Home | History | Annotate | Download | only in Instrumentation
      1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file is a part of MemorySanitizer, a detector of uninitialized
     11 /// reads.
     12 ///
     13 /// The algorithm of the tool is similar to Memcheck
     14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
     15 /// byte of the application memory, poison the shadow of the malloc-ed
     16 /// or alloca-ed memory, load the shadow bits on every memory read,
     17 /// propagate the shadow bits through some of the arithmetic
     18 /// instruction (including MOV), store the shadow bits on every memory
     19 /// write, report a bug on some other instructions (e.g. JMP) if the
     20 /// associated shadow is poisoned.
     21 ///
     22 /// But there are differences too. The first and the major one:
     23 /// compiler instrumentation instead of binary instrumentation. This
     24 /// gives us much better register allocation, possible compiler
     25 /// optimizations and a fast start-up. But this brings the major issue
     26 /// as well: msan needs to see all program events, including system
     27 /// calls and reads/writes in system libraries, so we either need to
     28 /// compile *everything* with msan or use a binary translation
     29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
     30 /// Another difference from Memcheck is that we use 8 shadow bits per
     31 /// byte of application memory and use a direct shadow mapping. This
     32 /// greatly simplifies the instrumentation code and avoids races on
     33 /// shadow updates (Memcheck is single-threaded so races are not a
     34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
     35 /// path storage that uses 8 bits per byte).
     36 ///
     37 /// The default value of shadow is 0, which means "clean" (not poisoned).
     38 ///
     39 /// Every module initializer should call __msan_init to ensure that the
     40 /// shadow memory is ready. On error, __msan_warning is called. Since
     41 /// parameters and return values may be passed via registers, we have a
     42 /// specialized thread-local shadow for return values
     43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
     44 ///
     45 ///                           Origin tracking.
     46 ///
     47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
     48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
     49 /// disabled by default.
     50 ///
     51 /// Origins are 4-byte values created and interpreted by the runtime library.
     52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
     53 /// of application memory. Propagation of origins is basically a bunch of
     54 /// "select" instructions that pick the origin of a dirty argument, if an
     55 /// instruction has one.
     56 ///
     57 /// Every 4 aligned, consecutive bytes of application memory have one origin
     58 /// value associated with them. If these bytes contain uninitialized data
     59 /// coming from 2 different allocations, the last store wins. Because of this,
     60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
     61 /// practice.
     62 ///
     63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
     64 /// avoids storing origin to memory when a fully initialized value is stored.
     65 /// This way it avoids needless overwritting origin of the 4-byte region on
     66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
     67 ///
     68 ///                            Atomic handling.
     69 ///
     70 /// Ideally, every atomic store of application value should update the
     71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
     72 /// of two disjoint locations can not be done without severe slowdown.
     73 ///
     74 /// Therefore, we implement an approximation that may err on the safe side.
     75 /// In this implementation, every atomically accessed location in the program
     76 /// may only change from (partially) uninitialized to fully initialized, but
     77 /// not the other way around. We load the shadow _after_ the application load,
     78 /// and we store the shadow _before_ the app store. Also, we always store clean
     79 /// shadow (if the application store is atomic). This way, if the store-load
     80 /// pair constitutes a happens-before arc, shadow store and load are correctly
     81 /// ordered such that the load will get either the value that was stored, or
     82 /// some later value (which is always clean).
     83 ///
     84 /// This does not work very well with Compare-And-Swap (CAS) and
     85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
     86 /// must store the new shadow before the app operation, and load the shadow
     87 /// after the app operation. Computers don't work this way. Current
     88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
     89 /// value. It implements the store part as a simple atomic store by storing a
     90 /// clean shadow.
     91 
     92 //===----------------------------------------------------------------------===//
     93 
     94 #include "llvm/Transforms/Instrumentation.h"
     95 #include "llvm/ADT/DepthFirstIterator.h"
     96 #include "llvm/ADT/SmallString.h"
     97 #include "llvm/ADT/SmallVector.h"
     98 #include "llvm/ADT/StringExtras.h"
     99 #include "llvm/ADT/Triple.h"
    100 #include "llvm/IR/DataLayout.h"
    101 #include "llvm/IR/Function.h"
    102 #include "llvm/IR/IRBuilder.h"
    103 #include "llvm/IR/InlineAsm.h"
    104 #include "llvm/IR/InstVisitor.h"
    105 #include "llvm/IR/IntrinsicInst.h"
    106 #include "llvm/IR/LLVMContext.h"
    107 #include "llvm/IR/MDBuilder.h"
    108 #include "llvm/IR/Module.h"
    109 #include "llvm/IR/Type.h"
    110 #include "llvm/IR/ValueMap.h"
    111 #include "llvm/Support/CommandLine.h"
    112 #include "llvm/Support/Compiler.h"
    113 #include "llvm/Support/Debug.h"
    114 #include "llvm/Support/raw_ostream.h"
    115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
    116 #include "llvm/Transforms/Utils/Local.h"
    117 #include "llvm/Transforms/Utils/ModuleUtils.h"
    118 
    119 using namespace llvm;
    120 
    121 #define DEBUG_TYPE "msan"
    122 
    123 static const unsigned kOriginSize = 4;
    124 static const unsigned kMinOriginAlignment = 4;
    125 static const unsigned kShadowTLSAlignment = 8;
    126 
    127 // These constants must be kept in sync with the ones in msan.h.
    128 static const unsigned kParamTLSSize = 800;
    129 static const unsigned kRetvalTLSSize = 800;
    130 
    131 // Accesses sizes are powers of two: 1, 2, 4, 8.
    132 static const size_t kNumberOfAccessSizes = 4;
    133 
    134 /// \brief Track origins of uninitialized values.
    135 ///
    136 /// Adds a section to MemorySanitizer report that points to the allocation
    137 /// (stack or heap) the uninitialized bits came from originally.
    138 static cl::opt<int> ClTrackOrigins("msan-track-origins",
    139        cl::desc("Track origins (allocation sites) of poisoned memory"),
    140        cl::Hidden, cl::init(0));
    141 static cl::opt<bool> ClKeepGoing("msan-keep-going",
    142        cl::desc("keep going after reporting a UMR"),
    143        cl::Hidden, cl::init(false));
    144 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
    145        cl::desc("poison uninitialized stack variables"),
    146        cl::Hidden, cl::init(true));
    147 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
    148        cl::desc("poison uninitialized stack variables with a call"),
    149        cl::Hidden, cl::init(false));
    150 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
    151        cl::desc("poison uninitialized stack variables with the given pattern"),
    152        cl::Hidden, cl::init(0xff));
    153 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
    154        cl::desc("poison undef temps"),
    155        cl::Hidden, cl::init(true));
    156 
    157 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
    158        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
    159        cl::Hidden, cl::init(true));
    160 
    161 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
    162        cl::desc("exact handling of relational integer ICmp"),
    163        cl::Hidden, cl::init(false));
    164 
    165 // This flag controls whether we check the shadow of the address
    166 // operand of load or store. Such bugs are very rare, since load from
    167 // a garbage address typically results in SEGV, but still happen
    168 // (e.g. only lower bits of address are garbage, or the access happens
    169 // early at program startup where malloc-ed memory is more likely to
    170 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
    171 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
    172        cl::desc("report accesses through a pointer which has poisoned shadow"),
    173        cl::Hidden, cl::init(true));
    174 
    175 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
    176        cl::desc("print out instructions with default strict semantics"),
    177        cl::Hidden, cl::init(false));
    178 
    179 static cl::opt<int> ClInstrumentationWithCallThreshold(
    180     "msan-instrumentation-with-call-threshold",
    181     cl::desc(
    182         "If the function being instrumented requires more than "
    183         "this number of checks and origin stores, use callbacks instead of "
    184         "inline checks (-1 means never use callbacks)."),
    185     cl::Hidden, cl::init(3500));
    186 
    187 // This is an experiment to enable handling of cases where shadow is a non-zero
    188 // compile-time constant. For some unexplainable reason they were silently
    189 // ignored in the instrumentation.
    190 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
    191        cl::desc("Insert checks for constant shadow values"),
    192        cl::Hidden, cl::init(false));
    193 
    194 static const char *const kMsanModuleCtorName = "msan.module_ctor";
    195 static const char *const kMsanInitName = "__msan_init";
    196 
    197 namespace {
    198 
    199 // Memory map parameters used in application-to-shadow address calculation.
    200 // Offset = (Addr & ~AndMask) ^ XorMask
    201 // Shadow = ShadowBase + Offset
    202 // Origin = OriginBase + Offset
    203 struct MemoryMapParams {
    204   uint64_t AndMask;
    205   uint64_t XorMask;
    206   uint64_t ShadowBase;
    207   uint64_t OriginBase;
    208 };
    209 
    210 struct PlatformMemoryMapParams {
    211   const MemoryMapParams *bits32;
    212   const MemoryMapParams *bits64;
    213 };
    214 
    215 // i386 Linux
    216 static const MemoryMapParams Linux_I386_MemoryMapParams = {
    217   0x000080000000,  // AndMask
    218   0,               // XorMask (not used)
    219   0,               // ShadowBase (not used)
    220   0x000040000000,  // OriginBase
    221 };
    222 
    223 // x86_64 Linux
    224 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
    225 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
    226   0x400000000000,  // AndMask
    227   0,               // XorMask (not used)
    228   0,               // ShadowBase (not used)
    229   0x200000000000,  // OriginBase
    230 #else
    231   0,               // AndMask (not used)
    232   0x500000000000,  // XorMask
    233   0,               // ShadowBase (not used)
    234   0x100000000000,  // OriginBase
    235 #endif
    236 };
    237 
    238 // mips64 Linux
    239 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
    240   0x004000000000,  // AndMask
    241   0,               // XorMask (not used)
    242   0,               // ShadowBase (not used)
    243   0x002000000000,  // OriginBase
    244 };
    245 
    246 // ppc64 Linux
    247 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
    248   0x200000000000,  // AndMask
    249   0x100000000000,  // XorMask
    250   0x080000000000,  // ShadowBase
    251   0x1C0000000000,  // OriginBase
    252 };
    253 
    254 // aarch64 Linux
    255 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
    256   0,               // AndMask (not used)
    257   0x06000000000,   // XorMask
    258   0,               // ShadowBase (not used)
    259   0x01000000000,   // OriginBase
    260 };
    261 
    262 // i386 FreeBSD
    263 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
    264   0x000180000000,  // AndMask
    265   0x000040000000,  // XorMask
    266   0x000020000000,  // ShadowBase
    267   0x000700000000,  // OriginBase
    268 };
    269 
    270 // x86_64 FreeBSD
    271 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
    272   0xc00000000000,  // AndMask
    273   0x200000000000,  // XorMask
    274   0x100000000000,  // ShadowBase
    275   0x380000000000,  // OriginBase
    276 };
    277 
    278 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
    279   &Linux_I386_MemoryMapParams,
    280   &Linux_X86_64_MemoryMapParams,
    281 };
    282 
    283 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
    284   nullptr,
    285   &Linux_MIPS64_MemoryMapParams,
    286 };
    287 
    288 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
    289   nullptr,
    290   &Linux_PowerPC64_MemoryMapParams,
    291 };
    292 
    293 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
    294   nullptr,
    295   &Linux_AArch64_MemoryMapParams,
    296 };
    297 
    298 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
    299   &FreeBSD_I386_MemoryMapParams,
    300   &FreeBSD_X86_64_MemoryMapParams,
    301 };
    302 
    303 /// \brief An instrumentation pass implementing detection of uninitialized
    304 /// reads.
    305 ///
    306 /// MemorySanitizer: instrument the code in module to find
    307 /// uninitialized reads.
    308 class MemorySanitizer : public FunctionPass {
    309  public:
    310   MemorySanitizer(int TrackOrigins = 0)
    311       : FunctionPass(ID),
    312         TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
    313         WarningFn(nullptr) {}
    314   const char *getPassName() const override { return "MemorySanitizer"; }
    315   bool runOnFunction(Function &F) override;
    316   bool doInitialization(Module &M) override;
    317   static char ID;  // Pass identification, replacement for typeid.
    318 
    319  private:
    320   void initializeCallbacks(Module &M);
    321 
    322   /// \brief Track origins (allocation points) of uninitialized values.
    323   int TrackOrigins;
    324 
    325   LLVMContext *C;
    326   Type *IntptrTy;
    327   Type *OriginTy;
    328   /// \brief Thread-local shadow storage for function parameters.
    329   GlobalVariable *ParamTLS;
    330   /// \brief Thread-local origin storage for function parameters.
    331   GlobalVariable *ParamOriginTLS;
    332   /// \brief Thread-local shadow storage for function return value.
    333   GlobalVariable *RetvalTLS;
    334   /// \brief Thread-local origin storage for function return value.
    335   GlobalVariable *RetvalOriginTLS;
    336   /// \brief Thread-local shadow storage for in-register va_arg function
    337   /// parameters (x86_64-specific).
    338   GlobalVariable *VAArgTLS;
    339   /// \brief Thread-local shadow storage for va_arg overflow area
    340   /// (x86_64-specific).
    341   GlobalVariable *VAArgOverflowSizeTLS;
    342   /// \brief Thread-local space used to pass origin value to the UMR reporting
    343   /// function.
    344   GlobalVariable *OriginTLS;
    345 
    346   /// \brief The run-time callback to print a warning.
    347   Value *WarningFn;
    348   // These arrays are indexed by log2(AccessSize).
    349   Value *MaybeWarningFn[kNumberOfAccessSizes];
    350   Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
    351 
    352   /// \brief Run-time helper that generates a new origin value for a stack
    353   /// allocation.
    354   Value *MsanSetAllocaOrigin4Fn;
    355   /// \brief Run-time helper that poisons stack on function entry.
    356   Value *MsanPoisonStackFn;
    357   /// \brief Run-time helper that records a store (or any event) of an
    358   /// uninitialized value and returns an updated origin id encoding this info.
    359   Value *MsanChainOriginFn;
    360   /// \brief MSan runtime replacements for memmove, memcpy and memset.
    361   Value *MemmoveFn, *MemcpyFn, *MemsetFn;
    362 
    363   /// \brief Memory map parameters used in application-to-shadow calculation.
    364   const MemoryMapParams *MapParams;
    365 
    366   MDNode *ColdCallWeights;
    367   /// \brief Branch weights for origin store.
    368   MDNode *OriginStoreWeights;
    369   /// \brief An empty volatile inline asm that prevents callback merge.
    370   InlineAsm *EmptyAsm;
    371   Function *MsanCtorFunction;
    372 
    373   friend struct MemorySanitizerVisitor;
    374   friend struct VarArgAMD64Helper;
    375   friend struct VarArgMIPS64Helper;
    376   friend struct VarArgAArch64Helper;
    377 };
    378 } // anonymous namespace
    379 
    380 char MemorySanitizer::ID = 0;
    381 INITIALIZE_PASS(MemorySanitizer, "msan",
    382                 "MemorySanitizer: detects uninitialized reads.",
    383                 false, false)
    384 
    385 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
    386   return new MemorySanitizer(TrackOrigins);
    387 }
    388 
    389 /// \brief Create a non-const global initialized with the given string.
    390 ///
    391 /// Creates a writable global for Str so that we can pass it to the
    392 /// run-time lib. Runtime uses first 4 bytes of the string to store the
    393 /// frame ID, so the string needs to be mutable.
    394 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
    395                                                             StringRef Str) {
    396   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
    397   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
    398                             GlobalValue::PrivateLinkage, StrConst, "");
    399 }
    400 
    401 /// \brief Insert extern declaration of runtime-provided functions and globals.
    402 void MemorySanitizer::initializeCallbacks(Module &M) {
    403   // Only do this once.
    404   if (WarningFn)
    405     return;
    406 
    407   IRBuilder<> IRB(*C);
    408   // Create the callback.
