1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 11 // both before and after the DAG is legalized. 12 // 13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 14 // primarily intended to handle simplification opportunities that are implicit 15 // in the LLVM IR and exposed by the various codegen lowering phases. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "dagcombine" 44 45 STATISTIC(NodesCombined , "Number of dag nodes combined"); 46 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 47 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 48 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 49 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 50 STATISTIC(SlicedLoads, "Number of load sliced"); 51 52 namespace { 53 static cl::opt<bool> 54 CombinerAA("combiner-alias-analysis", cl::Hidden, 55 cl::desc("Enable DAG combiner alias-analysis heuristics")); 56 57 static cl::opt<bool> 58 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 59 cl::desc("Enable DAG combiner's use of IR alias analysis")); 60 61 static cl::opt<bool> 62 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 63 cl::desc("Enable DAG combiner's use of TBAA")); 64 65 #ifndef NDEBUG 66 static cl::opt<std::string> 67 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 68 cl::desc("Only use DAG-combiner alias analysis in this" 69 " function")); 70 #endif 71 72 /// Hidden option to stress test load slicing, i.e., when this option 73 /// is enabled, load slicing bypasses most of its profitability guards. 74 static cl::opt<bool> 75 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 76 cl::desc("Bypass the profitability model of load " 77 "slicing"), 78 cl::init(false)); 79 80 static cl::opt<bool> 81 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 82 cl::desc("DAG combiner may split indexing from loads")); 83 84 //------------------------------ DAGCombiner ---------------------------------// 85 86 class DAGCombiner { 87 SelectionDAG &DAG; 88 const TargetLowering &TLI; 89 CombineLevel Level; 90 CodeGenOpt::Level OptLevel; 91 bool LegalOperations; 92 bool LegalTypes; 93 bool ForCodeSize; 94 95 /// \brief Worklist of all of the nodes that need to be simplified. 96 /// 97 /// This must behave as a stack -- new nodes to process are pushed onto the 98 /// back and when processing we pop off of the back. 99 /// 100 /// The worklist will not contain duplicates but may contain null entries 101 /// due to nodes being deleted from the underlying DAG. 102 SmallVector<SDNode *, 64> Worklist; 103 104 /// \brief Mapping from an SDNode to its position on the worklist. 105 /// 106 /// This is used to find and remove nodes from the worklist (by nulling 107 /// them) when they are deleted from the underlying DAG. It relies on 108 /// stable indices of nodes within the worklist. 109 DenseMap<SDNode *, unsigned> WorklistMap; 110 111 /// \brief Set of nodes which have been combined (at least once). 112 /// 113 /// This is used to allow us to reliably add any operands of a DAG node 114 /// which have not yet been combined to the worklist. 115 SmallPtrSet<SDNode *, 64> CombinedNodes; 116 117 // AA - Used for DAG load/store alias analysis. 118 AliasAnalysis &AA; 119 120 /// When an instruction is simplified, add all users of the instruction to 121 /// the work lists because they might get more simplified now. 122 void AddUsersToWorklist(SDNode *N) { 123 for (SDNode *Node : N->uses()) 124 AddToWorklist(Node); 125 } 126 127 /// Call the node-specific routine that folds each particular type of node. 128 SDValue visit(SDNode *N); 129 130 public: 131 /// Add to the worklist making sure its instance is at the back (next to be 132 /// processed.) 133 void AddToWorklist(SDNode *N) { 134 // Skip handle nodes as they can't usefully be combined and confuse the 135 // zero-use deletion strategy. 136 if (N->getOpcode() == ISD::HANDLENODE) 137 return; 138 139 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 140 Worklist.push_back(N); 141 } 142 143 /// Remove all instances of N from the worklist. 144 void removeFromWorklist(SDNode *N) { 145 CombinedNodes.erase(N); 146 147 auto It = WorklistMap.find(N); 148 if (It == WorklistMap.end()) 149 return; // Not in the worklist. 150 151 // Null out the entry rather than erasing it to avoid a linear operation. 152 Worklist[It->second] = nullptr; 153 WorklistMap.erase(It); 154 } 155 156 void deleteAndRecombine(SDNode *N); 157 bool recursivelyDeleteUnusedNodes(SDNode *N); 158 159 /// Replaces all uses of the results of one DAG node with new values. 160 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 161 bool AddTo = true); 162 163 /// Replaces all uses of the results of one DAG node with new values. 164 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 165 return CombineTo(N, &Res, 1, AddTo); 166 } 167 168 /// Replaces all uses of the results of one DAG node with new values. 169 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 170 bool AddTo = true) { 171 SDValue To[] = { Res0, Res1 }; 172 return CombineTo(N, To, 2, AddTo); 173 } 174 175 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 176 177 private: 178 179 /// Check the specified integer node value to see if it can be simplified or 180 /// if things it uses can be simplified by bit propagation. 181 /// If so, return true. 182 bool SimplifyDemandedBits(SDValue Op) { 183 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 184 APInt Demanded = APInt::getAllOnesValue(BitWidth); 185 return SimplifyDemandedBits(Op, Demanded); 186 } 187 188 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 189 190 bool CombineToPreIndexedLoadStore(SDNode *N); 191 bool CombineToPostIndexedLoadStore(SDNode *N); 192 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 193 bool SliceUpLoad(SDNode *N); 194 195 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 196 /// load. 197 /// 198 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 199 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 200 /// \param EltNo index of the vector element to load. 201 /// \param OriginalLoad load that EVE came from to be replaced. 202 /// \returns EVE on success SDValue() on failure. 203 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 204 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 205 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 206 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 207 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 208 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 209 SDValue PromoteIntBinOp(SDValue Op); 210 SDValue PromoteIntShiftOp(SDValue Op); 211 SDValue PromoteExtend(SDValue Op); 212 bool PromoteLoad(SDValue Op); 213 214 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 215 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 216 ISD::NodeType ExtType); 217 218 /// Call the node-specific routine that knows how to fold each 219 /// particular type of node. If that doesn't do anything, try the 220 /// target-specific DAG combines. 221 SDValue combine(SDNode *N); 222 223 // Visitation implementation - Implement dag node combining for different 224 // node types. The semantics are as follows: 225 // Return Value: 226 // SDValue.getNode() == 0 - No change was made 227 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 228 // otherwise - N should be replaced by the returned Operand. 229 // 230 SDValue visitTokenFactor(SDNode *N); 231 SDValue visitMERGE_VALUES(SDNode *N); 232 SDValue visitADD(SDNode *N); 233 SDValue visitSUB(SDNode *N); 234 SDValue visitADDC(SDNode *N); 235 SDValue visitSUBC(SDNode *N); 236 SDValue visitADDE(SDNode *N); 237 SDValue visitSUBE(SDNode *N); 238 SDValue visitMUL(SDNode *N); 239 SDValue useDivRem(SDNode *N); 240 SDValue visitSDIV(SDNode *N); 241 SDValue visitUDIV(SDNode *N); 242 SDValue visitREM(SDNode *N); 243 SDValue visitMULHU(SDNode *N); 244 SDValue visitMULHS(SDNode *N); 245 SDValue visitSMUL_LOHI(SDNode *N); 246 SDValue visitUMUL_LOHI(SDNode *N); 247 SDValue visitSMULO(SDNode *N); 248 SDValue visitUMULO(SDNode *N); 249 SDValue visitIMINMAX(SDNode *N); 250 SDValue visitAND(SDNode *N); 251 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); 252 SDValue visitOR(SDNode *N); 253 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); 254 SDValue visitXOR(SDNode *N); 255 SDValue SimplifyVBinOp(SDNode *N); 256 SDValue visitSHL(SDNode *N); 257 SDValue visitSRA(SDNode *N); 258 SDValue visitSRL(SDNode *N); 259 SDValue visitRotate(SDNode *N); 260 SDValue visitBSWAP(SDNode *N); 261 SDValue visitCTLZ(SDNode *N); 262 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 263 SDValue visitCTTZ(SDNode *N); 264 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 265 SDValue visitCTPOP(SDNode *N); 266 SDValue visitSELECT(SDNode *N); 267 SDValue visitVSELECT(SDNode *N); 268 SDValue visitSELECT_CC(SDNode *N); 269 SDValue visitSETCC(SDNode *N); 270 SDValue visitSETCCE(SDNode *N); 271 SDValue visitSIGN_EXTEND(SDNode *N); 272 SDValue visitZERO_EXTEND(SDNode *N); 273 SDValue visitANY_EXTEND(SDNode *N); 274 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 275 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 276 SDValue visitTRUNCATE(SDNode *N); 277 SDValue visitBITCAST(SDNode *N); 278 SDValue visitBUILD_PAIR(SDNode *N); 279 SDValue visitFADD(SDNode *N); 280 SDValue visitFSUB(SDNode *N); 281 SDValue visitFMUL(SDNode *N); 282 SDValue visitFMA(SDNode *N); 283 SDValue visitFDIV(SDNode *N); 284 SDValue visitFREM(SDNode *N); 285 SDValue visitFSQRT(SDNode *N); 286 SDValue visitFCOPYSIGN(SDNode *N); 287 SDValue visitSINT_TO_FP(SDNode *N); 288 SDValue visitUINT_TO_FP(SDNode *N); 289 SDValue visitFP_TO_SINT(SDNode *N); 290 SDValue visitFP_TO_UINT(SDNode *N); 291 SDValue visitFP_ROUND(SDNode *N); 292 SDValue visitFP_ROUND_INREG(SDNode *N); 293 SDValue visitFP_EXTEND(SDNode *N); 294 SDValue visitFNEG(SDNode *N); 295 SDValue visitFABS(SDNode *N); 296 SDValue visitFCEIL(SDNode *N); 297 SDValue visitFTRUNC(SDNode *N); 298 SDValue visitFFLOOR(SDNode *N); 299 SDValue visitFMINNUM(SDNode *N); 300 SDValue visitFMAXNUM(SDNode *N); 301 SDValue visitBRCOND(SDNode *N); 302 SDValue visitBR_CC(SDNode *N); 303 SDValue visitLOAD(SDNode *N); 304 305 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 306 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 307 308 SDValue visitSTORE(SDNode *N); 309 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 310 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 311 SDValue visitBUILD_VECTOR(SDNode *N); 312 SDValue visitCONCAT_VECTORS(SDNode *N); 313 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 314 SDValue visitVECTOR_SHUFFLE(SDNode *N); 315 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 316 SDValue visitINSERT_SUBVECTOR(SDNode *N); 317 SDValue visitMLOAD(SDNode *N); 318 SDValue visitMSTORE(SDNode *N); 319 SDValue visitMGATHER(SDNode *N); 320 SDValue visitMSCATTER(SDNode *N); 321 SDValue visitFP_TO_FP16(SDNode *N); 322 SDValue visitFP16_TO_FP(SDNode *N); 323 324 SDValue visitFADDForFMACombine(SDNode *N); 325 SDValue visitFSUBForFMACombine(SDNode *N); 326 SDValue visitFMULForFMACombine(SDNode *N); 327 328 SDValue XformToShuffleWithZero(SDNode *N); 329 SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); 330 331 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 332 333 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 334 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 335 SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2); 336 SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2, 337 SDValue N3, ISD::CondCode CC, 338 bool NotExtCompare = false); 339 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 340 SDLoc DL, bool foldBooleans = true); 341 342 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 343 SDValue &CC) const; 344 bool isOneUseSetCC(SDValue N) const; 345 346 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 347 unsigned HiOp); 348 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 349 SDValue CombineExtLoad(SDNode *N); 350 SDValue combineRepeatedFPDivisors(SDNode *N); 351 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 352 SDValue BuildSDIV(SDNode *N); 353 SDValue BuildSDIVPow2(SDNode *N); 354 SDValue BuildUDIV(SDNode *N); 355 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); 356 SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); 357 SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, 358 SDNodeFlags *Flags); 359 SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, 360 SDNodeFlags *Flags); 361 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 362 bool DemandHighBits = true); 363 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 364 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 365 SDValue InnerPos, SDValue InnerNeg, 366 unsigned PosOpcode, unsigned NegOpcode, 367 SDLoc DL); 368 SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL); 369 SDValue ReduceLoadWidth(SDNode *N); 370 SDValue ReduceLoadOpStoreWidth(SDNode *N); 371 SDValue TransformFPLoadStorePair(SDNode *N); 372 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 373 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 374 375 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 376 377 /// Walk up chain skipping non-aliasing memory nodes, 378 /// looking for aliasing nodes and adding them to the Aliases vector. 379 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 380 SmallVectorImpl<SDValue> &Aliases); 381 382 /// Return true if there is any possibility that the two addresses overlap. 383 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 384 385 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 386 /// chain (aliasing node.) 387 SDValue FindBetterChain(SDNode *N, SDValue Chain); 388 389 /// Do FindBetterChain for a store and any possibly adjacent stores on 390 /// consecutive chains. 391 bool findBetterNeighborChains(StoreSDNode *St); 392 393 /// Holds a pointer to an LSBaseSDNode as well as information on where it 394 /// is located in a sequence of memory operations connected by a chain. 395 struct MemOpLink { 396 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 397 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 398 // Ptr to the mem node. 399 LSBaseSDNode *MemNode; 400 // Offset from the base ptr. 401 int64_t OffsetFromBase; 402 // What is the sequence number of this mem node. 403 // Lowest mem operand in the DAG starts at zero. 404 unsigned SequenceNum; 405 }; 406 407 /// This is a helper function for visitMUL to check the profitability 408 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 409 /// MulNode is the original multiply, AddNode is (add x, c1), 410 /// and ConstNode is c2. 411 bool isMulAddWithConstProfitable(SDNode *MulNode, 412 SDValue &AddNode, 413 SDValue &ConstNode); 414 415 /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a 416 /// constant build_vector of the stored constant values in Stores. 417 SDValue getMergedConstantVectorStore(SelectionDAG &DAG, 418 SDLoc SL, 419 ArrayRef<MemOpLink> Stores, 420 SmallVectorImpl<SDValue> &Chains, 421 EVT Ty) const; 422 423 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 424 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 425 /// the type of the loaded value to be extended. LoadedVT returns the type 426 /// of the original loaded value. NarrowLoad returns whether the load would 427 /// need to be narrowed in order to match. 428 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 429 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 430 bool &NarrowLoad); 431 432 /// This is a helper function for MergeConsecutiveStores. When the source 433 /// elements of the consecutive stores are all constants or all extracted 434 /// vector elements, try to merge them into one larger store. 435 /// \return True if a merged store was created. 436 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 437 EVT MemVT, unsigned NumStores, 438 bool IsConstantSrc, bool UseVector); 439 440 /// This is a helper function for MergeConsecutiveStores. 441 /// Stores that may be merged are placed in StoreNodes. 442 /// Loads that may alias with those stores are placed in AliasLoadNodes. 443 void getStoreMergeAndAliasCandidates( 444 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 445 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); 446 447 /// Merge consecutive store operations into a wide store. 448 /// This optimization uses wide integers or vectors when possible. 449 /// \return True if some memory operations were changed. 450 bool MergeConsecutiveStores(StoreSDNode *N); 451 452 /// \brief Try to transform a truncation where C is a constant: 453 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 454 /// 455 /// \p N needs to be a truncation and its first operand an AND. Other 456 /// requirements are checked by the function (e.g. that trunc is 457 /// single-use) and if missed an empty SDValue is returned. 458 SDValue distributeTruncateThroughAnd(SDNode *N); 459 460 public: 461 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 462 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 463 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 464 ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); 465 } 466 467 /// Runs the dag combiner on all nodes in the work list 468 void Run(CombineLevel AtLevel); 469 470 SelectionDAG &getDAG() const { return DAG; } 471 472 /// Returns a type large enough to hold any valid shift amount - before type 473 /// legalization these can be huge. 474 EVT getShiftAmountTy(EVT LHSTy) { 475 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 476 if (LHSTy.isVector()) 477 return LHSTy; 478 auto &DL = DAG.getDataLayout(); 479 return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) 480 : TLI.getPointerTy(DL); 481 } 482 483 /// This method returns true if we are running before type legalization or 484 /// if the specified VT is legal. 485 bool isTypeLegal(const EVT &VT) { 486 if (!LegalTypes) return true; 487 return TLI.isTypeLegal(VT); 488 } 489 490 /// Convenience wrapper around TargetLowering::getSetCCResultType 491 EVT getSetCCResultType(EVT VT) const { 492 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 493 } 494 }; 495 } 496 497 498 namespace { 499 /// This class is a DAGUpdateListener that removes any deleted 500 /// nodes from the worklist. 501 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 502 DAGCombiner &DC; 503 public: 504 explicit WorklistRemover(DAGCombiner &dc) 505 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 506 507 void NodeDeleted(SDNode *N, SDNode *E) override { 508 DC.removeFromWorklist(N); 509 } 510 }; 511 } 512 513 //===----------------------------------------------------------------------===// 514 // TargetLowering::DAGCombinerInfo implementation 515 //===----------------------------------------------------------------------===// 516 517 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 518 ((DAGCombiner*)DC)->AddToWorklist(N); 519 } 520 521 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { 522 ((DAGCombiner*)DC)->removeFromWorklist(N); 523 } 524 525 SDValue TargetLowering::DAGCombinerInfo:: 526 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 527 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 528 } 529 530 SDValue TargetLowering::DAGCombinerInfo:: 531 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 532 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 533 } 534 535 536 SDValue TargetLowering::DAGCombinerInfo:: 537 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 538 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 539 } 540 541 void TargetLowering::DAGCombinerInfo:: 542 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 543 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 544 } 545 546 //===----------------------------------------------------------------------===// 547 // Helper Functions 548 //===----------------------------------------------------------------------===// 549 550 void DAGCombiner::deleteAndRecombine(SDNode *N) { 551 removeFromWorklist(N); 552 553 // If the operands of this node are only used by the node, they will now be 554 // dead. Make sure to re-visit them and recursively delete dead nodes. 555 for (const SDValue &Op : N->ops()) 556 // For an operand generating multiple values, one of the values may 557 // become dead allowing further simplification (e.g. split index 558 // arithmetic from an indexed load). 559 if (Op->hasOneUse() || Op->getNumValues() > 1) 560 AddToWorklist(Op.getNode()); 561 562 DAG.DeleteNode(N); 563 } 564 565 /// Return 1 if we can compute the negated form of the specified expression for 566 /// the same cost as the expression itself, or 2 if we can compute the negated 567 /// form more cheaply than the expression itself. 568 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 569 const TargetLowering &TLI, 570 const TargetOptions *Options, 571 unsigned Depth = 0) { 572 // fneg is removable even if it has multiple uses. 573 if (Op.getOpcode() == ISD::FNEG) return 2; 574 575 // Don't allow anything with multiple uses. 576 if (!Op.hasOneUse()) return 0; 577 578 // Don't recurse exponentially. 579 if (Depth > 6) return 0; 580 581 switch (Op.getOpcode()) { 582 default: return false; 583 case ISD::ConstantFP: 584 // Don't invert constant FP values after legalize. The negated constant 585 // isn't necessarily legal. 586 return LegalOperations ? 0 : 1; 587 case ISD::FADD: 588 // FIXME: determine better conditions for this xform. 589 if (!Options->UnsafeFPMath) return 0; 590 591 // After operation legalization, it might not be legal to create new FSUBs. 592 if (LegalOperations && 593 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 594 return 0; 595 596 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 597 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 598 Options, Depth + 1)) 599 return V; 600 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 601 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 602 Depth + 1); 603 case ISD::FSUB: 604 // We can't turn -(A-B) into B-A when we honor signed zeros. 605 if (!Options->UnsafeFPMath) return 0; 606 607 // fold (fneg (fsub A, B)) -> (fsub B, A) 608 return 1; 609 610 case ISD::FMUL: 611 case ISD::FDIV: 612 if (Options->HonorSignDependentRoundingFPMath()) return 0; 613 614 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 615 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 616 Options, Depth + 1)) 617 return V; 618 619 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 620 Depth + 1); 621 622 case ISD::FP_EXTEND: 623 case ISD::FP_ROUND: 624 case ISD::FSIN: 625 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 626 Depth + 1); 627 } 628 } 629 630 /// If isNegatibleForFree returns true, return the newly negated expression. 631 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 632 bool LegalOperations, unsigned Depth = 0) { 633 const TargetOptions &Options = DAG.getTarget().Options; 634 // fneg is removable even if it has multiple uses. 635 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 636 637 // Don't allow anything with multiple uses. 638 assert(Op.hasOneUse() && "Unknown reuse!"); 639 640 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 641 642 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 643 644 switch (Op.getOpcode()) { 645 default: llvm_unreachable("Unknown code"); 646 case ISD::ConstantFP: { 647 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 648 V.changeSign(); 649 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 650 } 651 case ISD::FADD: 652 // FIXME: determine better conditions for this xform. 653 assert(Options.UnsafeFPMath); 654 655 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 656 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 657 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 658 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 659 GetNegatedExpression(Op.getOperand(0), DAG, 660 LegalOperations, Depth+1), 661 Op.getOperand(1), Flags); 662 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 663 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 664 GetNegatedExpression(Op.getOperand(1), DAG, 665 LegalOperations, Depth+1), 666 Op.getOperand(0), Flags); 667 case ISD::FSUB: 668 // We can't turn -(A-B) into B-A when we honor signed zeros. 669 assert(Options.UnsafeFPMath); 670 671 // fold (fneg (fsub 0, B)) -> B 672 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 673 if (N0CFP->isZero()) 674 return Op.getOperand(1); 675 676 // fold (fneg (fsub A, B)) -> (fsub B, A) 677 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 678 Op.getOperand(1), Op.getOperand(0), Flags); 679 680 case ISD::FMUL: 681 case ISD::FDIV: 682 assert(!Options.HonorSignDependentRoundingFPMath()); 683 684 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 685 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 686 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 687 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 688 GetNegatedExpression(Op.getOperand(0), DAG, 689 LegalOperations, Depth+1), 690 Op.getOperand(1), Flags); 691 692 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 693 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 694 Op.getOperand(0), 695 GetNegatedExpression(Op.getOperand(1), DAG, 696 LegalOperations, Depth+1), Flags); 697 698 case ISD::FP_EXTEND: 699 case ISD::FSIN: 700 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 701 GetNegatedExpression(Op.getOperand(0), DAG, 702 LegalOperations, Depth+1)); 703 case ISD::FP_ROUND: 704 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 705 GetNegatedExpression(Op.getOperand(0), DAG, 706 LegalOperations, Depth+1), 707 Op.getOperand(1)); 708 } 709 } 710 711 // Return true if this node is a setcc, or is a select_cc 712 // that selects between the target values used for true and false, making it 713 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 714 // the appropriate nodes based on the type of node we are checking. This 715 // simplifies life a bit for the callers. 716 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 717 SDValue &CC) const { 718 if (N.getOpcode() == ISD::SETCC) { 719 LHS = N.getOperand(0); 720 RHS = N.getOperand(1); 721 CC = N.getOperand(2); 722 return true; 723 } 724 725 if (N.getOpcode() != ISD::SELECT_CC || 726 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 727 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 728 return false; 729 730 if (TLI.getBooleanContents(N.getValueType()) == 731 TargetLowering::UndefinedBooleanContent) 732 return false; 733 734 LHS = N.getOperand(0); 735 RHS = N.getOperand(1); 736 CC = N.getOperand(4); 737 return true; 738 } 739 740 /// Return true if this is a SetCC-equivalent operation with only one use. 741 /// If this is true, it allows the users to invert the operation for free when 742 /// it is profitable to do so. 743 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 744 SDValue N0, N1, N2; 745 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 746 return true; 747 return false; 748 } 749 750 /// Returns true if N is a BUILD_VECTOR node whose 751 /// elements are all the same constant or undefined. 752 static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) { 753 BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N); 754 if (!C) 755 return false; 756 757 APInt SplatUndef; 758 unsigned SplatBitSize; 759 bool HasAnyUndefs; 760 EVT EltVT = N->getValueType(0).getVectorElementType(); 761 return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 762 HasAnyUndefs) && 763 EltVT.getSizeInBits() >= SplatBitSize); 764 } 765 766 // \brief Returns the SDNode if it is a constant integer BuildVector 767 // or constant integer. 768 static SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) { 769 if (isa<ConstantSDNode>(N)) 770 return N.getNode(); 771 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 772 return N.getNode(); 773 return nullptr; 774 } 775 776 // \brief Returns the SDNode if it is a constant float BuildVector 777 // or constant float. 778 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 779 if (isa<ConstantFPSDNode>(N)) 780 return N.getNode(); 781 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 782 return N.getNode(); 783 return nullptr; 784 } 785 786 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 787 // int. 788 static ConstantSDNode *isConstOrConstSplat(SDValue N) { 789 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 790 return CN; 791 792 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 793 BitVector UndefElements; 794 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 795 796 // BuildVectors can truncate their operands. Ignore that case here. 797 // FIXME: We blindly ignore splats which include undef which is overly 798 // pessimistic. 799 if (CN && UndefElements.none() && 800 CN->getValueType(0) == N.getValueType().getScalarType()) 801 return CN; 802 } 803 804 return nullptr; 805 } 806 807 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 808 // float. 809 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { 810 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 811 return CN; 812 813 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 814 BitVector UndefElements; 815 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 816 817 if (CN && UndefElements.none()) 818 return CN; 819 } 820 821 return nullptr; 822 } 823 824 SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL, 825 SDValue N0, SDValue N1) { 826 EVT VT = N0.getValueType(); 827 if (N0.getOpcode() == Opc) { 828 if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 829 if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1)) { 830 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 831 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) 832 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 833 return SDValue(); 834 } 835 if (N0.hasOneUse()) { 836 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 837 // use 838 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 839 if (!OpNode.getNode()) 840 return SDValue(); 841 AddToWorklist(OpNode.getNode()); 842 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 843 } 844 } 845 } 846 847 if (N1.getOpcode() == Opc) { 848 if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { 849 if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0)) { 850 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 851 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) 852 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 853 return SDValue(); 854 } 855 if (N1.hasOneUse()) { 856 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one 857 // use 858 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0); 859 if (!OpNode.getNode()) 860 return SDValue(); 861 AddToWorklist(OpNode.getNode()); 862 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 863 } 864 } 865 } 866 867 return SDValue(); 868 } 869 870 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 871 bool AddTo) { 872 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 873 ++NodesCombined; 874 DEBUG(dbgs() << "\nReplacing.1 "; 875 N->dump(&DAG); 876 dbgs() << "\nWith: "; 877 To[0].getNode()->dump(&DAG); 878 dbgs() << " and " << NumTo-1 << " other values\n"); 879 for (unsigned i = 0, e = NumTo; i != e; ++i) 880 assert((!To[i].getNode() || 881 N->getValueType(i) == To[i].getValueType()) && 882 "Cannot combine value to value of different type!"); 883 884 WorklistRemover DeadNodes(*this); 885 DAG.ReplaceAllUsesWith(N, To); 886 if (AddTo) { 887 // Push the new nodes and any users onto the worklist 888 for (unsigned i = 0, e = NumTo; i != e; ++i) { 889 if (To[i].getNode()) { 890 AddToWorklist(To[i].getNode()); 891 AddUsersToWorklist(To[i].getNode()); 892 } 893 } 894 } 895 896 // Finally, if the node is now dead, remove it from the graph. The node 897 // may not be dead if the replacement process recursively simplified to 898 // something else needing this node. 899 if (N->use_empty()) 900 deleteAndRecombine(N); 901 return SDValue(N, 0); 902 } 903 904 void DAGCombiner:: 905 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 906 // Replace all uses. If any nodes become isomorphic to other nodes and 907 // are deleted, make sure to remove them from our worklist. 908 WorklistRemover DeadNodes(*this); 909 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 910 911 // Push the new node and any (possibly new) users onto the worklist. 912 AddToWorklist(TLO.New.getNode()); 913 AddUsersToWorklist(TLO.New.getNode()); 914 915 // Finally, if the node is now dead, remove it from the graph. The node 916 // may not be dead if the replacement process recursively simplified to 917 // something else needing this node. 918 if (TLO.Old.getNode()->use_empty()) 919 deleteAndRecombine(TLO.Old.getNode()); 920 } 921 922 /// Check the specified integer node value to see if it can be simplified or if 923 /// things it uses can be simplified by bit propagation. If so, return true. 924 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 925 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 926 APInt KnownZero, KnownOne; 927 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 928 return false; 929 930 // Revisit the node. 931 AddToWorklist(Op.getNode()); 932 933 // Replace the old value with the new one. 934 ++NodesCombined; 935 DEBUG(dbgs() << "\nReplacing.2 "; 936 TLO.Old.getNode()->dump(&DAG); 937 dbgs() << "\nWith: "; 938 TLO.New.getNode()->dump(&DAG); 939 dbgs() << '\n'); 940 941 CommitTargetLoweringOpt(TLO); 942 return true; 943 } 944 945 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 946 SDLoc dl(Load); 947 EVT VT = Load->getValueType(0); 948 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); 949 950 DEBUG(dbgs() << "\nReplacing.9 "; 951 Load->dump(&DAG); 952 dbgs() << "\nWith: "; 953 Trunc.getNode()->dump(&DAG); 954 dbgs() << '\n'); 955 WorklistRemover DeadNodes(*this); 956 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 957 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 958 deleteAndRecombine(Load); 959 AddToWorklist(Trunc.getNode()); 960 } 961 962 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 963 Replace = false; 964 SDLoc dl(Op); 965 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 966 EVT MemVT = LD->getMemoryVT(); 967 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 968 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 969 : ISD::EXTLOAD) 970 : LD->getExtensionType(); 971 Replace = true; 972 return DAG.getExtLoad(ExtType, dl, PVT, 973 LD->getChain(), LD->getBasePtr(), 974 MemVT, LD->getMemOperand()); 975 } 976 977 unsigned Opc = Op.getOpcode(); 978 switch (Opc) { 979 default: break; 980 case ISD::AssertSext: 981 return DAG.getNode(ISD::AssertSext, dl, PVT, 982 SExtPromoteOperand(Op.getOperand(0), PVT), 983 Op.getOperand(1)); 984 case ISD::AssertZext: 985 return DAG.getNode(ISD::AssertZext, dl, PVT, 986 ZExtPromoteOperand(Op.getOperand(0), PVT), 987 Op.getOperand(1)); 988 case ISD::Constant: { 989 unsigned ExtOpc = 990 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 991 return DAG.getNode(ExtOpc, dl, PVT, Op); 992 } 993 } 994 995 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 996 return SDValue(); 997 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); 998 } 999 1000 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1001 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1002 return SDValue(); 1003 EVT OldVT = Op.getValueType(); 1004 SDLoc dl(Op); 1005 bool Replace = false; 1006 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1007 if (!NewOp.getNode()) 1008 return SDValue(); 1009 AddToWorklist(NewOp.getNode()); 1010 1011 if (Replace) 1012 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1013 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, 1014 DAG.getValueType(OldVT)); 1015 } 1016 1017 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1018 EVT OldVT = Op.getValueType(); 1019 SDLoc dl(Op); 1020 bool Replace = false; 1021 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1022 if (!NewOp.getNode()) 1023 return SDValue(); 1024 AddToWorklist(NewOp.getNode()); 1025 1026 if (Replace) 1027 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1028 return DAG.getZeroExtendInReg(NewOp, dl, OldVT); 1029 } 1030 1031 /// Promote the specified integer binary operation if the target indicates it is 1032 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1033 /// i32 since i16 instructions are longer. 1034 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1035 if (!LegalOperations) 1036 return SDValue(); 1037 1038 EVT VT = Op.getValueType(); 1039 if (VT.isVector() || !VT.isInteger()) 1040 return SDValue(); 1041 1042 // If operation type is 'undesirable', e.g. i16 on x86, consider 1043 // promoting it. 1044 unsigned Opc = Op.getOpcode(); 1045 if (TLI.isTypeDesirableForOp(Opc, VT)) 1046 return SDValue(); 1047 1048 EVT PVT = VT; 1049 // Consult target whether it is a good idea to promote this operation and 1050 // what's the right type to promote it to. 1051 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1052 assert(PVT != VT && "Don't know what type to promote to!"); 1053 1054 bool Replace0 = false; 1055 SDValue N0 = Op.getOperand(0); 1056 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1057 if (!NN0.getNode()) 1058 return SDValue(); 1059 1060 bool Replace1 = false; 1061 SDValue N1 = Op.getOperand(1); 1062 SDValue NN1; 1063 if (N0 == N1) 1064 NN1 = NN0; 1065 else { 1066 NN1 = PromoteOperand(N1, PVT, Replace1); 1067 if (!NN1.getNode()) 1068 return SDValue(); 1069 } 1070 1071 AddToWorklist(NN0.getNode()); 1072 if (NN1.getNode()) 1073 AddToWorklist(NN1.getNode()); 1074 1075 if (Replace0) 1076 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1077 if (Replace1) 1078 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1079 1080 DEBUG(dbgs() << "\nPromoting "; 1081 Op.getNode()->dump(&DAG)); 1082 SDLoc dl(Op); 1083 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1084 DAG.getNode(Opc, dl, PVT, NN0, NN1)); 1085 } 1086 return SDValue(); 1087 } 1088 1089 /// Promote the specified integer shift operation if the target indicates it is 1090 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1091 /// i32 since i16 instructions are longer. 1092 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1093 if (!LegalOperations) 1094 return SDValue(); 1095 1096 EVT VT = Op.getValueType(); 1097 if (VT.isVector() || !VT.isInteger()) 1098 return SDValue(); 1099 1100 // If operation type is 'undesirable', e.g. i16 on x86, consider 1101 // promoting it. 1102 unsigned Opc = Op.getOpcode(); 1103 if (TLI.isTypeDesirableForOp(Opc, VT)) 1104 return SDValue(); 1105 1106 EVT PVT = VT; 1107 // Consult target whether it is a good idea to promote this operation and 1108 // what's the right type to promote it to. 1109 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1110 assert(PVT != VT && "Don't know what type to promote to!"); 1111 1112 bool Replace = false; 1113 SDValue N0 = Op.getOperand(0); 1114 if (Opc == ISD::SRA) 1115 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 1116 else if (Opc == ISD::SRL) 1117 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 1118 else 1119 N0 = PromoteOperand(N0, PVT, Replace); 1120 if (!N0.getNode()) 1121 return SDValue(); 1122 1123 AddToWorklist(N0.getNode()); 1124 if (Replace) 1125 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1126 1127 DEBUG(dbgs() << "\nPromoting "; 1128 Op.getNode()->dump(&DAG)); 1129 SDLoc dl(Op); 1130 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1131 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); 1132 } 1133 return SDValue(); 1134 } 1135 1136 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1137 if (!LegalOperations) 1138 return SDValue(); 1139 1140 EVT VT = Op.getValueType(); 1141 if (VT.isVector() || !VT.isInteger()) 1142 return SDValue(); 1143 1144 // If operation type is 'undesirable', e.g. i16 on x86, consider 1145 // promoting it. 1146 unsigned Opc = Op.getOpcode(); 1147 if (TLI.isTypeDesirableForOp(Opc, VT)) 1148 return SDValue(); 1149 1150 EVT PVT = VT; 1151 // Consult target whether it is a good idea to promote this operation and 1152 // what's the right type to promote it to. 1153 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1154 assert(PVT != VT && "Don't know what type to promote to!"); 1155 // fold (aext (aext x)) -> (aext x) 1156 // fold (aext (zext x)) -> (zext x) 1157 // fold (aext (sext x)) -> (sext x) 1158 DEBUG(dbgs() << "\nPromoting "; 1159 Op.getNode()->dump(&DAG)); 1160 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1161 } 1162 return SDValue(); 1163 } 1164 1165 bool DAGCombiner::PromoteLoad(SDValue Op) { 1166 if (!LegalOperations) 1167 return false; 1168 1169 EVT VT = Op.getValueType(); 1170 if (VT.isVector() || !VT.isInteger()) 1171 return false; 1172 1173 // If operation type is 'undesirable', e.g. i16 on x86, consider 1174 // promoting it. 1175 unsigned Opc = Op.getOpcode(); 1176 if (TLI.isTypeDesirableForOp(Opc, VT)) 1177 return false; 1178 1179 EVT PVT = VT; 1180 // Consult target whether it is a good idea to promote this operation and 1181 // what's the right type to promote it to. 1182 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1183 assert(PVT != VT && "Don't know what type to promote to!"); 1184 1185 SDLoc dl(Op); 1186 SDNode *N = Op.getNode(); 1187 LoadSDNode *LD = cast<LoadSDNode>(N); 1188 EVT MemVT = LD->getMemoryVT(); 1189 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1190 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1191 : ISD::EXTLOAD) 1192 : LD->getExtensionType(); 1193 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, 1194 LD->getChain(), LD->getBasePtr(), 1195 MemVT, LD->getMemOperand()); 1196 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); 1197 1198 DEBUG(dbgs() << "\nPromoting "; 1199 N->dump(&DAG); 1200 dbgs() << "\nTo: "; 1201 Result.getNode()->dump(&DAG); 1202 dbgs() << '\n'); 1203 WorklistRemover DeadNodes(*this); 1204 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1205 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1206 deleteAndRecombine(N); 1207 AddToWorklist(Result.getNode()); 1208 return true; 1209 } 1210 return false; 1211 } 1212 1213 /// \brief Recursively delete a node which has no uses and any operands for 1214 /// which it is the only use. 1215 /// 1216 /// Note that this both deletes the nodes and removes them from the worklist. 1217 /// It also adds any nodes who have had a user deleted to the worklist as they 1218 /// may now have only one use and subject to other combines. 1219 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1220 if (!N->use_empty()) 1221 return false; 1222 1223 SmallSetVector<SDNode *, 16> Nodes; 1224 Nodes.insert(N); 1225 do { 1226 N = Nodes.pop_back_val(); 1227 if (!N) 1228 continue; 1229 1230 if (N->use_empty()) { 1231 for (const SDValue &ChildN : N->op_values()) 1232 Nodes.insert(ChildN.getNode()); 1233 1234 removeFromWorklist(N); 1235 DAG.DeleteNode(N); 1236 } else { 1237 AddToWorklist(N); 1238 } 1239 } while (!Nodes.empty()); 1240 return true; 1241 } 1242 1243 //===----------------------------------------------------------------------===// 1244 // Main DAG Combiner implementation 1245 //===----------------------------------------------------------------------===// 1246 1247 void DAGCombiner::Run(CombineLevel AtLevel) { 1248 // set the instance variables, so that the various visit routines may use it. 1249 Level = AtLevel; 1250 LegalOperations = Level >= AfterLegalizeVectorOps; 1251 LegalTypes = Level >= AfterLegalizeTypes; 1252 1253 // Add all the dag nodes to the worklist. 1254 for (SDNode &Node : DAG.allnodes()) 1255 AddToWorklist(&Node); 1256 1257 // Create a dummy node (which is not added to allnodes), that adds a reference 1258 // to the root node, preventing it from being deleted, and tracking any 1259 // changes of the root. 1260 HandleSDNode Dummy(DAG.getRoot()); 1261 1262 // while the worklist isn't empty, find a node and 1263 // try and combine it. 1264 while (!WorklistMap.empty()) { 1265 SDNode *N; 1266 // The Worklist holds the SDNodes in order, but it may contain null entries. 1267 do { 1268 N = Worklist.pop_back_val(); 1269 } while (!N); 1270 1271 bool GoodWorklistEntry = WorklistMap.erase(N); 1272 (void)GoodWorklistEntry; 1273 assert(GoodWorklistEntry && 1274 "Found a worklist entry without a corresponding map entry!"); 1275 1276 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1277 // N is deleted from the DAG, since they too may now be dead or may have a 1278 // reduced number of uses, allowing other xforms. 1279 if (recursivelyDeleteUnusedNodes(N)) 1280 continue; 1281 1282 WorklistRemover DeadNodes(*this); 1283 1284 // If this combine is running after legalizing the DAG, re-legalize any 1285 // nodes pulled off the worklist. 1286 if (Level == AfterLegalizeDAG) { 1287 SmallSetVector<SDNode *, 16> UpdatedNodes; 1288 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1289 1290 for (SDNode *LN : UpdatedNodes) { 1291 AddToWorklist(LN); 1292 AddUsersToWorklist(LN); 1293 } 1294 if (!NIsValid) 1295 continue; 1296 } 1297 1298 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1299 1300 // Add any operands of the new node which have not yet been combined to the 1301 // worklist as well. Because the worklist uniques things already, this 1302 // won't repeatedly process the same operand. 1303 CombinedNodes.insert(N); 1304 for (const SDValue &ChildN : N->op_values()) 1305 if (!CombinedNodes.count(ChildN.getNode())) 1306 AddToWorklist(ChildN.getNode()); 1307 1308 SDValue RV = combine(N); 1309 1310 if (!RV.getNode()) 1311 continue; 1312 1313 ++NodesCombined; 1314 1315 // If we get back the same node we passed in, rather than a new node or 1316 // zero, we know that the node must have defined multiple values and 1317 // CombineTo was used. Since CombineTo takes care of the worklist 1318 // mechanics for us, we have no work to do in this case. 1319 if (RV.getNode() == N) 1320 continue; 1321 1322 assert(N->getOpcode() != ISD::DELETED_NODE && 1323 RV.getNode()->getOpcode() != ISD::DELETED_NODE && 1324 "Node was deleted but visit returned new node!"); 1325 1326 DEBUG(dbgs() << " ... into: "; 1327 RV.getNode()->dump(&DAG)); 1328 1329 // Transfer debug value. 1330 DAG.TransferDbgValues(SDValue(N, 0), RV); 1331 if (N->getNumValues() == RV.getNode()->getNumValues()) 1332 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1333 else { 1334 assert(N->getValueType(0) == RV.getValueType() && 1335 N->getNumValues() == 1 && "Type mismatch"); 1336 SDValue OpV = RV; 1337 DAG.ReplaceAllUsesWith(N, &OpV); 1338 } 1339 1340 // Push the new node and any users onto the worklist 1341 AddToWorklist(RV.getNode()); 1342 AddUsersToWorklist(RV.getNode()); 1343 1344 // Finally, if the node is now dead, remove it from the graph. The node 1345 // may not be dead if the replacement process recursively simplified to 1346 // something else needing this node. This will also take care of adding any 1347 // operands which have lost a user to the worklist. 1348 recursivelyDeleteUnusedNodes(N); 1349 } 1350 1351 // If the root changed (e.g. it was a dead load, update the root). 1352 DAG.setRoot(Dummy.getValue()); 1353 DAG.RemoveDeadNodes(); 1354 } 1355 1356 SDValue DAGCombiner::visit(SDNode *N) { 1357 switch (N->getOpcode()) { 1358 default: break; 1359 case ISD::TokenFactor: return visitTokenFactor(N); 1360 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1361 case ISD::ADD: return visitADD(N); 1362 case ISD::SUB: return visitSUB(N); 1363 case ISD::ADDC: return visitADDC(N); 1364 case ISD::SUBC: return visitSUBC(N); 1365 case ISD::ADDE: return visitADDE(N); 1366 case ISD::SUBE: return visitSUBE(N); 1367 case ISD::MUL: return visitMUL(N); 1368 case ISD::SDIV: return visitSDIV(N); 1369 case ISD::UDIV: return visitUDIV(N); 1370 case ISD::SREM: 1371 case ISD::UREM: return visitREM(N); 1372 case ISD::MULHU: return visitMULHU(N); 1373 case ISD::MULHS: return visitMULHS(N); 1374 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1375 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1376 case ISD::SMULO: return visitSMULO(N); 1377 case ISD::UMULO: return visitUMULO(N); 1378 case ISD::SMIN: 1379 case ISD::SMAX: 1380 case ISD::UMIN: 1381 case ISD::UMAX: return visitIMINMAX(N); 1382 case ISD::AND: return visitAND(N); 1383 case ISD::OR: return visitOR(N); 1384 case ISD::XOR: return visitXOR(N); 1385 case ISD::SHL: return visitSHL(N); 1386 case ISD::SRA: return visitSRA(N); 1387 case ISD::SRL: return visitSRL(N); 1388 case ISD::ROTR: 1389 case ISD::ROTL: return visitRotate(N); 1390 case ISD::BSWAP: return visitBSWAP(N); 1391 case ISD::CTLZ: return visitCTLZ(N); 1392 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1393 case ISD::CTTZ: return visitCTTZ(N); 1394 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1395 case ISD::CTPOP: return visitCTPOP(N); 1396 case ISD::SELECT: return visitSELECT(N); 1397 case ISD::VSELECT: return visitVSELECT(N); 1398 case ISD::SELECT_CC: return visitSELECT_CC(N); 1399 case ISD::SETCC: return visitSETCC(N); 1400 case ISD::SETCCE: return visitSETCCE(N); 1401 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1402 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1403 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1404 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1405 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1406 case ISD::TRUNCATE: return visitTRUNCATE(N); 1407 case ISD::BITCAST: return visitBITCAST(N); 1408 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1409 case ISD::FADD: return visitFADD(N); 1410 case ISD::FSUB: return visitFSUB(N); 1411 case ISD::FMUL: return visitFMUL(N); 1412 case ISD::FMA: return visitFMA(N); 1413 case ISD::FDIV: return visitFDIV(N); 1414 case ISD::FREM: return visitFREM(N); 1415 case ISD::FSQRT: return visitFSQRT(N); 1416 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1417 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1418 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1419 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1420 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1421 case ISD::FP_ROUND: return visitFP_ROUND(N); 1422 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1423 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1424 case ISD::FNEG: return visitFNEG(N); 1425 case ISD::FABS: return visitFABS(N); 1426 case ISD::FFLOOR: return visitFFLOOR(N); 1427 case ISD::FMINNUM: return visitFMINNUM(N); 1428 case ISD::FMAXNUM: return visitFMAXNUM(N); 1429 case ISD::FCEIL: return visitFCEIL(N); 1430 case ISD::FTRUNC: return visitFTRUNC(N); 1431 case ISD::BRCOND: return visitBRCOND(N); 1432 case ISD::BR_CC: return visitBR_CC(N); 1433 case ISD::LOAD: return visitLOAD(N); 1434 case ISD::STORE: return visitSTORE(N); 1435 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1436 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1437 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1438 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1439 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1440 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1441 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1442 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1443 case ISD::MGATHER: return visitMGATHER(N); 1444 case ISD::MLOAD: return visitMLOAD(N); 1445 case ISD::MSCATTER: return visitMSCATTER(N); 1446 case ISD::MSTORE: return visitMSTORE(N); 1447 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1448 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1449 } 1450 return SDValue(); 1451 } 1452 1453 SDValue DAGCombiner::combine(SDNode *N) { 1454 SDValue RV = visit(N); 1455 1456 // If nothing happened, try a target-specific DAG combine. 1457 if (!RV.getNode()) { 1458 assert(N->getOpcode() != ISD::DELETED_NODE && 1459 "Node was deleted but visit returned NULL!"); 1460 1461 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1462 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1463 1464 // Expose the DAG combiner to the target combiner impls. 1465 TargetLowering::DAGCombinerInfo 1466 DagCombineInfo(DAG, Level, false, this); 1467 1468 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1469 } 1470 } 1471 1472 // If nothing happened still, try promoting the operation. 1473 if (!RV.getNode()) { 1474 switch (N->getOpcode()) { 1475 default: break; 1476 case ISD::ADD: 1477 case ISD::SUB: 1478 case ISD::MUL: 1479 case ISD::AND: 1480 case ISD::OR: 1481 case ISD::XOR: 1482 RV = PromoteIntBinOp(SDValue(N, 0)); 1483 break; 1484 case ISD::SHL: 1485 case ISD::SRA: 1486 case ISD::SRL: 1487 RV = PromoteIntShiftOp(SDValue(N, 0)); 1488 break; 1489 case ISD::SIGN_EXTEND: 1490 case ISD::ZERO_EXTEND: 1491 case ISD::ANY_EXTEND: 1492 RV = PromoteExtend(SDValue(N, 0)); 1493 break; 1494 case ISD::LOAD: 1495 if (PromoteLoad(SDValue(N, 0))) 1496 RV = SDValue(N, 0); 1497 break; 1498 } 1499 } 1500 1501 // If N is a commutative binary node, try commuting it to enable more 1502 // sdisel CSE. 1503 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 1504 N->getNumValues() == 1) { 1505 SDValue N0 = N->getOperand(0); 1506 SDValue N1 = N->getOperand(1); 1507 1508 // Constant operands are canonicalized to RHS. 1509 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 1510 SDValue Ops[] = {N1, N0}; 1511 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1512 N->getFlags()); 1513 if (CSENode) 1514 return SDValue(CSENode, 0); 1515 } 1516 } 1517 1518 return RV; 1519 } 1520 1521 /// Given a node, return its input chain if it has one, otherwise return a null 1522 /// sd operand. 1523 static SDValue getInputChainForNode(SDNode *N) { 1524 if (unsigned NumOps = N->getNumOperands()) { 1525 if (N->getOperand(0).getValueType() == MVT::Other) 1526 return N->getOperand(0); 1527 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1528 return N->getOperand(NumOps-1); 1529 for (unsigned i = 1; i < NumOps-1; ++i) 1530 if (N->getOperand(i).getValueType() == MVT::Other) 1531 return N->getOperand(i); 1532 } 1533 return SDValue(); 1534 } 1535 1536 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1537 // If N has two operands, where one has an input chain equal to the other, 1538 // the 'other' chain is redundant. 1539 if (N->getNumOperands() == 2) { 1540 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1541 return N->getOperand(0); 1542 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1543 return N->getOperand(1); 1544 } 1545 1546 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1547 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1548 SmallPtrSet<SDNode*, 16> SeenOps; 1549 bool Changed = false; // If we should replace this token factor. 1550 1551 // Start out with this token factor. 1552 TFs.push_back(N); 1553 1554 // Iterate through token factors. The TFs grows when new token factors are 1555 // encountered. 1556 for (unsigned i = 0; i < TFs.size(); ++i) { 1557 SDNode *TF = TFs[i]; 1558 1559 // Check each of the operands. 1560 for (const SDValue &Op : TF->op_values()) { 1561 1562 switch (Op.getOpcode()) { 1563 case ISD::EntryToken: 1564 // Entry tokens don't need to be added to the list. They are 1565 // redundant. 1566 Changed = true; 1567 break; 1568 1569 case ISD::TokenFactor: 1570 if (Op.hasOneUse() && 1571 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { 1572 // Queue up for processing. 1573 TFs.push_back(Op.getNode()); 1574 // Clean up in case the token factor is removed. 1575 AddToWorklist(Op.getNode()); 1576 Changed = true; 1577 break; 1578 } 1579 // Fall thru 1580 1581 default: 1582 // Only add if it isn't already in the list. 1583 if (SeenOps.insert(Op.getNode()).second) 1584 Ops.push_back(Op); 1585 else 1586 Changed = true; 1587 break; 1588 } 1589 } 1590 } 1591 1592 SDValue Result; 1593 1594 // If we've changed things around then replace token factor. 1595 if (Changed) { 1596 if (Ops.empty()) { 1597 // The entry token is the only possible outcome. 1598 Result = DAG.getEntryNode(); 1599 } else { 1600 // New and improved token factor. 1601 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 1602 } 1603 1604 // Add users to worklist if AA is enabled, since it may introduce 1605 // a lot of new chained token factors while removing memory deps. 1606 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 1607 : DAG.getSubtarget().useAA(); 1608 return CombineTo(N, Result, UseAA /*add to worklist*/); 1609 } 1610 1611 return Result; 1612 } 1613 1614 /// MERGE_VALUES can always be eliminated. 1615 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1616 WorklistRemover DeadNodes(*this); 1617 // Replacing results may cause a different MERGE_VALUES to suddenly 1618 // be CSE'd with N, and carry its uses with it. Iterate until no 1619 // uses remain, to ensure that the node can be safely deleted. 1620 // First add the users of this node to the work list so that they 1621 // can be tried again once they have new operands. 1622 AddUsersToWorklist(N); 1623 do { 1624 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1625 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 1626 } while (!N->use_empty()); 1627 deleteAndRecombine(N); 1628 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1629 } 1630 1631 /// If \p N is a ContantSDNode with isOpaque() == false return it casted to a 1632 /// ContantSDNode pointer else nullptr. 1633 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1634 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1635 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1636 } 1637 1638 SDValue DAGCombiner::visitADD(SDNode *N) { 1639 SDValue N0 = N->getOperand(0); 1640 SDValue N1 = N->getOperand(1); 1641 EVT VT = N0.getValueType(); 1642 1643 // fold vector ops 1644 if (VT.isVector()) { 1645 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1646 return FoldedVOp; 1647 1648 // fold (add x, 0) -> x, vector edition 1649 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1650 return N0; 1651 if (ISD::isBuildVectorAllZeros(N0.getNode())) 1652 return N1; 1653 } 1654 1655 // fold (add x, undef) -> undef 1656 if (N0.getOpcode() == ISD::UNDEF) 1657 return N0; 1658 if (N1.getOpcode() == ISD::UNDEF) 1659 return N1; 1660 // fold (add c1, c2) -> c1+c2 1661 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1662 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1663 if (N0C && N1C) 1664 return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, N0C, N1C); 1665 // canonicalize constant to RHS 1666 if (isConstantIntBuildVectorOrConstantInt(N0) && 1667 !isConstantIntBuildVectorOrConstantInt(N1)) 1668 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); 1669 // fold (add x, 0) -> x 1670 if (isNullConstant(N1)) 1671 return N0; 1672 // fold (add Sym, c) -> Sym+c 1673 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1674 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C && 1675 GA->getOpcode() == ISD::GlobalAddress) 1676 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1677 GA->getOffset() + 1678 (uint64_t)N1C->getSExtValue()); 1679 // fold ((c1-A)+c2) -> (c1+c2)-A 1680 if (N1C && N0.getOpcode() == ISD::SUB) 1681 if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) { 1682 SDLoc DL(N); 1683 return DAG.getNode(ISD::SUB, DL, VT, 1684 DAG.getConstant(N1C->getAPIntValue()+ 1685 N0C->getAPIntValue(), DL, VT), 1686 N0.getOperand(1)); 1687 } 1688 // reassociate add 1689 if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1)) 1690 return RADD; 1691 // fold ((0-A) + B) -> B-A 1692 if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0))) 1693 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); 1694 // fold (A + (0-B)) -> A-B 1695 if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0))) 1696 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); 1697 // fold (A+(B-A)) -> B 1698 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 1699 return N1.getOperand(0); 1700 // fold ((B-A)+A) -> B 1701 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 1702 return N0.getOperand(0); 1703 // fold (A+(B-(A+C))) to (B-C) 1704 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1705 N0 == N1.getOperand(1).getOperand(0)) 1706 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1707 N1.getOperand(1).getOperand(1)); 1708 // fold (A+(B-(C+A))) to (B-C) 1709 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1710 N0 == N1.getOperand(1).getOperand(1)) 1711 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1712 N1.getOperand(1).getOperand(0)); 1713 // fold (A+((B-A)+or-C)) to (B+or-C) 1714 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 1715 N1.getOperand(0).getOpcode() == ISD::SUB && 1716 N0 == N1.getOperand(0).getOperand(1)) 1717 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, 1718 N1.getOperand(0).getOperand(0), N1.getOperand(1)); 1719 1720 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 1721 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 1722 SDValue N00 = N0.getOperand(0); 1723 SDValue N01 = N0.getOperand(1); 1724 SDValue N10 = N1.getOperand(0); 1725 SDValue N11 = N1.getOperand(1); 1726 1727 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) 1728 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1729 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 1730 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 1731 } 1732 1733 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 1734 return SDValue(N, 0); 1735 1736 // fold (a+b) -> (a|b) iff a and b share no bits. 1737 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 1738 VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1)) 1739 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); 1740 1741 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 1742 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 1743 isNullConstant(N1.getOperand(0).getOperand(0))) 1744 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, 1745 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1746 N1.getOperand(0).getOperand(1), 1747 N1.getOperand(1))); 1748 if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && 1749 isNullConstant(N0.getOperand(0).getOperand(0))) 1750 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, 1751 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1752 N0.getOperand(0).getOperand(1), 1753 N0.getOperand(1))); 1754 1755 if (N1.getOpcode() == ISD::AND) { 1756 SDValue AndOp0 = N1.getOperand(0); 1757 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 1758 unsigned DestBits = VT.getScalarType().getSizeInBits(); 1759 1760 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 1761 // and similar xforms where the inner op is either ~0 or 0. 1762 if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) { 1763 SDLoc DL(N); 1764 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 1765 } 1766 } 1767 1768 // add (sext i1), X -> sub X, (zext i1) 1769 if (N0.getOpcode() == ISD::SIGN_EXTEND && 1770 N0.getOperand(0).getValueType() == MVT::i1 && 1771 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 1772 SDLoc DL(N); 1773 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 1774 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 1775 } 1776 1777 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 1778 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1779 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1780 if (TN->getVT() == MVT::i1) { 1781 SDLoc DL(N); 1782 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1783 DAG.getConstant(1, DL, VT)); 1784 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 1785 } 1786 } 1787 1788 return SDValue(); 1789 } 1790 1791 SDValue DAGCombiner::visitADDC(SDNode *N) { 1792 SDValue N0 = N->getOperand(0); 1793 SDValue N1 = N->getOperand(1); 1794 EVT VT = N0.getValueType(); 1795 1796 // If the flag result is dead, turn this into an ADD. 1797 if (!N->hasAnyUseOfValue(1)) 1798 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 1799 DAG.getNode(ISD::CARRY_FALSE, 1800 SDLoc(N), MVT::Glue)); 1801 1802 // canonicalize constant to RHS. 1803 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1804 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1805 if (N0C && !N1C) 1806 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 1807 1808 // fold (addc x, 0) -> x + no carry out 1809 if (isNullConstant(N1)) 1810 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 1811 SDLoc(N), MVT::Glue)); 1812 1813 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 1814 APInt LHSZero, LHSOne; 1815 APInt RHSZero, RHSOne; 1816 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1817 1818 if (LHSZero.getBoolValue()) { 1819 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1820 1821 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1822 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1823 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 1824 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 1825 DAG.getNode(ISD::CARRY_FALSE, 1826 SDLoc(N), MVT::Glue)); 1827 } 1828 1829 return SDValue(); 1830 } 1831 1832 SDValue DAGCombiner::visitADDE(SDNode *N) { 1833 SDValue N0 = N->getOperand(0); 1834 SDValue N1 = N->getOperand(1); 1835 SDValue CarryIn = N->getOperand(2); 1836 1837 // canonicalize constant to RHS 1838 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1839 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1840 if (N0C && !N1C) 1841 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 1842 N1, N0, CarryIn); 1843 1844 // fold (adde x, y, false) -> (addc x, y) 1845 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1846 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 1847 1848 return SDValue(); 1849 } 1850 1851 // Since it may not be valid to emit a fold to zero for vector initializers 1852 // check if we can before folding. 1853 static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT, 1854 SelectionDAG &DAG, 1855 bool LegalOperations, bool LegalTypes) { 1856 if (!VT.isVector()) 1857 return DAG.getConstant(0, DL, VT); 1858 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 1859 return DAG.getConstant(0, DL, VT); 1860 return SDValue(); 1861 } 1862 1863 SDValue DAGCombiner::visitSUB(SDNode *N) { 1864 SDValue N0 = N->getOperand(0); 1865 SDValue N1 = N->getOperand(1); 1866 EVT VT = N0.getValueType(); 1867 1868 // fold vector ops 1869 if (VT.isVector()) { 1870 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1871 return FoldedVOp; 1872 1873 // fold (sub x, 0) -> x, vector edition 1874 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1875 return N0; 1876 } 1877 1878 // fold (sub x, x) -> 0 1879 // FIXME: Refactor this and xor and other similar operations together. 1880 if (N0 == N1) 1881 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 1882 // fold (sub c1, c2) -> c1-c2 1883 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1884 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1885 if (N0C && N1C) 1886 return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, N0C, N1C); 1887 // fold (sub x, c) -> (add x, -c) 1888 if (N1C) { 1889 SDLoc DL(N); 1890 return DAG.getNode(ISD::ADD, DL, VT, N0, 1891 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 1892 } 1893 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 1894 if (isAllOnesConstant(N0)) 1895 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 1896 // fold A-(A-B) -> B 1897 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 1898 return N1.getOperand(1); 1899 // fold (A+B)-A -> B 1900 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 1901 return N0.getOperand(1); 1902 // fold (A+B)-B -> A 1903 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 1904 return N0.getOperand(0); 1905 // fold C2-(A+C1) -> (C2-C1)-A 1906 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : 1907 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); 1908 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { 1909 SDLoc DL(N); 1910 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), 1911 DL, VT); 1912 return DAG.getNode(ISD::SUB, DL, VT, NewC, 1913 N1.getOperand(0)); 1914 } 1915 // fold ((A+(B+or-C))-B) -> A+or-C 1916 if (N0.getOpcode() == ISD::ADD && 1917 (N0.getOperand(1).getOpcode() == ISD::SUB || 1918 N0.getOperand(1).getOpcode() == ISD::ADD) && 1919 N0.getOperand(1).getOperand(0) == N1) 1920 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, 1921 N0.getOperand(0), N0.getOperand(1).getOperand(1)); 1922 // fold ((A+(C+B))-B) -> A+C 1923 if (N0.getOpcode() == ISD::ADD && 1924 N0.getOperand(1).getOpcode() == ISD::ADD && 1925 N0.getOperand(1).getOperand(1) == N1) 1926 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 1927 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1928 // fold ((A-(B-C))-C) -> A-B 1929 if (N0.getOpcode() == ISD::SUB && 1930 N0.getOperand(1).getOpcode() == ISD::SUB && 1931 N0.getOperand(1).getOperand(1) == N1) 1932 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1933 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1934 1935 // If either operand of a sub is undef, the result is undef 1936 if (N0.getOpcode() == ISD::UNDEF) 1937 return N0; 1938 if (N1.getOpcode() == ISD::UNDEF) 1939 return N1; 1940 1941 // If the relocation model supports it, consider symbol offsets. 