusable.
    101   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
    102     method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
    103                       UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
    104     return true;
    105   }
    106 
    107   // Otherwise, it's an error.
    108   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    109   method->setInvalidDecl();
    110   return true;
    111 }
    112 
    113 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    114                                    const ObjCMethodDecl *Overridden) {
    115   if (Overridden->hasRelatedResultType() &&
    116       !NewMethod->hasRelatedResultType()) {
    117     // This can only happen when the method follows a naming convention that
    118     // implies a related result type, and the original (overridden) method has
    119     // a suitable return type, but the new (overriding) method does not have
    120     // a suitable return type.
    121     QualType ResultType = NewMethod->getReturnType();
    122     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
    123 
    124     // Figure out which class this method is part of, if any.
    125     ObjCInterfaceDecl *CurrentClass
    126       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    127     if (!CurrentClass) {
    128       DeclContext *DC = NewMethod->getDeclContext();
    129       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    130         CurrentClass = Cat->getClassInterface();
    131       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    132         CurrentClass = Impl->getClassInterface();
    133       else if (ObjCCategoryImplDecl *CatImpl
    134                = dyn_cast<ObjCCategoryImplDecl>(DC))
    135         CurrentClass = CatImpl->getClassInterface();
    136     }
    137 
    138     if (CurrentClass) {
    139       Diag(NewMethod->getLocation(),
    140            diag::warn_related_result_type_compatibility_class)
    141         << Context.getObjCInterfaceType(CurrentClass)
    142         << ResultType
    143         << ResultTypeRange;
    144     } else {
    145       Diag(NewMethod->getLocation(),
    146            diag::warn_related_result_type_compatibility_protocol)
    147         << ResultType
    148         << ResultTypeRange;
    149     }
    150 
    151     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
    152       Diag(Overridden->getLocation(),
    153            diag::note_related_result_type_family)
    154         << /*overridden method*/ 0
    155         << Family;
    156     else
    157       Diag(Overridden->getLocation(),
    158            diag::note_related_result_type_overridden);
    159   }
    160   if (getLangOpts().ObjCAutoRefCount) {
    161     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
    162          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
    163         Diag(NewMethod->getLocation(),
    164              diag::err_nsreturns_retained_attribute_mismatch) << 1;
    165         Diag(Overridden->getLocation(), diag::note_previous_decl)
    166         << "method";
    167     }
    168     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
    169               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
    170         Diag(NewMethod->getLocation(),
    171              diag::err_nsreturns_retained_attribute_mismatch) << 0;
    172         Diag(Overridden->getLocation(), diag::note_previous_decl)
    173         << "method";
    174     }
    175     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
    176                                          oe = Overridden->param_end();
    177     for (ObjCMethodDecl::param_iterator
    178            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
    179          ni != ne && oi != oe; ++ni, ++oi) {
    180       const ParmVarDecl *oldDecl = (*oi);
    181       ParmVarDecl *newDecl = (*ni);
    182       if (newDecl->hasAttr<NSConsumedAttr>() !=
    183           oldDecl->hasAttr<NSConsumedAttr>()) {
    184         Diag(newDecl->getLocation(),
    185              diag::err_nsconsumed_attribute_mismatch);
    186         Diag(oldDecl->getLocation(), diag::note_previous_decl)
    187           << "parameter";
    188       }
    189     }
    190   }
    191 }
    192 
    193 /// \brief Check a method declaration for compatibility with the Objective-C
    194 /// ARC conventions.
    195 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
    196   ObjCMethodFamily family = method->getMethodFamily();
    197   switch (family) {
    198   case OMF_None:
    199   case OMF_finalize:
    200   case OMF_retain:
    201   case OMF_release:
    202   case OMF_autorelease:
    203   case OMF_retainCount:
    204   case OMF_self:
    205   case OMF_initialize:
    206   case OMF_performSelector:
    207     return false;
    208 
    209   case OMF_dealloc:
    210     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
    211       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
    212       if (ResultTypeRange.isInvalid())
    213         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    214             << method->getReturnType()
    215             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
    216       else
    217         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    218             << method->getReturnType()
    219             << FixItHint::CreateReplacement(ResultTypeRange, "void");
    220       return true;
    221     }
    222     return false;
    223 
    224   case OMF_init:
    225     // If the method doesn't obey the init rules, don't bother annotating it.
    226     if (checkInitMethod(method, QualType()))
    227       return true;
    228 
    229     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
    230 
    231     // Don't add a second copy of this attribute, but otherwise don't
    232     // let it be suppressed.
    233     if (method->hasAttr<NSReturnsRetainedAttr>())
    234       return false;
    235     break;
    236 
    237   case OMF_alloc:
    238   case OMF_copy:
    239   case OMF_mutableCopy:
    240   case OMF_new:
    241     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    242         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    243         method->hasAttr<NSReturnsAutoreleasedAttr>())
    244       return false;
    245     break;
    246   }
    247 
    248   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
    249   return false;
    250 }
    251 
    252 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    253                                                 NamedDecl *ND,
    254                                                 SourceLocation ImplLoc,
    255                                                 int select) {
    256   if (ND && ND->isDeprecated()) {
    257     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    258     if (select == 0)
    259       S.Diag(ND->getLocation(), diag::note_method_declared_at)
    260         << ND->getDeclName();
    261     else
    262       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    263   }
    264 }
    265 
    266 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
    267 /// pool.
    268 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
    269   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    270 
    271   // If we don't have a valid method decl, simply return.
    272   if (!MDecl)
    273     return;
    274   if (MDecl->isInstanceMethod())
    275     AddInstanceMethodToGlobalPool(MDecl, true);
    276   else
    277     AddFactoryMethodToGlobalPool(MDecl, true);
    278 }
    279 
    280 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
    281 /// has explicit ownership attribute; false otherwise.
    282 static bool
    283 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
    284   QualType T = Param->getType();
    285 
    286   if (const PointerType *PT = T->getAs<PointerType>()) {
    287     T = PT->getPointeeType();
    288   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
    289     T = RT->getPointeeType();
    290   } else {
    291     return true;
    292   }
    293 
    294   // If we have a lifetime qualifier, but it's local, we must have
    295   // inferred it. So, it is implicit.
    296   return !T.getLocalQualifiers().hasObjCLifetime();
    297 }
    298 
    299 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    300 /// and user declared, in the method definition's AST.
    301 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    302   assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
    303   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    304 
    305   // If we don't have a valid method decl, simply return.
    306   if (!MDecl)
    307     return;
    308 
    309   // Allow all of Sema to see that we are entering a method definition.
    310   PushDeclContext(FnBodyScope, MDecl);
    311   PushFunctionScope();
    312 
    313   // Create Decl objects for each parameter, entrring them in the scope for
    314   // binding to their use.
    315 
    316   // Insert the invisible arguments, self and _cmd!
    317   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    318 
    319   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    320   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    321 
    322   // The ObjC parser requires parameter names so there's no need to check.
    323   CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
    324                            /*CheckParameterNames=*/false);
    325 
    326   // Introduce all of the other parameters into this scope.
    327   for (auto *Param : MDecl->params()) {
    328     if (!Param->isInvalidDecl() &&
    329         getLangOpts().ObjCAutoRefCount &&
    330         !HasExplicitOwnershipAttr(*this, Param))
    331       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
    332             Param->getType();
    333 
    334     if (Param->getIdentifier())
    335       PushOnScopeChains(Param, FnBodyScope);
    336   }
    337 
    338   // In ARC, disallow definition of retain/release/autorelease/retainCount
    339   if (getLangOpts().ObjCAutoRefCount) {
    340     switch (MDecl->getMethodFamily()) {
    341     case OMF_retain:
    342     case OMF_retainCount:
    343     case OMF_release:
    344     case OMF_autorelease:
    345       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    346         << 0 << MDecl->getSelector();
    347       break;
    348 
    349     case OMF_None:
    350     case OMF_dealloc:
    351     case OMF_finalize:
    352     case OMF_alloc:
    353     case OMF_init:
    354     case OMF_mutableCopy:
    355     case OMF_copy:
    356     case OMF_new:
    357     case OMF_self:
    358     case OMF_initialize:
    359     case OMF_performSelector:
    360       break;
    361     }
    362   }
    363 
    364   // Warn on deprecated methods under -Wdeprecated-implementations,
    365   // and prepare for warning on missing super calls.
    366   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
    367     ObjCMethodDecl *IMD =
    368       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
    369 
    370     if (IMD) {
    371       ObjCImplDecl *ImplDeclOfMethodDef =
    372         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
    373       ObjCContainerDecl *ContDeclOfMethodDecl =
    374         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
    375       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
    376       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
    377         ImplDeclOfMethodDecl = OID->getImplementation();
    378       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
    379         if (CD->IsClassExtension()) {
    380           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
    381             ImplDeclOfMethodDecl = OID->getImplementation();
    382         } else
    383             ImplDeclOfMethodDecl = CD->getImplementation();
    384       }
    385       // No need to issue deprecated warning if deprecated mehod in class/category
    386       // is being implemented in its own implementation (no overriding is involved).
    387       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
    388         DiagnoseObjCImplementedDeprecations(*this,
    389                                           dyn_cast<NamedDecl>(IMD),
    390                                           MDecl->getLocation(), 0);
    391     }
    392 
    393     if (MDecl->getMethodFamily() == OMF_init) {
    394       if (MDecl->isDesignatedInitializerForTheInterface()) {
    395         getCurFunction()->ObjCIsDesignatedInit = true;
    396         getCurFunction()->ObjCWarnForNoDesignatedInitChain =
    397             IC->getSuperClass() != nullptr;
    398       } else if (IC->hasDesignatedInitializers()) {
    399         getCurFunction()->ObjCIsSecondaryInit = true;
    400         getCurFunction()->ObjCWarnForNoInitDelegation = true;
    401       }
    402     }
    403 
    404     // If this is "dealloc" or "finalize", set some bit here.
    405     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
    406     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
    407     // Only do this if the current class actually has a superclass.
    408     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
    409       ObjCMethodFamily Family = MDecl->getMethodFamily();
    410       if (Family == OMF_dealloc) {
    411         if (!(getLangOpts().ObjCAutoRefCount ||
    412               getLangOpts().getGC() == LangOptions::GCOnly))
    413           getCurFunction()->ObjCShouldCallSuper = true;
    414 
    415       } else if (Family == OMF_finalize) {
    416         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
    417           getCurFunction()->ObjCShouldCallSuper = true;
    418 
    419       } else {
    420         const ObjCMethodDecl *SuperMethod =
    421           SuperClass->lookupMethod(MDecl->getSelector(),
    422                                    MDecl->isInstanceMethod());
    423         getCurFunction()->ObjCShouldCallSuper =
    424           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
    425       }
    426     }
    427   }
    428 }
    429 
    430 namespace {
    431 
    432 // Callback to only accept typo corrections that are Objective-C classes.
    433 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
    434 // function will reject corrections to that class.
    435 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
    436  public:
    437   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
    438   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
    439       : CurrentIDecl(IDecl) {}
    440 
    441   bool ValidateCandidate(const TypoCorrection &candidate) override {
    442     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
    443     return ID && !declaresSameEntity(ID, CurrentIDecl);
    444   }
    445 
    446  private:
    447   ObjCInterfaceDecl *CurrentIDecl;
    448 };
    449 
    450 } // end anonymous namespace
    451 
    452 static void diagnoseUseOfProtocols(Sema &TheSema,
    453                                    ObjCContainerDecl *CD,
    454                                    ObjCProtocolDecl *const *ProtoRefs,
    455                                    unsigned NumProtoRefs,
    456                                    const SourceLocation *ProtoLocs) {
    457   assert(ProtoRefs);
    458   // Diagnose availability in the context of the ObjC container.
    459   Sema::ContextRAII SavedContext(TheSema, CD);
    460   for (unsigned i = 0; i < NumProtoRefs; ++i) {
    461     (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i]);
    462   }
    463 }
    464 
    465 void Sema::
    466 ActOnSuperClassOfClassInterface(Scope *S,
    467                                 SourceLocation AtInterfaceLoc,
    468                                 ObjCInterfaceDecl *IDecl,
    469                                 IdentifierInfo *ClassName,
    470                                 SourceLocation ClassLoc,
    471                                 IdentifierInfo *SuperName,
    472                                 SourceLocation SuperLoc,
    473                                 ArrayRef<ParsedType> SuperTypeArgs,
    474                                 SourceRange SuperTypeArgsRange) {
    475   // Check if a different kind of symbol declared in this scope.
    476   NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    477                                          LookupOrdinaryName);
    478 
    479   if (!PrevDecl) {
    480     // Try to correct for a typo in the superclass name without correcting
    481     // to the class we're defining.
    482     if (TypoCorrection Corrected = CorrectTypo(
    483             DeclarationNameInfo(SuperName, SuperLoc),
    484             LookupOrdinaryName, TUScope,
    485             nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
    486             CTK_ErrorRecovery)) {
    487       diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
    488                    << SuperName << ClassName);
    489       PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    490     }
    491   }
    492 
    493   if (declaresSameEntity(PrevDecl, IDecl)) {
    494     Diag(SuperLoc, diag::err_recursive_superclass)
    495       << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    496     IDecl->setEndOfDefinitionLoc(ClassLoc);
    497   } else {
    498     ObjCInterfaceDecl *SuperClassDecl =
    499     dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    500     QualType SuperClassType;
    501 
    502     // Diagnose classes that inherit from deprecated classes.
    503     if (SuperClassDecl) {
    504       (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    505       SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
    506     }
    507 
    508     if (PrevDecl && !SuperClassDecl) {
    509       // The previous declaration was not a class decl. Check if we have a
    510       // typedef. If we do, get the underlying class type.
    511       if (const TypedefNameDecl *TDecl =
    512           dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    513         QualType T = TDecl->getUnderlyingType();
    514         if (T->isObjCObjectType()) {
    515           if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    516             SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    517             SuperClassType = Context.getTypeDeclType(TDecl);
    518 
    519             // This handles the following case:
    520             // @interface NewI @end
    521             // typedef NewI DeprI __attribute__((deprecated("blah")))
    522             // @interface SI : DeprI /* warn here */ @end
    523             (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
    524           }
    525         }
    526       }
    527 
    528       // This handles the following case:
    529       //
    530       // typedef int SuperClass;
    531       // @interface MyClass : SuperClass {} @end
    532       //
    533       if (!SuperClassDecl) {
    534         Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    535         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    536       }
    537     }
    538 
    539     if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    540       if (!SuperClassDecl)
    541         Diag(SuperLoc, diag::err_undef_superclass)
    542           << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    543       else if (RequireCompleteType(SuperLoc,
    544                                    SuperClassType,
    545                                    diag::err_forward_superclass,
    546                                    SuperClassDecl->getDeclName(),
    547                                    ClassName,
    548                                    SourceRange(AtInterfaceLoc, ClassLoc))) {
    549         SuperClassDecl = nullptr;
    550         SuperClassType = QualType();
    551       }
    552     }
    553 
    554     if (SuperClassType.isNull()) {
    555       assert(!SuperClassDecl && "Failed to set SuperClassType?");
    556       return;
    557     }
    558 
    559     // Handle type arguments on the superclass.
    560     TypeSourceInfo *SuperClassTInfo = nullptr;
    561     if (!SuperTypeArgs.empty()) {
    562       TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
    563                                         S,
    564                                         SuperLoc,
    565                                         CreateParsedType(SuperClassType,
    566                                                          nullptr),
    567                                         SuperTypeArgsRange.getBegin(),
    568                                         SuperTypeArgs,
    569                                         SuperTypeArgsRange.getEnd(),
    570                                         SourceLocation(),
    571                                         { },
    572                                         { },
    573                                         SourceLocation());
    574       if (!fullSuperClassType.isUsable())
    575         return;
    576 
    577       SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
    578                                          &SuperClassTInfo);
    579     }
    580 
    581     if (!SuperClassTInfo) {
    582       SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
    583                                                          SuperLoc);
    584     }
    585 
    586     IDecl->setSuperClass(SuperClassTInfo);
    587     IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
    588   }
    589 }
    590 
    591 DeclResult Sema::actOnObjCTypeParam(Scope *S,
    592                                     ObjCTypeParamVariance variance,
    593                                     SourceLocation varianceLoc,
    594                                     unsigned index,
    595                                     IdentifierInfo *paramName,
    596                                     SourceLocation paramLoc,
    597                                     SourceLocation colonLoc,
    598                                     ParsedType parsedTypeBound) {
    599   // If there was an explicitly-provided type bound, check it.
    600   TypeSourceInfo *typeBoundInfo = nullptr;
    601   if (parsedTypeBound) {
    602     // The type bound can be any Objective-C pointer type.
    603     QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
    604     if (typeBound->isObjCObjectPointerType()) {
    605       // okay
    606     } else if (typeBound->isObjCObjectType()) {
    607       // The user forgot the * on an Objective-C pointer type, e.g.,
    608       // "T : NSView".
    609       SourceLocation starLoc = getLocForEndOfToken(
    610                                  typeBoundInfo->getTypeLoc().getEndLoc());
    611       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
    612            diag::err_objc_type_param_bound_missing_pointer)
    613         << typeBound << paramName
    614         << FixItHint::CreateInsertion(starLoc, " *");
    615 
    616       // Create a new type location builder so we can update the type
    617       // location information we have.
    618       TypeLocBuilder builder;
    619       builder.pushFullCopy(typeBoundInfo->getTypeLoc());
    620 
    621       // Create the Objective-C pointer type.
    622       typeBound = Context.getObjCObjectPointerType(typeBound);
    623       ObjCObjectPointerTypeLoc newT
    624         = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
    625       newT.setStarLoc(starLoc);
    626 
    627       // Form the new type source information.
    628       typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
    629     } else {
    630       // Not a valid type bound.
    631       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
    632            diag::err_objc_type_param_bound_nonobject)
    633         << typeBound << paramName;
    634 
    635       // Forget the bound; we'll default to id later.
    636       typeBoundInfo = nullptr;
    637     }
    638 
    639     // Type bounds cannot have qualifiers (even indirectly) or explicit
    640     // nullability.
    641     if (typeBoundInfo) {
    642       QualType typeBound = typeBoundInfo->getType();
    643       TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
    644       if (qual || typeBound.hasQualifiers()) {
    645         bool diagnosed = false;
    646         SourceRange rangeToRemove;
    647         if (qual) {
    648           if (auto attr = qual.getAs<AttributedTypeLoc>()) {
    649             rangeToRemove = attr.getLocalSourceRange();
    650             if (attr.getTypePtr()->getImmediateNullability()) {
    651               Diag(attr.getLocStart(),
    652                    diag::err_objc_type_param_bound_explicit_nullability)
    653                 << paramName << typeBound
    654                 << FixItHint::CreateRemoval(rangeToRemove);
    655               diagnosed = true;
    656             }
    657           }
    658         }
    659 
    660         if (!diagnosed) {
    661           Diag(qual ? qual.getLocStart()
    662                     : typeBoundInfo->getTypeLoc().getLocStart(),
    663               diag::err_objc_type_param_bound_qualified)
    664             << paramName << typeBound << typeBound.getQualifiers().getAsString()
    665             << FixItHint::CreateRemoval(rangeToRemove);
    666         }
    667 
    668         // If the type bound has qualifiers other than CVR, we need to strip
    669         // them or we'll probably assert later when trying to apply new
    670         // qualifiers.
    671         Qualifiers quals = typeBound.getQualifiers();
    672         quals.removeCVRQualifiers();
    673         if (!quals.empty()) {
    674           typeBoundInfo =
    675              Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
    676         }
    677       }
    678     }
    679   }
    680 
    681   // If there was no explicit type bound (or we removed it due to an error),
    682   // use 'id' instead.
    683   if (!typeBoundInfo) {
    684     colonLoc = SourceLocation();
    685     typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
    686   }
    687 
    688   // Create the type parameter.
    689   return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
    690                                    index, paramLoc, paramName, colonLoc,
    691                                    typeBoundInfo);
    692 }
    693 
    694 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
    695                                                 SourceLocation lAngleLoc,
    696                                                 ArrayRef<Decl *> typeParamsIn,
    697                                                 SourceLocation rAngleLoc) {
    698   // We know that the array only contains Objective-C type parameters.
