Home | History | Annotate | Download | only in Utils
      1 //===-- Transform/Utils/BasicBlockUtils.h - BasicBlock Utils ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform manipulations on basic blocks, and
     11 // instructions contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H
     16 #define LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H
     17 
     18 // FIXME: Move to this file: BasicBlock::removePredecessor, BB::splitBasicBlock
     19 
     20 #include "llvm/IR/BasicBlock.h"
     21 #include "llvm/IR/CFG.h"
     22 
     23 namespace llvm {
     24 
     25 class MemoryDependenceAnalysis;
     26 class DominatorTree;
     27 class LoopInfo;
     28 class Instruction;
     29 class MDNode;
     30 class ReturnInst;
     31 class TargetLibraryInfo;
     32 class TerminatorInst;
     33 
     34 /// DeleteDeadBlock - Delete the specified block, which must have no
     35 /// predecessors.
     36 void DeleteDeadBlock(BasicBlock *BB);
     37 
     38 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
     39 /// any single-entry PHI nodes in it, fold them away.  This handles the case
     40 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
     41 /// when the block has exactly one predecessor.
     42 void FoldSingleEntryPHINodes(BasicBlock *BB,
     43                              MemoryDependenceAnalysis *MemDep = nullptr);
     44 
     45 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
     46 /// is dead. Also recursively delete any operands that become dead as
     47 /// a result. This includes tracing the def-use list from the PHI to see if
     48 /// it is ultimately unused or if it reaches an unused cycle. Return true
     49 /// if any PHIs were deleted.
     50 bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI = nullptr);
     51 
     52 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
     53 /// if possible.  The return value indicates success or failure.
     54 bool MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT = nullptr,
     55                                LoopInfo *LI = nullptr,
     56                                MemoryDependenceAnalysis *MemDep = nullptr);
     57 
     58 // ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
     59 // with a value, then remove and delete the original instruction.
     60 //
     61 void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
     62                           BasicBlock::iterator &BI, Value *V);
     63 
     64 // ReplaceInstWithInst - Replace the instruction specified by BI with the
     65 // instruction specified by I. Copies DebugLoc from BI to I, if I doesn't
     66 // already have a DebugLoc. The original instruction is deleted and BI is
     67 // updated to point to the new instruction.
     68 //
     69 void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
     70                          BasicBlock::iterator &BI, Instruction *I);
     71 
     72 // ReplaceInstWithInst - Replace the instruction specified by From with the
     73 // instruction specified by To. Copies DebugLoc from BI to I, if I doesn't
     74 // already have a DebugLoc.
     75 //
     76 void ReplaceInstWithInst(Instruction *From, Instruction *To);
     77 
     78 /// \brief Option class for critical edge splitting.
     79 ///
     80 /// This provides a builder interface for overriding the default options used
     81 /// during critical edge splitting.
     82 struct CriticalEdgeSplittingOptions {
     83   DominatorTree *DT;
     84   LoopInfo *LI;
     85   bool MergeIdenticalEdges;
     86   bool DontDeleteUselessPHIs;
     87   bool PreserveLCSSA;
     88 
     89   CriticalEdgeSplittingOptions(DominatorTree *DT = nullptr,
     90                                LoopInfo *LI = nullptr)
     91       : DT(DT), LI(LI), MergeIdenticalEdges(false),
     92         DontDeleteUselessPHIs(false), PreserveLCSSA(false) {}
     93 
     94   CriticalEdgeSplittingOptions &setMergeIdenticalEdges() {
     95     MergeIdenticalEdges = true;
     96     return *this;
     97   }
     98 
     99   CriticalEdgeSplittingOptions &setDontDeleteUselessPHIs() {
    100     DontDeleteUselessPHIs = true;
    101     return *this;
    102   }
    103 
    104   CriticalEdgeSplittingOptions &setPreserveLCSSA() {
    105     PreserveLCSSA = true;
    106     return *this;
    107   }
    108 };
    109 
    110 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
    111 /// split the critical edge.  This will update the analyses passed in through
    112 /// the option struct. This returns the new block if the edge was split, null
    113 /// otherwise.
