Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "utils.h"
     18 
     19 #include <inttypes.h>
     20 #include <pthread.h>
     21 #include <sys/stat.h>
     22 #include <sys/syscall.h>
     23 #include <sys/types.h>
     24 #include <sys/wait.h>
     25 #include <unistd.h>
     26 #include <memory>
     27 
     28 #include "art_field-inl.h"
     29 #include "art_method-inl.h"
     30 #include "base/stl_util.h"
     31 #include "base/unix_file/fd_file.h"
     32 #include "dex_file-inl.h"
     33 #include "dex_instruction.h"
     34 #include "mirror/class-inl.h"
     35 #include "mirror/class_loader.h"
     36 #include "mirror/object-inl.h"
     37 #include "mirror/object_array-inl.h"
     38 #include "mirror/string.h"
     39 #include "oat_quick_method_header.h"
     40 #include "os.h"
     41 #include "scoped_thread_state_change.h"
     42 #include "utf-inl.h"
     43 
     44 #if defined(__APPLE__)
     45 #include "AvailabilityMacros.h"  // For MAC_OS_X_VERSION_MAX_ALLOWED
     46 #include <sys/syscall.h>
     47 #endif
     48 
     49 // For DumpNativeStack.
     50 #include <backtrace/Backtrace.h>
     51 #include <backtrace/BacktraceMap.h>
     52 
     53 #if defined(__linux__)
     54 #include <linux/unistd.h>
     55 #endif
     56 
     57 namespace art {
     58 
     59 #if defined(__linux__)
     60 static constexpr bool kUseAddr2line = !kIsTargetBuild;
     61 #endif
     62 
     63 pid_t GetTid() {
     64 #if defined(__APPLE__)
     65   uint64_t owner;
     66   CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__);  // Requires Mac OS 10.6
     67   return owner;
     68 #elif defined(__BIONIC__)
     69   return gettid();
     70 #else
     71   return syscall(__NR_gettid);
     72 #endif
     73 }
     74 
     75 std::string GetThreadName(pid_t tid) {
     76   std::string result;
     77   if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
     78     result.resize(result.size() - 1);  // Lose the trailing '\n'.
     79   } else {
     80     result = "<unknown>";
     81   }
     82   return result;
     83 }
     84 
     85 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) {
     86 #if defined(__APPLE__)
     87   *stack_size = pthread_get_stacksize_np(thread);
     88   void* stack_addr = pthread_get_stackaddr_np(thread);
     89 
     90   // Check whether stack_addr is the base or end of the stack.
     91   // (On Mac OS 10.7, it's the end.)
     92   int stack_variable;
     93   if (stack_addr > &stack_variable) {
     94     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
     95   } else {
     96     *stack_base = stack_addr;
     97   }
     98 
     99   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
    100   pthread_attr_t attributes;
    101   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
    102   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
    103   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
    104 #else
    105   pthread_attr_t attributes;
    106   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
    107   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
    108   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
    109   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
    110 
    111 #if defined(__GLIBC__)
    112   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
    113   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
    114   // will be broken because we'll die long before we get close to 2GB.
    115   bool is_main_thread = (::art::GetTid() == getpid());
    116   if (is_main_thread) {
    117     rlimit stack_limit;
    118     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
    119       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
    120     }
    121     if (stack_limit.rlim_cur == RLIM_INFINITY) {
    122       size_t old_stack_size = *stack_size;
    123 
    124       // Use the kernel default limit as our size, and adjust the base to match.
    125       *stack_size = 8 * MB;
    126       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
    127 
    128       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
    129                     << " to " << PrettySize(*stack_size)
    130                     << " with base " << *stack_base;
    131     }
    132   }
    133 #endif
    134 
    135 #endif
    136 }
    137 
    138 bool ReadFileToString(const std::string& file_name, std::string* result) {
    139   File file;
    140   if (!file.Open(file_name, O_RDONLY)) {
    141     return false;
    142   }
    143 
    144   std::vector<char> buf(8 * KB);
    145   while (true) {
    146     int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[0], buf.size()));
    147     if (n == -1) {
    148       return false;
    149     }
    150     if (n == 0) {
    151       return true;
    152     }
    153     result->append(&buf[0], n);
    154   }
    155 }
    156 
    157 bool PrintFileToLog(const std::string& file_name, LogSeverity level) {
    158   File file;
    159   if (!file.Open(file_name, O_RDONLY)) {
    160     return false;
    161   }
    162 
    163   constexpr size_t kBufSize = 256;  // Small buffer. Avoid stack overflow and stack size warnings.
    164   char buf[kBufSize + 1];           // +1 for terminator.
    165   size_t filled_to = 0;
    166   while (true) {
    167     DCHECK_LT(filled_to, kBufSize);
    168     int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[filled_to], kBufSize - filled_to));
    169     if (n <= 0) {
    170       // Print the rest of the buffer, if it exists.