    409   // FIXME: this function should have "Cold" calling conv,
    410   // which is not yet implemented.
    411   StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
    412                                         : "__msan_warning_noreturn";
    413   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
    414 
    415   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
    416        AccessSizeIndex++) {
    417     unsigned AccessSize = 1 << AccessSizeIndex;
    418     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
    419     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
    420         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
    421         IRB.getInt32Ty(), nullptr);
    422 
    423     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
    424     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
    425         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
    426         IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
    427   }
    428 
    429   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
    430     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
    431     IRB.getInt8PtrTy(), IntptrTy, nullptr);
    432   MsanPoisonStackFn =
    433       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
    434                             IRB.getInt8PtrTy(), IntptrTy, nullptr);
    435   MsanChainOriginFn = M.getOrInsertFunction(
    436     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
    437   MemmoveFn = M.getOrInsertFunction(
    438     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    439     IRB.getInt8PtrTy(), IntptrTy, nullptr);
    440   MemcpyFn = M.getOrInsertFunction(
    441     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    442     IntptrTy, nullptr);
    443   MemsetFn = M.getOrInsertFunction(
    444     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
    445     IntptrTy, nullptr);
    446 
    447   // Create globals.
    448   RetvalTLS = new GlobalVariable(
    449     M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
    450     GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
    451     GlobalVariable::InitialExecTLSModel);
    452   RetvalOriginTLS = new GlobalVariable(
    453     M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
    454     "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
    455 
    456   ParamTLS = new GlobalVariable(
    457     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
    458     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
    459     GlobalVariable::InitialExecTLSModel);
    460   ParamOriginTLS = new GlobalVariable(
    461     M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
    462     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
    463     nullptr, GlobalVariable::InitialExecTLSModel);
    464 
    465   VAArgTLS = new GlobalVariable(
    466     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
    467     GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
    468     GlobalVariable::InitialExecTLSModel);
    469   VAArgOverflowSizeTLS = new GlobalVariable(
    470     M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
    471     "__msan_va_arg_overflow_size_tls", nullptr,
    472     GlobalVariable::InitialExecTLSModel);
    473   OriginTLS = new GlobalVariable(
    474     M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
    475     "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
    476 
    477   // We insert an empty inline asm after __msan_report* to avoid callback merge.
    478   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
    479                             StringRef(""), StringRef(""),
    480                             /*hasSideEffects=*/true);
    481 }
    482 
    483 /// \brief Module-level initialization.
    484 ///
    485 /// inserts a call to __msan_init to the module's constructor list.
    486 bool MemorySanitizer::doInitialization(Module &M) {
    487   auto &DL = M.getDataLayout();
    488 
    489   Triple TargetTriple(M.getTargetTriple());
    490   switch (TargetTriple.getOS()) {
    491     case Triple::FreeBSD:
    492       switch (TargetTriple.getArch()) {
    493         case Triple::x86_64:
    494           MapParams = FreeBSD_X86_MemoryMapParams.bits64;
    495           break;
    496         case Triple::x86:
    497           MapParams = FreeBSD_X86_MemoryMapParams.bits32;
    498           break;
    499         default:
    500           report_fatal_error("unsupported architecture");
    501       }
    502       break;
    503     case Triple::Linux:
    504       switch (TargetTriple.getArch()) {
    505         case Triple::x86_64:
    506           MapParams = Linux_X86_MemoryMapParams.bits64;
    507           break;
    508         case Triple::x86:
    509           MapParams = Linux_X86_MemoryMapParams.bits32;
    510           break;
    511         case Triple::mips64:
    512         case Triple::mips64el:
    513           MapParams = Linux_MIPS_MemoryMapParams.bits64;
    514           break;
    515         case Triple::ppc64:
    516         case Triple::ppc64le:
    517           MapParams = Linux_PowerPC_MemoryMapParams.bits64;
    518           break;
    519         case Triple::aarch64:
    520         case Triple::aarch64_be:
    521           MapParams = Linux_ARM_MemoryMapParams.bits64;
    522           break;
    523         default:
    524           report_fatal_error("unsupported architecture");
    525       }
    526       break;
    527     default:
    528       report_fatal_error("unsupported operating system");
    529   }
    530 
    531   C = &(M.getContext());
    532   IRBuilder<> IRB(*C);
    533   IntptrTy = IRB.getIntPtrTy(DL);
    534   OriginTy = IRB.getInt32Ty();
    535 
    536   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
    537   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
    538 
    539   std::tie(MsanCtorFunction, std::ignore) =
    540       createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName,
    541                                           /*InitArgTypes=*/{},
    542                                           /*InitArgs=*/{});
    543 
    544   appendToGlobalCtors(M, MsanCtorFunction, 0);
    545 
    546   if (TrackOrigins)
    547     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
    548                        IRB.getInt32(TrackOrigins), "__msan_track_origins");
    549 
    550   if (ClKeepGoing)
    551     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
    552                        IRB.getInt32(ClKeepGoing), "__msan_keep_going");
    553 
    554   return true;
    555 }
    556 
    557 namespace {
    558 
    559 /// \brief A helper class that handles instrumentation of VarArg
    560 /// functions on a particular platform.
    561 ///
    562 /// Implementations are expected to insert the instrumentation
    563 /// necessary to propagate argument shadow through VarArg function
    564 /// calls. Visit* methods are called during an InstVisitor pass over
    565 /// the function, and should avoid creating new basic blocks. A new
    566 /// instance of this class is created for each instrumented function.
    567 struct VarArgHelper {
    568   /// \brief Visit a CallSite.
    569   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
    570 
    571   /// \brief Visit a va_start call.
    572   virtual void visitVAStartInst(VAStartInst &I) = 0;
    573 
    574   /// \brief Visit a va_copy call.
    575   virtual void visitVACopyInst(VACopyInst &I) = 0;
    576 
    577   /// \brief Finalize function instrumentation.
    578   ///
    579   /// This method is called after visiting all interesting (see above)
    580   /// instructions in a function.
    581   virtual void finalizeInstrumentation() = 0;
    582 
    583   virtual ~VarArgHelper() {}
    584 };
    585 
    586 struct MemorySanitizerVisitor;
    587 
    588 VarArgHelper*
    589 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
    590                    MemorySanitizerVisitor &Visitor);
    591 
    592 unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
    593   if (TypeSize <= 8) return 0;
    594   return Log2_32_Ceil(TypeSize / 8);
    595 }
    596 
    597 /// This class does all the work for a given function. Store and Load
    598 /// instructions store and load corresponding shadow and origin
    599 /// values. Most instructions propagate shadow from arguments to their
    600 /// return values. Certain instructions (most importantly, BranchInst)
    601 /// test their argument shadow and print reports (with a runtime call) if it's
    602 /// non-zero.
    603 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
    604   Function &F;
    605   MemorySanitizer &MS;
    606   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
    607   ValueMap<Value*, Value*> ShadowMap, OriginMap;
    608   std::unique_ptr<VarArgHelper> VAHelper;
    609 
    610   // The following flags disable parts of MSan instrumentation based on
    611   // blacklist contents and command-line options.
    612   bool InsertChecks;
    613   bool PropagateShadow;
    614   bool PoisonStack;
    615   bool PoisonUndef;
    616   bool CheckReturnValue;
    617 
    618   struct ShadowOriginAndInsertPoint {
    619     Value *Shadow;
    620     Value *Origin;
    621     Instruction *OrigIns;
    622     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
    623       : Shadow(S), Origin(O), OrigIns(I) { }
    624   };
    625   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
    626   SmallVector<Instruction*, 16> StoreList;
    627 
    628   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
    629       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
    630     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
    631     InsertChecks = SanitizeFunction;
    632     PropagateShadow = SanitizeFunction;
    633     PoisonStack = SanitizeFunction && ClPoisonStack;
    634     PoisonUndef = SanitizeFunction && ClPoisonUndef;
    635     // FIXME: Consider using SpecialCaseList to specify a list of functions that
    636     // must always return fully initialized values. For now, we hardcode "main".
    637     CheckReturnValue = SanitizeFunction && (F.getName() == "main");
    638 
    639     DEBUG(if (!InsertChecks)
    640           dbgs() << "MemorySanitizer is not inserting checks into '"
    641                  << F.getName() << "'\n");
    642   }
    643 
    644   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
    645     if (MS.TrackOrigins <= 1) return V;
    646     return IRB.CreateCall(MS.MsanChainOriginFn, V);
    647   }
    648 
    649   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
    650     const DataLayout &DL = F.getParent()->getDataLayout();
    651     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
    652     if (IntptrSize == kOriginSize) return Origin;
    653     assert(IntptrSize == kOriginSize * 2);
    654     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
    655     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
    656   }
    657 
    658   /// \brief Fill memory range with the given origin value.
    659   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
    660                    unsigned Size, unsigned Alignment) {
    661     const DataLayout &DL = F.getParent()->getDataLayout();
    662     unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
    663     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
    664     assert(IntptrAlignment >= kMinOriginAlignment);
    665     assert(IntptrSize >= kOriginSize);
    666 
    667     unsigned Ofs = 0;
    668     unsigned CurrentAlignment = Alignment;
    669     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
    670       Value *IntptrOrigin = originToIntptr(IRB, Origin);
    671       Value *IntptrOriginPtr =
    672           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
    673       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
    674         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
    675                        : IntptrOriginPtr;
    676         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
    677         Ofs += IntptrSize / kOriginSize;
    678         CurrentAlignment = IntptrAlignment;
    679       }
    680     }
    681 
    682     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
    683       Value *GEP =
    684           i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
    685       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
    686       CurrentAlignment = kMinOriginAlignment;
    687     }
    688   }
    689 
    690   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
    691                    unsigned Alignment, bool AsCall) {
    692     const DataLayout &DL = F.getParent()->getDataLayout();
    693     unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
    694     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
    695     if (isa<StructType>(Shadow->getType())) {
    696       paintOrigin(IRB, updateOrigin(Origin, IRB),
    697                   getOriginPtr(Addr, IRB, Alignment), StoreSize,
    698                   OriginAlignment);
    699     } else {
    700       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
    701       Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
    702       if (ConstantShadow) {
    703         if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
    704           paintOrigin(IRB, updateOrigin(Origin, IRB),
    705                       getOriginPtr(Addr, IRB, Alignment), StoreSize,
    706                       OriginAlignment);
    707         return;
    708       }
    709 
    710       unsigned TypeSizeInBits =
    711           DL.getTypeSizeInBits(ConvertedShadow->getType());
    712       unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
    713       if (AsCall && SizeIndex < kNumberOfAccessSizes) {
    714         Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
    715         Value *ConvertedShadow2 = IRB.CreateZExt(
    716             ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
    717         IRB.CreateCall(Fn, {ConvertedShadow2,
    718                             IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
    719                             Origin});
    720       } else {
    721         Value *Cmp = IRB.CreateICmpNE(
    722             ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
    723         Instruction *CheckTerm = SplitBlockAndInsertIfThen(
    724             Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
    725         IRBuilder<> IRBNew(CheckTerm);
    726         paintOrigin(IRBNew, updateOrigin(Origin, IRBNew),
    727                     getOriginPtr(Addr, IRBNew, Alignment), StoreSize,
    728                     OriginAlignment);
    729       }
    730     }
    731   }
    732 
    733   void materializeStores(bool InstrumentWithCalls) {
    734     for (auto Inst : StoreList) {
    735       StoreInst &SI = *dyn_cast<StoreInst>(Inst);
    736 
    737       IRBuilder<> IRB(&SI);
    738       Value *Val = SI.getValueOperand();
    739       Value *Addr = SI.getPointerOperand();
    740       Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
    741       Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
    742 
    743       StoreInst *NewSI =
    744           IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
    745       DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
    746       (void)NewSI;
    747 
    748       if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
    749 
    750       if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
    751 
    752       if (MS.TrackOrigins && !SI.isAtomic())
    753         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
    754                     InstrumentWithCalls);
    755     }
    756   }
    757 
    758   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
    759                            bool AsCall) {
    760     IRBuilder<> IRB(OrigIns);
    761     DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
    762     Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
    763     DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
    764 
    765     Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
    766     if (ConstantShadow) {
    767       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
    768         if (MS.TrackOrigins) {
    769           IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
    770                           MS.OriginTLS);
    771         }
    772         IRB.CreateCall(MS.WarningFn, {});
    773         IRB.CreateCall(MS.EmptyAsm, {});
    774         // FIXME: Insert UnreachableInst if !ClKeepGoing?
    775         // This may invalidate some of the following checks and needs to be done
    776         // at the very end.
    777       }
    778       return;
    779     }
    780 
    781     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
    782 
    783     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
    784     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
    785     if (AsCall && SizeIndex < kNumberOfAccessSizes) {
    786       Value *Fn = MS.MaybeWarningFn[SizeIndex];
    787       Value *ConvertedShadow2 =
    788           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
    789       IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
    790                                                 ? Origin
    791                                                 : (Value *)IRB.getInt32(0)});
    792     } else {
    793       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
    794                                     getCleanShadow(ConvertedShadow), "_mscmp");
    795       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
    796           Cmp, OrigIns,
    797           /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
    798 
    799       IRB.SetInsertPoint(CheckTerm);
    800       if (MS.TrackOrigins) {
    801         IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
    802                         MS.OriginTLS);
    803       }
    804       IRB.CreateCall(MS.WarningFn, {});
    805       IRB.CreateCall(MS.EmptyAsm, {});
    806       DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
    807     }
    808   }
    809 
    810   void materializeChecks(bool InstrumentWithCalls) {
    811     for (const auto &ShadowData : InstrumentationList) {
    812       Instruction *OrigIns = ShadowData.OrigIns;
    813       Value *Shadow = ShadowData.Shadow;
    814       Value *Origin = ShadowData.Origin;
    815       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
    816     }
    817     DEBUG(dbgs() << "DONE:\n" << F);
    818   }
    819 
    820   /// \brief Add MemorySanitizer instrumentation to a function.
    821   bool runOnFunction() {
    822     MS.initializeCallbacks(*F.getParent());
    823 
    824     // In the presence of unreachable blocks, we may see Phi nodes with
    825     // incoming nodes from such blocks. Since InstVisitor skips unreachable
    826     // blocks, such nodes will not have any shadow value associated with them.
    827     // It's easier to remove unreachable blocks than deal with missing shadow.
    828     removeUnreachableBlocks(F);
    829 
    830     // Iterate all BBs in depth-first order and create shadow instructions
    831     // for all instructions (where applicable).
    832     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
    833     for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
    834       visit(*BB);
    835 
    836 
    837     // Finalize PHI nodes.
    838     for (PHINode *PN : ShadowPHINodes) {
    839       PHINode *PNS = cast<PHINode>(getShadow(PN));
    840       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
    841       size_t NumValues = PN->getNumIncomingValues();
    842       for (size_t v = 0; v < NumValues; v++) {
    843         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
    844         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
    845       }
    846     }
    847 
    848     VAHelper->finalizeInstrumentation();
    849 
    850     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
    851                                InstrumentationList.size() + StoreList.size() >
    852                                    (unsigned)ClInstrumentationWithCallThreshold;
    853 
    854     // Delayed instrumentation of StoreInst.
    855     // This may add new checks to be inserted later.
    856     materializeStores(InstrumentWithCalls);
    857 
    858     // Insert shadow value checks.
    859     materializeChecks(InstrumentWithCalls);
    860 
    861     return true;
    862   }
    863 
    864   /// \brief Compute the shadow type that corresponds to a given Value.
    865   Type *getShadowTy(Value *V) {
    866     return getShadowTy(V->getType());
    867   }
    868 
    869   /// \brief Compute the shadow type that corresponds to a given Type.
    870   Type *getShadowTy(Type *OrigTy) {
    871     if (!OrigTy->isSized()) {
    872       return nullptr;
    873     }
    874     // For integer type, shadow is the same as the original type.