    114 ///
    115 /// If MergeIdenticalEdges in the options struct is true (not the default),
    116 /// *all* edges from TI to the specified successor will be merged into the same
    117 /// critical edge block. This is most commonly interesting with switch
    118 /// instructions, which may have many edges to any one destination.  This
    119 /// ensures that all edges to that dest go to one block instead of each going
    120 /// to a different block, but isn't the standard definition of a "critical
    121 /// edge".
    122 ///
    123 /// It is invalid to call this function on a critical edge that starts at an
    124 /// IndirectBrInst.  Splitting these edges will almost always create an invalid
    125 /// program because the address of the new block won't be the one that is jumped
    126 /// to.
    127 ///
    128 BasicBlock *SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
    129                               const CriticalEdgeSplittingOptions &Options =
    130                                   CriticalEdgeSplittingOptions());
    131 
    132 inline BasicBlock *
    133 SplitCriticalEdge(BasicBlock *BB, succ_iterator SI,
    134                   const CriticalEdgeSplittingOptions &Options =
    135                       CriticalEdgeSplittingOptions()) {
    136   return SplitCriticalEdge(BB->getTerminator(), SI.getSuccessorIndex(),
    137                            Options);
    138 }
    139 
    140 /// SplitCriticalEdge - If the edge from *PI to BB is not critical, return
    141 /// false.  Otherwise, split all edges between the two blocks and return true.
    142 /// This updates all of the same analyses as the other SplitCriticalEdge
    143 /// function.  If P is specified, it updates the analyses
    144 /// described above.
    145 inline bool SplitCriticalEdge(BasicBlock *Succ, pred_iterator PI,
    146                               const CriticalEdgeSplittingOptions &Options =
    147                                   CriticalEdgeSplittingOptions()) {
    148   bool MadeChange = false;
    149   TerminatorInst *TI = (*PI)->getTerminator();
    150   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    151     if (TI->getSuccessor(i) == Succ)
    152       MadeChange |= !!SplitCriticalEdge(TI, i, Options);
    153   return MadeChange;
    154 }
    155 
    156 /// SplitCriticalEdge - If an edge from Src to Dst is critical, split the edge
    157 /// and return true, otherwise return false.  This method requires that there be
    158 /// an edge between the two blocks.  It updates the analyses
    159 /// passed in the options struct
    160 inline BasicBlock *
    161 SplitCriticalEdge(BasicBlock *Src, BasicBlock *Dst,
    162                   const CriticalEdgeSplittingOptions &Options =
    163                       CriticalEdgeSplittingOptions()) {
    164   TerminatorInst *TI = Src->getTerminator();
    165   unsigned i = 0;
    166   while (1) {
    167     assert(i != TI->getNumSuccessors() && "Edge doesn't exist!");
    168     if (TI->getSuccessor(i) == Dst)
    169       return SplitCriticalEdge(TI, i, Options);
    170     ++i;
    171   }
    172 }
    173 
    174 // SplitAllCriticalEdges - Loop over all of the edges in the CFG,
    175 // breaking critical edges as they are found.
    176 // Returns the number of broken edges.
    177 unsigned SplitAllCriticalEdges(Function &F,
    178                                const CriticalEdgeSplittingOptions &Options =
    179                                    CriticalEdgeSplittingOptions());
    180 
    181 /// SplitEdge -  Split the edge connecting specified block.
    182 BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To,
    183                       DominatorTree *DT = nullptr, LoopInfo *LI = nullptr);
    184 
    185 /// SplitBlock - Split the specified block at the specified instruction - every
    186 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
    187 /// to a new block.  The two blocks are joined by an unconditional branch and
    188 /// the loop info is updated.
    189 ///
    190 BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt,
    191                        DominatorTree *DT = nullptr, LoopInfo *LI = nullptr);
    192 
    193 /// SplitBlockPredecessors - This method introduces at least one new basic block
    194 /// into the function and moves some of the predecessors of BB to be
    195 /// predecessors of the new block. The new predecessors are indicated by the
    196 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
    197 /// block to which predecessors from Preds are now pointing.
    198 ///
    199 /// If BB is a landingpad block then additional basicblock might be introduced.