    699   ArrayRef<ObjCTypeParamDecl *>
    700     typeParams(
    701       reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
    702       typeParamsIn.size());
    703 
    704   // Diagnose redeclarations of type parameters.
    705   // We do this now because Objective-C type parameters aren't pushed into
    706   // scope until later (after the instance variable block), but we want the
    707   // diagnostics to occur right after we parse the type parameter list.
    708   llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
    709   for (auto typeParam : typeParams) {
    710     auto known = knownParams.find(typeParam->getIdentifier());
    711     if (known != knownParams.end()) {
    712       Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
    713         << typeParam->getIdentifier()
    714         << SourceRange(known->second->getLocation());
    715 
    716       typeParam->setInvalidDecl();
    717     } else {
    718       knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
    719 
    720       // Push the type parameter into scope.
    721       PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
    722     }
    723   }
    724 
    725   // Create the parameter list.
    726   return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
    727 }
    728 
    729 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
    730   for (auto typeParam : *typeParamList) {
    731     if (!typeParam->isInvalidDecl()) {
    732       S->RemoveDecl(typeParam);
    733       IdResolver.RemoveDecl(typeParam);
    734     }
    735   }
    736 }
    737 
    738 namespace {
    739   /// The context in which an Objective-C type parameter list occurs, for use
    740   /// in diagnostics.
    741   enum class TypeParamListContext {
    742     ForwardDeclaration,
    743     Definition,
    744     Category,
    745     Extension
    746   };
    747 } // end anonymous namespace
    748 
    749 /// Check consistency between two Objective-C type parameter lists, e.g.,
    750 /// between a category/extension and an \@interface or between an \@class and an
    751 /// \@interface.
    752 static bool checkTypeParamListConsistency(Sema &S,
    753                                           ObjCTypeParamList *prevTypeParams,
    754                                           ObjCTypeParamList *newTypeParams,
    755                                           TypeParamListContext newContext) {
    756   // If the sizes don't match, complain about that.
    757   if (prevTypeParams->size() != newTypeParams->size()) {
    758     SourceLocation diagLoc;
    759     if (newTypeParams->size() > prevTypeParams->size()) {
    760       diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
    761     } else {
    762       diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
    763     }
    764 
    765     S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
    766       << static_cast<unsigned>(newContext)
    767       << (newTypeParams->size() > prevTypeParams->size())
    768       << prevTypeParams->size()
    769       << newTypeParams->size();
    770 
    771     return true;
    772   }
    773 
    774   // Match up the type parameters.
    775   for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
    776     ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
    777     ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
    778 
    779     // Check for consistency of the variance.
    780     if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
    781       if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
    782           newContext != TypeParamListContext::Definition) {
    783         // When the new type parameter is invariant and is not part
    784         // of the definition, just propagate the variance.
    785         newTypeParam->setVariance(prevTypeParam->getVariance());
    786       } else if (prevTypeParam->getVariance()
    787                    == ObjCTypeParamVariance::Invariant &&
    788                  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
    789                    cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
    790                      ->getDefinition() == prevTypeParam->getDeclContext())) {
    791         // When the old parameter is invariant and was not part of the
    792         // definition, just ignore the difference because it doesn't
    793         // matter.
    794       } else {
    795         {
    796           // Diagnose the conflict and update the second declaration.
    797           SourceLocation diagLoc = newTypeParam->getVarianceLoc();
    798           if (diagLoc.isInvalid())
    799             diagLoc = newTypeParam->getLocStart();
    800 
    801           auto diag = S.Diag(diagLoc,
    802                              diag::err_objc_type_param_variance_conflict)
    803                         << static_cast<unsigned>(newTypeParam->getVariance())
    804                         << newTypeParam->getDeclName()
    805                         << static_cast<unsigned>(prevTypeParam->getVariance())
    806                         << prevTypeParam->getDeclName();
    807           switch (prevTypeParam->getVariance()) {
    808           case ObjCTypeParamVariance::Invariant:
    809             diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
    810             break;
    811 
    812           case ObjCTypeParamVariance::Covariant:
    813           case ObjCTypeParamVariance::Contravariant: {
    814             StringRef newVarianceStr
    815                = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
    816                    ? "__covariant"
    817                    : "__contravariant";
    818             if (newTypeParam->getVariance()
    819                   == ObjCTypeParamVariance::Invariant) {
    820               diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
    821                                                  (newVarianceStr + " ").str());
    822             } else {
    823               diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
    824                                                newVarianceStr);
    825             }
    826           }
    827           }
    828         }
    829 
    830         S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
    831           << prevTypeParam->getDeclName();
    832 
    833         // Override the variance.
    834         newTypeParam->setVariance(prevTypeParam->getVariance());
    835       }
    836     }
    837 
    838     // If the bound types match, there's nothing to do.
    839     if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
    840                               newTypeParam->getUnderlyingType()))
    841       continue;
    842 
    843     // If the new type parameter's bound was explicit, complain about it being
    844     // different from the original.
    845     if (newTypeParam->hasExplicitBound()) {
    846       SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
    847                                     ->getTypeLoc().getSourceRange();
    848       S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
    849         << newTypeParam->getUnderlyingType()
    850         << newTypeParam->getDeclName()
    851         << prevTypeParam->hasExplicitBound()
    852         << prevTypeParam->getUnderlyingType()
    853         << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
    854         << prevTypeParam->getDeclName()
    855         << FixItHint::CreateReplacement(
    856              newBoundRange,
    857              prevTypeParam->getUnderlyingType().getAsString(
    858                S.Context.getPrintingPolicy()));
    859 
    860       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
    861         << prevTypeParam->getDeclName();
    862 
    863       // Override the new type parameter's bound type with the previous type,
    864       // so that it's consistent.
    865       newTypeParam->setTypeSourceInfo(
    866         S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
    867       continue;
    868     }
    869 
    870     // The new type parameter got the implicit bound of 'id'. That's okay for
    871     // categories and extensions (overwrite it later), but not for forward
    872     // declarations and @interfaces, because those must be standalone.
    873     if (newContext == TypeParamListContext::ForwardDeclaration ||
    874         newContext == TypeParamListContext::Definition) {
    875       // Diagnose this problem for forward declarations and definitions.
    876       SourceLocation insertionLoc
    877         = S.getLocForEndOfToken(newTypeParam->getLocation());
    878       std::string newCode
    879         = " : " + prevTypeParam->getUnderlyingType().getAsString(
    880                     S.Context.getPrintingPolicy());
    881       S.Diag(newTypeParam->getLocation(),
    882              diag::err_objc_type_param_bound_missing)
    883         << prevTypeParam->getUnderlyingType()
    884         << newTypeParam->getDeclName()
    885         << (newContext == TypeParamListContext::ForwardDeclaration)
    886         << FixItHint::CreateInsertion(insertionLoc, newCode);
    887 
    888       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
    889         << prevTypeParam->getDeclName();
    890     }
    891 
    892     // Update the new type parameter's bound to match the previous one.
    893     newTypeParam->setTypeSourceInfo(
    894       S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
    895   }
    896 
    897   return false;
    898 }
    899 
    900 Decl *Sema::
    901 ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
    902                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    903                          ObjCTypeParamList *typeParamList,
    904                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    905                          ArrayRef<ParsedType> SuperTypeArgs,
    906                          SourceRange SuperTypeArgsRange,
    907                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    908                          const SourceLocation *ProtoLocs,
    909                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    910   assert(ClassName && "Missing class identifier");
    911 
    912   // Check for another declaration kind with the same name.
    913   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    914                                          LookupOrdinaryName, ForRedeclaration);
    915 
    916   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    917     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    918     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    919   }
    920 
    921   // Create a declaration to describe this @interface.
    922   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    923 
    924   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
    925     // A previous decl with a different name is because of
    926     // @compatibility_alias, for example:
    927     // \code
    928     //   @class NewImage;
    929     //   @compatibility_alias OldImage NewImage;
    930     // \endcode
    931     // A lookup for 'OldImage' will return the 'NewImage' decl.
    932     //
    933     // In such a case use the real declaration name, instead of the alias one,
    934     // otherwise we will break IdentifierResolver and redecls-chain invariants.
    935     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
    936     // has been aliased.
    937     ClassName = PrevIDecl->getIdentifier();
    938   }
    939 
    940   // If there was a forward declaration with type parameters, check
    941   // for consistency.
    942   if (PrevIDecl) {
    943     if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
    944       if (typeParamList) {
    945         // Both have type parameter lists; check for consistency.
    946         if (checkTypeParamListConsistency(*this, prevTypeParamList,
    947                                           typeParamList,
    948                                           TypeParamListContext::Definition)) {
    949           typeParamList = nullptr;
    950         }
    951       } else {
    952         Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
    953           << ClassName;
    954         Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
    955           << ClassName;
    956 
    957         // Clone the type parameter list.
    958         SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
    959         for (auto typeParam : *prevTypeParamList) {
    960           clonedTypeParams.push_back(
    961             ObjCTypeParamDecl::Create(
    962               Context,
    963               CurContext,
    964               typeParam->getVariance(),
    965               SourceLocation(),
    966               typeParam->getIndex(),
    967               SourceLocation(),
    968               typeParam->getIdentifier(),
    969               SourceLocation(),
    970               Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
    971         }
    972 
    973         typeParamList = ObjCTypeParamList::create(Context,
    974                                                   SourceLocation(),
    975                                                   clonedTypeParams,
    976                                                   SourceLocation());
    977       }
    978     }
    979   }
    980 
    981   ObjCInterfaceDecl *IDecl
    982     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
    983                                 typeParamList, PrevIDecl, ClassLoc);
    984   if (PrevIDecl) {
    985     // Class already seen. Was it a definition?
    986     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
    987       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
    988         << PrevIDecl->getDeclName();
    989       Diag(Def->getLocation(), diag::note_previous_definition);
    990       IDecl->setInvalidDecl();
    991     }
    992   }
    993 
    994   if (AttrList)
    995     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    996   PushOnScopeChains(IDecl, TUScope);
    997 
    998   // Start the definition of this class. If we're in a redefinition case, there
    999   // may already be a definition, so we'll end up adding to it.
   1000   if (!IDecl->hasDefinition())
   1001     IDecl->startDefinition();
   1002 
   1003   if (SuperName) {
   1004     // Diagnose availability in the context of the @interface.
   1005     ContextRAII SavedContext(*this, IDecl);
   1006 
   1007     ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
   1008                                     ClassName, ClassLoc,
   1009                                     SuperName, SuperLoc, SuperTypeArgs,
   1010                                     SuperTypeArgsRange);
   1011   } else { // we have a root class.
   1012     IDecl->setEndOfDefinitionLoc(ClassLoc);
   1013   }
   1014 
   1015   // Check then save referenced protocols.
   1016   if (NumProtoRefs) {
   1017     diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
   1018                            NumProtoRefs, ProtoLocs);
   1019     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
   1020                            ProtoLocs, Context);
   1021     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
   1022   }
   1023 
   1024   CheckObjCDeclScope(IDecl);
   1025   return ActOnObjCContainerStartDefinition(IDecl);
   1026 }
   1027 
   1028 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
   1029 /// typedef'ed use for a qualified super class and adds them to the list
   1030 /// of the protocols.
   1031 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
   1032                                    IdentifierInfo *SuperName,
   1033                                    SourceLocation SuperLoc) {
   1034   if (!SuperName)
   1035     return;
   1036   NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
   1037                                       LookupOrdinaryName);
   1038   if (!IDecl)
   1039     return;
   1040 
   1041   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
   1042     QualType T = TDecl->getUnderlyingType();
   1043     if (T->isObjCObjectType())
   1044       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
   1045         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
   1046   }
   1047 }
   1048 
   1049 /// ActOnCompatibilityAlias - this action is called after complete parsing of
   1050 /// a \@compatibility_alias declaration. It sets up the alias relationships.
   1051 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
   1052                                     IdentifierInfo *AliasName,
   1053                                     SourceLocation AliasLocation,
   1054                                     IdentifierInfo *ClassName,
   1055                                     SourceLocation ClassLocation) {
   1056   // Look for previous declaration of alias name
   1057   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
   1058                                       LookupOrdinaryName, ForRedeclaration);
   1059   if (ADecl) {
   1060     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
   1061     Diag(ADecl->getLocation(), diag::note_previous_declaration);
   1062     return nullptr;
   1063   }
   1064   // Check for class declaration
   1065   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
   1066                                        LookupOrdinaryName, ForRedeclaration);
   1067   if (const TypedefNameDecl *TDecl =
   1068         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
   1069     QualType T = TDecl->getUnderlyingType();
   1070     if (T->isObjCObjectType()) {
   1071       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
   1072         ClassName = IDecl->getIdentifier();
   1073         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
   1074                                   LookupOrdinaryName, ForRedeclaration);
   1075       }
   1076     }
   1077   }
   1078   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
   1079   if (!CDecl) {
   1080     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
   1081     if (CDeclU)
   1082       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
   1083     return nullptr;
   1084   }
   1085 
   1086   // Everything checked out, instantiate a new alias declaration AST.
   1087   ObjCCompatibleAliasDecl *AliasDecl =
   1088     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
   1089 
   1090   if (!CheckObjCDeclScope(AliasDecl))
   1091     PushOnScopeChains(AliasDecl, TUScope);
   1092 
   1093   return AliasDecl;
   1094 }
   1095 
   1096 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
   1097   IdentifierInfo *PName,
   1098   SourceLocation &Ploc, SourceLocation PrevLoc,
   1099   const ObjCList<ObjCProtocolDecl> &PList) {
   1100 
   1101   bool res = false;
   1102   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
   1103        E = PList.end(); I != E; ++I) {
   1104     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
   1105                                                  Ploc)) {
   1106       if (PDecl->getIdentifier() == PName) {
   1107         Diag(Ploc, diag::err_protocol_has_circular_dependency);
   1108         Diag(PrevLoc, diag::note_previous_definition);
   1109         res = true;
   1110       }
   1111 
   1112       if (!PDecl->hasDefinition())
   1113         continue;
   1114 
   1115       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
   1116             PDecl->getLocation(), PDecl->getReferencedProtocols()))
   1117         res = true;
   1118     }
   1119   }
   1120   return res;
   1121 }
   1122 
   1123 Decl *
   1124 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
   1125                                   IdentifierInfo *ProtocolName,
   1126                                   SourceLocation ProtocolLoc,
   1127                                   Decl * const *ProtoRefs,
   1128                                   unsigned NumProtoRefs,
   1129                                   const SourceLocation *ProtoLocs,
   1130                                   SourceLocation EndProtoLoc,
   1131                                   AttributeList *AttrList) {
   1132   bool err = false;
   1133   // FIXME: Deal with AttrList.
   1134   assert(ProtocolName && "Missing protocol identifier");
   1135   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
   1136                                               ForRedeclaration);
   1137   ObjCProtocolDecl *PDecl = nullptr;
   1138   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
   1139     // If we already have a definition, complain.
   1140     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
   1141     Diag(Def->getLocation(), diag::note_previous_definition);
   1142 
   1143     // Create a new protocol that is completely distinct from previous
   1144     // declarations, and do not make this protocol available for name lookup.
   1145     // That way, we'll end up completely ignoring the duplicate.
   1146     // FIXME: Can we turn this into an error?
   1147     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
   1148                                      ProtocolLoc, AtProtoInterfaceLoc,
   1149                                      /*PrevDecl=*/nullptr);
   1150     PDecl->startDefinition();
   1151   } else {
   1152     if (PrevDecl) {
   1153       // Check for circular dependencies among protocol declarations. This can
   1154       // only happen if this protocol was forward-declared.
   1155       ObjCList<ObjCProtocolDecl> PList;
   1156       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
   1157       err = CheckForwardProtocolDeclarationForCircularDependency(
   1158               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
   1159     }
   1160 
   1161     // Create the new declaration.
   1162     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
   1163                                      ProtocolLoc, AtProtoInterfaceLoc,
   1164                                      /*PrevDecl=*/PrevDecl);
   1165 
   1166     PushOnScopeChains(PDecl, TUScope);
   1167     PDecl->startDefinition();
   1168   }
   1169 
   1170   if (AttrList)
   1171     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
   1172 
   1173   // Merge attributes from previous declarations.
   1174   if (PrevDecl)
   1175     mergeDeclAttributes(PDecl, PrevDecl);
   1176 
   1177   if (!err && NumProtoRefs ) {
   1178     /// Check then save referenced protocols.
   1179     diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
   1180                            NumProtoRefs, ProtoLocs);
   1181     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
   1182                            ProtoLocs, Context);
   1183   }
   1184 
   1185   CheckObjCDeclScope(PDecl);
   1186   return ActOnObjCContainerStartDefinition(PDecl);
   1187 }
   1188 
   1189 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
   1190                                           ObjCProtocolDecl *&UndefinedProtocol) {
   1191   if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
   1192     UndefinedProtocol = PDecl;
   1193     return true;
   1194   }
   1195 
   1196   for (auto *PI : PDecl->protocols())
   1197     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
   1198       UndefinedProtocol = PI;
   1199       return true;
   1200     }
   1201   return false;
   1202 }
   1203 
   1204 /// FindProtocolDeclaration - This routine looks up protocols and
   1205 /// issues an error if they are not declared. It returns list of
   1206 /// protocol declarations in its 'Protocols' argument.
   1207 void
   1208 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
   1209                               ArrayRef<IdentifierLocPair> ProtocolId,
   1210                               SmallVectorImpl<Decl *> &Protocols) {
   1211   for (const IdentifierLocPair &Pair : ProtocolId) {
   1212     ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
   1213     if (!PDecl) {
   1214       TypoCorrection Corrected = CorrectTypo(
   1215           DeclarationNameInfo(Pair.first, Pair.second),
   1216           LookupObjCProtocolName, TUScope, nullptr,
   1217           llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
   1218           CTK_ErrorRecovery);
   1219       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
   1220         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
   1221                                     << Pair.first);
   1222     }
   1223 
   1224     if (!PDecl) {
   1225       Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
   1226       continue;
   1227     }
   1228     // If this is a forward protocol declaration, get its definition.
   1229     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
   1230       PDecl = PDecl->getDefinition();
   1231 
   1232     // For an objc container, delay protocol reference checking until after we
   1233     // can set the objc decl as the availability context, otherwise check now.
   1234     if (!ForObjCContainer) {
   1235       (void)DiagnoseUseOfDecl(PDecl, Pair.second);
   1236     }
   1237 
   1238     // If this is a forward declaration and we are supposed to warn in this
   1239     // case, do it.
   1240     // FIXME: Recover nicely in the hidden case.
   1241     ObjCProtocolDecl *UndefinedProtocol;
   1242 
   1243     if (WarnOnDeclarations &&
   1244         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
   1245       Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
   1246       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
   1247         << UndefinedProtocol;
   1248     }
   1249     Protocols.push_back(PDecl);
   1250   }
   1251 }
   1252 
   1253 namespace {
   1254 // Callback to only accept typo corrections that are either
   1255 // Objective-C protocols or valid Objective-C type arguments.
   1256 class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
   1257   ASTContext &Context;
   1258   Sema::LookupNameKind LookupKind;
   1259  public:
   1260   ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
   1261                                     Sema::LookupNameKind lookupKind)
   1262     : Context(context), LookupKind(lookupKind) { }
   1263 
   1264   bool ValidateCandidate(const TypoCorrection &candidate) override {
   1265     // If we're allowed to find protocols and we have a protocol, accept it.
   1266     if (LookupKind != Sema::LookupOrdinaryName) {
   1267       if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
   1268         return true;
   1269     }
   1270 
   1271     // If we're allowed to find type names and we have one, accept it.
   1272     if (LookupKind != Sema::LookupObjCProtocolName) {
   1273       // If we have a type declaration, we might accept this result.
   1274       if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
   1275         // If we found a tag declaration outside of C++, skip it. This
   1276         // can happy because we look for any name when there is no
   1277         // bias to protocol or type names.
   1278         if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
   1279           return false;
   1280 
   1281         // Make sure the type is something we would accept as a type
   1282         // argument.
   1283         auto type = Context.getTypeDeclType(typeDecl);
   1284         if (type->isObjCObjectPointerType() ||
   1285             type->isBlockPointerType() ||
   1286             type->isDependentType() ||
   1287             type->isObjCObjectType())
   1288           return true;
   1289 
   1290         return false;
   1291       }
   1292 
   1293       // If we have an Objective-C class type, accept it; there will
   1294       // be another fix to add the '*'.