1942 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1943 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 1944 // fold (sub Sym, c) -> Sym-c 1945 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 1946 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1947 GA->getOffset() - 1948 (uint64_t)N1C->getSExtValue()); 1949 // fold (sub Sym+c1, Sym+c2) -> c1-c2 1950 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 1951 if (GA->getGlobal() == GB->getGlobal()) 1952 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 1953 SDLoc(N), VT); 1954 } 1955 1956 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 1957 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1958 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1959 if (TN->getVT() == MVT::i1) { 1960 SDLoc DL(N); 1961 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1962 DAG.getConstant(1, DL, VT)); 1963 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 1964 } 1965 } 1966 1967 return SDValue(); 1968 } 1969 1970 SDValue DAGCombiner::visitSUBC(SDNode *N) { 1971 SDValue N0 = N->getOperand(0); 1972 SDValue N1 = N->getOperand(1); 1973 EVT VT = N0.getValueType(); 1974 SDLoc DL(N); 1975 1976 // If the flag result is dead, turn this into an SUB. 1977 if (!N->hasAnyUseOfValue(1)) 1978 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 1979 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1980 1981 // fold (subc x, x) -> 0 + no borrow 1982 if (N0 == N1) 1983 return CombineTo(N, DAG.getConstant(0, DL, VT), 1984 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1985 1986 // fold (subc x, 0) -> x + no borrow 1987 if (isNullConstant(N1)) 1988 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1989 1990 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 1991 if (isAllOnesConstant(N0)) 1992 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 1993 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1994 1995 return SDValue(); 1996 } 1997 1998 SDValue DAGCombiner::visitSUBE(SDNode *N) { 1999 SDValue N0 = N->getOperand(0); 2000 SDValue N1 = N->getOperand(1); 2001 SDValue CarryIn = N->getOperand(2); 2002 2003 // fold (sube x, y, false) -> (subc x, y) 2004 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2005 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 2006 2007 return SDValue(); 2008 } 2009 2010 SDValue DAGCombiner::visitMUL(SDNode *N) { 2011 SDValue N0 = N->getOperand(0); 2012 SDValue N1 = N->getOperand(1); 2013 EVT VT = N0.getValueType(); 2014 2015 // fold (mul x, undef) -> 0 2016 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2017 return DAG.getConstant(0, SDLoc(N), VT); 2018 2019 bool N0IsConst = false; 2020 bool N1IsConst = false; 2021 bool N1IsOpaqueConst = false; 2022 bool N0IsOpaqueConst = false; 2023 APInt ConstValue0, ConstValue1; 2024 // fold vector ops 2025 if (VT.isVector()) { 2026 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2027 return FoldedVOp; 2028 2029 N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0); 2030 N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1); 2031 } else { 2032 N0IsConst = isa<ConstantSDNode>(N0); 2033 if (N0IsConst) { 2034 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 2035 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 2036 } 2037 N1IsConst = isa<ConstantSDNode>(N1); 2038 if (N1IsConst) { 2039 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 2040 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 2041 } 2042 } 2043 2044 // fold (mul c1, c2) -> c1*c2 2045 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 2046 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 2047 N0.getNode(), N1.getNode()); 2048 2049 // canonicalize constant to RHS (vector doesn't have to splat) 2050 if (isConstantIntBuildVectorOrConstantInt(N0) && 2051 !isConstantIntBuildVectorOrConstantInt(N1)) 2052 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 2053 // fold (mul x, 0) -> 0 2054 if (N1IsConst && ConstValue1 == 0) 2055 return N1; 2056 // We require a splat of the entire scalar bit width for non-contiguous 2057 // bit patterns. 2058 bool IsFullSplat = 2059 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); 2060 // fold (mul x, 1) -> x 2061 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 2062 return N0; 2063 // fold (mul x, -1) -> 0-x 2064 if (N1IsConst && ConstValue1.isAllOnesValue()) { 2065 SDLoc DL(N); 2066 return DAG.getNode(ISD::SUB, DL, VT, 2067 DAG.getConstant(0, DL, VT), N0); 2068 } 2069 // fold (mul x, (1 << c)) -> x << c 2070 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && 2071 IsFullSplat) { 2072 SDLoc DL(N); 2073 return DAG.getNode(ISD::SHL, DL, VT, N0, 2074 DAG.getConstant(ConstValue1.logBase2(), DL, 2075 getShiftAmountTy(N0.getValueType()))); 2076 } 2077 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 2078 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && 2079 IsFullSplat) { 2080 unsigned Log2Val = (-ConstValue1).logBase2(); 2081 SDLoc DL(N); 2082 // FIXME: If the input is something that is easily negated (e.g. a 2083 // single-use add), we should put the negate there. 2084 return DAG.getNode(ISD::SUB, DL, VT, 2085 DAG.getConstant(0, DL, VT), 2086 DAG.getNode(ISD::SHL, DL, VT, N0, 2087 DAG.getConstant(Log2Val, DL, 2088 getShiftAmountTy(N0.getValueType())))); 2089 } 2090 2091 APInt Val; 2092 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 2093 if (N1IsConst && N0.getOpcode() == ISD::SHL && 2094 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2095 isa<ConstantSDNode>(N0.getOperand(1)))) { 2096 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, 2097 N1, N0.getOperand(1)); 2098 AddToWorklist(C3.getNode()); 2099 return DAG.getNode(ISD::MUL, SDLoc(N), VT, 2100 N0.getOperand(0), C3); 2101 } 2102 2103 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 2104 // use. 2105 { 2106 SDValue Sh(nullptr,0), Y(nullptr,0); 2107 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 2108 if (N0.getOpcode() == ISD::SHL && 2109 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2110 isa<ConstantSDNode>(N0.getOperand(1))) && 2111 N0.getNode()->hasOneUse()) { 2112 Sh = N0; Y = N1; 2113 } else if (N1.getOpcode() == ISD::SHL && 2114 isa<ConstantSDNode>(N1.getOperand(1)) && 2115 N1.getNode()->hasOneUse()) { 2116 Sh = N1; Y = N0; 2117 } 2118 2119 if (Sh.getNode()) { 2120 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 2121 Sh.getOperand(0), Y); 2122 return DAG.getNode(ISD::SHL, SDLoc(N), VT, 2123 Mul, Sh.getOperand(1)); 2124 } 2125 } 2126 2127 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 2128 if (isConstantIntBuildVectorOrConstantInt(N1) && 2129 N0.getOpcode() == ISD::ADD && 2130 isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 2131 isMulAddWithConstProfitable(N, N0, N1)) 2132 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 2133 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 2134 N0.getOperand(0), N1), 2135 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 2136 N0.getOperand(1), N1)); 2137 2138 // reassociate mul 2139 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) 2140 return RMUL; 2141 2142 return SDValue(); 2143 } 2144 2145 /// Return true if divmod libcall is available. 2146 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2147 const TargetLowering &TLI) { 2148 RTLIB::Libcall LC; 2149 switch (Node->getSimpleValueType(0).SimpleTy) { 2150 default: return false; // No libcall for vector types. 2151 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2152 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2153 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2154 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2155 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2156 } 2157 2158 return TLI.getLibcallName(LC) != nullptr; 2159 } 2160 2161 /// Issue divrem if both quotient and remainder are needed. 2162 SDValue DAGCombiner::useDivRem(SDNode *Node) { 2163 if (Node->use_empty()) 2164 return SDValue(); // This is a dead node, leave it alone. 2165 2166 EVT VT = Node->getValueType(0); 2167 if (!TLI.isTypeLegal(VT)) 2168 return SDValue(); 2169 2170 unsigned Opcode = Node->getOpcode(); 2171 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 2172 2173 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2174 // If DIVREM is going to get expanded into a libcall, 2175 // but there is no libcall available, then don't combine. 2176 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 2177 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 2178 return SDValue(); 2179 2180 // If div is legal, it's better to do the normal expansion 2181 unsigned OtherOpcode = 0; 2182 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 2183 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 2184 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 2185 return SDValue(); 2186 } else { 2187 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2188 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 2189 return SDValue(); 2190 } 2191 2192 SDValue Op0 = Node->getOperand(0); 2193 SDValue Op1 = Node->getOperand(1); 2194 SDValue combined; 2195 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2196 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2197 SDNode *User = *UI; 2198 if (User == Node || User->use_empty()) 2199 continue; 2200 // Convert the other matching node(s), too; 2201 // otherwise, the DIVREM may get target-legalized into something 2202 // target-specific that we won't be able to recognize. 2203 unsigned UserOpc = User->getOpcode(); 2204 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 2205 User->getOperand(0) == Op0 && 2206 User->getOperand(1) == Op1) { 2207 if (!combined) { 2208 if (UserOpc == OtherOpcode) { 2209 SDVTList VTs = DAG.getVTList(VT, VT); 2210 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 2211 } else if (UserOpc == DivRemOpc) { 2212 combined = SDValue(User, 0); 2213 } else { 2214 assert(UserOpc == Opcode); 2215 continue; 2216 } 2217 } 2218 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 2219 CombineTo(User, combined); 2220 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 2221 CombineTo(User, combined.getValue(1)); 2222 } 2223 } 2224 return combined; 2225 } 2226 2227 SDValue DAGCombiner::visitSDIV(SDNode *N) { 2228 SDValue N0 = N->getOperand(0); 2229 SDValue N1 = N->getOperand(1); 2230 EVT VT = N->getValueType(0); 2231 2232 // fold vector ops 2233 if (VT.isVector()) 2234 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2235 return FoldedVOp; 2236 2237 SDLoc DL(N); 2238 2239 // fold (sdiv c1, c2) -> c1/c2 2240 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2241 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2242 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 2243 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); 2244 // fold (sdiv X, 1) -> X 2245 if (N1C && N1C->isOne()) 2246 return N0; 2247 // fold (sdiv X, -1) -> 0-X 2248 if (N1C && N1C->isAllOnesValue()) 2249 return DAG.getNode(ISD::SUB, DL, VT, 2250 DAG.getConstant(0, DL, VT), N0); 2251 2252 // If we know the sign bits of both operands are zero, strength reduce to a 2253 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 2254 if (!VT.isVector()) { 2255 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2256 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 2257 } 2258 2259 // fold (sdiv X, pow2) -> simple ops after legalize 2260 // FIXME: We check for the exact bit here because the generic lowering gives 2261 // better results in that case. The target-specific lowering should learn how 2262 // to handle exact sdivs efficiently. 2263 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2264 !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && 2265 (N1C->getAPIntValue().isPowerOf2() || 2266 (-N1C->getAPIntValue()).isPowerOf2())) { 2267 // Target-specific implementation of sdiv x, pow2. 2268 if (SDValue Res = BuildSDIVPow2(N)) 2269 return Res; 2270 2271 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 2272 2273 // Splat the sign bit into the register 2274 SDValue SGN = 2275 DAG.getNode(ISD::SRA, DL, VT, N0, 2276 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, 2277 getShiftAmountTy(N0.getValueType()))); 2278 AddToWorklist(SGN.getNode()); 2279 2280 // Add (N0 < 0) ? abs2 - 1 : 0; 2281 SDValue SRL = 2282 DAG.getNode(ISD::SRL, DL, VT, SGN, 2283 DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, 2284 getShiftAmountTy(SGN.getValueType()))); 2285 SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); 2286 AddToWorklist(SRL.getNode()); 2287 AddToWorklist(ADD.getNode()); // Divide by pow2 2288 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, 2289 DAG.getConstant(lg2, DL, 2290 getShiftAmountTy(ADD.getValueType()))); 2291 2292 // If we're dividing by a positive value, we're done. Otherwise, we must 2293 // negate the result. 2294 if (N1C->getAPIntValue().isNonNegative()) 2295 return SRA; 2296 2297 AddToWorklist(SRA.getNode()); 2298 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 2299 } 2300 2301 // If integer divide is expensive and we satisfy the requirements, emit an 2302 // alternate sequence. Targets may check function attributes for size/speed 2303 // trade-offs. 2304 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2305 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2306 if (SDValue Op = BuildSDIV(N)) 2307 return Op; 2308 2309 // sdiv, srem -> sdivrem 2310 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2311 // Otherwise, we break the simplification logic in visitREM(). 2312 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2313 if (SDValue DivRem = useDivRem(N)) 2314 return DivRem; 2315 2316 // undef / X -> 0 2317 if (N0.getOpcode() == ISD::UNDEF) 2318 return DAG.getConstant(0, DL, VT); 2319 // X / undef -> undef 2320 if (N1.getOpcode() == ISD::UNDEF) 2321 return N1; 2322 2323 return SDValue(); 2324 } 2325 2326 SDValue DAGCombiner::visitUDIV(SDNode *N) { 2327 SDValue N0 = N->getOperand(0); 2328 SDValue N1 = N->getOperand(1); 2329 EVT VT = N->getValueType(0); 2330 2331 // fold vector ops 2332 if (VT.isVector()) 2333 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2334 return FoldedVOp; 2335 2336 SDLoc DL(N); 2337 2338 // fold (udiv c1, c2) -> c1/c2 2339 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2340 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2341 if (N0C && N1C) 2342 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, 2343 N0C, N1C)) 2344 return Folded; 2345 // fold (udiv x, (1 << c)) -> x >>u c 2346 if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) 2347 return DAG.getNode(ISD::SRL, DL, VT, N0, 2348 DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, 2349 getShiftAmountTy(N0.getValueType()))); 2350 2351 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 2352 if (N1.getOpcode() == ISD::SHL) { 2353 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2354 if (SHC->getAPIntValue().isPowerOf2()) { 2355 EVT ADDVT = N1.getOperand(1).getValueType(); 2356 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, 2357 N1.getOperand(1), 2358 DAG.getConstant(SHC->getAPIntValue() 2359 .logBase2(), 2360 DL, ADDVT)); 2361 AddToWorklist(Add.getNode()); 2362 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 2363 } 2364 } 2365 } 2366 2367 // fold (udiv x, c) -> alternate 2368 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2369 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2370 if (SDValue Op = BuildUDIV(N)) 2371 return Op; 2372 2373 // sdiv, srem -> sdivrem 2374 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2375 // Otherwise, we break the simplification logic in visitREM(). 2376 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2377 if (SDValue DivRem = useDivRem(N)) 2378 return DivRem; 2379 2380 // undef / X -> 0 2381 if (N0.getOpcode() == ISD::UNDEF) 2382 return DAG.getConstant(0, DL, VT); 2383 // X / undef -> undef 2384 if (N1.getOpcode() == ISD::UNDEF) 2385 return N1; 2386 2387 return SDValue(); 2388 } 2389 2390 // handles ISD::SREM and ISD::UREM 2391 SDValue DAGCombiner::visitREM(SDNode *N) { 2392 unsigned Opcode = N->getOpcode(); 2393 SDValue N0 = N->getOperand(0); 2394 SDValue N1 = N->getOperand(1); 2395 EVT VT = N->getValueType(0); 2396 bool isSigned = (Opcode == ISD::SREM); 2397 SDLoc DL(N); 2398 2399 // fold (rem c1, c2) -> c1%c2 2400 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2401 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2402 if (N0C && N1C) 2403 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) 2404 return Folded; 2405 2406 if (isSigned) { 2407 // If we know the sign bits of both operands are zero, strength reduce to a 2408 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 2409 if (!VT.isVector()) { 2410 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2411 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 2412 } 2413 } else { 2414 // fold (urem x, pow2) -> (and x, pow2-1) 2415 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2416 N1C->getAPIntValue().isPowerOf2()) { 2417 return DAG.getNode(ISD::AND, DL, VT, N0, 2418 DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); 2419 } 2420 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 2421 if (N1.getOpcode() == ISD::SHL) { 2422 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2423 if (SHC->getAPIntValue().isPowerOf2()) { 2424 SDValue Add = 2425 DAG.getNode(ISD::ADD, DL, VT, N1, 2426 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, 2427 VT)); 2428 AddToWorklist(Add.getNode()); 2429 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 2430 } 2431 } 2432 } 2433 } 2434 2435 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2436 2437 // If X/C can be simplified by the division-by-constant logic, lower 2438 // X%C to the equivalent of X-X/C*C. 2439 // To avoid mangling nodes, this simplification requires that the combine() 2440 // call for the speculative DIV must not cause a DIVREM conversion. We guard 2441 // against this by skipping the simplification if isIntDivCheap(). When 2442 // div is not cheap, combine will not return a DIVREM. Regardless, 2443 // checking cheapness here makes sense since the simplification results in 2444 // fatter code. 2445 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { 2446 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2447 SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); 2448 AddToWorklist(Div.getNode()); 2449 SDValue OptimizedDiv = combine(Div.getNode()); 2450 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2451 assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && 2452 (OptimizedDiv.getOpcode() != ISD::SDIVREM)); 2453 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 2454 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 2455 AddToWorklist(Mul.getNode()); 2456 return Sub; 2457 } 2458 } 2459 2460 // sdiv, srem -> sdivrem 2461 if (SDValue DivRem = useDivRem(N)) 2462 return DivRem.getValue(1); 2463 2464 // undef % X -> 0 2465 if (N0.getOpcode() == ISD::UNDEF) 2466 return DAG.getConstant(0, DL, VT); 2467 // X % undef -> undef 2468 if (N1.getOpcode() == ISD::UNDEF) 2469 return N1; 2470 2471 return SDValue(); 2472 } 2473 2474 SDValue DAGCombiner::visitMULHS(SDNode *N) { 2475 SDValue N0 = N->getOperand(0); 2476 SDValue N1 = N->getOperand(1); 2477 EVT VT = N->getValueType(0); 2478 SDLoc DL(N); 2479 2480 // fold (mulhs x, 0) -> 0 2481 if (isNullConstant(N1)) 2482 return N1; 2483 // fold (mulhs x, 1) -> (sra x, size(x)-1) 2484 if (isOneConstant(N1)) { 2485 SDLoc DL(N); 2486 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 2487 DAG.getConstant(N0.getValueType().getSizeInBits() - 1, 2488 DL, 2489 getShiftAmountTy(N0.getValueType()))); 2490 } 2491 // fold (mulhs x, undef) -> 0 2492 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2493 return DAG.getConstant(0, SDLoc(N), VT); 2494 2495 // If the type twice as wide is legal, transform the mulhs to a wider multiply 2496 // plus a shift. 2497 if (VT.isSimple() && !VT.isVector()) { 2498 MVT Simple = VT.getSimpleVT(); 2499 unsigned SimpleSize = Simple.getSizeInBits(); 2500 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2501 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2502 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 2503 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 2504 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2505 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2506 DAG.getConstant(SimpleSize, DL, 2507 getShiftAmountTy(N1.getValueType()))); 2508 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2509 } 2510 } 2511 2512 return SDValue(); 2513 } 2514 2515 SDValue DAGCombiner::visitMULHU(SDNode *N) { 2516 SDValue N0 = N->getOperand(0); 2517 SDValue N1 = N->getOperand(1); 2518 EVT VT = N->getValueType(0); 2519 SDLoc DL(N); 2520 2521 // fold (mulhu x, 0) -> 0 2522 if (isNullConstant(N1)) 2523 return N1; 2524 // fold (mulhu x, 1) -> 0 2525 if (isOneConstant(N1)) 2526 return DAG.getConstant(0, DL, N0.getValueType()); 2527 // fold (mulhu x, undef) -> 0 2528 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2529 return DAG.getConstant(0, DL, VT); 2530 2531 // If the type twice as wide is legal, transform the mulhu to a wider multiply 2532 // plus a shift. 2533 if (VT.isSimple() && !VT.isVector()) { 2534 MVT Simple = VT.getSimpleVT(); 2535 unsigned SimpleSize = Simple.getSizeInBits(); 2536 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2537 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2538 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 2539 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 2540 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2541 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2542 DAG.getConstant(SimpleSize, DL, 2543 getShiftAmountTy(N1.getValueType()))); 2544 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2545 } 2546 } 2547 2548 return SDValue(); 2549 } 2550 2551 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 2552 /// give the opcodes for the two computations that are being performed. Return 2553 /// true if a simplification was made. 2554 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 2555 unsigned HiOp) { 2556 // If the high half is not needed, just compute the low half. 2557 bool HiExists = N->hasAnyUseOfValue(1); 2558 if (!HiExists && 2559 (!LegalOperations || 2560 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 2561 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2562 return CombineTo(N, Res, Res); 2563 } 2564 2565 // If the low half is not needed, just compute the high half. 2566 bool LoExists = N->hasAnyUseOfValue(0); 2567 if (!LoExists && 2568 (!LegalOperations || 2569 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 2570 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2571 return CombineTo(N, Res, Res); 2572 } 2573 2574 // If both halves are used, return as it is. 2575 if (LoExists && HiExists) 2576 return SDValue(); 2577 2578 // If the two computed results can be simplified separately, separate them. 2579 if (LoExists) { 2580 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2581 AddToWorklist(Lo.getNode()); 2582 SDValue LoOpt = combine(Lo.getNode()); 2583 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 2584 (!LegalOperations || 2585 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 2586 return CombineTo(N, LoOpt, LoOpt); 2587 } 2588 2589 if (HiExists) { 2590 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2591 AddToWorklist(Hi.getNode()); 2592 SDValue HiOpt = combine(Hi.getNode()); 2593 if (HiOpt.getNode() && HiOpt != Hi && 2594 (!LegalOperations || 2595 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 2596 return CombineTo(N, HiOpt, HiOpt); 2597 } 2598 2599 return SDValue(); 2600 } 2601 2602 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 2603 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 2604 return Res; 2605 2606 EVT VT = N->getValueType(0); 2607 SDLoc DL(N); 2608 2609 // If the type is twice as wide is legal, transform the mulhu to a wider 2610 // multiply plus a shift. 2611 if (VT.isSimple() && !VT.isVector()) { 2612 MVT Simple = VT.getSimpleVT(); 2613 unsigned SimpleSize = Simple.getSizeInBits(); 2614 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2615 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2616 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 2617 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 2618 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2619 // Compute the high part as N1. 2620 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2621 DAG.getConstant(SimpleSize, DL, 2622 getShiftAmountTy(Lo.getValueType()))); 2623 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2624 // Compute the low part as N0. 2625 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2626 return CombineTo(N, Lo, Hi); 2627 } 2628 } 2629 2630 return SDValue(); 2631 } 2632 2633 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 2634 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 2635 return Res; 2636 2637 EVT VT = N->getValueType(0); 2638 SDLoc DL(N); 2639 2640 // If the type is twice as wide is legal, transform the mulhu to a wider 2641 // multiply plus a shift. 2642 if (VT.isSimple() && !VT.isVector()) { 2643 MVT Simple = VT.getSimpleVT(); 2644 unsigned SimpleSize = Simple.getSizeInBits(); 2645 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2646 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2647 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 2648 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 2649 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2650 // Compute the high part as N1. 2651 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2652 DAG.getConstant(SimpleSize, DL, 2653 getShiftAmountTy(Lo.getValueType()))); 2654 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2655 // Compute the low part as N0. 2656 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2657 return CombineTo(N, Lo, Hi); 2658 } 2659 } 2660 2661 return SDValue(); 2662 } 2663 2664 SDValue DAGCombiner::visitSMULO(SDNode *N) { 2665 // (smulo x, 2) -> (saddo x, x) 2666 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2667 if (C2->getAPIntValue() == 2) 2668 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 2669 N->getOperand(0), N->getOperand(0)); 2670 2671 return SDValue(); 2672 } 2673 2674 SDValue DAGCombiner::visitUMULO(SDNode *N) { 2675 // (umulo x, 2) -> (uaddo x, x) 2676 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2677 if (C2->getAPIntValue() == 2) 2678 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 2679 N->getOperand(0), N->getOperand(0)); 2680 2681 return SDValue(); 2682 } 2683 2684 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 2685 SDValue N0 = N->getOperand(0); 2686 SDValue N1 = N->getOperand(1); 2687 EVT VT = N0.getValueType(); 2688 2689 // fold vector ops 2690 if (VT.isVector()) 2691 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2692 return FoldedVOp; 2693 2694 // fold (add c1, c2) -> c1+c2 2695 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2696 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2697 if (N0C && N1C) 2698 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 2699 2700 // canonicalize constant to RHS 2701 if (isConstantIntBuildVectorOrConstantInt(N0) && 2702 !isConstantIntBuildVectorOrConstantInt(N1)) 2703 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 2704 2705 return SDValue(); 2706 } 2707 2708 /// If this is a binary operator with two operands of the same opcode, try to 2709 /// simplify it. 2710 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 2711 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 2712 EVT VT = N0.getValueType(); 2713 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 2714 2715 // Bail early if none of these transforms apply. 2716 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 2717 2718 // For each of OP in AND/OR/XOR: 2719 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 2720 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 2721 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 2722 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) 2723 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 2724 // 2725 // do not sink logical op inside of a vector extend, since it may combine 2726 // into a vsetcc. 2727 EVT Op0VT = N0.getOperand(0).getValueType(); 2728 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 2729 N0.getOpcode() == ISD::SIGN_EXTEND || 2730 N0.getOpcode() == ISD::BSWAP || 2731 // Avoid infinite looping with PromoteIntBinOp. 2732 (N0.getOpcode() == ISD::ANY_EXTEND && 2733 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 2734 (N0.getOpcode() == ISD::TRUNCATE && 2735 (!TLI.isZExtFree(VT, Op0VT) || 2736 !TLI.isTruncateFree(Op0VT, VT)) && 2737 TLI.isTypeLegal(Op0VT))) && 2738 !VT.isVector() && 2739 Op0VT == N1.getOperand(0).getValueType() && 2740 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 2741 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2742 N0.getOperand(0).getValueType(), 2743 N0.getOperand(0), N1.getOperand(0)); 2744 AddToWorklist(ORNode.getNode()); 2745 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 2746 } 2747 2748 // For each of OP in SHL/SRL/SRA/AND... 2749 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 2750 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 2751 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 2752 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 2753 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 2754 N0.getOperand(1) == N1.getOperand(1)) { 2755 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2756 N0.getOperand(0).getValueType(), 2757 N0.getOperand(0), N1.getOperand(0)); 2758 AddToWorklist(ORNode.getNode()); 2759 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 2760 ORNode, N0.getOperand(1)); 2761 } 2762 2763 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 2764 // Only perform this optimization after type legalization and before 2765 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 2766 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 2767 // we don't want to undo this promotion. 2768 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 2769 // on scalars. 2770 if ((N0.getOpcode() == ISD::BITCAST || 2771 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 2772 Level == AfterLegalizeTypes) { 2773 SDValue In0 = N0.getOperand(0); 2774 SDValue In1 = N1.getOperand(0); 2775 EVT In0Ty = In0.getValueType(); 2776 EVT In1Ty = In1.getValueType(); 2777 SDLoc DL(N); 2778 // If both incoming values are integers, and the original types are the 2779 // same. 2780 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 2781 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 2782 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 2783 AddToWorklist(Op.getNode()); 2784 return BC; 2785 } 2786 } 2787 2788 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 2789 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 2790 // If both shuffles use the same mask, and both shuffle within a single 2791 // vector, then it is worthwhile to move the swizzle after the operation. 2792 // The type-legalizer generates this pattern when loading illegal 2793 // vector types from memory. In many cases this allows additional shuffle 2794 // optimizations. 2795 // There are other cases where moving the shuffle after the xor/and/or 2796 // is profitable even if shuffles don't perform a swizzle. 2797 // If both shuffles use the same mask, and both shuffles have the same first 2798 // or second operand, then it might still be profitable to move the shuffle 2799 // after the xor/and/or operation. 2800 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 2801 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 2802 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 2803 2804 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 2805 "Inputs to shuffles are not the same type"); 2806 2807 // Check that both shuffles use the same mask. The masks are known to be of 2808 // the same length because the result vector type is the same. 2809 // Check also that shuffles have only one use to avoid introducing extra 2810 // instructions. 2811 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 2812 SVN0->getMask().equals(SVN1->getMask())) { 2813 SDValue ShOp = N0->getOperand(1); 2814 2815 // Don't try to fold this node if it requires introducing a 2816 // build vector of all zeros that might be illegal at this stage. 2817 if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { 2818 if (!LegalTypes) 2819 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2820 else 2821 ShOp = SDValue(); 2822 } 2823 2824 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 2825 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 2826 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 2827 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 2828 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2829 N0->getOperand(0), N1->getOperand(0)); 2830 AddToWorklist(NewNode.getNode()); 2831 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 2832 &SVN0->getMask()[0]); 2833 } 2834 2835 // Don't try to fold this node if it requires introducing a 2836 // build vector of all zeros that might be illegal at this stage. 2837 ShOp = N0->getOperand(0); 2838 if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { 2839 if (!LegalTypes) 2840 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2841 else 2842 ShOp = SDValue(); 2843 } 2844 2845 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 2846 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 2847 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 2848 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 2849 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2850 N0->getOperand(1), N1->getOperand(1)); 2851 AddToWorklist(NewNode.getNode()); 2852 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 2853 &SVN0->getMask()[0]); 2854 } 2855 } 2856 } 2857 2858 return SDValue(); 2859 } 2860 2861 /// This contains all DAGCombine rules which reduce two values combined by 2862 /// an And operation to a single value. This makes them reusable in the context 2863 /// of visitSELECT(). Rules involving constants are not included as 2864 /// visitSELECT() already handles those cases. 2865 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, 2866 SDNode *LocReference) { 2867 EVT VT = N1.getValueType(); 2868 2869 // fold (and x, undef) -> 0 2870 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2871 return DAG.getConstant(0, SDLoc(LocReference), VT); 2872 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 2873 SDValue LL, LR, RL, RR, CC0, CC1; 2874 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 2875 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 2876 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 2877 2878 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 2879 LL.getValueType().isInteger()) { 2880 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 2881 if (isNullConstant(LR) && Op1 == ISD::SETEQ) { 2882 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2883 LR.getValueType(), LL, RL); 2884 AddToWorklist(ORNode.getNode()); 2885 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2886 } 2887 if (isAllOnesConstant(LR)) { 2888 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 2889 if (Op1 == ISD::SETEQ) { 2890 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 2891 LR.getValueType(), LL, RL); 2892 AddToWorklist(ANDNode.getNode()); 2893 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 2894 } 2895 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 2896 if (Op1 == ISD::SETGT) { 2897 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2898 LR.getValueType(), LL, RL); 2899 AddToWorklist(ORNode.getNode()); 2900 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2901 } 2902 } 2903 } 2904 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 2905 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 2906 Op0 == Op1 && LL.getValueType().isInteger() && 2907 Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || 2908 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 2909 SDLoc DL(N0); 2910 SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), 2911 LL, DAG.getConstant(1, DL, 2912 LL.getValueType())); 2913 AddToWorklist(ADDNode.getNode()); 2914 return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, 2915 DAG.getConstant(2, DL, LL.getValueType()), 2916 ISD::SETUGE); 2917 } 2918 // canonicalize equivalent to ll == rl 2919 if (LL == RR && LR == RL) { 2920 Op1 = ISD::getSetCCSwappedOperands(Op1); 2921 std::swap(RL, RR); 2922 } 2923 if (LL == RL && LR == RR) { 2924 bool isInteger = LL.getValueType().isInteger(); 2925 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 2926 if (Result != ISD::SETCC_INVALID && 2927 (!LegalOperations || 2928 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 2929 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 2930 EVT CCVT = getSetCCResultType(LL.getValueType()); 2931 if (N0.getValueType() == CCVT || 2932 (!LegalOperations && N0.getValueType() == MVT::i1)) 2933 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 2934 LL, LR, Result); 2935 } 2936 } 2937 } 2938 2939 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 2940 VT.getSizeInBits() <= 64) { 2941 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2942 APInt ADDC = ADDI->getAPIntValue(); 2943 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2944 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 2945 // immediate for an add, but it is legal if its top c2 bits are set, 2946 // transform the ADD so the immediate doesn't need to be materialized 2947 // in a register. 2948 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 2949 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 2950 SRLI->getZExtValue()); 2951 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 2952 ADDC |= Mask; 2953 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2954 SDLoc DL(N0); 2955 SDValue NewAdd = 2956 DAG.getNode(ISD::ADD, DL, VT, 2957 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 2958 CombineTo(N0.getNode(), NewAdd); 2959 // Return N so it doesn't get rechecked! 2960 return SDValue(LocReference, 0); 2961 } 2962 } 2963 } 2964 } 2965 } 2966 } 2967 2968 return SDValue(); 2969 } 2970 2971 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 2972 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 2973 bool &NarrowLoad) { 2974 uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); 2975 2976 if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue())) 2977 return false; 2978 2979 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 2980 LoadedVT = LoadN->getMemoryVT(); 2981 2982 if (ExtVT == LoadedVT && 2983 (!LegalOperations || 2984 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 2985 // ZEXTLOAD will match without needing to change the size of the value being 2986 // loaded. 2987 NarrowLoad = false; 2988 return true; 2989 } 2990 2991 // Do not change the width of a volatile load. 2992 if (LoadN->isVolatile()) 2993 return false; 2994 2995 // Do not generate loads of non-round integer types since these can 2996 // be expensive (and would be wrong if the type is not byte sized). 2997 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 2998 return false; 2999 3000 if (LegalOperations && 3001 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 3002 return false; 3003 3004 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 3005 return false; 3006 3007 NarrowLoad = true; 3008 return true; 3009 } 3010 3011 SDValue DAGCombiner::visitAND(SDNode *N) { 3012 SDValue N0 = N->getOperand(0); 3013 SDValue N1 = N->getOperand(1); 3014 EVT VT = N1.getValueType(); 3015 3016 // fold vector ops 3017 if (VT.isVector()) { 3018 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3019 return FoldedVOp; 3020 3021 // fold (and x, 0) -> 0, vector edition 3022 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3023 // do not return N0, because undef node may exist in N0 3024 return DAG.getConstant( 3025 APInt::getNullValue( 3026 N0.getValueType().getScalarType().getSizeInBits()), 3027 SDLoc(N), N0.getValueType()); 3028 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3029 // do not return N1, because undef node may exist in N1 3030 return DAG.getConstant( 3031 APInt::getNullValue( 3032 N1.getValueType().getScalarType().getSizeInBits()), 3033 SDLoc(N), N1.getValueType()); 3034 3035 // fold (and x, -1) -> x, vector edition 3036 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3037 return N1; 3038 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3039 return N0; 3040 } 3041 3042 // fold (and c1, c2) -> c1&c2 3043 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3044 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3045 if (N0C && N1C && !N1C->isOpaque()) 3046 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 3047 // canonicalize constant to RHS 3048 if (isConstantIntBuildVectorOrConstantInt(N0) && 3049 !isConstantIntBuildVectorOrConstantInt(N1)) 3050 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 3051 // fold (and x, -1) -> x 3052 if (isAllOnesConstant(N1)) 3053 return N0; 3054 // if (and x, c) is known to be zero, return 0 3055 unsigned BitWidth = VT.getScalarType().getSizeInBits(); 3056 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 3057 APInt::getAllOnesValue(BitWidth))) 3058 return DAG.getConstant(0, SDLoc(N), VT); 3059 // reassociate and 3060 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) 3061 return RAND; 3062 // fold (and (or x, C), D) -> D if (C & D) == D 3063 if (N1C && N0.getOpcode() == ISD::OR) 3064 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 3065 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 3066 return N1; 3067 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 3068 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 3069 SDValue N0Op0 = N0.getOperand(0); 3070 APInt Mask = ~N1C->getAPIntValue(); 3071 Mask = Mask.trunc(N0Op0.getValueSizeInBits()); 3072 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 3073 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 3074 N0.getValueType(), N0Op0); 3075 3076 // Replace uses of the AND with uses of the Zero extend node. 3077 CombineTo(N, Zext); 3078 3079 // We actually want to replace all uses of the any_extend with the 3080 // zero_extend, to avoid duplicating things. This will later cause this 3081 // AND to be folded. 3082 CombineTo(N0.getNode(), Zext); 3083 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3084 } 3085 } 3086 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 3087 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 3088 // already be zero by virtue of the width of the base type of the load. 3089 // 3090 // the 'X' node here can either be nothing or an extract_vector_elt to catch 3091 // more cases. 3092 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3093 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 3094 N0.getOperand(0).getOpcode() == ISD::LOAD) || 3095 N0.getOpcode() == ISD::LOAD) { 3096 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 3097 N0 : N0.getOperand(0) ); 3098 3099 // Get the constant (if applicable) the zero'th operand is being ANDed with. 3100 // This can be a pure constant or a vector splat, in which case we treat the 3101 // vector as a scalar and use the splat value. 3102 APInt Constant = APInt::getNullValue(1); 3103 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 3104 Constant = C->getAPIntValue(); 3105 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 3106 APInt SplatValue, SplatUndef; 3107 unsigned SplatBitSize; 3108 bool HasAnyUndefs; 3109 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 3110 SplatBitSize, HasAnyUndefs); 3111 if (IsSplat) { 3112 // Undef bits can contribute to a possible optimisation if set, so 3113 // set them. 3114 SplatValue |= SplatUndef; 3115 3116 // The splat value may be something like "0x00FFFFFF", which means 0 for 3117 // the first vector value and FF for the rest, repeating. We need a mask 3118 // that will apply equally to all members of the vector, so AND all the 3119 // lanes of the constant together. 3120 EVT VT = Vector->getValueType(0); 3121 unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); 3122 3123 // If the splat value has been compressed to a bitlength lower 3124 // than the size of the vector lane, we need to re-expand it to 3125 // the lane size. 3126 if (BitWidth > SplatBitSize) 3127 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 3128 SplatBitSize < BitWidth; 3129 SplatBitSize = SplatBitSize * 2) 3130 SplatValue |= SplatValue.shl(SplatBitSize); 3131 3132 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 3133 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 3134 if (SplatBitSize % BitWidth == 0) { 3135 Constant = APInt::getAllOnesValue(BitWidth); 3136 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 3137 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 3138 } 3139 } 3140 } 3141 3142 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 3143 // actually legal and isn't going to get expanded, else this is a false 3144 // optimisation. 3145 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 3146 Load->getValueType(0), 3147 Load->getMemoryVT()); 3148 3149 // Resize the constant to the same size as the original memory access before 3150 // extension. If it is still the AllOnesValue then this AND is completely 3151 // unneeded. 3152 Constant = 3153 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); 3154 3155 bool B; 3156 switch (Load->getExtensionType()) { 3157 default: B = false; break; 3158 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 3159 case ISD::ZEXTLOAD: 3160 case ISD::NON_EXTLOAD: B = true; break; 3161 } 3162 3163 if (B && Constant.isAllOnesValue()) { 3164 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 3165 // preserve semantics once we get rid of the AND. 3166 SDValue NewLoad(Load, 0); 3167 if (Load->getExtensionType() == ISD::EXTLOAD) { 3168 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 3169 Load->getValueType(0), SDLoc(Load), 3170 Load->getChain(), Load->getBasePtr(), 3171 Load->getOffset(), Load->getMemoryVT(), 3172 Load->getMemOperand()); 3173 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 3174 if (Load->getNumValues() == 3) { 3175 // PRE/POST_INC loads have 3 values. 3176 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 3177 NewLoad.getValue(2) }; 3178 CombineTo(Load, To, 3, true); 3179 } else { 3180 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 3181 } 3182 } 3183 3184 // Fold the AND away, taking care not to fold to the old load node if we 3185 // replaced it. 3186 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 3187 3188 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3189 } 3190 } 3191 3192 // fold (and (load x), 255) -> (zextload x, i8) 3193 // fold (and (extload x, i16), 255) -> (zextload x, i8) 3194 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 3195 if (N1C && (N0.getOpcode() == ISD::LOAD || 3196 (N0.getOpcode() == ISD::ANY_EXTEND && 3197 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 3198 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 3199 LoadSDNode *LN0 = HasAnyExt 3200 ? cast<LoadSDNode>(N0.getOperand(0)) 3201 : cast<LoadSDNode>(N0); 3202 if (LN0->getExtensionType() != ISD::SEXTLOAD && 3203 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 3204 auto NarrowLoad = false; 3205 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 3206 EVT ExtVT, LoadedVT; 3207 if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, 3208 NarrowLoad)) { 3209 if (!NarrowLoad) { 3210 SDValue NewLoad = 3211 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3212 LN0->getChain(), LN0->getBasePtr(), ExtVT, 3213 LN0->getMemOperand()); 3214 AddToWorklist(N); 3215 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 3216 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3217 } else { 3218 EVT PtrType = LN0->getOperand(1).getValueType(); 3219 3220 unsigned Alignment = LN0->getAlignment(); 3221 SDValue NewPtr = LN0->getBasePtr(); 3222 3223 // For big endian targets, we need to add an offset to the pointer 3224 // to load the correct bytes. For little endian systems, we merely 3225 // need to read fewer bytes from the same pointer. 3226 if (DAG.getDataLayout().isBigEndian()) { 3227 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 3228 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 3229 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 3230 SDLoc DL(LN0); 3231 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, 3232 NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); 3233 Alignment = MinAlign(Alignment, PtrOff); 3234 } 3235 3236 AddToWorklist(NewPtr.getNode()); 3237 3238 SDValue Load = 3239 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3240 LN0->getChain(), NewPtr, 3241 LN0->getPointerInfo(), 3242 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 3243 LN0->isInvariant(), Alignment, LN0->getAAInfo()); 3244 AddToWorklist(N); 3245 CombineTo(LN0, Load, Load.getValue(1)); 3246 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3247 } 3248 } 3249 } 3250 } 3251 3252 if (SDValue Combined = visitANDLike(N0, N1, N)) 3253 return Combined; 3254 3255 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 3256 if (N0.getOpcode() == N1.getOpcode()) 3257 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3258 return Tmp; 3259 3260 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 3261 // fold (and (sra)) -> (and (srl)) when possible. 3262 if (!VT.isVector() && 3263 SimplifyDemandedBits(SDValue(N, 0))) 3264 return SDValue(N, 0); 3265 3266 // fold (zext_inreg (extload x)) -> (zextload x) 3267 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 3268 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3269 EVT MemVT = LN0->getMemoryVT(); 3270 // If we zero all the possible extended bits, then we can turn this into 3271 // a zextload if we are running before legalize or the operation is legal. 3272 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3273 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3274 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3275 ((!LegalOperations && !LN0->isVolatile()) || 3276 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3277 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3278 LN0->getChain(), LN0->getBasePtr(), 3279 MemVT, LN0->getMemOperand()); 3280 AddToWorklist(N); 3281 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3282 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3283 } 3284 } 3285 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 3286 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 3287 N0.hasOneUse()) { 3288 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3289 EVT MemVT = LN0->getMemoryVT(); 3290 // If we zero all the possible extended bits, then we can turn this into 3291 // a zextload if we are running before legalize or the operation is legal. 3292 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3293 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3294 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3295 ((!LegalOperations && !LN0->isVolatile()) || 3296 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3297 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3298 LN0->getChain(), LN0->getBasePtr(), 3299 MemVT, LN0->getMemOperand()); 3300 AddToWorklist(N); 3301 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3302 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3303 } 3304 } 3305 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 3306 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 3307 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 3308 N0.getOperand(1), false); 3309 if (BSwap.getNode()) 3310 return BSwap; 3311 } 3312 3313 return SDValue(); 3314 } 3315 3316 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 3317 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 3318 bool DemandHighBits) { 3319 if (!LegalOperations) 3320 return SDValue(); 3321 3322 EVT VT = N->getValueType(0); 3323 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 3324 return SDValue(); 3325 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3326 return SDValue(); 3327 3328 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 3329 bool LookPassAnd0 = false; 3330 bool LookPassAnd1 = false; 3331 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 3332 std::swap(N0, N1); 3333 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 3334 std::swap(N0, N1); 3335 if (N0.getOpcode() == ISD::AND) { 3336 if (!N0.getNode()->hasOneUse()) 3337 return SDValue(); 3338 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3339 if (!N01C || N01C->getZExtValue() != 0xFF00) 3340 return SDValue(); 3341 N0 = N0.getOperand(0); 3342 LookPassAnd0 = true; 3343 } 3344 3345 if (N1.getOpcode() == ISD::AND) { 3346 if (!N1.getNode()->hasOneUse()) 3347 return SDValue(); 3348 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3349 if (!N11C || N11C->getZExtValue() != 0xFF) 3350 return SDValue(); 3351 N1 = N1.getOperand(0); 3352 LookPassAnd1 = true; 3353 } 3354 3355 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 3356 std::swap(N0, N1); 3357 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 3358 return SDValue(); 3359 if (!N0.getNode()->hasOneUse() || 3360 !N1.getNode()->hasOneUse()) 3361 return SDValue(); 3362 3363 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3364 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3365 if (!N01C || !N11C) 3366 return SDValue(); 3367 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 3368 return SDValue(); 3369 3370 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 3371 SDValue N00 = N0->getOperand(0); 3372 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 3373 if (!N00.getNode()->hasOneUse()) 3374 return SDValue(); 3375 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 3376 if (!N001C || N001C->getZExtValue() != 0xFF) 3377 return SDValue(); 3378 N00 = N00.getOperand(0); 3379 LookPassAnd0 = true; 3380 } 3381 3382 SDValue N10 = N1->getOperand(0); 3383 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 3384 if (!N10.getNode()->hasOneUse()) 3385 return SDValue(); 3386 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 3387 if (!N101C || N101C->getZExtValue() != 0xFF00) 3388 return SDValue(); 3389 N10 = N10.getOperand(0); 3390 LookPassAnd1 = true; 3391 } 3392 3393 if (N00 != N10) 3394 return SDValue(); 3395 3396 // Make sure everything beyond the low halfword gets set to zero since the SRL 3397 // 16 will clear the top bits. 3398 unsigned OpSizeInBits = VT.getSizeInBits(); 3399 if (DemandHighBits && OpSizeInBits > 16) { 3400 // If the left-shift isn't masked out then the only way this is a bswap is 3401 // if all bits beyond the low 8 are 0. In that case the entire pattern 3402 // reduces to a left shift anyway: leave it for other parts of the combiner. 3403 if (!LookPassAnd0) 3404 return SDValue(); 3405 3406 // However, if the right shift isn't masked out then it might be because 3407 // it's not needed. See if we can spot that too. 3408 if (!LookPassAnd1 && 3409 !DAG.MaskedValueIsZero( 3410 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 3411 return SDValue(); 3412 } 3413 3414 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 3415 if (OpSizeInBits > 16) { 3416 SDLoc DL(N); 3417 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 3418 DAG.getConstant(OpSizeInBits - 16, DL, 3419 getShiftAmountTy(VT))); 3420 } 3421 return Res; 3422 } 3423 3424 /// Return true if the specified node is an element that makes up a 32-bit 3425 /// packed halfword byteswap. 3426 /// ((x & 0x000000ff) << 8) | 3427 /// ((x & 0x0000ff00) >> 8) | 3428 /// ((x & 0x00ff0000) << 8) | 3429 /// ((x & 0xff000000) >> 8) 3430 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 3431 if (!N.getNode()->hasOneUse()) 3432 return false; 3433 3434 unsigned Opc = N.getOpcode(); 3435 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 3436 return false; 3437 3438 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3439 if (!N1C) 3440 return false; 3441 3442 unsigned Num; 3443 switch (N1C->getZExtValue()) { 3444 default: 3445 return false; 3446 case 0xFF: Num = 0; break; 3447 case 0xFF00: Num = 1; break; 3448 case 0xFF0000: Num = 2; break; 3449 case 0xFF000000: Num = 3; break; 3450 } 3451 3452 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 3453 SDValue N0 = N.getOperand(0); 3454 if (Opc == ISD::AND) { 3455 if (Num == 0 || Num == 2) { 3456 // (x >> 8) & 0xff 3457 // (x >> 8) & 0xff0000 3458 if (N0.getOpcode() != ISD::SRL) 3459 return false; 3460 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3461 if (!C || C->getZExtValue() != 8) 3462 return false; 3463 } else { 3464 // (x << 8) & 0xff00 3465 // (x << 8) & 0xff000000 3466 if (N0.getOpcode() != ISD::SHL) 3467 return false; 3468 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3469 if (!C || C->getZExtValue() != 8) 3470 return false; 3471 } 3472 } else if (Opc == ISD::SHL) { 3473 // (x & 0xff) << 8 3474 // (x & 0xff0000) << 8 3475 if (Num != 0 && Num != 2) 3476 return false; 3477 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3478 if (!C || C->getZExtValue() != 8) 3479 return false; 3480 } else { // Opc == ISD::SRL 3481 // (x & 0xff00) >> 8 3482 // (x & 0xff000000) >> 8 3483 if (Num != 1 && Num != 3) 3484 return false; 3485 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3486 if (!C || C->getZExtValue() != 8) 3487 return false; 3488 } 3489 3490 if (Parts[Num]) 3491 return false; 3492 3493 Parts[Num] = N0.getOperand(0).getNode(); 3494 return true; 3495 } 3496 3497 /// Match a 32-bit packed halfword bswap. That is 3498 /// ((x & 0x000000ff) << 8) | 3499 /// ((x & 0x0000ff00) >> 8) | 3500 /// ((x & 0x00ff0000) << 8) | 3501 /// ((x & 0xff000000) >> 8) 3502 /// => (rotl (bswap x), 16) 3503 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 3504 if (!LegalOperations) 3505 return SDValue(); 3506 3507 EVT VT = N->getValueType(0); 3508 if (VT != MVT::i32) 3509 return SDValue(); 3510 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3511 return SDValue(); 3512 3513 // Look for either 3514 // (or (or (and), (and)), (or (and), (and))) 3515 // (or (or (or (and), (and)), (and)), (and)) 3516 if (N0.getOpcode() != ISD::OR) 3517 return SDValue(); 3518 SDValue N00 = N0.getOperand(0); 3519 SDValue N01 = N0.getOperand(1); 3520 SDNode *Parts[4] = {}; 3521 3522 if (N1.getOpcode() == ISD::OR && 3523 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 3524 // (or (or (and), (and)), (or (and), (and))) 3525 SDValue N000 = N00.getOperand(0); 3526 if (!isBSwapHWordElement(N000, Parts)) 3527 return SDValue(); 3528 3529 SDValue N001 = N00.getOperand(1); 3530 if (!isBSwapHWordElement(N001, Parts)) 3531 return SDValue(); 3532 SDValue N010 = N01.getOperand(0); 3533 if (!isBSwapHWordElement(N010, Parts)) 3534 return SDValue(); 3535 SDValue N011 = N01.getOperand(1); 3536 if (!isBSwapHWordElement(N011, Parts)) 3537 return SDValue(); 3538 } else { 3539 // (or (or (or (and), (and)), (and)), (and)) 3540 if (!isBSwapHWordElement(N1, Parts)) 3541 return SDValue(); 3542 if (!isBSwapHWordElement(N01, Parts)) 3543 return SDValue(); 3544 if (N00.getOpcode() != ISD::OR) 3545 return SDValue(); 3546 SDValue N000 = N00.getOperand(0); 3547 if (!isBSwapHWordElement(N000, Parts)) 3548 return SDValue(); 3549 SDValue N001 = N00.getOperand(1); 3550 if (!isBSwapHWordElement(N001, Parts)) 3551 return SDValue(); 3552 } 3553 3554 // Make sure the parts are all coming from the same node. 3555 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 3556 return SDValue(); 3557 3558 SDLoc DL(N); 3559 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 3560 SDValue(Parts[0], 0)); 3561 3562 // Result of the bswap should be rotated by 16. If it's not legal, then 3563 // do (x << 16) | (x >> 16). 3564 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 3565 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 3566 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 3567 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 3568 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 3569 return DAG.getNode(ISD::OR, DL, VT, 3570 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 3571 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 3572 } 3573 3574 /// This contains all DAGCombine rules which reduce two values combined by 3575 /// an Or operation to a single value \see visitANDLike(). 3576 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { 3577 EVT VT = N1.getValueType(); 3578 // fold (or x, undef) -> -1 3579 if (!LegalOperations && 3580 (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { 3581 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 3582 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), 3583 SDLoc(LocReference), VT); 3584 } 3585 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 3586 SDValue LL, LR, RL, RR, CC0, CC1; 3587 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 3588 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 3589 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 3590 3591 if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { 3592 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 3593 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 3594 if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 3595 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 3596 LR.getValueType(), LL, RL); 3597 AddToWorklist(ORNode.getNode()); 3598 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 3599 } 3600 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 3601 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 3602 if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 3603 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 3604 LR.getValueType(), LL, RL); 3605 AddToWorklist(ANDNode.getNode()); 3606 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 3607 } 3608 } 3609 // canonicalize equivalent to ll == rl 3610 if (LL == RR && LR == RL) { 3611 Op1 = ISD::getSetCCSwappedOperands(Op1); 3612 std::swap(RL, RR); 3613 } 3614 if (LL == RL && LR == RR) { 3615 bool isInteger = LL.getValueType().isInteger(); 3616 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 3617 if (Result != ISD::SETCC_INVALID && 3618 (!LegalOperations || 3619 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3620 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3621 EVT CCVT = getSetCCResultType(LL.getValueType()); 3622 if (N0.getValueType() == CCVT || 3623 (!LegalOperations && N0.getValueType() == MVT::i1)) 3624 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3625 LL, LR, Result); 3626 } 3627 } 3628 } 3629 3630 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 3631 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 3632 // Don't increase # computations. 3633 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3634 // We can only do this xform if we know that bits from X that are set in C2 3635 // but not in C1 are already zero. Likewise for Y. 3636 if (const ConstantSDNode *N0O1C = 3637 getAsNonOpaqueConstant(N0.getOperand(1))) { 3638 if (const ConstantSDNode *N1O1C = 3639 getAsNonOpaqueConstant(N1.getOperand(1))) { 3640 // We can only do this xform if we know that bits from X that are set in 3641 // C2 but not in C1 are already zero. Likewise for Y. 3642 const APInt &LHSMask = N0O1C->getAPIntValue(); 3643 const APInt &RHSMask = N1O1C->getAPIntValue(); 3644 3645 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 3646 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 3647 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3648 N0.getOperand(0), N1.getOperand(0)); 3649 SDLoc DL(LocReference); 3650 return DAG.getNode(ISD::AND, DL, VT, X, 3651 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 3652 } 3653 } 3654 } 3655 } 3656 3657 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 3658 if (N0.getOpcode() == ISD::AND && 3659 N1.getOpcode() == ISD::AND && 3660 N0.getOperand(0) == N1.getOperand(0) && 3661 // Don't increase # computations. 3662 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3663 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3664 N0.getOperand(1), N1.getOperand(1)); 3665 return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); 3666 } 3667 3668 return SDValue(); 3669 } 3670 3671 SDValue DAGCombiner::visitOR(SDNode *N) { 3672 SDValue N0 = N->getOperand(0); 3673 SDValue N1 = N->getOperand(1); 3674 EVT VT = N1.getValueType(); 3675 3676 // fold vector ops 3677 if (VT.isVector()) { 3678 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3679 return FoldedVOp; 3680 3681 // fold (or x, 0) -> x, vector edition 3682 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3683 return N1; 3684 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3685 return N0; 3686 3687 // fold (or x, -1) -> -1, vector edition 3688 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3689 // do not return N0, because undef node may exist in N0 3690 return DAG.getConstant( 3691 APInt::getAllOnesValue( 3692 N0.getValueType().getScalarType().getSizeInBits()), 3693 SDLoc(N), N0.getValueType()); 3694 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3695 // do not return N1, because undef node may exist in N1 3696 return DAG.getConstant( 3697 APInt::getAllOnesValue( 3698 N1.getValueType().getScalarType().getSizeInBits()), 3699 SDLoc(N), N1.getValueType()); 3700 3701 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1) 3702 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2) 3703 // Do this only if the resulting shuffle is legal. 3704 if (isa<ShuffleVectorSDNode>(N0) && 3705 isa<ShuffleVectorSDNode>(N1) && 3706 // Avoid folding a node with illegal type. 3707 TLI.isTypeLegal(VT) && 3708 N0->getOperand(1) == N1->getOperand(1) && 3709 ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) { 3710 bool CanFold = true; 3711 unsigned NumElts = VT.getVectorNumElements(); 3712 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 3713 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 3714 // We construct two shuffle masks: 3715 // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand 3716 // and N1 as the second operand. 3717 // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand 3718 // and N0 as the second operand. 3719 // We do this because OR is commutable and therefore there might be 3720 // two ways to fold this node into a shuffle. 3721 SmallVector<int,4> Mask1; 3722 SmallVector<int,4> Mask2; 3723 3724 for (unsigned i = 0; i != NumElts && CanFold; ++i) { 3725 int M0 = SV0->getMaskElt(i); 3726 int M1 = SV1->getMaskElt(i); 3727 3728 // Both shuffle indexes are undef. Propagate Undef. 3729 if (M0 < 0 && M1 < 0) { 3730 Mask1.push_back(M0); 3731 Mask2.push_back(M0); 3732 continue; 3733 } 3734 3735 if (M0 < 0 || M1 < 0 || 3736 (M0 < (int)NumElts && M1 < (int)NumElts) || 3737 (M0 >= (int)NumElts && M1 >= (int)NumElts)) { 3738 CanFold = false; 3739 break; 3740 } 3741 3742 Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts); 3743 Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts); 3744 } 3745 3746 if (CanFold) { 3747 // Fold this sequence only if the resulting shuffle is 'legal'. 3748 if (TLI.isShuffleMaskLegal(Mask1, VT)) 3749 return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), 3750 N1->getOperand(0), &Mask1[0]); 3751 if (TLI.isShuffleMaskLegal(Mask2, VT)) 3752 return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0), 3753 N0->getOperand(0), &Mask2[0]); 3754 } 3755 } 3756 } 3757 3758 // fold (or c1, c2) -> c1|c2 3759 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3760 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3761 if (N0C && N1C && !N1C->isOpaque()) 3762 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 3763 // canonicalize constant to RHS 3764 if (isConstantIntBuildVectorOrConstantInt(N0) && 3765 !isConstantIntBuildVectorOrConstantInt(N1)) 3766 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 3767 // fold (or x, 0) -> x 3768 if (isNullConstant(N1)) 3769 return N0; 3770 // fold (or x, -1) -> -1 3771 if (isAllOnesConstant(N1)) 3772 return N1; 3773 // fold (or x, c) -> c iff (x & ~c) == 0 3774 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 3775 return N1; 3776 3777 if (SDValue Combined = visitORLike(N0, N1, N)) 3778 return Combined; 3779 3780 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 3781 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 3782 return BSwap; 3783 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 3784 return BSwap; 3785 3786 // reassociate or 3787 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) 3788 return ROR; 3789 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 3790 // iff (c1 & c2) == 0. 3791 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 3792 isa<ConstantSDNode>(N0.getOperand(1))) { 3793 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 3794 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 3795 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 3796 N1C, C1)) 3797 return DAG.getNode( 3798 ISD::AND, SDLoc(N), VT, 3799 DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); 3800 return SDValue(); 3801 } 3802 } 3803 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 3804 if (N0.getOpcode() == N1.getOpcode()) 3805 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3806 return Tmp; 3807 3808 // See if this is some rotate idiom. 