    875     // This may return weird-sized types like i1.
    876     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
    877       return IT;
    878     const DataLayout &DL = F.getParent()->getDataLayout();
    879     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
    880       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
    881       return VectorType::get(IntegerType::get(*MS.C, EltSize),
    882                              VT->getNumElements());
    883     }
    884     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
    885       return ArrayType::get(getShadowTy(AT->getElementType()),
    886                             AT->getNumElements());
    887     }
    888     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
    889       SmallVector<Type*, 4> Elements;
    890       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
    891         Elements.push_back(getShadowTy(ST->getElementType(i)));
    892       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
    893       DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
    894       return Res;
    895     }
    896     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
    897     return IntegerType::get(*MS.C, TypeSize);
    898   }
    899 
    900   /// \brief Flatten a vector type.
    901   Type *getShadowTyNoVec(Type *ty) {
    902     if (VectorType *vt = dyn_cast<VectorType>(ty))
    903       return IntegerType::get(*MS.C, vt->getBitWidth());
    904     return ty;
    905   }
    906 
    907   /// \brief Convert a shadow value to it's flattened variant.
    908   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
    909     Type *Ty = V->getType();
    910     Type *NoVecTy = getShadowTyNoVec(Ty);
    911     if (Ty == NoVecTy) return V;
    912     return IRB.CreateBitCast(V, NoVecTy);
    913   }
    914 
    915   /// \brief Compute the integer shadow offset that corresponds to a given
    916   /// application address.
    917   ///
    918   /// Offset = (Addr & ~AndMask) ^ XorMask
    919   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
    920     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
    921 
    922     uint64_t AndMask = MS.MapParams->AndMask;
    923     if (AndMask)
    924       OffsetLong =
    925           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
    926 
    927     uint64_t XorMask = MS.MapParams->XorMask;
    928     if (XorMask)
    929       OffsetLong =
    930           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
    931     return OffsetLong;
    932   }
    933 
    934   /// \brief Compute the shadow address that corresponds to a given application
    935   /// address.
    936   ///
    937   /// Shadow = ShadowBase + Offset
    938   Value *getShadowPtr(Value *Addr, Type *ShadowTy,
    939                       IRBuilder<> &IRB) {
    940     Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
    941     uint64_t ShadowBase = MS.MapParams->ShadowBase;
    942     if (ShadowBase != 0)
    943       ShadowLong =
    944         IRB.CreateAdd(ShadowLong,
    945                       ConstantInt::get(MS.IntptrTy, ShadowBase));
    946     return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
    947   }
    948 
    949   /// \brief Compute the origin address that corresponds to a given application
    950   /// address.
    951   ///
    952   /// OriginAddr = (OriginBase + Offset) & ~3ULL
    953   Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
    954     Value *OriginLong = getShadowPtrOffset(Addr, IRB);
    955     uint64_t OriginBase = MS.MapParams->OriginBase;
    956     if (OriginBase != 0)
    957       OriginLong =
    958         IRB.CreateAdd(OriginLong,
    959                       ConstantInt::get(MS.IntptrTy, OriginBase));
    960     if (Alignment < kMinOriginAlignment) {
    961       uint64_t Mask = kMinOriginAlignment - 1;
    962       OriginLong = IRB.CreateAnd(OriginLong,
    963                                  ConstantInt::get(MS.IntptrTy, ~Mask));
    964     }
    965     return IRB.CreateIntToPtr(OriginLong,
    966                               PointerType::get(IRB.getInt32Ty(), 0));
    967   }
    968 
    969   /// \brief Compute the shadow address for a given function argument.
    970   ///
    971   /// Shadow = ParamTLS+ArgOffset.
    972   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
    973                                  int ArgOffset) {
    974     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
    975     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    976     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
    977                               "_msarg");
    978   }
    979 
    980   /// \brief Compute the origin address for a given function argument.
    981   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
    982                                  int ArgOffset) {
    983     if (!MS.TrackOrigins) return nullptr;
    984     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
    985     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    986     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
    987                               "_msarg_o");
    988   }
    989 
    990   /// \brief Compute the shadow address for a retval.
    991   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
    992     Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
    993     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
    994                               "_msret");
    995   }
    996 
    997   /// \brief Compute the origin address for a retval.
    998   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
    999     // We keep a single origin for the entire retval. Might be too optimistic.
   1000     return MS.RetvalOriginTLS;
   1001   }
   1002 
   1003   /// \brief Set SV to be the shadow value for V.
   1004   void setShadow(Value *V, Value *SV) {
   1005     assert(!ShadowMap.count(V) && "Values may only have one shadow");
   1006     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
   1007   }
   1008 
   1009   /// \brief Set Origin to be the origin value for V.
   1010   void setOrigin(Value *V, Value *Origin) {
   1011     if (!MS.TrackOrigins) return;
   1012     assert(!OriginMap.count(V) && "Values may only have one origin");
   1013     DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
   1014     OriginMap[V] = Origin;
   1015   }
   1016 
   1017   /// \brief Create a clean shadow value for a given value.
   1018   ///
   1019   /// Clean shadow (all zeroes) means all bits of the value are defined
   1020   /// (initialized).
   1021   Constant *getCleanShadow(Value *V) {
   1022     Type *ShadowTy = getShadowTy(V);
   1023     if (!ShadowTy)
   1024       return nullptr;
   1025     return Constant::getNullValue(ShadowTy);
   1026   }
   1027 
   1028   /// \brief Create a dirty shadow of a given shadow type.
   1029   Constant *getPoisonedShadow(Type *ShadowTy) {
   1030     assert(ShadowTy);
   1031     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
   1032       return Constant::getAllOnesValue(ShadowTy);
   1033     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
   1034       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
   1035                                       getPoisonedShadow(AT->getElementType()));
   1036       return ConstantArray::get(AT, Vals);
   1037     }
   1038     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
   1039       SmallVector<Constant *, 4> Vals;
   1040       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
   1041         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
   1042       return ConstantStruct::get(ST, Vals);
   1043     }
   1044     llvm_unreachable("Unexpected shadow type");
   1045   }
   1046 
   1047   /// \brief Create a dirty shadow for a given value.
   1048   Constant *getPoisonedShadow(Value *V) {
   1049     Type *ShadowTy = getShadowTy(V);
   1050     if (!ShadowTy)
   1051       return nullptr;
   1052     return getPoisonedShadow(ShadowTy);
   1053   }
   1054 
   1055   /// \brief Create a clean (zero) origin.
   1056   Value *getCleanOrigin() {
   1057     return Constant::getNullValue(MS.OriginTy);
   1058   }
   1059 
   1060   /// \brief Get the shadow value for a given Value.
   1061   ///
   1062   /// This function either returns the value set earlier with setShadow,
   1063   /// or extracts if from ParamTLS (for function arguments).
   1064   Value *getShadow(Value *V) {
   1065     if (!PropagateShadow) return getCleanShadow(V);
   1066     if (Instruction *I = dyn_cast<Instruction>(V)) {
   1067       // For instructions the shadow is already stored in the map.
   1068       Value *Shadow = ShadowMap[V];
   1069       if (!Shadow) {
   1070         DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
   1071         (void)I;
   1072         assert(Shadow && "No shadow for a value");
   1073       }
   1074       return Shadow;
   1075     }
   1076     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
   1077       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
   1078       DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
   1079       (void)U;
   1080       return AllOnes;
   1081     }
   1082     if (Argument *A = dyn_cast<Argument>(V)) {
   1083       // For arguments we compute the shadow on demand and store it in the map.
   1084       Value **ShadowPtr = &ShadowMap[V];
   1085       if (*ShadowPtr)
   1086         return *ShadowPtr;
   1087       Function *F = A->getParent();
   1088       IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
   1089       unsigned ArgOffset = 0;
   1090       const DataLayout &DL = F->getParent()->getDataLayout();
   1091       for (auto &FArg : F->args()) {
   1092         if (!FArg.getType()->isSized()) {
   1093           DEBUG(dbgs() << "Arg is not sized\n");
   1094           continue;
   1095         }
   1096         unsigned Size =
   1097             FArg.hasByValAttr()
   1098                 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
   1099                 : DL.getTypeAllocSize(FArg.getType());
   1100         if (A == &FArg) {
   1101           bool Overflow = ArgOffset + Size > kParamTLSSize;
   1102           Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
   1103           if (FArg.hasByValAttr()) {
   1104             // ByVal pointer itself has clean shadow. We copy the actual
   1105             // argument shadow to the underlying memory.
   1106             // Figure out maximal valid memcpy alignment.
   1107             unsigned ArgAlign = FArg.getParamAlignment();
   1108             if (ArgAlign == 0) {
   1109               Type *EltType = A->getType()->getPointerElementType();
   1110               ArgAlign = DL.getABITypeAlignment(EltType);
   1111             }
   1112             if (Overflow) {
   1113               // ParamTLS overflow.
   1114               EntryIRB.CreateMemSet(
   1115                   getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
   1116                   Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
   1117             } else {
   1118               unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
   1119               Value *Cpy = EntryIRB.CreateMemCpy(
   1120                   getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
   1121                   CopyAlign);
   1122               DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
   1123               (void)Cpy;
   1124             }
   1125             *ShadowPtr = getCleanShadow(V);
   1126           } else {
   1127             if (Overflow) {
   1128               // ParamTLS overflow.
   1129               *ShadowPtr = getCleanShadow(V);
   1130             } else {
   1131               *ShadowPtr =
   1132                   EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
   1133             }
   1134           }
   1135           DEBUG(dbgs() << "  ARG:    "  << FArg << " ==> " <<
   1136                 **ShadowPtr << "\n");
   1137           if (MS.TrackOrigins && !Overflow) {
   1138             Value *OriginPtr =
   1139                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
   1140             setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
   1141           } else {
   1142             setOrigin(A, getCleanOrigin());
   1143           }
   1144         }
   1145         ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
   1146       }
   1147       assert(*ShadowPtr && "Could not find shadow for an argument");
   1148       return *ShadowPtr;
   1149     }
   1150     // For everything else the shadow is zero.
   1151     return getCleanShadow(V);
   1152   }
   1153 
   1154   /// \brief Get the shadow for i-th argument of the instruction I.
   1155   Value *getShadow(Instruction *I, int i) {
   1156     return getShadow(I->getOperand(i));
   1157   }
   1158 
   1159   /// \brief Get the origin for a value.
   1160   Value *getOrigin(Value *V) {
   1161     if (!MS.TrackOrigins) return nullptr;
   1162     if (!PropagateShadow) return getCleanOrigin();
   1163     if (isa<Constant>(V)) return getCleanOrigin();
   1164     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
   1165            "Unexpected value type in getOrigin()");
   1166     Value *Origin = OriginMap[V];
   1167     assert(Origin && "Missing origin");
   1168     return Origin;
   1169   }
   1170 
   1171   /// \brief Get the origin for i-th argument of the instruction I.
   1172   Value *getOrigin(Instruction *I, int i) {
   1173     return getOrigin(I->getOperand(i));
   1174   }
   1175 
   1176   /// \brief Remember the place where a shadow check should be inserted.
   1177   ///
   1178   /// This location will be later instrumented with a check that will print a
   1179   /// UMR warning in runtime if the shadow value is not 0.
   1180   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
   1181     assert(Shadow);
   1182     if (!InsertChecks) return;
   1183 #ifndef NDEBUG
   1184     Type *ShadowTy = Shadow->getType();
   1185     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
   1186            "Can only insert checks for integer and vector shadow types");
   1187 #endif
   1188     InstrumentationList.push_back(
   1189         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
   1190   }
   1191 
   1192   /// \brief Remember the place where a shadow check should be inserted.
   1193   ///
   1194   /// This location will be later instrumented with a check that will print a
   1195   /// UMR warning in runtime if the value is not fully defined.
   1196   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
   1197     assert(Val);
   1198     Value *Shadow, *Origin;
   1199     if (ClCheckConstantShadow) {
   1200       Shadow = getShadow(Val);
   1201       if (!Shadow) return;
   1202       Origin = getOrigin(Val);
   1203     } else {
   1204       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
   1205       if (!Shadow) return;
   1206       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
   1207     }
   1208     insertShadowCheck(Shadow, Origin, OrigIns);
   1209   }
   1210 
   1211   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
   1212     switch (a) {
   1213       case NotAtomic:
   1214         return NotAtomic;
   1215       case Unordered:
   1216       case Monotonic:
   1217       case Release:
   1218         return Release;
   1219       case Acquire:
   1220       case AcquireRelease:
   1221         return AcquireRelease;
   1222       case SequentiallyConsistent:
   1223         return SequentiallyConsistent;
   1224     }
   1225     llvm_unreachable("Unknown ordering");
   1226   }
   1227 
   1228   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
   1229     switch (a) {
   1230       case NotAtomic:
   1231         return NotAtomic;
   1232       case Unordered:
   1233       case Monotonic:
   1234       case Acquire:
   1235         return Acquire;
   1236       case Release:
   1237       case AcquireRelease:
   1238         return AcquireRelease;
   1239       case SequentiallyConsistent:
   1240         return SequentiallyConsistent;
   1241     }
   1242     llvm_unreachable("Unknown ordering");
   1243   }
   1244 
   1245   // ------------------- Visitors.
   1246 
   1247   /// \brief Instrument LoadInst
   1248   ///
   1249   /// Loads the corresponding shadow and (optionally) origin.
   1250   /// Optionally, checks that the load address is fully defined.
   1251   void visitLoadInst(LoadInst &I) {
   1252     assert(I.getType()->isSized() && "Load type must have size");
   1253     IRBuilder<> IRB(I.getNextNode());
   1254     Type *ShadowTy = getShadowTy(&I);
   1255     Value *Addr = I.getPointerOperand();
   1256     if (PropagateShadow && !I.getMetadata("nosanitize")) {
   1257       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
   1258       setShadow(&I,
   1259                 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
   1260     } else {
   1261       setShadow(&I, getCleanShadow(&I));
   1262     }
   1263 
   1264     if (ClCheckAccessAddress)
   1265       insertShadowCheck(I.getPointerOperand(), &I);
   1266 
   1267     if (I.isAtomic())
   1268       I.setOrdering(addAcquireOrdering(I.getOrdering()));
   1269 
   1270     if (MS.TrackOrigins) {
   1271       if (PropagateShadow) {
   1272         unsigned Alignment = I.getAlignment();
   1273         unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
   1274         setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
   1275                                             OriginAlignment));
   1276       } else {
   1277         setOrigin(&I, getCleanOrigin());
   1278       }
   1279     }
   1280   }
   1281 
   1282   /// \brief Instrument StoreInst
   1283   ///
   1284   /// Stores the corresponding shadow and (optionally) origin.
   1285   /// Optionally, checks that the store address is fully defined.
   1286   void visitStoreInst(StoreInst &I) {
   1287     StoreList.push_back(&I);
   1288   }
   1289 
   1290   void handleCASOrRMW(Instruction &I) {
   1291     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
   1292 
   1293     IRBuilder<> IRB(&I);
   1294     Value *Addr = I.getOperand(0);
   1295     Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
   1296 
   1297     if (ClCheckAccessAddress)
   1298       insertShadowCheck(Addr, &I);
   1299 
   1300     // Only test the conditional argument of cmpxchg instruction.
   1301     // The other argument can potentially be uninitialized, but we can not
   1302     // detect this situation reliably without possible false positives.
   1303     if (isa<AtomicCmpXchgInst>(I))
   1304       insertShadowCheck(I.getOperand(1), &I);
   1305 
   1306     IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
   1307 
   1308     setShadow(&I, getCleanShadow(&I));
   1309     setOrigin(&I, getCleanOrigin());
   1310   }
   1311 
   1312   void visitAtomicRMWInst(AtomicRMWInst &I) {
   1313     handleCASOrRMW(I);
   1314     I.setOrdering(addReleaseOrdering(I.getOrdering()));
   1315   }
   1316 
   1317   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
   1318     handleCASOrRMW(I);
   1319     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
   1320   }
   1321 
   1322   // Vector manipulation.