    171       if (filled_to > 0) {
    172         buf[filled_to] = 0;
    173         LOG(level) << buf;
    174       }
    175       return n == 0;
    176     }
    177     // Scan for '\n'.
    178     size_t i = filled_to;
    179     bool found_newline = false;
    180     for (; i < filled_to + n; ++i) {
    181       if (buf[i] == '\n') {
    182         // Found a line break, that's something to print now.
    183         buf[i] = 0;
    184         LOG(level) << buf;
    185         // Copy the rest to the front.
    186         if (i + 1 < filled_to + n) {
    187           memmove(&buf[0], &buf[i + 1], filled_to + n - i - 1);
    188           filled_to = filled_to + n - i - 1;
    189         } else {
    190           filled_to = 0;
    191         }
    192         found_newline = true;
    193         break;
    194       }
    195     }
    196     if (found_newline) {
    197       continue;
    198     } else {
    199       filled_to += n;
    200       // Check if we must flush now.
    201       if (filled_to == kBufSize) {
    202         buf[kBufSize] = 0;
    203         LOG(level) << buf;
    204         filled_to = 0;
    205       }
    206     }
    207   }
    208 }
    209 
    210 std::string PrettyDescriptor(mirror::String* java_descriptor) {
    211   if (java_descriptor == nullptr) {
    212     return "null";
    213   }
    214   return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str());
    215 }
    216 
    217 std::string PrettyDescriptor(mirror::Class* klass) {
    218   if (klass == nullptr) {
    219     return "null";
    220   }
    221   std::string temp;
    222   return PrettyDescriptor(klass->GetDescriptor(&temp));
    223 }
    224 
    225 std::string PrettyDescriptor(const char* descriptor) {
    226   // Count the number of '['s to get the dimensionality.
    227   const char* c = descriptor;
    228   size_t dim = 0;
    229   while (*c == '[') {
    230     dim++;
    231     c++;
    232   }
    233 
    234   // Reference or primitive?
    235   if (*c == 'L') {
    236     // "[[La/b/C;" -> "a.b.C[][]".
    237     c++;  // Skip the 'L'.
    238   } else {
    239     // "[[B" -> "byte[][]".
    240     // To make life easier, we make primitives look like unqualified
    241     // reference types.
    242     switch (*c) {
    243     case 'B': c = "byte;"; break;
    244     case 'C': c = "char;"; break;
    245     case 'D': c = "double;"; break;
    246     case 'F': c = "float;"; break;
    247     case 'I': c = "int;"; break;
    248     case 'J': c = "long;"; break;
    249     case 'S': c = "short;"; break;
    250     case 'Z': c = "boolean;"; break;
    251     case 'V': c = "void;"; break;  // Used when decoding return types.
    252     default: return descriptor;
    253     }
    254   }
    255 
    256   // At this point, 'c' is a string of the form "fully/qualified/Type;"
    257   // or "primitive;". Rewrite the type with '.' instead of '/':
    258   std::string result;
    259   const char* p = c;
    260   while (*p != ';') {
    261     char ch = *p++;
    262     if (ch == '/') {
    263       ch = '.';
    264     }
    265     result.push_back(ch);
    266   }
    267   // ...and replace the semicolon with 'dim' "[]" pairs:
    268   for (size_t i = 0; i < dim; ++i) {
    269     result += "[]";
    270   }
    271   return result;
    272 }
    273 
    274 std::string PrettyField(ArtField* f, bool with_type) {
    275   if (f == nullptr) {
    276     return "null";
    277   }
    278   std::string result;
    279   if (with_type) {
    280     result += PrettyDescriptor(f->GetTypeDescriptor());
    281     result += ' ';
    282   }
    283   std::string temp;
    284   result += PrettyDescriptor(f->GetDeclaringClass()->GetDescriptor(&temp));
    285   result += '.';
    286   result += f->GetName();
    287   return result;
    288 }
    289 
    290 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
    291   if (field_idx >= dex_file.NumFieldIds()) {
    292     return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
    293   }
    294   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
    295   std::string result;
    296   if (with_type) {
    297     result += dex_file.GetFieldTypeDescriptor(field_id);
    298     result += ' ';
    299   }
    300   result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
    301   result += '.';
    302   result += dex_file.GetFieldName(field_id);
    303   return result;
    304 }
    305 
    306 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
    307   if (type_idx >= dex_file.NumTypeIds()) {
    308     return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
    309   }
    310   const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
    311   return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
    312 }
    313 
    314 std::string PrettyArguments(const char* signature) {
    315   std::string result;
    316   result += '(';
    317   CHECK_EQ(*signature, '(');
    318   ++signature;  // Skip the '('.