3809 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 3810 return SDValue(Rot, 0); 3811 3812 // Simplify the operands using demanded-bits information. 3813 if (!VT.isVector() && 3814 SimplifyDemandedBits(SDValue(N, 0))) 3815 return SDValue(N, 0); 3816 3817 return SDValue(); 3818 } 3819 3820 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 3821 static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 3822 if (Op.getOpcode() == ISD::AND) { 3823 if (isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 3824 Mask = Op.getOperand(1); 3825 Op = Op.getOperand(0); 3826 } else { 3827 return false; 3828 } 3829 } 3830 3831 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 3832 Shift = Op; 3833 return true; 3834 } 3835 3836 return false; 3837 } 3838 3839 // Return true if we can prove that, whenever Neg and Pos are both in the 3840 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 3841 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 3842 // 3843 // (or (shift1 X, Neg), (shift2 X, Pos)) 3844 // 3845 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 3846 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 3847 // to consider shift amounts with defined behavior. 3848 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { 3849 // If EltSize is a power of 2 then: 3850 // 3851 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 3852 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 3853 // 3854 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 3855 // for the stronger condition: 3856 // 3857 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 3858 // 3859 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 3860 // we can just replace Neg with Neg' for the rest of the function. 3861 // 3862 // In other cases we check for the even stronger condition: 3863 // 3864 // Neg == EltSize - Pos [B] 3865 // 3866 // for all Neg and Pos. Note that the (or ...) then invokes undefined 3867 // behavior if Pos == 0 (and consequently Neg == EltSize). 3868 // 3869 // We could actually use [A] whenever EltSize is a power of 2, but the 3870 // only extra cases that it would match are those uninteresting ones 3871 // where Neg and Pos are never in range at the same time. E.g. for 3872 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 3873 // as well as (sub 32, Pos), but: 3874 // 3875 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 3876 // 3877 // always invokes undefined behavior for 32-bit X. 3878 // 3879 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 3880 unsigned MaskLoBits = 0; 3881 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 3882 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 3883 if (NegC->getAPIntValue() == EltSize - 1) { 3884 Neg = Neg.getOperand(0); 3885 MaskLoBits = Log2_64(EltSize); 3886 } 3887 } 3888 } 3889 3890 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 3891 if (Neg.getOpcode() != ISD::SUB) 3892 return false; 3893 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 3894 if (!NegC) 3895 return false; 3896 SDValue NegOp1 = Neg.getOperand(1); 3897 3898 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 3899 // Pos'. The truncation is redundant for the purpose of the equality. 3900 if (MaskLoBits && Pos.getOpcode() == ISD::AND) 3901 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 3902 if (PosC->getAPIntValue() == EltSize - 1) 3903 Pos = Pos.getOperand(0); 3904 3905 // The condition we need is now: 3906 // 3907 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 3908 // 3909 // If NegOp1 == Pos then we need: 3910 // 3911 // EltSize & Mask == NegC & Mask 3912 // 3913 // (because "x & Mask" is a truncation and distributes through subtraction). 3914 APInt Width; 3915 if (Pos == NegOp1) 3916 Width = NegC->getAPIntValue(); 3917 3918 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 3919 // Then the condition we want to prove becomes: 3920 // 3921 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 3922 // 3923 // which, again because "x & Mask" is a truncation, becomes: 3924 // 3925 // NegC & Mask == (EltSize - PosC) & Mask 3926 // EltSize & Mask == (NegC + PosC) & Mask 3927 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 3928 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 3929 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 3930 else 3931 return false; 3932 } else 3933 return false; 3934 3935 // Now we just need to check that EltSize & Mask == Width & Mask. 3936 if (MaskLoBits) 3937 // EltSize & Mask is 0 since Mask is EltSize - 1. 3938 return Width.getLoBits(MaskLoBits) == 0; 3939 return Width == EltSize; 3940 } 3941 3942 // A subroutine of MatchRotate used once we have found an OR of two opposite 3943 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 3944 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 3945 // former being preferred if supported. InnerPos and InnerNeg are Pos and 3946 // Neg with outer conversions stripped away. 3947 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 3948 SDValue Neg, SDValue InnerPos, 3949 SDValue InnerNeg, unsigned PosOpcode, 3950 unsigned NegOpcode, SDLoc DL) { 3951 // fold (or (shl x, (*ext y)), 3952 // (srl x, (*ext (sub 32, y)))) -> 3953 // (rotl x, y) or (rotr x, (sub 32, y)) 3954 // 3955 // fold (or (shl x, (*ext (sub 32, y))), 3956 // (srl x, (*ext y))) -> 3957 // (rotr x, y) or (rotl x, (sub 32, y)) 3958 EVT VT = Shifted.getValueType(); 3959 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { 3960 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 3961 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 3962 HasPos ? Pos : Neg).getNode(); 3963 } 3964 3965 return nullptr; 3966 } 3967 3968 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 3969 // idioms for rotate, and if the target supports rotation instructions, generate 3970 // a rot[lr]. 3971 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) { 3972 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 3973 EVT VT = LHS.getValueType(); 3974 if (!TLI.isTypeLegal(VT)) return nullptr; 3975 3976 // The target must have at least one rotate flavor. 3977 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 3978 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 3979 if (!HasROTL && !HasROTR) return nullptr; 3980 3981 // Match "(X shl/srl V1) & V2" where V2 may not be present. 3982 SDValue LHSShift; // The shift. 3983 SDValue LHSMask; // AND value if any. 3984 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 3985 return nullptr; // Not part of a rotate. 3986 3987 SDValue RHSShift; // The shift. 3988 SDValue RHSMask; // AND value if any. 3989 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 3990 return nullptr; // Not part of a rotate. 3991 3992 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 3993 return nullptr; // Not shifting the same value. 3994 3995 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 3996 return nullptr; // Shifts must disagree. 3997 3998 // Canonicalize shl to left side in a shl/srl pair. 3999 if (RHSShift.getOpcode() == ISD::SHL) { 4000 std::swap(LHS, RHS); 4001 std::swap(LHSShift, RHSShift); 4002 std::swap(LHSMask, RHSMask); 4003 } 4004 4005 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4006 SDValue LHSShiftArg = LHSShift.getOperand(0); 4007 SDValue LHSShiftAmt = LHSShift.getOperand(1); 4008 SDValue RHSShiftArg = RHSShift.getOperand(0); 4009 SDValue RHSShiftAmt = RHSShift.getOperand(1); 4010 4011 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 4012 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 4013 if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { 4014 uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); 4015 uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); 4016 if ((LShVal + RShVal) != EltSizeInBits) 4017 return nullptr; 4018 4019 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 4020 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 4021 4022 // If there is an AND of either shifted operand, apply it to the result. 4023 if (LHSMask.getNode() || RHSMask.getNode()) { 4024 APInt AllBits = APInt::getAllOnesValue(EltSizeInBits); 4025 SDValue Mask = DAG.getConstant(AllBits, DL, VT); 4026 4027 if (LHSMask.getNode()) { 4028 APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); 4029 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4030 DAG.getNode(ISD::OR, DL, VT, LHSMask, 4031 DAG.getConstant(RHSBits, DL, VT))); 4032 } 4033 if (RHSMask.getNode()) { 4034 APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); 4035 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4036 DAG.getNode(ISD::OR, DL, VT, RHSMask, 4037 DAG.getConstant(LHSBits, DL, VT))); 4038 } 4039 4040 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); 4041 } 4042 4043 return Rot.getNode(); 4044 } 4045 4046 // If there is a mask here, and we have a variable shift, we can't be sure 4047 // that we're masking out the right stuff. 4048 if (LHSMask.getNode() || RHSMask.getNode()) 4049 return nullptr; 4050 4051 // If the shift amount is sign/zext/any-extended just peel it off. 4052 SDValue LExtOp0 = LHSShiftAmt; 4053 SDValue RExtOp0 = RHSShiftAmt; 4054 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4055 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4056 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4057 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 4058 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4059 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4060 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4061 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 4062 LExtOp0 = LHSShiftAmt.getOperand(0); 4063 RExtOp0 = RHSShiftAmt.getOperand(0); 4064 } 4065 4066 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 4067 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 4068 if (TryL) 4069 return TryL; 4070 4071 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 4072 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 4073 if (TryR) 4074 return TryR; 4075 4076 return nullptr; 4077 } 4078 4079 SDValue DAGCombiner::visitXOR(SDNode *N) { 4080 SDValue N0 = N->getOperand(0); 4081 SDValue N1 = N->getOperand(1); 4082 EVT VT = N0.getValueType(); 4083 4084 // fold vector ops 4085 if (VT.isVector()) { 4086 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4087 return FoldedVOp; 4088 4089 // fold (xor x, 0) -> x, vector edition 4090 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4091 return N1; 4092 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4093 return N0; 4094 } 4095 4096 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 4097 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) 4098 return DAG.getConstant(0, SDLoc(N), VT); 4099 // fold (xor x, undef) -> undef 4100 if (N0.getOpcode() == ISD::UNDEF) 4101 return N0; 4102 if (N1.getOpcode() == ISD::UNDEF) 4103 return N1; 4104 // fold (xor c1, c2) -> c1^c2 4105 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4106 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4107 if (N0C && N1C) 4108 return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); 4109 // canonicalize constant to RHS 4110 if (isConstantIntBuildVectorOrConstantInt(N0) && 4111 !isConstantIntBuildVectorOrConstantInt(N1)) 4112 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 4113 // fold (xor x, 0) -> x 4114 if (isNullConstant(N1)) 4115 return N0; 4116 // reassociate xor 4117 if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) 4118 return RXOR; 4119 4120 // fold !(x cc y) -> (x !cc y) 4121 SDValue LHS, RHS, CC; 4122 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 4123 bool isInt = LHS.getValueType().isInteger(); 4124 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 4125 isInt); 4126 4127 if (!LegalOperations || 4128 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 4129 switch (N0.getOpcode()) { 4130 default: 4131 llvm_unreachable("Unhandled SetCC Equivalent!"); 4132 case ISD::SETCC: 4133 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 4134 case ISD::SELECT_CC: 4135 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 4136 N0.getOperand(3), NotCC); 4137 } 4138 } 4139 } 4140 4141 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 4142 if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && 4143 N0.getNode()->hasOneUse() && 4144 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 4145 SDValue V = N0.getOperand(0); 4146 SDLoc DL(N0); 4147 V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, 4148 DAG.getConstant(1, DL, V.getValueType())); 4149 AddToWorklist(V.getNode()); 4150 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 4151 } 4152 4153 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 4154 if (isOneConstant(N1) && VT == MVT::i1 && 4155 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4156 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4157 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 4158 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4159 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4160 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4161 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4162 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4163 } 4164 } 4165 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 4166 if (isAllOnesConstant(N1) && 4167 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4168 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4169 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 4170 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4171 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4172 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4173 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4174 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4175 } 4176 } 4177 // fold (xor (and x, y), y) -> (and (not x), y) 4178 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 4179 N0->getOperand(1) == N1) { 4180 SDValue X = N0->getOperand(0); 4181 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 4182 AddToWorklist(NotX.getNode()); 4183 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 4184 } 4185 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 4186 if (N1C && N0.getOpcode() == ISD::XOR) { 4187 if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { 4188 SDLoc DL(N); 4189 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 4190 DAG.getConstant(N1C->getAPIntValue() ^ 4191 N00C->getAPIntValue(), DL, VT)); 4192 } 4193 if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { 4194 SDLoc DL(N); 4195 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 4196 DAG.getConstant(N1C->getAPIntValue() ^ 4197 N01C->getAPIntValue(), DL, VT)); 4198 } 4199 } 4200 // fold (xor x, x) -> 0 4201 if (N0 == N1) 4202 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 4203 4204 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 4205 // Here is a concrete example of this equivalence: 4206 // i16 x == 14 4207 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 4208 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 4209 // 4210 // => 4211 // 4212 // i16 ~1 == 0b1111111111111110 4213 // i16 rol(~1, 14) == 0b1011111111111111 4214 // 4215 // Some additional tips to help conceptualize this transform: 4216 // - Try to see the operation as placing a single zero in a value of all ones. 4217 // - There exists no value for x which would allow the result to contain zero. 4218 // - Values of x larger than the bitwidth are undefined and do not require a 4219 // consistent result. 4220 // - Pushing the zero left requires shifting one bits in from the right. 4221 // A rotate left of ~1 is a nice way of achieving the desired result. 4222 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL 4223 && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 4224 SDLoc DL(N); 4225 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 4226 N0.getOperand(1)); 4227 } 4228 4229 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 4230 if (N0.getOpcode() == N1.getOpcode()) 4231 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 4232 return Tmp; 4233 4234 // Simplify the expression using non-local knowledge. 4235 if (!VT.isVector() && 4236 SimplifyDemandedBits(SDValue(N, 0))) 4237 return SDValue(N, 0); 4238 4239 return SDValue(); 4240 } 4241 4242 /// Handle transforms common to the three shifts, when the shift amount is a 4243 /// constant. 4244 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 4245 SDNode *LHS = N->getOperand(0).getNode(); 4246 if (!LHS->hasOneUse()) return SDValue(); 4247 4248 // We want to pull some binops through shifts, so that we have (and (shift)) 4249 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 4250 // thing happens with address calculations, so it's important to canonicalize 4251 // it. 4252 bool HighBitSet = false; // Can we transform this if the high bit is set? 4253 4254 switch (LHS->getOpcode()) { 4255 default: return SDValue(); 4256 case ISD::OR: 4257 case ISD::XOR: 4258 HighBitSet = false; // We can only transform sra if the high bit is clear. 4259 break; 4260 case ISD::AND: 4261 HighBitSet = true; // We can only transform sra if the high bit is set. 4262 break; 4263 case ISD::ADD: 4264 if (N->getOpcode() != ISD::SHL) 4265 return SDValue(); // only shl(add) not sr[al](add). 4266 HighBitSet = false; // We can only transform sra if the high bit is clear. 4267 break; 4268 } 4269 4270 // We require the RHS of the binop to be a constant and not opaque as well. 4271 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 4272 if (!BinOpCst) return SDValue(); 4273 4274 // FIXME: disable this unless the input to the binop is a shift by a constant. 4275 // If it is not a shift, it pessimizes some common cases like: 4276 // 4277 // void foo(int *X, int i) { X[i & 1235] = 1; } 4278 // int bar(int *X, int i) { return X[i & 255]; } 4279 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 4280 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 4281 BinOpLHSVal->getOpcode() != ISD::SRA && 4282 BinOpLHSVal->getOpcode() != ISD::SRL) || 4283 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 4284 return SDValue(); 4285 4286 EVT VT = N->getValueType(0); 4287 4288 // If this is a signed shift right, and the high bit is modified by the 4289 // logical operation, do not perform the transformation. The highBitSet 4290 // boolean indicates the value of the high bit of the constant which would 4291 // cause it to be modified for this operation. 4292 if (N->getOpcode() == ISD::SRA) { 4293 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 4294 if (BinOpRHSSignSet != HighBitSet) 4295 return SDValue(); 4296 } 4297 4298 if (!TLI.isDesirableToCommuteWithShift(LHS)) 4299 return SDValue(); 4300 4301 // Fold the constants, shifting the binop RHS by the shift amount. 4302 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 4303 N->getValueType(0), 4304 LHS->getOperand(1), N->getOperand(1)); 4305 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 4306 4307 // Create the new shift. 4308 SDValue NewShift = DAG.getNode(N->getOpcode(), 4309 SDLoc(LHS->getOperand(0)), 4310 VT, LHS->getOperand(0), N->getOperand(1)); 4311 4312 // Create the new binop. 4313 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 4314 } 4315 4316 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 4317 assert(N->getOpcode() == ISD::TRUNCATE); 4318 assert(N->getOperand(0).getOpcode() == ISD::AND); 4319 4320 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 4321 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 4322 SDValue N01 = N->getOperand(0).getOperand(1); 4323 4324 if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { 4325 if (!N01C->isOpaque()) { 4326 EVT TruncVT = N->getValueType(0); 4327 SDValue N00 = N->getOperand(0).getOperand(0); 4328 APInt TruncC = N01C->getAPIntValue(); 4329 TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); 4330 SDLoc DL(N); 4331 4332 return DAG.getNode(ISD::AND, DL, TruncVT, 4333 DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), 4334 DAG.getConstant(TruncC, DL, TruncVT)); 4335 } 4336 } 4337 } 4338 4339 return SDValue(); 4340 } 4341 4342 SDValue DAGCombiner::visitRotate(SDNode *N) { 4343 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 4344 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 4345 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 4346 SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode()); 4347 if (NewOp1.getNode()) 4348 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 4349 N->getOperand(0), NewOp1); 4350 } 4351 return SDValue(); 4352 } 4353 4354 SDValue DAGCombiner::visitSHL(SDNode *N) { 4355 SDValue N0 = N->getOperand(0); 4356 SDValue N1 = N->getOperand(1); 4357 EVT VT = N0.getValueType(); 4358 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4359 4360 // fold vector ops 4361 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4362 if (VT.isVector()) { 4363 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4364 return FoldedVOp; 4365 4366 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 4367 // If setcc produces all-one true value then: 4368 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 4369 if (N1CV && N1CV->isConstant()) { 4370 if (N0.getOpcode() == ISD::AND) { 4371 SDValue N00 = N0->getOperand(0); 4372 SDValue N01 = N0->getOperand(1); 4373 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 4374 4375 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 4376 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 4377 TargetLowering::ZeroOrNegativeOneBooleanContent) { 4378 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 4379 N01CV, N1CV)) 4380 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 4381 } 4382 } else { 4383 N1C = isConstOrConstSplat(N1); 4384 } 4385 } 4386 } 4387 4388 // fold (shl c1, c2) -> c1<<c2 4389 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4390 if (N0C && N1C && !N1C->isOpaque()) 4391 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 4392 // fold (shl 0, x) -> 0 4393 if (isNullConstant(N0)) 4394 return N0; 4395 // fold (shl x, c >= size(x)) -> undef 4396 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4397 return DAG.getUNDEF(VT); 4398 // fold (shl x, 0) -> x 4399 if (N1C && N1C->isNullValue()) 4400 return N0; 4401 // fold (shl undef, x) -> 0 4402 if (N0.getOpcode() == ISD::UNDEF) 4403 return DAG.getConstant(0, SDLoc(N), VT); 4404 // if (shl x, c) is known to be zero, return 0 4405 if (DAG.MaskedValueIsZero(SDValue(N, 0), 4406 APInt::getAllOnesValue(OpSizeInBits))) 4407 return DAG.getConstant(0, SDLoc(N), VT); 4408 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 4409 if (N1.getOpcode() == ISD::TRUNCATE && 4410 N1.getOperand(0).getOpcode() == ISD::AND) { 4411 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 4412 if (NewOp1.getNode()) 4413 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 4414 } 4415 4416 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4417 return SDValue(N, 0); 4418 4419 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 4420 if (N1C && N0.getOpcode() == ISD::SHL) { 4421 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4422 uint64_t c1 = N0C1->getZExtValue(); 4423 uint64_t c2 = N1C->getZExtValue(); 4424 SDLoc DL(N); 4425 if (c1 + c2 >= OpSizeInBits) 4426 return DAG.getConstant(0, DL, VT); 4427 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4428 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4429 } 4430 } 4431 4432 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 4433 // For this to be valid, the second form must not preserve any of the bits 4434 // that are shifted out by the inner shift in the first form. This means 4435 // the outer shift size must be >= the number of bits added by the ext. 4436 // As a corollary, we don't care what kind of ext it is. 4437 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 4438 N0.getOpcode() == ISD::ANY_EXTEND || 4439 N0.getOpcode() == ISD::SIGN_EXTEND) && 4440 N0.getOperand(0).getOpcode() == ISD::SHL) { 4441 SDValue N0Op0 = N0.getOperand(0); 4442 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4443 uint64_t c1 = N0Op0C1->getZExtValue(); 4444 uint64_t c2 = N1C->getZExtValue(); 4445 EVT InnerShiftVT = N0Op0.getValueType(); 4446 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4447 if (c2 >= OpSizeInBits - InnerShiftSize) { 4448 SDLoc DL(N0); 4449 if (c1 + c2 >= OpSizeInBits) 4450 return DAG.getConstant(0, DL, VT); 4451 return DAG.getNode(ISD::SHL, DL, VT, 4452 DAG.getNode(N0.getOpcode(), DL, VT, 4453 N0Op0->getOperand(0)), 4454 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4455 } 4456 } 4457 } 4458 4459 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 4460 // Only fold this if the inner zext has no other uses to avoid increasing 4461 // the total number of instructions. 4462 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 4463 N0.getOperand(0).getOpcode() == ISD::SRL) { 4464 SDValue N0Op0 = N0.getOperand(0); 4465 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4466 uint64_t c1 = N0Op0C1->getZExtValue(); 4467 if (c1 < VT.getScalarSizeInBits()) { 4468 uint64_t c2 = N1C->getZExtValue(); 4469 if (c1 == c2) { 4470 SDValue NewOp0 = N0.getOperand(0); 4471 EVT CountVT = NewOp0.getOperand(1).getValueType(); 4472 SDLoc DL(N); 4473 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 4474 NewOp0, 4475 DAG.getConstant(c2, DL, CountVT)); 4476 AddToWorklist(NewSHL.getNode()); 4477 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 4478 } 4479 } 4480 } 4481 } 4482 4483 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 4484 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 4485 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 4486 cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { 4487 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4488 uint64_t C1 = N0C1->getZExtValue(); 4489 uint64_t C2 = N1C->getZExtValue(); 4490 SDLoc DL(N); 4491 if (C1 <= C2) 4492 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4493 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 4494 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 4495 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 4496 } 4497 } 4498 4499 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 4500 // (and (srl x, (sub c1, c2), MASK) 4501 // Only fold this if the inner shift has no other uses -- if it does, folding 4502 // this will increase the total number of instructions. 4503 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4504 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4505 uint64_t c1 = N0C1->getZExtValue(); 4506 if (c1 < OpSizeInBits) { 4507 uint64_t c2 = N1C->getZExtValue(); 4508 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 4509 SDValue Shift; 4510 if (c2 > c1) { 4511 Mask = Mask.shl(c2 - c1); 4512 SDLoc DL(N); 4513 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4514 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 4515 } else { 4516 Mask = Mask.lshr(c1 - c2); 4517 SDLoc DL(N); 4518 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4519 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 4520 } 4521 SDLoc DL(N0); 4522 return DAG.getNode(ISD::AND, DL, VT, Shift, 4523 DAG.getConstant(Mask, DL, VT)); 4524 } 4525 } 4526 } 4527 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 4528 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { 4529 unsigned BitSize = VT.getScalarSizeInBits(); 4530 SDLoc DL(N); 4531 SDValue HiBitsMask = 4532 DAG.getConstant(APInt::getHighBitsSet(BitSize, 4533 BitSize - N1C->getZExtValue()), 4534 DL, VT); 4535 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4536 HiBitsMask); 4537 } 4538 4539 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4540 // Variant of version done on multiply, except mul by a power of 2 is turned 4541 // into a shift. 4542 APInt Val; 4543 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 4544 (isa<ConstantSDNode>(N0.getOperand(1)) || 4545 isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { 4546 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 4547 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4548 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 4549 } 4550 4551 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 4552 if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { 4553 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4554 if (SDValue Folded = 4555 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) 4556 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); 4557 } 4558 } 4559 4560 if (N1C && !N1C->isOpaque()) 4561 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 4562 return NewSHL; 4563 4564 return SDValue(); 4565 } 4566 4567 SDValue DAGCombiner::visitSRA(SDNode *N) { 4568 SDValue N0 = N->getOperand(0); 4569 SDValue N1 = N->getOperand(1); 4570 EVT VT = N0.getValueType(); 4571 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4572 4573 // fold vector ops 4574 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4575 if (VT.isVector()) { 4576 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4577 return FoldedVOp; 4578 4579 N1C = isConstOrConstSplat(N1); 4580 } 4581 4582 // fold (sra c1, c2) -> (sra c1, c2) 4583 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4584 if (N0C && N1C && !N1C->isOpaque()) 4585 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 4586 // fold (sra 0, x) -> 0 4587 if (isNullConstant(N0)) 4588 return N0; 4589 // fold (sra -1, x) -> -1 4590 if (isAllOnesConstant(N0)) 4591 return N0; 4592 // fold (sra x, (setge c, size(x))) -> undef 4593 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4594 return DAG.getUNDEF(VT); 4595 // fold (sra x, 0) -> x 4596 if (N1C && N1C->isNullValue()) 4597 return N0; 4598 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 4599 // sext_inreg. 4600 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 4601 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 4602 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 4603 if (VT.isVector()) 4604 ExtVT = EVT::getVectorVT(*DAG.getContext(), 4605 ExtVT, VT.getVectorNumElements()); 4606 if ((!LegalOperations || 4607 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 4608 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 4609 N0.getOperand(0), DAG.getValueType(ExtVT)); 4610 } 4611 4612 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 4613 if (N1C && N0.getOpcode() == ISD::SRA) { 4614 if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { 4615 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); 4616 if (Sum >= OpSizeInBits) 4617 Sum = OpSizeInBits - 1; 4618 SDLoc DL(N); 4619 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), 4620 DAG.getConstant(Sum, DL, N1.getValueType())); 4621 } 4622 } 4623 4624 // fold (sra (shl X, m), (sub result_size, n)) 4625 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 4626 // result_size - n != m. 4627 // If truncate is free for the target sext(shl) is likely to result in better 4628 // code. 4629 if (N0.getOpcode() == ISD::SHL && N1C) { 4630 // Get the two constanst of the shifts, CN0 = m, CN = n. 4631 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 4632 if (N01C) { 4633 LLVMContext &Ctx = *DAG.getContext(); 4634 // Determine what the truncate's result bitsize and type would be. 4635 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 4636 4637 if (VT.isVector()) 4638 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 4639 4640 // Determine the residual right-shift amount. 4641 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 4642 4643 // If the shift is not a no-op (in which case this should be just a sign 4644 // extend already), the truncated to type is legal, sign_extend is legal 4645 // on that type, and the truncate to that type is both legal and free, 4646 // perform the transform. 4647 if ((ShiftAmt > 0) && 4648 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 4649 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 4650 TLI.isTruncateFree(VT, TruncVT)) { 4651 4652 SDLoc DL(N); 4653 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 4654 getShiftAmountTy(N0.getOperand(0).getValueType())); 4655 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 4656 N0.getOperand(0), Amt); 4657 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 4658 Shift); 4659 return DAG.getNode(ISD::SIGN_EXTEND, DL, 4660 N->getValueType(0), Trunc); 4661 } 4662 } 4663 } 4664 4665 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 4666 if (N1.getOpcode() == ISD::TRUNCATE && 4667 N1.getOperand(0).getOpcode() == ISD::AND) { 4668 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 4669 if (NewOp1.getNode()) 4670 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 4671 } 4672 4673 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 4674 // if c1 is equal to the number of bits the trunc removes 4675 if (N0.getOpcode() == ISD::TRUNCATE && 4676 (N0.getOperand(0).getOpcode() == ISD::SRL || 4677 N0.getOperand(0).getOpcode() == ISD::SRA) && 4678 N0.getOperand(0).hasOneUse() && 4679 N0.getOperand(0).getOperand(1).hasOneUse() && 4680 N1C) { 4681 SDValue N0Op0 = N0.getOperand(0); 4682 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 4683 unsigned LargeShiftVal = LargeShift->getZExtValue(); 4684 EVT LargeVT = N0Op0.getValueType(); 4685 4686 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 4687 SDLoc DL(N); 4688 SDValue Amt = 4689 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 4690 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 4691 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 4692 N0Op0.getOperand(0), Amt); 4693 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 4694 } 4695 } 4696 } 4697 4698 // Simplify, based on bits shifted out of the LHS. 4699 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4700 return SDValue(N, 0); 4701 4702 4703 // If the sign bit is known to be zero, switch this to a SRL. 4704 if (DAG.SignBitIsZero(N0)) 4705 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 4706 4707 if (N1C && !N1C->isOpaque()) 4708 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 4709 return NewSRA; 4710 4711 return SDValue(); 4712 } 4713 4714 SDValue DAGCombiner::visitSRL(SDNode *N) { 4715 SDValue N0 = N->getOperand(0); 4716 SDValue N1 = N->getOperand(1); 4717 EVT VT = N0.getValueType(); 4718 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4719 4720 // fold vector ops 4721 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4722 if (VT.isVector()) { 4723 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4724 return FoldedVOp; 4725 4726 N1C = isConstOrConstSplat(N1); 4727 } 4728 4729 // fold (srl c1, c2) -> c1 >>u c2 4730 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4731 if (N0C && N1C && !N1C->isOpaque()) 4732 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 4733 // fold (srl 0, x) -> 0 4734 if (isNullConstant(N0)) 4735 return N0; 4736 // fold (srl x, c >= size(x)) -> undef 4737 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4738 return DAG.getUNDEF(VT); 4739 // fold (srl x, 0) -> x 4740 if (N1C && N1C->isNullValue()) 4741 return N0; 4742 // if (srl x, c) is known to be zero, return 0 4743 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4744 APInt::getAllOnesValue(OpSizeInBits))) 4745 return DAG.getConstant(0, SDLoc(N), VT); 4746 4747 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 4748 if (N1C && N0.getOpcode() == ISD::SRL) { 4749 if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { 4750 uint64_t c1 = N01C->getZExtValue(); 4751 uint64_t c2 = N1C->getZExtValue(); 4752 SDLoc DL(N); 4753 if (c1 + c2 >= OpSizeInBits) 4754 return DAG.getConstant(0, DL, VT); 4755 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4756 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4757 } 4758 } 4759 4760 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 4761 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 4762 N0.getOperand(0).getOpcode() == ISD::SRL && 4763 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 4764 uint64_t c1 = 4765 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 4766 uint64_t c2 = N1C->getZExtValue(); 4767 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 4768 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 4769 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); 4770 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 4771 if (c1 + OpSizeInBits == InnerShiftSize) { 4772 SDLoc DL(N0); 4773 if (c1 + c2 >= InnerShiftSize) 4774 return DAG.getConstant(0, DL, VT); 4775 return DAG.getNode(ISD::TRUNCATE, DL, VT, 4776 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 4777 N0.getOperand(0)->getOperand(0), 4778 DAG.getConstant(c1 + c2, DL, 4779 ShiftCountVT))); 4780 } 4781 } 4782 4783 // fold (srl (shl x, c), c) -> (and x, cst2) 4784 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { 4785 unsigned BitSize = N0.getScalarValueSizeInBits(); 4786 if (BitSize <= 64) { 4787 uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; 4788 SDLoc DL(N); 4789 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4790 DAG.getConstant(~0ULL >> ShAmt, DL, VT)); 4791 } 4792 } 4793 4794 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 4795 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4796 // Shifting in all undef bits? 4797 EVT SmallVT = N0.getOperand(0).getValueType(); 4798 unsigned BitSize = SmallVT.getScalarSizeInBits(); 4799 if (N1C->getZExtValue() >= BitSize) 4800 return DAG.getUNDEF(VT); 4801 4802 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 4803 uint64_t ShiftAmt = N1C->getZExtValue(); 4804 SDLoc DL0(N0); 4805 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 4806 N0.getOperand(0), 4807 DAG.getConstant(ShiftAmt, DL0, 4808 getShiftAmountTy(SmallVT))); 4809 AddToWorklist(SmallShift.getNode()); 4810 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 4811 SDLoc DL(N); 4812 return DAG.getNode(ISD::AND, DL, VT, 4813 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 4814 DAG.getConstant(Mask, DL, VT)); 4815 } 4816 } 4817 4818 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 4819 // bit, which is unmodified by sra. 4820 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 4821 if (N0.getOpcode() == ISD::SRA) 4822 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 4823 } 4824 4825 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 4826 if (N1C && N0.getOpcode() == ISD::CTLZ && 4827 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 4828 APInt KnownZero, KnownOne; 4829 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 4830 4831 // If any of the input bits are KnownOne, then the input couldn't be all 4832 // zeros, thus the result of the srl will always be zero. 4833 if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 4834 4835 // If all of the bits input the to ctlz node are known to be zero, then 4836 // the result of the ctlz is "32" and the result of the shift is one. 4837 APInt UnknownBits = ~KnownZero; 4838 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 4839 4840 // Otherwise, check to see if there is exactly one bit input to the ctlz. 4841 if ((UnknownBits & (UnknownBits - 1)) == 0) { 4842 // Okay, we know that only that the single bit specified by UnknownBits 4843 // could be set on input to the CTLZ node. If this bit is set, the SRL 4844 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 4845 // to an SRL/XOR pair, which is likely to simplify more. 4846 unsigned ShAmt = UnknownBits.countTrailingZeros(); 4847 SDValue Op = N0.getOperand(0); 4848 4849 if (ShAmt) { 4850 SDLoc DL(N0); 4851 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4852 DAG.getConstant(ShAmt, DL, 4853 getShiftAmountTy(Op.getValueType()))); 4854 AddToWorklist(Op.getNode()); 4855 } 4856 4857 SDLoc DL(N); 4858 return DAG.getNode(ISD::XOR, DL, VT, 4859 Op, DAG.getConstant(1, DL, VT)); 4860 } 4861 } 4862 4863 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 4864 if (N1.getOpcode() == ISD::TRUNCATE && 4865 N1.getOperand(0).getOpcode() == ISD::AND) { 4866 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4867 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 4868 } 4869 4870 // fold operands of srl based on knowledge that the low bits are not 4871 // demanded. 4872 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4873 return SDValue(N, 0); 4874 4875 if (N1C && !N1C->isOpaque()) 4876 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 4877 return NewSRL; 4878 4879 // Attempt to convert a srl of a load into a narrower zero-extending load. 4880 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 4881 return NarrowLoad; 4882 4883 // Here is a common situation. We want to optimize: 4884 // 4885 // %a = ... 4886 // %b = and i32 %a, 2 4887 // %c = srl i32 %b, 1 4888 // brcond i32 %c ... 4889 // 4890 // into 4891 // 4892 // %a = ... 4893 // %b = and %a, 2 4894 // %c = setcc eq %b, 0 4895 // brcond %c ... 4896 // 4897 // However when after the source operand of SRL is optimized into AND, the SRL 4898 // itself may not be optimized further. Look for it and add the BRCOND into 4899 // the worklist. 4900 if (N->hasOneUse()) { 4901 SDNode *Use = *N->use_begin(); 4902 if (Use->getOpcode() == ISD::BRCOND) 4903 AddToWorklist(Use); 4904 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 4905 // Also look pass the truncate. 4906 Use = *Use->use_begin(); 4907 if (Use->getOpcode() == ISD::BRCOND) 4908 AddToWorklist(Use); 4909 } 4910 } 4911 4912 return SDValue(); 4913 } 4914 4915 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 4916 SDValue N0 = N->getOperand(0); 4917 EVT VT = N->getValueType(0); 4918 4919 // fold (bswap c1) -> c2 4920 if (isConstantIntBuildVectorOrConstantInt(N0)) 4921 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 4922 // fold (bswap (bswap x)) -> x 4923 if (N0.getOpcode() == ISD::BSWAP) 4924 return N0->getOperand(0); 4925 return SDValue(); 4926 } 4927 4928 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 4929 SDValue N0 = N->getOperand(0); 4930 EVT VT = N->getValueType(0); 4931 4932 // fold (ctlz c1) -> c2 4933 if (isConstantIntBuildVectorOrConstantInt(N0)) 4934 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 4935 return SDValue(); 4936 } 4937 4938 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 4939 SDValue N0 = N->getOperand(0); 4940 EVT VT = N->getValueType(0); 4941 4942 // fold (ctlz_zero_undef c1) -> c2 4943 if (isConstantIntBuildVectorOrConstantInt(N0)) 4944 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 4945 return SDValue(); 4946 } 4947 4948 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 4949 SDValue N0 = N->getOperand(0); 4950 EVT VT = N->getValueType(0); 4951 4952 // fold (cttz c1) -> c2 4953 if (isConstantIntBuildVectorOrConstantInt(N0)) 4954 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 4955 return SDValue(); 4956 } 4957 4958 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 4959 SDValue N0 = N->getOperand(0); 4960 EVT VT = N->getValueType(0); 4961 4962 // fold (cttz_zero_undef c1) -> c2 4963 if (isConstantIntBuildVectorOrConstantInt(N0)) 4964 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 4965 return SDValue(); 4966 } 4967 4968 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 4969 SDValue N0 = N->getOperand(0); 4970 EVT VT = N->getValueType(0); 4971 4972 // fold (ctpop c1) -> c2 4973 if (isConstantIntBuildVectorOrConstantInt(N0)) 4974 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 4975 return SDValue(); 4976 } 4977 4978 4979 /// \brief Generate Min/Max node 4980 static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS, 4981 SDValue True, SDValue False, 4982 ISD::CondCode CC, const TargetLowering &TLI, 4983 SelectionDAG &DAG) { 4984 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 4985 return SDValue(); 4986 4987 switch (CC) { 4988 case ISD::SETOLT: 4989 case ISD::SETOLE: 4990 case ISD::SETLT: 4991 case ISD::SETLE: 4992 case ISD::SETULT: 4993 case ISD::SETULE: { 4994 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 4995 if (TLI.isOperationLegal(Opcode, VT)) 4996 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 4997 return SDValue(); 4998 } 4999 case ISD::SETOGT: 5000 case ISD::SETOGE: 5001 case ISD::SETGT: 5002 case ISD::SETGE: 5003 case ISD::SETUGT: 5004 case ISD::SETUGE: { 5005 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 5006 if (TLI.isOperationLegal(Opcode, VT)) 5007 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5008 return SDValue(); 5009 } 5010 default: 5011 return SDValue(); 5012 } 5013 } 5014 5015 SDValue DAGCombiner::visitSELECT(SDNode *N) { 5016 SDValue N0 = N->getOperand(0); 5017 SDValue N1 = N->getOperand(1); 5018 SDValue N2 = N->getOperand(2); 5019 EVT VT = N->getValueType(0); 5020 EVT VT0 = N0.getValueType(); 5021 5022 // fold (select C, X, X) -> X 5023 if (N1 == N2) 5024 return N1; 5025 if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { 5026 // fold (select true, X, Y) -> X 5027 // fold (select false, X, Y) -> Y 5028 return !N0C->isNullValue() ? N1 : N2; 5029 } 5030 // fold (select C, 1, X) -> (or C, X) 5031 if (VT == MVT::i1 && isOneConstant(N1)) 5032 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5033 // fold (select C, 0, 1) -> (xor C, 1) 5034 // We can't do this reliably if integer based booleans have different contents 5035 // to floating point based booleans. This is because we can't tell whether we 5036 // have an integer-based boolean or a floating-point-based boolean unless we 5037 // can find the SETCC that produced it and inspect its operands. This is 5038 // fairly easy if C is the SETCC node, but it can potentially be 5039 // undiscoverable (or not reasonably discoverable). For example, it could be 5040 // in another basic block or it could require searching a complicated 5041 // expression. 5042 if (VT.isInteger() && 5043 (VT0 == MVT::i1 || (VT0.isInteger() && 5044 TLI.getBooleanContents(false, false) == 5045 TLI.getBooleanContents(false, true) && 5046 TLI.getBooleanContents(false, false) == 5047 TargetLowering::ZeroOrOneBooleanContent)) && 5048 isNullConstant(N1) && isOneConstant(N2)) { 5049 SDValue XORNode; 5050 if (VT == VT0) { 5051 SDLoc DL(N); 5052 return DAG.getNode(ISD::XOR, DL, VT0, 5053 N0, DAG.getConstant(1, DL, VT0)); 5054 } 5055 SDLoc DL0(N0); 5056 XORNode = DAG.getNode(ISD::XOR, DL0, VT0, 5057 N0, DAG.getConstant(1, DL0, VT0)); 5058 AddToWorklist(XORNode.getNode()); 5059 if (VT.bitsGT(VT0)) 5060 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); 5061 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); 5062 } 5063 // fold (select C, 0, X) -> (and (not C), X) 5064 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 5065 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5066 AddToWorklist(NOTNode.getNode()); 5067 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 5068 } 5069 // fold (select C, X, 1) -> (or (not C), X) 5070 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 5071 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5072 AddToWorklist(NOTNode.getNode()); 5073 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 5074 } 5075 // fold (select C, X, 0) -> (and C, X) 5076 if (VT == MVT::i1 && isNullConstant(N2)) 5077 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5078 // fold (select X, X, Y) -> (or X, Y) 5079 // fold (select X, 1, Y) -> (or X, Y) 5080 if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 5081 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5082 // fold (select X, Y, X) -> (and X, Y) 5083 // fold (select X, Y, 0) -> (and X, Y) 5084 if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 5085 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5086 5087 // If we can fold this based on the true/false value, do so. 5088 if (SimplifySelectOps(N, N1, N2)) 5089 return SDValue(N, 0); // Don't revisit N. 5090 5091 if (VT0 == MVT::i1) { 5092 // The code in this block deals with the following 2 equivalences: 5093 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 5094 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 5095 // The target can specify its prefered form with the 5096 // shouldNormalizeToSelectSequence() callback. However we always transform 5097 // to the right anyway if we find the inner select exists in the DAG anyway 5098 // and we always transform to the left side if we know that we can further 5099 // optimize the combination of the conditions. 5100 bool normalizeToSequence 5101 = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 5102 // select (and Cond0, Cond1), X, Y 5103 // -> select Cond0, (select Cond1, X, Y), Y 5104 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 5105 SDValue Cond0 = N0->getOperand(0); 5106 SDValue Cond1 = N0->getOperand(1); 5107 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5108 N1.getValueType(), Cond1, N1, N2); 5109 if (normalizeToSequence || !InnerSelect.use_empty()) 5110 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, 5111 InnerSelect, N2); 5112 } 5113 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 5114 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 5115 SDValue Cond0 = N0->getOperand(0); 5116 SDValue Cond1 = N0->getOperand(1); 5117 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5118 N1.getValueType(), Cond1, N1, N2); 5119 if (normalizeToSequence || !InnerSelect.use_empty()) 5120 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, 5121 InnerSelect); 5122 } 5123 5124 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 5125 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 5126 SDValue N1_0 = N1->getOperand(0); 5127 SDValue N1_1 = N1->getOperand(1); 5128 SDValue N1_2 = N1->getOperand(2); 5129 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 5130 // Create the actual and node if we can generate good code for it. 5131 if (!normalizeToSequence) { 5132 SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), 5133 N0, N1_0); 5134 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, 5135 N1_1, N2); 5136 } 5137 // Otherwise see if we can optimize the "and" to a better pattern. 5138 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 5139 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5140 N1_1, N2); 5141 } 5142 } 5143 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 5144 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 5145 SDValue N2_0 = N2->getOperand(0); 5146 SDValue N2_1 = N2->getOperand(1); 5147 SDValue N2_2 = N2->getOperand(2); 5148 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 5149 // Create the actual or node if we can generate good code for it. 5150 if (!normalizeToSequence) { 5151 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), 5152 N0, N2_0); 5153 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, 5154 N1, N2_2); 5155 } 5156 // Otherwise see if we can optimize to a better pattern. 5157 if (SDValue Combined = visitORLike(N0, N2_0, N)) 5158 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5159 N1, N2_2); 5160 } 5161 } 5162 } 5163 5164 // fold selects based on a setcc into other things, such as min/max/abs 5165 if (N0.getOpcode() == ISD::SETCC) { 5166 // select x, y (fcmp lt x, y) -> fminnum x, y 5167 // select x, y (fcmp gt x, y) -> fmaxnum x, y 5168 // 5169 // This is OK if we don't care about what happens if either operand is a 5170 // NaN. 5171 // 5172 5173 // FIXME: Instead of testing for UnsafeFPMath, this should be checking for 5174 // no signed zeros as well as no nans. 5175 const TargetOptions &Options = DAG.getTarget().Options; 5176 if (Options.UnsafeFPMath && 5177 VT.isFloatingPoint() && N0.hasOneUse() && 5178 DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { 5179 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5180 5181 if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), 5182 N0.getOperand(1), N1, N2, CC, 5183 TLI, DAG)) 5184 return FMinMax; 5185 } 5186 5187 if ((!LegalOperations && 5188 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 5189 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 5190 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 5191 N0.getOperand(0), N0.getOperand(1), 5192 N1, N2, N0.getOperand(2)); 5193 return SimplifySelect(SDLoc(N), N0, N1, N2); 5194 } 5195 5196 return SDValue(); 5197 } 5198 5199 static 5200 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 5201 SDLoc DL(N); 5202 EVT LoVT, HiVT; 5203 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 5204 5205 // Split the inputs. 5206 SDValue Lo, Hi, LL, LH, RL, RH; 5207 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 5208 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 5209 5210 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 5211 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 5212 5213 return std::make_pair(Lo, Hi); 5214 } 5215 5216 // This function assumes all the vselect's arguments are CONCAT_VECTOR 5217 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 5218 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 5219 SDLoc dl(N); 5220 SDValue Cond = N->getOperand(0); 5221 SDValue LHS = N->getOperand(1); 5222 SDValue RHS = N->getOperand(2); 5223 EVT VT = N->getValueType(0); 5224 int NumElems = VT.getVectorNumElements(); 5225 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 5226 RHS.getOpcode() == ISD::CONCAT_VECTORS && 5227 Cond.getOpcode() == ISD::BUILD_VECTOR); 5228 5229 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 5230 // binary ones here. 5231 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 5232 return SDValue(); 5233 5234 // We're sure we have an even number of elements due to the 5235 // concat_vectors we have as arguments to vselect. 5236 // Skip BV elements until we find one that's not an UNDEF 5237 // After we find an UNDEF element, keep looping until we get to half the 5238 // length of the BV and see if all the non-undef nodes are the same. 5239 ConstantSDNode *BottomHalf = nullptr; 5240 for (int i = 0; i < NumElems / 2; ++i) { 5241 if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) 5242 continue; 5243 5244 if (BottomHalf == nullptr) 5245 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5246 else if (Cond->getOperand(i).getNode() != BottomHalf) 5247 return SDValue(); 5248 } 5249 5250 // Do the same for the second half of the BuildVector 5251 ConstantSDNode *TopHalf = nullptr; 5252 for (int i = NumElems / 2; i < NumElems; ++i) { 5253 if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) 5254 continue; 5255 5256 if (TopHalf == nullptr) 5257 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5258 else if (Cond->getOperand(i).getNode() != TopHalf) 5259 return SDValue(); 5260 } 5261 5262 assert(TopHalf && BottomHalf && 5263 "One half of the selector was all UNDEFs and the other was all the " 5264 "same value. This should have been addressed before this function."); 5265 return DAG.getNode( 5266 ISD::CONCAT_VECTORS, dl, VT, 5267 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 5268 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 5269 } 5270 5271 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 5272 5273 if (Level >= AfterLegalizeTypes) 5274 return SDValue(); 5275 5276 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 5277 SDValue Mask = MSC->getMask(); 5278 SDValue Data = MSC->getValue(); 5279 SDLoc DL(N); 5280 5281 // If the MSCATTER data type requires splitting and the mask is provided by a 5282 // SETCC, then split both nodes and its operands before legalization. This 5283 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5284 // and enables future optimizations (e.g. min/max pattern matching on X86). 5285 if (Mask.getOpcode() != ISD::SETCC) 5286 return SDValue(); 5287 5288 // Check if any splitting is required. 5289 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5290 TargetLowering::TypeSplitVector) 5291 return SDValue(); 5292 SDValue MaskLo, MaskHi, Lo, Hi; 5293 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5294 5295 EVT LoVT, HiVT; 5296 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 5297 5298 SDValue Chain = MSC->getChain(); 5299 5300 EVT MemoryVT = MSC->getMemoryVT(); 5301 unsigned Alignment = MSC->getOriginalAlignment(); 5302 5303 EVT LoMemVT, HiMemVT; 5304 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5305 5306 SDValue DataLo, DataHi; 5307 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5308 5309 SDValue BasePtr = MSC->getBasePtr(); 5310 SDValue IndexLo, IndexHi; 5311 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 5312 5313 MachineMemOperand *MMO = DAG.getMachineFunction(). 5314 getMachineMemOperand(MSC->getPointerInfo(), 5315 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5316 Alignment, MSC->getAAInfo(), MSC->getRanges()); 5317 5318 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; 5319 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), 5320 DL, OpsLo, MMO); 5321 5322 SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; 5323 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 5324 DL, OpsHi, MMO); 5325 5326 AddToWorklist(Lo.getNode()); 5327 AddToWorklist(Hi.getNode()); 5328 5329 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5330 } 5331 5332 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 5333 5334 if (Level >= AfterLegalizeTypes) 5335 return SDValue(); 5336 5337 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); 5338 SDValue Mask = MST->getMask(); 5339 SDValue Data = MST->getValue(); 5340 SDLoc DL(N); 5341 5342 // If the MSTORE data type requires splitting and the mask is provided by a 5343 // SETCC, then split both nodes and its operands before legalization. This 5344 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5345 // and enables future optimizations (e.g. min/max pattern matching on X86). 5346 if (Mask.getOpcode() == ISD::SETCC) { 5347 5348 // Check if any splitting is required. 5349 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5350 TargetLowering::TypeSplitVector) 5351 return SDValue(); 5352 5353 SDValue MaskLo, MaskHi, Lo, Hi; 5354 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5355 5356 EVT LoVT, HiVT; 5357 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); 5358 5359 SDValue Chain = MST->getChain(); 5360 SDValue Ptr = MST->getBasePtr(); 5361 5362 EVT MemoryVT = MST->getMemoryVT(); 5363 unsigned Alignment = MST->getOriginalAlignment(); 5364 5365 // if Alignment is equal to the vector size, 5366 // take the half of it for the second part 5367 unsigned SecondHalfAlignment = 5368 (Alignment == Data->getValueType(0).getSizeInBits()/8) ? 5369 Alignment/2 : Alignment; 5370 5371 EVT LoMemVT, HiMemVT; 5372 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5373 5374 SDValue DataLo, DataHi; 5375 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5376 5377 MachineMemOperand *MMO = DAG.getMachineFunction(). 5378 getMachineMemOperand(MST->getPointerInfo(), 5379 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5380 Alignment, MST->getAAInfo(), MST->getRanges()); 5381 5382 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 5383 MST->isTruncatingStore()); 5384 5385 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5386 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5387 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5388 5389 MMO = DAG.getMachineFunction(). 5390 getMachineMemOperand(MST->getPointerInfo(), 5391 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), 5392 SecondHalfAlignment, MST->getAAInfo(), 5393 MST->getRanges()); 5394 5395 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 5396 MST->isTruncatingStore()); 5397 5398 AddToWorklist(Lo.getNode()); 5399 AddToWorklist(Hi.getNode()); 5400 5401 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5402 } 5403 return SDValue(); 5404 } 5405 5406 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 5407 5408 if (Level >= AfterLegalizeTypes) 5409 return SDValue(); 5410 5411 MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); 5412 SDValue Mask = MGT->getMask(); 5413 SDLoc DL(N); 5414 5415 // If the MGATHER result requires splitting and the mask is provided by a 5416 // SETCC, then split both nodes and its operands before legalization. This 5417 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5418 // and enables future optimizations (e.g. min/max pattern matching on X86). 5419 5420 if (Mask.getOpcode() != ISD::SETCC) 5421 return SDValue(); 5422 5423 EVT VT = N->getValueType(0); 5424 5425 // Check if any splitting is required. 5426 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5427 TargetLowering::TypeSplitVector) 5428 return SDValue(); 5429 5430 SDValue MaskLo, MaskHi, Lo, Hi; 5431 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5432 5433 SDValue Src0 = MGT->getValue(); 5434 SDValue Src0Lo, Src0Hi; 5435 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5436 5437 EVT LoVT, HiVT; 5438 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 5439 5440 SDValue Chain = MGT->getChain(); 5441 EVT MemoryVT = MGT->getMemoryVT(); 5442 unsigned Alignment = MGT->getOriginalAlignment(); 5443 5444 EVT LoMemVT, HiMemVT; 5445 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5446 5447 SDValue BasePtr = MGT->getBasePtr(); 5448 SDValue Index = MGT->getIndex(); 5449 SDValue IndexLo, IndexHi; 5450 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 5451 5452 MachineMemOperand *MMO = DAG.getMachineFunction(). 5453 getMachineMemOperand(MGT->getPointerInfo(), 5454 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5455 Alignment, MGT->getAAInfo(), MGT->getRanges()); 5456 5457 SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; 5458 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 5459 MMO); 5460 5461 SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; 5462 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 5463 MMO); 5464 5465 AddToWorklist(Lo.getNode()); 5466 AddToWorklist(Hi.getNode()); 5467 5468 // Build a factor node to remember that this load is independent of the 5469 // other one. 5470 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5471 Hi.getValue(1)); 5472 5473 // Legalized the chain result - switch anything that used the old chain to 5474 // use the new one. 5475 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 5476 5477 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5478 5479 SDValue RetOps[] = { GatherRes, Chain }; 5480 return DAG.getMergeValues(RetOps, DL); 5481 } 5482 5483 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 5484 5485 if (Level >= AfterLegalizeTypes) 5486 return SDValue(); 5487 5488 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); 5489 SDValue Mask = MLD->getMask(); 5490 SDLoc DL(N); 5491 5492 // If the MLOAD result requires splitting and the mask is provided by a 5493 // SETCC, then split both nodes and its operands before legalization. This 5494 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5495 // and enables future optimizations (e.g. min/max pattern matching on X86). 5496 5497 if (Mask.getOpcode() == ISD::SETCC) { 5498 EVT VT = N->getValueType(0); 5499 5500 // Check if any splitting is required. 5501 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5502 TargetLowering::TypeSplitVector) 5503 return SDValue(); 5504 5505 SDValue MaskLo, MaskHi, Lo, Hi; 5506 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5507 5508 SDValue Src0 = MLD->getSrc0(); 5509 SDValue Src0Lo, Src0Hi; 5510 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5511 5512 EVT LoVT, HiVT; 5513 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 5514 5515 SDValue Chain = MLD->getChain(); 5516 SDValue Ptr = MLD->getBasePtr(); 5517 EVT MemoryVT = MLD->getMemoryVT(); 5518 unsigned Alignment = MLD->getOriginalAlignment(); 5519 5520 // if Alignment is equal to the vector size, 5521 // take the half of it for the second part 5522 unsigned SecondHalfAlignment = 5523 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 5524 Alignment/2 : Alignment; 5525 5526 EVT LoMemVT, HiMemVT; 5527 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5528 5529 MachineMemOperand *MMO = DAG.getMachineFunction(). 5530 getMachineMemOperand(MLD->getPointerInfo(), 5531 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5532 Alignment, MLD->getAAInfo(), MLD->getRanges()); 5533 5534 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, 5535 ISD::NON_EXTLOAD); 5536 5537 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5538 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5539 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5540 5541 MMO = DAG.getMachineFunction(). 5542 getMachineMemOperand(MLD->getPointerInfo(), 5543 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), 5544 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); 5545 5546 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, 5547 ISD::NON_EXTLOAD); 5548 5549 AddToWorklist(Lo.getNode()); 5550 AddToWorklist(Hi.getNode()); 5551 5552 // Build a factor node to remember that this load is independent of the 5553 // other one. 5554 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5555 Hi.getValue(1)); 5556 5557 // Legalized the chain result - switch anything that used the old chain to 5558 // use the new one. 5559 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 5560 5561 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5562 5563 SDValue RetOps[] = { LoadRes, Chain }; 5564 return DAG.getMergeValues(RetOps, DL); 5565 } 5566 return SDValue(); 5567 } 5568 5569 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 5570 SDValue N0 = N->getOperand(0); 5571 SDValue N1 = N->getOperand(1); 5572 SDValue N2 = N->getOperand(2); 5573 SDLoc DL(N); 5574 5575 // Canonicalize integer abs. 5576 // vselect (setg[te] X, 0), X, -X -> 5577 // vselect (setgt X, -1), X, -X -> 5578 // vselect (setl[te] X, 0), -X, X -> 5579 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 5580 if (N0.getOpcode() == ISD::SETCC) { 5581 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 5582 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5583 bool isAbs = false; 5584 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 5585 5586 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 5587 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 5588 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 5589 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 5590 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 5591 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 5592 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5593 5594 if (isAbs) { 5595 EVT VT = LHS.getValueType(); 5596 SDValue Shift = DAG.getNode( 5597 ISD::SRA, DL, VT, LHS, 5598 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT)); 5599 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 5600 AddToWorklist(Shift.getNode()); 5601 AddToWorklist(Add.getNode()); 5602 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 5603 } 5604 } 5605 5606 if (SimplifySelectOps(N, N1, N2)) 5607 return SDValue(N, 0); // Don't revisit N. 5608 5609 // If the VSELECT result requires splitting and the mask is provided by a 5610 // SETCC, then split both nodes and its operands before legalization. This 5611 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5612 // and enables future optimizations (e.g. min/max pattern matching on X86). 5613 if (N0.getOpcode() == ISD::SETCC) { 5614 EVT VT = N->getValueType(0); 5615 5616 // Check if any splitting is required. 5617 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5618 TargetLowering::TypeSplitVector) 5619 return SDValue(); 5620 5621 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 5622 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 5623 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 5624 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 5625 5626 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 5627 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 5628 5629 // Add the new VSELECT nodes to the work list in case they need to be split 5630 // again. 5631 AddToWorklist(Lo.getNode()); 5632 AddToWorklist(Hi.getNode()); 5633 5634 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5635 } 5636 5637 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 5638 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5639 return N1; 5640 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 5641 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5642 return N2; 5643 5644 // The ConvertSelectToConcatVector function is assuming both the above 5645 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 5646 // and addressed. 