   1295       if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
   1296         return true;
   1297 
   1298       return false;
   1299     }
   1300 
   1301     return false;
   1302   }
   1303 };
   1304 } // end anonymous namespace
   1305 
   1306 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
   1307        Scope *S,
   1308        ParsedType baseType,
   1309        SourceLocation lAngleLoc,
   1310        ArrayRef<IdentifierInfo *> identifiers,
   1311        ArrayRef<SourceLocation> identifierLocs,
   1312        SourceLocation rAngleLoc,
   1313        SourceLocation &typeArgsLAngleLoc,
   1314        SmallVectorImpl<ParsedType> &typeArgs,
   1315        SourceLocation &typeArgsRAngleLoc,
   1316        SourceLocation &protocolLAngleLoc,
   1317        SmallVectorImpl<Decl *> &protocols,
   1318        SourceLocation &protocolRAngleLoc,
   1319        bool warnOnIncompleteProtocols) {
   1320   // Local function that updates the declaration specifiers with
   1321   // protocol information.
   1322   unsigned numProtocolsResolved = 0;
   1323   auto resolvedAsProtocols = [&] {
   1324     assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
   1325 
   1326     // Determine whether the base type is a parameterized class, in
   1327     // which case we want to warn about typos such as
   1328     // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
   1329     ObjCInterfaceDecl *baseClass = nullptr;
   1330     QualType base = GetTypeFromParser(baseType, nullptr);
   1331     bool allAreTypeNames = false;
   1332     SourceLocation firstClassNameLoc;
   1333     if (!base.isNull()) {
   1334       if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
   1335         baseClass = objcObjectType->getInterface();
   1336         if (baseClass) {
   1337           if (auto typeParams = baseClass->getTypeParamList()) {
   1338             if (typeParams->size() == numProtocolsResolved) {
   1339               // Note that we should be looking for type names, too.
   1340               allAreTypeNames = true;
   1341             }
   1342           }
   1343         }
   1344       }
   1345     }
   1346 
   1347     for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
   1348       ObjCProtocolDecl *&proto
   1349         = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
   1350       // For an objc container, delay protocol reference checking until after we
   1351       // can set the objc decl as the availability context, otherwise check now.
   1352       if (!warnOnIncompleteProtocols) {
   1353         (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
   1354       }
   1355 
   1356       // If this is a forward protocol declaration, get its definition.
   1357       if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
   1358         proto = proto->getDefinition();
   1359 
   1360       // If this is a forward declaration and we are supposed to warn in this
   1361       // case, do it.
   1362       // FIXME: Recover nicely in the hidden case.
   1363       ObjCProtocolDecl *forwardDecl = nullptr;
   1364       if (warnOnIncompleteProtocols &&
   1365           NestedProtocolHasNoDefinition(proto, forwardDecl)) {
   1366         Diag(identifierLocs[i], diag::warn_undef_protocolref)
   1367           << proto->getDeclName();
   1368         Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
   1369           << forwardDecl;
   1370       }
   1371 
   1372       // If everything this far has been a type name (and we care
   1373       // about such things), check whether this name refers to a type
   1374       // as well.
   1375       if (allAreTypeNames) {
   1376         if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
   1377                                           LookupOrdinaryName)) {
   1378           if (isa<ObjCInterfaceDecl>(decl)) {
   1379             if (firstClassNameLoc.isInvalid())
   1380               firstClassNameLoc = identifierLocs[i];
   1381           } else if (!isa<TypeDecl>(decl)) {
   1382             // Not a type.
   1383             allAreTypeNames = false;
   1384           }
   1385         } else {
   1386           allAreTypeNames = false;
   1387         }
   1388       }
   1389     }
   1390 
   1391     // All of the protocols listed also have type names, and at least
   1392     // one is an Objective-C class name. Check whether all of the
   1393     // protocol conformances are declared by the base class itself, in
   1394     // which case we warn.
   1395     if (allAreTypeNames && firstClassNameLoc.isValid()) {
   1396       llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
   1397       Context.CollectInheritedProtocols(baseClass, knownProtocols);
   1398       bool allProtocolsDeclared = true;
   1399       for (auto proto : protocols) {
   1400         if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
   1401           allProtocolsDeclared = false;
   1402           break;
   1403         }
   1404       }
   1405 
   1406       if (allProtocolsDeclared) {
   1407         Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
   1408           << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
   1409           << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
   1410                                         " *");
   1411       }
   1412     }
   1413 
   1414     protocolLAngleLoc = lAngleLoc;
   1415     protocolRAngleLoc = rAngleLoc;
   1416     assert(protocols.size() == identifierLocs.size());
   1417   };
   1418 
   1419   // Attempt to resolve all of the identifiers as protocols.
   1420   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
   1421     ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
   1422     protocols.push_back(proto);
   1423     if (proto)
   1424       ++numProtocolsResolved;
   1425   }
   1426 
   1427   // If all of the names were protocols, these were protocol qualifiers.
   1428   if (numProtocolsResolved == identifiers.size())
   1429     return resolvedAsProtocols();
   1430 
   1431   // Attempt to resolve all of the identifiers as type names or
   1432   // Objective-C class names. The latter is technically ill-formed,
   1433   // but is probably something like \c NSArray<NSView *> missing the
   1434   // \c*.
   1435   typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
   1436   SmallVector<TypeOrClassDecl, 4> typeDecls;
   1437   unsigned numTypeDeclsResolved = 0;
   1438   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
   1439     NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
   1440                                        LookupOrdinaryName);
   1441     if (!decl) {
   1442       typeDecls.push_back(TypeOrClassDecl());
   1443       continue;
   1444     }
   1445 
   1446     if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
   1447       typeDecls.push_back(typeDecl);
   1448       ++numTypeDeclsResolved;
   1449       continue;
   1450     }
   1451 
   1452     if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
   1453       typeDecls.push_back(objcClass);
   1454       ++numTypeDeclsResolved;
   1455       continue;
   1456     }
   1457 
   1458     typeDecls.push_back(TypeOrClassDecl());
   1459   }
   1460 
   1461   AttributeFactory attrFactory;
   1462 
   1463   // Local function that forms a reference to the given type or
   1464   // Objective-C class declaration.
   1465   auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
   1466                                 -> TypeResult {
   1467     // Form declaration specifiers. They simply refer to the type.
   1468     DeclSpec DS(attrFactory);
   1469     const char* prevSpec; // unused
   1470     unsigned diagID; // unused
   1471     QualType type;
   1472     if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
   1473       type = Context.getTypeDeclType(actualTypeDecl);
   1474     else
   1475       type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
   1476     TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
   1477     ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
   1478     DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
   1479                        parsedType, Context.getPrintingPolicy());
   1480     // Use the identifier location for the type source range.
   1481     DS.SetRangeStart(loc);
   1482     DS.SetRangeEnd(loc);
   1483 
   1484     // Form the declarator.
   1485     Declarator D(DS, Declarator::TypeNameContext);
   1486 
   1487     // If we have a typedef of an Objective-C class type that is missing a '*',
   1488     // add the '*'.
   1489     if (type->getAs<ObjCInterfaceType>()) {
   1490       SourceLocation starLoc = getLocForEndOfToken(loc);
   1491       ParsedAttributes parsedAttrs(attrFactory);
   1492       D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
   1493                                                 SourceLocation(),
   1494                                                 SourceLocation(),
   1495                                                 SourceLocation(),
   1496                                                 SourceLocation()),
   1497                                                 parsedAttrs,
   1498                                                 starLoc);
   1499 
   1500       // Diagnose the missing '*'.
   1501       Diag(loc, diag::err_objc_type_arg_missing_star)
   1502         << type
   1503         << FixItHint::CreateInsertion(starLoc, " *");
   1504     }
   1505 
   1506     // Convert this to a type.
   1507     return ActOnTypeName(S, D);
   1508   };
   1509 
   1510   // Local function that updates the declaration specifiers with
   1511   // type argument information.
   1512   auto resolvedAsTypeDecls = [&] {
   1513     // We did not resolve these as protocols.
   1514     protocols.clear();
   1515 
   1516     assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
   1517     // Map type declarations to type arguments.
   1518     for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
   1519       // Map type reference to a type.
   1520       TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
   1521       if (!type.isUsable()) {
   1522         typeArgs.clear();
   1523         return;
   1524       }
   1525 
   1526       typeArgs.push_back(type.get());
   1527     }
   1528 
   1529     typeArgsLAngleLoc = lAngleLoc;
   1530     typeArgsRAngleLoc = rAngleLoc;
   1531   };
   1532 
   1533   // If all of the identifiers can be resolved as type names or
   1534   // Objective-C class names, we have type arguments.
   1535   if (numTypeDeclsResolved == identifiers.size())
   1536     return resolvedAsTypeDecls();
   1537 
   1538   // Error recovery: some names weren't found, or we have a mix of
   1539   // type and protocol names. Go resolve all of the unresolved names
   1540   // and complain if we can't find a consistent answer.
   1541   LookupNameKind lookupKind = LookupAnyName;
   1542   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
   1543     // If we already have a protocol or type. Check whether it is the
   1544     // right thing.
   1545     if (protocols[i] || typeDecls[i]) {
   1546       // If we haven't figured out whether we want types or protocols
   1547       // yet, try to figure it out from this name.
   1548       if (lookupKind == LookupAnyName) {
   1549         // If this name refers to both a protocol and a type (e.g., \c
   1550         // NSObject), don't conclude anything yet.
   1551         if (protocols[i] && typeDecls[i])
   1552           continue;
   1553 
   1554         // Otherwise, let this name decide whether we'll be correcting
   1555         // toward types or protocols.
   1556         lookupKind = protocols[i] ? LookupObjCProtocolName
   1557                                   : LookupOrdinaryName;
   1558         continue;
   1559       }
   1560 
   1561       // If we want protocols and we have a protocol, there's nothing
   1562       // more to do.
   1563       if (lookupKind == LookupObjCProtocolName && protocols[i])
   1564         continue;
   1565 
   1566       // If we want types and we have a type declaration, there's
   1567       // nothing more to do.
   1568       if (lookupKind == LookupOrdinaryName && typeDecls[i])
   1569         continue;
   1570 
   1571       // We have a conflict: some names refer to protocols and others
   1572       // refer to types.
   1573       Diag(identifierLocs[i], diag::err_objc_type_args_and_protocols)
   1574         << (protocols[i] != nullptr)
   1575         << identifiers[i]
   1576         << identifiers[0]
   1577         << SourceRange(identifierLocs[0]);
   1578 
   1579       protocols.clear();
   1580       typeArgs.clear();
   1581       return;
   1582     }
   1583 
   1584     // Perform typo correction on the name.
   1585     TypoCorrection corrected = CorrectTypo(
   1586         DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
   1587         nullptr,
   1588         llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
   1589                                                              lookupKind),
   1590         CTK_ErrorRecovery);
   1591     if (corrected) {
   1592       // Did we find a protocol?
   1593       if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
   1594         diagnoseTypo(corrected,
   1595                      PDiag(diag::err_undeclared_protocol_suggest)
   1596                        << identifiers[i]);
   1597         lookupKind = LookupObjCProtocolName;
   1598         protocols[i] = proto;
   1599         ++numProtocolsResolved;
   1600         continue;
   1601       }
   1602 
   1603       // Did we find a type?
   1604       if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
   1605         diagnoseTypo(corrected,
   1606                      PDiag(diag::err_unknown_typename_suggest)
   1607                        << identifiers[i]);
   1608         lookupKind = LookupOrdinaryName;
   1609         typeDecls[i] = typeDecl;
   1610         ++numTypeDeclsResolved;
   1611         continue;
   1612       }
   1613 
   1614       // Did we find an Objective-C class?
   1615       if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
   1616         diagnoseTypo(corrected,
   1617                      PDiag(diag::err_unknown_type_or_class_name_suggest)
   1618                        << identifiers[i] << true);
   1619         lookupKind = LookupOrdinaryName;
   1620         typeDecls[i] = objcClass;
   1621         ++numTypeDeclsResolved;
   1622         continue;
   1623       }
   1624     }
   1625 
   1626     // We couldn't find anything.
   1627     Diag(identifierLocs[i],
   1628          (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
   1629           : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
   1630           : diag::err_unknown_typename))
   1631       << identifiers[i];
   1632     protocols.clear();
   1633     typeArgs.clear();
   1634     return;
   1635   }
   1636 
   1637   // If all of the names were (corrected to) protocols, these were
   1638   // protocol qualifiers.
   1639   if (numProtocolsResolved == identifiers.size())
   1640     return resolvedAsProtocols();
   1641 
   1642   // Otherwise, all of the names were (corrected to) types.
   1643   assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
   1644   return resolvedAsTypeDecls();
   1645 }
   1646 
   1647 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
   1648 /// a class method in its extension.
   1649 ///
   1650 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
   1651                                             ObjCInterfaceDecl *ID) {
   1652   if (!ID)
   1653     return;  // Possibly due to previous error
   1654 
   1655   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
   1656   for (auto *MD : ID->methods())
   1657     MethodMap[MD->getSelector()] = MD;
   1658 
   1659   if (MethodMap.empty())
   1660     return;
   1661   for (const auto *Method : CAT->methods()) {
   1662     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
   1663     if (PrevMethod &&
   1664         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
   1665         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
   1666       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   1667             << Method->getDeclName();
   1668       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   1669     }
   1670   }
   1671 }
   1672 
   1673 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
   1674 Sema::DeclGroupPtrTy
   1675 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
   1676                                       ArrayRef<IdentifierLocPair> IdentList,
   1677                                       AttributeList *attrList) {
   1678   SmallVector<Decl *, 8> DeclsInGroup;
   1679   for (const IdentifierLocPair &IdentPair : IdentList) {
   1680     IdentifierInfo *Ident = IdentPair.first;
   1681     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
   1682                                                 ForRedeclaration);
   1683     ObjCProtocolDecl *PDecl
   1684       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
   1685                                  IdentPair.second, AtProtocolLoc,
   1686                                  PrevDecl);
   1687 
   1688     PushOnScopeChains(PDecl, TUScope);
   1689     CheckObjCDeclScope(PDecl);
   1690 
   1691     if (attrList)
   1692       ProcessDeclAttributeList(TUScope, PDecl, attrList);
   1693 
   1694     if (PrevDecl)
   1695       mergeDeclAttributes(PDecl, PrevDecl);
   1696 
   1697     DeclsInGroup.push_back(PDecl);
   1698   }
   1699 
   1700   return BuildDeclaratorGroup(DeclsInGroup, false);
   1701 }
   1702 
   1703 Decl *Sema::
   1704 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
   1705                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
   1706                             ObjCTypeParamList *typeParamList,
   1707                             IdentifierInfo *CategoryName,
   1708                             SourceLocation CategoryLoc,
   1709                             Decl * const *ProtoRefs,
   1710                             unsigned NumProtoRefs,
   1711                             const SourceLocation *ProtoLocs,
   1712                             SourceLocation EndProtoLoc) {
   1713   ObjCCategoryDecl *CDecl;
   1714   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
   1715 
   1716   /// Check that class of this category is already completely declared.
   1717 
   1718   if (!IDecl
   1719       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
   1720                              diag::err_category_forward_interface,
   1721                              CategoryName == nullptr)) {
   1722     // Create an invalid ObjCCategoryDecl to serve as context for
   1723     // the enclosing method declarations.  We mark the decl invalid
   1724     // to make it clear that this isn't a valid AST.
   1725     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
   1726                                      ClassLoc, CategoryLoc, CategoryName,
   1727                                      IDecl, typeParamList);
   1728     CDecl->setInvalidDecl();
   1729     CurContext->addDecl(CDecl);
   1730 
   1731     if (!IDecl)
   1732       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
   1733     return ActOnObjCContainerStartDefinition(CDecl);
   1734   }
   1735 
   1736   if (!CategoryName && IDecl->getImplementation()) {
   1737     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
   1738     Diag(IDecl->getImplementation()->getLocation(),
   1739           diag::note_implementation_declared);
   1740   }
   1741 
   1742   if (CategoryName) {
   1743     /// Check for duplicate interface declaration for this category
   1744     if (ObjCCategoryDecl *Previous
   1745           = IDecl->FindCategoryDeclaration(CategoryName)) {
   1746       // Class extensions can be declared multiple times, categories cannot.
   1747       Diag(CategoryLoc, diag::warn_dup_category_def)
   1748         << ClassName << CategoryName;
   1749       Diag(Previous->getLocation(), diag::note_previous_definition);
   1750     }
   1751   }
   1752 
   1753   // If we have a type parameter list, check it.
   1754   if (typeParamList) {
   1755     if (auto prevTypeParamList = IDecl->getTypeParamList()) {
   1756       if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
   1757                                         CategoryName
   1758                                           ? TypeParamListContext::Category
   1759                                           : TypeParamListContext::Extension))
   1760         typeParamList = nullptr;
   1761     } else {
   1762       Diag(typeParamList->getLAngleLoc(),
   1763            diag::err_objc_parameterized_category_nonclass)
   1764         << (CategoryName != nullptr)
   1765         << ClassName
   1766         << typeParamList->getSourceRange();
   1767 
   1768       typeParamList = nullptr;
   1769     }
   1770   }
   1771 
   1772   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
   1773                                    ClassLoc, CategoryLoc, CategoryName, IDecl,
   1774                                    typeParamList);
   1775   // FIXME: PushOnScopeChains?
   1776   CurContext->addDecl(CDecl);
   1777 
   1778   if (NumProtoRefs) {
   1779     diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
   1780                            NumProtoRefs, ProtoLocs);
   1781     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
   1782                            ProtoLocs, Context);
   1783     // Protocols in the class extension belong to the class.
   1784     if (CDecl->IsClassExtension())
   1785      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
   1786                                             NumProtoRefs, Context);
   1787   }
   1788 
   1789   CheckObjCDeclScope(CDecl);
   1790   return ActOnObjCContainerStartDefinition(CDecl);
   1791 }
   1792 
   1793 /// ActOnStartCategoryImplementation - Perform semantic checks on the
   1794 /// category implementation declaration and build an ObjCCategoryImplDecl
   1795 /// object.
   1796 Decl *Sema::ActOnStartCategoryImplementation(
   1797                       SourceLocation AtCatImplLoc,
   1798                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
   1799                       IdentifierInfo *CatName, SourceLocation CatLoc) {
   1800   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
   1801   ObjCCategoryDecl *CatIDecl = nullptr;
   1802   if (IDecl && IDecl->hasDefinition()) {
   1803     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
   1804     if (!CatIDecl) {
   1805       // Category @implementation with no corresponding @interface.
   1806       // Create and install one.
   1807       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
   1808                                           ClassLoc, CatLoc,
   1809                                           CatName, IDecl,
   1810                                           /*typeParamList=*/nullptr);
   1811       CatIDecl->setImplicit();
   1812     }
   1813   }
   1814 
   1815   ObjCCategoryImplDecl *CDecl =
   1816     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
   1817                                  ClassLoc, AtCatImplLoc, CatLoc);
   1818   /// Check that class of this category is already completely declared.
   1819   if (!IDecl) {
   1820     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
   1821     CDecl->setInvalidDecl();
   1822   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
   1823                                  diag::err_undef_interface)) {
   1824     CDecl->setInvalidDecl();
   1825   }
   1826 
   1827   // FIXME: PushOnScopeChains?
   1828   CurContext->addDecl(CDecl);
   1829 
   1830   // If the interface is deprecated/unavailable, warn/error about it.
   1831   if (IDecl)
   1832     DiagnoseUseOfDecl(IDecl, ClassLoc);
   1833 
   1834   /// Check that CatName, category name, is not used in another implementation.
   1835   if (CatIDecl) {
   1836     if (CatIDecl->getImplementation()) {
   1837       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
   1838         << CatName;
   1839       Diag(CatIDecl->getImplementation()->getLocation(),
   1840            diag::note_previous_definition);
   1841       CDecl->setInvalidDecl();
   1842     } else {
   1843       CatIDecl->setImplementation(CDecl);
   1844       // Warn on implementating category of deprecated class under
   1845       // -Wdeprecated-implementations flag.