   1323   void visitExtractElementInst(ExtractElementInst &I) {
   1324     insertShadowCheck(I.getOperand(1), &I);
   1325     IRBuilder<> IRB(&I);
   1326     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
   1327               "_msprop"));
   1328     setOrigin(&I, getOrigin(&I, 0));
   1329   }
   1330 
   1331   void visitInsertElementInst(InsertElementInst &I) {
   1332     insertShadowCheck(I.getOperand(2), &I);
   1333     IRBuilder<> IRB(&I);
   1334     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
   1335               I.getOperand(2), "_msprop"));
   1336     setOriginForNaryOp(I);
   1337   }
   1338 
   1339   void visitShuffleVectorInst(ShuffleVectorInst &I) {
   1340     insertShadowCheck(I.getOperand(2), &I);
   1341     IRBuilder<> IRB(&I);
   1342     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
   1343               I.getOperand(2), "_msprop"));
   1344     setOriginForNaryOp(I);
   1345   }
   1346 
   1347   // Casts.
   1348   void visitSExtInst(SExtInst &I) {
   1349     IRBuilder<> IRB(&I);
   1350     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
   1351     setOrigin(&I, getOrigin(&I, 0));
   1352   }
   1353 
   1354   void visitZExtInst(ZExtInst &I) {
   1355     IRBuilder<> IRB(&I);
   1356     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
   1357     setOrigin(&I, getOrigin(&I, 0));
   1358   }
   1359 
   1360   void visitTruncInst(TruncInst &I) {
   1361     IRBuilder<> IRB(&I);
   1362     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
   1363     setOrigin(&I, getOrigin(&I, 0));
   1364   }
   1365 
   1366   void visitBitCastInst(BitCastInst &I) {
   1367     // Special case: if this is the bitcast (there is exactly 1 allowed) between
   1368     // a musttail call and a ret, don't instrument. New instructions are not
   1369     // allowed after a musttail call.
   1370     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
   1371       if (CI->isMustTailCall())
   1372         return;
   1373     IRBuilder<> IRB(&I);
   1374     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
   1375     setOrigin(&I, getOrigin(&I, 0));
   1376   }
   1377 
   1378   void visitPtrToIntInst(PtrToIntInst &I) {
   1379     IRBuilder<> IRB(&I);
   1380     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
   1381              "_msprop_ptrtoint"));
   1382     setOrigin(&I, getOrigin(&I, 0));
   1383   }
   1384 
   1385   void visitIntToPtrInst(IntToPtrInst &I) {
   1386     IRBuilder<> IRB(&I);
   1387     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
   1388              "_msprop_inttoptr"));
   1389     setOrigin(&I, getOrigin(&I, 0));
   1390   }
   1391 
   1392   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
   1393   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
   1394   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
   1395   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
   1396   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
   1397   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
   1398 
   1399   /// \brief Propagate shadow for bitwise AND.
   1400   ///
   1401   /// This code is exact, i.e. if, for example, a bit in the left argument
   1402   /// is defined and 0, then neither the value not definedness of the
   1403   /// corresponding bit in B don't affect the resulting shadow.
   1404   void visitAnd(BinaryOperator &I) {
   1405     IRBuilder<> IRB(&I);
   1406     //  "And" of 0 and a poisoned value results in unpoisoned value.
   1407     //  1&1 => 1;     0&1 => 0;     p&1 => p;
   1408     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
   1409     //  1&p => p;     0&p => 0;     p&p => p;
   1410     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
   1411     Value *S1 = getShadow(&I, 0);
   1412     Value *S2 = getShadow(&I, 1);
   1413     Value *V1 = I.getOperand(0);
   1414     Value *V2 = I.getOperand(1);
   1415     if (V1->getType() != S1->getType()) {
   1416       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
   1417       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
   1418     }
   1419     Value *S1S2 = IRB.CreateAnd(S1, S2);
   1420     Value *V1S2 = IRB.CreateAnd(V1, S2);
   1421     Value *S1V2 = IRB.CreateAnd(S1, V2);
   1422     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
   1423     setOriginForNaryOp(I);
   1424   }
   1425 
   1426   void visitOr(BinaryOperator &I) {
   1427     IRBuilder<> IRB(&I);
   1428     //  "Or" of 1 and a poisoned value results in unpoisoned value.
   1429     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
   1430     //  1|0 => 1;     0|0 => 0;     p|0 => p;
   1431     //  1|p => 1;     0|p => p;     p|p => p;
   1432     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
   1433     Value *S1 = getShadow(&I, 0);
   1434     Value *S2 = getShadow(&I, 1);
   1435     Value *V1 = IRB.CreateNot(I.getOperand(0));
   1436     Value *V2 = IRB.CreateNot(I.getOperand(1));
   1437     if (V1->getType() != S1->getType()) {
   1438       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
   1439       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
   1440     }
   1441     Value *S1S2 = IRB.CreateAnd(S1, S2);
   1442     Value *V1S2 = IRB.CreateAnd(V1, S2);
   1443     Value *S1V2 = IRB.CreateAnd(S1, V2);
   1444     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
   1445     setOriginForNaryOp(I);
   1446   }
   1447 
   1448   /// \brief Default propagation of shadow and/or origin.
   1449   ///
   1450   /// This class implements the general case of shadow propagation, used in all
   1451   /// cases where we don't know and/or don't care about what the operation
   1452   /// actually does. It converts all input shadow values to a common type
   1453   /// (extending or truncating as necessary), and bitwise OR's them.
   1454   ///
   1455   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
   1456   /// fully initialized), and less prone to false positives.
   1457   ///
   1458   /// This class also implements the general case of origin propagation. For a
   1459   /// Nary operation, result origin is set to the origin of an argument that is
   1460   /// not entirely initialized. If there is more than one such arguments, the
   1461   /// rightmost of them is picked. It does not matter which one is picked if all
   1462   /// arguments are initialized.
   1463   template <bool CombineShadow>
   1464   class Combiner {
   1465     Value *Shadow;
   1466     Value *Origin;
   1467     IRBuilder<> &IRB;
   1468     MemorySanitizerVisitor *MSV;
   1469 
   1470   public:
   1471     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
   1472       Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
   1473 
   1474     /// \brief Add a pair of shadow and origin values to the mix.
   1475     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
   1476       if (CombineShadow) {
   1477         assert(OpShadow);
   1478         if (!Shadow)
   1479           Shadow = OpShadow;
   1480         else {
   1481           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
   1482           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
   1483         }
   1484       }
   1485 
   1486       if (MSV->MS.TrackOrigins) {
   1487         assert(OpOrigin);
   1488         if (!Origin) {
   1489           Origin = OpOrigin;
   1490         } else {
   1491           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
   1492           // No point in adding something that might result in 0 origin value.
   1493           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
   1494             Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
   1495             Value *Cond =
   1496                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
   1497             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
   1498           }
   1499         }
   1500       }
   1501       return *this;
   1502     }
   1503 
   1504     /// \brief Add an application value to the mix.
   1505     Combiner &Add(Value *V) {
   1506       Value *OpShadow = MSV->getShadow(V);
   1507       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
   1508       return Add(OpShadow, OpOrigin);
   1509     }
   1510 
   1511     /// \brief Set the current combined values as the given instruction's shadow
   1512     /// and origin.
   1513     void Done(Instruction *I) {
   1514       if (CombineShadow) {
   1515         assert(Shadow);
   1516         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
   1517         MSV->setShadow(I, Shadow);
   1518       }
   1519       if (MSV->MS.TrackOrigins) {
   1520         assert(Origin);
   1521         MSV->setOrigin(I, Origin);
   1522       }
   1523     }
   1524   };
   1525 
   1526   typedef Combiner<true> ShadowAndOriginCombiner;
   1527   typedef Combiner<false> OriginCombiner;
   1528 
   1529   /// \brief Propagate origin for arbitrary operation.
   1530   void setOriginForNaryOp(Instruction &I) {
   1531     if (!MS.TrackOrigins) return;
   1532     IRBuilder<> IRB(&I);
   1533     OriginCombiner OC(this, IRB);
   1534     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
   1535       OC.Add(OI->get());
   1536     OC.Done(&I);
   1537   }
   1538 
   1539   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
   1540     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
   1541            "Vector of pointers is not a valid shadow type");
   1542     return Ty->isVectorTy() ?
   1543       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
   1544       Ty->getPrimitiveSizeInBits();
   1545   }
   1546 
   1547   /// \brief Cast between two shadow types, extending or truncating as
   1548   /// necessary.
   1549   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
   1550                           bool Signed = false) {
   1551     Type *srcTy = V->getType();
   1552     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
   1553       return IRB.CreateIntCast(V, dstTy, Signed);
   1554     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
   1555         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
   1556       return IRB.CreateIntCast(V, dstTy, Signed);
   1557     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
   1558     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
   1559     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
   1560     Value *V2 =
   1561       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
   1562     return IRB.CreateBitCast(V2, dstTy);
   1563     // TODO: handle struct types.
   1564   }
   1565 
   1566   /// \brief Cast an application value to the type of its own shadow.
   1567   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
   1568     Type *ShadowTy = getShadowTy(V);
   1569     if (V->getType() == ShadowTy)
   1570       return V;
   1571     if (V->getType()->isPtrOrPtrVectorTy())
   1572       return IRB.CreatePtrToInt(V, ShadowTy);
   1573     else
   1574       return IRB.CreateBitCast(V, ShadowTy);
   1575   }
   1576 
   1577   /// \brief Propagate shadow for arbitrary operation.
   1578   void handleShadowOr(Instruction &I) {
   1579     IRBuilder<> IRB(&I);
   1580     ShadowAndOriginCombiner SC(this, IRB);
   1581     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
   1582       SC.Add(OI->get());
   1583     SC.Done(&I);
   1584   }
   1585 
   1586   // \brief Handle multiplication by constant.
   1587   //
   1588   // Handle a special case of multiplication by constant that may have one or
   1589   // more zeros in the lower bits. This makes corresponding number of lower bits
   1590   // of the result zero as well. We model it by shifting the other operand
   1591   // shadow left by the required number of bits. Effectively, we transform
   1592   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
   1593   // We use multiplication by 2**N instead of shift to cover the case of
   1594   // multiplication by 0, which may occur in some elements of a vector operand.
   1595   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
   1596                            Value *OtherArg) {
   1597     Constant *ShadowMul;
   1598     Type *Ty = ConstArg->getType();
   1599     if (Ty->isVectorTy()) {
   1600       unsigned NumElements = Ty->getVectorNumElements();
   1601       Type *EltTy = Ty->getSequentialElementType();
   1602       SmallVector<Constant *, 16> Elements;
   1603       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
   1604         if (ConstantInt *Elt =
   1605                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
   1606           APInt V = Elt->getValue();
   1607           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
   1608           Elements.push_back(ConstantInt::get(EltTy, V2));
   1609         } else {
   1610           Elements.push_back(ConstantInt::get(EltTy, 1));
   1611         }
   1612       }
   1613       ShadowMul = ConstantVector::get(Elements);
   1614     } else {
   1615       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
   1616         APInt V = Elt->getValue();
   1617         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
   1618         ShadowMul = ConstantInt::get(Ty, V2);
   1619       } else {
   1620         ShadowMul = ConstantInt::get(Ty, 1);
   1621       }
   1622     }
   1623 
   1624     IRBuilder<> IRB(&I);
   1625     setShadow(&I,
   1626               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
   1627     setOrigin(&I, getOrigin(OtherArg));
   1628   }
   1629 
   1630   void visitMul(BinaryOperator &I) {
   1631     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
   1632     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
   1633     if (constOp0 && !constOp1)
   1634       handleMulByConstant(I, constOp0, I.getOperand(1));
   1635     else if (constOp1 && !constOp0)
   1636       handleMulByConstant(I, constOp1, I.getOperand(0));
   1637     else
   1638       handleShadowOr(I);
   1639   }
   1640 
   1641   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
   1642   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
   1643   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
   1644   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
   1645   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
   1646   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
   1647 
   1648   void handleDiv(Instruction &I) {
   1649     IRBuilder<> IRB(&I);
   1650     // Strict on the second argument.
   1651     insertShadowCheck(I.getOperand(1), &I);
   1652     setShadow(&I, getShadow(&I, 0));
   1653     setOrigin(&I, getOrigin(&I, 0));
   1654   }
   1655 
   1656   void visitUDiv(BinaryOperator &I) { handleDiv(I); }
   1657   void visitSDiv(BinaryOperator &I) { handleDiv(I); }
   1658   void visitFDiv(BinaryOperator &I) { handleDiv(I); }
   1659   void visitURem(BinaryOperator &I) { handleDiv(I); }
   1660   void visitSRem(BinaryOperator &I) { handleDiv(I); }
   1661   void visitFRem(BinaryOperator &I) { handleDiv(I); }
   1662 
   1663   /// \brief Instrument == and != comparisons.
   1664   ///
   1665   /// Sometimes the comparison result is known even if some of the bits of the
   1666   /// arguments are not.
   1667   void handleEqualityComparison(ICmpInst &I) {
   1668     IRBuilder<> IRB(&I);
   1669     Value *A = I.getOperand(0);
   1670     Value *B = I.getOperand(1);
   1671     Value *Sa = getShadow(A);
   1672     Value *Sb = getShadow(B);
   1673 
   1674     // Get rid of pointers and vectors of pointers.
   1675     // For ints (and vectors of ints), types of A and Sa match,
   1676     // and this is a no-op.
   1677     A = IRB.CreatePointerCast(A, Sa->getType());
   1678     B = IRB.CreatePointerCast(B, Sb->getType());
   1679 
   1680     // A == B  <==>  (C = A^B) == 0
   1681     // A != B  <==>  (C = A^B) != 0
   1682     // Sc = Sa | Sb
   1683     Value *C = IRB.CreateXor(A, B);
   1684     Value *Sc = IRB.CreateOr(Sa, Sb);
   1685     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
   1686     // Result is defined if one of the following is true
   1687     // * there is a defined 1 bit in C
   1688     // * C is fully defined
   1689     // Si = !(C & ~Sc) && Sc
   1690     Value *Zero = Constant::getNullValue(Sc->getType());
   1691     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
   1692     Value *Si =
   1693       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
   1694                     IRB.CreateICmpEQ(
   1695                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
   1696     Si->setName("_msprop_icmp");
   1697     setShadow(&I, Si);
   1698     setOriginForNaryOp(I);
   1699   }
   1700 
   1701   /// \brief Build the lowest possible value of V, taking into account V's
   1702   ///        uninitialized bits.
   1703   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
   1704                                 bool isSigned) {
   1705     if (isSigned) {
   1706       // Split shadow into sign bit and other bits.
   1707       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
   1708       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
   1709       // Maximise the undefined shadow bit, minimize other undefined bits.
   1710       return
   1711         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
   1712     } else {
   1713       // Minimize undefined bits.
   1714       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
   1715     }
   1716   }
   1717 
   1718   /// \brief Build the highest possible value of V, taking into account V's
   1719   ///        uninitialized bits.
   1720   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
   1721                                 bool isSigned) {
   1722     if (isSigned) {
   1723       // Split shadow into sign bit and other bits.
   1724       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
   1725       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
   1726       // Minimise the undefined shadow bit, maximise other undefined bits.
   1727       return
   1728         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
   1729     } else {
   1730       // Maximize undefined bits.
   1731       return IRB.CreateOr(A, Sa);
   1732     }
   1733   }
   1734 
   1735   /// \brief Instrument relational comparisons.