5647 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 5648 N2.getOpcode() == ISD::CONCAT_VECTORS && 5649 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 5650 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 5651 return CV; 5652 } 5653 5654 return SDValue(); 5655 } 5656 5657 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 5658 SDValue N0 = N->getOperand(0); 5659 SDValue N1 = N->getOperand(1); 5660 SDValue N2 = N->getOperand(2); 5661 SDValue N3 = N->getOperand(3); 5662 SDValue N4 = N->getOperand(4); 5663 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 5664 5665 // fold select_cc lhs, rhs, x, x, cc -> x 5666 if (N2 == N3) 5667 return N2; 5668 5669 // Determine if the condition we're dealing with is constant 5670 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 5671 N0, N1, CC, SDLoc(N), false); 5672 if (SCC.getNode()) { 5673 AddToWorklist(SCC.getNode()); 5674 5675 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 5676 if (!SCCC->isNullValue()) 5677 return N2; // cond always true -> true val 5678 else 5679 return N3; // cond always false -> false val 5680 } else if (SCC->getOpcode() == ISD::UNDEF) { 5681 // When the condition is UNDEF, just return the first operand. This is 5682 // coherent the DAG creation, no setcc node is created in this case 5683 return N2; 5684 } else if (SCC.getOpcode() == ISD::SETCC) { 5685 // Fold to a simpler select_cc 5686 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 5687 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 5688 SCC.getOperand(2)); 5689 } 5690 } 5691 5692 // If we can fold this based on the true/false value, do so. 5693 if (SimplifySelectOps(N, N2, N3)) 5694 return SDValue(N, 0); // Don't revisit N. 5695 5696 // fold select_cc into other things, such as min/max/abs 5697 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 5698 } 5699 5700 SDValue DAGCombiner::visitSETCC(SDNode *N) { 5701 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 5702 cast<CondCodeSDNode>(N->getOperand(2))->get(), 5703 SDLoc(N)); 5704 } 5705 5706 SDValue DAGCombiner::visitSETCCE(SDNode *N) { 5707 SDValue LHS = N->getOperand(0); 5708 SDValue RHS = N->getOperand(1); 5709 SDValue Carry = N->getOperand(2); 5710 SDValue Cond = N->getOperand(3); 5711 5712 // If Carry is false, fold to a regular SETCC. 5713 if (Carry.getOpcode() == ISD::CARRY_FALSE) 5714 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 5715 5716 return SDValue(); 5717 } 5718 5719 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 5720 /// a build_vector of constants. 5721 /// This function is called by the DAGCombiner when visiting sext/zext/aext 5722 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 5723 /// Vector extends are not folded if operations are legal; this is to 5724 /// avoid introducing illegal build_vector dag nodes. 5725 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 5726 SelectionDAG &DAG, bool LegalTypes, 5727 bool LegalOperations) { 5728 unsigned Opcode = N->getOpcode(); 5729 SDValue N0 = N->getOperand(0); 5730 EVT VT = N->getValueType(0); 5731 5732 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 5733 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5734 && "Expected EXTEND dag node in input!"); 5735 5736 // fold (sext c1) -> c1 5737 // fold (zext c1) -> c1 5738 // fold (aext c1) -> c1 5739 if (isa<ConstantSDNode>(N0)) 5740 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 5741 5742 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 5743 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 5744 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 5745 EVT SVT = VT.getScalarType(); 5746 if (!(VT.isVector() && 5747 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 5748 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 5749 return nullptr; 5750 5751 // We can fold this node into a build_vector. 5752 unsigned VTBits = SVT.getSizeInBits(); 5753 unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); 5754 SmallVector<SDValue, 8> Elts; 5755 unsigned NumElts = VT.getVectorNumElements(); 5756 SDLoc DL(N); 5757 5758 for (unsigned i=0; i != NumElts; ++i) { 5759 SDValue Op = N0->getOperand(i); 5760 if (Op->getOpcode() == ISD::UNDEF) { 5761 Elts.push_back(DAG.getUNDEF(SVT)); 5762 continue; 5763 } 5764 5765 SDLoc DL(Op); 5766 // Get the constant value and if needed trunc it to the size of the type. 5767 // Nodes like build_vector might have constants wider than the scalar type. 5768 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 5769 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5770 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 5771 else 5772 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 5773 } 5774 5775 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode(); 5776 } 5777 5778 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 5779 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 5780 // transformation. Returns true if extension are possible and the above 5781 // mentioned transformation is profitable. 5782 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 5783 unsigned ExtOpc, 5784 SmallVectorImpl<SDNode *> &ExtendNodes, 5785 const TargetLowering &TLI) { 5786 bool HasCopyToRegUses = false; 5787 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 5788 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 5789 UE = N0.getNode()->use_end(); 5790 UI != UE; ++UI) { 5791 SDNode *User = *UI; 5792 if (User == N) 5793 continue; 5794 if (UI.getUse().getResNo() != N0.getResNo()) 5795 continue; 5796 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 5797 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 5798 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 5799 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 5800 // Sign bits will be lost after a zext. 5801 return false; 5802 bool Add = false; 5803 for (unsigned i = 0; i != 2; ++i) { 5804 SDValue UseOp = User->getOperand(i); 5805 if (UseOp == N0) 5806 continue; 5807 if (!isa<ConstantSDNode>(UseOp)) 5808 return false; 5809 Add = true; 5810 } 5811 if (Add) 5812 ExtendNodes.push_back(User); 5813 continue; 5814 } 5815 // If truncates aren't free and there are users we can't 5816 // extend, it isn't worthwhile. 5817 if (!isTruncFree) 5818 return false; 5819 // Remember if this value is live-out. 5820 if (User->getOpcode() == ISD::CopyToReg) 5821 HasCopyToRegUses = true; 5822 } 5823 5824 if (HasCopyToRegUses) { 5825 bool BothLiveOut = false; 5826 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5827 UI != UE; ++UI) { 5828 SDUse &Use = UI.getUse(); 5829 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 5830 BothLiveOut = true; 5831 break; 5832 } 5833 } 5834 if (BothLiveOut) 5835 // Both unextended and extended values are live out. There had better be 5836 // a good reason for the transformation. 5837 return ExtendNodes.size(); 5838 } 5839 return true; 5840 } 5841 5842 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 5843 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 5844 ISD::NodeType ExtType) { 5845 // Extend SetCC uses if necessary. 5846 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 5847 SDNode *SetCC = SetCCs[i]; 5848 SmallVector<SDValue, 4> Ops; 5849 5850 for (unsigned j = 0; j != 2; ++j) { 5851 SDValue SOp = SetCC->getOperand(j); 5852 if (SOp == Trunc) 5853 Ops.push_back(ExtLoad); 5854 else 5855 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 5856 } 5857 5858 Ops.push_back(SetCC->getOperand(2)); 5859 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5860 } 5861 } 5862 5863 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 5864 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 5865 SDValue N0 = N->getOperand(0); 5866 EVT DstVT = N->getValueType(0); 5867 EVT SrcVT = N0.getValueType(); 5868 5869 assert((N->getOpcode() == ISD::SIGN_EXTEND || 5870 N->getOpcode() == ISD::ZERO_EXTEND) && 5871 "Unexpected node type (not an extend)!"); 5872 5873 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 5874 // For example, on a target with legal v4i32, but illegal v8i32, turn: 5875 // (v8i32 (sext (v8i16 (load x)))) 5876 // into: 5877 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5878 // (v4i32 (sextload (x + 16))))) 5879 // Where uses of the original load, i.e.: 5880 // (v8i16 (load x)) 5881 // are replaced with: 5882 // (v8i16 (truncate 5883 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5884 // (v4i32 (sextload (x + 16))))))) 5885 // 5886 // This combine is only applicable to illegal, but splittable, vectors. 5887 // All legal types, and illegal non-vector types, are handled elsewhere. 5888 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 5889 // 5890 if (N0->getOpcode() != ISD::LOAD) 5891 return SDValue(); 5892 5893 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5894 5895 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 5896 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 5897 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 5898 return SDValue(); 5899 5900 SmallVector<SDNode *, 4> SetCCs; 5901 if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) 5902 return SDValue(); 5903 5904 ISD::LoadExtType ExtType = 5905 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 5906 5907 // Try to split the vector types to get down to legal types. 5908 EVT SplitSrcVT = SrcVT; 5909 EVT SplitDstVT = DstVT; 5910 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 5911 SplitSrcVT.getVectorNumElements() > 1) { 5912 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 5913 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 5914 } 5915 5916 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 5917 return SDValue(); 5918 5919 SDLoc DL(N); 5920 const unsigned NumSplits = 5921 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 5922 const unsigned Stride = SplitSrcVT.getStoreSize(); 5923 SmallVector<SDValue, 4> Loads; 5924 SmallVector<SDValue, 4> Chains; 5925 5926 SDValue BasePtr = LN0->getBasePtr(); 5927 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 5928 const unsigned Offset = Idx * Stride; 5929 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 5930 5931 SDValue SplitLoad = DAG.getExtLoad( 5932 ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, 5933 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, 5934 LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), 5935 Align, LN0->getAAInfo()); 5936 5937 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 5938 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 5939 5940 Loads.push_back(SplitLoad.getValue(0)); 5941 Chains.push_back(SplitLoad.getValue(1)); 5942 } 5943 5944 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 5945 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 5946 5947 CombineTo(N, NewValue); 5948 5949 // Replace uses of the original load (before extension) 5950 // with a truncate of the concatenated sextloaded vectors. 5951 SDValue Trunc = 5952 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 5953 CombineTo(N0.getNode(), Trunc, NewChain); 5954 ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, 5955 (ISD::NodeType)N->getOpcode()); 5956 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5957 } 5958 5959 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 5960 SDValue N0 = N->getOperand(0); 5961 EVT VT = N->getValueType(0); 5962 5963 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 5964 LegalOperations)) 5965 return SDValue(Res, 0); 5966 5967 // fold (sext (sext x)) -> (sext x) 5968 // fold (sext (aext x)) -> (sext x) 5969 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 5970 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 5971 N0.getOperand(0)); 5972 5973 if (N0.getOpcode() == ISD::TRUNCATE) { 5974 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 5975 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 5976 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 5977 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 5978 if (NarrowLoad.getNode() != N0.getNode()) { 5979 CombineTo(N0.getNode(), NarrowLoad); 5980 // CombineTo deleted the truncate, if needed, but not what's under it. 5981 AddToWorklist(oye); 5982 } 5983 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5984 } 5985 5986 // See if the value being truncated is already sign extended. If so, just 5987 // eliminate the trunc/sext pair. 5988 SDValue Op = N0.getOperand(0); 5989 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); 5990 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); 5991 unsigned DestBits = VT.getScalarType().getSizeInBits(); 5992 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 5993 5994 if (OpBits == DestBits) { 5995 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 5996 // bits, it is already ready. 5997 if (NumSignBits > DestBits-MidBits) 5998 return Op; 5999 } else if (OpBits < DestBits) { 6000 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 6001 // bits, just sext from i32. 6002 if (NumSignBits > OpBits-MidBits) 6003 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 6004 } else { 6005 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 6006 // bits, just truncate to i32. 6007 if (NumSignBits > OpBits-MidBits) 6008 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6009 } 6010 6011 // fold (sext (truncate x)) -> (sextinreg x). 6012 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 6013 N0.getValueType())) { 6014 if (OpBits < DestBits) 6015 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 6016 else if (OpBits > DestBits) 6017 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 6018 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 6019 DAG.getValueType(N0.getValueType())); 6020 } 6021 } 6022 6023 // fold (sext (load x)) -> (sext (truncate (sextload x))) 6024 // Only generate vector extloads when 1) they're legal, and 2) they are 6025 // deemed desirable by the target. 6026 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6027 ((!LegalOperations && !VT.isVector() && 6028 !cast<LoadSDNode>(N0)->isVolatile()) || 6029 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { 6030 bool DoXform = true; 6031 SmallVector<SDNode*, 4> SetCCs; 6032 if (!N0.hasOneUse()) 6033 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 6034 if (VT.isVector()) 6035 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6036 if (DoXform) { 6037 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6038 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6039 LN0->getChain(), 6040 LN0->getBasePtr(), N0.getValueType(), 6041 LN0->getMemOperand()); 6042 CombineTo(N, ExtLoad); 6043 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6044 N0.getValueType(), ExtLoad); 6045 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6046 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6047 ISD::SIGN_EXTEND); 6048 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6049 } 6050 } 6051 6052 // fold (sext (load x)) to multiple smaller sextloads. 6053 // Only on illegal but splittable vectors. 6054 if (SDValue ExtLoad = CombineExtLoad(N)) 6055 return ExtLoad; 6056 6057 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 6058 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 6059 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6060 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6061 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6062 EVT MemVT = LN0->getMemoryVT(); 6063 if ((!LegalOperations && !LN0->isVolatile()) || 6064 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { 6065 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6066 LN0->getChain(), 6067 LN0->getBasePtr(), MemVT, 6068 LN0->getMemOperand()); 6069 CombineTo(N, ExtLoad); 6070 CombineTo(N0.getNode(), 6071 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6072 N0.getValueType(), ExtLoad), 6073 ExtLoad.getValue(1)); 6074 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6075 } 6076 } 6077 6078 // fold (sext (and/or/xor (load x), cst)) -> 6079 // (and/or/xor (sextload x), (sext cst)) 6080 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6081 N0.getOpcode() == ISD::XOR) && 6082 isa<LoadSDNode>(N0.getOperand(0)) && 6083 N0.getOperand(1).getOpcode() == ISD::Constant && 6084 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && 6085 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6086 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6087 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 6088 bool DoXform = true; 6089 SmallVector<SDNode*, 4> SetCCs; 6090 if (!N0.hasOneUse()) 6091 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 6092 SetCCs, TLI); 6093 if (DoXform) { 6094 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 6095 LN0->getChain(), LN0->getBasePtr(), 6096 LN0->getMemoryVT(), 6097 LN0->getMemOperand()); 6098 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6099 Mask = Mask.sext(VT.getSizeInBits()); 6100 SDLoc DL(N); 6101 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6102 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6103 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6104 SDLoc(N0.getOperand(0)), 6105 N0.getOperand(0).getValueType(), ExtLoad); 6106 CombineTo(N, And); 6107 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6108 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6109 ISD::SIGN_EXTEND); 6110 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6111 } 6112 } 6113 } 6114 6115 if (N0.getOpcode() == ISD::SETCC) { 6116 EVT N0VT = N0.getOperand(0).getValueType(); 6117 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 6118 // Only do this before legalize for now. 6119 if (VT.isVector() && !LegalOperations && 6120 TLI.getBooleanContents(N0VT) == 6121 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6122 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 6123 // of the same size as the compared operands. Only optimize sext(setcc()) 6124 // if this is the case. 6125 EVT SVT = getSetCCResultType(N0VT); 6126 6127 // We know that the # elements of the results is the same as the 6128 // # elements of the compare (and the # elements of the compare result 6129 // for that matter). Check to see that they are the same size. If so, 6130 // we know that the element size of the sext'd result matches the 6131 // element size of the compare operands. 6132 if (VT.getSizeInBits() == SVT.getSizeInBits()) 6133 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6134 N0.getOperand(1), 6135 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6136 6137 // If the desired elements are smaller or larger than the source 6138 // elements we can use a matching integer vector type and then 6139 // truncate/sign extend 6140 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6141 if (SVT == MatchingVectorType) { 6142 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 6143 N0.getOperand(0), N0.getOperand(1), 6144 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6145 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 6146 } 6147 } 6148 6149 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) 6150 unsigned ElementWidth = VT.getScalarType().getSizeInBits(); 6151 SDLoc DL(N); 6152 SDValue NegOne = 6153 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT); 6154 SDValue SCC = 6155 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6156 NegOne, DAG.getConstant(0, DL, VT), 6157 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6158 if (SCC.getNode()) return SCC; 6159 6160 if (!VT.isVector()) { 6161 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 6162 if (!LegalOperations || 6163 TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { 6164 SDLoc DL(N); 6165 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 6166 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, 6167 N0.getOperand(0), N0.getOperand(1), CC); 6168 return DAG.getSelect(DL, VT, SetCC, 6169 NegOne, DAG.getConstant(0, DL, VT)); 6170 } 6171 } 6172 } 6173 6174 // fold (sext x) -> (zext x) if the sign bit is known zero. 6175 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 6176 DAG.SignBitIsZero(N0)) 6177 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 6178 6179 return SDValue(); 6180 } 6181 6182 // isTruncateOf - If N is a truncate of some other value, return true, record 6183 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 6184 // This function computes KnownZero to avoid a duplicated call to 6185 // computeKnownBits in the caller. 6186 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 6187 APInt &KnownZero) { 6188 APInt KnownOne; 6189 if (N->getOpcode() == ISD::TRUNCATE) { 6190 Op = N->getOperand(0); 6191 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6192 return true; 6193 } 6194 6195 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 6196 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 6197 return false; 6198 6199 SDValue Op0 = N->getOperand(0); 6200 SDValue Op1 = N->getOperand(1); 6201 assert(Op0.getValueType() == Op1.getValueType()); 6202 6203 if (isNullConstant(Op0)) 6204 Op = Op1; 6205 else if (isNullConstant(Op1)) 6206 Op = Op0; 6207 else 6208 return false; 6209 6210 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6211 6212 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 6213 return false; 6214 6215 return true; 6216 } 6217 6218 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 6219 SDValue N0 = N->getOperand(0); 6220 EVT VT = N->getValueType(0); 6221 6222 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6223 LegalOperations)) 6224 return SDValue(Res, 0); 6225 6226 // fold (zext (zext x)) -> (zext x) 6227 // fold (zext (aext x)) -> (zext x) 6228 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6229 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 6230 N0.getOperand(0)); 6231 6232 // fold (zext (truncate x)) -> (zext x) or 6233 // (zext (truncate x)) -> (truncate x) 6234 // This is valid when the truncated bits of x are already zero. 6235 // FIXME: We should extend this to work for vectors too. 6236 SDValue Op; 6237 APInt KnownZero; 6238 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 6239 APInt TruncatedBits = 6240 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 6241 APInt(Op.getValueSizeInBits(), 0) : 6242 APInt::getBitsSet(Op.getValueSizeInBits(), 6243 N0.getValueSizeInBits(), 6244 std::min(Op.getValueSizeInBits(), 6245 VT.getSizeInBits())); 6246 if (TruncatedBits == (KnownZero & TruncatedBits)) { 6247 if (VT.bitsGT(Op.getValueType())) 6248 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 6249 if (VT.bitsLT(Op.getValueType())) 6250 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6251 6252 return Op; 6253 } 6254 } 6255 6256 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6257 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 6258 if (N0.getOpcode() == ISD::TRUNCATE) { 6259 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6260 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6261 if (NarrowLoad.getNode() != N0.getNode()) { 6262 CombineTo(N0.getNode(), NarrowLoad); 6263 // CombineTo deleted the truncate, if needed, but not what's under it. 6264 AddToWorklist(oye); 6265 } 6266 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6267 } 6268 } 6269 6270 // fold (zext (truncate x)) -> (and x, mask) 6271 if (N0.getOpcode() == ISD::TRUNCATE) { 6272 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6273 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 6274 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6275 SDNode *oye = N0.getNode()->getOperand(0).getNode(); 6276 if (NarrowLoad.getNode() != N0.getNode()) { 6277 CombineTo(N0.getNode(), NarrowLoad); 6278 // CombineTo deleted the truncate, if needed, but not what's under it. 6279 AddToWorklist(oye); 6280 } 6281 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6282 } 6283 6284 EVT SrcVT = N0.getOperand(0).getValueType(); 6285 EVT MinVT = N0.getValueType(); 6286 6287 // Try to mask before the extension to avoid having to generate a larger mask, 6288 // possibly over several sub-vectors. 6289 if (SrcVT.bitsLT(VT)) { 6290 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 6291 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 6292 SDValue Op = N0.getOperand(0); 6293 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6294 AddToWorklist(Op.getNode()); 6295 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 6296 } 6297 } 6298 6299 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 6300 SDValue Op = N0.getOperand(0); 6301 if (SrcVT.bitsLT(VT)) { 6302 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 6303 AddToWorklist(Op.getNode()); 6304 } else if (SrcVT.bitsGT(VT)) { 6305 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6306 AddToWorklist(Op.getNode()); 6307 } 6308 return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6309 } 6310 } 6311 6312 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 6313 // if either of the casts is not free. 6314 if (N0.getOpcode() == ISD::AND && 6315 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6316 N0.getOperand(1).getOpcode() == ISD::Constant && 6317 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6318 N0.getValueType()) || 6319 !TLI.isZExtFree(N0.getValueType(), VT))) { 6320 SDValue X = N0.getOperand(0).getOperand(0); 6321 if (X.getValueType().bitsLT(VT)) { 6322 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 6323 } else if (X.getValueType().bitsGT(VT)) { 6324 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6325 } 6326 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6327 Mask = Mask.zext(VT.getSizeInBits()); 6328 SDLoc DL(N); 6329 return DAG.getNode(ISD::AND, DL, VT, 6330 X, DAG.getConstant(Mask, DL, VT)); 6331 } 6332 6333 // fold (zext (load x)) -> (zext (truncate (zextload x))) 6334 // Only generate vector extloads when 1) they're legal, and 2) they are 6335 // deemed desirable by the target. 6336 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6337 ((!LegalOperations && !VT.isVector() && 6338 !cast<LoadSDNode>(N0)->isVolatile()) || 6339 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { 6340 bool DoXform = true; 6341 SmallVector<SDNode*, 4> SetCCs; 6342 if (!N0.hasOneUse()) 6343 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 6344 if (VT.isVector()) 6345 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6346 if (DoXform) { 6347 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6348 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6349 LN0->getChain(), 6350 LN0->getBasePtr(), N0.getValueType(), 6351 LN0->getMemOperand()); 6352 CombineTo(N, ExtLoad); 6353 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6354 N0.getValueType(), ExtLoad); 6355 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6356 6357 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6358 ISD::ZERO_EXTEND); 6359 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6360 } 6361 } 6362 6363 // fold (zext (load x)) to multiple smaller zextloads. 6364 // Only on illegal but splittable vectors. 6365 if (SDValue ExtLoad = CombineExtLoad(N)) 6366 return ExtLoad; 6367 6368 // fold (zext (and/or/xor (load x), cst)) -> 6369 // (and/or/xor (zextload x), (zext cst)) 6370 // Unless (and (load x) cst) will match as a zextload already and has 6371 // additional users. 6372 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6373 N0.getOpcode() == ISD::XOR) && 6374 isa<LoadSDNode>(N0.getOperand(0)) && 6375 N0.getOperand(1).getOpcode() == ISD::Constant && 6376 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && 6377 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6378 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6379 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 6380 bool DoXform = true; 6381 SmallVector<SDNode*, 4> SetCCs; 6382 if (!N0.hasOneUse()) { 6383 if (N0.getOpcode() == ISD::AND) { 6384 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 6385 auto NarrowLoad = false; 6386 EVT LoadResultTy = AndC->getValueType(0); 6387 EVT ExtVT, LoadedVT; 6388 if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, 6389 NarrowLoad)) 6390 DoXform = false; 6391 } 6392 if (DoXform) 6393 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), 6394 ISD::ZERO_EXTEND, SetCCs, TLI); 6395 } 6396 if (DoXform) { 6397 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 6398 LN0->getChain(), LN0->getBasePtr(), 6399 LN0->getMemoryVT(), 6400 LN0->getMemOperand()); 6401 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6402 Mask = Mask.zext(VT.getSizeInBits()); 6403 SDLoc DL(N); 6404 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6405 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6406 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6407 SDLoc(N0.getOperand(0)), 6408 N0.getOperand(0).getValueType(), ExtLoad); 6409 CombineTo(N, And); 6410 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6411 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6412 ISD::ZERO_EXTEND); 6413 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6414 } 6415 } 6416 } 6417 6418 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 6419 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 6420 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6421 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6422 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6423 EVT MemVT = LN0->getMemoryVT(); 6424 if ((!LegalOperations && !LN0->isVolatile()) || 6425 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { 6426 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6427 LN0->getChain(), 6428 LN0->getBasePtr(), MemVT, 6429 LN0->getMemOperand()); 6430 CombineTo(N, ExtLoad); 6431 CombineTo(N0.getNode(), 6432 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 6433 ExtLoad), 6434 ExtLoad.getValue(1)); 6435 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6436 } 6437 } 6438 6439 if (N0.getOpcode() == ISD::SETCC) { 6440 if (!LegalOperations && VT.isVector() && 6441 N0.getValueType().getVectorElementType() == MVT::i1) { 6442 EVT N0VT = N0.getOperand(0).getValueType(); 6443 if (getSetCCResultType(N0VT) == N0.getValueType()) 6444 return SDValue(); 6445 6446 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 6447 // Only do this before legalize for now. 6448 EVT EltVT = VT.getVectorElementType(); 6449 SDLoc DL(N); 6450 SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(), 6451 DAG.getConstant(1, DL, EltVT)); 6452 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6453 // We know that the # elements of the results is the same as the 6454 // # elements of the compare (and the # elements of the compare result 6455 // for that matter). Check to see that they are the same size. If so, 6456 // we know that the element size of the sext'd result matches the 6457 // element size of the compare operands. 6458 return DAG.getNode(ISD::AND, DL, VT, 6459 DAG.getSetCC(DL, VT, N0.getOperand(0), 6460 N0.getOperand(1), 6461 cast<CondCodeSDNode>(N0.getOperand(2))->get()), 6462 DAG.getNode(ISD::BUILD_VECTOR, DL, VT, 6463 OneOps)); 6464 6465 // If the desired elements are smaller or larger than the source 6466 // elements we can use a matching integer vector type and then 6467 // truncate/sign extend 6468 EVT MatchingElementType = 6469 EVT::getIntegerVT(*DAG.getContext(), 6470 N0VT.getScalarType().getSizeInBits()); 6471 EVT MatchingVectorType = 6472 EVT::getVectorVT(*DAG.getContext(), MatchingElementType, 6473 N0VT.getVectorNumElements()); 6474 SDValue VsetCC = 6475 DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0), 6476 N0.getOperand(1), 6477 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6478 return DAG.getNode(ISD::AND, DL, VT, 6479 DAG.getSExtOrTrunc(VsetCC, DL, VT), 6480 DAG.getNode(ISD::BUILD_VECTOR, DL, VT, OneOps)); 6481 } 6482 6483 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6484 SDLoc DL(N); 6485 SDValue SCC = 6486 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6487 DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT), 6488 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6489 if (SCC.getNode()) return SCC; 6490 } 6491 6492 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 6493 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 6494 isa<ConstantSDNode>(N0.getOperand(1)) && 6495 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 6496 N0.hasOneUse()) { 6497 SDValue ShAmt = N0.getOperand(1); 6498 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 6499 if (N0.getOpcode() == ISD::SHL) { 6500 SDValue InnerZExt = N0.getOperand(0); 6501 // If the original shl may be shifting out bits, do not perform this 6502 // transformation. 6503 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - 6504 InnerZExt.getOperand(0).getValueType().getSizeInBits(); 6505 if (ShAmtVal > KnownZeroBits) 6506 return SDValue(); 6507 } 6508 6509 SDLoc DL(N); 6510 6511 // Ensure that the shift amount is wide enough for the shifted value. 6512 if (VT.getSizeInBits() >= 256) 6513 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 6514 6515 return DAG.getNode(N0.getOpcode(), DL, VT, 6516 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 6517 ShAmt); 6518 } 6519 6520 return SDValue(); 6521 } 6522 6523 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 6524 SDValue N0 = N->getOperand(0); 6525 EVT VT = N->getValueType(0); 6526 6527 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6528 LegalOperations)) 6529 return SDValue(Res, 0); 6530 6531 // fold (aext (aext x)) -> (aext x) 6532 // fold (aext (zext x)) -> (zext x) 6533 // fold (aext (sext x)) -> (sext x) 6534 if (N0.getOpcode() == ISD::ANY_EXTEND || 6535 N0.getOpcode() == ISD::ZERO_EXTEND || 6536 N0.getOpcode() == ISD::SIGN_EXTEND) 6537 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 6538 6539 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 6540 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 6541 if (N0.getOpcode() == ISD::TRUNCATE) { 6542 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6543 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6544 if (NarrowLoad.getNode() != N0.getNode()) { 6545 CombineTo(N0.getNode(), NarrowLoad); 6546 // CombineTo deleted the truncate, if needed, but not what's under it. 6547 AddToWorklist(oye); 6548 } 6549 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6550 } 6551 } 6552 6553 // fold (aext (truncate x)) 6554 if (N0.getOpcode() == ISD::TRUNCATE) { 6555 SDValue TruncOp = N0.getOperand(0); 6556 if (TruncOp.getValueType() == VT) 6557 return TruncOp; // x iff x size == zext size. 6558 if (TruncOp.getValueType().bitsGT(VT)) 6559 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 6560 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 6561 } 6562 6563 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 6564 // if the trunc is not free. 6565 if (N0.getOpcode() == ISD::AND && 6566 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6567 N0.getOperand(1).getOpcode() == ISD::Constant && 6568 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6569 N0.getValueType())) { 6570 SDValue X = N0.getOperand(0).getOperand(0); 6571 if (X.getValueType().bitsLT(VT)) { 6572 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 6573 } else if (X.getValueType().bitsGT(VT)) { 6574 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 6575 } 6576 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6577 Mask = Mask.zext(VT.getSizeInBits()); 6578 SDLoc DL(N); 6579 return DAG.getNode(ISD::AND, DL, VT, 6580 X, DAG.getConstant(Mask, DL, VT)); 6581 } 6582 6583 // fold (aext (load x)) -> (aext (truncate (extload x))) 6584 // None of the supported targets knows how to perform load and any_ext 6585 // on vectors in one instruction. We only perform this transformation on 6586 // scalars. 6587 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 6588 ISD::isUNINDEXEDLoad(N0.getNode()) && 6589 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 6590 bool DoXform = true; 6591 SmallVector<SDNode*, 4> SetCCs; 6592 if (!N0.hasOneUse()) 6593 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 6594 if (DoXform) { 6595 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6596 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 6597 LN0->getChain(), 6598 LN0->getBasePtr(), N0.getValueType(), 6599 LN0->getMemOperand()); 6600 CombineTo(N, ExtLoad); 6601 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6602 N0.getValueType(), ExtLoad); 6603 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6604 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6605 ISD::ANY_EXTEND); 6606 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6607 } 6608 } 6609 6610 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 6611 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 6612 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 6613 if (N0.getOpcode() == ISD::LOAD && 6614 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6615 N0.hasOneUse()) { 6616 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6617 ISD::LoadExtType ExtType = LN0->getExtensionType(); 6618 EVT MemVT = LN0->getMemoryVT(); 6619 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 6620 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 6621 VT, LN0->getChain(), LN0->getBasePtr(), 6622 MemVT, LN0->getMemOperand()); 6623 CombineTo(N, ExtLoad); 6624 CombineTo(N0.getNode(), 6625 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6626 N0.getValueType(), ExtLoad), 6627 ExtLoad.getValue(1)); 6628 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6629 } 6630 } 6631 6632 if (N0.getOpcode() == ISD::SETCC) { 6633 // For vectors: 6634 // aext(setcc) -> vsetcc 6635 // aext(setcc) -> truncate(vsetcc) 6636 // aext(setcc) -> aext(vsetcc) 6637 // Only do this before legalize for now. 6638 if (VT.isVector() && !LegalOperations) { 6639 EVT N0VT = N0.getOperand(0).getValueType(); 6640 // We know that the # elements of the results is the same as the 6641 // # elements of the compare (and the # elements of the compare result 6642 // for that matter). Check to see that they are the same size. If so, 6643 // we know that the element size of the sext'd result matches the 6644 // element size of the compare operands. 6645 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6646 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6647 N0.getOperand(1), 6648 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6649 // If the desired elements are smaller or larger than the source 6650 // elements we can use a matching integer vector type and then 6651 // truncate/any extend 6652 else { 6653 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6654 SDValue VsetCC = 6655 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 6656 N0.getOperand(1), 6657 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6658 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 6659 } 6660 } 6661 6662 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6663 SDLoc DL(N); 6664 SDValue SCC = 6665 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6666 DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT), 6667 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6668 if (SCC.getNode()) 6669 return SCC; 6670 } 6671 6672 return SDValue(); 6673 } 6674 6675 /// See if the specified operand can be simplified with the knowledge that only 6676 /// the bits specified by Mask are used. If so, return the simpler operand, 6677 /// otherwise return a null SDValue. 6678 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 6679 switch (V.getOpcode()) { 6680 default: break; 6681 case ISD::Constant: { 6682 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 6683 assert(CV && "Const value should be ConstSDNode."); 6684 const APInt &CVal = CV->getAPIntValue(); 6685 APInt NewVal = CVal & Mask; 6686 if (NewVal != CVal) 6687 return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); 6688 break; 6689 } 6690 case ISD::OR: 6691 case ISD::XOR: 6692 // If the LHS or RHS don't contribute bits to the or, drop them. 6693 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 6694 return V.getOperand(1); 6695 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 6696 return V.getOperand(0); 6697 break; 6698 case ISD::SRL: 6699 // Only look at single-use SRLs. 6700 if (!V.getNode()->hasOneUse()) 6701 break; 6702 if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { 6703 // See if we can recursively simplify the LHS. 6704 unsigned Amt = RHSC->getZExtValue(); 6705 6706 // Watch out for shift count overflow though. 6707 if (Amt >= Mask.getBitWidth()) break; 6708 APInt NewMask = Mask << Amt; 6709 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 6710 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 6711 SimplifyLHS, V.getOperand(1)); 6712 } 6713 } 6714 return SDValue(); 6715 } 6716 6717 /// If the result of a wider load is shifted to right of N bits and then 6718 /// truncated to a narrower type and where N is a multiple of number of bits of 6719 /// the narrower type, transform it to a narrower load from address + N / num of 6720 /// bits of new type. If the result is to be extended, also fold the extension 6721 /// to form a extending load. 6722 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 6723 unsigned Opc = N->getOpcode(); 6724 6725 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 6726 SDValue N0 = N->getOperand(0); 6727 EVT VT = N->getValueType(0); 6728 EVT ExtVT = VT; 6729 6730 // This transformation isn't valid for vector loads. 6731 if (VT.isVector()) 6732 return SDValue(); 6733 6734 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 6735 // extended to VT. 6736 if (Opc == ISD::SIGN_EXTEND_INREG) { 6737 ExtType = ISD::SEXTLOAD; 6738 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6739 } else if (Opc == ISD::SRL) { 6740 // Another special-case: SRL is basically zero-extending a narrower value. 6741 ExtType = ISD::ZEXTLOAD; 6742 N0 = SDValue(N, 0); 6743 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6744 if (!N01) return SDValue(); 6745 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 6746 VT.getSizeInBits() - N01->getZExtValue()); 6747 } 6748 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) 6749 return SDValue(); 6750 6751 unsigned EVTBits = ExtVT.getSizeInBits(); 6752 6753 // Do not generate loads of non-round integer types since these can 6754 // be expensive (and would be wrong if the type is not byte sized). 6755 if (!ExtVT.isRound()) 6756 return SDValue(); 6757 6758 unsigned ShAmt = 0; 6759 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 6760 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6761 ShAmt = N01->getZExtValue(); 6762 // Is the shift amount a multiple of size of VT? 6763 if ((ShAmt & (EVTBits-1)) == 0) { 6764 N0 = N0.getOperand(0); 6765 // Is the load width a multiple of size of VT? 6766 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) 6767 return SDValue(); 6768 } 6769 6770 // At this point, we must have a load or else we can't do the transform. 6771 if (!isa<LoadSDNode>(N0)) return SDValue(); 6772 6773 // Because a SRL must be assumed to *need* to zero-extend the high bits 6774 // (as opposed to anyext the high bits), we can't combine the zextload 6775 // lowering of SRL and an sextload. 6776 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 6777 return SDValue(); 6778 6779 // If the shift amount is larger than the input type then we're not 6780 // accessing any of the loaded bytes. If the load was a zextload/extload 6781 // then the result of the shift+trunc is zero/undef (handled elsewhere). 6782 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 6783 return SDValue(); 6784 } 6785 } 6786 6787 // If the load is shifted left (and the result isn't shifted back right), 6788 // we can fold the truncate through the shift. 6789 unsigned ShLeftAmt = 0; 6790 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 6791 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 6792 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6793 ShLeftAmt = N01->getZExtValue(); 6794 N0 = N0.getOperand(0); 6795 } 6796 } 6797 6798 // If we haven't found a load, we can't narrow it. Don't transform one with 6799 // multiple uses, this would require adding a new load. 6800 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 6801 return SDValue(); 6802 6803 // Don't change the width of a volatile load. 6804 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6805 if (LN0->isVolatile()) 6806 return SDValue(); 6807 6808 // Verify that we are actually reducing a load width here. 6809 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 6810 return SDValue(); 6811 6812 // For the transform to be legal, the load must produce only two values 6813 // (the value loaded and the chain). Don't transform a pre-increment 6814 // load, for example, which produces an extra value. Otherwise the 6815 // transformation is not equivalent, and the downstream logic to replace 6816 // uses gets things wrong. 6817 if (LN0->getNumValues() > 2) 6818 return SDValue(); 6819 6820 // If the load that we're shrinking is an extload and we're not just 6821 // discarding the extension we can't simply shrink the load. Bail. 6822 // TODO: It would be possible to merge the extensions in some cases. 6823 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 6824 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 6825 return SDValue(); 6826 6827 if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) 6828 return SDValue(); 6829 6830 EVT PtrType = N0.getOperand(1).getValueType(); 6831 6832 if (PtrType == MVT::Untyped || PtrType.isExtended()) 6833 // It's not possible to generate a constant of extended or untyped type. 6834 return SDValue(); 6835 6836 // For big endian targets, we need to adjust the offset to the pointer to 6837 // load the correct bytes. 6838 if (DAG.getDataLayout().isBigEndian()) { 6839 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 6840 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 6841 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 6842 } 6843 6844 uint64_t PtrOff = ShAmt / 8; 6845 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 6846 SDLoc DL(LN0); 6847 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 6848 PtrType, LN0->getBasePtr(), 6849 DAG.getConstant(PtrOff, DL, PtrType)); 6850 AddToWorklist(NewPtr.getNode()); 6851 6852 SDValue Load; 6853 if (ExtType == ISD::NON_EXTLOAD) 6854 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 6855 LN0->getPointerInfo().getWithOffset(PtrOff), 6856 LN0->isVolatile(), LN0->isNonTemporal(), 6857 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6858 else 6859 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, 6860 LN0->getPointerInfo().getWithOffset(PtrOff), 6861 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 6862 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6863 6864 // Replace the old load's chain with the new load's chain. 6865 WorklistRemover DeadNodes(*this); 6866 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 6867 6868 // Shift the result left, if we've swallowed a left shift. 6869 SDValue Result = Load; 6870 if (ShLeftAmt != 0) { 6871 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 6872 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 6873 ShImmTy = VT; 6874 // If the shift amount is as large as the result size (but, presumably, 6875 // no larger than the source) then the useful bits of the result are 6876 // zero; we can't simply return the shortened shift, because the result 6877 // of that operation is undefined. 6878 SDLoc DL(N0); 6879 if (ShLeftAmt >= VT.getSizeInBits()) 6880 Result = DAG.getConstant(0, DL, VT); 6881 else 6882 Result = DAG.getNode(ISD::SHL, DL, VT, 6883 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 6884 } 6885 6886 // Return the new loaded value. 6887 return Result; 6888 } 6889 6890 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 6891 SDValue N0 = N->getOperand(0); 6892 SDValue N1 = N->getOperand(1); 6893 EVT VT = N->getValueType(0); 6894 EVT EVT = cast<VTSDNode>(N1)->getVT(); 6895 unsigned VTBits = VT.getScalarType().getSizeInBits(); 6896 unsigned EVTBits = EVT.getScalarType().getSizeInBits(); 6897 6898 if (N0.isUndef()) 6899 return DAG.getUNDEF(VT); 6900 6901 // fold (sext_in_reg c1) -> c1 6902 if (isConstantIntBuildVectorOrConstantInt(N0)) 6903 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 6904 6905 // If the input is already sign extended, just drop the extension. 6906 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 6907 return N0; 6908 6909 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 6910 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 6911 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 6912 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6913 N0.getOperand(0), N1); 6914 6915 // fold (sext_in_reg (sext x)) -> (sext x) 6916 // fold (sext_in_reg (aext x)) -> (sext x) 6917 // if x is small enough. 6918 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 6919 SDValue N00 = N0.getOperand(0); 6920 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && 6921 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 6922 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 6923 } 6924 6925 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 6926 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 6927 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); 6928 6929 // fold operands of sext_in_reg based on knowledge that the top bits are not 6930 // demanded. 6931 if (SimplifyDemandedBits(SDValue(N, 0))) 6932 return SDValue(N, 0); 6933 6934 // fold (sext_in_reg (load x)) -> (smaller sextload x) 6935 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 6936 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 6937 return NarrowLoad; 6938 6939 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 6940 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 6941 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 6942 if (N0.getOpcode() == ISD::SRL) { 6943 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 6944 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 6945 // We can turn this into an SRA iff the input to the SRL is already sign 6946 // extended enough. 6947 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 6948 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 6949 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 6950 N0.getOperand(0), N0.getOperand(1)); 6951 } 6952 } 6953 6954 // fold (sext_inreg (extload x)) -> (sextload x) 6955 if (ISD::isEXTLoad(N0.getNode()) && 6956 ISD::isUNINDEXEDLoad(N0.getNode()) && 6957 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 6958 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 6959 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 6960 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6961 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6962 LN0->getChain(), 6963 LN0->getBasePtr(), EVT, 6964 LN0->getMemOperand()); 6965 CombineTo(N, ExtLoad); 6966 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6967 AddToWorklist(ExtLoad.getNode()); 6968 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6969 } 6970 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 6971 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6972 N0.hasOneUse() && 6973 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 6974 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 6975 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 6976 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6977 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6978 LN0->getChain(), 6979 LN0->getBasePtr(), EVT, 6980 LN0->getMemOperand()); 6981 CombineTo(N, ExtLoad); 6982 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6983 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6984 } 6985 6986 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 6987 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 6988 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 6989 N0.getOperand(1), false); 6990 if (BSwap.getNode()) 6991 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6992 BSwap, N1); 6993 } 6994 6995 return SDValue(); 6996 } 6997 6998 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 6999 SDValue N0 = N->getOperand(0); 7000 EVT VT = N->getValueType(0); 7001 7002 if (N0.getOpcode() == ISD::UNDEF) 7003 return DAG.getUNDEF(VT); 7004 7005 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7006 LegalOperations)) 7007 return SDValue(Res, 0); 7008 7009 return SDValue(); 7010 } 7011 7012 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 7013 SDValue N0 = N->getOperand(0); 7014 EVT VT = N->getValueType(0); 7015 bool isLE = DAG.getDataLayout().isLittleEndian(); 7016 7017 // noop truncate 7018 if (N0.getValueType() == N->getValueType(0)) 7019 return N0; 7020 // fold (truncate c1) -> c1 7021 if (isConstantIntBuildVectorOrConstantInt(N0)) 7022 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 7023 // fold (truncate (truncate x)) -> (truncate x) 7024 if (N0.getOpcode() == ISD::TRUNCATE) 7025 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7026 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 7027 if (N0.getOpcode() == ISD::ZERO_EXTEND || 7028 N0.getOpcode() == ISD::SIGN_EXTEND || 7029 N0.getOpcode() == ISD::ANY_EXTEND) { 7030 if (N0.getOperand(0).getValueType().bitsLT(VT)) 7031 // if the source is smaller than the dest, we still need an extend 7032 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 7033 N0.getOperand(0)); 7034 if (N0.getOperand(0).getValueType().bitsGT(VT)) 7035 // if the source is larger than the dest, than we just need the truncate 7036 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7037 // if the source and dest are the same type, we can drop both the extend 7038 // and the truncate. 7039 return N0.getOperand(0); 7040 } 7041 7042 // Fold extract-and-trunc into a narrow extract. For example: 7043 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 7044 // i32 y = TRUNCATE(i64 x) 7045 // -- becomes -- 7046 // v16i8 b = BITCAST (v2i64 val) 7047 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 7048 // 7049 // Note: We only run this optimization after type legalization (which often 7050 // creates this pattern) and before operation legalization after which 7051 // we need to be more careful about the vector instructions that we generate. 7052 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7053 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 7054 7055 EVT VecTy = N0.getOperand(0).getValueType(); 7056 EVT ExTy = N0.getValueType(); 7057 EVT TrTy = N->getValueType(0); 7058 7059 unsigned NumElem = VecTy.getVectorNumElements(); 7060 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 7061 7062 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 7063 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 7064 7065 SDValue EltNo = N0->getOperand(1); 7066 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 7067 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 7068 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7069 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 7070 7071 SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N), 7072 NVT, N0.getOperand(0)); 7073 7074 SDLoc DL(N); 7075 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 7076 DL, TrTy, V, 7077 DAG.getConstant(Index, DL, IndexTy)); 7078 } 7079 } 7080 7081 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 7082 if (N0.getOpcode() == ISD::SELECT) { 7083 EVT SrcVT = N0.getValueType(); 7084 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 7085 TLI.isTruncateFree(SrcVT, VT)) { 7086 SDLoc SL(N0); 7087 SDValue Cond = N0.getOperand(0); 7088 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 7089 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 7090 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 7091 } 7092 } 7093 7094 // Fold a series of buildvector, bitcast, and truncate if possible. 7095 // For example fold 7096 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 7097 // (2xi32 (buildvector x, y)). 7098 if (Level == AfterLegalizeVectorOps && VT.isVector() && 7099 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 7100 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 7101 N0.getOperand(0).hasOneUse()) { 7102 7103 SDValue BuildVect = N0.getOperand(0); 7104 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 7105 EVT TruncVecEltTy = VT.getVectorElementType(); 7106 7107 // Check that the element types match. 7108 if (BuildVectEltTy == TruncVecEltTy) { 7109 // Now we only need to compute the offset of the truncated elements. 7110 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 7111 unsigned TruncVecNumElts = VT.getVectorNumElements(); 7112 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 7113 7114 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 7115 "Invalid number of elements"); 7116 7117 SmallVector<SDValue, 8> Opnds; 7118 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 7119 Opnds.push_back(BuildVect.getOperand(i)); 7120 7121 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); 7122 } 7123 } 7124 7125 // See if we can simplify the input to this truncate through knowledge that 7126 // only the low bits are being used. 7127 // For example "trunc (or (shl x, 8), y)" // -> trunc y 7128 // Currently we only perform this optimization on scalars because vectors 7129 // may have different active low bits. 7130 if (!VT.isVector()) { 7131 SDValue Shorter = 7132 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 7133 VT.getSizeInBits())); 7134 if (Shorter.getNode()) 7135 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 7136 } 7137 // fold (truncate (load x)) -> (smaller load x) 7138 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 7139 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 7140 if (SDValue Reduced = ReduceLoadWidth(N)) 7141 return Reduced; 7142 7143 // Handle the case where the load remains an extending load even 7144 // after truncation. 7145 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 7146 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7147 if (!LN0->isVolatile() && 7148 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 7149 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 7150 VT, LN0->getChain(), LN0->getBasePtr(), 7151 LN0->getMemoryVT(), 7152 LN0->getMemOperand()); 7153 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 7154 return NewLoad; 7155 } 7156 } 7157 } 7158 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 7159 // where ... are all 'undef'. 7160 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 7161 SmallVector<EVT, 8> VTs; 7162 SDValue V; 7163 unsigned Idx = 0; 7164 unsigned NumDefs = 0; 7165 7166 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 7167 SDValue X = N0.getOperand(i); 7168 if (X.getOpcode() != ISD::UNDEF) { 7169 V = X; 7170 Idx = i; 7171 NumDefs++; 7172 } 7173 // Stop if more than one members are non-undef. 7174 if (NumDefs > 1) 7175 break; 7176 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 7177 VT.getVectorElementType(), 7178 X.getValueType().getVectorNumElements())); 7179 } 7180 7181 if (NumDefs == 0) 7182 return DAG.getUNDEF(VT); 7183 7184 if (NumDefs == 1) { 7185 assert(V.getNode() && "The single defined operand is empty!"); 7186 SmallVector<SDValue, 8> Opnds; 7187 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 7188 if (i != Idx) { 7189 Opnds.push_back(DAG.getUNDEF(VTs[i])); 7190 continue; 7191 } 7192 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 7193 AddToWorklist(NV.getNode()); 7194 Opnds.push_back(NV); 7195 } 7196 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 7197 } 7198 } 7199 7200 // Simplify the operands using demanded-bits information. 7201 if (!VT.isVector() && 7202 SimplifyDemandedBits(SDValue(N, 0))) 7203 return SDValue(N, 0); 7204 7205 return SDValue(); 7206 } 7207 7208 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 7209 SDValue Elt = N->getOperand(i); 7210 if (Elt.getOpcode() != ISD::MERGE_VALUES) 7211 return Elt.getNode(); 7212 return Elt.getOperand(Elt.getResNo()).getNode(); 7213 } 7214 7215 /// build_pair (load, load) -> load 7216 /// if load locations are consecutive. 7217 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 7218 assert(N->getOpcode() == ISD::BUILD_PAIR); 7219 7220 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 7221 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 7222 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 7223 LD1->getAddressSpace() != LD2->getAddressSpace()) 7224 return SDValue(); 7225 EVT LD1VT = LD1->getValueType(0); 7226 7227 if (ISD::isNON_EXTLoad(LD2) && 7228 LD2->hasOneUse() && 7229 // If both are volatile this would reduce the number of volatile loads. 7230 // If one is volatile it might be ok, but play conservative and bail out. 7231 !LD1->isVolatile() && 7232 !LD2->isVolatile() && 7233 DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { 7234 unsigned Align = LD1->getAlignment(); 7235 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 7236 VT.getTypeForEVT(*DAG.getContext())); 7237 7238 if (NewAlign <= Align && 7239 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 7240 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), 7241 LD1->getBasePtr(), LD1->getPointerInfo(), 7242 false, false, false, Align); 7243 } 7244 7245 return SDValue(); 7246 } 7247 7248 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 7249 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 7250 // and Lo parts; on big-endian machines it doesn't. 7251 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 7252 } 7253 7254 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 7255 SDValue N0 = N->getOperand(0); 7256 EVT VT = N->getValueType(0); 7257 7258 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 7259 // Only do this before legalize, since afterward the target may be depending 7260 // on the bitconvert. 7261 // First check to see if this is all constant. 7262 if (!LegalTypes && 7263 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 7264 VT.isVector()) { 7265 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 7266 7267 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 7268 assert(!DestEltVT.isVector() && 7269 "Element type of vector ValueType must not be vector!"); 7270 if (isSimple) 7271 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 7272 } 7273 7274 // If the input is a constant, let getNode fold it. 7275 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 7276 // If we can't allow illegal operations, we need to check that this is just 7277 // a fp -> int or int -> conversion and that the resulting operation will 7278 // be legal. 7279 if (!LegalOperations || 7280 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 7281 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 7282 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 7283 TLI.isOperationLegal(ISD::Constant, VT))) 7284 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0); 7285 } 7286 7287 // (conv (conv x, t1), t2) -> (conv x, t2) 7288 if (N0.getOpcode() == ISD::BITCAST) 7289 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, 7290 N0.getOperand(0)); 7291 7292 // fold (conv (load x)) -> (load (conv*)x) 7293 // If the resultant load doesn't need a higher alignment than the original! 7294 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 7295 // Do not change the width of a volatile load. 7296 !cast<LoadSDNode>(N0)->isVolatile() && 7297 // Do not remove the cast if the types differ in endian layout. 7298 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 7299 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 7300 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 7301 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 7302 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7303 unsigned Align = DAG.getDataLayout().getABITypeAlignment( 7304 VT.getTypeForEVT(*DAG.getContext())); 7305 unsigned OrigAlign = LN0->getAlignment(); 7306 7307 if (Align <= OrigAlign) { 7308 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), 7309 LN0->getBasePtr(), LN0->getPointerInfo(), 7310 LN0->isVolatile(), LN0->isNonTemporal(), 7311 LN0->isInvariant(), OrigAlign, 7312 LN0->getAAInfo()); 7313 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7314 return Load; 7315 } 7316 } 7317 7318 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7319 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7320 // 7321 // For ppc_fp128: 7322 // fold (bitcast (fneg x)) -> 7323 // flipbit = signbit 7324 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7325 // fold (bitcast (fabs x)) -> 7326 // flipbit = (and (extract_element (bitcast x), 0), signbit) 7327 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7328 // This often reduces constant pool loads. 7329 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 7330 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 7331 N0.getNode()->hasOneUse() && VT.isInteger() && 7332 !VT.isVector() && !N0.getValueType().isVector()) { 7333 SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT, 7334 N0.getOperand(0)); 7335 AddToWorklist(NewConv.getNode()); 7336 7337 SDLoc DL(N); 7338 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7339 assert(VT.getSizeInBits() == 128); 7340 SDValue SignBit = DAG.getConstant( 7341 APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 7342 SDValue FlipBit; 7343 if (N0.getOpcode() == ISD::FNEG) { 7344 FlipBit = SignBit; 7345 AddToWorklist(FlipBit.getNode()); 7346 } else { 7347 assert(N0.getOpcode() == ISD::FABS); 7348 SDValue Hi = 7349 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 7350 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7351 SDLoc(NewConv))); 7352 AddToWorklist(Hi.getNode()); 7353 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 7354 AddToWorklist(FlipBit.getNode()); 7355 } 7356 SDValue FlipBits = 7357 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7358 AddToWorklist(FlipBits.getNode()); 7359 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 7360 } 7361 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7362 if (N0.getOpcode() == ISD::FNEG) 7363 return DAG.getNode(ISD::XOR, DL, VT, 7364 NewConv, DAG.getConstant(SignBit, DL, VT)); 7365 assert(N0.getOpcode() == ISD::FABS); 7366 return DAG.getNode(ISD::AND, DL, VT, 7367 NewConv, DAG.getConstant(~SignBit, DL, VT)); 7368 } 7369 7370 // fold (bitconvert (fcopysign cst, x)) -> 7371 // (or (and (bitconvert x), sign), (and cst, (not sign))) 7372 // Note that we don't handle (copysign x, cst) because this can always be 7373 // folded to an fneg or fabs. 7374 // 7375 // For ppc_fp128: 7376 // fold (bitcast (fcopysign cst, x)) -> 7377 // flipbit = (and (extract_element 7378 // (xor (bitcast cst), (bitcast x)), 0), 7379 // signbit) 7380 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 7381 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 7382 isa<ConstantFPSDNode>(N0.getOperand(0)) && 7383 VT.isInteger() && !VT.isVector()) { 7384 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); 7385 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 7386 if (isTypeLegal(IntXVT)) { 7387 SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0), 7388 IntXVT, N0.getOperand(1)); 7389 AddToWorklist(X.getNode()); 7390 7391 // If X has a different width than the result/lhs, sext it or truncate it. 7392 unsigned VTWidth = VT.getSizeInBits(); 7393 if (OrigXWidth < VTWidth) { 7394 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 7395 AddToWorklist(X.getNode()); 7396 } else if (OrigXWidth > VTWidth) { 7397 // To get the sign bit in the right place, we have to shift it right 7398 // before truncating. 7399 SDLoc DL(X); 7400 X = DAG.getNode(ISD::SRL, DL, 7401 X.getValueType(), X, 7402 DAG.getConstant(OrigXWidth-VTWidth, DL, 7403 X.getValueType())); 7404 AddToWorklist(X.getNode()); 7405 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 7406 AddToWorklist(X.getNode()); 7407 } 7408 7409 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7410 APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2); 7411 SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0.getOperand(0)), VT, 7412 N0.getOperand(0)); 7413 AddToWorklist(Cst.getNode()); 7414 SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0.getOperand(1)), VT, 7415 N0.getOperand(1)); 7416 AddToWorklist(X.getNode()); 7417 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 7418 AddToWorklist(XorResult.getNode()); 7419 SDValue XorResult64 = DAG.getNode( 7420 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 7421 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7422 SDLoc(XorResult))); 7423 AddToWorklist(XorResult64.getNode()); 7424 SDValue FlipBit = 7425 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 7426 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 7427 AddToWorklist(FlipBit.getNode()); 7428 SDValue FlipBits = 7429 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7430 AddToWorklist(FlipBits.getNode()); 7431 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 7432 } 7433 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7434 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 7435 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 7436 AddToWorklist(X.getNode()); 7437 7438 SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0), 7439 VT, N0.getOperand(0)); 7440 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 7441 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 7442 AddToWorklist(Cst.getNode()); 7443 7444 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 7445 } 7446 } 7447 7448 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 7449 if (N0.getOpcode() == ISD::BUILD_PAIR) 7450 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 7451 return CombineLD; 7452 7453 // Remove double bitcasts from shuffles - this is often a legacy of 7454 // XformToShuffleWithZero being used to combine bitmaskings (of 7455 // float vectors bitcast to integer vectors) into shuffles. 