   1846       DiagnoseObjCImplementedDeprecations(*this,
   1847                                           dyn_cast<NamedDecl>(IDecl),
   1848                                           CDecl->getLocation(), 2);
   1849     }
   1850   }
   1851 
   1852   CheckObjCDeclScope(CDecl);
   1853   return ActOnObjCContainerStartDefinition(CDecl);
   1854 }
   1855 
   1856 Decl *Sema::ActOnStartClassImplementation(
   1857                       SourceLocation AtClassImplLoc,
   1858                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
   1859                       IdentifierInfo *SuperClassname,
   1860                       SourceLocation SuperClassLoc) {
   1861   ObjCInterfaceDecl *IDecl = nullptr;
   1862   // Check for another declaration kind with the same name.
   1863   NamedDecl *PrevDecl
   1864     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
   1865                        ForRedeclaration);
   1866   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1867     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
   1868     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1869   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
   1870     // FIXME: This will produce an error if the definition of the interface has
   1871     // been imported from a module but is not visible.
   1872     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
   1873                         diag::warn_undef_interface);
   1874   } else {
   1875     // We did not find anything with the name ClassName; try to correct for
   1876     // typos in the class name.
   1877     TypoCorrection Corrected = CorrectTypo(
   1878         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
   1879         nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
   1880     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
   1881       // Suggest the (potentially) correct interface name. Don't provide a
   1882       // code-modification hint or use the typo name for recovery, because
   1883       // this is just a warning. The program may actually be correct.
   1884       diagnoseTypo(Corrected,
   1885                    PDiag(diag::warn_undef_interface_suggest) << ClassName,
   1886                    /*ErrorRecovery*/false);
   1887     } else {
   1888       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
   1889     }
   1890   }
   1891 
   1892   // Check that super class name is valid class name
   1893   ObjCInterfaceDecl *SDecl = nullptr;
   1894   if (SuperClassname) {
   1895     // Check if a different kind of symbol declared in this scope.
   1896     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
   1897                                 LookupOrdinaryName);
   1898     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1899       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
   1900         << SuperClassname;
   1901       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1902     } else {
   1903       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1904       if (SDecl && !SDecl->hasDefinition())
   1905         SDecl = nullptr;
   1906       if (!SDecl)
   1907         Diag(SuperClassLoc, diag::err_undef_superclass)
   1908           << SuperClassname << ClassName;
   1909       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
   1910         // This implementation and its interface do not have the same
   1911         // super class.
   1912         Diag(SuperClassLoc, diag::err_conflicting_super_class)
   1913           << SDecl->getDeclName();
   1914         Diag(SDecl->getLocation(), diag::note_previous_definition);
   1915       }
   1916     }
   1917   }
   1918 
   1919   if (!IDecl) {
   1920     // Legacy case of @implementation with no corresponding @interface.
   1921     // Build, chain & install the interface decl into the identifier.
   1922 
   1923     // FIXME: Do we support attributes on the @implementation? If so we should
   1924     // copy them over.
   1925     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
   1926                                       ClassName, /*typeParamList=*/nullptr,
   1927                                       /*PrevDecl=*/nullptr, ClassLoc,
   1928                                       true);
   1929     IDecl->startDefinition();
   1930     if (SDecl) {
   1931       IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
   1932                              Context.getObjCInterfaceType(SDecl),
   1933                              SuperClassLoc));
   1934       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
   1935     } else {
   1936       IDecl->setEndOfDefinitionLoc(ClassLoc);
   1937     }
   1938 
   1939     PushOnScopeChains(IDecl, TUScope);
   1940   } else {
   1941     // Mark the interface as being completed, even if it was just as
   1942     //   @class ....;
   1943     // declaration; the user cannot reopen it.
   1944     if (!IDecl->hasDefinition())
   1945       IDecl->startDefinition();
   1946   }
   1947 
   1948   ObjCImplementationDecl* IMPDecl =
   1949     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
   1950                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
   1951 
   1952   if (CheckObjCDeclScope(IMPDecl))
   1953     return ActOnObjCContainerStartDefinition(IMPDecl);
   1954 
   1955   // Check that there is no duplicate implementation of this class.
   1956   if (IDecl->getImplementation()) {
   1957     // FIXME: Don't leak everything!
   1958     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
   1959     Diag(IDecl->getImplementation()->getLocation(),
   1960          diag::note_previous_definition);
   1961     IMPDecl->setInvalidDecl();
   1962   } else { // add it to the list.
   1963     IDecl->setImplementation(IMPDecl);
   1964     PushOnScopeChains(IMPDecl, TUScope);
   1965     // Warn on implementating deprecated class under
   1966     // -Wdeprecated-implementations flag.
   1967     DiagnoseObjCImplementedDeprecations(*this,
   1968                                         dyn_cast<NamedDecl>(IDecl),
   1969                                         IMPDecl->getLocation(), 1);
   1970   }
   1971   return ActOnObjCContainerStartDefinition(IMPDecl);
   1972 }
   1973 
   1974 Sema::DeclGroupPtrTy
   1975 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
   1976   SmallVector<Decl *, 64> DeclsInGroup;
   1977   DeclsInGroup.reserve(Decls.size() + 1);
   1978 
   1979   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
   1980     Decl *Dcl = Decls[i];
   1981     if (!Dcl)
   1982       continue;
   1983     if (Dcl->getDeclContext()->isFileContext())
   1984       Dcl->setTopLevelDeclInObjCContainer();
   1985     DeclsInGroup.push_back(Dcl);
   1986   }
   1987 
   1988   DeclsInGroup.push_back(ObjCImpDecl);
   1989 
   1990   return BuildDeclaratorGroup(DeclsInGroup, false);
   1991 }
   1992 
   1993 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
   1994                                     ObjCIvarDecl **ivars, unsigned numIvars,
   1995                                     SourceLocation RBrace) {
   1996   assert(ImpDecl && "missing implementation decl");
   1997   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
   1998   if (!IDecl)
   1999     return;
   2000   /// Check case of non-existing \@interface decl.
   2001   /// (legacy objective-c \@implementation decl without an \@interface decl).
   2002   /// Add implementations's ivar to the synthesize class's ivar list.
   2003   if (IDecl->isImplicitInterfaceDecl()) {
   2004     IDecl->setEndOfDefinitionLoc(RBrace);
   2005     // Add ivar's to class's DeclContext.
   2006     for (unsigned i = 0, e = numIvars; i != e; ++i) {
   2007       ivars[i]->setLexicalDeclContext(ImpDecl);
   2008       IDecl->makeDeclVisibleInContext(ivars[i]);
   2009       ImpDecl->addDecl(ivars[i]);
   2010     }
   2011 
   2012     return;
   2013   }
   2014   // If implementation has empty ivar list, just return.
   2015   if (numIvars == 0)
   2016     return;
   2017 
   2018   assert(ivars && "missing @implementation ivars");
   2019   if (LangOpts.ObjCRuntime.isNonFragile()) {
   2020     if (ImpDecl->getSuperClass())
   2021       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
   2022     for (unsigned i = 0; i < numIvars; i++) {
   2023       ObjCIvarDecl* ImplIvar = ivars[i];
   2024       if (const ObjCIvarDecl *ClsIvar =
   2025             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   2026         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   2027         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   2028         continue;
   2029       }
   2030       // Check class extensions (unnamed categories) for duplicate ivars.
   2031       for (const auto *CDecl : IDecl->visible_extensions()) {
   2032         if (const ObjCIvarDecl *ClsExtIvar =
   2033             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   2034           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   2035           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   2036           continue;
   2037         }
   2038       }
   2039       // Instance ivar to Implementation's DeclContext.
   2040       ImplIvar->setLexicalDeclContext(ImpDecl);
   2041       IDecl->makeDeclVisibleInContext(ImplIvar);
   2042       ImpDecl->addDecl(ImplIvar);
   2043     }
   2044     return;
   2045   }
   2046   // Check interface's Ivar list against those in the implementation.
   2047   // names and types must match.
   2048   //
   2049   unsigned j = 0;
   2050   ObjCInterfaceDecl::ivar_iterator
   2051     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   2052   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   2053     ObjCIvarDecl* ImplIvar = ivars[j++];
   2054     ObjCIvarDecl* ClsIvar = *IVI;
   2055     assert (ImplIvar && "missing implementation ivar");
   2056     assert (ClsIvar && "missing class ivar");
   2057 
   2058     // First, make sure the types match.
   2059     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
   2060       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   2061         << ImplIvar->getIdentifier()
   2062         << ImplIvar->getType() << ClsIvar->getType();
   2063       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   2064     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
   2065                ImplIvar->getBitWidthValue(Context) !=
   2066                ClsIvar->getBitWidthValue(Context)) {
   2067       Diag(ImplIvar->getBitWidth()->getLocStart(),
   2068            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
   2069       Diag(ClsIvar->getBitWidth()->getLocStart(),
   2070            diag::note_previous_definition);
   2071     }
   2072     // Make sure the names are identical.
   2073     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   2074       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   2075         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   2076       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   2077     }
   2078     --numIvars;
   2079   }
   2080 
   2081   if (numIvars > 0)
   2082     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
   2083   else if (IVI != IVE)
   2084     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
   2085 }
   2086 
   2087 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
   2088                                 ObjCMethodDecl *method,
   2089                                 bool &IncompleteImpl,
   2090                                 unsigned DiagID,
   2091                                 NamedDecl *NeededFor = nullptr) {
   2092   // No point warning no definition of method which is 'unavailable'.
   2093   switch (method->getAvailability()) {
   2094   case AR_Available:
   2095   case AR_Deprecated:
   2096     break;
   2097 
   2098       // Don't warn about unavailable or not-yet-introduced methods.
   2099   case AR_NotYetIntroduced:
   2100   case AR_Unavailable:
   2101     return;
   2102   }
   2103 
   2104   // FIXME: For now ignore 'IncompleteImpl'.
   2105   // Previously we grouped all unimplemented methods under a single
   2106   // warning, but some users strongly voiced that they would prefer
   2107   // separate warnings.  We will give that approach a try, as that
   2108   // matches what we do with protocols.
   2109   {
   2110     const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
   2111     B << method;
   2112     if (NeededFor)
   2113       B << NeededFor;
   2114   }
   2115 
   2116   // Issue a note to the original declaration.
   2117   SourceLocation MethodLoc = method->getLocStart();
   2118   if (MethodLoc.isValid())
   2119     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
   2120 }
   2121 
   2122 /// Determines if type B can be substituted for type A.  Returns true if we can
   2123 /// guarantee that anything that the user will do to an object of type A can
   2124 /// also be done to an object of type B.  This is trivially true if the two
   2125 /// types are the same, or if B is a subclass of A.  It becomes more complex
   2126 /// in cases where protocols are involved.
   2127 ///
   2128 /// Object types in Objective-C describe the minimum requirements for an
   2129 /// object, rather than providing a complete description of a type.  For
   2130 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   2131 /// The principle of substitutability means that we may use an instance of A
   2132 /// anywhere that we may use an instance of B - it will implement all of the
   2133 /// ivars of B and all of the methods of B.
   2134 ///
   2135 /// This substitutability is important when type checking methods, because
   2136 /// the implementation may have stricter type definitions than the interface.
   2137 /// The interface specifies minimum requirements, but the implementation may
   2138 /// have more accurate ones.  For example, a method may privately accept
   2139 /// instances of B, but only publish that it accepts instances of A.  Any
   2140 /// object passed to it will be type checked against B, and so will implicitly
   2141 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   2142 /// it is declared as returning.
   2143 ///
   2144 /// This is most important when considering subclassing.  A method in a
   2145 /// subclass must accept any object as an argument that its superclass's
   2146 /// implementation accepts.  It may, however, accept a more general type
   2147 /// without breaking substitutability (i.e. you can still use the subclass
   2148 /// anywhere that you can use the superclass, but not vice versa).  The
   2149 /// converse requirement applies to return types: the return type for a
   2150 /// subclass method must be a valid object of the kind that the superclass
   2151 /// advertises, but it may be specified more accurately.  This avoids the need
   2152 /// for explicit down-casting by callers.
   2153 ///
   2154 /// Note: This is a stricter requirement than for assignment.
   2155 static bool isObjCTypeSubstitutable(ASTContext &Context,
   2156                                     const ObjCObjectPointerType *A,
   2157                                     const ObjCObjectPointerType *B,
   2158                                     bool rejectId) {
   2159   // Reject a protocol-unqualified id.
   2160   if (rejectId && B->isObjCIdType()) return false;
   2161 
   2162   // If B is a qualified id, then A must also be a qualified id and it must
   2163   // implement all of the protocols in B.  It may not be a qualified class.
   2164   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   2165   // stricter definition so it is not substitutable for id<A>.
   2166   if (B->isObjCQualifiedIdType()) {
   2167     return A->isObjCQualifiedIdType() &&
   2168            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   2169                                                      QualType(B,0),
   2170                                                      false);
   2171   }
   2172 
   2173   /*
   2174   // id is a special type that bypasses type checking completely.  We want a
   2175   // warning when it is used in one place but not another.
   2176   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   2177 
   2178 
   2179   // If B is a qualified id, then A must also be a qualified id (which it isn't
   2180   // if we've got this far)
   2181   if (B->isObjCQualifiedIdType()) return false;
   2182   */
   2183 
   2184   // Now we know that A and B are (potentially-qualified) class types.  The
   2185   // normal rules for assignment apply.
   2186   return Context.canAssignObjCInterfaces(A, B);
   2187 }
   2188 
   2189 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   2190   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   2191 }
   2192 
   2193 /// Determine whether two set of Objective-C declaration qualifiers conflict.
   2194 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
   2195                                   Decl::ObjCDeclQualifier y) {
   2196   return (x & ~Decl::OBJC_TQ_CSNullability) !=
   2197          (y & ~Decl::OBJC_TQ_CSNullability);
   2198 }
   2199 
   2200 static bool CheckMethodOverrideReturn(Sema &S,
   2201                                       ObjCMethodDecl *MethodImpl,
   2202                                       ObjCMethodDecl *MethodDecl,
   2203                                       bool IsProtocolMethodDecl,
   2204                                       bool IsOverridingMode,
   2205                                       bool Warn) {
   2206   if (IsProtocolMethodDecl &&
   2207       objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
   2208                             MethodImpl->getObjCDeclQualifier())) {
   2209     if (Warn) {
   2210       S.Diag(MethodImpl->getLocation(),
   2211              (IsOverridingMode
   2212                   ? diag::warn_conflicting_overriding_ret_type_modifiers
   2213                   : diag::warn_conflicting_ret_type_modifiers))
   2214           << MethodImpl->getDeclName()
   2215           << MethodImpl->getReturnTypeSourceRange();
   2216       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   2217           << MethodDecl->getReturnTypeSourceRange();
   2218     }
   2219     else
   2220       return false;
   2221   }
   2222   if (Warn && IsOverridingMode &&
   2223       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
   2224       !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
   2225                                                  MethodDecl->getReturnType(),
   2226                                                  false)) {
   2227     auto nullabilityMethodImpl =
   2228       *MethodImpl->getReturnType()->getNullability(S.Context);
   2229     auto nullabilityMethodDecl =
   2230       *MethodDecl->getReturnType()->getNullability(S.Context);
   2231       S.Diag(MethodImpl->getLocation(),
   2232              diag::warn_conflicting_nullability_attr_overriding_ret_types)
   2233         << DiagNullabilityKind(
   2234              nullabilityMethodImpl,
   2235              ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2236               != 0))
   2237         << DiagNullabilityKind(
   2238              nullabilityMethodDecl,
   2239              ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2240                 != 0));
   2241       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   2242   }
   2243 
   2244   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
   2245                                        MethodDecl->getReturnType()))
   2246     return true;
   2247   if (!Warn)
   2248     return false;
   2249 
   2250   unsigned DiagID =
   2251     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
   2252                      : diag::warn_conflicting_ret_types;
   2253 
   2254   // Mismatches between ObjC pointers go into a different warning
   2255   // category, and sometimes they're even completely whitelisted.
   2256   if (const ObjCObjectPointerType *ImplPtrTy =
   2257           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
   2258     if (const ObjCObjectPointerType *IfacePtrTy =
   2259             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
   2260       // Allow non-matching return types as long as they don't violate
   2261       // the principle of substitutability.  Specifically, we permit
   2262       // return types that are subclasses of the declared return type,
   2263       // or that are more-qualified versions of the declared type.
   2264       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   2265         return false;
   2266 
   2267       DiagID =
   2268         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
   2269                          : diag::warn_non_covariant_ret_types;
   2270     }
   2271   }
   2272 
   2273   S.Diag(MethodImpl->getLocation(), DiagID)
   2274       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
   2275       << MethodImpl->getReturnType()
   2276       << MethodImpl->getReturnTypeSourceRange();
   2277   S.Diag(MethodDecl->getLocation(), IsOverridingMode
   2278                                         ? diag::note_previous_declaration
   2279                                         : diag::note_previous_definition)
   2280       << MethodDecl->getReturnTypeSourceRange();
   2281   return false;
   2282 }
   2283 
   2284 static bool CheckMethodOverrideParam(Sema &S,
   2285                                      ObjCMethodDecl *MethodImpl,
   2286                                      ObjCMethodDecl *MethodDecl,
   2287                                      ParmVarDecl *ImplVar,
   2288                                      ParmVarDecl *IfaceVar,
   2289                                      bool IsProtocolMethodDecl,
   2290                                      bool IsOverridingMode,
   2291                                      bool Warn) {
   2292   if (IsProtocolMethodDecl &&
   2293       objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
   2294                             IfaceVar->getObjCDeclQualifier())) {
   2295     if (Warn) {
   2296       if (IsOverridingMode)
   2297         S.Diag(ImplVar->getLocation(),
   2298                diag::warn_conflicting_overriding_param_modifiers)
   2299             << getTypeRange(ImplVar->getTypeSourceInfo())
   2300             << MethodImpl->getDeclName();
   2301       else S.Diag(ImplVar->getLocation(),
   2302              diag::warn_conflicting_param_modifiers)
   2303           << getTypeRange(ImplVar->getTypeSourceInfo())
   2304           << MethodImpl->getDeclName();
   2305       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   2306           << getTypeRange(IfaceVar->getTypeSourceInfo());
   2307     }
   2308     else
   2309       return false;
   2310   }
   2311 
   2312   QualType ImplTy = ImplVar->getType();
   2313   QualType IfaceTy = IfaceVar->getType();
   2314   if (Warn && IsOverridingMode &&
   2315       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
   2316       !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
   2317     S.Diag(ImplVar->getLocation(),
   2318            diag::warn_conflicting_nullability_attr_overriding_param_types)
   2319       << DiagNullabilityKind(
   2320            *ImplTy->getNullability(S.Context),
   2321            ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2322             != 0))
   2323       << DiagNullabilityKind(
   2324            *IfaceTy->getNullability(S.Context),
   2325            ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2326             != 0));
   2327     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
   2328   }
   2329   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   2330     return true;
   2331 
   2332   if (!Warn)
   2333     return false;
   2334   unsigned DiagID =
   2335     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
   2336                      : diag::warn_conflicting_param_types;
   2337 
   2338   // Mismatches between ObjC pointers go into a different warning
   2339   // category, and sometimes they're even completely whitelisted.
   2340   if (const ObjCObjectPointerType *ImplPtrTy =
   2341         ImplTy->getAs<ObjCObjectPointerType>()) {
   2342     if (const ObjCObjectPointerType *IfacePtrTy =
   2343           IfaceTy->getAs<ObjCObjectPointerType>()) {
   2344       // Allow non-matching argument types as long as they don't
   2345       // violate the principle of substitutability.  Specifically, the
   2346       // implementation must accept any objects that the superclass
   2347       // accepts, however it may also accept others.
   2348       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   2349         return false;
   2350 
   2351       DiagID =
   2352       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
   2353                        : diag::warn_non_contravariant_param_types;
   2354     }
   2355   }
   2356 
   2357   S.Diag(ImplVar->getLocation(), DiagID)
   2358     << getTypeRange(ImplVar->getTypeSourceInfo())
   2359     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   2360   S.Diag(IfaceVar->getLocation(),
   2361          (IsOverridingMode ? diag::note_previous_declaration
   2362                            : diag::note_previous_definition))
   2363     << getTypeRange(IfaceVar->getTypeSourceInfo());
   2364   return false;
   2365 }
   2366 
   2367 /// In ARC, check whether the conventional meanings of the two methods
   2368 /// match.  If they don't, it's a hard error.