   1736   ///
   1737   /// This function does exact shadow propagation for all relational
   1738   /// comparisons of integers, pointers and vectors of those.
   1739   /// FIXME: output seems suboptimal when one of the operands is a constant
   1740   void handleRelationalComparisonExact(ICmpInst &I) {
   1741     IRBuilder<> IRB(&I);
   1742     Value *A = I.getOperand(0);
   1743     Value *B = I.getOperand(1);
   1744     Value *Sa = getShadow(A);
   1745     Value *Sb = getShadow(B);
   1746 
   1747     // Get rid of pointers and vectors of pointers.
   1748     // For ints (and vectors of ints), types of A and Sa match,
   1749     // and this is a no-op.
   1750     A = IRB.CreatePointerCast(A, Sa->getType());
   1751     B = IRB.CreatePointerCast(B, Sb->getType());
   1752 
   1753     // Let [a0, a1] be the interval of possible values of A, taking into account
   1754     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
   1755     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
   1756     bool IsSigned = I.isSigned();
   1757     Value *S1 = IRB.CreateICmp(I.getPredicate(),
   1758                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
   1759                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
   1760     Value *S2 = IRB.CreateICmp(I.getPredicate(),
   1761                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
   1762                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
   1763     Value *Si = IRB.CreateXor(S1, S2);
   1764     setShadow(&I, Si);
   1765     setOriginForNaryOp(I);
   1766   }
   1767 
   1768   /// \brief Instrument signed relational comparisons.
   1769   ///
   1770   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
   1771   /// bit of the shadow. Everything else is delegated to handleShadowOr().
   1772   void handleSignedRelationalComparison(ICmpInst &I) {
   1773     Constant *constOp;
   1774     Value *op = nullptr;
   1775     CmpInst::Predicate pre;
   1776     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
   1777       op = I.getOperand(0);
   1778       pre = I.getPredicate();
   1779     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
   1780       op = I.getOperand(1);
   1781       pre = I.getSwappedPredicate();
   1782     } else {
   1783       handleShadowOr(I);
   1784       return;
   1785     }
   1786 
   1787     if ((constOp->isNullValue() &&
   1788          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
   1789         (constOp->isAllOnesValue() &&
   1790          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
   1791       IRBuilder<> IRB(&I);
   1792       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
   1793                                         "_msprop_icmp_s");
   1794       setShadow(&I, Shadow);
   1795       setOrigin(&I, getOrigin(op));
   1796     } else {
   1797       handleShadowOr(I);
   1798     }
   1799   }
   1800 
   1801   void visitICmpInst(ICmpInst &I) {
   1802     if (!ClHandleICmp) {
   1803       handleShadowOr(I);
   1804       return;
   1805     }
   1806     if (I.isEquality()) {
   1807       handleEqualityComparison(I);
   1808       return;
   1809     }
   1810 
   1811     assert(I.isRelational());
   1812     if (ClHandleICmpExact) {
   1813       handleRelationalComparisonExact(I);
   1814       return;
   1815     }
   1816     if (I.isSigned()) {
   1817       handleSignedRelationalComparison(I);
   1818       return;
   1819     }
   1820 
   1821     assert(I.isUnsigned());
   1822     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
   1823       handleRelationalComparisonExact(I);
   1824       return;
   1825     }
   1826 
   1827     handleShadowOr(I);
   1828   }
   1829 
   1830   void visitFCmpInst(FCmpInst &I) {
   1831     handleShadowOr(I);
   1832   }
   1833 
   1834   void handleShift(BinaryOperator &I) {
   1835     IRBuilder<> IRB(&I);
   1836     // If any of the S2 bits are poisoned, the whole thing is poisoned.
   1837     // Otherwise perform the same shift on S1.
   1838     Value *S1 = getShadow(&I, 0);
   1839     Value *S2 = getShadow(&I, 1);
   1840     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
   1841                                    S2->getType());
   1842     Value *V2 = I.getOperand(1);
   1843     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
   1844     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
   1845     setOriginForNaryOp(I);
   1846   }
   1847 
   1848   void visitShl(BinaryOperator &I) { handleShift(I); }
   1849   void visitAShr(BinaryOperator &I) { handleShift(I); }
   1850   void visitLShr(BinaryOperator &I) { handleShift(I); }
   1851 
   1852   /// \brief Instrument llvm.memmove
   1853   ///
   1854   /// At this point we don't know if llvm.memmove will be inlined or not.
   1855   /// If we don't instrument it and it gets inlined,
   1856   /// our interceptor will not kick in and we will lose the memmove.
   1857   /// If we instrument the call here, but it does not get inlined,
   1858   /// we will memove the shadow twice: which is bad in case
   1859   /// of overlapping regions. So, we simply lower the intrinsic to a call.
   1860   ///
   1861   /// Similar situation exists for memcpy and memset.
   1862   void visitMemMoveInst(MemMoveInst &I) {
   1863     IRBuilder<> IRB(&I);
   1864     IRB.CreateCall(
   1865         MS.MemmoveFn,
   1866         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1867          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
   1868          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
   1869     I.eraseFromParent();
   1870   }
   1871 
   1872   // Similar to memmove: avoid copying shadow twice.
   1873   // This is somewhat unfortunate as it may slowdown small constant memcpys.
   1874   // FIXME: consider doing manual inline for small constant sizes and proper
   1875   // alignment.
   1876   void visitMemCpyInst(MemCpyInst &I) {
   1877     IRBuilder<> IRB(&I);
   1878     IRB.CreateCall(
   1879         MS.MemcpyFn,
   1880         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1881          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
   1882          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
   1883     I.eraseFromParent();
   1884   }
   1885 
   1886   // Same as memcpy.
   1887   void visitMemSetInst(MemSetInst &I) {
   1888     IRBuilder<> IRB(&I);
   1889     IRB.CreateCall(
   1890         MS.MemsetFn,
   1891         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1892          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
   1893          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
   1894     I.eraseFromParent();
   1895   }
   1896 
   1897   void visitVAStartInst(VAStartInst &I) {
   1898     VAHelper->visitVAStartInst(I);
   1899   }
   1900 
   1901   void visitVACopyInst(VACopyInst &I) {
   1902     VAHelper->visitVACopyInst(I);
   1903   }
   1904 
   1905   /// \brief Handle vector store-like intrinsics.
   1906   ///
   1907   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
   1908   /// has 1 pointer argument and 1 vector argument, returns void.
   1909   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
   1910     IRBuilder<> IRB(&I);
   1911     Value* Addr = I.getArgOperand(0);
   1912     Value *Shadow = getShadow(&I, 1);
   1913     Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
   1914 
   1915     // We don't know the pointer alignment (could be unaligned SSE store!).
   1916     // Have to assume to worst case.
   1917     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
   1918 
   1919     if (ClCheckAccessAddress)
   1920       insertShadowCheck(Addr, &I);
   1921 
   1922     // FIXME: use ClStoreCleanOrigin
   1923     // FIXME: factor out common code from materializeStores
   1924     if (MS.TrackOrigins)
   1925       IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
   1926     return true;
   1927   }
   1928 
   1929   /// \brief Handle vector load-like intrinsics.
   1930   ///
   1931   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
   1932   /// has 1 pointer argument, returns a vector.
   1933   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
   1934     IRBuilder<> IRB(&I);
   1935     Value *Addr = I.getArgOperand(0);
   1936 
   1937     Type *ShadowTy = getShadowTy(&I);
   1938     if (PropagateShadow) {
   1939       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
   1940       // We don't know the pointer alignment (could be unaligned SSE load!).
   1941       // Have to assume to worst case.
   1942       setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
   1943     } else {
   1944       setShadow(&I, getCleanShadow(&I));
   1945     }
   1946 
   1947     if (ClCheckAccessAddress)
   1948       insertShadowCheck(Addr, &I);
   1949 
   1950     if (MS.TrackOrigins) {
   1951       if (PropagateShadow)
   1952         setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
   1953       else
   1954         setOrigin(&I, getCleanOrigin());
   1955     }
   1956     return true;
   1957   }
   1958 
   1959   /// \brief Handle (SIMD arithmetic)-like intrinsics.
   1960   ///
   1961   /// Instrument intrinsics with any number of arguments of the same type,
   1962   /// equal to the return type. The type should be simple (no aggregates or
   1963   /// pointers; vectors are fine).
   1964   /// Caller guarantees that this intrinsic does not access memory.
   1965   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
   1966     Type *RetTy = I.getType();
   1967     if (!(RetTy->isIntOrIntVectorTy() ||
   1968           RetTy->isFPOrFPVectorTy() ||
   1969           RetTy->isX86_MMXTy()))
   1970       return false;
   1971 
   1972     unsigned NumArgOperands = I.getNumArgOperands();
   1973 
   1974     for (unsigned i = 0; i < NumArgOperands; ++i) {
   1975       Type *Ty = I.getArgOperand(i)->getType();
   1976       if (Ty != RetTy)
   1977         return false;
   1978     }
   1979 
   1980     IRBuilder<> IRB(&I);
   1981     ShadowAndOriginCombiner SC(this, IRB);
   1982     for (unsigned i = 0; i < NumArgOperands; ++i)
   1983       SC.Add(I.getArgOperand(i));
   1984     SC.Done(&I);
   1985 
   1986     return true;
   1987   }
   1988 
   1989   /// \brief Heuristically instrument unknown intrinsics.
   1990   ///
   1991   /// The main purpose of this code is to do something reasonable with all
   1992   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
   1993   /// We recognize several classes of intrinsics by their argument types and
   1994   /// ModRefBehaviour and apply special intrumentation when we are reasonably
   1995   /// sure that we know what the intrinsic does.
   1996   ///
   1997   /// We special-case intrinsics where this approach fails. See llvm.bswap
   1998   /// handling as an example of that.
   1999   bool handleUnknownIntrinsic(IntrinsicInst &I) {
   2000     unsigned NumArgOperands = I.getNumArgOperands();
   2001     if (NumArgOperands == 0)
   2002       return false;
   2003 
   2004     if (NumArgOperands == 2 &&
   2005         I.getArgOperand(0)->getType()->isPointerTy() &&
   2006         I.getArgOperand(1)->getType()->isVectorTy() &&
   2007         I.getType()->isVoidTy() &&
   2008         !I.onlyReadsMemory()) {
   2009       // This looks like a vector store.
   2010       return handleVectorStoreIntrinsic(I);
   2011     }
   2012 
   2013     if (NumArgOperands == 1 &&
   2014         I.getArgOperand(0)->getType()->isPointerTy() &&
   2015         I.getType()->isVectorTy() &&
   2016         I.onlyReadsMemory()) {
   2017       // This looks like a vector load.
   2018       return handleVectorLoadIntrinsic(I);
   2019     }
   2020 
   2021     if (I.doesNotAccessMemory())
   2022       if (maybeHandleSimpleNomemIntrinsic(I))
   2023         return true;
   2024 
   2025     // FIXME: detect and handle SSE maskstore/maskload
   2026     return false;
   2027   }
   2028 
   2029   void handleBswap(IntrinsicInst &I) {
   2030     IRBuilder<> IRB(&I);
   2031     Value *Op = I.getArgOperand(0);
   2032     Type *OpType = Op->getType();
   2033     Function *BswapFunc = Intrinsic::getDeclaration(
   2034       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
   2035     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
   2036     setOrigin(&I, getOrigin(Op));
   2037   }
   2038 
   2039   // \brief Instrument vector convert instrinsic.
   2040   //
   2041   // This function instruments intrinsics like cvtsi2ss:
   2042   // %Out = int_xxx_cvtyyy(%ConvertOp)
   2043   // or
   2044   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
   2045   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
   2046   // number \p Out elements, and (if has 2 arguments) copies the rest of the
   2047   // elements from \p CopyOp.
   2048   // In most cases conversion involves floating-point value which may trigger a
   2049   // hardware exception when not fully initialized. For this reason we require
   2050   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
   2051   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
   2052   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
   2053   // return a fully initialized value.
   2054   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
   2055     IRBuilder<> IRB(&I);
   2056     Value *CopyOp, *ConvertOp;
   2057 
   2058     switch (I.getNumArgOperands()) {
   2059     case 3:
   2060       assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
   2061     case 2:
   2062       CopyOp = I.getArgOperand(0);
   2063       ConvertOp = I.getArgOperand(1);
   2064       break;
   2065     case 1:
   2066       ConvertOp = I.getArgOperand(0);
   2067       CopyOp = nullptr;
   2068       break;
   2069     default:
   2070       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
   2071     }
   2072 
   2073     // The first *NumUsedElements* elements of ConvertOp are converted to the
   2074     // same number of output elements. The rest of the output is copied from
   2075     // CopyOp, or (if not available) filled with zeroes.
   2076     // Combine shadow for elements of ConvertOp that are used in this operation,
   2077     // and insert a check.
   2078     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
   2079     // int->any conversion.
   2080     Value *ConvertShadow = getShadow(ConvertOp);
   2081     Value *AggShadow = nullptr;
   2082     if (ConvertOp->getType()->isVectorTy()) {
   2083       AggShadow = IRB.CreateExtractElement(
   2084           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
   2085       for (int i = 1; i < NumUsedElements; ++i) {
   2086         Value *MoreShadow = IRB.CreateExtractElement(
   2087             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
   2088         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
   2089       }
   2090     } else {
   2091       AggShadow = ConvertShadow;
   2092     }
   2093     assert(AggShadow->getType()->isIntegerTy());
   2094     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
   2095 
   2096     // Build result shadow by zero-filling parts of CopyOp shadow that come from
   2097     // ConvertOp.
   2098     if (CopyOp) {
   2099       assert(CopyOp->getType() == I.getType());
   2100       assert(CopyOp->getType()->isVectorTy());
   2101       Value *ResultShadow = getShadow(CopyOp);
   2102       Type *EltTy = ResultShadow->getType()->getVectorElementType();
   2103       for (int i = 0; i < NumUsedElements; ++i) {
   2104         ResultShadow = IRB.CreateInsertElement(
   2105             ResultShadow, ConstantInt::getNullValue(EltTy),
   2106             ConstantInt::get(IRB.getInt32Ty(), i));
   2107       }
   2108       setShadow(&I, ResultShadow);
   2109       setOrigin(&I, getOrigin(CopyOp));
   2110     } else {
   2111       setShadow(&I, getCleanShadow(&I));
   2112       setOrigin(&I, getCleanOrigin());
   2113     }
   2114   }
   2115 
   2116   // Given a scalar or vector, extract lower 64 bits (or less), and return all
   2117   // zeroes if it is zero, and all ones otherwise.
   2118   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
   2119     if (S->getType()->isVectorTy())
   2120       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
   2121     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
   2122     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
   2123     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
   2124   }
   2125 
   2126   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
   2127     Type *T = S->getType();
   2128     assert(T->isVectorTy());
   2129     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
   2130     return IRB.CreateSExt(S2, T);
   2131   }
   2132 
   2133   // \brief Instrument vector shift instrinsic.
   2134   //
   2135   // This function instruments intrinsics like int_x86_avx2_psll_w.
   2136   // Intrinsic shifts %In by %ShiftSize bits.
   2137   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
   2138   // size, and the rest is ignored. Behavior is defined even if shift size is
   2139   // greater than register (or field) width.
   2140   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
   2141     assert(I.getNumArgOperands() == 2);
   2142     IRBuilder<> IRB(&I);
   2143     // If any of the S2 bits are poisoned, the whole thing is poisoned.
   2144     // Otherwise perform the same shift on S1.
   2145     Value *S1 = getShadow(&I, 0);
   2146     Value *S2 = getShadow(&I, 1);
   2147     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
   2148                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
   2149     Value *V1 = I.getOperand(0);
   2150     Value *V2 = I.getOperand(1);
   2151     Value *Shift = IRB.CreateCall(I.getCalledValue(),
   2152                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
   2153     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
   2154     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
   2155     setOriginForNaryOp(I);
   2156   }
   2157 
   2158   // \brief Get an X86_MMX-sized vector type.