7456 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 7457 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 7458 N0->getOpcode() == ISD::VECTOR_SHUFFLE && 7459 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 7460 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 7461 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 7462 7463 // If operands are a bitcast, peek through if it casts the original VT. 7464 // If operands are a constant, just bitcast back to original VT. 7465 auto PeekThroughBitcast = [&](SDValue Op) { 7466 if (Op.getOpcode() == ISD::BITCAST && 7467 Op.getOperand(0).getValueType() == VT) 7468 return SDValue(Op.getOperand(0)); 7469 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 7470 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 7471 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 7472 return SDValue(); 7473 }; 7474 7475 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 7476 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 7477 if (!(SV0 && SV1)) 7478 return SDValue(); 7479 7480 int MaskScale = 7481 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 7482 SmallVector<int, 8> NewMask; 7483 for (int M : SVN->getMask()) 7484 for (int i = 0; i != MaskScale; ++i) 7485 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 7486 7487 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7488 if (!LegalMask) { 7489 std::swap(SV0, SV1); 7490 ShuffleVectorSDNode::commuteMask(NewMask); 7491 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7492 } 7493 7494 if (LegalMask) 7495 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 7496 } 7497 7498 return SDValue(); 7499 } 7500 7501 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 7502 EVT VT = N->getValueType(0); 7503 return CombineConsecutiveLoads(N, VT); 7504 } 7505 7506 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 7507 /// operands. DstEltVT indicates the destination element value type. 7508 SDValue DAGCombiner:: 7509 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 7510 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 7511 7512 // If this is already the right type, we're done. 7513 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 7514 7515 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 7516 unsigned DstBitSize = DstEltVT.getSizeInBits(); 7517 7518 // If this is a conversion of N elements of one type to N elements of another 7519 // type, convert each element. This handles FP<->INT cases. 7520 if (SrcBitSize == DstBitSize) { 7521 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7522 BV->getValueType(0).getVectorNumElements()); 7523 7524 // Due to the FP element handling below calling this routine recursively, 7525 // we can end up with a scalar-to-vector node here. 7526 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 7527 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 7528 DAG.getNode(ISD::BITCAST, SDLoc(BV), 7529 DstEltVT, BV->getOperand(0))); 7530 7531 SmallVector<SDValue, 8> Ops; 7532 for (SDValue Op : BV->op_values()) { 7533 // If the vector element type is not legal, the BUILD_VECTOR operands 7534 // are promoted and implicitly truncated. Make that explicit here. 7535 if (Op.getValueType() != SrcEltVT) 7536 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 7537 Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV), 7538 DstEltVT, Op)); 7539 AddToWorklist(Ops.back().getNode()); 7540 } 7541 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops); 7542 } 7543 7544 // Otherwise, we're growing or shrinking the elements. To avoid having to 7545 // handle annoying details of growing/shrinking FP values, we convert them to 7546 // int first. 7547 if (SrcEltVT.isFloatingPoint()) { 7548 // Convert the input float vector to a int vector where the elements are the 7549 // same sizes. 7550 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 7551 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 7552 SrcEltVT = IntVT; 7553 } 7554 7555 // Now we know the input is an integer vector. If the output is a FP type, 7556 // convert to integer first, then to FP of the right size. 7557 if (DstEltVT.isFloatingPoint()) { 7558 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 7559 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 7560 7561 // Next, convert to FP elements of the same size. 7562 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 7563 } 7564 7565 SDLoc DL(BV); 7566 7567 // Okay, we know the src/dst types are both integers of differing types. 7568 // Handling growing first. 7569 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 7570 if (SrcBitSize < DstBitSize) { 7571 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 7572 7573 SmallVector<SDValue, 8> Ops; 7574 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 7575 i += NumInputsPerOutput) { 7576 bool isLE = DAG.getDataLayout().isLittleEndian(); 7577 APInt NewBits = APInt(DstBitSize, 0); 7578 bool EltIsUndef = true; 7579 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 7580 // Shift the previously computed bits over. 7581 NewBits <<= SrcBitSize; 7582 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 7583 if (Op.getOpcode() == ISD::UNDEF) continue; 7584 EltIsUndef = false; 7585 7586 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 7587 zextOrTrunc(SrcBitSize).zext(DstBitSize); 7588 } 7589 7590 if (EltIsUndef) 7591 Ops.push_back(DAG.getUNDEF(DstEltVT)); 7592 else 7593 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 7594 } 7595 7596 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 7597 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 7598 } 7599 7600 // Finally, this must be the case where we are shrinking elements: each input 7601 // turns into multiple outputs. 7602 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 7603 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7604 NumOutputsPerInput*BV->getNumOperands()); 7605 SmallVector<SDValue, 8> Ops; 7606 7607 for (const SDValue &Op : BV->op_values()) { 7608 if (Op.getOpcode() == ISD::UNDEF) { 7609 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 7610 continue; 7611 } 7612 7613 APInt OpVal = cast<ConstantSDNode>(Op)-> 7614 getAPIntValue().zextOrTrunc(SrcBitSize); 7615 7616 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 7617 APInt ThisVal = OpVal.trunc(DstBitSize); 7618 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 7619 OpVal = OpVal.lshr(DstBitSize); 7620 } 7621 7622 // For big endian targets, swap the order of the pieces of each element. 7623 if (DAG.getDataLayout().isBigEndian()) 7624 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 7625 } 7626 7627 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 7628 } 7629 7630 /// Try to perform FMA combining on a given FADD node. 7631 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 7632 SDValue N0 = N->getOperand(0); 7633 SDValue N1 = N->getOperand(1); 7634 EVT VT = N->getValueType(0); 7635 SDLoc SL(N); 7636 7637 const TargetOptions &Options = DAG.getTarget().Options; 7638 bool AllowFusion = 7639 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7640 7641 // Floating-point multiply-add with intermediate rounding. 7642 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7643 7644 // Floating-point multiply-add without intermediate rounding. 7645 bool HasFMA = 7646 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7647 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7648 7649 // No valid opcode, do not combine. 7650 if (!HasFMAD && !HasFMA) 7651 return SDValue(); 7652 7653 // Always prefer FMAD to FMA for precision. 7654 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7655 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7656 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7657 7658 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 7659 // prefer to fold the multiply with fewer uses. 7660 if (Aggressive && N0.getOpcode() == ISD::FMUL && 7661 N1.getOpcode() == ISD::FMUL) { 7662 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 7663 std::swap(N0, N1); 7664 } 7665 7666 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 7667 if (N0.getOpcode() == ISD::FMUL && 7668 (Aggressive || N0->hasOneUse())) { 7669 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7670 N0.getOperand(0), N0.getOperand(1), N1); 7671 } 7672 7673 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 7674 // Note: Commutes FADD operands. 7675 if (N1.getOpcode() == ISD::FMUL && 7676 (Aggressive || N1->hasOneUse())) { 7677 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7678 N1.getOperand(0), N1.getOperand(1), N0); 7679 } 7680 7681 // Look through FP_EXTEND nodes to do more combining. 7682 if (AllowFusion && LookThroughFPExt) { 7683 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 7684 if (N0.getOpcode() == ISD::FP_EXTEND) { 7685 SDValue N00 = N0.getOperand(0); 7686 if (N00.getOpcode() == ISD::FMUL) 7687 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7688 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7689 N00.getOperand(0)), 7690 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7691 N00.getOperand(1)), N1); 7692 } 7693 7694 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 7695 // Note: Commutes FADD operands. 7696 if (N1.getOpcode() == ISD::FP_EXTEND) { 7697 SDValue N10 = N1.getOperand(0); 7698 if (N10.getOpcode() == ISD::FMUL) 7699 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7700 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7701 N10.getOperand(0)), 7702 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7703 N10.getOperand(1)), N0); 7704 } 7705 } 7706 7707 // More folding opportunities when target permits. 7708 if ((AllowFusion || HasFMAD) && Aggressive) { 7709 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 7710 if (N0.getOpcode() == PreferredFusedOpcode && 7711 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7712 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7713 N0.getOperand(0), N0.getOperand(1), 7714 DAG.getNode(PreferredFusedOpcode, SL, VT, 7715 N0.getOperand(2).getOperand(0), 7716 N0.getOperand(2).getOperand(1), 7717 N1)); 7718 } 7719 7720 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 7721 if (N1->getOpcode() == PreferredFusedOpcode && 7722 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7723 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7724 N1.getOperand(0), N1.getOperand(1), 7725 DAG.getNode(PreferredFusedOpcode, SL, VT, 7726 N1.getOperand(2).getOperand(0), 7727 N1.getOperand(2).getOperand(1), 7728 N0)); 7729 } 7730 7731 if (AllowFusion && LookThroughFPExt) { 7732 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 7733 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 7734 auto FoldFAddFMAFPExtFMul = [&] ( 7735 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7736 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 7737 DAG.getNode(PreferredFusedOpcode, SL, VT, 7738 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7739 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7740 Z)); 7741 }; 7742 if (N0.getOpcode() == PreferredFusedOpcode) { 7743 SDValue N02 = N0.getOperand(2); 7744 if (N02.getOpcode() == ISD::FP_EXTEND) { 7745 SDValue N020 = N02.getOperand(0); 7746 if (N020.getOpcode() == ISD::FMUL) 7747 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 7748 N020.getOperand(0), N020.getOperand(1), 7749 N1); 7750 } 7751 } 7752 7753 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 7754 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 7755 // FIXME: This turns two single-precision and one double-precision 7756 // operation into two double-precision operations, which might not be 7757 // interesting for all targets, especially GPUs. 7758 auto FoldFAddFPExtFMAFMul = [&] ( 7759 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7760 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7761 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 7762 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 7763 DAG.getNode(PreferredFusedOpcode, SL, VT, 7764 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7765 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7766 Z)); 7767 }; 7768 if (N0.getOpcode() == ISD::FP_EXTEND) { 7769 SDValue N00 = N0.getOperand(0); 7770 if (N00.getOpcode() == PreferredFusedOpcode) { 7771 SDValue N002 = N00.getOperand(2); 7772 if (N002.getOpcode() == ISD::FMUL) 7773 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 7774 N002.getOperand(0), N002.getOperand(1), 7775 N1); 7776 } 7777 } 7778 7779 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 7780 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 7781 if (N1.getOpcode() == PreferredFusedOpcode) { 7782 SDValue N12 = N1.getOperand(2); 7783 if (N12.getOpcode() == ISD::FP_EXTEND) { 7784 SDValue N120 = N12.getOperand(0); 7785 if (N120.getOpcode() == ISD::FMUL) 7786 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 7787 N120.getOperand(0), N120.getOperand(1), 7788 N0); 7789 } 7790 } 7791 7792 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 7793 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 7794 // FIXME: This turns two single-precision and one double-precision 7795 // operation into two double-precision operations, which might not be 7796 // interesting for all targets, especially GPUs. 7797 if (N1.getOpcode() == ISD::FP_EXTEND) { 7798 SDValue N10 = N1.getOperand(0); 7799 if (N10.getOpcode() == PreferredFusedOpcode) { 7800 SDValue N102 = N10.getOperand(2); 7801 if (N102.getOpcode() == ISD::FMUL) 7802 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 7803 N102.getOperand(0), N102.getOperand(1), 7804 N0); 7805 } 7806 } 7807 } 7808 } 7809 7810 return SDValue(); 7811 } 7812 7813 /// Try to perform FMA combining on a given FSUB node. 7814 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 7815 SDValue N0 = N->getOperand(0); 7816 SDValue N1 = N->getOperand(1); 7817 EVT VT = N->getValueType(0); 7818 SDLoc SL(N); 7819 7820 const TargetOptions &Options = DAG.getTarget().Options; 7821 bool AllowFusion = 7822 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7823 7824 // Floating-point multiply-add with intermediate rounding. 7825 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7826 7827 // Floating-point multiply-add without intermediate rounding. 7828 bool HasFMA = 7829 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7830 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7831 7832 // No valid opcode, do not combine. 7833 if (!HasFMAD && !HasFMA) 7834 return SDValue(); 7835 7836 // Always prefer FMAD to FMA for precision. 7837 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7838 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7839 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7840 7841 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 7842 if (N0.getOpcode() == ISD::FMUL && 7843 (Aggressive || N0->hasOneUse())) { 7844 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7845 N0.getOperand(0), N0.getOperand(1), 7846 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7847 } 7848 7849 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 7850 // Note: Commutes FSUB operands. 7851 if (N1.getOpcode() == ISD::FMUL && 7852 (Aggressive || N1->hasOneUse())) 7853 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7854 DAG.getNode(ISD::FNEG, SL, VT, 7855 N1.getOperand(0)), 7856 N1.getOperand(1), N0); 7857 7858 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 7859 if (N0.getOpcode() == ISD::FNEG && 7860 N0.getOperand(0).getOpcode() == ISD::FMUL && 7861 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 7862 SDValue N00 = N0.getOperand(0).getOperand(0); 7863 SDValue N01 = N0.getOperand(0).getOperand(1); 7864 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7865 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 7866 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7867 } 7868 7869 // Look through FP_EXTEND nodes to do more combining. 7870 if (AllowFusion && LookThroughFPExt) { 7871 // fold (fsub (fpext (fmul x, y)), z) 7872 // -> (fma (fpext x), (fpext y), (fneg z)) 7873 if (N0.getOpcode() == ISD::FP_EXTEND) { 7874 SDValue N00 = N0.getOperand(0); 7875 if (N00.getOpcode() == ISD::FMUL) 7876 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7877 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7878 N00.getOperand(0)), 7879 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7880 N00.getOperand(1)), 7881 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7882 } 7883 7884 // fold (fsub x, (fpext (fmul y, z))) 7885 // -> (fma (fneg (fpext y)), (fpext z), x) 7886 // Note: Commutes FSUB operands. 7887 if (N1.getOpcode() == ISD::FP_EXTEND) { 7888 SDValue N10 = N1.getOperand(0); 7889 if (N10.getOpcode() == ISD::FMUL) 7890 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7891 DAG.getNode(ISD::FNEG, SL, VT, 7892 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7893 N10.getOperand(0))), 7894 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7895 N10.getOperand(1)), 7896 N0); 7897 } 7898 7899 // fold (fsub (fpext (fneg (fmul, x, y))), z) 7900 // -> (fneg (fma (fpext x), (fpext y), z)) 7901 // Note: This could be removed with appropriate canonicalization of the 7902 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 7903 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 7904 // from implementing the canonicalization in visitFSUB. 7905 if (N0.getOpcode() == ISD::FP_EXTEND) { 7906 SDValue N00 = N0.getOperand(0); 7907 if (N00.getOpcode() == ISD::FNEG) { 7908 SDValue N000 = N00.getOperand(0); 7909 if (N000.getOpcode() == ISD::FMUL) { 7910 return DAG.getNode(ISD::FNEG, SL, VT, 7911 DAG.getNode(PreferredFusedOpcode, SL, VT, 7912 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7913 N000.getOperand(0)), 7914 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7915 N000.getOperand(1)), 7916 N1)); 7917 } 7918 } 7919 } 7920 7921 // fold (fsub (fneg (fpext (fmul, x, y))), z) 7922 // -> (fneg (fma (fpext x)), (fpext y), z) 7923 // Note: This could be removed with appropriate canonicalization of the 7924 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 7925 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 7926 // from implementing the canonicalization in visitFSUB. 7927 if (N0.getOpcode() == ISD::FNEG) { 7928 SDValue N00 = N0.getOperand(0); 7929 if (N00.getOpcode() == ISD::FP_EXTEND) { 7930 SDValue N000 = N00.getOperand(0); 7931 if (N000.getOpcode() == ISD::FMUL) { 7932 return DAG.getNode(ISD::FNEG, SL, VT, 7933 DAG.getNode(PreferredFusedOpcode, SL, VT, 7934 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7935 N000.getOperand(0)), 7936 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7937 N000.getOperand(1)), 7938 N1)); 7939 } 7940 } 7941 } 7942 7943 } 7944 7945 // More folding opportunities when target permits. 7946 if ((AllowFusion || HasFMAD) && Aggressive) { 7947 // fold (fsub (fma x, y, (fmul u, v)), z) 7948 // -> (fma x, y (fma u, v, (fneg z))) 7949 if (N0.getOpcode() == PreferredFusedOpcode && 7950 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7951 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7952 N0.getOperand(0), N0.getOperand(1), 7953 DAG.getNode(PreferredFusedOpcode, SL, VT, 7954 N0.getOperand(2).getOperand(0), 7955 N0.getOperand(2).getOperand(1), 7956 DAG.getNode(ISD::FNEG, SL, VT, 7957 N1))); 7958 } 7959 7960 // fold (fsub x, (fma y, z, (fmul u, v))) 7961 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 7962 if (N1.getOpcode() == PreferredFusedOpcode && 7963 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7964 SDValue N20 = N1.getOperand(2).getOperand(0); 7965 SDValue N21 = N1.getOperand(2).getOperand(1); 7966 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7967 DAG.getNode(ISD::FNEG, SL, VT, 7968 N1.getOperand(0)), 7969 N1.getOperand(1), 7970 DAG.getNode(PreferredFusedOpcode, SL, VT, 7971 DAG.getNode(ISD::FNEG, SL, VT, N20), 7972 7973 N21, N0)); 7974 } 7975 7976 if (AllowFusion && LookThroughFPExt) { 7977 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 7978 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 7979 if (N0.getOpcode() == PreferredFusedOpcode) { 7980 SDValue N02 = N0.getOperand(2); 7981 if (N02.getOpcode() == ISD::FP_EXTEND) { 7982 SDValue N020 = N02.getOperand(0); 7983 if (N020.getOpcode() == ISD::FMUL) 7984 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7985 N0.getOperand(0), N0.getOperand(1), 7986 DAG.getNode(PreferredFusedOpcode, SL, VT, 7987 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7988 N020.getOperand(0)), 7989 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7990 N020.getOperand(1)), 7991 DAG.getNode(ISD::FNEG, SL, VT, 7992 N1))); 7993 } 7994 } 7995 7996 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 7997 // -> (fma (fpext x), (fpext y), 7998 // (fma (fpext u), (fpext v), (fneg z))) 7999 // FIXME: This turns two single-precision and one double-precision 8000 // operation into two double-precision operations, which might not be 8001 // interesting for all targets, especially GPUs. 8002 if (N0.getOpcode() == ISD::FP_EXTEND) { 8003 SDValue N00 = N0.getOperand(0); 8004 if (N00.getOpcode() == PreferredFusedOpcode) { 8005 SDValue N002 = N00.getOperand(2); 8006 if (N002.getOpcode() == ISD::FMUL) 8007 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8008 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8009 N00.getOperand(0)), 8010 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8011 N00.getOperand(1)), 8012 DAG.getNode(PreferredFusedOpcode, SL, VT, 8013 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8014 N002.getOperand(0)), 8015 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8016 N002.getOperand(1)), 8017 DAG.getNode(ISD::FNEG, SL, VT, 8018 N1))); 8019 } 8020 } 8021 8022 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 8023 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 8024 if (N1.getOpcode() == PreferredFusedOpcode && 8025 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 8026 SDValue N120 = N1.getOperand(2).getOperand(0); 8027 if (N120.getOpcode() == ISD::FMUL) { 8028 SDValue N1200 = N120.getOperand(0); 8029 SDValue N1201 = N120.getOperand(1); 8030 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8031 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 8032 N1.getOperand(1), 8033 DAG.getNode(PreferredFusedOpcode, SL, VT, 8034 DAG.getNode(ISD::FNEG, SL, VT, 8035 DAG.getNode(ISD::FP_EXTEND, SL, 8036 VT, N1200)), 8037 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8038 N1201), 8039 N0)); 8040 } 8041 } 8042 8043 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 8044 // -> (fma (fneg (fpext y)), (fpext z), 8045 // (fma (fneg (fpext u)), (fpext v), x)) 8046 // FIXME: This turns two single-precision and one double-precision 8047 // operation into two double-precision operations, which might not be 8048 // interesting for all targets, especially GPUs. 8049 if (N1.getOpcode() == ISD::FP_EXTEND && 8050 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 8051 SDValue N100 = N1.getOperand(0).getOperand(0); 8052 SDValue N101 = N1.getOperand(0).getOperand(1); 8053 SDValue N102 = N1.getOperand(0).getOperand(2); 8054 if (N102.getOpcode() == ISD::FMUL) { 8055 SDValue N1020 = N102.getOperand(0); 8056 SDValue N1021 = N102.getOperand(1); 8057 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8058 DAG.getNode(ISD::FNEG, SL, VT, 8059 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8060 N100)), 8061 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 8062 DAG.getNode(PreferredFusedOpcode, SL, VT, 8063 DAG.getNode(ISD::FNEG, SL, VT, 8064 DAG.getNode(ISD::FP_EXTEND, SL, 8065 VT, N1020)), 8066 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8067 N1021), 8068 N0)); 8069 } 8070 } 8071 } 8072 } 8073 8074 return SDValue(); 8075 } 8076 8077 /// Try to perform FMA combining on a given FMUL node. 8078 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { 8079 SDValue N0 = N->getOperand(0); 8080 SDValue N1 = N->getOperand(1); 8081 EVT VT = N->getValueType(0); 8082 SDLoc SL(N); 8083 8084 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 8085 8086 const TargetOptions &Options = DAG.getTarget().Options; 8087 bool AllowFusion = 8088 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 8089 8090 // Floating-point multiply-add with intermediate rounding. 8091 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 8092 8093 // Floating-point multiply-add without intermediate rounding. 8094 bool HasFMA = 8095 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 8096 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 8097 8098 // No valid opcode, do not combine. 8099 if (!HasFMAD && !HasFMA) 8100 return SDValue(); 8101 8102 // Always prefer FMAD to FMA for precision. 8103 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 8104 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 8105 8106 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) 8107 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) 8108 auto FuseFADD = [&](SDValue X, SDValue Y) { 8109 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 8110 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8111 if (XC1 && XC1->isExactlyValue(+1.0)) 8112 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8113 if (XC1 && XC1->isExactlyValue(-1.0)) 8114 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8115 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8116 } 8117 return SDValue(); 8118 }; 8119 8120 if (SDValue FMA = FuseFADD(N0, N1)) 8121 return FMA; 8122 if (SDValue FMA = FuseFADD(N1, N0)) 8123 return FMA; 8124 8125 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) 8126 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) 8127 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) 8128 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) 8129 auto FuseFSUB = [&](SDValue X, SDValue Y) { 8130 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 8131 auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); 8132 if (XC0 && XC0->isExactlyValue(+1.0)) 8133 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8134 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8135 Y); 8136 if (XC0 && XC0->isExactlyValue(-1.0)) 8137 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8138 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8139 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8140 8141 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8142 if (XC1 && XC1->isExactlyValue(+1.0)) 8143 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8144 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8145 if (XC1 && XC1->isExactlyValue(-1.0)) 8146 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8147 } 8148 return SDValue(); 8149 }; 8150 8151 if (SDValue FMA = FuseFSUB(N0, N1)) 8152 return FMA; 8153 if (SDValue FMA = FuseFSUB(N1, N0)) 8154 return FMA; 8155 8156 return SDValue(); 8157 } 8158 8159 SDValue DAGCombiner::visitFADD(SDNode *N) { 8160 SDValue N0 = N->getOperand(0); 8161 SDValue N1 = N->getOperand(1); 8162 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 8163 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 8164 EVT VT = N->getValueType(0); 8165 SDLoc DL(N); 8166 const TargetOptions &Options = DAG.getTarget().Options; 8167 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8168 8169 // fold vector ops 8170 if (VT.isVector()) 8171 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8172 return FoldedVOp; 8173 8174 // fold (fadd c1, c2) -> c1 + c2 8175 if (N0CFP && N1CFP) 8176 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 8177 8178 // canonicalize constant to RHS 8179 if (N0CFP && !N1CFP) 8180 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 8181 8182 // fold (fadd A, (fneg B)) -> (fsub A, B) 8183 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8184 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 8185 return DAG.getNode(ISD::FSUB, DL, VT, N0, 8186 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8187 8188 // fold (fadd (fneg A), B) -> (fsub B, A) 8189 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8190 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 8191 return DAG.getNode(ISD::FSUB, DL, VT, N1, 8192 GetNegatedExpression(N0, DAG, LegalOperations), Flags); 8193 8194 // If 'unsafe math' is enabled, fold lots of things. 8195 if (Options.UnsafeFPMath) { 8196 // No FP constant should be created after legalization as Instruction 8197 // Selection pass has a hard time dealing with FP constants. 8198 bool AllowNewConst = (Level < AfterLegalizeDAG); 8199 8200 // fold (fadd A, 0) -> A 8201 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) 8202 if (N1C->isZero()) 8203 return N0; 8204 8205 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 8206 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 8207 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) 8208 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), 8209 DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, 8210 Flags), 8211 Flags); 8212 8213 // If allowed, fold (fadd (fneg x), x) -> 0.0 8214 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 8215 return DAG.getConstantFP(0.0, DL, VT); 8216 8217 // If allowed, fold (fadd x, (fneg x)) -> 0.0 8218 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 8219 return DAG.getConstantFP(0.0, DL, VT); 8220 8221 // We can fold chains of FADD's of the same value into multiplications. 8222 // This transform is not safe in general because we are reducing the number 8223 // of rounding steps. 8224 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 8225 if (N0.getOpcode() == ISD::FMUL) { 8226 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8227 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 8228 8229 // (fadd (fmul x, c), x) -> (fmul x, c+1) 8230 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 8231 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8232 DAG.getConstantFP(1.0, DL, VT), Flags); 8233 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 8234 } 8235 8236 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 8237 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 8238 N1.getOperand(0) == N1.getOperand(1) && 8239 N0.getOperand(0) == N1.getOperand(0)) { 8240 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8241 DAG.getConstantFP(2.0, DL, VT), Flags); 8242 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 8243 } 8244 } 8245 8246 if (N1.getOpcode() == ISD::FMUL) { 8247 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8248 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 8249 8250 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 8251 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 8252 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8253 DAG.getConstantFP(1.0, DL, VT), Flags); 8254 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 8255 } 8256 8257 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 8258 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 8259 N0.getOperand(0) == N0.getOperand(1) && 8260 N1.getOperand(0) == N0.getOperand(0)) { 8261 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8262 DAG.getConstantFP(2.0, DL, VT), Flags); 8263 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 8264 } 8265 } 8266 8267 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 8268 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8269 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 8270 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 8271 (N0.getOperand(0) == N1)) { 8272 return DAG.getNode(ISD::FMUL, DL, VT, 8273 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 8274 } 8275 } 8276 8277 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 8278 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8279 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 8280 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 8281 N1.getOperand(0) == N0) { 8282 return DAG.getNode(ISD::FMUL, DL, VT, 8283 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 8284 } 8285 } 8286 8287 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 8288 if (AllowNewConst && 8289 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 8290 N0.getOperand(0) == N0.getOperand(1) && 8291 N1.getOperand(0) == N1.getOperand(1) && 8292 N0.getOperand(0) == N1.getOperand(0)) { 8293 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 8294 DAG.getConstantFP(4.0, DL, VT), Flags); 8295 } 8296 } 8297 } // enable-unsafe-fp-math 8298 8299 // FADD -> FMA combines: 8300 if (SDValue Fused = visitFADDForFMACombine(N)) { 8301 AddToWorklist(Fused.getNode()); 8302 return Fused; 8303 } 8304 8305 return SDValue(); 8306 } 8307 8308 SDValue DAGCombiner::visitFSUB(SDNode *N) { 8309 SDValue N0 = N->getOperand(0); 8310 SDValue N1 = N->getOperand(1); 8311 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8312 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8313 EVT VT = N->getValueType(0); 8314 SDLoc dl(N); 8315 const TargetOptions &Options = DAG.getTarget().Options; 8316 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8317 8318 // fold vector ops 8319 if (VT.isVector()) 8320 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8321 return FoldedVOp; 8322 8323 // fold (fsub c1, c2) -> c1-c2 8324 if (N0CFP && N1CFP) 8325 return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags); 8326 8327 // fold (fsub A, (fneg B)) -> (fadd A, B) 8328 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8329 return DAG.getNode(ISD::FADD, dl, VT, N0, 8330 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8331 8332 // If 'unsafe math' is enabled, fold lots of things. 8333 if (Options.UnsafeFPMath) { 8334 // (fsub A, 0) -> A 8335 if (N1CFP && N1CFP->isZero()) 8336 return N0; 8337 8338 // (fsub 0, B) -> -B 8339 if (N0CFP && N0CFP->isZero()) { 8340 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8341 return GetNegatedExpression(N1, DAG, LegalOperations); 8342 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8343 return DAG.getNode(ISD::FNEG, dl, VT, N1); 8344 } 8345 8346 // (fsub x, x) -> 0.0 8347 if (N0 == N1) 8348 return DAG.getConstantFP(0.0f, dl, VT); 8349 8350 // (fsub x, (fadd x, y)) -> (fneg y) 8351 // (fsub x, (fadd y, x)) -> (fneg y) 8352 if (N1.getOpcode() == ISD::FADD) { 8353 SDValue N10 = N1->getOperand(0); 8354 SDValue N11 = N1->getOperand(1); 8355 8356 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 8357 return GetNegatedExpression(N11, DAG, LegalOperations); 8358 8359 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 8360 return GetNegatedExpression(N10, DAG, LegalOperations); 8361 } 8362 } 8363 8364 // FSUB -> FMA combines: 8365 if (SDValue Fused = visitFSUBForFMACombine(N)) { 8366 AddToWorklist(Fused.getNode()); 8367 return Fused; 8368 } 8369 8370 return SDValue(); 8371 } 8372 8373 SDValue DAGCombiner::visitFMUL(SDNode *N) { 8374 SDValue N0 = N->getOperand(0); 8375 SDValue N1 = N->getOperand(1); 8376 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8377 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8378 EVT VT = N->getValueType(0); 8379 SDLoc DL(N); 8380 const TargetOptions &Options = DAG.getTarget().Options; 8381 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8382 8383 // fold vector ops 8384 if (VT.isVector()) { 8385 // This just handles C1 * C2 for vectors. Other vector folds are below. 8386 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8387 return FoldedVOp; 8388 } 8389 8390 // fold (fmul c1, c2) -> c1*c2 8391 if (N0CFP && N1CFP) 8392 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 8393 8394 // canonicalize constant to RHS 8395 if (isConstantFPBuildVectorOrConstantFP(N0) && 8396 !isConstantFPBuildVectorOrConstantFP(N1)) 8397 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 8398 8399 // fold (fmul A, 1.0) -> A 8400 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8401 return N0; 8402 8403 if (Options.UnsafeFPMath) { 8404 // fold (fmul A, 0) -> 0 8405 if (N1CFP && N1CFP->isZero()) 8406 return N1; 8407 8408 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 8409 if (N0.getOpcode() == ISD::FMUL) { 8410 // Fold scalars or any vector constants (not just splats). 8411 // This fold is done in general by InstCombine, but extra fmul insts 8412 // may have been generated during lowering. 8413 SDValue N00 = N0.getOperand(0); 8414 SDValue N01 = N0.getOperand(1); 8415 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 8416 auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); 8417 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 8418 8419 // Check 1: Make sure that the first operand of the inner multiply is NOT 8420 // a constant. Otherwise, we may induce infinite looping. 8421 if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { 8422 // Check 2: Make sure that the second operand of the inner multiply and 8423 // the second operand of the outer multiply are constants. 8424 if ((N1CFP && isConstOrConstSplatFP(N01)) || 8425 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 8426 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 8427 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 8428 } 8429 } 8430 } 8431 8432 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 8433 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 8434 // during an early run of DAGCombiner can prevent folding with fmuls 8435 // inserted during lowering. 8436 if (N0.getOpcode() == ISD::FADD && 8437 (N0.getOperand(0) == N0.getOperand(1)) && 8438 N0.hasOneUse()) { 8439 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 8440 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 8441 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 8442 } 8443 } 8444 8445 // fold (fmul X, 2.0) -> (fadd X, X) 8446 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 8447 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 8448 8449 // fold (fmul X, -1.0) -> (fneg X) 8450 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 8451 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8452 return DAG.getNode(ISD::FNEG, DL, VT, N0); 8453 8454 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 8455 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8456 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8457 // Both can be negated for free, check to see if at least one is cheaper 8458 // negated. 8459 if (LHSNeg == 2 || RHSNeg == 2) 8460 return DAG.getNode(ISD::FMUL, DL, VT, 8461 GetNegatedExpression(N0, DAG, LegalOperations), 8462 GetNegatedExpression(N1, DAG, LegalOperations), 8463 Flags); 8464 } 8465 } 8466 8467 // FMUL -> FMA combines: 8468 if (SDValue Fused = visitFMULForFMACombine(N)) { 8469 AddToWorklist(Fused.getNode()); 8470 return Fused; 8471 } 8472 8473 return SDValue(); 8474 } 8475 8476 SDValue DAGCombiner::visitFMA(SDNode *N) { 8477 SDValue N0 = N->getOperand(0); 8478 SDValue N1 = N->getOperand(1); 8479 SDValue N2 = N->getOperand(2); 8480 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8481 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8482 EVT VT = N->getValueType(0); 8483 SDLoc dl(N); 8484 const TargetOptions &Options = DAG.getTarget().Options; 8485 8486 // Constant fold FMA. 8487 if (isa<ConstantFPSDNode>(N0) && 8488 isa<ConstantFPSDNode>(N1) && 8489 isa<ConstantFPSDNode>(N2)) { 8490 return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); 8491 } 8492 8493 if (Options.UnsafeFPMath) { 8494 if (N0CFP && N0CFP->isZero()) 8495 return N2; 8496 if (N1CFP && N1CFP->isZero()) 8497 return N2; 8498 } 8499 // TODO: The FMA node should have flags that propagate to these nodes. 8500 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8501 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 8502 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8503 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 8504 8505 // Canonicalize (fma c, x, y) -> (fma x, c, y) 8506 if (isConstantFPBuildVectorOrConstantFP(N0) && 8507 !isConstantFPBuildVectorOrConstantFP(N1)) 8508 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 8509 8510 // TODO: FMA nodes should have flags that propagate to the created nodes. 8511 // For now, create a Flags object for use with all unsafe math transforms. 8512 SDNodeFlags Flags; 8513 Flags.setUnsafeAlgebra(true); 8514 8515 if (Options.UnsafeFPMath) { 8516 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 8517 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 8518 isConstantFPBuildVectorOrConstantFP(N1) && 8519 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 8520 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8521 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1), 8522 &Flags), &Flags); 8523 } 8524 8525 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 8526 if (N0.getOpcode() == ISD::FMUL && 8527 isConstantFPBuildVectorOrConstantFP(N1) && 8528 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 8529 return DAG.getNode(ISD::FMA, dl, VT, 8530 N0.getOperand(0), 8531 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1), 8532 &Flags), 8533 N2); 8534 } 8535 } 8536 8537 // (fma x, 1, y) -> (fadd x, y) 8538 // (fma x, -1, y) -> (fadd (fneg x), y) 8539 if (N1CFP) { 8540 if (N1CFP->isExactlyValue(1.0)) 8541 // TODO: The FMA node should have flags that propagate to this node. 8542 return DAG.getNode(ISD::FADD, dl, VT, N0, N2); 8543 8544 if (N1CFP->isExactlyValue(-1.0) && 8545 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 8546 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); 8547 AddToWorklist(RHSNeg.getNode()); 8548 // TODO: The FMA node should have flags that propagate to this node. 8549 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); 8550 } 8551 } 8552 8553 if (Options.UnsafeFPMath) { 8554 // (fma x, c, x) -> (fmul x, (c+1)) 8555 if (N1CFP && N0 == N2) { 8556 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8557 DAG.getNode(ISD::FADD, dl, VT, 8558 N1, DAG.getConstantFP(1.0, dl, VT), 8559 &Flags), &Flags); 8560 } 8561 8562 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 8563 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 8564 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8565 DAG.getNode(ISD::FADD, dl, VT, 8566 N1, DAG.getConstantFP(-1.0, dl, VT), 8567 &Flags), &Flags); 8568 } 8569 } 8570 8571 return SDValue(); 8572 } 8573 8574 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 8575 // reciprocal. 8576 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 8577 // Notice that this is not always beneficial. One reason is different target 8578 // may have different costs for FDIV and FMUL, so sometimes the cost of two 8579 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 8580 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 8581 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 8582 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 8583 const SDNodeFlags *Flags = N->getFlags(); 8584 if (!UnsafeMath && !Flags->hasAllowReciprocal()) 8585 return SDValue(); 8586 8587 // Skip if current node is a reciprocal. 8588 SDValue N0 = N->getOperand(0); 8589 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8590 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8591 return SDValue(); 8592 8593 // Exit early if the target does not want this transform or if there can't 8594 // possibly be enough uses of the divisor to make the transform worthwhile. 8595 SDValue N1 = N->getOperand(1); 8596 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 8597 if (!MinUses || N1->use_size() < MinUses) 8598 return SDValue(); 8599 8600 // Find all FDIV users of the same divisor. 8601 // Use a set because duplicates may be present in the user list. 8602 SetVector<SDNode *> Users; 8603 for (auto *U : N1->uses()) { 8604 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 8605 // This division is eligible for optimization only if global unsafe math 8606 // is enabled or if this division allows reciprocal formation. 8607 if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) 8608 Users.insert(U); 8609 } 8610 } 8611 8612 // Now that we have the actual number of divisor uses, make sure it meets 8613 // the minimum threshold specified by the target. 8614 if (Users.size() < MinUses) 8615 return SDValue(); 8616 8617 EVT VT = N->getValueType(0); 8618 SDLoc DL(N); 8619 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 8620 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 8621 8622 // Dividend / Divisor -> Dividend * Reciprocal 8623 for (auto *U : Users) { 8624 SDValue Dividend = U->getOperand(0); 8625 if (Dividend != FPOne) { 8626 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 8627 Reciprocal, Flags); 8628 CombineTo(U, NewNode); 8629 } else if (U != Reciprocal.getNode()) { 8630 // In the absence of fast-math-flags, this user node is always the 8631 // same node as Reciprocal, but with FMF they may be different nodes. 8632 CombineTo(U, Reciprocal); 8633 } 8634 } 8635 return SDValue(N, 0); // N was replaced. 8636 } 8637 8638 SDValue DAGCombiner::visitFDIV(SDNode *N) { 8639 SDValue N0 = N->getOperand(0); 8640 SDValue N1 = N->getOperand(1); 8641 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8642 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8643 EVT VT = N->getValueType(0); 8644 SDLoc DL(N); 8645 const TargetOptions &Options = DAG.getTarget().Options; 8646 SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8647 8648 // fold vector ops 8649 if (VT.isVector()) 8650 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8651 return FoldedVOp; 8652 8653 // fold (fdiv c1, c2) -> c1/c2 8654 if (N0CFP && N1CFP) 8655 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 8656 8657 if (Options.UnsafeFPMath) { 8658 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 8659 if (N1CFP) { 8660 // Compute the reciprocal 1.0 / c2. 8661 APFloat N1APF = N1CFP->getValueAPF(); 8662 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 8663 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 8664 // Only do the transform if the reciprocal is a legal fp immediate that 8665 // isn't too nasty (eg NaN, denormal, ...). 8666 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 8667 (!LegalOperations || 8668 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 8669 // backend)... we should handle this gracefully after Legalize. 8670 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 8671 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 8672 TLI.isFPImmLegal(Recip, VT))) 8673 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8674 DAG.getConstantFP(Recip, DL, VT), Flags); 8675 } 8676 8677 // If this FDIV is part of a reciprocal square root, it may be folded 8678 // into a target-specific square root estimate instruction. 8679 if (N1.getOpcode() == ISD::FSQRT) { 8680 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) { 8681 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8682 } 8683 } else if (N1.getOpcode() == ISD::FP_EXTEND && 8684 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8685 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8686 Flags)) { 8687 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 8688 AddToWorklist(RV.getNode()); 8689 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8690 } 8691 } else if (N1.getOpcode() == ISD::FP_ROUND && 8692 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8693 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8694 Flags)) { 8695 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 8696 AddToWorklist(RV.getNode()); 8697 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8698 } 8699 } else if (N1.getOpcode() == ISD::FMUL) { 8700 // Look through an FMUL. Even though this won't remove the FDIV directly, 8701 // it's still worthwhile to get rid of the FSQRT if possible. 8702 SDValue SqrtOp; 8703 SDValue OtherOp; 8704 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8705 SqrtOp = N1.getOperand(0); 8706 OtherOp = N1.getOperand(1); 8707 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 8708 SqrtOp = N1.getOperand(1); 8709 OtherOp = N1.getOperand(0); 8710 } 8711 if (SqrtOp.getNode()) { 8712 // We found a FSQRT, so try to make this fold: 8713 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 8714 if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 8715 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 8716 AddToWorklist(RV.getNode()); 8717 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8718 } 8719 } 8720 } 8721 8722 // Fold into a reciprocal estimate and multiply instead of a real divide. 8723 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 8724 AddToWorklist(RV.getNode()); 8725 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8726 } 8727 } 8728 8729 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 8730 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8731 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8732 // Both can be negated for free, check to see if at least one is cheaper 8733 // negated. 8734 if (LHSNeg == 2 || RHSNeg == 2) 8735 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 8736 GetNegatedExpression(N0, DAG, LegalOperations), 8737 GetNegatedExpression(N1, DAG, LegalOperations), 8738 Flags); 8739 } 8740 } 8741 8742 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) 8743 return CombineRepeatedDivisors; 8744 8745 return SDValue(); 8746 } 8747 8748 SDValue DAGCombiner::visitFREM(SDNode *N) { 8749 SDValue N0 = N->getOperand(0); 8750 SDValue N1 = N->getOperand(1); 8751 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8752 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8753 EVT VT = N->getValueType(0); 8754 8755 // fold (frem c1, c2) -> fmod(c1,c2) 8756 if (N0CFP && N1CFP) 8757 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, 8758 &cast<BinaryWithFlagsSDNode>(N)->Flags); 8759 8760 return SDValue(); 8761 } 8762 8763 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 8764 if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap()) 8765 return SDValue(); 8766 8767 // TODO: FSQRT nodes should have flags that propagate to the created nodes. 8768 // For now, create a Flags object for use with all unsafe math transforms. 8769 SDNodeFlags Flags; 8770 Flags.setUnsafeAlgebra(true); 8771 8772 // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5) 8773 SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags); 8774 if (!RV) 8775 return SDValue(); 8776 8777 EVT VT = RV.getValueType(); 8778 SDLoc DL(N); 8779 RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags); 8780 AddToWorklist(RV.getNode()); 8781 8782 // Unfortunately, RV is now NaN if the input was exactly 0. 8783 // Select out this case and force the answer to 0. 8784 SDValue Zero = DAG.getConstantFP(0.0, DL, VT); 8785 EVT CCVT = getSetCCResultType(VT); 8786 SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ); 8787 AddToWorklist(ZeroCmp.getNode()); 8788 AddToWorklist(RV.getNode()); 8789 8790 return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 8791 ZeroCmp, Zero, RV); 8792 } 8793 8794 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 8795 // copysign(x, fp_extend(y)) -> copysign(x, y) 8796 // copysign(x, fp_round(y)) -> copysign(x, y) 8797 // Do not optimize out type conversion of f128 type yet. 8798 // For some target like x86_64, configuration is changed 8799 // to keep one f128 value in one SSE register, but 8800 // instruction selection cannot handle FCOPYSIGN on 8801 // SSE registers yet. 8802 SDValue N1 = N->getOperand(1); 8803 EVT N1VT = N1->getValueType(0); 8804 EVT N1Op0VT = N1->getOperand(0)->getValueType(0); 8805 return (N1.getOpcode() == ISD::FP_EXTEND || 8806 N1.getOpcode() == ISD::FP_ROUND) && 8807 (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 8808 } 8809 8810 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 8811 SDValue N0 = N->getOperand(0); 8812 SDValue N1 = N->getOperand(1); 8813 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8814 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8815 EVT VT = N->getValueType(0); 8816 8817 if (N0CFP && N1CFP) // Constant fold 8818 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 8819 8820 if (N1CFP) { 8821 const APFloat& V = N1CFP->getValueAPF(); 8822 // copysign(x, c1) -> fabs(x) iff ispos(c1) 8823 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 8824 if (!V.isNegative()) { 8825 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 8826 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8827 } else { 8828 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8829 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 8830 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 8831 } 8832 } 8833 8834 // copysign(fabs(x), y) -> copysign(x, y) 8835 // copysign(fneg(x), y) -> copysign(x, y) 8836 // copysign(copysign(x,z), y) -> copysign(x, y) 8837 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 8838 N0.getOpcode() == ISD::FCOPYSIGN) 8839 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8840 N0.getOperand(0), N1); 8841 8842 // copysign(x, abs(y)) -> abs(x) 8843 if (N1.getOpcode() == ISD::FABS) 8844 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8845 8846 // copysign(x, copysign(y,z)) -> copysign(x, z) 8847 if (N1.getOpcode() == ISD::FCOPYSIGN) 8848 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8849 N0, N1.getOperand(1)); 8850 8851 // copysign(x, fp_extend(y)) -> copysign(x, y) 8852 // copysign(x, fp_round(y)) -> copysign(x, y) 8853 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 8854 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8855 N0, N1.getOperand(0)); 8856 8857 return SDValue(); 8858 } 8859 8860 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 8861 SDValue N0 = N->getOperand(0); 8862 EVT VT = N->getValueType(0); 8863 EVT OpVT = N0.getValueType(); 8864 8865 // fold (sint_to_fp c1) -> c1fp 8866 if (isConstantIntBuildVectorOrConstantInt(N0) && 8867 // ...but only if the target supports immediate floating-point values 8868 (!LegalOperations || 8869 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 8870 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 8871 8872 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 8873 // but UINT_TO_FP is legal on this target, try to convert. 8874 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 8875 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 8876 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 8877 if (DAG.SignBitIsZero(N0)) 8878 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 8879 } 8880 8881 // The next optimizations are desirable only if SELECT_CC can be lowered. 8882 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 8883 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 8884 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 8885 !VT.isVector() && 8886 (!LegalOperations || 8887 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8888 SDLoc DL(N); 8889 SDValue Ops[] = 8890 { N0.getOperand(0), N0.getOperand(1), 8891 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8892 N0.getOperand(2) }; 8893 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8894 } 8895 8896 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 8897 // (select_cc x, y, 1.0, 0.0,, cc) 8898 if (N0.getOpcode() == ISD::ZERO_EXTEND && 8899 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 8900 (!LegalOperations || 8901 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8902 SDLoc DL(N); 8903 SDValue Ops[] = 8904 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 8905 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8906 N0.getOperand(0).getOperand(2) }; 8907 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8908 } 8909 } 8910 8911 return SDValue(); 8912 } 8913 8914 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 8915 SDValue N0 = N->getOperand(0); 8916 EVT VT = N->getValueType(0); 8917 EVT OpVT = N0.getValueType(); 8918 8919 // fold (uint_to_fp c1) -> c1fp 8920 if (isConstantIntBuildVectorOrConstantInt(N0) && 8921 // ...but only if the target supports immediate floating-point values 8922 (!LegalOperations || 8923 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 8924 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 8925 8926 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 8927 // but SINT_TO_FP is legal on this target, try to convert. 8928 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 8929 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 8930 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 8931 if (DAG.SignBitIsZero(N0)) 8932 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 8933 } 8934 8935 // The next optimizations are desirable only if SELECT_CC can be lowered. 8936 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 8937 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 8938 8939 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 8940 (!LegalOperations || 8941 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8942 SDLoc DL(N); 8943 SDValue Ops[] = 8944 { N0.getOperand(0), N0.getOperand(1), 8945 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8946 N0.getOperand(2) }; 8947 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8948 } 8949 } 8950 8951 return SDValue(); 8952 } 8953 8954 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 8955 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 8956 SDValue N0 = N->getOperand(0); 8957 EVT VT = N->getValueType(0); 8958 8959 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 8960 return SDValue(); 8961 8962 SDValue Src = N0.getOperand(0); 8963 EVT SrcVT = Src.getValueType(); 8964 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 8965 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 8966 8967 // We can safely assume the conversion won't overflow the output range, 8968 // because (for example) (uint8_t)18293.f is undefined behavior. 8969 8970 // Since we can assume the conversion won't overflow, our decision as to 8971 // whether the input will fit in the float should depend on the minimum 8972 // of the input range and output range. 8973 8974 // This means this is also safe for a signed input and unsigned output, since 8975 // a negative input would lead to undefined behavior. 8976 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 8977 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 8978 unsigned ActualSize = std::min(InputSize, OutputSize); 8979 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 8980 8981 // We can only fold away the float conversion if the input range can be 8982 // represented exactly in the float range. 8983 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 8984 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 8985 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 8986 : ISD::ZERO_EXTEND; 8987 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 8988 } 8989 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 8990 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 8991 if (SrcVT == VT) 8992 return Src; 8993 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Src); 8994 } 8995 return SDValue(); 8996 } 8997 8998 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 8999 SDValue N0 = N->getOperand(0); 9000 EVT VT = N->getValueType(0); 9001 9002 // fold (fp_to_sint c1fp) -> c1 9003 if (isConstantFPBuildVectorOrConstantFP(N0)) 9004 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 9005 9006 return FoldIntToFPToInt(N, DAG); 9007 } 9008 9009 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 9010 SDValue N0 = N->getOperand(0); 9011 EVT VT = N->getValueType(0); 9012 9013 // fold (fp_to_uint c1fp) -> c1 9014 if (isConstantFPBuildVectorOrConstantFP(N0)) 9015 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 9016 9017 return FoldIntToFPToInt(N, DAG); 9018 } 9019 9020 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 9021 SDValue N0 = N->getOperand(0); 9022 SDValue N1 = N->getOperand(1); 9023 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9024 EVT VT = N->getValueType(0); 9025 9026 // fold (fp_round c1fp) -> c1fp 9027 if (N0CFP) 9028 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 9029 9030 // fold (fp_round (fp_extend x)) -> x 9031 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 9032 return N0.getOperand(0); 9033 9034 // fold (fp_round (fp_round x)) -> (fp_round x) 9035 if (N0.getOpcode() == ISD::FP_ROUND) { 9036 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 9037 const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; 9038 9039 // Skip this folding if it results in an fp_round from f80 to f16. 9040 // 9041 // f80 to f16 always generates an expensive (and as yet, unimplemented) 9042 // libcall to __truncxfhf2 instead of selecting native f16 conversion 9043 // instructions from f32 or f64. Moreover, the first (value-preserving) 9044 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 9045 // x86. 9046 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 9047 return SDValue(); 9048 9049 // If the first fp_round isn't a value preserving truncation, it might 9050 // introduce a tie in the second fp_round, that wouldn't occur in the 9051 // single-step fp_round we want to fold to. 9052 // In other words, double rounding isn't the same as rounding. 9053 // Also, this is a value preserving truncation iff both fp_round's are. 9054 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 9055 SDLoc DL(N); 9056 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 9057 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 9058 } 9059 } 9060 9061 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 9062 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 9063 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 9064 N0.getOperand(0), N1); 9065 AddToWorklist(Tmp.getNode()); 9066 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 9067 Tmp, N0.getOperand(1)); 9068 } 9069 9070 return SDValue(); 9071 } 9072 9073 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 9074 SDValue N0 = N->getOperand(0); 9075 EVT VT = N->getValueType(0); 9076 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 9077 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9078 9079 // fold (fp_round_inreg c1fp) -> c1fp 9080 if (N0CFP && isTypeLegal(EVT)) { 9081 SDLoc DL(N); 9082 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 9083 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 9084 } 9085 9086 return SDValue(); 9087 } 9088 9089 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 9090 SDValue N0 = N->getOperand(0); 9091 EVT VT = N->getValueType(0); 9092 9093 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 9094 if (N->hasOneUse() && 9095 N->use_begin()->getOpcode() == ISD::FP_ROUND) 9096 return SDValue(); 9097 9098 // fold (fp_extend c1fp) -> c1fp 9099 if (isConstantFPBuildVectorOrConstantFP(N0)) 9100 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 9101 9102 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 9103 if (N0.getOpcode() == ISD::FP16_TO_FP && 9104 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 9105 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 9106 9107 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 9108 // value of X. 9109 if (N0.getOpcode() == ISD::FP_ROUND 9110 && N0.getNode()->getConstantOperandVal(1) == 1) { 9111 SDValue In = N0.getOperand(0); 9112 if (In.getValueType() == VT) return In; 9113 if (VT.bitsLT(In.getValueType())) 9114 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 9115 In, N0.getOperand(1)); 9116 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 9117 } 9118 9119 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 9120 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 9121 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 9122 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9123 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 9124 LN0->getChain(), 9125 LN0->getBasePtr(), N0.getValueType(), 9126 LN0->getMemOperand()); 9127 CombineTo(N, ExtLoad); 9128 CombineTo(N0.getNode(), 9129 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 9130 N0.getValueType(), ExtLoad, 9131 DAG.getIntPtrConstant(1, SDLoc(N0))), 9132 ExtLoad.getValue(1)); 9133 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9134 } 9135 9136 return SDValue(); 9137 } 9138 9139 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 9140 SDValue N0 = N->getOperand(0); 9141 EVT VT = N->getValueType(0); 9142 9143 // fold (fceil c1) -> fceil(c1) 9144 if (isConstantFPBuildVectorOrConstantFP(N0)) 9145 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 9146 9147 return SDValue(); 9148 } 9149 9150 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 9151 SDValue N0 = N->getOperand(0); 9152 EVT VT = N->getValueType(0); 9153 9154 // fold (ftrunc c1) -> ftrunc(c1) 9155 if (isConstantFPBuildVectorOrConstantFP(N0)) 9156 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 9157 9158 return SDValue(); 9159 } 9160 9161 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 9162 SDValue N0 = N->getOperand(0); 9163 EVT VT = N->getValueType(0); 9164 9165 // fold (ffloor c1) -> ffloor(c1) 9166 if (isConstantFPBuildVectorOrConstantFP(N0)) 9167 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 9168 9169 return SDValue(); 9170 } 9171 9172 // FIXME: FNEG and FABS have a lot in common; refactor. 9173 SDValue DAGCombiner::visitFNEG(SDNode *N) { 9174 SDValue N0 = N->getOperand(0); 9175 EVT VT = N->getValueType(0); 9176 9177 // Constant fold FNEG. 9178 if (isConstantFPBuildVectorOrConstantFP(N0)) 9179 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 9180 9181 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 9182 &DAG.getTarget().Options)) 9183 return GetNegatedExpression(N0, DAG, LegalOperations); 9184 9185 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 9186 // constant pool values. 9187 if (!TLI.isFNegFree(VT) && 9188 N0.getOpcode() == ISD::BITCAST && 9189 N0.getNode()->hasOneUse()) { 9190 SDValue Int = N0.getOperand(0); 9191 EVT IntVT = Int.getValueType(); 9192 if (IntVT.isInteger() && !IntVT.isVector()) { 9193 APInt SignMask; 9194 if (N0.getValueType().isVector()) { 9195 // For a vector, get a mask such as 0x80... per scalar element 9196 // and splat it. 9197 SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9198 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9199 } else { 9200 // For a scalar, just generate 0x80... 9201 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 9202 } 9203 SDLoc DL0(N0); 9204 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 9205 DAG.getConstant(SignMask, DL0, IntVT)); 9206 AddToWorklist(Int.getNode()); 9207 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int); 9208 } 9209 } 9210 9211 // (fneg (fmul c, x)) -> (fmul -c, x) 9212 if (N0.getOpcode() == ISD::FMUL && 9213 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 9214 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9215 if (CFP1) { 9216 APFloat CVal = CFP1->getValueAPF(); 9217 CVal.changeSign(); 9218 if (Level >= AfterLegalizeDAG && 9219 (TLI.isFPImmLegal(CVal, VT) || 9220 TLI.isOperationLegal(ISD::ConstantFP, VT))) 9221 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 9222 DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9223 N0.getOperand(1)), 9224 &cast<BinaryWithFlagsSDNode>(N0)->Flags); 9225 } 9226 } 9227 9228 return SDValue(); 9229 } 9230 9231 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 9232 SDValue N0 = N->getOperand(0); 9233 SDValue N1 = N->getOperand(1); 9234 EVT VT = N->getValueType(0); 9235 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9236 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9237 9238 if (N0CFP && N1CFP) { 9239 const APFloat &C0 = N0CFP->getValueAPF(); 9240 const APFloat &C1 = N1CFP->getValueAPF(); 9241 return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); 9242 } 9243 9244 // Canonicalize to constant on RHS. 9245 if (isConstantFPBuildVectorOrConstantFP(N0) && 9246 !isConstantFPBuildVectorOrConstantFP(N1)) 9247 return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); 9248 9249 return SDValue(); 9250 } 9251 9252 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 9253 SDValue N0 = N->getOperand(0); 9254 SDValue N1 = N->getOperand(1); 9255 EVT VT = N->getValueType(0); 9256 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9257 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9258 9259 if (N0CFP && N1CFP) { 9260 const APFloat &C0 = N0CFP->getValueAPF(); 9261 const APFloat &C1 = N1CFP->getValueAPF(); 9262 return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); 9263 } 9264 9265 // Canonicalize to constant on RHS. 9266 if (isConstantFPBuildVectorOrConstantFP(N0) && 9267 !isConstantFPBuildVectorOrConstantFP(N1)) 9268 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); 9269 9270 return SDValue(); 9271 } 9272 9273 SDValue DAGCombiner::visitFABS(SDNode *N) { 9274 SDValue N0 = N->getOperand(0); 9275 EVT VT = N->getValueType(0); 9276 9277 // fold (fabs c1) -> fabs(c1) 9278 if (isConstantFPBuildVectorOrConstantFP(N0)) 9279 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9280 9281 // fold (fabs (fabs x)) -> (fabs x) 9282 if (N0.getOpcode() == ISD::FABS) 9283 return N->getOperand(0); 9284 9285 // fold (fabs (fneg x)) -> (fabs x) 9286 // fold (fabs (fcopysign x, y)) -> (fabs x) 9287 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 9288 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 9289 9290 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 9291 // constant pool values. 