   2369 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   2370                                       ObjCMethodDecl *decl) {
   2371   ObjCMethodFamily implFamily = impl->getMethodFamily();
   2372   ObjCMethodFamily declFamily = decl->getMethodFamily();
   2373   if (implFamily == declFamily) return false;
   2374 
   2375   // Since conventions are sorted by selector, the only possibility is
   2376   // that the types differ enough to cause one selector or the other
   2377   // to fall out of the family.
   2378   assert(implFamily == OMF_None || declFamily == OMF_None);
   2379 
   2380   // No further diagnostics required on invalid declarations.
   2381   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   2382 
   2383   const ObjCMethodDecl *unmatched = impl;
   2384   ObjCMethodFamily family = declFamily;
   2385   unsigned errorID = diag::err_arc_lost_method_convention;
   2386   unsigned noteID = diag::note_arc_lost_method_convention;
   2387   if (declFamily == OMF_None) {
   2388     unmatched = decl;
   2389     family = implFamily;
   2390     errorID = diag::err_arc_gained_method_convention;
   2391     noteID = diag::note_arc_gained_method_convention;
   2392   }
   2393 
   2394   // Indexes into a %select clause in the diagnostic.
   2395   enum FamilySelector {
   2396     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   2397   };
   2398   FamilySelector familySelector = FamilySelector();
   2399 
   2400   switch (family) {
   2401   case OMF_None: llvm_unreachable("logic error, no method convention");
   2402   case OMF_retain:
   2403   case OMF_release:
   2404   case OMF_autorelease:
   2405   case OMF_dealloc:
   2406   case OMF_finalize:
   2407   case OMF_retainCount:
   2408   case OMF_self:
   2409   case OMF_initialize:
   2410   case OMF_performSelector:
   2411     // Mismatches for these methods don't change ownership
   2412     // conventions, so we don't care.
   2413     return false;
   2414 
   2415   case OMF_init: familySelector = F_init; break;
   2416   case OMF_alloc: familySelector = F_alloc; break;
   2417   case OMF_copy: familySelector = F_copy; break;
   2418   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   2419   case OMF_new: familySelector = F_new; break;
   2420   }
   2421 
   2422   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   2423   ReasonSelector reasonSelector;
   2424 
   2425   // The only reason these methods don't fall within their families is
   2426   // due to unusual result types.
   2427   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
   2428     reasonSelector = R_UnrelatedReturn;
   2429   } else {
   2430     reasonSelector = R_NonObjectReturn;
   2431   }
   2432 
   2433   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
   2434   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
   2435 
   2436   return true;
   2437 }
   2438 
   2439 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   2440                                        ObjCMethodDecl *MethodDecl,
   2441                                        bool IsProtocolMethodDecl) {
   2442   if (getLangOpts().ObjCAutoRefCount &&
   2443       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   2444     return;
   2445 
   2446   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   2447                             IsProtocolMethodDecl, false,
   2448                             true);
   2449 
   2450   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   2451        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   2452        EF = MethodDecl->param_end();
   2453        IM != EM && IF != EF; ++IM, ++IF) {
   2454     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   2455                              IsProtocolMethodDecl, false, true);
   2456   }
   2457 
   2458   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   2459     Diag(ImpMethodDecl->getLocation(),
   2460          diag::warn_conflicting_variadic);
   2461     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   2462   }
   2463 }
   2464 
   2465 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
   2466                                        ObjCMethodDecl *Overridden,
   2467                                        bool IsProtocolMethodDecl) {
   2468 
   2469   CheckMethodOverrideReturn(*this, Method, Overridden,
   2470                             IsProtocolMethodDecl, true,
   2471                             true);
   2472 
   2473   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
   2474        IF = Overridden->param_begin(), EM = Method->param_end(),
   2475        EF = Overridden->param_end();
   2476        IM != EM && IF != EF; ++IM, ++IF) {
   2477     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
   2478                              IsProtocolMethodDecl, true, true);
   2479   }
   2480 
   2481   if (Method->isVariadic() != Overridden->isVariadic()) {
   2482     Diag(Method->getLocation(),
   2483          diag::warn_conflicting_overriding_variadic);
   2484     Diag(Overridden->getLocation(), diag::note_previous_declaration);
   2485   }
   2486 }
   2487 
   2488 /// WarnExactTypedMethods - This routine issues a warning if method
   2489 /// implementation declaration matches exactly that of its declaration.
   2490 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   2491                                  ObjCMethodDecl *MethodDecl,
   2492                                  bool IsProtocolMethodDecl) {
   2493   // don't issue warning when protocol method is optional because primary
   2494   // class is not required to implement it and it is safe for protocol
   2495   // to implement it.
   2496   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
   2497     return;
   2498   // don't issue warning when primary class's method is
   2499   // depecated/unavailable.
   2500   if (MethodDecl->hasAttr<UnavailableAttr>() ||
   2501       MethodDecl->hasAttr<DeprecatedAttr>())
   2502     return;
   2503 
   2504   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   2505                                       IsProtocolMethodDecl, false, false);
   2506   if (match)
   2507     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   2508          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   2509          EF = MethodDecl->param_end();
   2510          IM != EM && IF != EF; ++IM, ++IF) {
   2511       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
   2512                                        *IM, *IF,
   2513                                        IsProtocolMethodDecl, false, false);
   2514       if (!match)
   2515         break;
   2516     }
   2517   if (match)
   2518     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
   2519   if (match)
   2520     match = !(MethodDecl->isClassMethod() &&
   2521               MethodDecl->getSelector() == GetNullarySelector("load", Context));
   2522 
   2523   if (match) {
   2524     Diag(ImpMethodDecl->getLocation(),
   2525          diag::warn_category_method_impl_match);
   2526     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
   2527       << MethodDecl->getDeclName();
   2528   }
   2529 }
   2530 
   2531 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   2532 /// improve the efficiency of selector lookups and type checking by associating
   2533 /// with each protocol / interface / category the flattened instance tables. If
   2534 /// we used an immutable set to keep the table then it wouldn't add significant
   2535 /// memory cost and it would be handy for lookups.
   2536 
   2537 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
   2538 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
   2539 
   2540 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
   2541                                            ProtocolNameSet &PNS) {
   2542   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
   2543     PNS.insert(PDecl->getIdentifier());
   2544   for (const auto *PI : PDecl->protocols())
   2545     findProtocolsWithExplicitImpls(PI, PNS);
   2546 }
   2547 
   2548 /// Recursively populates a set with all conformed protocols in a class
   2549 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
   2550 /// attribute.
   2551 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
   2552                                            ProtocolNameSet &PNS) {
   2553   if (!Super)
   2554     return;
   2555 
   2556   for (const auto *I : Super->all_referenced_protocols())
   2557     findProtocolsWithExplicitImpls(I, PNS);
   2558 
   2559   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
   2560 }
   2561 
   2562 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   2563 /// Declared in protocol, and those referenced by it.
   2564 static void CheckProtocolMethodDefs(Sema &S,
   2565                                     SourceLocation ImpLoc,
   2566                                     ObjCProtocolDecl *PDecl,
   2567                                     bool& IncompleteImpl,
   2568                                     const Sema::SelectorSet &InsMap,
   2569                                     const Sema::SelectorSet &ClsMap,
   2570                                     ObjCContainerDecl *CDecl,
   2571                                     LazyProtocolNameSet &ProtocolsExplictImpl) {
   2572   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
   2573   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
   2574                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
   2575   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   2576 
   2577   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   2578   ObjCInterfaceDecl *NSIDecl = nullptr;
   2579 
   2580   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
   2581   // then we should check if any class in the super class hierarchy also
   2582   // conforms to this protocol, either directly or via protocol inheritance.
   2583   // If so, we can skip checking this protocol completely because we
   2584   // know that a parent class already satisfies this protocol.
   2585   //
   2586   // Note: we could generalize this logic for all protocols, and merely
   2587   // add the limit on looking at the super class chain for just
   2588   // specially marked protocols.  This may be a good optimization.  This
   2589   // change is restricted to 'objc_protocol_requires_explicit_implementation'
   2590   // protocols for now for controlled evaluation.
   2591   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
   2592     if (!ProtocolsExplictImpl) {
   2593       ProtocolsExplictImpl.reset(new ProtocolNameSet);
   2594       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
   2595     }
   2596     if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
   2597         ProtocolsExplictImpl->end())
   2598       return;
   2599 
   2600     // If no super class conforms to the protocol, we should not search
   2601     // for methods in the super class to implicitly satisfy the protocol.
   2602     Super = nullptr;
   2603   }
   2604 
   2605   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
   2606     // check to see if class implements forwardInvocation method and objects
   2607     // of this class are derived from 'NSProxy' so that to forward requests
   2608     // from one object to another.
   2609     // Under such conditions, which means that every method possible is
   2610     // implemented in the class, we should not issue "Method definition not
   2611     // found" warnings.
   2612     // FIXME: Use a general GetUnarySelector method for this.
   2613     IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
   2614     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
   2615     if (InsMap.count(fISelector))
   2616       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   2617       // need be implemented in the implementation.
   2618       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
   2619   }
   2620 
   2621   // If this is a forward protocol declaration, get its definition.
   2622   if (!PDecl->isThisDeclarationADefinition() &&
   2623       PDecl->getDefinition())
   2624     PDecl = PDecl->getDefinition();
   2625 
   2626   // If a method lookup fails locally we still need to look and see if
   2627   // the method was implemented by a base class or an inherited
   2628   // protocol. This lookup is slow, but occurs rarely in correct code
   2629   // and otherwise would terminate in a warning.
   2630 
   2631   // check unimplemented instance methods.
   2632   if (!NSIDecl)
   2633     for (auto *method : PDecl->instance_methods()) {
   2634       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   2635           !method->isPropertyAccessor() &&
   2636           !InsMap.count(method->getSelector()) &&
   2637           (!Super || !Super->lookupMethod(method->getSelector(),
   2638                                           true /* instance */,
   2639                                           false /* shallowCategory */,
   2640                                           true /* followsSuper */,
   2641                                           nullptr /* category */))) {
   2642             // If a method is not implemented in the category implementation but
   2643             // has been declared in its primary class, superclass,
   2644             // or in one of their protocols, no need to issue the warning.
   2645             // This is because method will be implemented in the primary class
   2646             // or one of its super class implementation.
   2647 
   2648             // Ugly, but necessary. Method declared in protcol might have
   2649             // have been synthesized due to a property declared in the class which
   2650             // uses the protocol.
   2651             if (ObjCMethodDecl *MethodInClass =
   2652                   IDecl->lookupMethod(method->getSelector(),
   2653                                       true /* instance */,
   2654                                       true /* shallowCategoryLookup */,
   2655                                       false /* followSuper */))
   2656               if (C || MethodInClass->isPropertyAccessor())
   2657                 continue;
   2658             unsigned DIAG = diag::warn_unimplemented_protocol_method;
   2659             if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
   2660               WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
   2661                                   PDecl);
   2662             }
   2663           }
   2664     }
   2665   // check unimplemented class methods
   2666   for (auto *method : PDecl->class_methods()) {
   2667     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   2668         !ClsMap.count(method->getSelector()) &&
   2669         (!Super || !Super->lookupMethod(method->getSelector(),
   2670                                         false /* class method */,
   2671                                         false /* shallowCategoryLookup */,
   2672                                         true  /* followSuper */,
   2673                                         nullptr /* category */))) {
   2674       // See above comment for instance method lookups.
   2675       if (C && IDecl->lookupMethod(method->getSelector(),
   2676                                    false /* class */,
   2677                                    true /* shallowCategoryLookup */,
   2678                                    false /* followSuper */))
   2679         continue;
   2680 
   2681       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   2682       if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
   2683         WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
   2684       }
   2685     }
   2686   }
   2687   // Check on this protocols's referenced protocols, recursively.
   2688   for (auto *PI : PDecl->protocols())
   2689     CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
   2690                             CDecl, ProtocolsExplictImpl);
   2691 }
   2692 
   2693 /// MatchAllMethodDeclarations - Check methods declared in interface
   2694 /// or protocol against those declared in their implementations.
   2695 ///
   2696 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
   2697                                       const SelectorSet &ClsMap,
   2698                                       SelectorSet &InsMapSeen,
   2699                                       SelectorSet &ClsMapSeen,
   2700                                       ObjCImplDecl* IMPDecl,
   2701                                       ObjCContainerDecl* CDecl,
   2702                                       bool &IncompleteImpl,
   2703                                       bool ImmediateClass,
   2704                                       bool WarnCategoryMethodImpl) {
   2705   // Check and see if instance methods in class interface have been
   2706   // implemented in the implementation class. If so, their types match.
   2707   for (auto *I : CDecl->instance_methods()) {
   2708     if (!InsMapSeen.insert(I->getSelector()).second)
   2709       continue;
   2710     if (!I->isPropertyAccessor() &&
   2711         !InsMap.count(I->getSelector())) {
   2712       if (ImmediateClass)
   2713         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
   2714                             diag::warn_undef_method_impl);
   2715       continue;
   2716     } else {
   2717       ObjCMethodDecl *ImpMethodDecl =
   2718         IMPDecl->getInstanceMethod(I->getSelector());
   2719       assert(CDecl->getInstanceMethod(I->getSelector()) &&
   2720              "Expected to find the method through lookup as well");
   2721       // ImpMethodDecl may be null as in a @dynamic property.
   2722       if (ImpMethodDecl) {
   2723         if (!WarnCategoryMethodImpl)
   2724           WarnConflictingTypedMethods(ImpMethodDecl, I,
   2725                                       isa<ObjCProtocolDecl>(CDecl));
   2726         else if (!I->isPropertyAccessor())
   2727           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
   2728       }
   2729     }
   2730   }
   2731 
   2732   // Check and see if class methods in class interface have been
   2733   // implemented in the implementation class. If so, their types match.
   2734   for (auto *I : CDecl->class_methods()) {
   2735     if (!ClsMapSeen.insert(I->getSelector()).second)
   2736       continue;
   2737     if (!ClsMap.count(I->getSelector())) {
   2738       if (ImmediateClass)
   2739         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
   2740                             diag::warn_undef_method_impl);
   2741     } else {
   2742       ObjCMethodDecl *ImpMethodDecl =
   2743         IMPDecl->getClassMethod(I->getSelector());
   2744       assert(CDecl->getClassMethod(I->getSelector()) &&
   2745              "Expected to find the method through lookup as well");
   2746       if (!WarnCategoryMethodImpl)
   2747         WarnConflictingTypedMethods(ImpMethodDecl, I,
   2748                                     isa<ObjCProtocolDecl>(CDecl));
   2749       else
   2750         WarnExactTypedMethods(ImpMethodDecl, I,
   2751                               isa<ObjCProtocolDecl>(CDecl));
   2752     }
   2753   }
   2754 
   2755   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
   2756     // Also, check for methods declared in protocols inherited by
   2757     // this protocol.
   2758     for (auto *PI : PD->protocols())
   2759       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2760                                  IMPDecl, PI, IncompleteImpl, false,
   2761                                  WarnCategoryMethodImpl);
   2762   }
   2763 
   2764   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   2765     // when checking that methods in implementation match their declaration,
   2766     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
   2767     // extension; as well as those in categories.
   2768     if (!WarnCategoryMethodImpl) {
   2769       for (auto *Cat : I->visible_categories())
   2770         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2771                                    IMPDecl, Cat, IncompleteImpl,
   2772                                    ImmediateClass && Cat->IsClassExtension(),
   2773                                    WarnCategoryMethodImpl);
   2774     } else {
   2775       // Also methods in class extensions need be looked at next.
   2776       for (auto *Ext : I->visible_extensions())
   2777         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2778                                    IMPDecl, Ext, IncompleteImpl, false,
   2779                                    WarnCategoryMethodImpl);
   2780     }
   2781 
   2782     // Check for any implementation of a methods declared in protocol.
   2783     for (auto *PI : I->all_referenced_protocols())
   2784       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2785                                  IMPDecl, PI, IncompleteImpl, false,
   2786                                  WarnCategoryMethodImpl);
   2787 
   2788     // FIXME. For now, we are not checking for extact match of methods
   2789     // in category implementation and its primary class's super class.
   2790     if (!WarnCategoryMethodImpl && I->getSuperClass())
   2791       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2792                                  IMPDecl,
   2793                                  I->getSuperClass(), IncompleteImpl, false);
   2794   }
   2795 }
   2796 
   2797 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
   2798 /// category matches with those implemented in its primary class and
   2799 /// warns each time an exact match is found.
   2800 void Sema::CheckCategoryVsClassMethodMatches(
   2801                                   ObjCCategoryImplDecl *CatIMPDecl) {
   2802   // Get category's primary class.
   2803   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
   2804   if (!CatDecl)
   2805     return;
   2806   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
   2807   if (!IDecl)
   2808     return;
   2809   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
   2810   SelectorSet InsMap, ClsMap;
   2811 
   2812   for (const auto *I : CatIMPDecl->instance_methods()) {
   2813     Selector Sel = I->getSelector();
   2814     // When checking for methods implemented in the category, skip over
   2815     // those declared in category class's super class. This is because
   2816     // the super class must implement the method.
   2817     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
   2818       continue;
   2819     InsMap.insert(Sel);
   2820   }
   2821 
   2822   for (const auto *I : CatIMPDecl->class_methods()) {
   2823     Selector Sel = I->getSelector();
   2824     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
   2825       continue;
   2826     ClsMap.insert(Sel);
   2827   }
   2828   if (InsMap.empty() && ClsMap.empty())
   2829     return;
   2830 
   2831   SelectorSet InsMapSeen, ClsMapSeen;
   2832   bool IncompleteImpl = false;
   2833   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2834                              CatIMPDecl, IDecl,
   2835                              IncompleteImpl, false,
   2836                              true /*WarnCategoryMethodImpl*/);
   2837 }
   2838 
   2839 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   2840                                      ObjCContainerDecl* CDecl,
   2841                                      bool IncompleteImpl) {
   2842   SelectorSet InsMap;
   2843   // Check and see if instance methods in class interface have been
   2844   // implemented in the implementation class.
   2845   for (const auto *I : IMPDecl->instance_methods())
   2846     InsMap.insert(I->getSelector());
   2847 
   2848   // Add the selectors for getters/setters of @dynamic properties.
   2849   for (const auto *PImpl : IMPDecl->property_impls()) {
   2850     // We only care about @dynamic implementations.
   2851     if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
   2852       continue;
   2853 
   2854     const auto *P = PImpl->getPropertyDecl();
   2855     if (!P) continue;
   2856 
   2857     InsMap.insert(P->getGetterName());
   2858     if (!P->getSetterName().isNull())
   2859       InsMap.insert(P->getSetterName());
   2860   }
   2861 
   2862   // Check and see if properties declared in the interface have either 1)
   2863   // an implementation or 2) there is a @synthesize/@dynamic implementation
   2864   // of the property in the @implementation.
   2865   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
   2866     bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
   2867                                 LangOpts.ObjCRuntime.isNonFragile() &&
   2868                                 !IDecl->isObjCRequiresPropertyDefs();
   2869     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
   2870   }
   2871 
   2872   // Diagnose null-resettable synthesized setters.
   2873   diagnoseNullResettableSynthesizedSetters(IMPDecl);
   2874 
   2875   SelectorSet ClsMap;
   2876   for (const auto *I : IMPDecl->class_methods())
   2877     ClsMap.insert(I->getSelector());
   2878 
   2879   // Check for type conflict of methods declared in a class/protocol and
   2880   // its implementation; if any.
   2881   SelectorSet InsMapSeen, ClsMapSeen;
   2882   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2883                              IMPDecl, CDecl,
   2884                              IncompleteImpl, true);
   2885 
   2886   // check all methods implemented in category against those declared
   2887   // in its primary class.
   2888   if (ObjCCategoryImplDecl *CatDecl =
   2889         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
   2890     CheckCategoryVsClassMethodMatches(CatDecl);
   2891 
   2892   // Check the protocol list for unimplemented methods in the @implementation
   2893   // class.