   2159   Type *getMMXVectorTy(unsigned EltSizeInBits) {
   2160     const unsigned X86_MMXSizeInBits = 64;
   2161     return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
   2162                            X86_MMXSizeInBits / EltSizeInBits);
   2163   }
   2164 
   2165   // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
   2166   // intrinsic.
   2167   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
   2168     switch (id) {
   2169       case llvm::Intrinsic::x86_sse2_packsswb_128:
   2170       case llvm::Intrinsic::x86_sse2_packuswb_128:
   2171         return llvm::Intrinsic::x86_sse2_packsswb_128;
   2172 
   2173       case llvm::Intrinsic::x86_sse2_packssdw_128:
   2174       case llvm::Intrinsic::x86_sse41_packusdw:
   2175         return llvm::Intrinsic::x86_sse2_packssdw_128;
   2176 
   2177       case llvm::Intrinsic::x86_avx2_packsswb:
   2178       case llvm::Intrinsic::x86_avx2_packuswb:
   2179         return llvm::Intrinsic::x86_avx2_packsswb;
   2180 
   2181       case llvm::Intrinsic::x86_avx2_packssdw:
   2182       case llvm::Intrinsic::x86_avx2_packusdw:
   2183         return llvm::Intrinsic::x86_avx2_packssdw;
   2184 
   2185       case llvm::Intrinsic::x86_mmx_packsswb:
   2186       case llvm::Intrinsic::x86_mmx_packuswb:
   2187         return llvm::Intrinsic::x86_mmx_packsswb;
   2188 
   2189       case llvm::Intrinsic::x86_mmx_packssdw:
   2190         return llvm::Intrinsic::x86_mmx_packssdw;
   2191       default:
   2192         llvm_unreachable("unexpected intrinsic id");
   2193     }
   2194   }
   2195 
   2196   // \brief Instrument vector pack instrinsic.
   2197   //
   2198   // This function instruments intrinsics like x86_mmx_packsswb, that
   2199   // packs elements of 2 input vectors into half as many bits with saturation.
   2200   // Shadow is propagated with the signed variant of the same intrinsic applied
   2201   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
   2202   // EltSizeInBits is used only for x86mmx arguments.
   2203   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
   2204     assert(I.getNumArgOperands() == 2);
   2205     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
   2206     IRBuilder<> IRB(&I);
   2207     Value *S1 = getShadow(&I, 0);
   2208     Value *S2 = getShadow(&I, 1);
   2209     assert(isX86_MMX || S1->getType()->isVectorTy());
   2210 
   2211     // SExt and ICmpNE below must apply to individual elements of input vectors.
   2212     // In case of x86mmx arguments, cast them to appropriate vector types and
   2213     // back.
   2214     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
   2215     if (isX86_MMX) {
   2216       S1 = IRB.CreateBitCast(S1, T);
   2217       S2 = IRB.CreateBitCast(S2, T);
   2218     }
   2219     Value *S1_ext = IRB.CreateSExt(
   2220         IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
   2221     Value *S2_ext = IRB.CreateSExt(
   2222         IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
   2223     if (isX86_MMX) {
   2224       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
   2225       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
   2226       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
   2227     }
   2228 
   2229     Function *ShadowFn = Intrinsic::getDeclaration(
   2230         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
   2231 
   2232     Value *S =
   2233         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
   2234     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
   2235     setShadow(&I, S);
   2236     setOriginForNaryOp(I);
   2237   }
   2238 
   2239   // \brief Instrument sum-of-absolute-differencies intrinsic.
   2240   void handleVectorSadIntrinsic(IntrinsicInst &I) {
   2241     const unsigned SignificantBitsPerResultElement = 16;
   2242     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
   2243     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
   2244     unsigned ZeroBitsPerResultElement =
   2245         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
   2246 
   2247     IRBuilder<> IRB(&I);
   2248     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
   2249     S = IRB.CreateBitCast(S, ResTy);
   2250     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
   2251                        ResTy);
   2252     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
   2253     S = IRB.CreateBitCast(S, getShadowTy(&I));
   2254     setShadow(&I, S);
   2255     setOriginForNaryOp(I);
   2256   }
   2257 
   2258   // \brief Instrument multiply-add intrinsic.
   2259   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
   2260                                   unsigned EltSizeInBits = 0) {
   2261     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
   2262     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
   2263     IRBuilder<> IRB(&I);
   2264     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
   2265     S = IRB.CreateBitCast(S, ResTy);
   2266     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
   2267                        ResTy);
   2268     S = IRB.CreateBitCast(S, getShadowTy(&I));
   2269     setShadow(&I, S);
   2270     setOriginForNaryOp(I);
   2271   }
   2272 
   2273   void visitIntrinsicInst(IntrinsicInst &I) {
   2274     switch (I.getIntrinsicID()) {
   2275     case llvm::Intrinsic::bswap:
   2276       handleBswap(I);
   2277       break;
   2278     case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
   2279     case llvm::Intrinsic::x86_avx512_cvtsd2usi:
   2280     case llvm::Intrinsic::x86_avx512_cvtss2usi64:
   2281     case llvm::Intrinsic::x86_avx512_cvtss2usi:
   2282     case llvm::Intrinsic::x86_avx512_cvttss2usi64:
   2283     case llvm::Intrinsic::x86_avx512_cvttss2usi:
   2284     case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
   2285     case llvm::Intrinsic::x86_avx512_cvttsd2usi:
   2286     case llvm::Intrinsic::x86_avx512_cvtusi2sd:
   2287     case llvm::Intrinsic::x86_avx512_cvtusi2ss:
   2288     case llvm::Intrinsic::x86_avx512_cvtusi642sd:
   2289     case llvm::Intrinsic::x86_avx512_cvtusi642ss:
   2290     case llvm::Intrinsic::x86_sse2_cvtsd2si64:
   2291     case llvm::Intrinsic::x86_sse2_cvtsd2si:
   2292     case llvm::Intrinsic::x86_sse2_cvtsd2ss:
   2293     case llvm::Intrinsic::x86_sse2_cvtsi2sd:
   2294     case llvm::Intrinsic::x86_sse2_cvtsi642sd:
   2295     case llvm::Intrinsic::x86_sse2_cvtss2sd:
   2296     case llvm::Intrinsic::x86_sse2_cvttsd2si64:
   2297     case llvm::Intrinsic::x86_sse2_cvttsd2si:
   2298     case llvm::Intrinsic::x86_sse_cvtsi2ss:
   2299     case llvm::Intrinsic::x86_sse_cvtsi642ss:
   2300     case llvm::Intrinsic::x86_sse_cvtss2si64:
   2301     case llvm::Intrinsic::x86_sse_cvtss2si:
   2302     case llvm::Intrinsic::x86_sse_cvttss2si64:
   2303     case llvm::Intrinsic::x86_sse_cvttss2si:
   2304       handleVectorConvertIntrinsic(I, 1);
   2305       break;
   2306     case llvm::Intrinsic::x86_sse2_cvtdq2pd:
   2307     case llvm::Intrinsic::x86_sse2_cvtps2pd:
   2308     case llvm::Intrinsic::x86_sse_cvtps2pi:
   2309     case llvm::Intrinsic::x86_sse_cvttps2pi:
   2310       handleVectorConvertIntrinsic(I, 2);
   2311       break;
   2312     case llvm::Intrinsic::x86_avx2_psll_w:
   2313     case llvm::Intrinsic::x86_avx2_psll_d:
   2314     case llvm::Intrinsic::x86_avx2_psll_q:
   2315     case llvm::Intrinsic::x86_avx2_pslli_w:
   2316     case llvm::Intrinsic::x86_avx2_pslli_d:
   2317     case llvm::Intrinsic::x86_avx2_pslli_q:
   2318     case llvm::Intrinsic::x86_avx2_psrl_w:
   2319     case llvm::Intrinsic::x86_avx2_psrl_d:
   2320     case llvm::Intrinsic::x86_avx2_psrl_q:
   2321     case llvm::Intrinsic::x86_avx2_psra_w:
   2322     case llvm::Intrinsic::x86_avx2_psra_d:
   2323     case llvm::Intrinsic::x86_avx2_psrli_w:
   2324     case llvm::Intrinsic::x86_avx2_psrli_d:
   2325     case llvm::Intrinsic::x86_avx2_psrli_q:
   2326     case llvm::Intrinsic::x86_avx2_psrai_w:
   2327     case llvm::Intrinsic::x86_avx2_psrai_d:
   2328     case llvm::Intrinsic::x86_sse2_psll_w:
   2329     case llvm::Intrinsic::x86_sse2_psll_d:
   2330     case llvm::Intrinsic::x86_sse2_psll_q:
   2331     case llvm::Intrinsic::x86_sse2_pslli_w:
   2332     case llvm::Intrinsic::x86_sse2_pslli_d:
   2333     case llvm::Intrinsic::x86_sse2_pslli_q:
   2334     case llvm::Intrinsic::x86_sse2_psrl_w:
   2335     case llvm::Intrinsic::x86_sse2_psrl_d:
   2336     case llvm::Intrinsic::x86_sse2_psrl_q:
   2337     case llvm::Intrinsic::x86_sse2_psra_w:
   2338     case llvm::Intrinsic::x86_sse2_psra_d:
   2339     case llvm::Intrinsic::x86_sse2_psrli_w:
   2340     case llvm::Intrinsic::x86_sse2_psrli_d:
   2341     case llvm::Intrinsic::x86_sse2_psrli_q:
   2342     case llvm::Intrinsic::x86_sse2_psrai_w:
   2343     case llvm::Intrinsic::x86_sse2_psrai_d:
   2344     case llvm::Intrinsic::x86_mmx_psll_w:
   2345     case llvm::Intrinsic::x86_mmx_psll_d:
   2346     case llvm::Intrinsic::x86_mmx_psll_q:
   2347     case llvm::Intrinsic::x86_mmx_pslli_w:
   2348     case llvm::Intrinsic::x86_mmx_pslli_d:
   2349     case llvm::Intrinsic::x86_mmx_pslli_q:
   2350     case llvm::Intrinsic::x86_mmx_psrl_w:
   2351     case llvm::Intrinsic::x86_mmx_psrl_d:
   2352     case llvm::Intrinsic::x86_mmx_psrl_q:
   2353     case llvm::Intrinsic::x86_mmx_psra_w:
   2354     case llvm::Intrinsic::x86_mmx_psra_d:
   2355     case llvm::Intrinsic::x86_mmx_psrli_w:
   2356     case llvm::Intrinsic::x86_mmx_psrli_d:
   2357     case llvm::Intrinsic::x86_mmx_psrli_q:
   2358     case llvm::Intrinsic::x86_mmx_psrai_w:
   2359     case llvm::Intrinsic::x86_mmx_psrai_d:
   2360       handleVectorShiftIntrinsic(I, /* Variable */ false);
   2361       break;
   2362     case llvm::Intrinsic::x86_avx2_psllv_d:
   2363     case llvm::Intrinsic::x86_avx2_psllv_d_256:
   2364     case llvm::Intrinsic::x86_avx2_psllv_q:
   2365     case llvm::Intrinsic::x86_avx2_psllv_q_256:
   2366     case llvm::Intrinsic::x86_avx2_psrlv_d:
   2367     case llvm::Intrinsic::x86_avx2_psrlv_d_256:
   2368     case llvm::Intrinsic::x86_avx2_psrlv_q:
   2369     case llvm::Intrinsic::x86_avx2_psrlv_q_256:
   2370     case llvm::Intrinsic::x86_avx2_psrav_d:
   2371     case llvm::Intrinsic::x86_avx2_psrav_d_256:
   2372       handleVectorShiftIntrinsic(I, /* Variable */ true);
   2373       break;
   2374 
   2375     case llvm::Intrinsic::x86_sse2_packsswb_128:
   2376     case llvm::Intrinsic::x86_sse2_packssdw_128:
   2377     case llvm::Intrinsic::x86_sse2_packuswb_128:
   2378     case llvm::Intrinsic::x86_sse41_packusdw:
   2379     case llvm::Intrinsic::x86_avx2_packsswb:
   2380     case llvm::Intrinsic::x86_avx2_packssdw:
   2381     case llvm::Intrinsic::x86_avx2_packuswb:
   2382     case llvm::Intrinsic::x86_avx2_packusdw:
   2383       handleVectorPackIntrinsic(I);
   2384       break;
   2385 
   2386     case llvm::Intrinsic::x86_mmx_packsswb:
   2387     case llvm::Intrinsic::x86_mmx_packuswb:
   2388       handleVectorPackIntrinsic(I, 16);
   2389       break;
   2390 
   2391     case llvm::Intrinsic::x86_mmx_packssdw:
   2392       handleVectorPackIntrinsic(I, 32);
   2393       break;
   2394 
   2395     case llvm::Intrinsic::x86_mmx_psad_bw:
   2396     case llvm::Intrinsic::x86_sse2_psad_bw:
   2397     case llvm::Intrinsic::x86_avx2_psad_bw:
   2398       handleVectorSadIntrinsic(I);
   2399       break;
   2400 
   2401     case llvm::Intrinsic::x86_sse2_pmadd_wd:
   2402     case llvm::Intrinsic::x86_avx2_pmadd_wd:
   2403     case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
   2404     case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
   2405       handleVectorPmaddIntrinsic(I);
   2406       break;
   2407 
   2408     case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
   2409       handleVectorPmaddIntrinsic(I, 8);
   2410       break;
   2411 
   2412     case llvm::Intrinsic::x86_mmx_pmadd_wd:
   2413       handleVectorPmaddIntrinsic(I, 16);
   2414       break;
   2415 
   2416     default:
   2417       if (!handleUnknownIntrinsic(I))
   2418         visitInstruction(I);
   2419       break;
   2420     }
   2421   }
   2422 
   2423   void visitCallSite(CallSite CS) {
   2424     Instruction &I = *CS.getInstruction();
   2425     assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
   2426     if (CS.isCall()) {
   2427       CallInst *Call = cast<CallInst>(&I);
   2428 
   2429       // For inline asm, do the usual thing: check argument shadow and mark all
   2430       // outputs as clean. Note that any side effects of the inline asm that are
   2431       // not immediately visible in its constraints are not handled.
   2432       if (Call->isInlineAsm()) {
   2433         visitInstruction(I);
   2434         return;
   2435       }
   2436 
   2437       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
   2438 
   2439       // We are going to insert code that relies on the fact that the callee
   2440       // will become a non-readonly function after it is instrumented by us. To
   2441       // prevent this code from being optimized out, mark that function
   2442       // non-readonly in advance.
   2443       if (Function *Func = Call->getCalledFunction()) {
   2444         // Clear out readonly/readnone attributes.
   2445         AttrBuilder B;
   2446         B.addAttribute(Attribute::ReadOnly)
   2447           .addAttribute(Attribute::ReadNone);
   2448         Func->removeAttributes(AttributeSet::FunctionIndex,
   2449                                AttributeSet::get(Func->getContext(),
   2450                                                  AttributeSet::FunctionIndex,
   2451                                                  B));
   2452       }
   2453     }
   2454     IRBuilder<> IRB(&I);
   2455 
   2456     unsigned ArgOffset = 0;
   2457     DEBUG(dbgs() << "  CallSite: " << I << "\n");
   2458     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
   2459          ArgIt != End; ++ArgIt) {
   2460       Value *A = *ArgIt;
   2461       unsigned i = ArgIt - CS.arg_begin();
   2462       if (!A->getType()->isSized()) {
   2463         DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
   2464         continue;
   2465       }
   2466       unsigned Size = 0;
   2467       Value *Store = nullptr;
   2468       // Compute the Shadow for arg even if it is ByVal, because
   2469       // in that case getShadow() will copy the actual arg shadow to
   2470       // __msan_param_tls.