    200 /// It will have Suffix+".split_lp". See SplitLandingPadPredecessors for more
    201 /// details on this case.
    202 ///
    203 /// This currently updates the LLVM IR, DominatorTree, LoopInfo, and LCCSA but
    204 /// no other analyses. In particular, it does not preserve LoopSimplify
    205 /// (because it's complicated to handle the case where one of the edges being
    206 /// split is an exit of a loop with other exits).
    207 ///
    208 BasicBlock *SplitBlockPredecessors(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
    209                                    const char *Suffix,
    210                                    DominatorTree *DT = nullptr,
    211                                    LoopInfo *LI = nullptr,
    212                                    bool PreserveLCSSA = false);
    213 
    214 /// SplitLandingPadPredecessors - This method transforms the landing pad,
    215 /// OrigBB, by introducing two new basic blocks into the function. One of those
    216 /// new basic blocks gets the predecessors listed in Preds. The other basic
    217 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
    218 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
    219 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
    220 ///
    221 /// This currently updates the LLVM IR, DominatorTree, LoopInfo, and LCCSA but
    222 /// no other analyses. In particular, it does not preserve LoopSimplify
    223 /// (because it's complicated to handle the case where one of the edges being
    224 /// split is an exit of a loop with other exits).
    225 ///
    226 void SplitLandingPadPredecessors(BasicBlock *OrigBB,
    227                                  ArrayRef<BasicBlock *> Preds,
    228                                  const char *Suffix, const char *Suffix2,
    229                                  SmallVectorImpl<BasicBlock *> &NewBBs,
    230                                  DominatorTree *DT = nullptr,
    231                                  LoopInfo *LI = nullptr,
    232                                  bool PreserveLCSSA = false);
    233 
    234 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
    235 /// instruction into a predecessor which ends in an unconditional branch. If
    236 /// the return instruction returns a value defined by a PHI, propagate the
    237 /// right value into the return. It returns the new return instruction in the
    238 /// predecessor.
    239 ReturnInst *FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
    240                                        BasicBlock *Pred);
    241 
    242 /// SplitBlockAndInsertIfThen - Split the containing block at the
    243 /// specified instruction - everything before and including SplitBefore stays
    244 /// in the old basic block, and everything after SplitBefore is moved to a
    245 /// new block. The two blocks are connected by a conditional branch
    246 /// (with value of Cmp being the condition).
    247 /// Before:
    248 ///   Head
    249 ///   SplitBefore
    250 ///   Tail
    251 /// After:
    252 ///   Head
    253 ///   if (Cond)
    254 ///     ThenBlock
    255 ///   SplitBefore
    256 ///   Tail
    257 ///
    258 /// If Unreachable is true, then ThenBlock ends with
    259 /// UnreachableInst, otherwise it branches to Tail.
    260 /// Returns the NewBasicBlock's terminator.
    261 ///
    262 /// Updates DT if given.
    263 TerminatorInst *SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
    264                                           bool Unreachable,
    265                                           MDNode *BranchWeights = nullptr,
    266                                           DominatorTree *DT = nullptr);
    267 
    268 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
    269 /// but also creates the ElseBlock.
    270 /// Before:
    271 ///   Head
    272 ///   SplitBefore
    273 ///   Tail
    274 /// After:
    275 ///   Head
    276 ///   if (Cond)
    277 ///     ThenBlock
    278 ///   else
    279 ///     ElseBlock
    280 ///   SplitBefore
    281 ///   Tail
    282 void SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
    283                                    TerminatorInst **ThenTerm,
    284                                    TerminatorInst **ElseTerm,
    285                                    MDNode *BranchWeights = nullptr);
    286 
    287 ///
    288 /// GetIfCondition - Check whether BB is the merge point of a if-region.
    289 /// If so, return the boolean condition that determines which entry into
    290 /// BB will be taken.  Also, return by references the block that will be
    291 /// entered from if the condition is true, and the block that will be
    292 /// entered if the condition is false.
    293 Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    294                       BasicBlock *&IfFalse);
    295 } // End llvm namespace
    296 
    297 #endif
    298