   2894   // Check and see if class methods in class interface have been
   2895   // implemented in the implementation class.
   2896 
   2897   LazyProtocolNameSet ExplicitImplProtocols;
   2898 
   2899   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   2900     for (auto *PI : I->all_referenced_protocols())
   2901       CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
   2902                               InsMap, ClsMap, I, ExplicitImplProtocols);
   2903   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   2904     // For extended class, unimplemented methods in its protocols will
   2905     // be reported in the primary class.
   2906     if (!C->IsClassExtension()) {
   2907       for (auto *P : C->protocols())
   2908         CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
   2909                                 IncompleteImpl, InsMap, ClsMap, CDecl,
   2910                                 ExplicitImplProtocols);
   2911       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
   2912                                       /*SynthesizeProperties=*/false);
   2913     }
   2914   } else
   2915     llvm_unreachable("invalid ObjCContainerDecl type.");
   2916 }
   2917 
   2918 Sema::DeclGroupPtrTy
   2919 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   2920                                    IdentifierInfo **IdentList,
   2921                                    SourceLocation *IdentLocs,
   2922                                    ArrayRef<ObjCTypeParamList *> TypeParamLists,
   2923                                    unsigned NumElts) {
   2924   SmallVector<Decl *, 8> DeclsInGroup;
   2925   for (unsigned i = 0; i != NumElts; ++i) {
   2926     // Check for another declaration kind with the same name.
   2927     NamedDecl *PrevDecl
   2928       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   2929                          LookupOrdinaryName, ForRedeclaration);
   2930     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   2931       // GCC apparently allows the following idiom:
   2932       //
   2933       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   2934       // @class XCElementToggler;
   2935       //
   2936       // Here we have chosen to ignore the forward class declaration
   2937       // with a warning. Since this is the implied behavior.
   2938       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   2939       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   2940         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   2941         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   2942       } else {
   2943         // a forward class declaration matching a typedef name of a class refers
   2944         // to the underlying class. Just ignore the forward class with a warning
   2945         // as this will force the intended behavior which is to lookup the
   2946         // typedef name.
   2947         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
   2948           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
   2949               << IdentList[i];
   2950           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   2951           continue;
   2952         }
   2953       }
   2954     }
   2955 
   2956     // Create a declaration to describe this forward declaration.
   2957     ObjCInterfaceDecl *PrevIDecl
   2958       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   2959 
   2960     IdentifierInfo *ClassName = IdentList[i];
   2961     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
   2962       // A previous decl with a different name is because of
   2963       // @compatibility_alias, for example:
   2964       // \code
   2965       //   @class NewImage;
   2966       //   @compatibility_alias OldImage NewImage;
   2967       // \endcode
   2968       // A lookup for 'OldImage' will return the 'NewImage' decl.
   2969       //
   2970       // In such a case use the real declaration name, instead of the alias one,
   2971       // otherwise we will break IdentifierResolver and redecls-chain invariants.
   2972       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
   2973       // has been aliased.
   2974       ClassName = PrevIDecl->getIdentifier();
   2975     }
   2976 
   2977     // If this forward declaration has type parameters, compare them with the
   2978     // type parameters of the previous declaration.
   2979     ObjCTypeParamList *TypeParams = TypeParamLists[i];
   2980     if (PrevIDecl && TypeParams) {
   2981       if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
   2982         // Check for consistency with the previous declaration.
   2983         if (checkTypeParamListConsistency(
   2984               *this, PrevTypeParams, TypeParams,
   2985               TypeParamListContext::ForwardDeclaration)) {
   2986           TypeParams = nullptr;
   2987         }
   2988       } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
   2989         // The @interface does not have type parameters. Complain.
   2990         Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
   2991           << ClassName
   2992           << TypeParams->getSourceRange();
   2993         Diag(Def->getLocation(), diag::note_defined_here)
   2994           << ClassName;
   2995 
   2996         TypeParams = nullptr;
   2997       }
   2998     }
   2999 
   3000     ObjCInterfaceDecl *IDecl
   3001       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   3002                                   ClassName, TypeParams, PrevIDecl,
   3003                                   IdentLocs[i]);
   3004     IDecl->setAtEndRange(IdentLocs[i]);
   3005 
   3006     PushOnScopeChains(IDecl, TUScope);
   3007     CheckObjCDeclScope(IDecl);
   3008     DeclsInGroup.push_back(IDecl);
   3009   }
   3010 
   3011   return BuildDeclaratorGroup(DeclsInGroup, false);
   3012 }
   3013 
   3014 static bool tryMatchRecordTypes(ASTContext &Context,
   3015                                 Sema::MethodMatchStrategy strategy,
   3016                                 const Type *left, const Type *right);
   3017 
   3018 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   3019                        QualType leftQT, QualType rightQT) {
   3020   const Type *left =
   3021     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   3022   const Type *right =
   3023     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   3024 
   3025   if (left == right) return true;
   3026 
   3027   // If we're doing a strict match, the types have to match exactly.
   3028   if (strategy == Sema::MMS_strict) return false;
   3029 
   3030   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   3031 
   3032   // Otherwise, use this absurdly complicated algorithm to try to
   3033   // validate the basic, low-level compatibility of the two types.
   3034 
   3035   // As a minimum, require the sizes and alignments to match.
   3036   TypeInfo LeftTI = Context.getTypeInfo(left);
   3037   TypeInfo RightTI = Context.getTypeInfo(right);
   3038   if (LeftTI.Width != RightTI.Width)
   3039     return false;
   3040 
   3041   if (LeftTI.Align != RightTI.Align)
   3042     return false;
   3043 
   3044   // Consider all the kinds of non-dependent canonical types:
   3045   // - functions and arrays aren't possible as return and parameter types
   3046 
   3047   // - vector types of equal size can be arbitrarily mixed
   3048   if (isa<VectorType>(left)) return isa<VectorType>(right);
   3049   if (isa<VectorType>(right)) return false;
   3050 
   3051   // - references should only match references of identical type
   3052   // - structs, unions, and Objective-C objects must match more-or-less
   3053   //   exactly
   3054   // - everything else should be a scalar
   3055   if (!left->isScalarType() || !right->isScalarType())
   3056     return tryMatchRecordTypes(Context, strategy, left, right);
   3057 
   3058   // Make scalars agree in kind, except count bools as chars, and group
   3059   // all non-member pointers together.
   3060   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   3061   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   3062   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   3063   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   3064   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
   3065     leftSK = Type::STK_ObjCObjectPointer;
   3066   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
   3067     rightSK = Type::STK_ObjCObjectPointer;
   3068 
   3069   // Note that data member pointers and function member pointers don't
   3070   // intermix because of the size differences.
   3071 
   3072   return (leftSK == rightSK);
   3073 }
   3074 
   3075 static bool tryMatchRecordTypes(ASTContext &Context,
   3076                                 Sema::MethodMatchStrategy strategy,
   3077                                 const Type *lt, const Type *rt) {
   3078   assert(lt && rt && lt != rt);
   3079 
   3080   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   3081   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   3082   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   3083 
   3084   // Require union-hood to match.
   3085   if (left->isUnion() != right->isUnion()) return false;
   3086 
   3087   // Require an exact match if either is non-POD.
   3088   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   3089       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   3090     return false;
   3091 
   3092   // Require size and alignment to match.
   3093   TypeInfo LeftTI = Context.getTypeInfo(lt);
   3094   TypeInfo RightTI = Context.getTypeInfo(rt);
   3095   if (LeftTI.Width != RightTI.Width)
   3096     return false;
   3097 
   3098   if (LeftTI.Align != RightTI.Align)
   3099     return false;
   3100 
   3101   // Require fields to match.
   3102   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   3103   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   3104   for (; li != le && ri != re; ++li, ++ri) {
   3105     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   3106       return false;
   3107   }
   3108   return (li == le && ri == re);
   3109 }
   3110 
   3111 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   3112 /// returns true, or false, accordingly.
   3113 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   3114 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   3115                                       const ObjCMethodDecl *right,
   3116                                       MethodMatchStrategy strategy) {
   3117   if (!matchTypes(Context, strategy, left->getReturnType(),
   3118                   right->getReturnType()))
   3119     return false;
   3120 
   3121   // If either is hidden, it is not considered to match.
   3122   if (left->isHidden() || right->isHidden())
   3123     return false;
   3124 
   3125   if (getLangOpts().ObjCAutoRefCount &&
   3126       (left->hasAttr<NSReturnsRetainedAttr>()
   3127          != right->hasAttr<NSReturnsRetainedAttr>() ||
   3128        left->hasAttr<NSConsumesSelfAttr>()
   3129          != right->hasAttr<NSConsumesSelfAttr>()))
   3130     return false;
   3131 
   3132   ObjCMethodDecl::param_const_iterator
   3133     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
   3134     re = right->param_end();
   3135 
   3136   for (; li != le && ri != re; ++li, ++ri) {
   3137     assert(ri != right->param_end() && "Param mismatch");
   3138     const ParmVarDecl *lparm = *li, *rparm = *ri;
   3139 
   3140     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   3141       return false;
   3142 
   3143     if (getLangOpts().ObjCAutoRefCount &&
   3144         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   3145       return false;
   3146   }
   3147   return true;
   3148 }
   3149 
   3150 void Sema::addMethodToGlobalList(ObjCMethodList *List,
   3151                                  ObjCMethodDecl *Method) {
   3152   // Record at the head of the list whether there were 0, 1, or >= 2 methods
   3153   // inside categories.
   3154   if (ObjCCategoryDecl *CD =
   3155           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
   3156     if (!CD->IsClassExtension() && List->getBits() < 2)
   3157       List->setBits(List->getBits() + 1);
   3158 
   3159   // If the list is empty, make it a singleton list.
   3160   if (List->getMethod() == nullptr) {
   3161     List->setMethod(Method);
   3162     List->setNext(nullptr);
   3163     return;
   3164   }
   3165 
   3166   // We've seen a method with this name, see if we have already seen this type
   3167   // signature.
   3168   ObjCMethodList *Previous = List;
   3169   for (; List; Previous = List, List = List->getNext()) {
   3170     // If we are building a module, keep all of the methods.
   3171     if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
   3172       continue;
   3173 
   3174     if (!MatchTwoMethodDeclarations(Method, List->getMethod())) {
   3175       // Even if two method types do not match, we would like to say
   3176       // there is more than one declaration so unavailability/deprecated
   3177       // warning is not too noisy.
   3178       if (!Method->isDefined())
   3179         List->setHasMoreThanOneDecl(true);
   3180       continue;
   3181     }
   3182 
   3183     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
   3184 
   3185     // Propagate the 'defined' bit.
   3186     if (Method->isDefined())
   3187       PrevObjCMethod->setDefined(true);
   3188     else {
   3189       // Objective-C doesn't allow an @interface for a class after its
   3190       // @implementation. So if Method is not defined and there already is
   3191       // an entry for this type signature, Method has to be for a different
   3192       // class than PrevObjCMethod.
   3193       List->setHasMoreThanOneDecl(true);
   3194     }
   3195 
   3196     // If a method is deprecated, push it in the global pool.
   3197     // This is used for better diagnostics.
   3198     if (Method->isDeprecated()) {
   3199       if (!PrevObjCMethod->isDeprecated())
   3200         List->setMethod(Method);
   3201     }
   3202     // If the new method is unavailable, push it into global pool
   3203     // unless previous one is deprecated.
   3204     if (Method->isUnavailable()) {
   3205       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   3206         List->setMethod(Method);
   3207     }
   3208 
   3209     return;
   3210   }
   3211 
   3212   // We have a new signature for an existing method - add it.
   3213   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   3214   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   3215   Previous->setNext(new (Mem) ObjCMethodList(Method));
   3216 }
   3217 
   3218 /// \brief Read the contents of the method pool for a given selector from
   3219 /// external storage.
   3220 void Sema::ReadMethodPool(Selector Sel) {
   3221   assert(ExternalSource && "We need an external AST source");
   3222   ExternalSource->ReadMethodPool(Sel);
   3223 }
   3224 
   3225 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   3226                                  bool instance) {
   3227   // Ignore methods of invalid containers.
   3228   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
   3229     return;
   3230 
   3231   if (ExternalSource)
   3232     ReadMethodPool(Method->getSelector());
   3233 
   3234   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   3235   if (Pos == MethodPool.end())
   3236     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   3237                                            GlobalMethods())).first;
   3238 
   3239   Method->setDefined(impl);
   3240 
   3241   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   3242   addMethodToGlobalList(&Entry, Method);
   3243 }
   3244 
   3245 /// Determines if this is an "acceptable" loose mismatch in the global
   3246 /// method pool.  This exists mostly as a hack to get around certain
   3247 /// global mismatches which we can't afford to make warnings / errors.
   3248 /// Really, what we want is a way to take a method out of the global
   3249 /// method pool.
   3250 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   3251                                        ObjCMethodDecl *other) {
   3252   if (!chosen->isInstanceMethod())
   3253     return false;
   3254 
   3255   Selector sel = chosen->getSelector();
   3256   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   3257     return false;
   3258 
   3259   // Don't complain about mismatches for -length if the method we
   3260   // chose has an integral result type.
   3261   return (chosen->getReturnType()->isIntegerType());
   3262 }
   3263 
   3264 bool Sema::CollectMultipleMethodsInGlobalPool(
   3265     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) {
   3266   if (ExternalSource)
   3267     ReadMethodPool(Sel);
   3268 
   3269   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   3270   if (Pos == MethodPool.end())
   3271     return false;
   3272   // Gather the non-hidden methods.
   3273   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   3274   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
   3275     if (M->getMethod() && !M->getMethod()->isHidden())
   3276       Methods.push_back(M->getMethod());
   3277   return Methods.size() > 1;
   3278 }
   3279 
   3280 bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
   3281                                           SourceRange R,
   3282                                           bool receiverIdOrClass) {
   3283   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   3284   // Test for no method in the pool which should not trigger any warning by
   3285   // caller.
   3286   if (Pos == MethodPool.end())
   3287     return true;
   3288   ObjCMethodList &MethList =
   3289     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
   3290 
   3291   // Diagnose finding more than one method in global pool
   3292   SmallVector<ObjCMethodDecl *, 4> Methods;
   3293   Methods.push_back(BestMethod);
   3294   for (ObjCMethodList *ML = &MethList; ML; ML = ML->getNext())
   3295     if (ObjCMethodDecl *M = ML->getMethod())
   3296       if (!M->isHidden() && M != BestMethod && !M->hasAttr<UnavailableAttr>())
   3297         Methods.push_back(M);
   3298   if (Methods.size() > 1)
   3299     DiagnoseMultipleMethodInGlobalPool(Methods, Sel, R, receiverIdOrClass);
   3300 
   3301   return MethList.hasMoreThanOneDecl();
   3302 }
   3303 
   3304 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   3305                                                bool receiverIdOrClass,
   3306                                                bool instance) {
   3307   if (ExternalSource)
   3308     ReadMethodPool(Sel);
   3309 
   3310   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   3311   if (Pos == MethodPool.end())
   3312     return nullptr;
   3313 
   3314   // Gather the non-hidden methods.
   3315   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   3316   SmallVector<ObjCMethodDecl *, 4> Methods;
   3317   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
   3318     if (M->getMethod() && !M->getMethod()->isHidden())
   3319       return M->getMethod();
   3320   }
   3321   return nullptr;
   3322 }
   3323 
   3324 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
   3325                                               Selector Sel, SourceRange R,
   3326                                               bool receiverIdOrClass) {
   3327   // We found multiple methods, so we may have to complain.
   3328   bool issueDiagnostic = false, issueError = false;
   3329 
   3330   // We support a warning which complains about *any* difference in
   3331   // method signature.
   3332   bool strictSelectorMatch =
   3333   receiverIdOrClass &&
   3334   !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
   3335   if (strictSelectorMatch) {
   3336     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   3337       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
   3338         issueDiagnostic = true;
   3339         break;
   3340       }
   3341     }
   3342   }
   3343 
   3344   // If we didn't see any strict differences, we won't see any loose
   3345   // differences.  In ARC, however, we also need to check for loose
   3346   // mismatches, because most of them are errors.
   3347   if (!strictSelectorMatch ||
   3348       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
   3349     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   3350       // This checks if the methods differ in type mismatch.
   3351       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
   3352           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
   3353         issueDiagnostic = true;
   3354         if (getLangOpts().ObjCAutoRefCount)
   3355           issueError = true;
   3356         break;
   3357       }
   3358     }
   3359 
   3360   if (issueDiagnostic) {
   3361     if (issueError)
   3362       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   3363     else if (strictSelectorMatch)
   3364       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   3365     else
   3366       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   3367 
   3368     Diag(Methods[0]->getLocStart(),
   3369          issueError ? diag::note_possibility : diag::note_using)
   3370     << Methods[0]->getSourceRange();
   3371     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   3372       Diag(Methods[I]->getLocStart(), diag::note_also_found)
   3373       << Methods[I]->getSourceRange();
   3374     }
   3375   }
   3376 }
   3377 
   3378 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   3379   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   3380   if (Pos == MethodPool.end())
   3381     return nullptr;
   3382 
   3383   GlobalMethods &Methods = Pos->second;
   3384   for (const ObjCMethodList *Method = &Methods.first; Method;
   3385        Method = Method->getNext())
   3386     if (Method->getMethod() &&
   3387         (Method->getMethod()->isDefined() ||
   3388          Method->getMethod()->isPropertyAccessor()))
   3389       return Method->getMethod();
   3390 
   3391   for (const ObjCMethodList *Method = &Methods.second; Method;
   3392        Method = Method->getNext())
   3393     if (Method->getMethod() &&
   3394         (Method->getMethod()->isDefined() ||
   3395          Method->getMethod()->isPropertyAccessor()))
   3396       return Method->getMethod();
   3397   return nullptr;
   3398 }
   3399 
   3400 static void
   3401 HelperSelectorsForTypoCorrection(
   3402                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
   3403                       StringRef Typo, const ObjCMethodDecl * Method) {
   3404   const unsigned MaxEditDistance = 1;
   3405   unsigned BestEditDistance = MaxEditDistance + 1;
   3406   std::string MethodName = Method->getSelector().getAsString();
   3407 
   3408   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
   3409   if (MinPossibleEditDistance > 0 &&
   3410       Typo.size() / MinPossibleEditDistance < 1)
   3411     return;
   3412   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
   3413   if (EditDistance > MaxEditDistance)
   3414     return;
   3415   if (EditDistance == BestEditDistance)
   3416     BestMethod.push_back(Method);
   3417   else if (EditDistance < BestEditDistance) {
   3418     BestMethod.clear();
   3419     BestMethod.push_back(Method);
   3420   }
   3421 }
   3422 
   3423 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
   3424                                      QualType ObjectType) {
   3425   if (ObjectType.isNull())
   3426     return true;
   3427   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
   3428     return true;
   3429   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
   3430          nullptr;
   3431 }
   3432 
   3433 const ObjCMethodDecl *
   3434 Sema::SelectorsForTypoCorrection(Selector Sel,
   3435                                  QualType ObjectType) {
   3436   unsigned NumArgs = Sel.getNumArgs();
   3437   SmallVector<const ObjCMethodDecl *, 8> Methods;
   3438   bool ObjectIsId = true, ObjectIsClass = true;
   3439   if (ObjectType.isNull())
   3440     ObjectIsId = ObjectIsClass = false;
   3441   else if (!ObjectType->isObjCObjectPointerType())
   3442     return nullptr;
   3443   else if (const ObjCObjectPointerType *ObjCPtr =
   3444            ObjectType->getAsObjCInterfacePointerType()) {
   3445     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
   3446     ObjectIsId = ObjectIsClass = false;
   3447   }
   3448   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
   3449     ObjectIsClass = false;
   3450   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
   3451     ObjectIsId = false;
   3452   else
   3453     return nullptr;
   3454 
   3455   for (GlobalMethodPool::iterator b = MethodPool.begin(),
   3456        e = MethodPool.end(); b != e; b++) {
   3457     // instance methods
   3458     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
   3459       if (M->getMethod() &&
   3460           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
   3461           (M->getMethod()->getSelector() != Sel)) {
   3462         if (ObjectIsId)
   3463           Methods.push_back(M->getMethod());
   3464         else if (!ObjectIsClass &&
   3465                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
   3466                                           ObjectType))
   3467           Methods.push_back(M->getMethod());
   3468       }
   3469     // class methods
   3470     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
   3471       if (M->getMethod() &&
   3472           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
   3473           (M->getMethod()->getSelector() != Sel)) {
   3474         if (ObjectIsClass)
   3475           Methods.push_back(M->getMethod());
   3476         else if (!ObjectIsId &&
   3477                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
   3478                                           ObjectType))
   3479           Methods.push_back(M->getMethod());
   3480       }
   3481   }
   3482 
   3483   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
   3484   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
   3485     HelperSelectorsForTypoCorrection(SelectedMethods,
   3486                                      Sel.getAsString(), Methods[i]);
   3487   }
   3488   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
   3489 }
   3490 
   3491 /// DiagnoseDuplicateIvars -
   3492 /// Check for duplicate ivars in the entire class at the start of
   3493 /// \@implementation. This becomes necesssary because class extension can
   3494 /// add ivars to a class in random order which will not be known until
   3495 /// class's \@implementation is seen.