   2471       Value *ArgShadow = getShadow(A);
   2472       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
   2473       DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
   2474             " Shadow: " << *ArgShadow << "\n");
   2475       bool ArgIsInitialized = false;
   2476       const DataLayout &DL = F.getParent()->getDataLayout();
   2477       if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
   2478         assert(A->getType()->isPointerTy() &&
   2479                "ByVal argument is not a pointer!");
   2480         Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
   2481         if (ArgOffset + Size > kParamTLSSize) break;
   2482         unsigned ParamAlignment = CS.getParamAlignment(i + 1);
   2483         unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
   2484         Store = IRB.CreateMemCpy(ArgShadowBase,
   2485                                  getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
   2486                                  Size, Alignment);
   2487       } else {
   2488         Size = DL.getTypeAllocSize(A->getType());
   2489         if (ArgOffset + Size > kParamTLSSize) break;
   2490         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
   2491                                        kShadowTLSAlignment);
   2492         Constant *Cst = dyn_cast<Constant>(ArgShadow);
   2493         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
   2494       }
   2495       if (MS.TrackOrigins && !ArgIsInitialized)
   2496         IRB.CreateStore(getOrigin(A),
   2497                         getOriginPtrForArgument(A, IRB, ArgOffset));
   2498       (void)Store;
   2499       assert(Size != 0 && Store != nullptr);
   2500       DEBUG(dbgs() << "  Param:" << *Store << "\n");
   2501       ArgOffset += RoundUpToAlignment(Size, 8);
   2502     }
   2503     DEBUG(dbgs() << "  done with call args\n");
   2504 
   2505     FunctionType *FT =
   2506       cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
   2507     if (FT->isVarArg()) {
   2508       VAHelper->visitCallSite(CS, IRB);
   2509     }
   2510 
   2511     // Now, get the shadow for the RetVal.
   2512     if (!I.getType()->isSized()) return;
   2513     // Don't emit the epilogue for musttail call returns.
   2514     if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
   2515     IRBuilder<> IRBBefore(&I);
   2516     // Until we have full dynamic coverage, make sure the retval shadow is 0.
   2517     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
   2518     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
   2519     BasicBlock::iterator NextInsn;
   2520     if (CS.isCall()) {
   2521       NextInsn = ++I.getIterator();
   2522       assert(NextInsn != I.getParent()->end());
   2523     } else {
   2524       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
   2525       if (!NormalDest->getSinglePredecessor()) {
   2526         // FIXME: this case is tricky, so we are just conservative here.
   2527         // Perhaps we need to split the edge between this BB and NormalDest,
   2528         // but a naive attempt to use SplitEdge leads to a crash.
   2529         setShadow(&I, getCleanShadow(&I));
   2530         setOrigin(&I, getCleanOrigin());
   2531         return;
   2532       }
   2533       NextInsn = NormalDest->getFirstInsertionPt();
   2534       assert(NextInsn != NormalDest->end() &&
   2535              "Could not find insertion point for retval shadow load");
   2536     }
   2537     IRBuilder<> IRBAfter(&*NextInsn);
   2538     Value *RetvalShadow =
   2539       IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
   2540                                  kShadowTLSAlignment, "_msret");
   2541     setShadow(&I, RetvalShadow);
   2542     if (MS.TrackOrigins)
   2543       setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
   2544   }
   2545 
   2546   bool isAMustTailRetVal(Value *RetVal) {
   2547     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
   2548       RetVal = I->getOperand(0);
   2549     }
   2550     if (auto *I = dyn_cast<CallInst>(RetVal)) {
   2551       return I->isMustTailCall();
   2552     }
   2553     return false;
   2554   }
   2555 
   2556   void visitReturnInst(ReturnInst &I) {
   2557     IRBuilder<> IRB(&I);
   2558     Value *RetVal = I.getReturnValue();
   2559     if (!RetVal) return;
   2560     // Don't emit the epilogue for musttail call returns.
   2561     if (isAMustTailRetVal(RetVal)) return;
   2562     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
   2563     if (CheckReturnValue) {
   2564       insertShadowCheck(RetVal, &I);
   2565       Value *Shadow = getCleanShadow(RetVal);
   2566       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
   2567     } else {
   2568       Value *Shadow = getShadow(RetVal);
   2569       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
   2570       // FIXME: make it conditional if ClStoreCleanOrigin==0
   2571       if (MS.TrackOrigins)
   2572         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
   2573     }
   2574   }
   2575 
   2576   void visitPHINode(PHINode &I) {
   2577     IRBuilder<> IRB(&I);
   2578     if (!PropagateShadow) {
   2579       setShadow(&I, getCleanShadow(&I));
   2580       setOrigin(&I, getCleanOrigin());
   2581       return;
   2582     }
   2583 
   2584     ShadowPHINodes.push_back(&I);
   2585     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
   2586                                 "_msphi_s"));
   2587     if (MS.TrackOrigins)
   2588       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
   2589                                   "_msphi_o"));
   2590   }
   2591 
   2592   void visitAllocaInst(AllocaInst &I) {
   2593     setShadow(&I, getCleanShadow(&I));
   2594     setOrigin(&I, getCleanOrigin());
   2595     IRBuilder<> IRB(I.getNextNode());
   2596     const DataLayout &DL = F.getParent()->getDataLayout();
   2597     uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
   2598     if (PoisonStack && ClPoisonStackWithCall) {
   2599       IRB.CreateCall(MS.MsanPoisonStackFn,
   2600                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
   2601                       ConstantInt::get(MS.IntptrTy, Size)});
   2602     } else {
   2603       Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
   2604       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
   2605       IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
   2606     }
   2607 
   2608     if (PoisonStack && MS.TrackOrigins) {
   2609       SmallString<2048> StackDescriptionStorage;
   2610       raw_svector_ostream StackDescription(StackDescriptionStorage);
   2611       // We create a string with a description of the stack allocation and
   2612       // pass it into __msan_set_alloca_origin.
   2613       // It will be printed by the run-time if stack-originated UMR is found.
   2614       // The first 4 bytes of the string are set to '----' and will be replaced
   2615       // by __msan_va_arg_overflow_size_tls at the first call.
   2616       StackDescription << "----" << I.getName() << "@" << F.getName();
   2617       Value *Descr =
   2618           createPrivateNonConstGlobalForString(*F.getParent(),
   2619                                                StackDescription.str());
   2620 
   2621       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
   2622                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
   2623                       ConstantInt::get(MS.IntptrTy, Size),
   2624                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
   2625                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
   2626     }
   2627   }
   2628 
   2629   void visitSelectInst(SelectInst& I) {
   2630     IRBuilder<> IRB(&I);
   2631     // a = select b, c, d
   2632     Value *B = I.getCondition();
   2633     Value *C = I.getTrueValue();
   2634     Value *D = I.getFalseValue();
   2635     Value *Sb = getShadow(B);
   2636     Value *Sc = getShadow(C);
   2637     Value *Sd = getShadow(D);
   2638 
   2639     // Result shadow if condition shadow is 0.
   2640     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
   2641     Value *Sa1;
   2642     if (I.getType()->isAggregateType()) {
   2643       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
   2644       // an extra "select". This results in much more compact IR.
   2645       // Sa = select Sb, poisoned, (select b, Sc, Sd)
   2646       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
   2647     } else {
   2648       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
   2649       // If Sb (condition is poisoned), look for bits in c and d that are equal
   2650       // and both unpoisoned.
   2651       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
   2652 
   2653       // Cast arguments to shadow-compatible type.
   2654       C = CreateAppToShadowCast(IRB, C);
   2655       D = CreateAppToShadowCast(IRB, D);
   2656 
   2657       // Result shadow if condition shadow is 1.
   2658       Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
   2659     }
   2660     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
   2661     setShadow(&I, Sa);
   2662     if (MS.TrackOrigins) {
   2663       // Origins are always i32, so any vector conditions must be flattened.
   2664       // FIXME: consider tracking vector origins for app vectors?
   2665       if (B->getType()->isVectorTy()) {
   2666         Type *FlatTy = getShadowTyNoVec(B->getType());
   2667         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
   2668                                 ConstantInt::getNullValue(FlatTy));
   2669         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
   2670                                       ConstantInt::getNullValue(FlatTy));
   2671       }
   2672       // a = select b, c, d
   2673       // Oa = Sb ? Ob : (b ? Oc : Od)
   2674       setOrigin(
   2675           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
   2676                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
   2677                                                 getOrigin(I.getFalseValue()))));
   2678     }
   2679   }
   2680 
   2681   void visitLandingPadInst(LandingPadInst &I) {
   2682     // Do nothing.
   2683     // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
   2684     setShadow(&I, getCleanShadow(&I));
   2685     setOrigin(&I, getCleanOrigin());
   2686   }
   2687 
   2688   void visitCatchSwitchInst(CatchSwitchInst &I) {
   2689     setShadow(&I, getCleanShadow(&I));
   2690     setOrigin(&I, getCleanOrigin());
   2691   }
   2692 
   2693   void visitFuncletPadInst(FuncletPadInst &I) {
   2694     setShadow(&I, getCleanShadow(&I));
   2695     setOrigin(&I, getCleanOrigin());
   2696   }
   2697 
   2698   void visitGetElementPtrInst(GetElementPtrInst &I) {
   2699     handleShadowOr(I);
   2700   }
   2701 
   2702   void visitExtractValueInst(ExtractValueInst &I) {
   2703     IRBuilder<> IRB(&I);
   2704     Value *Agg = I.getAggregateOperand();
   2705     DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
   2706     Value *AggShadow = getShadow(Agg);
   2707     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
   2708     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
   2709     DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
   2710     setShadow(&I, ResShadow);
   2711     setOriginForNaryOp(I);
   2712   }
   2713 
   2714   void visitInsertValueInst(InsertValueInst &I) {
   2715     IRBuilder<> IRB(&I);
   2716     DEBUG(dbgs() << "InsertValue:  " << I << "\n");
   2717     Value *AggShadow = getShadow(I.getAggregateOperand());
   2718     Value *InsShadow = getShadow(I.getInsertedValueOperand());
   2719     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
   2720     DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
   2721     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
   2722     DEBUG(dbgs() << "   Res:        " << *Res << "\n");
   2723     setShadow(&I, Res);
   2724     setOriginForNaryOp(I);
   2725   }
   2726 
   2727   void dumpInst(Instruction &I) {
   2728     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
   2729       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
   2730     } else {
   2731       errs() << "ZZZ " << I.getOpcodeName() << "\n";
   2732     }
   2733     errs() << "QQQ " << I << "\n";
   2734   }
   2735 
   2736   void visitResumeInst(ResumeInst &I) {
   2737     DEBUG(dbgs() << "Resume: " << I << "\n");
   2738     // Nothing to do here.
   2739   }
   2740 
   2741   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
   2742     DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
   2743     // Nothing to do here.
   2744   }
   2745 
   2746   void visitCatchReturnInst(CatchReturnInst &CRI) {
   2747     DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
   2748     // Nothing to do here.
   2749   }
   2750 
   2751   void visitInstruction(Instruction &I) {
   2752     // Everything else: stop propagating and check for poisoned shadow.
   2753     if (ClDumpStrictInstructions)
   2754       dumpInst(I);
   2755     DEBUG(dbgs() << "DEFAULT: " << I << "\n");
   2756     for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
   2757       insertShadowCheck(I.getOperand(i), &I);
   2758     setShadow(&I, getCleanShadow(&I));
   2759     setOrigin(&I, getCleanOrigin());
   2760   }
   2761 };
   2762 
   2763 /// \brief AMD64-specific implementation of VarArgHelper.
   2764 struct VarArgAMD64Helper : public VarArgHelper {
   2765   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
   2766   // See a comment in visitCallSite for more details.
   2767   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
   2768   static const unsigned AMD64FpEndOffset = 176;
   2769 
   2770   Function &F;
   2771   MemorySanitizer &MS;
   2772   MemorySanitizerVisitor &MSV;
   2773   Value *VAArgTLSCopy;
   2774   Value *VAArgOverflowSize;
   2775 
   2776   SmallVector<CallInst*, 16> VAStartInstrumentationList;
   2777 
   2778   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
   2779                     MemorySanitizerVisitor &MSV)
   2780     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
   2781       VAArgOverflowSize(nullptr) {}
   2782 
   2783   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
   2784 
   2785   ArgKind classifyArgument(Value* arg) {
   2786     // A very rough approximation of X86_64 argument classification rules.
   2787     Type *T = arg->getType();
   2788     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
   2789       return AK_FloatingPoint;
   2790     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
   2791       return AK_GeneralPurpose;
   2792     if (T->isPointerTy())
   2793       return AK_GeneralPurpose;
   2794     return AK_Memory;
   2795   }
   2796 
   2797   // For VarArg functions, store the argument shadow in an ABI-specific format
   2798   // that corresponds to va_list layout.
   2799   // We do this because Clang lowers va_arg in the frontend, and this pass
   2800   // only sees the low level code that deals with va_list internals.
   2801   // A much easier alternative (provided that Clang emits va_arg instructions)
   2802   // would have been to associate each live instance of va_list with a copy of
   2803   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
   2804   // order.
   2805   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
   2806     unsigned GpOffset = 0;
   2807     unsigned FpOffset = AMD64GpEndOffset;
   2808     unsigned OverflowOffset = AMD64FpEndOffset;
   2809     const DataLayout &DL = F.getParent()->getDataLayout();
   2810     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
   2811          ArgIt != End; ++ArgIt) {
   2812       Value *A = *ArgIt;
   2813       unsigned ArgNo = CS.getArgumentNo(ArgIt);
   2814       bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
   2815       if (IsByVal) {
   2816         // ByVal arguments always go to the overflow area.
   2817         assert(A->getType()->isPointerTy());
   2818         Type *RealTy = A->getType()->getPointerElementType();
   2819         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
   2820         Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
   2821         OverflowOffset += RoundUpToAlignment(ArgSize, 8);
   2822         IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
   2823                          ArgSize, kShadowTLSAlignment);
   2824       } else {
   2825         ArgKind AK = classifyArgument(A);
   2826         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
   2827           AK = AK_Memory;
   2828         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
   2829           AK = AK_Memory;
   2830         Value *Base;
   2831         switch (AK) {
   2832           case AK_GeneralPurpose:
   2833             Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
   2834             GpOffset += 8;
   2835             break;
   2836           case AK_FloatingPoint:
   2837             Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
   2838             FpOffset += 16;
   2839             break;
   2840           case AK_Memory:
   2841             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
   2842             Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
   2843             OverflowOffset += RoundUpToAlignment(ArgSize, 8);
   2844         }
   2845         IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
   2846       }
   2847     }
   2848     Constant *OverflowSize =
   2849       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
   2850     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
   2851   }
   2852 
   2853   /// \brief Compute the shadow address for a given va_arg.
   2854   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
   2855                                    int ArgOffset) {
   2856     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
   2857     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
   2858     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
   2859                               "_msarg");
   2860   }
   2861 
   2862   void visitVAStartInst(VAStartInst &I) override {
   2863     if (F.getCallingConv() == CallingConv::X86_64_Win64)
   2864       return;
   2865     IRBuilder<> IRB(&I);
   2866     VAStartInstrumentationList.push_back(&I);
   2867     Value *VAListTag = I.getArgOperand(0);
   2868     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   2869 
   2870     // Unpoison the whole __va_list_tag.
   2871     // FIXME: magic ABI constants.
   2872     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   2873                      /* size */24, /* alignment */8, false);
   2874   }
   2875 
   2876   void visitVACopyInst(VACopyInst &I) override {
   2877     if (F.getCallingConv() == CallingConv::X86_64_Win64)
   2878       return;
   2879     IRBuilder<> IRB(&I);
   2880     Value *VAListTag = I.getArgOperand(0);
   2881     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   2882 
   2883     // Unpoison the whole __va_list_tag.