9292 if (!TLI.isFAbsFree(VT) && 9293 N0.getOpcode() == ISD::BITCAST && 9294 N0.getNode()->hasOneUse()) { 9295 SDValue Int = N0.getOperand(0); 9296 EVT IntVT = Int.getValueType(); 9297 if (IntVT.isInteger() && !IntVT.isVector()) { 9298 APInt SignMask; 9299 if (N0.getValueType().isVector()) { 9300 // For a vector, get a mask such as 0x7f... per scalar element 9301 // and splat it. 9302 SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9303 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9304 } else { 9305 // For a scalar, just generate 0x7f... 9306 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 9307 } 9308 SDLoc DL(N0); 9309 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 9310 DAG.getConstant(SignMask, DL, IntVT)); 9311 AddToWorklist(Int.getNode()); 9312 return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int); 9313 } 9314 } 9315 9316 return SDValue(); 9317 } 9318 9319 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 9320 SDValue Chain = N->getOperand(0); 9321 SDValue N1 = N->getOperand(1); 9322 SDValue N2 = N->getOperand(2); 9323 9324 // If N is a constant we could fold this into a fallthrough or unconditional 9325 // branch. However that doesn't happen very often in normal code, because 9326 // Instcombine/SimplifyCFG should have handled the available opportunities. 9327 // If we did this folding here, it would be necessary to update the 9328 // MachineBasicBlock CFG, which is awkward. 9329 9330 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 9331 // on the target. 9332 if (N1.getOpcode() == ISD::SETCC && 9333 TLI.isOperationLegalOrCustom(ISD::BR_CC, 9334 N1.getOperand(0).getValueType())) { 9335 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9336 Chain, N1.getOperand(2), 9337 N1.getOperand(0), N1.getOperand(1), N2); 9338 } 9339 9340 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 9341 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 9342 (N1.getOperand(0).hasOneUse() && 9343 N1.getOperand(0).getOpcode() == ISD::SRL))) { 9344 SDNode *Trunc = nullptr; 9345 if (N1.getOpcode() == ISD::TRUNCATE) { 9346 // Look pass the truncate. 9347 Trunc = N1.getNode(); 9348 N1 = N1.getOperand(0); 9349 } 9350 9351 // Match this pattern so that we can generate simpler code: 9352 // 9353 // %a = ... 9354 // %b = and i32 %a, 2 9355 // %c = srl i32 %b, 1 9356 // brcond i32 %c ... 9357 // 9358 // into 9359 // 9360 // %a = ... 9361 // %b = and i32 %a, 2 9362 // %c = setcc eq %b, 0 9363 // brcond %c ... 9364 // 9365 // This applies only when the AND constant value has one bit set and the 9366 // SRL constant is equal to the log2 of the AND constant. The back-end is 9367 // smart enough to convert the result into a TEST/JMP sequence. 9368 SDValue Op0 = N1.getOperand(0); 9369 SDValue Op1 = N1.getOperand(1); 9370 9371 if (Op0.getOpcode() == ISD::AND && 9372 Op1.getOpcode() == ISD::Constant) { 9373 SDValue AndOp1 = Op0.getOperand(1); 9374 9375 if (AndOp1.getOpcode() == ISD::Constant) { 9376 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 9377 9378 if (AndConst.isPowerOf2() && 9379 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 9380 SDLoc DL(N); 9381 SDValue SetCC = 9382 DAG.getSetCC(DL, 9383 getSetCCResultType(Op0.getValueType()), 9384 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 9385 ISD::SETNE); 9386 9387 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, 9388 MVT::Other, Chain, SetCC, N2); 9389 // Don't add the new BRCond into the worklist or else SimplifySelectCC 9390 // will convert it back to (X & C1) >> C2. 9391 CombineTo(N, NewBRCond, false); 9392 // Truncate is dead. 9393 if (Trunc) 9394 deleteAndRecombine(Trunc); 9395 // Replace the uses of SRL with SETCC 9396 WorklistRemover DeadNodes(*this); 9397 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9398 deleteAndRecombine(N1.getNode()); 9399 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9400 } 9401 } 9402 } 9403 9404 if (Trunc) 9405 // Restore N1 if the above transformation doesn't match. 9406 N1 = N->getOperand(1); 9407 } 9408 9409 // Transform br(xor(x, y)) -> br(x != y) 9410 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 9411 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 9412 SDNode *TheXor = N1.getNode(); 9413 SDValue Op0 = TheXor->getOperand(0); 9414 SDValue Op1 = TheXor->getOperand(1); 9415 if (Op0.getOpcode() == Op1.getOpcode()) { 9416 // Avoid missing important xor optimizations. 9417 if (SDValue Tmp = visitXOR(TheXor)) { 9418 if (Tmp.getNode() != TheXor) { 9419 DEBUG(dbgs() << "\nReplacing.8 "; 9420 TheXor->dump(&DAG); 9421 dbgs() << "\nWith: "; 9422 Tmp.getNode()->dump(&DAG); 9423 dbgs() << '\n'); 9424 WorklistRemover DeadNodes(*this); 9425 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 9426 deleteAndRecombine(TheXor); 9427 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9428 MVT::Other, Chain, Tmp, N2); 9429 } 9430 9431 // visitXOR has changed XOR's operands or replaced the XOR completely, 9432 // bail out. 9433 return SDValue(N, 0); 9434 } 9435 } 9436 9437 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 9438 bool Equal = false; 9439 if (isOneConstant(Op0) && Op0.hasOneUse() && 9440 Op0.getOpcode() == ISD::XOR) { 9441 TheXor = Op0.getNode(); 9442 Equal = true; 9443 } 9444 9445 EVT SetCCVT = N1.getValueType(); 9446 if (LegalTypes) 9447 SetCCVT = getSetCCResultType(SetCCVT); 9448 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 9449 SetCCVT, 9450 Op0, Op1, 9451 Equal ? ISD::SETEQ : ISD::SETNE); 9452 // Replace the uses of XOR with SETCC 9453 WorklistRemover DeadNodes(*this); 9454 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9455 deleteAndRecombine(N1.getNode()); 9456 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9457 MVT::Other, Chain, SetCC, N2); 9458 } 9459 } 9460 9461 return SDValue(); 9462 } 9463 9464 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 9465 // 9466 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 9467 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 9468 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 9469 9470 // If N is a constant we could fold this into a fallthrough or unconditional 9471 // branch. However that doesn't happen very often in normal code, because 9472 // Instcombine/SimplifyCFG should have handled the available opportunities. 9473 // If we did this folding here, it would be necessary to update the 9474 // MachineBasicBlock CFG, which is awkward. 9475 9476 // Use SimplifySetCC to simplify SETCC's. 9477 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 9478 CondLHS, CondRHS, CC->get(), SDLoc(N), 9479 false); 9480 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 9481 9482 // fold to a simpler setcc 9483 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 9484 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9485 N->getOperand(0), Simp.getOperand(2), 9486 Simp.getOperand(0), Simp.getOperand(1), 9487 N->getOperand(4)); 9488 9489 return SDValue(); 9490 } 9491 9492 /// Return true if 'Use' is a load or a store that uses N as its base pointer 9493 /// and that N may be folded in the load / store addressing mode. 9494 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 9495 SelectionDAG &DAG, 9496 const TargetLowering &TLI) { 9497 EVT VT; 9498 unsigned AS; 9499 9500 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 9501 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 9502 return false; 9503 VT = LD->getMemoryVT(); 9504 AS = LD->getAddressSpace(); 9505 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 9506 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 9507 return false; 9508 VT = ST->getMemoryVT(); 9509 AS = ST->getAddressSpace(); 9510 } else 9511 return false; 9512 9513 TargetLowering::AddrMode AM; 9514 if (N->getOpcode() == ISD::ADD) { 9515 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9516 if (Offset) 9517 // [reg +/- imm] 9518 AM.BaseOffs = Offset->getSExtValue(); 9519 else 9520 // [reg +/- reg] 9521 AM.Scale = 1; 9522 } else if (N->getOpcode() == ISD::SUB) { 9523 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9524 if (Offset) 9525 // [reg +/- imm] 9526 AM.BaseOffs = -Offset->getSExtValue(); 9527 else 9528 // [reg +/- reg] 9529 AM.Scale = 1; 9530 } else 9531 return false; 9532 9533 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 9534 VT.getTypeForEVT(*DAG.getContext()), AS); 9535 } 9536 9537 /// Try turning a load/store into a pre-indexed load/store when the base 9538 /// pointer is an add or subtract and it has other uses besides the load/store. 9539 /// After the transformation, the new indexed load/store has effectively folded 9540 /// the add/subtract in and all of its other uses are redirected to the 9541 /// new load/store. 9542 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 9543 if (Level < AfterLegalizeDAG) 9544 return false; 9545 9546 bool isLoad = true; 9547 SDValue Ptr; 9548 EVT VT; 9549 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9550 if (LD->isIndexed()) 9551 return false; 9552 VT = LD->getMemoryVT(); 9553 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 9554 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 9555 return false; 9556 Ptr = LD->getBasePtr(); 9557 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9558 if (ST->isIndexed()) 9559 return false; 9560 VT = ST->getMemoryVT(); 9561 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 9562 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 9563 return false; 9564 Ptr = ST->getBasePtr(); 9565 isLoad = false; 9566 } else { 9567 return false; 9568 } 9569 9570 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 9571 // out. There is no reason to make this a preinc/predec. 9572 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 9573 Ptr.getNode()->hasOneUse()) 9574 return false; 9575 9576 // Ask the target to do addressing mode selection. 9577 SDValue BasePtr; 9578 SDValue Offset; 9579 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9580 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 9581 return false; 9582 9583 // Backends without true r+i pre-indexed forms may need to pass a 9584 // constant base with a variable offset so that constant coercion 9585 // will work with the patterns in canonical form. 9586 bool Swapped = false; 9587 if (isa<ConstantSDNode>(BasePtr)) { 9588 std::swap(BasePtr, Offset); 9589 Swapped = true; 9590 } 9591 9592 // Don't create a indexed load / store with zero offset. 9593 if (isNullConstant(Offset)) 9594 return false; 9595 9596 // Try turning it into a pre-indexed load / store except when: 9597 // 1) The new base ptr is a frame index. 9598 // 2) If N is a store and the new base ptr is either the same as or is a 9599 // predecessor of the value being stored. 9600 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 9601 // that would create a cycle. 9602 // 4) All uses are load / store ops that use it as old base ptr. 9603 9604 // Check #1. Preinc'ing a frame index would require copying the stack pointer 9605 // (plus the implicit offset) to a register to preinc anyway. 9606 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9607 return false; 9608 9609 // Check #2. 9610 if (!isLoad) { 9611 SDValue Val = cast<StoreSDNode>(N)->getValue(); 9612 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 9613 return false; 9614 } 9615 9616 // If the offset is a constant, there may be other adds of constants that 9617 // can be folded with this one. We should do this to avoid having to keep 9618 // a copy of the original base pointer. 9619 SmallVector<SDNode *, 16> OtherUses; 9620 if (isa<ConstantSDNode>(Offset)) 9621 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 9622 UE = BasePtr.getNode()->use_end(); 9623 UI != UE; ++UI) { 9624 SDUse &Use = UI.getUse(); 9625 // Skip the use that is Ptr and uses of other results from BasePtr's 9626 // node (important for nodes that return multiple results). 9627 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 9628 continue; 9629 9630 if (Use.getUser()->isPredecessorOf(N)) 9631 continue; 9632 9633 if (Use.getUser()->getOpcode() != ISD::ADD && 9634 Use.getUser()->getOpcode() != ISD::SUB) { 9635 OtherUses.clear(); 9636 break; 9637 } 9638 9639 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 9640 if (!isa<ConstantSDNode>(Op1)) { 9641 OtherUses.clear(); 9642 break; 9643 } 9644 9645 // FIXME: In some cases, we can be smarter about this. 9646 if (Op1.getValueType() != Offset.getValueType()) { 9647 OtherUses.clear(); 9648 break; 9649 } 9650 9651 OtherUses.push_back(Use.getUser()); 9652 } 9653 9654 if (Swapped) 9655 std::swap(BasePtr, Offset); 9656 9657 // Now check for #3 and #4. 9658 bool RealUse = false; 9659 9660 // Caches for hasPredecessorHelper 9661 SmallPtrSet<const SDNode *, 32> Visited; 9662 SmallVector<const SDNode *, 16> Worklist; 9663 9664 for (SDNode *Use : Ptr.getNode()->uses()) { 9665 if (Use == N) 9666 continue; 9667 if (N->hasPredecessorHelper(Use, Visited, Worklist)) 9668 return false; 9669 9670 // If Ptr may be folded in addressing mode of other use, then it's 9671 // not profitable to do this transformation. 9672 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 9673 RealUse = true; 9674 } 9675 9676 if (!RealUse) 9677 return false; 9678 9679 SDValue Result; 9680 if (isLoad) 9681 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9682 BasePtr, Offset, AM); 9683 else 9684 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9685 BasePtr, Offset, AM); 9686 ++PreIndexedNodes; 9687 ++NodesCombined; 9688 DEBUG(dbgs() << "\nReplacing.4 "; 9689 N->dump(&DAG); 9690 dbgs() << "\nWith: "; 9691 Result.getNode()->dump(&DAG); 9692 dbgs() << '\n'); 9693 WorklistRemover DeadNodes(*this); 9694 if (isLoad) { 9695 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9696 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9697 } else { 9698 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9699 } 9700 9701 // Finally, since the node is now dead, remove it from the graph. 9702 deleteAndRecombine(N); 9703 9704 if (Swapped) 9705 std::swap(BasePtr, Offset); 9706 9707 // Replace other uses of BasePtr that can be updated to use Ptr 9708 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 9709 unsigned OffsetIdx = 1; 9710 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 9711 OffsetIdx = 0; 9712 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 9713 BasePtr.getNode() && "Expected BasePtr operand"); 9714 9715 // We need to replace ptr0 in the following expression: 9716 // x0 * offset0 + y0 * ptr0 = t0 9717 // knowing that 9718 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 9719 // 9720 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 9721 // indexed load/store and the expresion that needs to be re-written. 9722 // 9723 // Therefore, we have: 9724 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 9725 9726 ConstantSDNode *CN = 9727 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 9728 int X0, X1, Y0, Y1; 9729 APInt Offset0 = CN->getAPIntValue(); 9730 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 9731 9732 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 9733 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 9734 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 9735 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 9736 9737 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 9738 9739 APInt CNV = Offset0; 9740 if (X0 < 0) CNV = -CNV; 9741 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 9742 else CNV = CNV - Offset1; 9743 9744 SDLoc DL(OtherUses[i]); 9745 9746 // We can now generate the new expression. 9747 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 9748 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 9749 9750 SDValue NewUse = DAG.getNode(Opcode, 9751 DL, 9752 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 9753 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 9754 deleteAndRecombine(OtherUses[i]); 9755 } 9756 9757 // Replace the uses of Ptr with uses of the updated base value. 9758 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 9759 deleteAndRecombine(Ptr.getNode()); 9760 9761 return true; 9762 } 9763 9764 /// Try to combine a load/store with a add/sub of the base pointer node into a 9765 /// post-indexed load/store. The transformation folded the add/subtract into the 9766 /// new indexed load/store effectively and all of its uses are redirected to the 9767 /// new load/store. 9768 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 9769 if (Level < AfterLegalizeDAG) 9770 return false; 9771 9772 bool isLoad = true; 9773 SDValue Ptr; 9774 EVT VT; 9775 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9776 if (LD->isIndexed()) 9777 return false; 9778 VT = LD->getMemoryVT(); 9779 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 9780 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 9781 return false; 9782 Ptr = LD->getBasePtr(); 9783 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9784 if (ST->isIndexed()) 9785 return false; 9786 VT = ST->getMemoryVT(); 9787 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 9788 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 9789 return false; 9790 Ptr = ST->getBasePtr(); 9791 isLoad = false; 9792 } else { 9793 return false; 9794 } 9795 9796 if (Ptr.getNode()->hasOneUse()) 9797 return false; 9798 9799 for (SDNode *Op : Ptr.getNode()->uses()) { 9800 if (Op == N || 9801 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 9802 continue; 9803 9804 SDValue BasePtr; 9805 SDValue Offset; 9806 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9807 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 9808 // Don't create a indexed load / store with zero offset. 9809 if (isNullConstant(Offset)) 9810 continue; 9811 9812 // Try turning it into a post-indexed load / store except when 9813 // 1) All uses are load / store ops that use it as base ptr (and 9814 // it may be folded as addressing mmode). 9815 // 2) Op must be independent of N, i.e. Op is neither a predecessor 9816 // nor a successor of N. Otherwise, if Op is folded that would 9817 // create a cycle. 9818 9819 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9820 continue; 9821 9822 // Check for #1. 9823 bool TryNext = false; 9824 for (SDNode *Use : BasePtr.getNode()->uses()) { 9825 if (Use == Ptr.getNode()) 9826 continue; 9827 9828 // If all the uses are load / store addresses, then don't do the 9829 // transformation. 9830 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 9831 bool RealUse = false; 9832 for (SDNode *UseUse : Use->uses()) { 9833 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 9834 RealUse = true; 9835 } 9836 9837 if (!RealUse) { 9838 TryNext = true; 9839 break; 9840 } 9841 } 9842 } 9843 9844 if (TryNext) 9845 continue; 9846 9847 // Check for #2 9848 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 9849 SDValue Result = isLoad 9850 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9851 BasePtr, Offset, AM) 9852 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9853 BasePtr, Offset, AM); 9854 ++PostIndexedNodes; 9855 ++NodesCombined; 9856 DEBUG(dbgs() << "\nReplacing.5 "; 9857 N->dump(&DAG); 9858 dbgs() << "\nWith: "; 9859 Result.getNode()->dump(&DAG); 9860 dbgs() << '\n'); 9861 WorklistRemover DeadNodes(*this); 9862 if (isLoad) { 9863 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9864 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9865 } else { 9866 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9867 } 9868 9869 // Finally, since the node is now dead, remove it from the graph. 9870 deleteAndRecombine(N); 9871 9872 // Replace the uses of Use with uses of the updated base value. 9873 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 9874 Result.getValue(isLoad ? 1 : 0)); 9875 deleteAndRecombine(Op); 9876 return true; 9877 } 9878 } 9879 } 9880 9881 return false; 9882 } 9883 9884 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 9885 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 9886 ISD::MemIndexedMode AM = LD->getAddressingMode(); 9887 assert(AM != ISD::UNINDEXED); 9888 SDValue BP = LD->getOperand(1); 9889 SDValue Inc = LD->getOperand(2); 9890 9891 // Some backends use TargetConstants for load offsets, but don't expect 9892 // TargetConstants in general ADD nodes. We can convert these constants into 9893 // regular Constants (if the constant is not opaque). 9894 assert((Inc.getOpcode() != ISD::TargetConstant || 9895 !cast<ConstantSDNode>(Inc)->isOpaque()) && 9896 "Cannot split out indexing using opaque target constants"); 9897 if (Inc.getOpcode() == ISD::TargetConstant) { 9898 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 9899 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 9900 ConstInc->getValueType(0)); 9901 } 9902 9903 unsigned Opc = 9904 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 9905 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 9906 } 9907 9908 SDValue DAGCombiner::visitLOAD(SDNode *N) { 9909 LoadSDNode *LD = cast<LoadSDNode>(N); 9910 SDValue Chain = LD->getChain(); 9911 SDValue Ptr = LD->getBasePtr(); 9912 9913 // If load is not volatile and there are no uses of the loaded value (and 9914 // the updated indexed value in case of indexed loads), change uses of the 9915 // chain value into uses of the chain input (i.e. delete the dead load). 9916 if (!LD->isVolatile()) { 9917 if (N->getValueType(1) == MVT::Other) { 9918 // Unindexed loads. 9919 if (!N->hasAnyUseOfValue(0)) { 9920 // It's not safe to use the two value CombineTo variant here. e.g. 9921 // v1, chain2 = load chain1, loc 9922 // v2, chain3 = load chain2, loc 9923 // v3 = add v2, c 9924 // Now we replace use of chain2 with chain1. This makes the second load 9925 // isomorphic to the one we are deleting, and thus makes this load live. 9926 DEBUG(dbgs() << "\nReplacing.6 "; 9927 N->dump(&DAG); 9928 dbgs() << "\nWith chain: "; 9929 Chain.getNode()->dump(&DAG); 9930 dbgs() << "\n"); 9931 WorklistRemover DeadNodes(*this); 9932 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 9933 9934 if (N->use_empty()) 9935 deleteAndRecombine(N); 9936 9937 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9938 } 9939 } else { 9940 // Indexed loads. 9941 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 9942 9943 // If this load has an opaque TargetConstant offset, then we cannot split 9944 // the indexing into an add/sub directly (that TargetConstant may not be 9945 // valid for a different type of node, and we cannot convert an opaque 9946 // target constant into a regular constant). 9947 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 9948 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 9949 9950 if (!N->hasAnyUseOfValue(0) && 9951 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 9952 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 9953 SDValue Index; 9954 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 9955 Index = SplitIndexingFromLoad(LD); 9956 // Try to fold the base pointer arithmetic into subsequent loads and 9957 // stores. 9958 AddUsersToWorklist(N); 9959 } else 9960 Index = DAG.getUNDEF(N->getValueType(1)); 9961 DEBUG(dbgs() << "\nReplacing.7 "; 9962 N->dump(&DAG); 9963 dbgs() << "\nWith: "; 9964 Undef.getNode()->dump(&DAG); 9965 dbgs() << " and 2 other values\n"); 9966 WorklistRemover DeadNodes(*this); 9967 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 9968 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 9969 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 9970 deleteAndRecombine(N); 9971 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9972 } 9973 } 9974 } 9975 9976 // If this load is directly stored, replace the load value with the stored 9977 // value. 9978 // TODO: Handle store large -> read small portion. 9979 // TODO: Handle TRUNCSTORE/LOADEXT 9980 if (ISD::isNormalLoad(N) && !LD->isVolatile()) { 9981 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 9982 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 9983 if (PrevST->getBasePtr() == Ptr && 9984 PrevST->getValue().getValueType() == N->getValueType(0)) 9985 return CombineTo(N, Chain.getOperand(1), Chain); 9986 } 9987 } 9988 9989 // Try to infer better alignment information than the load already has. 9990 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 9991 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 9992 if (Align > LD->getMemOperand()->getBaseAlignment()) { 9993 SDValue NewLoad = 9994 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N), 9995 LD->getValueType(0), 9996 Chain, Ptr, LD->getPointerInfo(), 9997 LD->getMemoryVT(), 9998 LD->isVolatile(), LD->isNonTemporal(), 9999 LD->isInvariant(), Align, LD->getAAInfo()); 10000 if (NewLoad.getNode() != N) 10001 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 10002 } 10003 } 10004 } 10005 10006 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 10007 : DAG.getSubtarget().useAA(); 10008 #ifndef NDEBUG 10009 if (CombinerAAOnlyFunc.getNumOccurrences() && 10010 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 10011 UseAA = false; 10012 #endif 10013 if (UseAA && LD->isUnindexed()) { 10014 // Walk up chain skipping non-aliasing memory nodes. 10015 SDValue BetterChain = FindBetterChain(N, Chain); 10016 10017 // If there is a better chain. 10018 if (Chain != BetterChain) { 10019 SDValue ReplLoad; 10020 10021 // Replace the chain to void dependency. 10022 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 10023 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 10024 BetterChain, Ptr, LD->getMemOperand()); 10025 } else { 10026 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 10027 LD->getValueType(0), 10028 BetterChain, Ptr, LD->getMemoryVT(), 10029 LD->getMemOperand()); 10030 } 10031 10032 // Create token factor to keep old chain connected. 10033 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 10034 MVT::Other, Chain, ReplLoad.getValue(1)); 10035 10036 // Make sure the new and old chains are cleaned up. 10037 AddToWorklist(Token.getNode()); 10038 10039 // Replace uses with load result and token factor. Don't add users 10040 // to work list. 10041 return CombineTo(N, ReplLoad.getValue(0), Token, false); 10042 } 10043 } 10044 10045 // Try transforming N to an indexed load. 10046 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10047 return SDValue(N, 0); 10048 10049 // Try to slice up N to more direct loads if the slices are mapped to 10050 // different register banks or pairing can take place. 10051 if (SliceUpLoad(N)) 10052 return SDValue(N, 0); 10053 10054 return SDValue(); 10055 } 10056 10057 namespace { 10058 /// \brief Helper structure used to slice a load in smaller loads. 10059 /// Basically a slice is obtained from the following sequence: 10060 /// Origin = load Ty1, Base 10061 /// Shift = srl Ty1 Origin, CstTy Amount 10062 /// Inst = trunc Shift to Ty2 10063 /// 10064 /// Then, it will be rewriten into: 10065 /// Slice = load SliceTy, Base + SliceOffset 10066 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 10067 /// 10068 /// SliceTy is deduced from the number of bits that are actually used to 10069 /// build Inst. 10070 struct LoadedSlice { 10071 /// \brief Helper structure used to compute the cost of a slice. 10072 struct Cost { 10073 /// Are we optimizing for code size. 10074 bool ForCodeSize; 10075 /// Various cost. 10076 unsigned Loads; 10077 unsigned Truncates; 10078 unsigned CrossRegisterBanksCopies; 10079 unsigned ZExts; 10080 unsigned Shift; 10081 10082 Cost(bool ForCodeSize = false) 10083 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 10084 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 10085 10086 /// \brief Get the cost of one isolated slice. 10087 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 10088 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 10089 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 10090 EVT TruncType = LS.Inst->getValueType(0); 10091 EVT LoadedType = LS.getLoadedType(); 10092 if (TruncType != LoadedType && 10093 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 10094 ZExts = 1; 10095 } 10096 10097 /// \brief Account for slicing gain in the current cost. 10098 /// Slicing provide a few gains like removing a shift or a 10099 /// truncate. This method allows to grow the cost of the original 10100 /// load with the gain from this slice. 10101 void addSliceGain(const LoadedSlice &LS) { 10102 // Each slice saves a truncate. 10103 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 10104 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 10105 LS.Inst->getValueType(0))) 10106 ++Truncates; 10107 // If there is a shift amount, this slice gets rid of it. 10108 if (LS.Shift) 10109 ++Shift; 10110 // If this slice can merge a cross register bank copy, account for it. 10111 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 10112 ++CrossRegisterBanksCopies; 10113 } 10114 10115 Cost &operator+=(const Cost &RHS) { 10116 Loads += RHS.Loads; 10117 Truncates += RHS.Truncates; 10118 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 10119 ZExts += RHS.ZExts; 10120 Shift += RHS.Shift; 10121 return *this; 10122 } 10123 10124 bool operator==(const Cost &RHS) const { 10125 return Loads == RHS.Loads && Truncates == RHS.Truncates && 10126 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 10127 ZExts == RHS.ZExts && Shift == RHS.Shift; 10128 } 10129 10130 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 10131 10132 bool operator<(const Cost &RHS) const { 10133 // Assume cross register banks copies are as expensive as loads. 10134 // FIXME: Do we want some more target hooks? 10135 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 10136 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 10137 // Unless we are optimizing for code size, consider the 10138 // expensive operation first. 10139 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 10140 return ExpensiveOpsLHS < ExpensiveOpsRHS; 10141 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 10142 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 10143 } 10144 10145 bool operator>(const Cost &RHS) const { return RHS < *this; } 10146 10147 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 10148 10149 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 10150 }; 10151 // The last instruction that represent the slice. This should be a 10152 // truncate instruction. 10153 SDNode *Inst; 10154 // The original load instruction. 10155 LoadSDNode *Origin; 10156 // The right shift amount in bits from the original load. 10157 unsigned Shift; 10158 // The DAG from which Origin came from. 10159 // This is used to get some contextual information about legal types, etc. 10160 SelectionDAG *DAG; 10161 10162 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 10163 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 10164 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 10165 10166 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 10167 /// \return Result is \p BitWidth and has used bits set to 1 and 10168 /// not used bits set to 0. 10169 APInt getUsedBits() const { 10170 // Reproduce the trunc(lshr) sequence: 10171 // - Start from the truncated value. 10172 // - Zero extend to the desired bit width. 10173 // - Shift left. 10174 assert(Origin && "No original load to compare against."); 10175 unsigned BitWidth = Origin->getValueSizeInBits(0); 10176 assert(Inst && "This slice is not bound to an instruction"); 10177 assert(Inst->getValueSizeInBits(0) <= BitWidth && 10178 "Extracted slice is bigger than the whole type!"); 10179 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 10180 UsedBits.setAllBits(); 10181 UsedBits = UsedBits.zext(BitWidth); 10182 UsedBits <<= Shift; 10183 return UsedBits; 10184 } 10185 10186 /// \brief Get the size of the slice to be loaded in bytes. 10187 unsigned getLoadedSize() const { 10188 unsigned SliceSize = getUsedBits().countPopulation(); 10189 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 10190 return SliceSize / 8; 10191 } 10192 10193 /// \brief Get the type that will be loaded for this slice. 10194 /// Note: This may not be the final type for the slice. 10195 EVT getLoadedType() const { 10196 assert(DAG && "Missing context"); 10197 LLVMContext &Ctxt = *DAG->getContext(); 10198 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 10199 } 10200 10201 /// \brief Get the alignment of the load used for this slice. 10202 unsigned getAlignment() const { 10203 unsigned Alignment = Origin->getAlignment(); 10204 unsigned Offset = getOffsetFromBase(); 10205 if (Offset != 0) 10206 Alignment = MinAlign(Alignment, Alignment + Offset); 10207 return Alignment; 10208 } 10209 10210 /// \brief Check if this slice can be rewritten with legal operations. 10211 bool isLegal() const { 10212 // An invalid slice is not legal. 10213 if (!Origin || !Inst || !DAG) 10214 return false; 10215 10216 // Offsets are for indexed load only, we do not handle that. 10217 if (Origin->getOffset().getOpcode() != ISD::UNDEF) 10218 return false; 10219 10220 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10221 10222 // Check that the type is legal. 10223 EVT SliceType = getLoadedType(); 10224 if (!TLI.isTypeLegal(SliceType)) 10225 return false; 10226 10227 // Check that the load is legal for this type. 10228 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 10229 return false; 10230 10231 // Check that the offset can be computed. 10232 // 1. Check its type. 10233 EVT PtrType = Origin->getBasePtr().getValueType(); 10234 if (PtrType == MVT::Untyped || PtrType.isExtended()) 10235 return false; 10236 10237 // 2. Check that it fits in the immediate. 10238 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 10239 return false; 10240 10241 // 3. Check that the computation is legal. 10242 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 10243 return false; 10244 10245 // Check that the zext is legal if it needs one. 10246 EVT TruncateType = Inst->getValueType(0); 10247 if (TruncateType != SliceType && 10248 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 10249 return false; 10250 10251 return true; 10252 } 10253 10254 /// \brief Get the offset in bytes of this slice in the original chunk of 10255 /// bits. 10256 /// \pre DAG != nullptr. 10257 uint64_t getOffsetFromBase() const { 10258 assert(DAG && "Missing context."); 10259 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 10260 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 10261 uint64_t Offset = Shift / 8; 10262 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 10263 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 10264 "The size of the original loaded type is not a multiple of a" 10265 " byte."); 10266 // If Offset is bigger than TySizeInBytes, it means we are loading all 10267 // zeros. This should have been optimized before in the process. 10268 assert(TySizeInBytes > Offset && 10269 "Invalid shift amount for given loaded size"); 10270 if (IsBigEndian) 10271 Offset = TySizeInBytes - Offset - getLoadedSize(); 10272 return Offset; 10273 } 10274 10275 /// \brief Generate the sequence of instructions to load the slice 10276 /// represented by this object and redirect the uses of this slice to 10277 /// this new sequence of instructions. 10278 /// \pre this->Inst && this->Origin are valid Instructions and this 10279 /// object passed the legal check: LoadedSlice::isLegal returned true. 10280 /// \return The last instruction of the sequence used to load the slice. 10281 SDValue loadSlice() const { 10282 assert(Inst && Origin && "Unable to replace a non-existing slice."); 10283 const SDValue &OldBaseAddr = Origin->getBasePtr(); 10284 SDValue BaseAddr = OldBaseAddr; 10285 // Get the offset in that chunk of bytes w.r.t. the endianess. 10286 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 10287 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 10288 if (Offset) { 10289 // BaseAddr = BaseAddr + Offset. 10290 EVT ArithType = BaseAddr.getValueType(); 10291 SDLoc DL(Origin); 10292 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 10293 DAG->getConstant(Offset, DL, ArithType)); 10294 } 10295 10296 // Create the type of the loaded slice according to its size. 10297 EVT SliceType = getLoadedType(); 10298 10299 // Create the load for the slice. 10300 SDValue LastInst = DAG->getLoad( 10301 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 10302 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(), 10303 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment()); 10304 // If the final type is not the same as the loaded type, this means that 10305 // we have to pad with zero. Create a zero extend for that. 10306 EVT FinalType = Inst->getValueType(0); 10307 if (SliceType != FinalType) 10308 LastInst = 10309 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 10310 return LastInst; 10311 } 10312 10313 /// \brief Check if this slice can be merged with an expensive cross register 10314 /// bank copy. E.g., 10315 /// i = load i32 10316 /// f = bitcast i32 i to float 10317 bool canMergeExpensiveCrossRegisterBankCopy() const { 10318 if (!Inst || !Inst->hasOneUse()) 10319 return false; 10320 SDNode *Use = *Inst->use_begin(); 10321 if (Use->getOpcode() != ISD::BITCAST) 10322 return false; 10323 assert(DAG && "Missing context"); 10324 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10325 EVT ResVT = Use->getValueType(0); 10326 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 10327 const TargetRegisterClass *ArgRC = 10328 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 10329 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 10330 return false; 10331 10332 // At this point, we know that we perform a cross-register-bank copy. 10333 // Check if it is expensive. 10334 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 10335 // Assume bitcasts are cheap, unless both register classes do not 10336 // explicitly share a common sub class. 10337 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 10338 return false; 10339 10340 // Check if it will be merged with the load. 10341 // 1. Check the alignment constraint. 10342 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 10343 ResVT.getTypeForEVT(*DAG->getContext())); 10344 10345 if (RequiredAlignment > getAlignment()) 10346 return false; 10347 10348 // 2. Check that the load is a legal operation for that type. 10349 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 10350 return false; 10351 10352 // 3. Check that we do not have a zext in the way. 10353 if (Inst->getValueType(0) != getLoadedType()) 10354 return false; 10355 10356 return true; 10357 } 10358 }; 10359 } 10360 10361 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 10362 /// \p UsedBits looks like 0..0 1..1 0..0. 10363 static bool areUsedBitsDense(const APInt &UsedBits) { 10364 // If all the bits are one, this is dense! 10365 if (UsedBits.isAllOnesValue()) 10366 return true; 10367 10368 // Get rid of the unused bits on the right. 10369 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 10370 // Get rid of the unused bits on the left. 10371 if (NarrowedUsedBits.countLeadingZeros()) 10372 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 10373 // Check that the chunk of bits is completely used. 10374 return NarrowedUsedBits.isAllOnesValue(); 10375 } 10376 10377 /// \brief Check whether or not \p First and \p Second are next to each other 10378 /// in memory. This means that there is no hole between the bits loaded 10379 /// by \p First and the bits loaded by \p Second. 10380 static bool areSlicesNextToEachOther(const LoadedSlice &First, 10381 const LoadedSlice &Second) { 10382 assert(First.Origin == Second.Origin && First.Origin && 10383 "Unable to match different memory origins."); 10384 APInt UsedBits = First.getUsedBits(); 10385 assert((UsedBits & Second.getUsedBits()) == 0 && 10386 "Slices are not supposed to overlap."); 10387 UsedBits |= Second.getUsedBits(); 10388 return areUsedBitsDense(UsedBits); 10389 } 10390 10391 /// \brief Adjust the \p GlobalLSCost according to the target 10392 /// paring capabilities and the layout of the slices. 10393 /// \pre \p GlobalLSCost should account for at least as many loads as 10394 /// there is in the slices in \p LoadedSlices. 10395 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10396 LoadedSlice::Cost &GlobalLSCost) { 10397 unsigned NumberOfSlices = LoadedSlices.size(); 10398 // If there is less than 2 elements, no pairing is possible. 10399 if (NumberOfSlices < 2) 10400 return; 10401 10402 // Sort the slices so that elements that are likely to be next to each 10403 // other in memory are next to each other in the list. 10404 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 10405 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 10406 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 10407 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 10408 }); 10409 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 10410 // First (resp. Second) is the first (resp. Second) potentially candidate 10411 // to be placed in a paired load. 10412 const LoadedSlice *First = nullptr; 10413 const LoadedSlice *Second = nullptr; 10414 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 10415 // Set the beginning of the pair. 10416 First = Second) { 10417 10418 Second = &LoadedSlices[CurrSlice]; 10419 10420 // If First is NULL, it means we start a new pair. 10421 // Get to the next slice. 10422 if (!First) 10423 continue; 10424 10425 EVT LoadedType = First->getLoadedType(); 10426 10427 // If the types of the slices are different, we cannot pair them. 10428 if (LoadedType != Second->getLoadedType()) 10429 continue; 10430 10431 // Check if the target supplies paired loads for this type. 10432 unsigned RequiredAlignment = 0; 10433 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 10434 // move to the next pair, this type is hopeless. 10435 Second = nullptr; 10436 continue; 10437 } 10438 // Check if we meet the alignment requirement. 10439 if (RequiredAlignment > First->getAlignment()) 10440 continue; 10441 10442 // Check that both loads are next to each other in memory. 10443 if (!areSlicesNextToEachOther(*First, *Second)) 10444 continue; 10445 10446 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 10447 --GlobalLSCost.Loads; 10448 // Move to the next pair. 10449 Second = nullptr; 10450 } 10451 } 10452 10453 /// \brief Check the profitability of all involved LoadedSlice. 10454 /// Currently, it is considered profitable if there is exactly two 10455 /// involved slices (1) which are (2) next to each other in memory, and 10456 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 10457 /// 10458 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 10459 /// the elements themselves. 10460 /// 10461 /// FIXME: When the cost model will be mature enough, we can relax 10462 /// constraints (1) and (2). 10463 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10464 const APInt &UsedBits, bool ForCodeSize) { 10465 unsigned NumberOfSlices = LoadedSlices.size(); 10466 if (StressLoadSlicing) 10467 return NumberOfSlices > 1; 10468 10469 // Check (1). 10470 if (NumberOfSlices != 2) 10471 return false; 10472 10473 // Check (2). 10474 if (!areUsedBitsDense(UsedBits)) 10475 return false; 10476 10477 // Check (3). 10478 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 10479 // The original code has one big load. 10480 OrigCost.Loads = 1; 10481 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 10482 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 10483 // Accumulate the cost of all the slices. 10484 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 10485 GlobalSlicingCost += SliceCost; 10486 10487 // Account as cost in the original configuration the gain obtained 10488 // with the current slices. 10489 OrigCost.addSliceGain(LS); 10490 } 10491 10492 // If the target supports paired load, adjust the cost accordingly. 10493 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 10494 return OrigCost > GlobalSlicingCost; 10495 } 10496 10497 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 10498 /// operations, split it in the various pieces being extracted. 10499 /// 10500 /// This sort of thing is introduced by SROA. 10501 /// This slicing takes care not to insert overlapping loads. 10502 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 10503 bool DAGCombiner::SliceUpLoad(SDNode *N) { 10504 if (Level < AfterLegalizeDAG) 10505 return false; 10506 10507 LoadSDNode *LD = cast<LoadSDNode>(N); 10508 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 10509 !LD->getValueType(0).isInteger()) 10510 return false; 10511 10512 // Keep track of already used bits to detect overlapping values. 10513 // In that case, we will just abort the transformation. 10514 APInt UsedBits(LD->getValueSizeInBits(0), 0); 10515 10516 SmallVector<LoadedSlice, 4> LoadedSlices; 10517 10518 // Check if this load is used as several smaller chunks of bits. 10519 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 10520 // of computation for each trunc. 10521 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 10522 UI != UIEnd; ++UI) { 10523 // Skip the uses of the chain. 10524 if (UI.getUse().getResNo() != 0) 10525 continue; 10526 10527 SDNode *User = *UI; 10528 unsigned Shift = 0; 10529 10530 // Check if this is a trunc(lshr). 10531 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 10532 isa<ConstantSDNode>(User->getOperand(1))) { 10533 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 10534 User = *User->use_begin(); 10535 } 10536 10537 // At this point, User is a Truncate, iff we encountered, trunc or 10538 // trunc(lshr). 10539 if (User->getOpcode() != ISD::TRUNCATE) 10540 return false; 10541 10542 // The width of the type must be a power of 2 and greater than 8-bits. 10543 // Otherwise the load cannot be represented in LLVM IR. 10544 // Moreover, if we shifted with a non-8-bits multiple, the slice 10545 // will be across several bytes. We do not support that. 10546 unsigned Width = User->getValueSizeInBits(0); 10547 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 10548 return 0; 10549 10550 // Build the slice for this chain of computations. 10551 LoadedSlice LS(User, LD, Shift, &DAG); 10552 APInt CurrentUsedBits = LS.getUsedBits(); 10553 10554 // Check if this slice overlaps with another. 10555 if ((CurrentUsedBits & UsedBits) != 0) 10556 return false; 10557 // Update the bits used globally. 10558 UsedBits |= CurrentUsedBits; 10559 10560 // Check if the new slice would be legal. 10561 if (!LS.isLegal()) 10562 return false; 10563 10564 // Record the slice. 10565 LoadedSlices.push_back(LS); 10566 } 10567 10568 // Abort slicing if it does not seem to be profitable. 10569 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 10570 return false; 10571 10572 ++SlicedLoads; 10573 10574 // Rewrite each chain to use an independent load. 10575 // By construction, each chain can be represented by a unique load. 10576 10577 // Prepare the argument for the new token factor for all the slices. 10578 SmallVector<SDValue, 8> ArgChains; 10579 for (SmallVectorImpl<LoadedSlice>::const_iterator 10580 LSIt = LoadedSlices.begin(), 10581 LSItEnd = LoadedSlices.end(); 10582 LSIt != LSItEnd; ++LSIt) { 10583 SDValue SliceInst = LSIt->loadSlice(); 10584 CombineTo(LSIt->Inst, SliceInst, true); 10585 if (SliceInst.getNode()->getOpcode() != ISD::LOAD) 10586 SliceInst = SliceInst.getOperand(0); 10587 assert(SliceInst->getOpcode() == ISD::LOAD && 10588 "It takes more than a zext to get to the loaded slice!!"); 10589 ArgChains.push_back(SliceInst.getValue(1)); 10590 } 10591 10592 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 10593 ArgChains); 10594 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10595 return true; 10596 } 10597 10598 /// Check to see if V is (and load (ptr), imm), where the load is having 10599 /// specific bytes cleared out. If so, return the byte size being masked out 10600 /// and the shift amount. 10601 static std::pair<unsigned, unsigned> 10602 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 10603 std::pair<unsigned, unsigned> Result(0, 0); 10604 10605 // Check for the structure we're looking for. 10606 if (V->getOpcode() != ISD::AND || 10607 !isa<ConstantSDNode>(V->getOperand(1)) || 10608 !ISD::isNormalLoad(V->getOperand(0).getNode())) 10609 return Result; 10610 10611 // Check the chain and pointer. 10612 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 10613 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 10614 10615 // The store should be chained directly to the load or be an operand of a 10616 // tokenfactor. 10617 if (LD == Chain.getNode()) 10618 ; // ok. 10619 else if (Chain->getOpcode() != ISD::TokenFactor) 10620 return Result; // Fail. 10621 else { 10622 bool isOk = false; 10623 for (const SDValue &ChainOp : Chain->op_values()) 10624 if (ChainOp.getNode() == LD) { 10625 isOk = true; 10626 break; 10627 } 10628 if (!isOk) return Result; 10629 } 10630 10631 // This only handles simple types. 10632 if (V.getValueType() != MVT::i16 && 10633 V.getValueType() != MVT::i32 && 10634 V.getValueType() != MVT::i64) 10635 return Result; 10636 10637 // Check the constant mask. Invert it so that the bits being masked out are 10638 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 10639 // follow the sign bit for uniformity. 10640 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 10641 unsigned NotMaskLZ = countLeadingZeros(NotMask); 10642 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 10643 unsigned NotMaskTZ = countTrailingZeros(NotMask); 10644 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 10645 if (NotMaskLZ == 64) return Result; // All zero mask. 10646 10647 // See if we have a continuous run of bits. If so, we have 0*1+0* 10648 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 10649 return Result; 10650 10651 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 10652 if (V.getValueType() != MVT::i64 && NotMaskLZ) 10653 NotMaskLZ -= 64-V.getValueSizeInBits(); 10654 10655 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 10656 switch (MaskedBytes) { 10657 case 1: 10658 case 2: 10659 case 4: break; 10660 default: return Result; // All one mask, or 5-byte mask. 10661 } 10662 10663 // Verify that the first bit starts at a multiple of mask so that the access 10664 // is aligned the same as the access width. 10665 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 10666 10667 Result.first = MaskedBytes; 10668 Result.second = NotMaskTZ/8; 10669 return Result; 10670 } 10671 10672 10673 /// Check to see if IVal is something that provides a value as specified by 10674 /// MaskInfo. If so, replace the specified store with a narrower store of 10675 /// truncated IVal. 10676 static SDNode * 10677 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 10678 SDValue IVal, StoreSDNode *St, 10679 DAGCombiner *DC) { 10680 unsigned NumBytes = MaskInfo.first; 10681 unsigned ByteShift = MaskInfo.second; 10682 SelectionDAG &DAG = DC->getDAG(); 10683 10684 // Check to see if IVal is all zeros in the part being masked in by the 'or' 10685 // that uses this. If not, this is not a replacement. 10686 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 10687 ByteShift*8, (ByteShift+NumBytes)*8); 10688 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 10689 10690 // Check that it is legal on the target to do this. It is legal if the new 10691 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 10692 // legalization. 10693 MVT VT = MVT::getIntegerVT(NumBytes*8); 10694 if (!DC->isTypeLegal(VT)) 10695 return nullptr; 10696 10697 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 10698 // shifted by ByteShift and truncated down to NumBytes. 10699 if (ByteShift) { 10700 SDLoc DL(IVal); 10701 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 10702 DAG.getConstant(ByteShift*8, DL, 10703 DC->getShiftAmountTy(IVal.getValueType()))); 10704 } 10705 10706 // Figure out the offset for the store and the alignment of the access. 10707 unsigned StOffset; 10708 unsigned NewAlign = St->getAlignment(); 10709 10710 if (DAG.getDataLayout().isLittleEndian()) 10711 StOffset = ByteShift; 10712 else 10713 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 10714 10715 SDValue Ptr = St->getBasePtr(); 10716 if (StOffset) { 10717 SDLoc DL(IVal); 10718 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 10719 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 10720 NewAlign = MinAlign(NewAlign, StOffset); 10721 } 10722 10723 // Truncate down to the new size. 10724 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 10725 10726 ++OpsNarrowed; 10727 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr, 10728 St->getPointerInfo().getWithOffset(StOffset), 10729 false, false, NewAlign).getNode(); 10730 } 10731 10732 10733 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 10734 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 10735 /// narrowing the load and store if it would end up being a win for performance 10736 /// or code size. 10737 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 10738 StoreSDNode *ST = cast<StoreSDNode>(N); 10739 if (ST->isVolatile()) 10740 return SDValue(); 10741 10742 SDValue Chain = ST->getChain(); 10743 SDValue Value = ST->getValue(); 10744 SDValue Ptr = ST->getBasePtr(); 10745 EVT VT = Value.getValueType(); 10746 10747 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 10748 return SDValue(); 10749 10750 unsigned Opc = Value.getOpcode(); 10751 10752 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 10753 // is a byte mask indicating a consecutive number of bytes, check to see if 10754 // Y is known to provide just those bytes. If so, we try to replace the 10755 // load + replace + store sequence with a single (narrower) store, which makes 10756 // the load dead. 10757 if (Opc == ISD::OR) { 10758 std::pair<unsigned, unsigned> MaskedLoad; 10759 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 10760 if (MaskedLoad.first) 10761 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10762 Value.getOperand(1), ST,this)) 10763 return SDValue(NewST, 0); 10764 10765 // Or is commutative, so try swapping X and Y. 10766 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 10767 if (MaskedLoad.first) 10768 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10769 Value.getOperand(0), ST,this)) 10770 return SDValue(NewST, 0); 10771 } 10772 10773 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 10774 Value.getOperand(1).getOpcode() != ISD::Constant) 10775 return SDValue(); 10776 10777 SDValue N0 = Value.getOperand(0); 10778 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 10779 Chain == SDValue(N0.getNode(), 1)) { 10780 LoadSDNode *LD = cast<LoadSDNode>(N0); 10781 if (LD->getBasePtr() != Ptr || 10782 LD->getPointerInfo().getAddrSpace() != 10783 ST->getPointerInfo().getAddrSpace()) 10784 return SDValue(); 10785 10786 // Find the type to narrow it the load / op / store to. 10787 SDValue N1 = Value.getOperand(1); 10788 unsigned BitWidth = N1.getValueSizeInBits(); 10789 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 10790 if (Opc == ISD::AND) 10791 Imm ^= APInt::getAllOnesValue(BitWidth); 10792 if (Imm == 0 || Imm.isAllOnesValue()) 10793 return SDValue(); 10794 unsigned ShAmt = Imm.countTrailingZeros(); 10795 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 10796 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 10797 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10798 // The narrowing should be profitable, the load/store operation should be 10799 // legal (or custom) and the store size should be equal to the NewVT width. 10800 while (NewBW < BitWidth && 10801 (NewVT.getStoreSizeInBits() != NewBW || 10802 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 10803 !TLI.isNarrowingProfitable(VT, NewVT))) { 10804 NewBW = NextPowerOf2(NewBW); 10805 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10806 } 10807 if (NewBW >= BitWidth) 10808 return SDValue(); 10809 10810 // If the lsb changed does not start at the type bitwidth boundary, 10811 // start at the previous one. 10812 if (ShAmt % NewBW) 10813 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 10814 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 10815 std::min(BitWidth, ShAmt + NewBW)); 10816 if ((Imm & Mask) == Imm) { 10817 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 10818 if (Opc == ISD::AND) 10819 NewImm ^= APInt::getAllOnesValue(NewBW); 10820 uint64_t PtrOff = ShAmt / 8; 10821 // For big endian targets, we need to adjust the offset to the pointer to 10822 // load the correct bytes. 10823 if (DAG.getDataLayout().isBigEndian()) 10824 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 10825 10826 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 10827 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 10828 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 10829 return SDValue(); 10830 10831 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 10832 Ptr.getValueType(), Ptr, 10833 DAG.getConstant(PtrOff, SDLoc(LD), 10834 Ptr.getValueType())); 10835 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0), 10836 LD->getChain(), NewPtr, 10837 LD->getPointerInfo().getWithOffset(PtrOff), 10838 LD->isVolatile(), LD->isNonTemporal(), 10839 LD->isInvariant(), NewAlign, 10840 LD->getAAInfo()); 10841 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 10842 DAG.getConstant(NewImm, SDLoc(Value), 10843 NewVT)); 10844 SDValue NewST = DAG.getStore(Chain, SDLoc(N), 10845 NewVal, NewPtr, 10846 ST->getPointerInfo().getWithOffset(PtrOff), 10847 false, false, NewAlign); 10848 10849 AddToWorklist(NewPtr.getNode()); 10850 AddToWorklist(NewLD.getNode()); 10851 AddToWorklist(NewVal.getNode()); 10852 WorklistRemover DeadNodes(*this); 10853 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 10854 ++OpsNarrowed; 10855 return NewST; 10856 } 10857 } 10858 10859 return SDValue(); 10860 } 10861 10862 /// For a given floating point load / store pair, if the load value isn't used 10863 /// by any other operations, then consider transforming the pair to integer 10864 /// load / store operations if the target deems the transformation profitable. 10865 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 10866 StoreSDNode *ST = cast<StoreSDNode>(N); 10867 SDValue Chain = ST->getChain(); 10868 SDValue Value = ST->getValue(); 10869 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 10870 Value.hasOneUse() && 10871 Chain == SDValue(Value.getNode(), 1)) { 10872 LoadSDNode *LD = cast<LoadSDNode>(Value); 10873 EVT VT = LD->getMemoryVT(); 10874 if (!VT.isFloatingPoint() || 10875 VT != ST->getMemoryVT() || 10876 LD->isNonTemporal() || 10877 ST->isNonTemporal() || 10878 LD->getPointerInfo().getAddrSpace() != 0 || 10879 ST->getPointerInfo().getAddrSpace() != 0) 10880 return SDValue(); 10881 10882 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10883 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 10884 !TLI.isOperationLegal(ISD::STORE, IntVT) || 10885 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 10886 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 10887 return SDValue(); 10888 10889 unsigned LDAlign = LD->getAlignment(); 10890 unsigned STAlign = ST->getAlignment(); 10891 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 10892 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 10893 if (LDAlign < ABIAlign || STAlign < ABIAlign) 10894 return SDValue(); 10895 10896 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), 10897 LD->getChain(), LD->getBasePtr(), 10898 LD->getPointerInfo(), 10899 false, false, false, LDAlign); 10900 10901 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N), 10902 NewLD, ST->getBasePtr(), 10903 ST->getPointerInfo(), 10904 false, false, STAlign); 10905 10906 AddToWorklist(NewLD.getNode()); 10907 AddToWorklist(NewST.getNode()); 10908 WorklistRemover DeadNodes(*this); 10909 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 10910 ++LdStFP2Int; 10911 return NewST; 10912 } 10913 10914 return SDValue(); 10915 } 10916 10917 namespace { 10918 /// Helper struct to parse and store a memory address as base + index + offset. 10919 /// We ignore sign extensions when it is safe to do so. 10920 /// The following two expressions are not equivalent. To differentiate we need 10921 /// to store whether there was a sign extension involved in the index 10922 /// computation. 10923 /// (load (i64 add (i64 copyfromreg %c) 10924 /// (i64 signextend (add (i8 load %index) 10925 /// (i8 1)))) 10926 /// vs 10927 /// 10928 /// (load (i64 add (i64 copyfromreg %c) 10929 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 10930 /// (i32 1))))) 10931 struct BaseIndexOffset { 10932 SDValue Base; 10933 SDValue Index; 10934 int64_t Offset; 10935 bool IsIndexSignExt; 10936 10937 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 10938 10939 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 10940 bool IsIndexSignExt) : 10941 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 10942 10943 bool equalBaseIndex(const BaseIndexOffset &Other) { 10944 return Other.Base == Base && Other.Index == Index && 10945 Other.IsIndexSignExt == IsIndexSignExt; 10946 } 10947 10948 /// Parses tree in Ptr for base, index, offset addresses. 10949 static BaseIndexOffset match(SDValue Ptr) { 10950 bool IsIndexSignExt = false; 10951 10952 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 10953 // instruction, then it could be just the BASE or everything else we don't 10954 // know how to handle. Just use Ptr as BASE and give up. 10955 if (Ptr->getOpcode() != ISD::ADD) 10956 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10957 10958 // We know that we have at least an ADD instruction. Try to pattern match 10959 // the simple case of BASE + OFFSET. 10960 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 10961 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 10962 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 10963 IsIndexSignExt); 10964 } 10965 10966 // Inside a loop the current BASE pointer is calculated using an ADD and a 10967 // MUL instruction. In this case Ptr is the actual BASE pointer. 10968 // (i64 add (i64 %array_ptr) 10969 // (i64 mul (i64 %induction_var) 10970 // (i64 %element_size))) 10971 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 10972 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10973 10974 // Look at Base + Index + Offset cases. 10975 SDValue Base = Ptr->getOperand(0); 10976 SDValue IndexOffset = Ptr->getOperand(1); 10977 10978 // Skip signextends. 10979 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 10980 IndexOffset = IndexOffset->getOperand(0); 10981 IsIndexSignExt = true; 10982 } 10983 10984 // Either the case of Base + Index (no offset) or something else. 10985 if (IndexOffset->getOpcode() != ISD::ADD) 10986 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 10987 10988 // Now we have the case of Base + Index + offset. 10989 SDValue Index = IndexOffset->getOperand(0); 10990 SDValue Offset = IndexOffset->getOperand(1); 10991 10992 if (!isa<ConstantSDNode>(Offset)) 10993 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10994 10995 // Ignore signextends. 10996 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 10997 Index = Index->getOperand(0); 10998 IsIndexSignExt = true; 10999 } else IsIndexSignExt = false; 11000 11001 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 11002 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 11003 } 11004 }; 11005 } // namespace 11006 11007 // This is a helper function for visitMUL to check the profitability 11008 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 11009 // MulNode is the original multiply, AddNode is (add x, c1), 11010 // and ConstNode is c2. 11011 // 11012 // If the (add x, c1) has multiple uses, we could increase 11013 // the number of adds if we make this transformation. 11014 // It would only be worth doing this if we can remove a 11015 // multiply in the process. Check for that here. 11016 // To illustrate: 11017 // (A + c1) * c3 11018 // (A + c2) * c3 11019 // We're checking for cases where we have common "c3 * A" expressions. 11020 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 11021 SDValue &AddNode, 11022 SDValue &ConstNode) { 11023 APInt Val; 11024 11025 // If the add only has one use, this would be OK to do. 11026 if (AddNode.getNode()->hasOneUse()) 11027 return true; 11028 11029 // Walk all the users of the constant with which we're multiplying. 11030 for (SDNode *Use : ConstNode->uses()) { 11031 11032 if (Use == MulNode) // This use is the one we're on right now. Skip it. 11033 continue; 11034 11035 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 11036 SDNode *OtherOp; 11037 SDNode *MulVar = AddNode.getOperand(0).getNode(); 11038 11039 // OtherOp is what we're multiplying against the constant. 11040 if (Use->getOperand(0) == ConstNode) 11041 OtherOp = Use->getOperand(1).getNode(); 11042 else 11043 OtherOp = Use->getOperand(0).getNode(); 11044 11045 // Check to see if multiply is with the same operand of our "add". 11046 // 11047 // ConstNode = CONST 11048 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 11049 // ... 11050 // AddNode = (A + c1) <-- MulVar is A. 11051 // = AddNode * ConstNode <-- current visiting instruction. 11052 // 11053 // If we make this transformation, we will have a common 11054 // multiply (ConstNode * A) that we can save. 11055 if (OtherOp == MulVar) 11056 return true; 11057 11058 // Now check to see if a future expansion will give us a common 11059 // multiply. 11060 // 11061 // ConstNode = CONST 11062 // AddNode = (A + c1) 11063 // ... = AddNode * ConstNode <-- current visiting instruction. 11064 // ... 11065 // OtherOp = (A + c2) 11066 // Use = OtherOp * ConstNode <-- visiting Use. 11067 // 11068 // If we make this transformation, we will have a common 11069 // multiply (CONST * A) after we also do the same transformation 11070 // to the "t2" instruction. 11071 if (OtherOp->getOpcode() == ISD::ADD && 11072 isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 11073 OtherOp->getOperand(0).getNode() == MulVar) 11074 return true; 11075 } 11076 } 11077 11078 // Didn't find a case where this would be profitable. 11079 return false; 11080 } 11081 11082 SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG, 11083 SDLoc SL, 11084 ArrayRef<MemOpLink> Stores, 11085 SmallVectorImpl<SDValue> &Chains, 11086 EVT Ty) const { 11087 SmallVector<SDValue, 8> BuildVector; 11088 11089 for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { 11090 StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); 11091 Chains.push_back(St->getChain()); 11092 BuildVector.push_back(St->getValue()); 11093 } 11094 11095 return DAG.getNode(ISD::BUILD_VECTOR, SL, Ty, BuildVector); 11096 } 11097 11098 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 11099 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, 11100 unsigned NumStores, bool IsConstantSrc, bool UseVector) { 11101 // Make sure we have something to merge. 11102 if (NumStores < 2) 11103 return false; 11104 11105 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11106 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11107 unsigned LatestNodeUsed = 0; 11108 11109 for (unsigned i=0; i < NumStores; ++i) { 11110 // Find a chain for the new wide-store operand. Notice that some 11111 // of the store nodes that we found may not be selected for inclusion 11112 // in the wide store. The chain we use needs to be the chain of the 11113 // latest store node which is *used* and replaced by the wide store. 11114 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11115 LatestNodeUsed = i; 11116 } 11117 11118 SmallVector<SDValue, 8> Chains; 11119 11120 // The latest Node in the DAG. 11121 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11122 SDLoc DL(StoreNodes[0].MemNode); 11123 11124 SDValue StoredVal; 11125 if (UseVector) { 11126 bool IsVec = MemVT.isVector(); 11127 unsigned Elts = NumStores; 11128 if (IsVec) { 11129 // When merging vector stores, get the total number of elements. 11130 Elts *= MemVT.getVectorNumElements(); 11131 } 11132 // Get the type for the merged vector store. 11133 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11134 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 11135 11136 if (IsConstantSrc) { 11137 StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); 11138 } else { 11139 SmallVector<SDValue, 8> Ops; 11140 for (unsigned i = 0; i < NumStores; ++i) { 11141 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11142 SDValue Val = St->getValue(); 11143 // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. 11144 if (Val.getValueType() != MemVT) 11145 return false; 11146 Ops.push_back(Val); 11147 Chains.push_back(St->getChain()); 11148 } 11149 11150 // Build the extracted vector elements back into a vector. 11151 StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 11152 DL, Ty, Ops); } 11153 } else { 11154 // We should always use a vector store when merging extracted vector 11155 // elements, so this path implies a store of constants. 