   3496 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   3497                                   ObjCInterfaceDecl *SID) {
   3498   for (auto *Ivar : ID->ivars()) {
   3499     if (Ivar->isInvalidDecl())
   3500       continue;
   3501     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   3502       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   3503       if (prevIvar) {
   3504         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   3505         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   3506         Ivar->setInvalidDecl();
   3507       }
   3508     }
   3509   }
   3510 }
   3511 
   3512 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
   3513 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
   3514   if (S.getLangOpts().ObjCWeak) return;
   3515 
   3516   for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
   3517          ivar; ivar = ivar->getNextIvar()) {
   3518     if (ivar->isInvalidDecl()) continue;
   3519     if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   3520       if (S.getLangOpts().ObjCWeakRuntime) {
   3521         S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
   3522       } else {
   3523         S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
   3524       }
   3525     }
   3526   }
   3527 }
   3528 
   3529 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
   3530   switch (CurContext->getDeclKind()) {
   3531     case Decl::ObjCInterface:
   3532       return Sema::OCK_Interface;
   3533     case Decl::ObjCProtocol:
   3534       return Sema::OCK_Protocol;
   3535     case Decl::ObjCCategory:
   3536       if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
   3537         return Sema::OCK_ClassExtension;
   3538       return Sema::OCK_Category;
   3539     case Decl::ObjCImplementation:
   3540       return Sema::OCK_Implementation;
   3541     case Decl::ObjCCategoryImpl:
   3542       return Sema::OCK_CategoryImplementation;
   3543 
   3544     default:
   3545       return Sema::OCK_None;
   3546   }
   3547 }
   3548 
   3549 // Note: For class/category implementations, allMethods is always null.
   3550 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
   3551                        ArrayRef<DeclGroupPtrTy> allTUVars) {
   3552   if (getObjCContainerKind() == Sema::OCK_None)
   3553     return nullptr;
   3554 
   3555   assert(AtEnd.isValid() && "Invalid location for '@end'");
   3556 
   3557   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   3558   Decl *ClassDecl = cast<Decl>(OCD);
   3559 
   3560   bool isInterfaceDeclKind =
   3561         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   3562          || isa<ObjCProtocolDecl>(ClassDecl);
   3563   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   3564 
   3565   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   3566   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   3567   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   3568 
   3569   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
   3570     ObjCMethodDecl *Method =
   3571       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   3572 
   3573     if (!Method) continue;  // Already issued a diagnostic.
   3574     if (Method->isInstanceMethod()) {
   3575       /// Check for instance method of the same name with incompatible types
   3576       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   3577       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   3578                               : false;
   3579       if ((isInterfaceDeclKind && PrevMethod && !match)
   3580           || (checkIdenticalMethods && match)) {
   3581           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   3582             << Method->getDeclName();
   3583           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3584         Method->setInvalidDecl();
   3585       } else {
   3586         if (PrevMethod) {
   3587           Method->setAsRedeclaration(PrevMethod);
   3588           if (!Context.getSourceManager().isInSystemHeader(
   3589                  Method->getLocation()))
   3590             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   3591               << Method->getDeclName();
   3592           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3593         }
   3594         InsMap[Method->getSelector()] = Method;
   3595         /// The following allows us to typecheck messages to "id".
   3596         AddInstanceMethodToGlobalPool(Method);
   3597       }
   3598     } else {
   3599       /// Check for class method of the same name with incompatible types
   3600       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   3601       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   3602                               : false;
   3603       if ((isInterfaceDeclKind && PrevMethod && !match)
   3604           || (checkIdenticalMethods && match)) {
   3605         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   3606           << Method->getDeclName();
   3607         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3608         Method->setInvalidDecl();
   3609       } else {
   3610         if (PrevMethod) {
   3611           Method->setAsRedeclaration(PrevMethod);
   3612           if (!Context.getSourceManager().isInSystemHeader(
   3613                  Method->getLocation()))
   3614             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   3615               << Method->getDeclName();
   3616           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3617         }
   3618         ClsMap[Method->getSelector()] = Method;
   3619         AddFactoryMethodToGlobalPool(Method);
   3620       }
   3621     }
   3622   }
   3623   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
   3624     // Nothing to do here.
   3625   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   3626     // Categories are used to extend the class by declaring new methods.
   3627     // By the same token, they are also used to add new properties. No
   3628     // need to compare the added property to those in the class.
   3629 
   3630     if (C->IsClassExtension()) {
   3631       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   3632       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   3633     }
   3634   }
   3635   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   3636     if (CDecl->getIdentifier())
   3637       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   3638       // user-defined setter/getter. It also synthesizes setter/getter methods
   3639       // and adds them to the DeclContext and global method pools.
   3640       for (auto *I : CDecl->properties())
   3641         ProcessPropertyDecl(I);
   3642     CDecl->setAtEndRange(AtEnd);
   3643   }
   3644   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   3645     IC->setAtEndRange(AtEnd);
   3646     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   3647       // Any property declared in a class extension might have user
   3648       // declared setter or getter in current class extension or one
   3649       // of the other class extensions. Mark them as synthesized as
   3650       // property will be synthesized when property with same name is
   3651       // seen in the @implementation.
   3652       for (const auto *Ext : IDecl->visible_extensions()) {
   3653         for (const auto *Property : Ext->properties()) {
   3654           // Skip over properties declared @dynamic
   3655           if (const ObjCPropertyImplDecl *PIDecl
   3656               = IC->FindPropertyImplDecl(Property->getIdentifier()))
   3657             if (PIDecl->getPropertyImplementation()
   3658                   == ObjCPropertyImplDecl::Dynamic)
   3659               continue;
   3660 
   3661           for (const auto *Ext : IDecl->visible_extensions()) {
   3662             if (ObjCMethodDecl *GetterMethod
   3663                   = Ext->getInstanceMethod(Property->getGetterName()))
   3664               GetterMethod->setPropertyAccessor(true);
   3665             if (!Property->isReadOnly())
   3666               if (ObjCMethodDecl *SetterMethod
   3667                     = Ext->getInstanceMethod(Property->getSetterName()))
   3668                 SetterMethod->setPropertyAccessor(true);
   3669           }
   3670         }
   3671       }
   3672       ImplMethodsVsClassMethods(S, IC, IDecl);
   3673       AtomicPropertySetterGetterRules(IC, IDecl);
   3674       DiagnoseOwningPropertyGetterSynthesis(IC);
   3675       DiagnoseUnusedBackingIvarInAccessor(S, IC);
   3676       if (IDecl->hasDesignatedInitializers())
   3677         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
   3678       DiagnoseWeakIvars(*this, IC);
   3679 
   3680       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
   3681       if (IDecl->getSuperClass() == nullptr) {
   3682         // This class has no superclass, so check that it has been marked with
   3683         // __attribute((objc_root_class)).
   3684         if (!HasRootClassAttr) {
   3685           SourceLocation DeclLoc(IDecl->getLocation());
   3686           SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
   3687           Diag(DeclLoc, diag::warn_objc_root_class_missing)
   3688             << IDecl->getIdentifier();
   3689           // See if NSObject is in the current scope, and if it is, suggest
   3690           // adding " : NSObject " to the class declaration.
   3691           NamedDecl *IF = LookupSingleName(TUScope,
   3692                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
   3693                                            DeclLoc, LookupOrdinaryName);
   3694           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
   3695           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
   3696             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
   3697               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
   3698           } else {
   3699             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
   3700           }
   3701         }
   3702       } else if (HasRootClassAttr) {
   3703         // Complain that only root classes may have this attribute.
   3704         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
   3705       }
   3706 
   3707       if (LangOpts.ObjCRuntime.isNonFragile()) {
   3708         while (IDecl->getSuperClass()) {
   3709           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   3710           IDecl = IDecl->getSuperClass();
   3711         }
   3712       }
   3713     }
   3714     SetIvarInitializers(IC);
   3715   } else if (ObjCCategoryImplDecl* CatImplClass =
   3716                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   3717     CatImplClass->setAtEndRange(AtEnd);
   3718 
   3719     // Find category interface decl and then check that all methods declared
   3720     // in this interface are implemented in the category @implementation.
   3721     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   3722       if (ObjCCategoryDecl *Cat
   3723             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
   3724         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
   3725       }
   3726     }
   3727   }
   3728   if (isInterfaceDeclKind) {
   3729     // Reject invalid vardecls.
   3730     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
   3731       DeclGroupRef DG = allTUVars[i].get();
   3732       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   3733         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   3734           if (!VDecl->hasExternalStorage())
   3735             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   3736         }
   3737     }
   3738   }
   3739   ActOnObjCContainerFinishDefinition();
   3740 
   3741   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
   3742     DeclGroupRef DG = allTUVars[i].get();
   3743     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   3744       (*I)->setTopLevelDeclInObjCContainer();
   3745     Consumer.HandleTopLevelDeclInObjCContainer(DG);
   3746   }
   3747 
   3748   ActOnDocumentableDecl(ClassDecl);
   3749   return ClassDecl;
   3750 }
   3751 
   3752 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   3753 /// objective-c's type qualifier from the parser version of the same info.
   3754 static Decl::ObjCDeclQualifier
   3755 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   3756   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   3757 }
   3758 
   3759 /// \brief Check whether the declared result type of the given Objective-C
   3760 /// method declaration is compatible with the method's class.
   3761 ///
   3762 static Sema::ResultTypeCompatibilityKind
   3763 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   3764                                     ObjCInterfaceDecl *CurrentClass) {
   3765   QualType ResultType = Method->getReturnType();
   3766 
   3767   // If an Objective-C method inherits its related result type, then its
   3768   // declared result type must be compatible with its own class type. The
   3769   // declared result type is compatible if:
   3770   if (const ObjCObjectPointerType *ResultObjectType
   3771                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   3772     //   - it is id or qualified id, or
   3773     if (ResultObjectType->isObjCIdType() ||
   3774         ResultObjectType->isObjCQualifiedIdType())
   3775       return Sema::RTC_Compatible;
   3776 
   3777     if (CurrentClass) {
   3778       if (ObjCInterfaceDecl *ResultClass
   3779                                       = ResultObjectType->getInterfaceDecl()) {
   3780         //   - it is the same as the method's class type, or
   3781         if (declaresSameEntity(CurrentClass, ResultClass))
   3782           return Sema::RTC_Compatible;
   3783 
   3784         //   - it is a superclass of the method's class type
   3785         if (ResultClass->isSuperClassOf(CurrentClass))
   3786           return Sema::RTC_Compatible;
   3787       }
   3788     } else {
   3789       // Any Objective-C pointer type might be acceptable for a protocol
   3790       // method; we just don't know.
   3791       return Sema::RTC_Unknown;
   3792     }
   3793   }
   3794 
   3795   return Sema::RTC_Incompatible;
   3796 }
   3797 
   3798 namespace {
   3799 /// A helper class for searching for methods which a particular method
   3800 /// overrides.
   3801 class OverrideSearch {
   3802 public:
   3803   Sema &S;
   3804   ObjCMethodDecl *Method;
   3805   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
   3806   bool Recursive;
   3807 
   3808 public:
   3809   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
   3810     Selector selector = method->getSelector();
   3811 
   3812     // Bypass this search if we've never seen an instance/class method
   3813     // with this selector before.
   3814     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
   3815     if (it == S.MethodPool.end()) {
   3816       if (!S.getExternalSource()) return;
   3817       S.ReadMethodPool(selector);
   3818 
   3819       it = S.MethodPool.find(selector);
   3820       if (it == S.MethodPool.end())
   3821         return;
   3822     }
   3823     ObjCMethodList &list =
   3824       method->isInstanceMethod() ? it->second.first : it->second.second;
   3825     if (!list.getMethod()) return;
   3826 
   3827     ObjCContainerDecl *container
   3828       = cast<ObjCContainerDecl>(method->getDeclContext());
   3829 
   3830     // Prevent the search from reaching this container again.  This is
   3831     // important with categories, which override methods from the
   3832     // interface and each other.
   3833     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
   3834       searchFromContainer(container);
   3835       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
   3836         searchFromContainer(Interface);
   3837     } else {
   3838       searchFromContainer(container);
   3839     }
   3840   }
   3841 
   3842   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
   3843   iterator begin() const { return Overridden.begin(); }
   3844   iterator end() const { return Overridden.end(); }
   3845 
   3846 private:
   3847   void searchFromContainer(ObjCContainerDecl *container) {
   3848     if (container->isInvalidDecl()) return;
   3849 
   3850     switch (container->getDeclKind()) {
   3851 #define OBJCCONTAINER(type, base) \
   3852     case Decl::type: \
   3853       searchFrom(cast<type##Decl>(container)); \
   3854       break;
   3855 #define ABSTRACT_DECL(expansion)
   3856 #define DECL(type, base) \
   3857     case Decl::type:
   3858 #include "clang/AST/DeclNodes.inc"
   3859       llvm_unreachable("not an ObjC container!");
   3860     }
   3861   }
   3862 
   3863   void searchFrom(ObjCProtocolDecl *protocol) {
   3864     if (!protocol->hasDefinition())
   3865       return;
   3866 
   3867     // A method in a protocol declaration overrides declarations from
   3868     // referenced ("parent") protocols.
   3869     search(protocol->getReferencedProtocols());
   3870   }
   3871 
   3872   void searchFrom(ObjCCategoryDecl *category) {
   3873     // A method in a category declaration overrides declarations from
   3874     // the main class and from protocols the category references.
   3875     // The main class is handled in the constructor.
   3876     search(category->getReferencedProtocols());
   3877   }
   3878 
   3879   void searchFrom(ObjCCategoryImplDecl *impl) {
   3880     // A method in a category definition that has a category
   3881     // declaration overrides declarations from the category
   3882     // declaration.
   3883     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
   3884       search(category);
   3885       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
   3886         search(Interface);
   3887 
   3888     // Otherwise it overrides declarations from the class.
   3889     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
   3890       search(Interface);
   3891     }
   3892   }
   3893 
   3894   void searchFrom(ObjCInterfaceDecl *iface) {
   3895     // A method in a class declaration overrides declarations from
   3896     if (!iface->hasDefinition())
   3897       return;
   3898 
   3899     //   - categories,
   3900     for (auto *Cat : iface->known_categories())
   3901       search(Cat);
   3902 
   3903     //   - the super class, and
   3904     if (ObjCInterfaceDecl *super = iface->getSuperClass())
   3905       search(super);
   3906 
   3907     //   - any referenced protocols.
   3908     search(iface->getReferencedProtocols());
   3909   }
   3910 
   3911   void searchFrom(ObjCImplementationDecl *impl) {
   3912     // A method in a class implementation overrides declarations from
   3913     // the class interface.
   3914     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
   3915       search(Interface);
   3916   }
   3917 
   3918   void search(const ObjCProtocolList &protocols) {
   3919     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
   3920          i != e; ++i)
   3921       search(*i);
   3922   }
   3923 
   3924   void search(ObjCContainerDecl *container) {
   3925     // Check for a method in this container which matches this selector.
   3926     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
   3927                                                 Method->isInstanceMethod(),
   3928                                                 /*AllowHidden=*/true);
   3929 
   3930     // If we find one, record it and bail out.
   3931     if (meth) {
   3932       Overridden.insert(meth);
   3933       return;
   3934     }
   3935 
   3936     // Otherwise, search for methods that a hypothetical method here
   3937     // would have overridden.
   3938 
   3939     // Note that we're now in a recursive case.
   3940     Recursive = true;
   3941 
   3942     searchFromContainer(container);
   3943   }
   3944 };
   3945 } // end anonymous namespace
   3946 
   3947 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
   3948                                     ObjCInterfaceDecl *CurrentClass,
   3949                                     ResultTypeCompatibilityKind RTC) {
   3950   // Search for overridden methods and merge information down from them.
   3951   OverrideSearch overrides(*this, ObjCMethod);
   3952   // Keep track if the method overrides any method in the class's base classes,
   3953   // its protocols, or its categories' protocols; we will keep that info
   3954   // in the ObjCMethodDecl.
   3955   // For this info, a method in an implementation is not considered as
   3956   // overriding the same method in the interface or its categories.
   3957   bool hasOverriddenMethodsInBaseOrProtocol = false;
   3958   for (OverrideSearch::iterator
   3959          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
   3960     ObjCMethodDecl *overridden = *i;
   3961 
   3962     if (!hasOverriddenMethodsInBaseOrProtocol) {
   3963       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
   3964           CurrentClass != overridden->getClassInterface() ||
   3965           overridden->isOverriding()) {
   3966         hasOverriddenMethodsInBaseOrProtocol = true;
   3967 
   3968       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
   3969         // OverrideSearch will return as "overridden" the same method in the
   3970         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
   3971         // check whether a category of a base class introduced a method with the
   3972         // same selector, after the interface method declaration.
   3973         // To avoid unnecessary lookups in the majority of cases, we use the
   3974         // extra info bits in GlobalMethodPool to check whether there were any
   3975         // category methods with this selector.
   3976         GlobalMethodPool::iterator It =
   3977             MethodPool.find(ObjCMethod->getSelector());
   3978         if (It != MethodPool.end()) {
   3979           ObjCMethodList &List =
   3980             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
   3981           unsigned CategCount = List.getBits();
   3982           if (CategCount > 0) {
   3983             // If the method is in a category we'll do lookup if there were at
   3984             // least 2 category methods recorded, otherwise only one will do.
   3985             if (CategCount > 1 ||
   3986                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
   3987               OverrideSearch overrides(*this, overridden);
   3988               for (OverrideSearch::iterator
   3989                      OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
   3990                 ObjCMethodDecl *SuperOverridden = *OI;
   3991                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
   3992                     CurrentClass != SuperOverridden->getClassInterface()) {
   3993                   hasOverriddenMethodsInBaseOrProtocol = true;
   3994                   overridden->setOverriding(true);
   3995                   break;
   3996                 }
   3997               }
   3998             }
   3999           }
   4000         }
   4001       }
   4002     }
   4003 
   4004     // Propagate down the 'related result type' bit from overridden methods.
   4005     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
   4006       ObjCMethod->SetRelatedResultType();
   4007 
   4008     // Then merge the declarations.
   4009     mergeObjCMethodDecls(ObjCMethod, overridden);
   4010 
   4011     if (ObjCMethod->isImplicit() && overridden->isImplicit())
   4012       continue; // Conflicting properties are detected elsewhere.
   4013 
   4014     // Check for overriding methods
   4015     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
   4016         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
   4017       CheckConflictingOverridingMethod(ObjCMethod, overridden,
   4018               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
   4019 
   4020     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
   4021         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
   4022         !overridden->isImplicit() /* not meant for properties */) {
   4023       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
   4024                                           E = ObjCMethod->param_end();
   4025       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
   4026                                      PrevE = overridden->param_end();
   4027       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
   4028         assert(PrevI != overridden->param_end() && "Param mismatch");
   4029         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   4030         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   4031         // If type of argument of method in this class does not match its
   4032         // respective argument type in the super class method, issue warning;
   4033         if (!Context.typesAreCompatible(T1, T2)) {
   4034           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   4035             << T1 << T2;
   4036           Diag(overridden->getLocation(), diag::note_previous_declaration);
   4037           break;
   4038         }
   4039       }
   4040     }
   4041   }
   4042 
   4043   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
   4044 }
   4045 
   4046 /// Merge type nullability from for a redeclaration of the same entity,
   4047 /// producing the updated type of the redeclared entity.