   2884     // FIXME: magic ABI constants.
   2885     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   2886                      /* size */24, /* alignment */8, false);
   2887   }
   2888 
   2889   void finalizeInstrumentation() override {
   2890     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
   2891            "finalizeInstrumentation called twice");
   2892     if (!VAStartInstrumentationList.empty()) {
   2893       // If there is a va_start in this function, make a backup copy of
   2894       // va_arg_tls somewhere in the function entry block.
   2895       IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
   2896       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
   2897       Value *CopySize =
   2898         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
   2899                       VAArgOverflowSize);
   2900       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
   2901       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
   2902     }
   2903 
   2904     // Instrument va_start.
   2905     // Copy va_list shadow from the backup copy of the TLS contents.
   2906     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
   2907       CallInst *OrigInst = VAStartInstrumentationList[i];
   2908       IRBuilder<> IRB(OrigInst->getNextNode());
   2909       Value *VAListTag = OrigInst->getArgOperand(0);
   2910 
   2911       Value *RegSaveAreaPtrPtr =
   2912         IRB.CreateIntToPtr(
   2913           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   2914                         ConstantInt::get(MS.IntptrTy, 16)),
   2915           Type::getInt64PtrTy(*MS.C));
   2916       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
   2917       Value *RegSaveAreaShadowPtr =
   2918         MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
   2919       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
   2920                        AMD64FpEndOffset, 16);
   2921 
   2922       Value *OverflowArgAreaPtrPtr =
   2923         IRB.CreateIntToPtr(
   2924           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   2925                         ConstantInt::get(MS.IntptrTy, 8)),
   2926           Type::getInt64PtrTy(*MS.C));
   2927       Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
   2928       Value *OverflowArgAreaShadowPtr =
   2929         MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
   2930       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
   2931                                              AMD64FpEndOffset);
   2932       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
   2933     }
   2934   }
   2935 };
   2936 
   2937 /// \brief MIPS64-specific implementation of VarArgHelper.
   2938 struct VarArgMIPS64Helper : public VarArgHelper {
   2939   Function &F;
   2940   MemorySanitizer &MS;
   2941   MemorySanitizerVisitor &MSV;
   2942   Value *VAArgTLSCopy;
   2943   Value *VAArgSize;
   2944 
   2945   SmallVector<CallInst*, 16> VAStartInstrumentationList;
   2946 
   2947   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
   2948                     MemorySanitizerVisitor &MSV)
   2949     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
   2950       VAArgSize(nullptr) {}
   2951 
   2952   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
   2953     unsigned VAArgOffset = 0;
   2954     const DataLayout &DL = F.getParent()->getDataLayout();
   2955     for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
   2956          ArgIt != End; ++ArgIt) {
   2957       Value *A = *ArgIt;
   2958       Value *Base;
   2959       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
   2960 #if defined(__MIPSEB__) || defined(MIPSEB)
   2961       // Adjusting the shadow for argument with size < 8 to match the placement
   2962       // of bits in big endian system
   2963       if (ArgSize < 8)
   2964         VAArgOffset += (8 - ArgSize);
   2965 #endif
   2966       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
   2967       VAArgOffset += ArgSize;
   2968       VAArgOffset = RoundUpToAlignment(VAArgOffset, 8);
   2969       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
   2970     }
   2971 
   2972     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
   2973     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
   2974     // a new class member i.e. it is the total size of all VarArgs.
   2975     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
   2976   }
   2977 
   2978   /// \brief Compute the shadow address for a given va_arg.
   2979   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
   2980                                    int ArgOffset) {
   2981     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
   2982     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
   2983     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
   2984                               "_msarg");
   2985   }
   2986 
   2987   void visitVAStartInst(VAStartInst &I) override {
   2988     IRBuilder<> IRB(&I);
   2989     VAStartInstrumentationList.push_back(&I);
   2990     Value *VAListTag = I.getArgOperand(0);
   2991     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   2992     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   2993                      /* size */8, /* alignment */8, false);
   2994   }
   2995 
   2996   void visitVACopyInst(VACopyInst &I) override {
   2997     IRBuilder<> IRB(&I);
   2998     Value *VAListTag = I.getArgOperand(0);
   2999     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   3000     // Unpoison the whole __va_list_tag.
   3001     // FIXME: magic ABI constants.
   3002     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   3003                      /* size */8, /* alignment */8, false);
   3004   }
   3005 
   3006   void finalizeInstrumentation() override {
   3007     assert(!VAArgSize && !VAArgTLSCopy &&
   3008            "finalizeInstrumentation called twice");
   3009     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
   3010     VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
   3011     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
   3012                                     VAArgSize);
   3013 
   3014     if (!VAStartInstrumentationList.empty()) {
   3015       // If there is a va_start in this function, make a backup copy of
   3016       // va_arg_tls somewhere in the function entry block.
   3017       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
   3018       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
   3019     }
   3020 
   3021     // Instrument va_start.
   3022     // Copy va_list shadow from the backup copy of the TLS contents.
   3023     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
   3024       CallInst *OrigInst = VAStartInstrumentationList[i];
   3025       IRBuilder<> IRB(OrigInst->getNextNode());
   3026       Value *VAListTag = OrigInst->getArgOperand(0);
   3027       Value *RegSaveAreaPtrPtr =
   3028         IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   3029                         Type::getInt64PtrTy(*MS.C));
   3030       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
   3031       Value *RegSaveAreaShadowPtr =
   3032       MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
   3033       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
   3034     }
   3035   }
   3036 };
   3037 
   3038 
   3039 /// \brief AArch64-specific implementation of VarArgHelper.
   3040 struct VarArgAArch64Helper : public VarArgHelper {
   3041   static const unsigned kAArch64GrArgSize = 56;
   3042   static const unsigned kAArch64VrArgSize = 128;
   3043 
   3044   static const unsigned AArch64GrBegOffset = 0;
   3045   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
   3046   // Make VR space aligned to 16 bytes.
   3047   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset + 8;
   3048   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
   3049                                              + kAArch64VrArgSize;
   3050   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
   3051 
   3052   Function &F;
   3053   MemorySanitizer &MS;
   3054   MemorySanitizerVisitor &MSV;
   3055   Value *VAArgTLSCopy;
   3056   Value *VAArgOverflowSize;
   3057 
   3058   SmallVector<CallInst*, 16> VAStartInstrumentationList;
   3059 
   3060   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
   3061                     MemorySanitizerVisitor &MSV)
   3062     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
   3063       VAArgOverflowSize(nullptr) {}
   3064 
   3065   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
   3066 
   3067   ArgKind classifyArgument(Value* arg) {
   3068     Type *T = arg->getType();
   3069     if (T->isFPOrFPVectorTy())
   3070       return AK_FloatingPoint;
   3071     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
   3072         || (T->isPointerTy()))
   3073       return AK_GeneralPurpose;
   3074     return AK_Memory;
   3075   }
   3076 
   3077   // The instrumentation stores the argument shadow in a non ABI-specific
   3078   // format because it does not know which argument is named (since Clang,
   3079   // like x86_64 case, lowers the va_args in the frontend and this pass only
   3080   // sees the low level code that deals with va_list internals).
   3081   // The first seven GR registers are saved in the first 56 bytes of the
   3082   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
   3083   // the remaining arguments.
   3084   // Using constant offset within the va_arg TLS array allows fast copy
   3085   // in the finalize instrumentation.
   3086   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
   3087     unsigned GrOffset = AArch64GrBegOffset;
   3088     unsigned VrOffset = AArch64VrBegOffset;
   3089     unsigned OverflowOffset = AArch64VAEndOffset;
   3090 
   3091     const DataLayout &DL = F.getParent()->getDataLayout();
   3092     for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
   3093          ArgIt != End; ++ArgIt) {
   3094       Value *A = *ArgIt;
   3095       ArgKind AK = classifyArgument(A);
   3096       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
   3097         AK = AK_Memory;
   3098       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
   3099         AK = AK_Memory;
   3100       Value *Base;
   3101       switch (AK) {
   3102         case AK_GeneralPurpose:
   3103           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset);
   3104           GrOffset += 8;
   3105           break;
   3106         case AK_FloatingPoint:
   3107           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset);
   3108           VrOffset += 16;
   3109           break;
   3110         case AK_Memory:
   3111           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
   3112           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
   3113           OverflowOffset += RoundUpToAlignment(ArgSize, 8);
   3114           break;
   3115       }
   3116       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
   3117     }
   3118     Constant *OverflowSize =
   3119       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
   3120     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
   3121   }
   3122 
   3123   /// Compute the shadow address for a given va_arg.
   3124   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
   3125                                    int ArgOffset) {
   3126     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
   3127     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
   3128     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
   3129                               "_msarg");
   3130   }
   3131 
   3132   void visitVAStartInst(VAStartInst &I) override {
   3133     IRBuilder<> IRB(&I);
   3134     VAStartInstrumentationList.push_back(&I);
   3135     Value *VAListTag = I.getArgOperand(0);
   3136     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   3137     // Unpoison the whole __va_list_tag.
   3138     // FIXME: magic ABI constants (size of va_list).
   3139     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   3140                      /* size */32, /* alignment */8, false);
   3141   }
   3142 
   3143   void visitVACopyInst(VACopyInst &I) override {
   3144     IRBuilder<> IRB(&I);
   3145     Value *VAListTag = I.getArgOperand(0);
   3146     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   3147     // Unpoison the whole __va_list_tag.
   3148     // FIXME: magic ABI constants (size of va_list).
   3149     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   3150                      /* size */32, /* alignment */8, false);
   3151   }
   3152 
   3153   // Retrieve a va_list field of 'void*' size.
   3154   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
   3155     Value *SaveAreaPtrPtr =
   3156       IRB.CreateIntToPtr(
   3157         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   3158                       ConstantInt::get(MS.IntptrTy, offset)),
   3159         Type::getInt64PtrTy(*MS.C));
   3160     return IRB.CreateLoad(SaveAreaPtrPtr);
   3161   }
   3162 
   3163   // Retrieve a va_list field of 'int' size.
   3164   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
   3165     Value *SaveAreaPtr =
   3166       IRB.CreateIntToPtr(
   3167         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   3168                       ConstantInt::get(MS.IntptrTy, offset)),
   3169         Type::getInt32PtrTy(*MS.C));
   3170     Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr);
   3171     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
   3172   }
   3173 
   3174   void finalizeInstrumentation() override {
   3175     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
   3176            "finalizeInstrumentation called twice");
   3177     if (!VAStartInstrumentationList.empty()) {
   3178       // If there is a va_start in this function, make a backup copy of
   3179       // va_arg_tls somewhere in the function entry block.
   3180       IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
   3181       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
   3182       Value *CopySize =
   3183         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
   3184                       VAArgOverflowSize);
   3185       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
   3186       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
   3187     }
   3188 
   3189     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
   3190     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
   3191 
   3192     // Instrument va_start, copy va_list shadow from the backup copy of
   3193     // the TLS contents.
   3194     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
   3195       CallInst *OrigInst = VAStartInstrumentationList[i];
   3196       IRBuilder<> IRB(OrigInst->getNextNode());
   3197 
   3198       Value *VAListTag = OrigInst->getArgOperand(0);
   3199 
   3200       // The variadic ABI for AArch64 creates two areas to save the incoming
   3201       // argument registers (one for 64-bit general register xn-x7 and another
   3202       // for 128-bit FP/SIMD vn-v7).
   3203       // We need then to propagate the shadow arguments on both regions
   3204       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
   3205       // The remaning arguments are saved on shadow for 'va::stack'.
   3206       // One caveat is it requires only to propagate the non-named arguments,
   3207       // however on the call site instrumentation 'all' the arguments are
   3208       // saved. So to copy the shadow values from the va_arg TLS array
   3209       // we need to adjust the offset for both GR and VR fields based on
   3210       // the __{gr,vr}_offs value (since they are stores based on incoming
   3211       // named arguments).
   3212 
   3213       // Read the stack pointer from the va_list.
   3214       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
   3215 
   3216       // Read both the __gr_top and __gr_off and add them up.
   3217       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
   3218       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
   3219 
   3220       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
   3221 
   3222       // Read both the __vr_top and __vr_off and add them up.
   3223       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
   3224       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
   3225 
   3226       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
   3227 
   3228       // It does not know how many named arguments is being used and, on the
   3229       // callsite all the arguments were saved.  Since __gr_off is defined as
   3230       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
   3231       // argument by ignoring the bytes of shadow from named arguments.
   3232       Value *GrRegSaveAreaShadowPtrOff =
   3233         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
   3234 
   3235       Value *GrRegSaveAreaShadowPtr =
   3236         MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB);
   3237 
   3238       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
   3239                                               GrRegSaveAreaShadowPtrOff);
   3240       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
   3241 
   3242       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8);
   3243 
   3244       // Again, but for FP/SIMD values.
   3245       Value *VrRegSaveAreaShadowPtrOff =
   3246           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
   3247 
   3248       Value *VrRegSaveAreaShadowPtr =
   3249         MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB);
   3250 
   3251       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
   3252         IRB.getInt8Ty(),
   3253         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
   3254                               IRB.getInt32(AArch64VrBegOffset)),
   3255         VrRegSaveAreaShadowPtrOff);
   3256       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
   3257 
   3258       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8);
   3259 
   3260       // And finally for remaining arguments.
   3261       Value *StackSaveAreaShadowPtr =
   3262         MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB);
   3263 
   3264       Value *StackSrcPtr =
   3265         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
   3266                               IRB.getInt32(AArch64VAEndOffset));
   3267 
   3268       IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr,
   3269                        VAArgOverflowSize, 16);
   3270     }
   3271   }
   3272 };
   3273 
   3274 /// \brief A no-op implementation of VarArgHelper.
   3275 struct VarArgNoOpHelper : public VarArgHelper {
   3276   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
   3277                    MemorySanitizerVisitor &MSV) {}
   3278 
   3279   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
   3280 
   3281   void visitVAStartInst(VAStartInst &I) override {}
   3282 
   3283   void visitVACopyInst(VACopyInst &I) override {}
   3284 
   3285   void finalizeInstrumentation() override {}
   3286 };
   3287 
   3288 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
   3289                                  MemorySanitizerVisitor &Visitor) {
   3290   // VarArg handling is only implemented on AMD64. False positives are possible
   3291   // on other platforms.
   3292   llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
   3293   if (TargetTriple.getArch() == llvm::Triple::x86_64)
   3294     return new VarArgAMD64Helper(Func, Msan, Visitor);
   3295   else if (TargetTriple.getArch() == llvm::Triple::mips64 ||
   3296            TargetTriple.getArch() == llvm::Triple::mips64el)
   3297     return new VarArgMIPS64Helper(Func, Msan, Visitor);
   3298   else if (TargetTriple.getArch() == llvm::Triple::aarch64)
   3299     return new VarArgAArch64Helper(Func, Msan, Visitor);
   3300   else
   3301     return new VarArgNoOpHelper(Func, Msan, Visitor);
   3302 }
   3303 
   3304 } // anonymous namespace
   3305 
   3306 bool MemorySanitizer::runOnFunction(Function &F) {
   3307   if (&F == MsanCtorFunction)
   3308     return false;
   3309   MemorySanitizerVisitor Visitor(F, *this);
   3310 
   3311   // Clear out readonly/readnone attributes.
   3312   AttrBuilder B;
   3313   B.addAttribute(Attribute::ReadOnly)
   3314     .addAttribute(Attribute::ReadNone);
   3315   F.removeAttributes(AttributeSet::FunctionIndex,
   3316                      AttributeSet::get(F.getContext(),
   3317                                        AttributeSet::FunctionIndex, B));
   3318 
   3319   return Visitor.runOnFunction();
   3320 }
   3321