11156 assert(IsConstantSrc && "Merged vector elements should use vector store"); 11157 11158 unsigned SizeInBits = NumStores * ElementSizeBytes * 8; 11159 APInt StoreInt(SizeInBits, 0); 11160 11161 // Construct a single integer constant which is made of the smaller 11162 // constant inputs. 11163 bool IsLE = DAG.getDataLayout().isLittleEndian(); 11164 for (unsigned i = 0; i < NumStores; ++i) { 11165 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 11166 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 11167 Chains.push_back(St->getChain()); 11168 11169 SDValue Val = St->getValue(); 11170 StoreInt <<= ElementSizeBytes * 8; 11171 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 11172 StoreInt |= C->getAPIntValue().zext(SizeInBits); 11173 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 11174 StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); 11175 } else { 11176 llvm_unreachable("Invalid constant element type"); 11177 } 11178 } 11179 11180 // Create the new Load and Store operations. 11181 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 11182 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 11183 } 11184 11185 assert(!Chains.empty()); 11186 11187 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11188 SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, 11189 FirstInChain->getBasePtr(), 11190 FirstInChain->getPointerInfo(), 11191 false, false, 11192 FirstInChain->getAlignment()); 11193 11194 // Replace the last store with the new store 11195 CombineTo(LatestOp, NewStore); 11196 // Erase all other stores. 11197 for (unsigned i = 0; i < NumStores; ++i) { 11198 if (StoreNodes[i].MemNode == LatestOp) 11199 continue; 11200 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11201 // ReplaceAllUsesWith will replace all uses that existed when it was 11202 // called, but graph optimizations may cause new ones to appear. For 11203 // example, the case in pr14333 looks like 11204 // 11205 // St's chain -> St -> another store -> X 11206 // 11207 // And the only difference from St to the other store is the chain. 11208 // When we change it's chain to be St's chain they become identical, 11209 // get CSEed and the net result is that X is now a use of St. 11210 // Since we know that St is redundant, just iterate. 11211 while (!St->use_empty()) 11212 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 11213 deleteAndRecombine(St); 11214 } 11215 11216 return true; 11217 } 11218 11219 void DAGCombiner::getStoreMergeAndAliasCandidates( 11220 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 11221 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { 11222 // This holds the base pointer, index, and the offset in bytes from the base 11223 // pointer. 11224 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr()); 11225 11226 // We must have a base and an offset. 11227 if (!BasePtr.Base.getNode()) 11228 return; 11229 11230 // Do not handle stores to undef base pointers. 11231 if (BasePtr.Base.getOpcode() == ISD::UNDEF) 11232 return; 11233 11234 // Walk up the chain and look for nodes with offsets from the same 11235 // base pointer. Stop when reaching an instruction with a different kind 11236 // or instruction which has a different base pointer. 11237 EVT MemVT = St->getMemoryVT(); 11238 unsigned Seq = 0; 11239 StoreSDNode *Index = St; 11240 11241 11242 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11243 : DAG.getSubtarget().useAA(); 11244 11245 if (UseAA) { 11246 // Look at other users of the same chain. Stores on the same chain do not 11247 // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized 11248 // to be on the same chain, so don't bother looking at adjacent chains. 11249 11250 SDValue Chain = St->getChain(); 11251 for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { 11252 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 11253 if (I.getOperandNo() != 0) 11254 continue; 11255 11256 if (OtherST->isVolatile() || OtherST->isIndexed()) 11257 continue; 11258 11259 if (OtherST->getMemoryVT() != MemVT) 11260 continue; 11261 11262 BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr()); 11263 11264 if (Ptr.equalBaseIndex(BasePtr)) 11265 StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); 11266 } 11267 } 11268 11269 return; 11270 } 11271 11272 while (Index) { 11273 // If the chain has more than one use, then we can't reorder the mem ops. 11274 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 11275 break; 11276 11277 // Find the base pointer and offset for this memory node. 11278 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr()); 11279 11280 // Check that the base pointer is the same as the original one. 11281 if (!Ptr.equalBaseIndex(BasePtr)) 11282 break; 11283 11284 // The memory operands must not be volatile. 11285 if (Index->isVolatile() || Index->isIndexed()) 11286 break; 11287 11288 // No truncation. 11289 if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index)) 11290 if (St->isTruncatingStore()) 11291 break; 11292 11293 // The stored memory type must be the same. 11294 if (Index->getMemoryVT() != MemVT) 11295 break; 11296 11297 // We do not allow under-aligned stores in order to prevent 11298 // overriding stores. NOTE: this is a bad hack. Alignment SHOULD 11299 // be irrelevant here; what MATTERS is that we not move memory 11300 // operations that potentially overlap past each-other. 11301 if (Index->getAlignment() < MemVT.getStoreSize()) 11302 break; 11303 11304 // We found a potential memory operand to merge. 11305 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 11306 11307 // Find the next memory operand in the chain. If the next operand in the 11308 // chain is a store then move up and continue the scan with the next 11309 // memory operand. If the next operand is a load save it and use alias 11310 // information to check if it interferes with anything. 11311 SDNode *NextInChain = Index->getChain().getNode(); 11312 while (1) { 11313 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 11314 // We found a store node. Use it for the next iteration. 11315 Index = STn; 11316 break; 11317 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 11318 if (Ldn->isVolatile()) { 11319 Index = nullptr; 11320 break; 11321 } 11322 11323 // Save the load node for later. Continue the scan. 11324 AliasLoadNodes.push_back(Ldn); 11325 NextInChain = Ldn->getChain().getNode(); 11326 continue; 11327 } else { 11328 Index = nullptr; 11329 break; 11330 } 11331 } 11332 } 11333 } 11334 11335 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 11336 if (OptLevel == CodeGenOpt::None) 11337 return false; 11338 11339 EVT MemVT = St->getMemoryVT(); 11340 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11341 bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( 11342 Attribute::NoImplicitFloat); 11343 11344 // This function cannot currently deal with non-byte-sized memory sizes. 11345 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 11346 return false; 11347 11348 if (!MemVT.isSimple()) 11349 return false; 11350 11351 // Perform an early exit check. Do not bother looking at stored values that 11352 // are not constants, loads, or extracted vector elements. 11353 SDValue StoredVal = St->getValue(); 11354 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 11355 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 11356 isa<ConstantFPSDNode>(StoredVal); 11357 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 11358 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 11359 11360 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 11361 return false; 11362 11363 // Don't merge vectors into wider vectors if the source data comes from loads. 11364 // TODO: This restriction can be lifted by using logic similar to the 11365 // ExtractVecSrc case. 11366 if (MemVT.isVector() && IsLoadSrc) 11367 return false; 11368 11369 // Only look at ends of store sequences. 11370 SDValue Chain = SDValue(St, 0); 11371 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 11372 return false; 11373 11374 // Save the LoadSDNodes that we find in the chain. 11375 // We need to make sure that these nodes do not interfere with 11376 // any of the store nodes. 11377 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 11378 11379 // Save the StoreSDNodes that we find in the chain. 11380 SmallVector<MemOpLink, 8> StoreNodes; 11381 11382 getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); 11383 11384 // Check if there is anything to merge. 11385 if (StoreNodes.size() < 2) 11386 return false; 11387 11388 // Sort the memory operands according to their distance from the 11389 // base pointer. As a secondary criteria: make sure stores coming 11390 // later in the code come first in the list. This is important for 11391 // the non-UseAA case, because we're merging stores into the FINAL 11392 // store along a chain which potentially contains aliasing stores. 11393 // Thus, if there are multiple stores to the same address, the last 11394 // one can be considered for merging but not the others. 11395 std::sort(StoreNodes.begin(), StoreNodes.end(), 11396 [](MemOpLink LHS, MemOpLink RHS) { 11397 return LHS.OffsetFromBase < RHS.OffsetFromBase || 11398 (LHS.OffsetFromBase == RHS.OffsetFromBase && 11399 LHS.SequenceNum < RHS.SequenceNum); 11400 }); 11401 11402 // Scan the memory operations on the chain and find the first non-consecutive 11403 // store memory address. 11404 unsigned LastConsecutiveStore = 0; 11405 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 11406 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 11407 11408 // Check that the addresses are consecutive starting from the second 11409 // element in the list of stores. 11410 if (i > 0) { 11411 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 11412 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11413 break; 11414 } 11415 11416 // Check if this store interferes with any of the loads that we found. 11417 // If we find a load that alias with this store. Stop the sequence. 11418 if (std::any_of(AliasLoadNodes.begin(), AliasLoadNodes.end(), 11419 [&](LSBaseSDNode* Ldn) { 11420 return isAlias(Ldn, StoreNodes[i].MemNode); 11421 })) 11422 break; 11423 11424 // Mark this node as useful. 11425 LastConsecutiveStore = i; 11426 } 11427 11428 // The node with the lowest store address. 11429 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11430 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 11431 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 11432 LLVMContext &Context = *DAG.getContext(); 11433 const DataLayout &DL = DAG.getDataLayout(); 11434 11435 // Store the constants into memory as one consecutive store. 11436 if (IsConstantSrc) { 11437 unsigned LastLegalType = 0; 11438 unsigned LastLegalVectorType = 0; 11439 bool NonZero = false; 11440 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11441 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11442 SDValue StoredVal = St->getValue(); 11443 11444 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 11445 NonZero |= !C->isNullValue(); 11446 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 11447 NonZero |= !C->getConstantFPValue()->isNullValue(); 11448 } else { 11449 // Non-constant. 11450 break; 11451 } 11452 11453 // Find a legal type for the constant store. 11454 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11455 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11456 bool IsFast; 11457 if (TLI.isTypeLegal(StoreTy) && 11458 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11459 FirstStoreAlign, &IsFast) && IsFast) { 11460 LastLegalType = i+1; 11461 // Or check whether a truncstore is legal. 11462 } else if (TLI.getTypeAction(Context, StoreTy) == 11463 TargetLowering::TypePromoteInteger) { 11464 EVT LegalizedStoredValueTy = 11465 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 11466 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11467 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11468 FirstStoreAS, FirstStoreAlign, &IsFast) && 11469 IsFast) { 11470 LastLegalType = i + 1; 11471 } 11472 } 11473 11474 // We only use vectors if the constant is known to be zero or the target 11475 // allows it and the function is not marked with the noimplicitfloat 11476 // attribute. 11477 if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, 11478 FirstStoreAS)) && 11479 !NoVectors) { 11480 // Find a legal type for the vector store. 11481 EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); 11482 if (TLI.isTypeLegal(Ty) && 11483 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11484 FirstStoreAlign, &IsFast) && IsFast) 11485 LastLegalVectorType = i + 1; 11486 } 11487 } 11488 11489 // Check if we found a legal integer type to store. 11490 if (LastLegalType == 0 && LastLegalVectorType == 0) 11491 return false; 11492 11493 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 11494 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 11495 11496 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 11497 true, UseVector); 11498 } 11499 11500 // When extracting multiple vector elements, try to store them 11501 // in one vector store rather than a sequence of scalar stores. 11502 if (IsExtractVecSrc) { 11503 unsigned NumStoresToMerge = 0; 11504 bool IsVec = MemVT.isVector(); 11505 for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { 11506 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11507 unsigned StoreValOpcode = St->getValue().getOpcode(); 11508 // This restriction could be loosened. 11509 // Bail out if any stored values are not elements extracted from a vector. 11510 // It should be possible to handle mixed sources, but load sources need 11511 // more careful handling (see the block of code below that handles 11512 // consecutive loads). 11513 if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && 11514 StoreValOpcode != ISD::EXTRACT_SUBVECTOR) 11515 return false; 11516 11517 // Find a legal type for the vector store. 11518 unsigned Elts = i + 1; 11519 if (IsVec) { 11520 // When merging vector stores, get the total number of elements. 11521 Elts *= MemVT.getVectorNumElements(); 11522 } 11523 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11524 bool IsFast; 11525 if (TLI.isTypeLegal(Ty) && 11526 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11527 FirstStoreAlign, &IsFast) && IsFast) 11528 NumStoresToMerge = i + 1; 11529 } 11530 11531 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, 11532 false, true); 11533 } 11534 11535 // Below we handle the case of multiple consecutive stores that 11536 // come from multiple consecutive loads. We merge them into a single 11537 // wide load and a single wide store. 11538 11539 // Look for load nodes which are used by the stored values. 11540 SmallVector<MemOpLink, 8> LoadNodes; 11541 11542 // Find acceptable loads. Loads need to have the same chain (token factor), 11543 // must not be zext, volatile, indexed, and they must be consecutive. 11544 BaseIndexOffset LdBasePtr; 11545 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11546 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11547 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 11548 if (!Ld) break; 11549 11550 // Loads must only have one use. 11551 if (!Ld->hasNUsesOfValue(1, 0)) 11552 break; 11553 11554 // The memory operands must not be volatile. 11555 if (Ld->isVolatile() || Ld->isIndexed()) 11556 break; 11557 11558 // We do not accept ext loads. 11559 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 11560 break; 11561 11562 // The stored memory type must be the same. 11563 if (Ld->getMemoryVT() != MemVT) 11564 break; 11565 11566 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr()); 11567 // If this is not the first ptr that we check. 11568 if (LdBasePtr.Base.getNode()) { 11569 // The base ptr must be the same. 11570 if (!LdPtr.equalBaseIndex(LdBasePtr)) 11571 break; 11572 } else { 11573 // Check that all other base pointers are the same as this one. 11574 LdBasePtr = LdPtr; 11575 } 11576 11577 // We found a potential memory operand to merge. 11578 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 11579 } 11580 11581 if (LoadNodes.size() < 2) 11582 return false; 11583 11584 // If we have load/store pair instructions and we only have two values, 11585 // don't bother. 11586 unsigned RequiredAlignment; 11587 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 11588 St->getAlignment() >= RequiredAlignment) 11589 return false; 11590 11591 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 11592 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 11593 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 11594 11595 // Scan the memory operations on the chain and find the first non-consecutive 11596 // load memory address. These variables hold the index in the store node 11597 // array. 11598 unsigned LastConsecutiveLoad = 0; 11599 // This variable refers to the size and not index in the array. 11600 unsigned LastLegalVectorType = 0; 11601 unsigned LastLegalIntegerType = 0; 11602 StartAddress = LoadNodes[0].OffsetFromBase; 11603 SDValue FirstChain = FirstLoad->getChain(); 11604 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 11605 // All loads must share the same chain. 11606 if (LoadNodes[i].MemNode->getChain() != FirstChain) 11607 break; 11608 11609 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 11610 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11611 break; 11612 LastConsecutiveLoad = i; 11613 // Find a legal type for the vector store. 11614 EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); 11615 bool IsFastSt, IsFastLd; 11616 if (TLI.isTypeLegal(StoreTy) && 11617 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11618 FirstStoreAlign, &IsFastSt) && IsFastSt && 11619 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11620 FirstLoadAlign, &IsFastLd) && IsFastLd) { 11621 LastLegalVectorType = i + 1; 11622 } 11623 11624 // Find a legal type for the integer store. 11625 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11626 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11627 if (TLI.isTypeLegal(StoreTy) && 11628 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11629 FirstStoreAlign, &IsFastSt) && IsFastSt && 11630 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11631 FirstLoadAlign, &IsFastLd) && IsFastLd) 11632 LastLegalIntegerType = i + 1; 11633 // Or check whether a truncstore and extload is legal. 11634 else if (TLI.getTypeAction(Context, StoreTy) == 11635 TargetLowering::TypePromoteInteger) { 11636 EVT LegalizedStoredValueTy = 11637 TLI.getTypeToTransformTo(Context, StoreTy); 11638 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11639 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11640 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11641 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && 11642 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11643 FirstStoreAS, FirstStoreAlign, &IsFastSt) && 11644 IsFastSt && 11645 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11646 FirstLoadAS, FirstLoadAlign, &IsFastLd) && 11647 IsFastLd) 11648 LastLegalIntegerType = i+1; 11649 } 11650 } 11651 11652 // Only use vector types if the vector type is larger than the integer type. 11653 // If they are the same, use integers. 11654 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 11655 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 11656 11657 // We add +1 here because the LastXXX variables refer to location while 11658 // the NumElem refers to array/index size. 11659 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 11660 NumElem = std::min(LastLegalType, NumElem); 11661 11662 if (NumElem < 2) 11663 return false; 11664 11665 // Collect the chains from all merged stores. 11666 SmallVector<SDValue, 8> MergeStoreChains; 11667 MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); 11668 11669 // The latest Node in the DAG. 11670 unsigned LatestNodeUsed = 0; 11671 for (unsigned i=1; i<NumElem; ++i) { 11672 // Find a chain for the new wide-store operand. Notice that some 11673 // of the store nodes that we found may not be selected for inclusion 11674 // in the wide store. The chain we use needs to be the chain of the 11675 // latest store node which is *used* and replaced by the wide store. 11676 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11677 LatestNodeUsed = i; 11678 11679 MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); 11680 } 11681 11682 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11683 11684 // Find if it is better to use vectors or integers to load and store 11685 // to memory. 11686 EVT JointMemOpVT; 11687 if (UseVectorTy) { 11688 JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); 11689 } else { 11690 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 11691 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 11692 } 11693 11694 SDLoc LoadDL(LoadNodes[0].MemNode); 11695 SDLoc StoreDL(StoreNodes[0].MemNode); 11696 11697 // The merged loads are required to have the same incoming chain, so 11698 // using the first's chain is acceptable. 11699 SDValue NewLoad = DAG.getLoad( 11700 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 11701 FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign); 11702 11703 SDValue NewStoreChain = 11704 DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); 11705 11706 SDValue NewStore = DAG.getStore( 11707 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 11708 FirstInChain->getPointerInfo(), false, false, FirstStoreAlign); 11709 11710 // Transfer chain users from old loads to the new load. 11711 for (unsigned i = 0; i < NumElem; ++i) { 11712 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 11713 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 11714 SDValue(NewLoad.getNode(), 1)); 11715 } 11716 11717 // Replace the last store with the new store. 11718 CombineTo(LatestOp, NewStore); 11719 // Erase all other stores. 11720 for (unsigned i = 0; i < NumElem ; ++i) { 11721 // Remove all Store nodes. 11722 if (StoreNodes[i].MemNode == LatestOp) 11723 continue; 11724 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11725 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 11726 deleteAndRecombine(St); 11727 } 11728 11729 return true; 11730 } 11731 11732 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 11733 SDLoc SL(ST); 11734 SDValue ReplStore; 11735 11736 // Replace the chain to avoid dependency. 11737 if (ST->isTruncatingStore()) { 11738 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 11739 ST->getBasePtr(), ST->getMemoryVT(), 11740 ST->getMemOperand()); 11741 } else { 11742 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 11743 ST->getMemOperand()); 11744 } 11745 11746 // Create token to keep both nodes around. 11747 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 11748 MVT::Other, ST->getChain(), ReplStore); 11749 11750 // Make sure the new and old chains are cleaned up. 11751 AddToWorklist(Token.getNode()); 11752 11753 // Don't add users to work list. 11754 return CombineTo(ST, Token, false); 11755 } 11756 11757 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 11758 SDValue Value = ST->getValue(); 11759 if (Value.getOpcode() == ISD::TargetConstantFP) 11760 return SDValue(); 11761 11762 SDLoc DL(ST); 11763 11764 SDValue Chain = ST->getChain(); 11765 SDValue Ptr = ST->getBasePtr(); 11766 11767 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 11768 11769 // NOTE: If the original store is volatile, this transform must not increase 11770 // the number of stores. For example, on x86-32 an f64 can be stored in one 11771 // processor operation but an i64 (which is not legal) requires two. So the 11772 // transform should not be done in this case. 11773 11774 SDValue Tmp; 11775 switch (CFP->getSimpleValueType(0).SimpleTy) { 11776 default: 11777 llvm_unreachable("Unknown FP type"); 11778 case MVT::f16: // We don't do this for these yet. 11779 case MVT::f80: 11780 case MVT::f128: 11781 case MVT::ppcf128: 11782 return SDValue(); 11783 case MVT::f32: 11784 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 11785 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11786 ; 11787 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 11788 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 11789 MVT::i32); 11790 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 11791 } 11792 11793 return SDValue(); 11794 case MVT::f64: 11795 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 11796 !ST->isVolatile()) || 11797 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 11798 ; 11799 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 11800 getZExtValue(), SDLoc(CFP), MVT::i64); 11801 return DAG.getStore(Chain, DL, Tmp, 11802 Ptr, ST->getMemOperand()); 11803 } 11804 11805 if (!ST->isVolatile() && 11806 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11807 // Many FP stores are not made apparent until after legalize, e.g. for 11808 // argument passing. Since this is so common, custom legalize the 11809 // 64-bit integer store into two 32-bit stores. 11810 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 11811 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 11812 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 11813 if (DAG.getDataLayout().isBigEndian()) 11814 std::swap(Lo, Hi); 11815 11816 unsigned Alignment = ST->getAlignment(); 11817 bool isVolatile = ST->isVolatile(); 11818 bool isNonTemporal = ST->isNonTemporal(); 11819 AAMDNodes AAInfo = ST->getAAInfo(); 11820 11821 SDValue St0 = DAG.getStore(Chain, DL, Lo, 11822 Ptr, ST->getPointerInfo(), 11823 isVolatile, isNonTemporal, 11824 ST->getAlignment(), AAInfo); 11825 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 11826 DAG.getConstant(4, DL, Ptr.getValueType())); 11827 Alignment = MinAlign(Alignment, 4U); 11828 SDValue St1 = DAG.getStore(Chain, DL, Hi, 11829 Ptr, ST->getPointerInfo().getWithOffset(4), 11830 isVolatile, isNonTemporal, 11831 Alignment, AAInfo); 11832 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 11833 St0, St1); 11834 } 11835 11836 return SDValue(); 11837 } 11838 } 11839 11840 SDValue DAGCombiner::visitSTORE(SDNode *N) { 11841 StoreSDNode *ST = cast<StoreSDNode>(N); 11842 SDValue Chain = ST->getChain(); 11843 SDValue Value = ST->getValue(); 11844 SDValue Ptr = ST->getBasePtr(); 11845 11846 // If this is a store of a bit convert, store the input value if the 11847 // resultant store does not need a higher alignment than the original. 11848 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 11849 ST->isUnindexed()) { 11850 unsigned OrigAlign = ST->getAlignment(); 11851 EVT SVT = Value.getOperand(0).getValueType(); 11852 unsigned Align = DAG.getDataLayout().getABITypeAlignment( 11853 SVT.getTypeForEVT(*DAG.getContext())); 11854 if (Align <= OrigAlign && 11855 ((!LegalOperations && !ST->isVolatile()) || 11856 TLI.isOperationLegalOrCustom(ISD::STORE, SVT))) 11857 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), 11858 Ptr, ST->getPointerInfo(), ST->isVolatile(), 11859 ST->isNonTemporal(), OrigAlign, 11860 ST->getAAInfo()); 11861 } 11862 11863 // Turn 'store undef, Ptr' -> nothing. 11864 if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed()) 11865 return Chain; 11866 11867 // Try to infer better alignment information than the store already has. 11868 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 11869 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 11870 if (Align > ST->getAlignment()) { 11871 SDValue NewStore = 11872 DAG.getTruncStore(Chain, SDLoc(N), Value, 11873 Ptr, ST->getPointerInfo(), ST->getMemoryVT(), 11874 ST->isVolatile(), ST->isNonTemporal(), Align, 11875 ST->getAAInfo()); 11876 if (NewStore.getNode() != N) 11877 return CombineTo(ST, NewStore, true); 11878 } 11879 } 11880 } 11881 11882 // Try transforming a pair floating point load / store ops to integer 11883 // load / store ops. 11884 if (SDValue NewST = TransformFPLoadStorePair(N)) 11885 return NewST; 11886 11887 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11888 : DAG.getSubtarget().useAA(); 11889 #ifndef NDEBUG 11890 if (CombinerAAOnlyFunc.getNumOccurrences() && 11891 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 11892 UseAA = false; 11893 #endif 11894 if (UseAA && ST->isUnindexed()) { 11895 // FIXME: We should do this even without AA enabled. AA will just allow 11896 // FindBetterChain to work in more situations. The problem with this is that 11897 // any combine that expects memory operations to be on consecutive chains 11898 // first needs to be updated to look for users of the same chain. 11899 11900 // Walk up chain skipping non-aliasing memory nodes, on this store and any 11901 // adjacent stores. 11902 if (findBetterNeighborChains(ST)) { 11903 // replaceStoreChain uses CombineTo, which handled all of the worklist 11904 // manipulation. Return the original node to not do anything else. 11905 return SDValue(ST, 0); 11906 } 11907 } 11908 11909 // Try transforming N to an indexed store. 11910 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 11911 return SDValue(N, 0); 11912 11913 // FIXME: is there such a thing as a truncating indexed store? 11914 if (ST->isTruncatingStore() && ST->isUnindexed() && 11915 Value.getValueType().isInteger()) { 11916 // See if we can simplify the input to this truncstore with knowledge that 11917 // only the low bits are being used. For example: 11918 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 11919 SDValue Shorter = 11920 GetDemandedBits(Value, 11921 APInt::getLowBitsSet( 11922 Value.getValueType().getScalarType().getSizeInBits(), 11923 ST->getMemoryVT().getScalarType().getSizeInBits())); 11924 AddToWorklist(Value.getNode()); 11925 if (Shorter.getNode()) 11926 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 11927 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 11928 11929 // Otherwise, see if we can simplify the operation with 11930 // SimplifyDemandedBits, which only works if the value has a single use. 11931 if (SimplifyDemandedBits(Value, 11932 APInt::getLowBitsSet( 11933 Value.getValueType().getScalarType().getSizeInBits(), 11934 ST->getMemoryVT().getScalarType().getSizeInBits()))) 11935 return SDValue(N, 0); 11936 } 11937 11938 // If this is a load followed by a store to the same location, then the store 11939 // is dead/noop. 11940 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 11941 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 11942 ST->isUnindexed() && !ST->isVolatile() && 11943 // There can't be any side effects between the load and store, such as 11944 // a call or store. 11945 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 11946 // The store is dead, remove it. 11947 return Chain; 11948 } 11949 } 11950 11951 // If this is a store followed by a store with the same value to the same 11952 // location, then the store is dead/noop. 11953 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 11954 if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && 11955 ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && 11956 ST1->isUnindexed() && !ST1->isVolatile()) { 11957 // The store is dead, remove it. 11958 return Chain; 11959 } 11960 } 11961 11962 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 11963 // truncating store. We can do this even if this is already a truncstore. 11964 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 11965 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 11966 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 11967 ST->getMemoryVT())) { 11968 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 11969 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 11970 } 11971 11972 // Only perform this optimization before the types are legal, because we 11973 // don't want to perform this optimization on every DAGCombine invocation. 11974 if (!LegalTypes) { 11975 bool EverChanged = false; 11976 11977 do { 11978 // There can be multiple store sequences on the same chain. 11979 // Keep trying to merge store sequences until we are unable to do so 11980 // or until we merge the last store on the chain. 11981 bool Changed = MergeConsecutiveStores(ST); 11982 EverChanged |= Changed; 11983 if (!Changed) break; 11984 } while (ST->getOpcode() != ISD::DELETED_NODE); 11985 11986 if (EverChanged) 11987 return SDValue(N, 0); 11988 } 11989 11990 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 11991 // 11992 // Make sure to do this only after attempting to merge stores in order to 11993 // avoid changing the types of some subset of stores due to visit order, 11994 // preventing their merging. 11995 if (isa<ConstantFPSDNode>(Value)) { 11996 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 11997 return NewSt; 11998 } 11999 12000 return ReduceLoadOpStoreWidth(N); 12001 } 12002 12003 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 12004 SDValue InVec = N->getOperand(0); 12005 SDValue InVal = N->getOperand(1); 12006 SDValue EltNo = N->getOperand(2); 12007 SDLoc dl(N); 12008 12009 // If the inserted element is an UNDEF, just use the input vector. 12010 if (InVal.getOpcode() == ISD::UNDEF) 12011 return InVec; 12012 12013 EVT VT = InVec.getValueType(); 12014 12015 // If we can't generate a legal BUILD_VECTOR, exit 12016 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 12017 return SDValue(); 12018 12019 // Check that we know which element is being inserted 12020 if (!isa<ConstantSDNode>(EltNo)) 12021 return SDValue(); 12022 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12023 12024 // Canonicalize insert_vector_elt dag nodes. 12025 // Example: 12026 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 12027 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 12028 // 12029 // Do this only if the child insert_vector node has one use; also 12030 // do this only if indices are both constants and Idx1 < Idx0. 12031 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 12032 && isa<ConstantSDNode>(InVec.getOperand(2))) { 12033 unsigned OtherElt = 12034 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 12035 if (Elt < OtherElt) { 12036 // Swap nodes. 12037 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT, 12038 InVec.getOperand(0), InVal, EltNo); 12039 AddToWorklist(NewOp.getNode()); 12040 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 12041 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 12042 } 12043 } 12044 12045 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 12046 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 12047 // vector elements. 12048 SmallVector<SDValue, 8> Ops; 12049 // Do not combine these two vectors if the output vector will not replace 12050 // the input vector. 12051 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 12052 Ops.append(InVec.getNode()->op_begin(), 12053 InVec.getNode()->op_end()); 12054 } else if (InVec.getOpcode() == ISD::UNDEF) { 12055 unsigned NElts = VT.getVectorNumElements(); 12056 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 12057 } else { 12058 return SDValue(); 12059 } 12060 12061 // Insert the element 12062 if (Elt < Ops.size()) { 12063 // All the operands of BUILD_VECTOR must have the same type; 12064 // we enforce that here. 12065 EVT OpVT = Ops[0].getValueType(); 12066 if (InVal.getValueType() != OpVT) 12067 InVal = OpVT.bitsGT(InVal.getValueType()) ? 12068 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : 12069 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); 12070 Ops[Elt] = InVal; 12071 } 12072 12073 // Return the new vector 12074 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 12075 } 12076 12077 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 12078 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 12079 EVT ResultVT = EVE->getValueType(0); 12080 EVT VecEltVT = InVecVT.getVectorElementType(); 12081 unsigned Align = OriginalLoad->getAlignment(); 12082 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 12083 VecEltVT.getTypeForEVT(*DAG.getContext())); 12084 12085 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 12086 return SDValue(); 12087 12088 Align = NewAlign; 12089 12090 SDValue NewPtr = OriginalLoad->getBasePtr(); 12091 SDValue Offset; 12092 EVT PtrType = NewPtr.getValueType(); 12093 MachinePointerInfo MPI; 12094 SDLoc DL(EVE); 12095 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 12096 int Elt = ConstEltNo->getZExtValue(); 12097 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 12098 Offset = DAG.getConstant(PtrOff, DL, PtrType); 12099 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 12100 } else { 12101 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 12102 Offset = DAG.getNode( 12103 ISD::MUL, DL, PtrType, Offset, 12104 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 12105 MPI = OriginalLoad->getPointerInfo(); 12106 } 12107 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 12108 12109 // The replacement we need to do here is a little tricky: we need to 12110 // replace an extractelement of a load with a load. 12111 // Use ReplaceAllUsesOfValuesWith to do the replacement. 12112 // Note that this replacement assumes that the extractvalue is the only 12113 // use of the load; that's okay because we don't want to perform this 12114 // transformation in other cases anyway. 12115 SDValue Load; 12116 SDValue Chain; 12117 if (ResultVT.bitsGT(VecEltVT)) { 12118 // If the result type of vextract is wider than the load, then issue an 12119 // extending load instead. 12120 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 12121 VecEltVT) 12122 ? ISD::ZEXTLOAD 12123 : ISD::EXTLOAD; 12124 Load = DAG.getExtLoad( 12125 ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI, 12126 VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 12127 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 12128 Chain = Load.getValue(1); 12129 } else { 12130 Load = DAG.getLoad( 12131 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, 12132 OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 12133 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 12134 Chain = Load.getValue(1); 12135 if (ResultVT.bitsLT(VecEltVT)) 12136 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 12137 else 12138 Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load); 12139 } 12140 WorklistRemover DeadNodes(*this); 12141 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 12142 SDValue To[] = { Load, Chain }; 12143 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 12144 // Since we're explicitly calling ReplaceAllUses, add the new node to the 12145 // worklist explicitly as well. 12146 AddToWorklist(Load.getNode()); 12147 AddUsersToWorklist(Load.getNode()); // Add users too 12148 // Make sure to revisit this node to clean it up; it will usually be dead. 12149 AddToWorklist(EVE); 12150 ++OpsNarrowed; 12151 return SDValue(EVE, 0); 12152 } 12153 12154 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 12155 // (vextract (scalar_to_vector val, 0) -> val 12156 SDValue InVec = N->getOperand(0); 12157 EVT VT = InVec.getValueType(); 12158 EVT NVT = N->getValueType(0); 12159 12160 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 12161 // Check if the result type doesn't match the inserted element type. A 12162 // SCALAR_TO_VECTOR may truncate the inserted element and the 12163 // EXTRACT_VECTOR_ELT may widen the extracted vector. 12164 SDValue InOp = InVec.getOperand(0); 12165 if (InOp.getValueType() != NVT) { 12166 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12167 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 12168 } 12169 return InOp; 12170 } 12171 12172 SDValue EltNo = N->getOperand(1); 12173 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 12174 12175 // extract_vector_elt (build_vector x, y), 1 -> y 12176 if (ConstEltNo && 12177 InVec.getOpcode() == ISD::BUILD_VECTOR && 12178 TLI.isTypeLegal(VT) && 12179 (InVec.hasOneUse() || 12180 TLI.aggressivelyPreferBuildVectorSources(VT))) { 12181 SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); 12182 EVT InEltVT = Elt.getValueType(); 12183 12184 // Sometimes build_vector's scalar input types do not match result type. 12185 if (NVT == InEltVT) 12186 return Elt; 12187 12188 // TODO: It may be useful to truncate if free if the build_vector implicitly 12189 // converts. 12190 } 12191 12192 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 12193 // We only perform this optimization before the op legalization phase because 12194 // we may introduce new vector instructions which are not backed by TD 12195 // patterns. For example on AVX, extracting elements from a wide vector 12196 // without using extract_subvector. However, if we can find an underlying 12197 // scalar value, then we can always use that. 12198 if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { 12199 int NumElem = VT.getVectorNumElements(); 12200 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 12201 // Find the new index to extract from. 12202 int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); 12203 12204 // Extracting an undef index is undef. 12205 if (OrigElt == -1) 12206 return DAG.getUNDEF(NVT); 12207 12208 // Select the right vector half to extract from. 12209 SDValue SVInVec; 12210 if (OrigElt < NumElem) { 12211 SVInVec = InVec->getOperand(0); 12212 } else { 12213 SVInVec = InVec->getOperand(1); 12214 OrigElt -= NumElem; 12215 } 12216 12217 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 12218 SDValue InOp = SVInVec.getOperand(OrigElt); 12219 if (InOp.getValueType() != NVT) { 12220 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12221 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 12222 } 12223 12224 return InOp; 12225 } 12226 12227 // FIXME: We should handle recursing on other vector shuffles and 12228 // scalar_to_vector here as well. 12229 12230 if (!LegalOperations) { 12231 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12232 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, 12233 DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); 12234 } 12235 } 12236 12237 bool BCNumEltsChanged = false; 12238 EVT ExtVT = VT.getVectorElementType(); 12239 EVT LVT = ExtVT; 12240 12241 // If the result of load has to be truncated, then it's not necessarily 12242 // profitable. 12243 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 12244 return SDValue(); 12245 12246 if (InVec.getOpcode() == ISD::BITCAST) { 12247 // Don't duplicate a load with other uses. 12248 if (!InVec.hasOneUse()) 12249 return SDValue(); 12250 12251 EVT BCVT = InVec.getOperand(0).getValueType(); 12252 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 12253 return SDValue(); 12254 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 12255 BCNumEltsChanged = true; 12256 InVec = InVec.getOperand(0); 12257 ExtVT = BCVT.getVectorElementType(); 12258 } 12259 12260 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 12261 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 12262 ISD::isNormalLoad(InVec.getNode()) && 12263 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 12264 SDValue Index = N->getOperand(1); 12265 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) 12266 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 12267 OrigLoad); 12268 } 12269 12270 // Perform only after legalization to ensure build_vector / vector_shuffle 12271 // optimizations have already been done. 12272 if (!LegalOperations) return SDValue(); 12273 12274 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 12275 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 12276 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 12277 12278 if (ConstEltNo) { 12279 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12280 12281 LoadSDNode *LN0 = nullptr; 12282 const ShuffleVectorSDNode *SVN = nullptr; 12283 if (ISD::isNormalLoad(InVec.getNode())) { 12284 LN0 = cast<LoadSDNode>(InVec); 12285 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 12286 InVec.getOperand(0).getValueType() == ExtVT && 12287 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 12288 // Don't duplicate a load with other uses. 12289 if (!InVec.hasOneUse()) 12290 return SDValue(); 12291 12292 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 12293 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 12294 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 12295 // => 12296 // (load $addr+1*size) 12297 12298 // Don't duplicate a load with other uses. 12299 if (!InVec.hasOneUse()) 12300 return SDValue(); 12301 12302 // If the bit convert changed the number of elements, it is unsafe 12303 // to examine the mask. 12304 if (BCNumEltsChanged) 12305 return SDValue(); 12306 12307 // Select the input vector, guarding against out of range extract vector. 12308 unsigned NumElems = VT.getVectorNumElements(); 12309 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 12310 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 12311 12312 if (InVec.getOpcode() == ISD::BITCAST) { 12313 // Don't duplicate a load with other uses. 12314 if (!InVec.hasOneUse()) 12315 return SDValue(); 12316 12317 InVec = InVec.getOperand(0); 12318 } 12319 if (ISD::isNormalLoad(InVec.getNode())) { 12320 LN0 = cast<LoadSDNode>(InVec); 12321 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 12322 EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); 12323 } 12324 } 12325 12326 // Make sure we found a non-volatile load and the extractelement is 12327 // the only use. 12328 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 12329 return SDValue(); 12330 12331 // If Idx was -1 above, Elt is going to be -1, so just return undef. 12332 if (Elt == -1) 12333 return DAG.getUNDEF(LVT); 12334 12335 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 12336 } 12337 12338 return SDValue(); 12339 } 12340 12341 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 12342 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 12343 // We perform this optimization post type-legalization because 12344 // the type-legalizer often scalarizes integer-promoted vectors. 12345 // Performing this optimization before may create bit-casts which 12346 // will be type-legalized to complex code sequences. 12347 // We perform this optimization only before the operation legalizer because we 12348 // may introduce illegal operations. 12349 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 12350 return SDValue(); 12351 12352 unsigned NumInScalars = N->getNumOperands(); 12353 SDLoc dl(N); 12354 EVT VT = N->getValueType(0); 12355 12356 // Check to see if this is a BUILD_VECTOR of a bunch of values 12357 // which come from any_extend or zero_extend nodes. If so, we can create 12358 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 12359 // optimizations. We do not handle sign-extend because we can't fill the sign 12360 // using shuffles. 12361 EVT SourceType = MVT::Other; 12362 bool AllAnyExt = true; 12363 12364 for (unsigned i = 0; i != NumInScalars; ++i) { 12365 SDValue In = N->getOperand(i); 12366 // Ignore undef inputs. 12367 if (In.getOpcode() == ISD::UNDEF) continue; 12368 12369 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 12370 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 12371 12372 // Abort if the element is not an extension. 12373 if (!ZeroExt && !AnyExt) { 12374 SourceType = MVT::Other; 12375 break; 12376 } 12377 12378 // The input is a ZeroExt or AnyExt. Check the original type. 12379 EVT InTy = In.getOperand(0).getValueType(); 12380 12381 // Check that all of the widened source types are the same. 12382 if (SourceType == MVT::Other) 12383 // First time. 12384 SourceType = InTy; 12385 else if (InTy != SourceType) { 12386 // Multiple income types. Abort. 12387 SourceType = MVT::Other; 12388 break; 12389 } 12390 12391 // Check if all of the extends are ANY_EXTENDs. 12392 AllAnyExt &= AnyExt; 12393 } 12394 12395 // In order to have valid types, all of the inputs must be extended from the 12396 // same source type and all of the inputs must be any or zero extend. 12397 // Scalar sizes must be a power of two. 12398 EVT OutScalarTy = VT.getScalarType(); 12399 bool ValidTypes = SourceType != MVT::Other && 12400 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 12401 isPowerOf2_32(SourceType.getSizeInBits()); 12402 12403 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 12404 // turn into a single shuffle instruction. 12405 if (!ValidTypes) 12406 return SDValue(); 12407 12408 bool isLE = DAG.getDataLayout().isLittleEndian(); 12409 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 12410 assert(ElemRatio > 1 && "Invalid element size ratio"); 12411 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 12412 DAG.getConstant(0, SDLoc(N), SourceType); 12413 12414 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 12415 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 12416 12417 // Populate the new build_vector 12418 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12419 SDValue Cast = N->getOperand(i); 12420 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 12421 Cast.getOpcode() == ISD::ZERO_EXTEND || 12422 Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode"); 12423 SDValue In; 12424 if (Cast.getOpcode() == ISD::UNDEF) 12425 In = DAG.getUNDEF(SourceType); 12426 else 12427 In = Cast->getOperand(0); 12428 unsigned Index = isLE ? (i * ElemRatio) : 12429 (i * ElemRatio + (ElemRatio - 1)); 12430 12431 assert(Index < Ops.size() && "Invalid index"); 12432 Ops[Index] = In; 12433 } 12434 12435 // The type of the new BUILD_VECTOR node. 12436 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 12437 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 12438 "Invalid vector size"); 12439 // Check if the new vector type is legal. 12440 if (!isTypeLegal(VecVT)) return SDValue(); 12441 12442 // Make the new BUILD_VECTOR. 12443 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); 12444 12445 // The new BUILD_VECTOR node has the potential to be further optimized. 12446 AddToWorklist(BV.getNode()); 12447 // Bitcast to the desired type. 12448 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 12449 } 12450 12451 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 12452 EVT VT = N->getValueType(0); 12453 12454 unsigned NumInScalars = N->getNumOperands(); 12455 SDLoc dl(N); 12456 12457 EVT SrcVT = MVT::Other; 12458 unsigned Opcode = ISD::DELETED_NODE; 12459 unsigned NumDefs = 0; 12460 12461 for (unsigned i = 0; i != NumInScalars; ++i) { 12462 SDValue In = N->getOperand(i); 12463 unsigned Opc = In.getOpcode(); 12464 12465 if (Opc == ISD::UNDEF) 12466 continue; 12467 12468 // If all scalar values are floats and converted from integers. 12469 if (Opcode == ISD::DELETED_NODE && 12470 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 12471 Opcode = Opc; 12472 } 12473 12474 if (Opc != Opcode) 12475 return SDValue(); 12476 12477 EVT InVT = In.getOperand(0).getValueType(); 12478 12479 // If all scalar values are typed differently, bail out. It's chosen to 12480 // simplify BUILD_VECTOR of integer types. 12481 if (SrcVT == MVT::Other) 12482 SrcVT = InVT; 12483 if (SrcVT != InVT) 12484 return SDValue(); 12485 NumDefs++; 12486 } 12487 12488 // If the vector has just one element defined, it's not worth to fold it into 12489 // a vectorized one. 12490 if (NumDefs < 2) 12491 return SDValue(); 12492 12493 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 12494 && "Should only handle conversion from integer to float."); 12495 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 12496 12497 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 12498 12499 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 12500 return SDValue(); 12501 12502 // Just because the floating-point vector type is legal does not necessarily 12503 // mean that the corresponding integer vector type is. 12504 if (!isTypeLegal(NVT)) 12505 return SDValue(); 12506 12507 SmallVector<SDValue, 8> Opnds; 12508 for (unsigned i = 0; i != NumInScalars; ++i) { 12509 SDValue In = N->getOperand(i); 12510 12511 if (In.getOpcode() == ISD::UNDEF) 12512 Opnds.push_back(DAG.getUNDEF(SrcVT)); 12513 else 12514 Opnds.push_back(In.getOperand(0)); 12515 } 12516 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds); 12517 AddToWorklist(BV.getNode()); 12518 12519 return DAG.getNode(Opcode, dl, VT, BV); 12520 } 12521 12522 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 12523 unsigned NumInScalars = N->getNumOperands(); 12524 SDLoc dl(N); 12525 EVT VT = N->getValueType(0); 12526 12527 // A vector built entirely of undefs is undef. 12528 if (ISD::allOperandsUndef(N)) 12529 return DAG.getUNDEF(VT); 12530 12531 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 12532 return V; 12533 12534 if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) 12535 return V; 12536 12537 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 12538 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from 12539 // at most two distinct vectors, turn this into a shuffle node. 12540 12541 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 12542 if (!isTypeLegal(VT)) 12543 return SDValue(); 12544 12545 // May only combine to shuffle after legalize if shuffle is legal. 12546 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 12547 return SDValue(); 12548 12549 SDValue VecIn1, VecIn2; 12550 bool UsesZeroVector = false; 12551 for (unsigned i = 0; i != NumInScalars; ++i) { 12552 SDValue Op = N->getOperand(i); 12553 // Ignore undef inputs. 12554 if (Op.getOpcode() == ISD::UNDEF) continue; 12555 12556 // See if we can combine this build_vector into a blend with a zero vector. 12557 if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) { 12558 UsesZeroVector = true; 12559 continue; 12560 } 12561 12562 // If this input is something other than a EXTRACT_VECTOR_ELT with a 12563 // constant index, bail out. 12564 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12565 !isa<ConstantSDNode>(Op.getOperand(1))) { 12566 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12567 break; 12568 } 12569 12570 // We allow up to two distinct input vectors. 12571 SDValue ExtractedFromVec = Op.getOperand(0); 12572 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) 12573 continue; 12574 12575 if (!VecIn1.getNode()) { 12576 VecIn1 = ExtractedFromVec; 12577 } else if (!VecIn2.getNode() && !UsesZeroVector) { 12578 VecIn2 = ExtractedFromVec; 12579 } else { 12580 // Too many inputs. 12581 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12582 break; 12583 } 12584 } 12585 12586 // If everything is good, we can make a shuffle operation. 12587 if (VecIn1.getNode()) { 12588 unsigned InNumElements = VecIn1.getValueType().getVectorNumElements(); 12589 SmallVector<int, 8> Mask; 12590 for (unsigned i = 0; i != NumInScalars; ++i) { 12591 unsigned Opcode = N->getOperand(i).getOpcode(); 12592 if (Opcode == ISD::UNDEF) { 12593 Mask.push_back(-1); 12594 continue; 12595 } 12596 12597 // Operands can also be zero. 12598 if (Opcode != ISD::EXTRACT_VECTOR_ELT) { 12599 assert(UsesZeroVector && 12600 (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) && 12601 "Unexpected node found!"); 12602 Mask.push_back(NumInScalars+i); 12603 continue; 12604 } 12605 12606 // If extracting from the first vector, just use the index directly. 12607 SDValue Extract = N->getOperand(i); 12608 SDValue ExtVal = Extract.getOperand(1); 12609 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); 12610 if (Extract.getOperand(0) == VecIn1) { 12611 Mask.push_back(ExtIndex); 12612 continue; 12613 } 12614 12615 // Otherwise, use InIdx + InputVecSize 12616 Mask.push_back(InNumElements + ExtIndex); 12617 } 12618 12619 // Avoid introducing illegal shuffles with zero. 12620 if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT)) 12621 return SDValue(); 12622 12623 // We can't generate a shuffle node with mismatched input and output types. 12624 // Attempt to transform a single input vector to the correct type. 12625 if ((VT != VecIn1.getValueType())) { 12626 // If the input vector type has a different base type to the output 12627 // vector type, bail out. 12628 EVT VTElemType = VT.getVectorElementType(); 12629 if ((VecIn1.getValueType().getVectorElementType() != VTElemType) || 12630 (VecIn2.getNode() && 12631 (VecIn2.getValueType().getVectorElementType() != VTElemType))) 12632 return SDValue(); 12633 12634 // If the input vector is too small, widen it. 12635 // We only support widening of vectors which are half the size of the 12636 // output registers. For example XMM->YMM widening on X86 with AVX. 12637 EVT VecInT = VecIn1.getValueType(); 12638 if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) { 12639 // If we only have one small input, widen it by adding undef values. 12640 if (!VecIn2.getNode()) 12641 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, 12642 DAG.getUNDEF(VecIn1.getValueType())); 12643 else if (VecIn1.getValueType() == VecIn2.getValueType()) { 12644 // If we have two small inputs of the same type, try to concat them. 12645 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2); 12646 VecIn2 = SDValue(nullptr, 0); 12647 } else 12648 return SDValue(); 12649 } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) { 12650 // If the input vector is too large, try to split it. 12651 // We don't support having two input vectors that are too large. 12652 // If the zero vector was used, we can not split the vector, 12653 // since we'd need 3 inputs. 12654 if (UsesZeroVector || VecIn2.getNode()) 12655 return SDValue(); 12656 12657 if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements())) 12658 return SDValue(); 12659 12660 // Try to replace VecIn1 with two extract_subvectors 12661 // No need to update the masks, they should still be correct. 12662 VecIn2 = DAG.getNode( 12663 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12664 DAG.getConstant(VT.getVectorNumElements(), dl, 12665 TLI.getVectorIdxTy(DAG.getDataLayout()))); 12666 VecIn1 = DAG.getNode( 12667 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12668 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 12669 } else 12670 return SDValue(); 12671 } 12672 12673 if (UsesZeroVector) 12674 VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) : 12675 DAG.getConstantFP(0.0, dl, VT); 12676 else 12677 // If VecIn2 is unused then change it to undef. 12678 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); 12679 12680 // Check that we were able to transform all incoming values to the same 12681 // type. 12682 if (VecIn2.getValueType() != VecIn1.getValueType() || 12683 VecIn1.getValueType() != VT) 12684 return SDValue(); 12685 12686 // Return the new VECTOR_SHUFFLE node. 12687 SDValue Ops[2]; 12688 Ops[0] = VecIn1; 12689 Ops[1] = VecIn2; 12690 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]); 12691 } 12692 12693 return SDValue(); 12694 } 12695 12696 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 12697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12698 EVT OpVT = N->getOperand(0).getValueType(); 12699 12700 // If the operands are legal vectors, leave them alone. 12701 if (TLI.isTypeLegal(OpVT)) 12702 return SDValue(); 12703 12704 SDLoc DL(N); 12705 EVT VT = N->getValueType(0); 12706 SmallVector<SDValue, 8> Ops; 12707 12708 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 12709 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12710 12711 // Keep track of what we encounter. 12712 bool AnyInteger = false; 12713 bool AnyFP = false; 12714 for (const SDValue &Op : N->ops()) { 12715 if (ISD::BITCAST == Op.getOpcode() && 12716 !Op.getOperand(0).getValueType().isVector()) 12717 Ops.push_back(Op.getOperand(0)); 12718 else if (ISD::UNDEF == Op.getOpcode()) 12719 Ops.push_back(ScalarUndef); 12720 else 12721 return SDValue(); 12722 12723 // Note whether we encounter an integer or floating point scalar. 12724 // If it's neither, bail out, it could be something weird like x86mmx. 12725 EVT LastOpVT = Ops.back().getValueType(); 12726 if (LastOpVT.isFloatingPoint()) 12727 AnyFP = true; 12728 else if (LastOpVT.isInteger()) 12729 AnyInteger = true; 12730 else 12731 return SDValue(); 12732 } 12733 12734 // If any of the operands is a floating point scalar bitcast to a vector, 12735 // use floating point types throughout, and bitcast everything. 12736 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 12737 if (AnyFP) { 12738 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 12739 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12740 if (AnyInteger) { 12741 for (SDValue &Op : Ops) { 12742 if (Op.getValueType() == SVT) 12743 continue; 12744 if (Op.getOpcode() == ISD::UNDEF) 12745 Op = ScalarUndef; 12746 else 12747 Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op); 12748 } 12749 } 12750 } 12751 12752 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 12753 VT.getSizeInBits() / SVT.getSizeInBits()); 12754 return DAG.getNode(ISD::BITCAST, DL, VT, 12755 DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, Ops)); 12756 } 12757 12758 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 12759 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 12760 // most two distinct vectors the same size as the result, attempt to turn this 12761 // into a legal shuffle. 12762 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 12763 EVT VT = N->getValueType(0); 12764 EVT OpVT = N->getOperand(0).getValueType(); 12765 int NumElts = VT.getVectorNumElements(); 12766 int NumOpElts = OpVT.getVectorNumElements(); 12767 12768 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 12769 SmallVector<int, 8> Mask; 12770 12771 for (SDValue Op : N->ops()) { 12772 // Peek through any bitcast. 12773 while (Op.getOpcode() == ISD::BITCAST) 12774 Op = Op.getOperand(0); 12775 12776 // UNDEF nodes convert to UNDEF shuffle mask values. 12777 if (Op.getOpcode() == ISD::UNDEF) { 12778 Mask.append((unsigned)NumOpElts, -1); 12779 continue; 12780 } 12781 12782 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12783 return SDValue(); 12784 12785 // What vector are we extracting the subvector from and at what index? 12786 SDValue ExtVec = Op.getOperand(0); 12787 12788 // We want the EVT of the original extraction to correctly scale the 12789 // extraction index. 12790 EVT ExtVT = ExtVec.getValueType(); 12791 12792 // Peek through any bitcast. 12793 while (ExtVec.getOpcode() == ISD::BITCAST) 12794 ExtVec = ExtVec.getOperand(0); 12795 12796 // UNDEF nodes convert to UNDEF shuffle mask values. 12797 if (ExtVec.getOpcode() == ISD::UNDEF) { 12798 Mask.append((unsigned)NumOpElts, -1); 12799 continue; 12800 } 12801 12802 if (!isa<ConstantSDNode>(Op.getOperand(1))) 12803 return SDValue(); 12804 int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 12805 12806 // Ensure that we are extracting a subvector from a vector the same 12807 // size as the result. 12808 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 12809 return SDValue(); 12810 12811 // Scale the subvector index to account for any bitcast. 12812 int NumExtElts = ExtVT.getVectorNumElements(); 12813 if (0 == (NumExtElts % NumElts)) 12814 ExtIdx /= (NumExtElts / NumElts); 12815 else if (0 == (NumElts % NumExtElts)) 12816 ExtIdx *= (NumElts / NumExtElts); 12817 else 12818 return SDValue(); 12819 12820 // At most we can reference 2 inputs in the final shuffle. 12821 if (SV0.getOpcode() == ISD::UNDEF || SV0 == ExtVec) { 12822 SV0 = ExtVec; 12823 for (int i = 0; i != NumOpElts; ++i) 12824 Mask.push_back(i + ExtIdx); 12825 } else if (SV1.getOpcode() == ISD::UNDEF || SV1 == ExtVec) { 12826 SV1 = ExtVec; 12827 for (int i = 0; i != NumOpElts; ++i) 12828 Mask.push_back(i + ExtIdx + NumElts); 12829 } else { 12830 return SDValue(); 12831 } 12832 } 12833 12834 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 12835 return SDValue(); 12836 12837 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 12838 DAG.getBitcast(VT, SV1), Mask); 12839 } 12840 12841 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 12842 // If we only have one input vector, we don't need to do any concatenation. 12843 if (N->getNumOperands() == 1) 12844 return N->getOperand(0); 12845 12846 // Check if all of the operands are undefs. 12847 EVT VT = N->getValueType(0); 12848 if (ISD::allOperandsUndef(N)) 12849 return DAG.getUNDEF(VT); 12850 12851 // Optimize concat_vectors where all but the first of the vectors are undef. 12852 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 12853 return Op.getOpcode() == ISD::UNDEF; 12854 })) { 12855 SDValue In = N->getOperand(0); 12856 assert(In.getValueType().isVector() && "Must concat vectors"); 12857 12858 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 12859 if (In->getOpcode() == ISD::BITCAST && 12860 !In->getOperand(0)->getValueType(0).isVector()) { 12861 SDValue Scalar = In->getOperand(0); 12862 12863 // If the bitcast type isn't legal, it might be a trunc of a legal type; 12864 // look through the trunc so we can still do the transform: 12865 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 12866 if (Scalar->getOpcode() == ISD::TRUNCATE && 12867 !TLI.isTypeLegal(Scalar.getValueType()) && 12868 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 12869 Scalar = Scalar->getOperand(0); 12870 12871 EVT SclTy = Scalar->getValueType(0); 12872 12873 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 12874 return SDValue(); 12875 12876 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 12877 VT.getSizeInBits() / SclTy.getSizeInBits()); 12878 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 12879 return SDValue(); 12880 12881 SDLoc dl = SDLoc(N); 12882 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar); 12883 return DAG.getNode(ISD::BITCAST, dl, VT, Res); 12884 } 12885 } 12886 12887 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 12888 // We have already tested above for an UNDEF only concatenation. 12889 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 12890 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 12891 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 12892 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 12893 }; 12894 bool AllBuildVectorsOrUndefs = 12895 std::all_of(N->op_begin(), N->op_end(), IsBuildVectorOrUndef); 12896 if (AllBuildVectorsOrUndefs) { 12897 SmallVector<SDValue, 8> Opnds; 12898 EVT SVT = VT.getScalarType(); 12899 12900 EVT MinVT = SVT; 12901 if (!SVT.isFloatingPoint()) { 12902 // If BUILD_VECTOR are from built from integer, they may have different 12903 // operand types. Get the smallest type and truncate all operands to it. 12904 bool FoundMinVT = false; 12905 for (const SDValue &Op : N->ops()) 12906 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 12907 EVT OpSVT = Op.getOperand(0)->getValueType(0); 12908 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 12909 FoundMinVT = true; 12910 } 12911 assert(FoundMinVT && "Concat vector type mismatch"); 12912 } 12913 12914 for (const SDValue &Op : N->ops()) { 12915 EVT OpVT = Op.getValueType(); 12916 unsigned NumElts = OpVT.getVectorNumElements(); 12917 12918 if (ISD::UNDEF == Op.getOpcode()) 12919 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 12920 12921 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 12922 if (SVT.isFloatingPoint()) { 12923 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 12924 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 12925 } else { 12926 for (unsigned i = 0; i != NumElts; ++i) 12927 Opnds.push_back( 12928 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 12929 } 12930 } 12931 } 12932 12933 assert(VT.getVectorNumElements() == Opnds.size() && 12934 "Concat vector type mismatch"); 12935 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); 12936 } 12937 12938 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 12939 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 12940 return V; 12941 12942 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 12943 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 12944 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 12945 return V; 12946 12947 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 12948 // nodes often generate nop CONCAT_VECTOR nodes. 12949 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 12950 // place the incoming vectors at the exact same location. 12951 SDValue SingleSource = SDValue(); 12952 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 12953 12954 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12955 SDValue Op = N->getOperand(i); 12956 12957 if (Op.getOpcode() == ISD::UNDEF) 12958 continue; 12959 12960 // Check if this is the identity extract: 12961 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12962 return SDValue(); 12963 12964 // Find the single incoming vector for the extract_subvector. 12965 if (SingleSource.getNode()) { 12966 if (Op.getOperand(0) != SingleSource) 12967 return SDValue(); 12968 } else { 12969 SingleSource = Op.getOperand(0); 12970 12971 // Check the source type is the same as the type of the result. 12972 // If not, this concat may extend the vector, so we can not 12973 // optimize it away. 12974 if (SingleSource.getValueType() != N->getValueType(0)) 12975 return SDValue(); 12976 } 12977 12978 unsigned IdentityIndex = i * PartNumElem; 12979 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 12980 // The extract index must be constant. 