   4048 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
   4049                                               QualType type,
   4050                                               bool usesCSKeyword,
   4051                                               SourceLocation prevLoc,
   4052                                               QualType prevType,
   4053                                               bool prevUsesCSKeyword) {
   4054   // Determine the nullability of both types.
   4055   auto nullability = type->getNullability(S.Context);
   4056   auto prevNullability = prevType->getNullability(S.Context);
   4057 
   4058   // Easy case: both have nullability.
   4059   if (nullability.hasValue() == prevNullability.hasValue()) {
   4060     // Neither has nullability; continue.
   4061     if (!nullability)
   4062       return type;
   4063 
   4064     // The nullabilities are equivalent; do nothing.
   4065     if (*nullability == *prevNullability)
   4066       return type;
   4067 
   4068     // Complain about mismatched nullability.
   4069     S.Diag(loc, diag::err_nullability_conflicting)
   4070       << DiagNullabilityKind(*nullability, usesCSKeyword)
   4071       << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
   4072     return type;
   4073   }
   4074 
   4075   // If it's the redeclaration that has nullability, don't change anything.
   4076   if (nullability)
   4077     return type;
   4078 
   4079   // Otherwise, provide the result with the same nullability.
   4080   return S.Context.getAttributedType(
   4081            AttributedType::getNullabilityAttrKind(*prevNullability),
   4082            type, type);
   4083 }
   4084 
   4085 /// Merge information from the declaration of a method in the \@interface
   4086 /// (or a category/extension) into the corresponding method in the
   4087 /// @implementation (for a class or category).
   4088 static void mergeInterfaceMethodToImpl(Sema &S,
   4089                                        ObjCMethodDecl *method,
   4090                                        ObjCMethodDecl *prevMethod) {
   4091   // Merge the objc_requires_super attribute.
   4092   if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
   4093       !method->hasAttr<ObjCRequiresSuperAttr>()) {
   4094     // merge the attribute into implementation.
   4095     method->addAttr(
   4096       ObjCRequiresSuperAttr::CreateImplicit(S.Context,
   4097                                             method->getLocation()));
   4098   }
   4099 
   4100   // Merge nullability of the result type.
   4101   QualType newReturnType
   4102     = mergeTypeNullabilityForRedecl(
   4103         S, method->getReturnTypeSourceRange().getBegin(),
   4104         method->getReturnType(),
   4105         method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
   4106         prevMethod->getReturnTypeSourceRange().getBegin(),
   4107         prevMethod->getReturnType(),
   4108         prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
   4109   method->setReturnType(newReturnType);
   4110 
   4111   // Handle each of the parameters.
   4112   unsigned numParams = method->param_size();
   4113   unsigned numPrevParams = prevMethod->param_size();
   4114   for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
   4115     ParmVarDecl *param = method->param_begin()[i];
   4116     ParmVarDecl *prevParam = prevMethod->param_begin()[i];
   4117 
   4118     // Merge nullability.
   4119     QualType newParamType
   4120       = mergeTypeNullabilityForRedecl(
   4121           S, param->getLocation(), param->getType(),
   4122           param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
   4123           prevParam->getLocation(), prevParam->getType(),
   4124           prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
   4125     param->setType(newParamType);
   4126   }
   4127 }
   4128 
   4129 Decl *Sema::ActOnMethodDeclaration(
   4130     Scope *S,
   4131     SourceLocation MethodLoc, SourceLocation EndLoc,
   4132     tok::TokenKind MethodType,
   4133     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   4134     ArrayRef<SourceLocation> SelectorLocs,
   4135     Selector Sel,
   4136     // optional arguments. The number of types/arguments is obtained
   4137     // from the Sel.getNumArgs().
   4138     ObjCArgInfo *ArgInfo,
   4139     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   4140     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   4141     bool isVariadic, bool MethodDefinition) {
   4142   // Make sure we can establish a context for the method.
   4143   if (!CurContext->isObjCContainer()) {
   4144     Diag(MethodLoc, diag::error_missing_method_context);
   4145     return nullptr;
   4146   }
   4147   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   4148   Decl *ClassDecl = cast<Decl>(OCD);
   4149   QualType resultDeclType;
   4150 
   4151   bool HasRelatedResultType = false;
   4152   TypeSourceInfo *ReturnTInfo = nullptr;
   4153   if (ReturnType) {
   4154     resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
   4155 
   4156     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
   4157       return nullptr;
   4158 
   4159     QualType bareResultType = resultDeclType;
   4160     (void)AttributedType::stripOuterNullability(bareResultType);
   4161     HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
   4162   } else { // get the type for "id".
   4163     resultDeclType = Context.getObjCIdType();
   4164     Diag(MethodLoc, diag::warn_missing_method_return_type)
   4165       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
   4166   }
   4167 
   4168   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
   4169       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
   4170       MethodType == tok::minus, isVariadic,
   4171       /*isPropertyAccessor=*/false,
   4172       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
   4173       MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
   4174                                            : ObjCMethodDecl::Required,
   4175       HasRelatedResultType);
   4176 
   4177   SmallVector<ParmVarDecl*, 16> Params;
   4178 
   4179   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   4180     QualType ArgType;
   4181     TypeSourceInfo *DI;
   4182 
   4183     if (!ArgInfo[i].Type) {
   4184       ArgType = Context.getObjCIdType();
   4185       DI = nullptr;
   4186     } else {
   4187       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   4188     }
   4189 
   4190     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   4191                    LookupOrdinaryName, ForRedeclaration);
   4192     LookupName(R, S);
   4193     if (R.isSingleResult()) {
   4194       NamedDecl *PrevDecl = R.getFoundDecl();
   4195       if (S->isDeclScope(PrevDecl)) {
   4196         Diag(ArgInfo[i].NameLoc,
   4197              (MethodDefinition ? diag::warn_method_param_redefinition
   4198                                : diag::warn_method_param_declaration))
   4199           << ArgInfo[i].Name;
   4200         Diag(PrevDecl->getLocation(),
   4201              diag::note_previous_declaration);
   4202       }
   4203     }
   4204 
   4205     SourceLocation StartLoc = DI
   4206       ? DI->getTypeLoc().getBeginLoc()
   4207       : ArgInfo[i].NameLoc;
   4208 
   4209     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   4210                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   4211                                         ArgType, DI, SC_None);
   4212 
   4213     Param->setObjCMethodScopeInfo(i);
   4214 
   4215     Param->setObjCDeclQualifier(
   4216       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   4217 
   4218     // Apply the attributes to the parameter.
   4219     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   4220 
   4221     if (Param->hasAttr<BlocksAttr>()) {
   4222       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
   4223       Param->setInvalidDecl();
   4224     }
   4225     S->AddDecl(Param);
   4226     IdResolver.AddDecl(Param);
   4227 
   4228     Params.push_back(Param);
   4229   }
   4230 
   4231   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   4232     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   4233     QualType ArgType = Param->getType();
   4234     if (ArgType.isNull())
   4235       ArgType = Context.getObjCIdType();
   4236     else
   4237       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   4238       ArgType = Context.getAdjustedParameterType(ArgType);
   4239 
   4240     Param->setDeclContext(ObjCMethod);
   4241     Params.push_back(Param);
   4242   }
   4243 
   4244   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
   4245   ObjCMethod->setObjCDeclQualifier(
   4246     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   4247 
   4248   if (AttrList)
   4249     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   4250 
   4251   // Add the method now.
   4252   const ObjCMethodDecl *PrevMethod = nullptr;
   4253   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
   4254     if (MethodType == tok::minus) {
   4255       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   4256       ImpDecl->addInstanceMethod(ObjCMethod);
   4257     } else {
   4258       PrevMethod = ImpDecl->getClassMethod(Sel);
   4259       ImpDecl->addClassMethod(ObjCMethod);
   4260     }
   4261 
   4262     // Merge information from the @interface declaration into the
   4263     // @implementation.
   4264     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
   4265       if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
   4266                                           ObjCMethod->isInstanceMethod())) {
   4267         mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
   4268 
   4269         // Warn about defining -dealloc in a category.
   4270         if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
   4271             ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
   4272           Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
   4273             << ObjCMethod->getDeclName();
   4274         }
   4275       }
   4276     }
   4277   } else {
   4278     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   4279   }
   4280 
   4281   if (PrevMethod) {
   4282     // You can never have two method definitions with the same name.
   4283     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   4284       << ObjCMethod->getDeclName();
   4285     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   4286     ObjCMethod->setInvalidDecl();
   4287     return ObjCMethod;
   4288   }
   4289 
   4290   // If this Objective-C method does not have a related result type, but we
   4291   // are allowed to infer related result types, try to do so based on the
   4292   // method family.
   4293   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   4294   if (!CurrentClass) {
   4295     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   4296       CurrentClass = Cat->getClassInterface();
   4297     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   4298       CurrentClass = Impl->getClassInterface();
   4299     else if (ObjCCategoryImplDecl *CatImpl
   4300                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   4301       CurrentClass = CatImpl->getClassInterface();
   4302   }
   4303 
   4304   ResultTypeCompatibilityKind RTC
   4305     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
   4306 
   4307   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
   4308 
   4309   bool ARCError = false;
   4310   if (getLangOpts().ObjCAutoRefCount)
   4311     ARCError = CheckARCMethodDecl(ObjCMethod);
   4312 
   4313   // Infer the related result type when possible.
   4314   if (!ARCError && RTC == Sema::RTC_Compatible &&
   4315       !ObjCMethod->hasRelatedResultType() &&
   4316       LangOpts.ObjCInferRelatedResultType) {
   4317     bool InferRelatedResultType = false;
   4318     switch (ObjCMethod->getMethodFamily()) {
   4319     case OMF_None:
   4320     case OMF_copy:
   4321     case OMF_dealloc:
   4322     case OMF_finalize:
   4323     case OMF_mutableCopy:
   4324     case OMF_release:
   4325     case OMF_retainCount:
   4326     case OMF_initialize:
   4327     case OMF_performSelector:
   4328       break;
   4329 
   4330     case OMF_alloc:
   4331     case OMF_new:
   4332         InferRelatedResultType = ObjCMethod->isClassMethod();
   4333       break;
   4334 
   4335     case OMF_init:
   4336     case OMF_autorelease:
   4337     case OMF_retain:
   4338     case OMF_self:
   4339       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   4340       break;
   4341     }
   4342 
   4343     if (InferRelatedResultType &&
   4344         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
   4345       ObjCMethod->SetRelatedResultType();
   4346   }
   4347 
   4348   ActOnDocumentableDecl(ObjCMethod);
   4349 
   4350   return ObjCMethod;
   4351 }
   4352 
   4353 bool Sema::CheckObjCDeclScope(Decl *D) {
   4354   // Following is also an error. But it is caused by a missing @end
   4355   // and diagnostic is issued elsewhere.
   4356   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
   4357     return false;
   4358 
   4359   // If we switched context to translation unit while we are still lexically in
   4360   // an objc container, it means the parser missed emitting an error.
   4361   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
   4362     return false;
   4363 
   4364   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   4365   D->setInvalidDecl();
   4366 
   4367   return true;
   4368 }
   4369 
   4370 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
   4371 /// instance variables of ClassName into Decls.
   4372 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   4373                      IdentifierInfo *ClassName,
   4374                      SmallVectorImpl<Decl*> &Decls) {
   4375   // Check that ClassName is a valid class
   4376   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   4377   if (!Class) {
   4378     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   4379     return;
   4380   }
   4381   if (LangOpts.ObjCRuntime.isNonFragile()) {
   4382     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   4383     return;
   4384   }
   4385 
   4386   // Collect the instance variables
   4387   SmallVector<const ObjCIvarDecl*, 32> Ivars;
   4388   Context.DeepCollectObjCIvars(Class, true, Ivars);
   4389   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   4390   for (unsigned i = 0; i < Ivars.size(); i++) {
   4391     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   4392     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   4393     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   4394                                            /*FIXME: StartL=*/ID->getLocation(),
   4395                                            ID->getLocation(),
   4396                                            ID->getIdentifier(), ID->getType(),
   4397                                            ID->getBitWidth());
   4398     Decls.push_back(FD);
   4399   }
   4400 
   4401   // Introduce all of these fields into the appropriate scope.
   4402   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   4403        D != Decls.end(); ++D) {
   4404     FieldDecl *FD = cast<FieldDecl>(*D);
   4405     if (getLangOpts().CPlusPlus)
   4406       PushOnScopeChains(cast<FieldDecl>(FD), S);
   4407     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   4408       Record->addDecl(FD);
   4409   }
   4410 }
   4411 
   4412 /// \brief Build a type-check a new Objective-C exception variable declaration.
   4413 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   4414                                       SourceLocation StartLoc,
   4415                                       SourceLocation IdLoc,
   4416                                       IdentifierInfo *Id,
   4417                                       bool Invalid) {
   4418   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   4419   // duration shall not be qualified by an address-space qualifier."
   4420   // Since all parameters have automatic store duration, they can not have
   4421   // an address space.
   4422   if (T.getAddressSpace() != 0) {
   4423     Diag(IdLoc, diag::err_arg_with_address_space);
   4424     Invalid = true;
   4425   }
   4426 
   4427   // An @catch parameter must be an unqualified object pointer type;
   4428   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   4429   if (Invalid) {
   4430     // Don't do any further checking.
   4431   } else if (T->isDependentType()) {
   4432     // Okay: we don't know what this type will instantiate to.
   4433   } else if (!T->isObjCObjectPointerType()) {
   4434     Invalid = true;
   4435     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   4436   } else if (T->isObjCQualifiedIdType()) {
   4437     Invalid = true;
   4438     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   4439   }
   4440 
   4441   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   4442                                  T, TInfo, SC_None);
   4443   New->setExceptionVariable(true);
   4444 
   4445   // In ARC, infer 'retaining' for variables of retainable type.
   4446   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
   4447     Invalid = true;
   4448 
   4449   if (Invalid)
   4450     New->setInvalidDecl();
   4451   return New;
   4452 }
   4453 
   4454 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   4455   const DeclSpec &DS = D.getDeclSpec();
   4456 
   4457   // We allow the "register" storage class on exception variables because
   4458   // GCC did, but we drop it completely. Any other storage class is an error.
   4459   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   4460     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   4461       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   4462   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
   4463     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   4464       << DeclSpec::getSpecifierName(SCS);
   4465   }
   4466   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   4467     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   4468          diag::err_invalid_thread)
   4469      << DeclSpec::getSpecifierName(TSCS);
   4470   D.getMutableDeclSpec().ClearStorageClassSpecs();
   4471 
   4472   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   4473 
   4474   // Check that there are no default arguments inside the type of this
   4475   // exception object (C++ only).
   4476   if (getLangOpts().CPlusPlus)
   4477     CheckExtraCXXDefaultArguments(D);
   4478 
   4479   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   4480   QualType ExceptionType = TInfo->getType();
   4481 
   4482   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   4483                                         D.getSourceRange().getBegin(),
   4484                                         D.getIdentifierLoc(),
   4485                                         D.getIdentifier(),
   4486                                         D.isInvalidType());
   4487 
   4488   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   4489   if (D.getCXXScopeSpec().isSet()) {
   4490     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   4491       << D.getCXXScopeSpec().getRange();
   4492     New->setInvalidDecl();
   4493   }
   4494 
   4495   // Add the parameter declaration into this scope.
   4496   S->AddDecl(New);
   4497   if (D.getIdentifier())
   4498     IdResolver.AddDecl(New);
   4499 
   4500   ProcessDeclAttributes(S, New, D);
   4501 
   4502   if (New->hasAttr<BlocksAttr>())
   4503     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   4504   return New;
   4505 }
   4506 
   4507 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   4508 /// initialization.
   4509 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   4510                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   4511   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   4512        Iv= Iv->getNextIvar()) {
   4513     QualType QT = Context.getBaseElementType(Iv->getType());
   4514     if (QT->isRecordType())
   4515       Ivars.push_back(Iv);
   4516   }
   4517 }
   4518 
   4519 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   4520   // Load referenced selectors from the external source.
   4521   if (ExternalSource) {
   4522     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
   4523     ExternalSource->ReadReferencedSelectors(Sels);
   4524     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
   4525       ReferencedSelectors[Sels[I].first] = Sels[I].second;
   4526   }
   4527 
   4528   // Warning will be issued only when selector table is
   4529   // generated (which means there is at lease one implementation
   4530   // in the TU). This is to match gcc's behavior.
   4531   if (ReferencedSelectors.empty() ||
   4532       !Context.AnyObjCImplementation())
   4533     return;
   4534   for (auto &SelectorAndLocation : ReferencedSelectors) {
   4535     Selector Sel = SelectorAndLocation.first;
   4536     SourceLocation Loc = SelectorAndLocation.second;
   4537     if (!LookupImplementedMethodInGlobalPool(Sel))
   4538       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
   4539   }
   4540 }
   4541 
   4542 ObjCIvarDecl *
   4543 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
   4544                                      const ObjCPropertyDecl *&PDecl) const {
   4545   if (Method->isClassMethod())
   4546     return nullptr;
   4547   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
   4548   if (!IDecl)
   4549     return nullptr;
   4550   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
   4551                                /*shallowCategoryLookup=*/false,
   4552                                /*followSuper=*/false);
   4553   if (!Method || !Method->isPropertyAccessor())
   4554     return nullptr;
   4555   if ((PDecl = Method->findPropertyDecl()))
   4556     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
   4557       // property backing ivar must belong to property's class
   4558       // or be a private ivar in class's implementation.
   4559       // FIXME. fix the const-ness issue.
   4560       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
   4561                                                         IV->getIdentifier());
   4562       return IV;
   4563     }
   4564   return nullptr;
   4565 }
   4566 
   4567 namespace {
   4568   /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
   4569   /// accessor references the backing ivar.
   4570   class UnusedBackingIvarChecker :
   4571       public RecursiveASTVisitor<UnusedBackingIvarChecker> {
   4572   public:
   4573     Sema &S;
   4574     const ObjCMethodDecl *Method;
   4575     const ObjCIvarDecl *IvarD;
   4576     bool AccessedIvar;
   4577     bool InvokedSelfMethod;
   4578 
   4579     UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
   4580                              const ObjCIvarDecl *IvarD)
   4581       : S(S), Method(Method), IvarD(IvarD),
   4582         AccessedIvar(false), InvokedSelfMethod(false) {
   4583       assert(IvarD);
   4584     }
   4585 
   4586     bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
   4587       if (E->getDecl() == IvarD) {
   4588         AccessedIvar = true;
   4589         return false;
   4590       }
   4591       return true;
   4592     }
   4593 
   4594     bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
   4595       if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
   4596           S.isSelfExpr(E->getInstanceReceiver(), Method)) {
   4597         InvokedSelfMethod = true;
   4598       }
   4599       return true;
   4600     }
   4601   };
   4602 } // end anonymous namespace
   4603 
   4604 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
   4605                                           const ObjCImplementationDecl *ImplD) {
   4606   if (S->hasUnrecoverableErrorOccurred())
   4607     return;
   4608 
   4609   for (const auto *CurMethod : ImplD->instance_methods()) {
   4610     unsigned DIAG = diag::warn_unused_property_backing_ivar;
   4611     SourceLocation Loc = CurMethod->getLocation();
   4612     if (Diags.isIgnored(DIAG, Loc))
   4613       continue;
   4614 
   4615     const ObjCPropertyDecl *PDecl;
   4616     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
   4617     if (!IV)
   4618       continue;
   4619 
   4620     UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
   4621     Checker.TraverseStmt(CurMethod->getBody());
   4622     if (Checker.AccessedIvar)
   4623       continue;
   4624 
   4625     // Do not issue this warning if backing ivar is used somewhere and accessor
   4626     // implementation makes a self call. This is to prevent false positive in
   4627     // cases where the ivar is accessed by another method that the accessor
   4628     // delegates to.
   4629     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
   4630       Diag(Loc, DIAG) << IV;
   4631       Diag(PDecl->getLocation(), diag::note_property_declare);
   4632     }
   4633   }
   4634 }
   4635