12981 if (!CS) 12982 return SDValue(); 12983 12984 // Check that we are reading from the identity index. 12985 if (CS->getZExtValue() != IdentityIndex) 12986 return SDValue(); 12987 } 12988 12989 if (SingleSource.getNode()) 12990 return SingleSource; 12991 12992 return SDValue(); 12993 } 12994 12995 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 12996 EVT NVT = N->getValueType(0); 12997 SDValue V = N->getOperand(0); 12998 12999 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 13000 // Combine: 13001 // (extract_subvec (concat V1, V2, ...), i) 13002 // Into: 13003 // Vi if possible 13004 // Only operand 0 is checked as 'concat' assumes all inputs of the same 13005 // type. 13006 if (V->getOperand(0).getValueType() != NVT) 13007 return SDValue(); 13008 unsigned Idx = N->getConstantOperandVal(1); 13009 unsigned NumElems = NVT.getVectorNumElements(); 13010 assert((Idx % NumElems) == 0 && 13011 "IDX in concat is not a multiple of the result vector length."); 13012 return V->getOperand(Idx / NumElems); 13013 } 13014 13015 // Skip bitcasting 13016 if (V->getOpcode() == ISD::BITCAST) 13017 V = V.getOperand(0); 13018 13019 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 13020 SDLoc dl(N); 13021 // Handle only simple case where vector being inserted and vector 13022 // being extracted are of same type, and are half size of larger vectors. 13023 EVT BigVT = V->getOperand(0).getValueType(); 13024 EVT SmallVT = V->getOperand(1).getValueType(); 13025 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 13026 return SDValue(); 13027 13028 // Only handle cases where both indexes are constants with the same type. 13029 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13030 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13031 13032 if (InsIdx && ExtIdx && 13033 InsIdx->getValueType(0).getSizeInBits() <= 64 && 13034 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 13035 // Combine: 13036 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 13037 // Into: 13038 // indices are equal or bit offsets are equal => V1 13039 // otherwise => (extract_subvec V1, ExtIdx) 13040 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() == 13041 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits()) 13042 return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1)); 13043 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, 13044 DAG.getNode(ISD::BITCAST, dl, 13045 N->getOperand(0).getValueType(), 13046 V->getOperand(0)), N->getOperand(1)); 13047 } 13048 } 13049 13050 return SDValue(); 13051 } 13052 13053 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, 13054 SDValue V, SelectionDAG &DAG) { 13055 SDLoc DL(V); 13056 EVT VT = V.getValueType(); 13057 13058 switch (V.getOpcode()) { 13059 default: 13060 return V; 13061 13062 case ISD::CONCAT_VECTORS: { 13063 EVT OpVT = V->getOperand(0).getValueType(); 13064 int OpSize = OpVT.getVectorNumElements(); 13065 SmallBitVector OpUsedElements(OpSize, false); 13066 bool FoundSimplification = false; 13067 SmallVector<SDValue, 4> NewOps; 13068 NewOps.reserve(V->getNumOperands()); 13069 for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { 13070 SDValue Op = V->getOperand(i); 13071 bool OpUsed = false; 13072 for (int j = 0; j < OpSize; ++j) 13073 if (UsedElements[i * OpSize + j]) { 13074 OpUsedElements[j] = true; 13075 OpUsed = true; 13076 } 13077 NewOps.push_back( 13078 OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) 13079 : DAG.getUNDEF(OpVT)); 13080 FoundSimplification |= Op == NewOps.back(); 13081 OpUsedElements.reset(); 13082 } 13083 if (FoundSimplification) 13084 V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); 13085 return V; 13086 } 13087 13088 case ISD::INSERT_SUBVECTOR: { 13089 SDValue BaseV = V->getOperand(0); 13090 SDValue SubV = V->getOperand(1); 13091 auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13092 if (!IdxN) 13093 return V; 13094 13095 int SubSize = SubV.getValueType().getVectorNumElements(); 13096 int Idx = IdxN->getZExtValue(); 13097 bool SubVectorUsed = false; 13098 SmallBitVector SubUsedElements(SubSize, false); 13099 for (int i = 0; i < SubSize; ++i) 13100 if (UsedElements[i + Idx]) { 13101 SubVectorUsed = true; 13102 SubUsedElements[i] = true; 13103 UsedElements[i + Idx] = false; 13104 } 13105 13106 // Now recurse on both the base and sub vectors. 13107 SDValue SimplifiedSubV = 13108 SubVectorUsed 13109 ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) 13110 : DAG.getUNDEF(SubV.getValueType()); 13111 SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); 13112 if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) 13113 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 13114 SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); 13115 return V; 13116 } 13117 } 13118 } 13119 13120 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, 13121 SDValue N1, SelectionDAG &DAG) { 13122 EVT VT = SVN->getValueType(0); 13123 int NumElts = VT.getVectorNumElements(); 13124 SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); 13125 for (int M : SVN->getMask()) 13126 if (M >= 0 && M < NumElts) 13127 N0UsedElements[M] = true; 13128 else if (M >= NumElts) 13129 N1UsedElements[M - NumElts] = true; 13130 13131 SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); 13132 SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); 13133 if (S0 == N0 && S1 == N1) 13134 return SDValue(); 13135 13136 return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); 13137 } 13138 13139 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 13140 // or turn a shuffle of a single concat into simpler shuffle then concat. 13141 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 13142 EVT VT = N->getValueType(0); 13143 unsigned NumElts = VT.getVectorNumElements(); 13144 13145 SDValue N0 = N->getOperand(0); 13146 SDValue N1 = N->getOperand(1); 13147 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13148 13149 SmallVector<SDValue, 4> Ops; 13150 EVT ConcatVT = N0.getOperand(0).getValueType(); 13151 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 13152 unsigned NumConcats = NumElts / NumElemsPerConcat; 13153 13154 // Special case: shuffle(concat(A,B)) can be more efficiently represented 13155 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 13156 // half vector elements. 13157 if (NumElemsPerConcat * 2 == NumElts && N1.getOpcode() == ISD::UNDEF && 13158 std::all_of(SVN->getMask().begin() + NumElemsPerConcat, 13159 SVN->getMask().end(), [](int i) { return i == -1; })) { 13160 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), 13161 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); 13162 N1 = DAG.getUNDEF(ConcatVT); 13163 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 13164 } 13165 13166 // Look at every vector that's inserted. We're looking for exact 13167 // subvector-sized copies from a concatenated vector 13168 for (unsigned I = 0; I != NumConcats; ++I) { 13169 // Make sure we're dealing with a copy. 13170 unsigned Begin = I * NumElemsPerConcat; 13171 bool AllUndef = true, NoUndef = true; 13172 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 13173 if (SVN->getMaskElt(J) >= 0) 13174 AllUndef = false; 13175 else 13176 NoUndef = false; 13177 } 13178 13179 if (NoUndef) { 13180 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 13181 return SDValue(); 13182 13183 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 13184 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 13185 return SDValue(); 13186 13187 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 13188 if (FirstElt < N0.getNumOperands()) 13189 Ops.push_back(N0.getOperand(FirstElt)); 13190 else 13191 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 13192 13193 } else if (AllUndef) { 13194 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 13195 } else { // Mixed with general masks and undefs, can't do optimization. 13196 return SDValue(); 13197 } 13198 } 13199 13200 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 13201 } 13202 13203 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 13204 EVT VT = N->getValueType(0); 13205 unsigned NumElts = VT.getVectorNumElements(); 13206 13207 SDValue N0 = N->getOperand(0); 13208 SDValue N1 = N->getOperand(1); 13209 13210 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 13211 13212 // Canonicalize shuffle undef, undef -> undef 13213 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) 13214 return DAG.getUNDEF(VT); 13215 13216 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13217 13218 // Canonicalize shuffle v, v -> v, undef 13219 if (N0 == N1) { 13220 SmallVector<int, 8> NewMask; 13221 for (unsigned i = 0; i != NumElts; ++i) { 13222 int Idx = SVN->getMaskElt(i); 13223 if (Idx >= (int)NumElts) Idx -= NumElts; 13224 NewMask.push_back(Idx); 13225 } 13226 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 13227 &NewMask[0]); 13228 } 13229 13230 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 13231 if (N0.getOpcode() == ISD::UNDEF) { 13232 SmallVector<int, 8> NewMask; 13233 for (unsigned i = 0; i != NumElts; ++i) { 13234 int Idx = SVN->getMaskElt(i); 13235 if (Idx >= 0) { 13236 if (Idx >= (int)NumElts) 13237 Idx -= NumElts; 13238 else 13239 Idx = -1; // remove reference to lhs 13240 } 13241 NewMask.push_back(Idx); 13242 } 13243 return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT), 13244 &NewMask[0]); 13245 } 13246 13247 // Remove references to rhs if it is undef 13248 if (N1.getOpcode() == ISD::UNDEF) { 13249 bool Changed = false; 13250 SmallVector<int, 8> NewMask; 13251 for (unsigned i = 0; i != NumElts; ++i) { 13252 int Idx = SVN->getMaskElt(i); 13253 if (Idx >= (int)NumElts) { 13254 Idx = -1; 13255 Changed = true; 13256 } 13257 NewMask.push_back(Idx); 13258 } 13259 if (Changed) 13260 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]); 13261 } 13262 13263 // If it is a splat, check if the argument vector is another splat or a 13264 // build_vector. 13265 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 13266 SDNode *V = N0.getNode(); 13267 13268 // If this is a bit convert that changes the element type of the vector but 13269 // not the number of vector elements, look through it. Be careful not to 13270 // look though conversions that change things like v4f32 to v2f64. 13271 if (V->getOpcode() == ISD::BITCAST) { 13272 SDValue ConvInput = V->getOperand(0); 13273 if (ConvInput.getValueType().isVector() && 13274 ConvInput.getValueType().getVectorNumElements() == NumElts) 13275 V = ConvInput.getNode(); 13276 } 13277 13278 if (V->getOpcode() == ISD::BUILD_VECTOR) { 13279 assert(V->getNumOperands() == NumElts && 13280 "BUILD_VECTOR has wrong number of operands"); 13281 SDValue Base; 13282 bool AllSame = true; 13283 for (unsigned i = 0; i != NumElts; ++i) { 13284 if (V->getOperand(i).getOpcode() != ISD::UNDEF) { 13285 Base = V->getOperand(i); 13286 break; 13287 } 13288 } 13289 // Splat of <u, u, u, u>, return <u, u, u, u> 13290 if (!Base.getNode()) 13291 return N0; 13292 for (unsigned i = 0; i != NumElts; ++i) { 13293 if (V->getOperand(i) != Base) { 13294 AllSame = false; 13295 break; 13296 } 13297 } 13298 // Splat of <x, x, x, x>, return <x, x, x, x> 13299 if (AllSame) 13300 return N0; 13301 13302 // Canonicalize any other splat as a build_vector. 13303 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); 13304 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 13305 SDValue NewBV = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), 13306 V->getValueType(0), Ops); 13307 13308 // We may have jumped through bitcasts, so the type of the 13309 // BUILD_VECTOR may not match the type of the shuffle. 13310 if (V->getValueType(0) != VT) 13311 NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV); 13312 return NewBV; 13313 } 13314 } 13315 13316 // There are various patterns used to build up a vector from smaller vectors, 13317 // subvectors, or elements. Scan chains of these and replace unused insertions 13318 // or components with undef. 13319 if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) 13320 return S; 13321 13322 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13323 Level < AfterLegalizeVectorOps && 13324 (N1.getOpcode() == ISD::UNDEF || 13325 (N1.getOpcode() == ISD::CONCAT_VECTORS && 13326 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 13327 SDValue V = partitionShuffleOfConcats(N, DAG); 13328 13329 if (V.getNode()) 13330 return V; 13331 } 13332 13333 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 13334 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 13335 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 13336 SmallVector<SDValue, 8> Ops; 13337 for (int M : SVN->getMask()) { 13338 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 13339 if (M >= 0) { 13340 int Idx = M % NumElts; 13341 SDValue &S = (M < (int)NumElts ? N0 : N1); 13342 if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { 13343 Op = S.getOperand(Idx); 13344 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { 13345 if (Idx == 0) 13346 Op = S.getOperand(0); 13347 } else { 13348 // Operand can't be combined - bail out. 13349 break; 13350 } 13351 } 13352 Ops.push_back(Op); 13353 } 13354 if (Ops.size() == VT.getVectorNumElements()) { 13355 // BUILD_VECTOR requires all inputs to be of the same type, find the 13356 // maximum type and extend them all. 13357 EVT SVT = VT.getScalarType(); 13358 if (SVT.isInteger()) 13359 for (SDValue &Op : Ops) 13360 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 13361 if (SVT != VT.getScalarType()) 13362 for (SDValue &Op : Ops) 13363 Op = TLI.isZExtFree(Op.getValueType(), SVT) 13364 ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) 13365 : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); 13366 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Ops); 13367 } 13368 } 13369 13370 // If this shuffle only has a single input that is a bitcasted shuffle, 13371 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 13372 // back to their original types. 13373 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13374 N1.getOpcode() == ISD::UNDEF && Level < AfterLegalizeVectorOps && 13375 TLI.isTypeLegal(VT)) { 13376 13377 // Peek through the bitcast only if there is one user. 13378 SDValue BC0 = N0; 13379 while (BC0.getOpcode() == ISD::BITCAST) { 13380 if (!BC0.hasOneUse()) 13381 break; 13382 BC0 = BC0.getOperand(0); 13383 } 13384 13385 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 13386 if (Scale == 1) 13387 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 13388 13389 SmallVector<int, 8> NewMask; 13390 for (int M : Mask) 13391 for (int s = 0; s != Scale; ++s) 13392 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 13393 return NewMask; 13394 }; 13395 13396 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 13397 EVT SVT = VT.getScalarType(); 13398 EVT InnerVT = BC0->getValueType(0); 13399 EVT InnerSVT = InnerVT.getScalarType(); 13400 13401 // Determine which shuffle works with the smaller scalar type. 13402 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 13403 EVT ScaleSVT = ScaleVT.getScalarType(); 13404 13405 if (TLI.isTypeLegal(ScaleVT) && 13406 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 13407 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 13408 13409 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13410 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13411 13412 // Scale the shuffle masks to the smaller scalar type. 13413 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 13414 SmallVector<int, 8> InnerMask = 13415 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 13416 SmallVector<int, 8> OuterMask = 13417 ScaleShuffleMask(SVN->getMask(), OuterScale); 13418 13419 // Merge the shuffle masks. 13420 SmallVector<int, 8> NewMask; 13421 for (int M : OuterMask) 13422 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 13423 13424 // Test for shuffle mask legality over both commutations. 13425 SDValue SV0 = BC0->getOperand(0); 13426 SDValue SV1 = BC0->getOperand(1); 13427 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13428 if (!LegalMask) { 13429 std::swap(SV0, SV1); 13430 ShuffleVectorSDNode::commuteMask(NewMask); 13431 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13432 } 13433 13434 if (LegalMask) { 13435 SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0); 13436 SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1); 13437 return DAG.getNode( 13438 ISD::BITCAST, SDLoc(N), VT, 13439 DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 13440 } 13441 } 13442 } 13443 } 13444 13445 // Canonicalize shuffles according to rules: 13446 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 13447 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 13448 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 13449 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 13450 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 13451 TLI.isTypeLegal(VT)) { 13452 // The incoming shuffle must be of the same type as the result of the 13453 // current shuffle. 13454 assert(N1->getOperand(0).getValueType() == VT && 13455 "Shuffle types don't match"); 13456 13457 SDValue SV0 = N1->getOperand(0); 13458 SDValue SV1 = N1->getOperand(1); 13459 bool HasSameOp0 = N0 == SV0; 13460 bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF; 13461 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 13462 // Commute the operands of this shuffle so that next rule 13463 // will trigger. 13464 return DAG.getCommutedVectorShuffle(*SVN); 13465 } 13466 13467 // Try to fold according to rules: 13468 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13469 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13470 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13471 // Don't try to fold shuffles with illegal type. 13472 // Only fold if this shuffle is the only user of the other shuffle. 13473 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 13474 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 13475 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 13476 13477 // The incoming shuffle must be of the same type as the result of the 13478 // current shuffle. 13479 assert(OtherSV->getOperand(0).getValueType() == VT && 13480 "Shuffle types don't match"); 13481 13482 SDValue SV0, SV1; 13483 SmallVector<int, 4> Mask; 13484 // Compute the combined shuffle mask for a shuffle with SV0 as the first 13485 // operand, and SV1 as the second operand. 13486 for (unsigned i = 0; i != NumElts; ++i) { 13487 int Idx = SVN->getMaskElt(i); 13488 if (Idx < 0) { 13489 // Propagate Undef. 13490 Mask.push_back(Idx); 13491 continue; 13492 } 13493 13494 SDValue CurrentVec; 13495 if (Idx < (int)NumElts) { 13496 // This shuffle index refers to the inner shuffle N0. Lookup the inner 13497 // shuffle mask to identify which vector is actually referenced. 13498 Idx = OtherSV->getMaskElt(Idx); 13499 if (Idx < 0) { 13500 // Propagate Undef. 13501 Mask.push_back(Idx); 13502 continue; 13503 } 13504 13505 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 13506 : OtherSV->getOperand(1); 13507 } else { 13508 // This shuffle index references an element within N1. 13509 CurrentVec = N1; 13510 } 13511 13512 // Simple case where 'CurrentVec' is UNDEF. 13513 if (CurrentVec.getOpcode() == ISD::UNDEF) { 13514 Mask.push_back(-1); 13515 continue; 13516 } 13517 13518 // Canonicalize the shuffle index. We don't know yet if CurrentVec 13519 // will be the first or second operand of the combined shuffle. 13520 Idx = Idx % NumElts; 13521 if (!SV0.getNode() || SV0 == CurrentVec) { 13522 // Ok. CurrentVec is the left hand side. 13523 // Update the mask accordingly. 13524 SV0 = CurrentVec; 13525 Mask.push_back(Idx); 13526 continue; 13527 } 13528 13529 // Bail out if we cannot convert the shuffle pair into a single shuffle. 13530 if (SV1.getNode() && SV1 != CurrentVec) 13531 return SDValue(); 13532 13533 // Ok. CurrentVec is the right hand side. 13534 // Update the mask accordingly. 13535 SV1 = CurrentVec; 13536 Mask.push_back(Idx + NumElts); 13537 } 13538 13539 // Check if all indices in Mask are Undef. In case, propagate Undef. 13540 bool isUndefMask = true; 13541 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 13542 isUndefMask &= Mask[i] < 0; 13543 13544 if (isUndefMask) 13545 return DAG.getUNDEF(VT); 13546 13547 if (!SV0.getNode()) 13548 SV0 = DAG.getUNDEF(VT); 13549 if (!SV1.getNode()) 13550 SV1 = DAG.getUNDEF(VT); 13551 13552 // Avoid introducing shuffles with illegal mask. 13553 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 13554 ShuffleVectorSDNode::commuteMask(Mask); 13555 13556 if (!TLI.isShuffleMaskLegal(Mask, VT)) 13557 return SDValue(); 13558 13559 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 13560 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 13561 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 13562 std::swap(SV0, SV1); 13563 } 13564 13565 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13566 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13567 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13568 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]); 13569 } 13570 13571 return SDValue(); 13572 } 13573 13574 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 13575 SDValue InVal = N->getOperand(0); 13576 EVT VT = N->getValueType(0); 13577 13578 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 13579 // with a VECTOR_SHUFFLE. 13580 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13581 SDValue InVec = InVal->getOperand(0); 13582 SDValue EltNo = InVal->getOperand(1); 13583 13584 // FIXME: We could support implicit truncation if the shuffle can be 13585 // scaled to a smaller vector scalar type. 13586 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); 13587 if (C0 && VT == InVec.getValueType() && 13588 VT.getScalarType() == InVal.getValueType()) { 13589 SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); 13590 int Elt = C0->getZExtValue(); 13591 NewMask[0] = Elt; 13592 13593 if (TLI.isShuffleMaskLegal(NewMask, VT)) 13594 return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), 13595 NewMask); 13596 } 13597 } 13598 13599 return SDValue(); 13600 } 13601 13602 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 13603 SDValue N0 = N->getOperand(0); 13604 SDValue N2 = N->getOperand(2); 13605 13606 // If the input vector is a concatenation, and the insert replaces 13607 // one of the halves, we can optimize into a single concat_vectors. 13608 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13609 N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) { 13610 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 13611 EVT VT = N->getValueType(0); 13612 13613 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13614 // (concat_vectors Z, Y) 13615 if (InsIdx == 0) 13616 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 13617 N->getOperand(1), N0.getOperand(1)); 13618 13619 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13620 // (concat_vectors X, Z) 13621 if (InsIdx == VT.getVectorNumElements()/2) 13622 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 13623 N0.getOperand(0), N->getOperand(1)); 13624 } 13625 13626 return SDValue(); 13627 } 13628 13629 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 13630 SDValue N0 = N->getOperand(0); 13631 13632 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 13633 if (N0->getOpcode() == ISD::FP16_TO_FP) 13634 return N0->getOperand(0); 13635 13636 return SDValue(); 13637 } 13638 13639 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 13640 SDValue N0 = N->getOperand(0); 13641 13642 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 13643 if (N0->getOpcode() == ISD::AND) { 13644 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 13645 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 13646 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 13647 N0.getOperand(0)); 13648 } 13649 } 13650 13651 return SDValue(); 13652 } 13653 13654 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 13655 /// with the destination vector and a zero vector. 13656 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 13657 /// vector_shuffle V, Zero, <0, 4, 2, 4> 13658 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 13659 EVT VT = N->getValueType(0); 13660 SDValue LHS = N->getOperand(0); 13661 SDValue RHS = N->getOperand(1); 13662 SDLoc dl(N); 13663 13664 // Make sure we're not running after operation legalization where it 13665 // may have custom lowered the vector shuffles. 13666 if (LegalOperations) 13667 return SDValue(); 13668 13669 if (N->getOpcode() != ISD::AND) 13670 return SDValue(); 13671 13672 if (RHS.getOpcode() == ISD::BITCAST) 13673 RHS = RHS.getOperand(0); 13674 13675 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 13676 return SDValue(); 13677 13678 EVT RVT = RHS.getValueType(); 13679 unsigned NumElts = RHS.getNumOperands(); 13680 13681 // Attempt to create a valid clear mask, splitting the mask into 13682 // sub elements and checking to see if each is 13683 // all zeros or all ones - suitable for shuffle masking. 13684 auto BuildClearMask = [&](int Split) { 13685 int NumSubElts = NumElts * Split; 13686 int NumSubBits = RVT.getScalarSizeInBits() / Split; 13687 13688 SmallVector<int, 8> Indices; 13689 for (int i = 0; i != NumSubElts; ++i) { 13690 int EltIdx = i / Split; 13691 int SubIdx = i % Split; 13692 SDValue Elt = RHS.getOperand(EltIdx); 13693 if (Elt.getOpcode() == ISD::UNDEF) { 13694 Indices.push_back(-1); 13695 continue; 13696 } 13697 13698 APInt Bits; 13699 if (isa<ConstantSDNode>(Elt)) 13700 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 13701 else if (isa<ConstantFPSDNode>(Elt)) 13702 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 13703 else 13704 return SDValue(); 13705 13706 // Extract the sub element from the constant bit mask. 13707 if (DAG.getDataLayout().isBigEndian()) { 13708 Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); 13709 } else { 13710 Bits = Bits.lshr(SubIdx * NumSubBits); 13711 } 13712 13713 if (Split > 1) 13714 Bits = Bits.trunc(NumSubBits); 13715 13716 if (Bits.isAllOnesValue()) 13717 Indices.push_back(i); 13718 else if (Bits == 0) 13719 Indices.push_back(i + NumSubElts); 13720 else 13721 return SDValue(); 13722 } 13723 13724 // Let's see if the target supports this vector_shuffle. 13725 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 13726 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 13727 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 13728 return SDValue(); 13729 13730 SDValue Zero = DAG.getConstant(0, dl, ClearVT); 13731 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl, 13732 DAG.getBitcast(ClearVT, LHS), 13733 Zero, &Indices[0])); 13734 }; 13735 13736 // Determine maximum split level (byte level masking). 13737 int MaxSplit = 1; 13738 if (RVT.getScalarSizeInBits() % 8 == 0) 13739 MaxSplit = RVT.getScalarSizeInBits() / 8; 13740 13741 for (int Split = 1; Split <= MaxSplit; ++Split) 13742 if (RVT.getScalarSizeInBits() % Split == 0) 13743 if (SDValue S = BuildClearMask(Split)) 13744 return S; 13745 13746 return SDValue(); 13747 } 13748 13749 /// Visit a binary vector operation, like ADD. 13750 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 13751 assert(N->getValueType(0).isVector() && 13752 "SimplifyVBinOp only works on vectors!"); 13753 13754 SDValue LHS = N->getOperand(0); 13755 SDValue RHS = N->getOperand(1); 13756 SDValue Ops[] = {LHS, RHS}; 13757 13758 // See if we can constant fold the vector operation. 13759 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 13760 N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 13761 return Fold; 13762 13763 // Try to convert a constant mask AND into a shuffle clear mask. 13764 if (SDValue Shuffle = XformToShuffleWithZero(N)) 13765 return Shuffle; 13766 13767 // Type legalization might introduce new shuffles in the DAG. 13768 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 13769 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 13770 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 13771 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 13772 LHS.getOperand(1).getOpcode() == ISD::UNDEF && 13773 RHS.getOperand(1).getOpcode() == ISD::UNDEF) { 13774 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 13775 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 13776 13777 if (SVN0->getMask().equals(SVN1->getMask())) { 13778 EVT VT = N->getValueType(0); 13779 SDValue UndefVector = LHS.getOperand(1); 13780 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 13781 LHS.getOperand(0), RHS.getOperand(0), 13782 N->getFlags()); 13783 AddUsersToWorklist(N); 13784 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 13785 &SVN0->getMask()[0]); 13786 } 13787 } 13788 13789 return SDValue(); 13790 } 13791 13792 SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0, 13793 SDValue N1, SDValue N2){ 13794 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 13795 13796 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 13797 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 13798 13799 // If we got a simplified select_cc node back from SimplifySelectCC, then 13800 // break it down into a new SETCC node, and a new SELECT node, and then return 13801 // the SELECT node, since we were called with a SELECT node. 13802 if (SCC.getNode()) { 13803 // Check to see if we got a select_cc back (to turn into setcc/select). 13804 // Otherwise, just return whatever node we got back, like fabs. 13805 if (SCC.getOpcode() == ISD::SELECT_CC) { 13806 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 13807 N0.getValueType(), 13808 SCC.getOperand(0), SCC.getOperand(1), 13809 SCC.getOperand(4)); 13810 AddToWorklist(SETCC.getNode()); 13811 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 13812 SCC.getOperand(2), SCC.getOperand(3)); 13813 } 13814 13815 return SCC; 13816 } 13817 return SDValue(); 13818 } 13819 13820 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 13821 /// being selected between, see if we can simplify the select. Callers of this 13822 /// should assume that TheSelect is deleted if this returns true. As such, they 13823 /// should return the appropriate thing (e.g. the node) back to the top-level of 13824 /// the DAG combiner loop to avoid it being looked at. 13825 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 13826 SDValue RHS) { 13827 13828 // fold (select (setcc x, -0.0, *lt), NaN, (fsqrt x)) 13829 // The select + setcc is redundant, because fsqrt returns NaN for X < -0. 13830 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 13831 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 13832 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 13833 SDValue Sqrt = RHS; 13834 ISD::CondCode CC; 13835 SDValue CmpLHS; 13836 const ConstantFPSDNode *NegZero = nullptr; 13837 13838 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 13839 CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 13840 CmpLHS = TheSelect->getOperand(0); 13841 NegZero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 13842 } else { 13843 // SELECT or VSELECT 13844 SDValue Cmp = TheSelect->getOperand(0); 13845 if (Cmp.getOpcode() == ISD::SETCC) { 13846 CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 13847 CmpLHS = Cmp.getOperand(0); 13848 NegZero = isConstOrConstSplatFP(Cmp.getOperand(1)); 13849 } 13850 } 13851 if (NegZero && NegZero->isNegative() && NegZero->isZero() && 13852 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 13853 CC == ISD::SETULT || CC == ISD::SETLT)) { 13854 // We have: (select (setcc x, -0.0, *lt), NaN, (fsqrt x)) 13855 CombineTo(TheSelect, Sqrt); 13856 return true; 13857 } 13858 } 13859 } 13860 // Cannot simplify select with vector condition 13861 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 13862 13863 // If this is a select from two identical things, try to pull the operation 13864 // through the select. 13865 if (LHS.getOpcode() != RHS.getOpcode() || 13866 !LHS.hasOneUse() || !RHS.hasOneUse()) 13867 return false; 13868 13869 // If this is a load and the token chain is identical, replace the select 13870 // of two loads with a load through a select of the address to load from. 13871 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 13872 // constants have been dropped into the constant pool. 13873 if (LHS.getOpcode() == ISD::LOAD) { 13874 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 13875 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 13876 13877 // Token chains must be identical. 13878 if (LHS.getOperand(0) != RHS.getOperand(0) || 13879 // Do not let this transformation reduce the number of volatile loads. 13880 LLD->isVolatile() || RLD->isVolatile() || 13881 // FIXME: If either is a pre/post inc/dec load, 13882 // we'd need to split out the address adjustment. 13883 LLD->isIndexed() || RLD->isIndexed() || 13884 // If this is an EXTLOAD, the VT's must match. 13885 LLD->getMemoryVT() != RLD->getMemoryVT() || 13886 // If this is an EXTLOAD, the kind of extension must match. 13887 (LLD->getExtensionType() != RLD->getExtensionType() && 13888 // The only exception is if one of the extensions is anyext. 13889 LLD->getExtensionType() != ISD::EXTLOAD && 13890 RLD->getExtensionType() != ISD::EXTLOAD) || 13891 // FIXME: this discards src value information. This is 13892 // over-conservative. It would be beneficial to be able to remember 13893 // both potential memory locations. Since we are discarding 13894 // src value info, don't do the transformation if the memory 13895 // locations are not in the default address space. 13896 LLD->getPointerInfo().getAddrSpace() != 0 || 13897 RLD->getPointerInfo().getAddrSpace() != 0 || 13898 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 13899 LLD->getBasePtr().getValueType())) 13900 return false; 13901 13902 // Check that the select condition doesn't reach either load. If so, 13903 // folding this will induce a cycle into the DAG. If not, this is safe to 13904 // xform, so create a select of the addresses. 13905 SDValue Addr; 13906 if (TheSelect->getOpcode() == ISD::SELECT) { 13907 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 13908 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 13909 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 13910 return false; 13911 // The loads must not depend on one another. 13912 if (LLD->isPredecessorOf(RLD) || 13913 RLD->isPredecessorOf(LLD)) 13914 return false; 13915 Addr = DAG.getSelect(SDLoc(TheSelect), 13916 LLD->getBasePtr().getValueType(), 13917 TheSelect->getOperand(0), LLD->getBasePtr(), 13918 RLD->getBasePtr()); 13919 } else { // Otherwise SELECT_CC 13920 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 13921 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 13922 13923 if ((LLD->hasAnyUseOfValue(1) && 13924 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 13925 (RLD->hasAnyUseOfValue(1) && 13926 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 13927 return false; 13928 13929 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 13930 LLD->getBasePtr().getValueType(), 13931 TheSelect->getOperand(0), 13932 TheSelect->getOperand(1), 13933 LLD->getBasePtr(), RLD->getBasePtr(), 13934 TheSelect->getOperand(4)); 13935 } 13936 13937 SDValue Load; 13938 // It is safe to replace the two loads if they have different alignments, 13939 // but the new load must be the minimum (most restrictive) alignment of the 13940 // inputs. 13941 bool isInvariant = LLD->isInvariant() & RLD->isInvariant(); 13942 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 13943 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 13944 Load = DAG.getLoad(TheSelect->getValueType(0), 13945 SDLoc(TheSelect), 13946 // FIXME: Discards pointer and AA info. 13947 LLD->getChain(), Addr, MachinePointerInfo(), 13948 LLD->isVolatile(), LLD->isNonTemporal(), 13949 isInvariant, Alignment); 13950 } else { 13951 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? 13952 RLD->getExtensionType() : LLD->getExtensionType(), 13953 SDLoc(TheSelect), 13954 TheSelect->getValueType(0), 13955 // FIXME: Discards pointer and AA info. 13956 LLD->getChain(), Addr, MachinePointerInfo(), 13957 LLD->getMemoryVT(), LLD->isVolatile(), 13958 LLD->isNonTemporal(), isInvariant, Alignment); 13959 } 13960 13961 // Users of the select now use the result of the load. 13962 CombineTo(TheSelect, Load); 13963 13964 // Users of the old loads now use the new load's chain. We know the 13965 // old-load value is dead now. 13966 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 13967 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 13968 return true; 13969 } 13970 13971 return false; 13972 } 13973 13974 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 13975 /// where 'cond' is the comparison specified by CC. 13976 SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, 13977 SDValue N2, SDValue N3, 13978 ISD::CondCode CC, bool NotExtCompare) { 13979 // (x ? y : y) -> y. 13980 if (N2 == N3) return N2; 13981 13982 EVT VT = N2.getValueType(); 13983 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 13984 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 13985 13986 // Determine if the condition we're dealing with is constant 13987 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 13988 N0, N1, CC, DL, false); 13989 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 13990 13991 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { 13992 // fold select_cc true, x, y -> x 13993 // fold select_cc false, x, y -> y 13994 return !SCCC->isNullValue() ? N2 : N3; 13995 } 13996 13997 // Check to see if we can simplify the select into an fabs node 13998 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 13999 // Allow either -0.0 or 0.0 14000 if (CFP->isZero()) { 14001 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 14002 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 14003 N0 == N2 && N3.getOpcode() == ISD::FNEG && 14004 N2 == N3.getOperand(0)) 14005 return DAG.getNode(ISD::FABS, DL, VT, N0); 14006 14007 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 14008 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 14009 N0 == N3 && N2.getOpcode() == ISD::FNEG && 14010 N2.getOperand(0) == N3) 14011 return DAG.getNode(ISD::FABS, DL, VT, N3); 14012 } 14013 } 14014 14015 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 14016 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 14017 // in it. This is a win when the constant is not otherwise available because 14018 // it replaces two constant pool loads with one. We only do this if the FP 14019 // type is known to be legal, because if it isn't, then we are before legalize 14020 // types an we want the other legalization to happen first (e.g. to avoid 14021 // messing with soft float) and if the ConstantFP is not legal, because if 14022 // it is legal, we may not need to store the FP constant in a constant pool. 14023 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 14024 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 14025 if (TLI.isTypeLegal(N2.getValueType()) && 14026 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 14027 TargetLowering::Legal && 14028 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 14029 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 14030 // If both constants have multiple uses, then we won't need to do an 14031 // extra load, they are likely around in registers for other users. 14032 (TV->hasOneUse() || FV->hasOneUse())) { 14033 Constant *Elts[] = { 14034 const_cast<ConstantFP*>(FV->getConstantFPValue()), 14035 const_cast<ConstantFP*>(TV->getConstantFPValue()) 14036 }; 14037 Type *FPTy = Elts[0]->getType(); 14038 const DataLayout &TD = DAG.getDataLayout(); 14039 14040 // Create a ConstantArray of the two constants. 14041 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 14042 SDValue CPIdx = 14043 DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 14044 TD.getPrefTypeAlignment(FPTy)); 14045 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 14046 14047 // Get the offsets to the 0 and 1 element of the array so that we can 14048 // select between them. 14049 SDValue Zero = DAG.getIntPtrConstant(0, DL); 14050 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 14051 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 14052 14053 SDValue Cond = DAG.getSetCC(DL, 14054 getSetCCResultType(N0.getValueType()), 14055 N0, N1, CC); 14056 AddToWorklist(Cond.getNode()); 14057 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 14058 Cond, One, Zero); 14059 AddToWorklist(CstOffset.getNode()); 14060 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 14061 CstOffset); 14062 AddToWorklist(CPIdx.getNode()); 14063 return DAG.getLoad( 14064 TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 14065 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 14066 false, false, false, Alignment); 14067 } 14068 } 14069 14070 // Check to see if we can perform the "gzip trick", transforming 14071 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 14072 if (isNullConstant(N3) && CC == ISD::SETLT && 14073 (isNullConstant(N1) || // (a < 0) ? b : 0 14074 (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0 14075 EVT XType = N0.getValueType(); 14076 EVT AType = N2.getValueType(); 14077 if (XType.bitsGE(AType)) { 14078 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 14079 // single-bit constant. 14080 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 14081 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 14082 ShCtV = XType.getSizeInBits() - ShCtV - 1; 14083 SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), 14084 getShiftAmountTy(N0.getValueType())); 14085 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 14086 XType, N0, ShCt); 14087 AddToWorklist(Shift.getNode()); 14088 14089 if (XType.bitsGT(AType)) { 14090 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14091 AddToWorklist(Shift.getNode()); 14092 } 14093 14094 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14095 } 14096 14097 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 14098 XType, N0, 14099 DAG.getConstant(XType.getSizeInBits() - 1, 14100 SDLoc(N0), 14101 getShiftAmountTy(N0.getValueType()))); 14102 AddToWorklist(Shift.getNode()); 14103 14104 if (XType.bitsGT(AType)) { 14105 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14106 AddToWorklist(Shift.getNode()); 14107 } 14108 14109 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14110 } 14111 } 14112 14113 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 14114 // where y is has a single bit set. 14115 // A plaintext description would be, we can turn the SELECT_CC into an AND 14116 // when the condition can be materialized as an all-ones register. Any 14117 // single bit-test can be materialized as an all-ones register with 14118 // shift-left and shift-right-arith. 14119 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 14120 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 14121 SDValue AndLHS = N0->getOperand(0); 14122 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 14123 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 14124 // Shift the tested bit over the sign bit. 14125 APInt AndMask = ConstAndRHS->getAPIntValue(); 14126 SDValue ShlAmt = 14127 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 14128 getShiftAmountTy(AndLHS.getValueType())); 14129 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 14130 14131 // Now arithmetic right shift it all the way over, so the result is either 14132 // all-ones, or zero. 14133 SDValue ShrAmt = 14134 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 14135 getShiftAmountTy(Shl.getValueType())); 14136 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 14137 14138 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 14139 } 14140 } 14141 14142 // fold select C, 16, 0 -> shl C, 4 14143 if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && 14144 TLI.getBooleanContents(N0.getValueType()) == 14145 TargetLowering::ZeroOrOneBooleanContent) { 14146 14147 // If the caller doesn't want us to simplify this into a zext of a compare, 14148 // don't do it. 14149 if (NotExtCompare && N2C->isOne()) 14150 return SDValue(); 14151 14152 // Get a SetCC of the condition 14153 // NOTE: Don't create a SETCC if it's not legal on this target. 14154 if (!LegalOperations || 14155 TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { 14156 SDValue Temp, SCC; 14157 // cast from setcc result type to select result type 14158 if (LegalTypes) { 14159 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 14160 N0, N1, CC); 14161 if (N2.getValueType().bitsLT(SCC.getValueType())) 14162 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 14163 N2.getValueType()); 14164 else 14165 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14166 N2.getValueType(), SCC); 14167 } else { 14168 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 14169 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14170 N2.getValueType(), SCC); 14171 } 14172 14173 AddToWorklist(SCC.getNode()); 14174 AddToWorklist(Temp.getNode()); 14175 14176 if (N2C->isOne()) 14177 return Temp; 14178 14179 // shl setcc result by log2 n2c 14180 return DAG.getNode( 14181 ISD::SHL, DL, N2.getValueType(), Temp, 14182 DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), 14183 getShiftAmountTy(Temp.getValueType()))); 14184 } 14185 } 14186 14187 // Check to see if this is an integer abs. 14188 // select_cc setg[te] X, 0, X, -X -> 14189 // select_cc setgt X, -1, X, -X -> 14190 // select_cc setl[te] X, 0, -X, X -> 14191 // select_cc setlt X, 1, -X, X -> 14192 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 14193 if (N1C) { 14194 ConstantSDNode *SubC = nullptr; 14195 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 14196 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 14197 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 14198 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 14199 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 14200 (N1C->isOne() && CC == ISD::SETLT)) && 14201 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 14202 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 14203 14204 EVT XType = N0.getValueType(); 14205 if (SubC && SubC->isNullValue() && XType.isInteger()) { 14206 SDLoc DL(N0); 14207 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, 14208 N0, 14209 DAG.getConstant(XType.getSizeInBits() - 1, DL, 14210 getShiftAmountTy(N0.getValueType()))); 14211 SDValue Add = DAG.getNode(ISD::ADD, DL, 14212 XType, N0, Shift); 14213 AddToWorklist(Shift.getNode()); 14214 AddToWorklist(Add.getNode()); 14215 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 14216 } 14217 } 14218 14219 return SDValue(); 14220 } 14221 14222 /// This is a stub for TargetLowering::SimplifySetCC. 14223 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, 14224 SDValue N1, ISD::CondCode Cond, 14225 SDLoc DL, bool foldBooleans) { 14226 TargetLowering::DAGCombinerInfo 14227 DagCombineInfo(DAG, Level, false, this); 14228 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 14229 } 14230 14231 /// Given an ISD::SDIV node expressing a divide by constant, return 14232 /// a DAG expression to select that will generate the same value by multiplying 14233 /// by a magic number. 14234 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14235 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 14236 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14237 if (!C) 14238 return SDValue(); 14239 14240 // Avoid division by zero. 14241 if (C->isNullValue()) 14242 return SDValue(); 14243 14244 std::vector<SDNode*> Built; 14245 SDValue S = 14246 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14247 14248 for (SDNode *N : Built) 14249 AddToWorklist(N); 14250 return S; 14251 } 14252 14253 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 14254 /// DAG expression that will generate the same value by right shifting. 14255 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 14256 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14257 if (!C) 14258 return SDValue(); 14259 14260 // Avoid division by zero. 14261 if (C->isNullValue()) 14262 return SDValue(); 14263 14264 std::vector<SDNode *> Built; 14265 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 14266 14267 for (SDNode *N : Built) 14268 AddToWorklist(N); 14269 return S; 14270 } 14271 14272 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 14273 /// expression that will generate the same value by multiplying by a magic 14274 /// number. 14275 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14276 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 14277 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14278 if (!C) 14279 return SDValue(); 14280 14281 // Avoid division by zero. 14282 if (C->isNullValue()) 14283 return SDValue(); 14284 14285 std::vector<SDNode*> Built; 14286 SDValue S = 14287 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14288 14289 for (SDNode *N : Built) 14290 AddToWorklist(N); 14291 return S; 14292 } 14293 14294 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { 14295 if (Level >= AfterLegalizeDAG) 14296 return SDValue(); 14297 14298 // Expose the DAG combiner to the target combiner implementations. 14299 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14300 14301 unsigned Iterations = 0; 14302 if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { 14303 if (Iterations) { 14304 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14305 // For the reciprocal, we need to find the zero of the function: 14306 // F(X) = A X - 1 [which has a zero at X = 1/A] 14307 // => 14308 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 14309 // does not require additional intermediate precision] 14310 EVT VT = Op.getValueType(); 14311 SDLoc DL(Op); 14312 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14313 14314 AddToWorklist(Est.getNode()); 14315 14316 // Newton iterations: Est = Est + Est (1 - Arg * Est) 14317 for (unsigned i = 0; i < Iterations; ++i) { 14318 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 14319 AddToWorklist(NewEst.getNode()); 14320 14321 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 14322 AddToWorklist(NewEst.getNode()); 14323 14324 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14325 AddToWorklist(NewEst.getNode()); 14326 14327 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 14328 AddToWorklist(Est.getNode()); 14329 } 14330 } 14331 return Est; 14332 } 14333 14334 return SDValue(); 14335 } 14336 14337 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14338 /// For the reciprocal sqrt, we need to find the zero of the function: 14339 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14340 /// => 14341 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 14342 /// As a result, we precompute A/2 prior to the iteration loop. 14343 SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est, 14344 unsigned Iterations, 14345 SDNodeFlags *Flags) { 14346 EVT VT = Arg.getValueType(); 14347 SDLoc DL(Arg); 14348 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 14349 14350 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 14351 // this entire sequence requires only one FP constant. 14352 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 14353 AddToWorklist(HalfArg.getNode()); 14354 14355 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 14356 AddToWorklist(HalfArg.getNode()); 14357 14358 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 14359 for (unsigned i = 0; i < Iterations; ++i) { 14360 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14361 AddToWorklist(NewEst.getNode()); 14362 14363 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 14364 AddToWorklist(NewEst.getNode()); 14365 14366 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 14367 AddToWorklist(NewEst.getNode()); 14368 14369 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14370 AddToWorklist(Est.getNode()); 14371 } 14372 return Est; 14373 } 14374 14375 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14376 /// For the reciprocal sqrt, we need to find the zero of the function: 14377 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14378 /// => 14379 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 14380 SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est, 14381 unsigned Iterations, 14382 SDNodeFlags *Flags) { 14383 EVT VT = Arg.getValueType(); 14384 SDLoc DL(Arg); 14385 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 14386 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 14387 14388 // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est) 14389 for (unsigned i = 0; i < Iterations; ++i) { 14390 SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 14391 AddToWorklist(HalfEst.getNode()); 14392 14393 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14394 AddToWorklist(Est.getNode()); 14395 14396 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 14397 AddToWorklist(Est.getNode()); 14398 14399 Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags); 14400 AddToWorklist(Est.getNode()); 14401 14402 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags); 14403 AddToWorklist(Est.getNode()); 14404 } 14405 return Est; 14406 } 14407 14408 SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 14409 if (Level >= AfterLegalizeDAG) 14410 return SDValue(); 14411 14412 // Expose the DAG combiner to the target combiner implementations. 14413 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14414 unsigned Iterations = 0; 14415 bool UseOneConstNR = false; 14416 if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { 14417 AddToWorklist(Est.getNode()); 14418 if (Iterations) { 14419 Est = UseOneConstNR ? 14420 BuildRsqrtNROneConst(Op, Est, Iterations, Flags) : 14421 BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags); 14422 } 14423 return Est; 14424 } 14425 14426 return SDValue(); 14427 } 14428 14429 /// Return true if base is a frame index, which is known not to alias with 14430 /// anything but itself. Provides base object and offset as results. 14431 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 14432 const GlobalValue *&GV, const void *&CV) { 14433 // Assume it is a primitive operation. 14434 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 14435 14436 // If it's an adding a simple constant then integrate the offset. 14437 if (Base.getOpcode() == ISD::ADD) { 14438 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 14439 Base = Base.getOperand(0); 14440 Offset += C->getZExtValue(); 14441 } 14442 } 14443 14444 // Return the underlying GlobalValue, and update the Offset. Return false 14445 // for GlobalAddressSDNode since the same GlobalAddress may be represented 14446 // by multiple nodes with different offsets. 14447 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 14448 GV = G->getGlobal(); 14449 Offset += G->getOffset(); 14450 return false; 14451 } 14452 14453 // Return the underlying Constant value, and update the Offset. Return false 14454 // for ConstantSDNodes since the same constant pool entry may be represented 14455 // by multiple nodes with different offsets. 14456 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 14457 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 14458 : (const void *)C->getConstVal(); 14459 Offset += C->getOffset(); 14460 return false; 14461 } 14462 // If it's any of the following then it can't alias with anything but itself. 14463 return isa<FrameIndexSDNode>(Base); 14464 } 14465 14466 /// Return true if there is any possibility that the two addresses overlap. 14467 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 14468 // If they are the same then they must be aliases. 14469 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 14470 14471 // If they are both volatile then they cannot be reordered. 14472 if (Op0->isVolatile() && Op1->isVolatile()) return true; 14473 14474 // If one operation reads from invariant memory, and the other may store, they 14475 // cannot alias. These should really be checking the equivalent of mayWrite, 14476 // but it only matters for memory nodes other than load /store. 14477 if (Op0->isInvariant() && Op1->writeMem()) 14478 return false; 14479 14480 if (Op1->isInvariant() && Op0->writeMem()) 14481 return false; 14482 14483 // Gather base node and offset information. 14484 SDValue Base1, Base2; 14485 int64_t Offset1, Offset2; 14486 const GlobalValue *GV1, *GV2; 14487 const void *CV1, *CV2; 14488 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 14489 Base1, Offset1, GV1, CV1); 14490 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 14491 Base2, Offset2, GV2, CV2); 14492 14493 // If they have a same base address then check to see if they overlap. 14494 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 14495 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14496 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14497 14498 // It is possible for different frame indices to alias each other, mostly 14499 // when tail call optimization reuses return address slots for arguments. 14500 // To catch this case, look up the actual index of frame indices to compute 14501 // the real alias relationship. 14502 if (isFrameIndex1 && isFrameIndex2) { 14503 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 14504 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 14505 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 14506 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14507 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14508 } 14509 14510 // Otherwise, if we know what the bases are, and they aren't identical, then 14511 // we know they cannot alias. 14512 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 14513 return false; 14514 14515 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 14516 // compared to the size and offset of the access, we may be able to prove they 14517 // do not alias. This check is conservative for now to catch cases created by 14518 // splitting vector types. 14519 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 14520 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 14521 (Op0->getMemoryVT().getSizeInBits() >> 3 == 14522 Op1->getMemoryVT().getSizeInBits() >> 3) && 14523 (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) { 14524 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 14525 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 14526 14527 // There is no overlap between these relatively aligned accesses of similar 14528 // size, return no alias. 14529 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 14530 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 14531 return false; 14532 } 14533 14534 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 14535 ? CombinerGlobalAA 14536 : DAG.getSubtarget().useAA(); 14537 #ifndef NDEBUG 14538 if (CombinerAAOnlyFunc.getNumOccurrences() && 14539 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 14540 UseAA = false; 14541 #endif 14542 if (UseAA && 14543 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 14544 // Use alias analysis information. 14545 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 14546 Op1->getSrcValueOffset()); 14547 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 14548 Op0->getSrcValueOffset() - MinOffset; 14549 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 14550 Op1->getSrcValueOffset() - MinOffset; 14551 AliasResult AAResult = 14552 AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, 14553 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 14554 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, 14555 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 14556 if (AAResult == NoAlias) 14557 return false; 14558 } 14559 14560 // Otherwise we have to assume they alias. 14561 return true; 14562 } 14563 14564 /// Walk up chain skipping non-aliasing memory nodes, 14565 /// looking for aliasing nodes and adding them to the Aliases vector. 14566 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 14567 SmallVectorImpl<SDValue> &Aliases) { 14568 SmallVector<SDValue, 8> Chains; // List of chains to visit. 14569 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 14570 14571 // Get alias information for node. 14572 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 14573 14574 // Starting off. 14575 Chains.push_back(OriginalChain); 14576 unsigned Depth = 0; 14577 14578 // Look at each chain and determine if it is an alias. If so, add it to the 14579 // aliases list. If not, then continue up the chain looking for the next 14580 // candidate. 14581 while (!Chains.empty()) { 14582 SDValue Chain = Chains.pop_back_val(); 14583 14584 // For TokenFactor nodes, look at each operand and only continue up the 14585 // chain until we reach the depth limit. 14586 // 14587 // FIXME: The depth check could be made to return the last non-aliasing 14588 // chain we found before we hit a tokenfactor rather than the original 14589 // chain. 14590 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 14591 Aliases.clear(); 14592 Aliases.push_back(OriginalChain); 14593 return; 14594 } 14595 14596 // Don't bother if we've been before. 14597 if (!Visited.insert(Chain.getNode()).second) 14598 continue; 14599 14600 switch (Chain.getOpcode()) { 14601 case ISD::EntryToken: 14602 // Entry token is ideal chain operand, but handled in FindBetterChain. 14603 break; 14604 14605 case ISD::LOAD: 14606 case ISD::STORE: { 14607 // Get alias information for Chain. 14608 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 14609 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 14610 14611 // If chain is alias then stop here. 14612 if (!(IsLoad && IsOpLoad) && 14613 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 14614 Aliases.push_back(Chain); 14615 } else { 14616 // Look further up the chain. 14617 Chains.push_back(Chain.getOperand(0)); 14618 ++Depth; 14619 } 14620 break; 14621 } 14622 14623 case ISD::TokenFactor: 14624 // We have to check each of the operands of the token factor for "small" 14625 // token factors, so we queue them up. Adding the operands to the queue 14626 // (stack) in reverse order maintains the original order and increases the 14627 // likelihood that getNode will find a matching token factor (CSE.) 14628 if (Chain.getNumOperands() > 16) { 14629 Aliases.push_back(Chain); 14630 break; 14631 } 14632 for (unsigned n = Chain.getNumOperands(); n;) 14633 Chains.push_back(Chain.getOperand(--n)); 14634 ++Depth; 14635 break; 14636 14637 default: 14638 // For all other instructions we will just have to take what we can get. 14639 Aliases.push_back(Chain); 14640 break; 14641 } 14642 } 14643 14644 // We need to be careful here to also search for aliases through the 14645 // value operand of a store, etc. Consider the following situation: 14646 // Token1 = ... 14647 // L1 = load Token1, %52 14648 // S1 = store Token1, L1, %51 14649 // L2 = load Token1, %52+8 14650 // S2 = store Token1, L2, %51+8 14651 // Token2 = Token(S1, S2) 14652 // L3 = load Token2, %53 14653 // S3 = store Token2, L3, %52 14654 // L4 = load Token2, %53+8 14655 // S4 = store Token2, L4, %52+8 14656 // If we search for aliases of S3 (which loads address %52), and we look 14657 // only through the chain, then we'll miss the trivial dependence on L1 14658 // (which also loads from %52). We then might change all loads and 14659 // stores to use Token1 as their chain operand, which could result in 14660 // copying %53 into %52 before copying %52 into %51 (which should 14661 // happen first). 14662 // 14663 // The problem is, however, that searching for such data dependencies 14664 // can become expensive, and the cost is not directly related to the 14665 // chain depth. Instead, we'll rule out such configurations here by 14666 // insisting that we've visited all chain users (except for users 14667 // of the original chain, which is not necessary). When doing this, 14668 // we need to look through nodes we don't care about (otherwise, things 14669 // like register copies will interfere with trivial cases). 14670 14671 SmallVector<const SDNode *, 16> Worklist; 14672 for (const SDNode *N : Visited) 14673 if (N != OriginalChain.getNode()) 14674 Worklist.push_back(N); 14675 14676 while (!Worklist.empty()) { 14677 const SDNode *M = Worklist.pop_back_val(); 14678 14679 // We have already visited M, and want to make sure we've visited any uses 14680 // of M that we care about. For uses that we've not visisted, and don't 14681 // care about, queue them to the worklist. 14682 14683 for (SDNode::use_iterator UI = M->use_begin(), 14684 UIE = M->use_end(); UI != UIE; ++UI) 14685 if (UI.getUse().getValueType() == MVT::Other && 14686 Visited.insert(*UI).second) { 14687 if (isa<MemSDNode>(*UI)) { 14688 // We've not visited this use, and we care about it (it could have an 14689 // ordering dependency with the original node). 14690 Aliases.clear(); 14691 Aliases.push_back(OriginalChain); 14692 return; 14693 } 14694 14695 // We've not visited this use, but we don't care about it. Mark it as 14696 // visited and enqueue it to the worklist. 14697 Worklist.push_back(*UI); 14698 } 14699 } 14700 } 14701 14702 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 14703 /// (aliasing node.) 14704 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 14705 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 14706 14707 // Accumulate all the aliases to this node. 14708 GatherAllAliases(N, OldChain, Aliases); 14709 14710 // If no operands then chain to entry token. 14711 if (Aliases.size() == 0) 14712 return DAG.getEntryNode(); 14713 14714 // If a single operand then chain to it. We don't need to revisit it. 14715 if (Aliases.size() == 1) 14716 return Aliases[0]; 14717 14718 // Construct a custom tailored token factor. 14719 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 14720 } 14721 14722 bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) { 14723 // This holds the base pointer, index, and the offset in bytes from the base 14724 // pointer. 14725 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr()); 14726 14727 // We must have a base and an offset. 14728 if (!BasePtr.Base.getNode()) 14729 return false; 14730 14731 // Do not handle stores to undef base pointers. 14732 if (BasePtr.Base.getOpcode() == ISD::UNDEF) 14733 return false; 14734 14735 SmallVector<StoreSDNode *, 8> ChainedStores; 14736 ChainedStores.push_back(St); 14737 14738 // Walk up the chain and look for nodes with offsets from the same 14739 // base pointer. Stop when reaching an instruction with a different kind 14740 // or instruction which has a different base pointer. 14741 StoreSDNode *Index = St; 14742 while (Index) { 14743 // If the chain has more than one use, then we can't reorder the mem ops. 14744 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 14745 break; 14746 14747 if (Index->isVolatile() || Index->isIndexed()) 14748 break; 14749 14750 // Find the base pointer and offset for this memory node. 14751 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr()); 14752 14753 // Check that the base pointer is the same as the original one. 14754 if (!Ptr.equalBaseIndex(BasePtr)) 14755 break; 14756 14757 // Find the next memory operand in the chain. If the next operand in the 14758 // chain is a store then move up and continue the scan with the next 14759 // memory operand. If the next operand is a load save it and use alias 14760 // information to check if it interferes with anything. 14761 SDNode *NextInChain = Index->getChain().getNode(); 14762 while (true) { 14763 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 14764 // We found a store node. Use it for the next iteration. 14765 if (STn->isVolatile() || STn->isIndexed()) { 14766 Index = nullptr; 14767 break; 14768 } 14769 ChainedStores.push_back(STn); 14770 Index = STn; 14771 break; 14772 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 14773 NextInChain = Ldn->getChain().getNode(); 14774 continue; 14775 } else { 14776 Index = nullptr; 14777 break; 14778 } 14779 } 14780 } 14781 14782 bool MadeChange = false; 14783 SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; 14784 14785 for (StoreSDNode *ChainedStore : ChainedStores) { 14786 SDValue Chain = ChainedStore->getChain(); 14787 SDValue BetterChain = FindBetterChain(ChainedStore, Chain); 14788 14789 if (Chain != BetterChain) { 14790 MadeChange = true; 14791 BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); 14792 } 14793 } 14794 14795 // Do all replacements after finding the replacements to make to avoid making 14796 // the chains more complicated by introducing new TokenFactors. 14797 for (auto Replacement : BetterChains) 14798 replaceStoreChain(Replacement.first, Replacement.second); 14799 14800 return MadeChange; 14801 } 14802 14803 /// This is the entry point for the file. 14804 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 14805 CodeGenOpt::Level OptLevel) { 14806 /// This is the main entry point to this class. 14807 DAGCombiner(*this, AA, OptLevel).Run(Level); 14808 } 14809