    319   while (*signature != ')') {
    320     size_t argument_length = 0;
    321     while (signature[argument_length] == '[') {
    322       ++argument_length;
    323     }
    324     if (signature[argument_length] == 'L') {
    325       argument_length = (strchr(signature, ';') - signature + 1);
    326     } else {
    327       ++argument_length;
    328     }
    329     {
    330       std::string argument_descriptor(signature, argument_length);
    331       result += PrettyDescriptor(argument_descriptor.c_str());
    332     }
    333     if (signature[argument_length] != ')') {
    334       result += ", ";
    335     }
    336     signature += argument_length;
    337   }
    338   CHECK_EQ(*signature, ')');
    339   ++signature;  // Skip the ')'.
    340   result += ')';
    341   return result;
    342 }
    343 
    344 std::string PrettyReturnType(const char* signature) {
    345   const char* return_type = strchr(signature, ')');
    346   CHECK(return_type != nullptr);
    347   ++return_type;  // Skip ')'.
    348   return PrettyDescriptor(return_type);
    349 }
    350 
    351 std::string PrettyMethod(ArtMethod* m, bool with_signature) {
    352   if (m == nullptr) {
    353     return "null";
    354   }
    355   if (!m->IsRuntimeMethod()) {
    356     m = m->GetInterfaceMethodIfProxy(Runtime::Current()->GetClassLinker()->GetImagePointerSize());
    357   }
    358   std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor()));
    359   result += '.';
    360   result += m->GetName();
    361   if (UNLIKELY(m->IsFastNative())) {
    362     result += "!";
    363   }
    364   if (with_signature) {
    365     const Signature signature = m->GetSignature();
    366     std::string sig_as_string(signature.ToString());
    367     if (signature == Signature::NoSignature()) {
    368       return result + sig_as_string;
    369     }
    370     result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
    371         PrettyArguments(sig_as_string.c_str());
    372   }
    373   return result;
    374 }
    375 
    376 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
    377   if (method_idx >= dex_file.NumMethodIds()) {
    378     return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
    379   }
    380   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
    381   std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
    382   result += '.';
    383   result += dex_file.GetMethodName(method_id);
    384   if (with_signature) {
    385     const Signature signature = dex_file.GetMethodSignature(method_id);
    386     std::string sig_as_string(signature.ToString());
    387     if (signature == Signature::NoSignature()) {
    388       return result + sig_as_string;
    389     }
    390     result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
    391         PrettyArguments(sig_as_string.c_str());
    392   }
    393   return result;
    394 }
    395 
    396 std::string PrettyTypeOf(mirror::Object* obj) {
    397   if (obj == nullptr) {
    398     return "null";
    399   }
    400   if (obj->GetClass() == nullptr) {
    401     return "(raw)";
    402   }
    403   std::string temp;
    404   std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp)));
    405   if (obj->IsClass()) {
    406     result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">";
    407   }
    408   return result;
    409 }
    410 
    411 std::string PrettyClass(mirror::Class* c) {
    412   if (c == nullptr) {
    413     return "null";
    414   }
    415   std::string result;
    416   result += "java.lang.Class<";
    417   result += PrettyDescriptor(c);
    418   result += ">";
    419   return result;
    420 }
    421 
    422 std::string PrettyClassAndClassLoader(mirror::Class* c) {
    423   if (c == nullptr) {
    424     return "null";
    425   }
    426   std::string result;
    427   result += "java.lang.Class<";
    428   result += PrettyDescriptor(c);
    429   result += ",";
    430   result += PrettyTypeOf(c->GetClassLoader());
    431   // TODO: add an identifying hash value for the loader
    432   result += ">";
    433   return result;
    434 }
    435 
    436 std::string PrettyJavaAccessFlags(uint32_t access_flags) {
    437   std::string result;
    438   if ((access_flags & kAccPublic) != 0) {
    439     result += "public ";
    440   }
    441   if ((access_flags & kAccProtected) != 0) {
    442     result += "protected ";
    443   }
    444   if ((access_flags & kAccPrivate) != 0) {
    445     result += "private ";
    446   }
    447   if ((access_flags & kAccFinal) != 0) {
    448     result += "final ";
    449   }
    450   if ((access_flags & kAccStatic) != 0) {
    451     result += "static ";
    452   }
    453   if ((access_flags & kAccTransient) != 0) {
    454     result += "transient ";
    455   }
    456   if ((access_flags & kAccVolatile) != 0) {
    457     result += "volatile ";
    458   }
    459   if ((access_flags & kAccSynchronized) != 0) {
    460     result += "synchronized ";
    461   }
    462   return result;
    463 }
    464 
    465 std::string PrettySize(int64_t byte_count) {
    466   // The byte thresholds at which we display amounts.  A byte count is displayed
    467   // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
    468   static const int64_t kUnitThresholds[] = {
    469     0,              // B up to...
    470     3*1024,         // KB up to...
    471     2*1024*1024,    // MB up to...
    472     1024*1024*1024  // GB from here.
    473   };
    474   static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB };
    475   static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
    476   const char* negative_str = "";
    477   if (byte_count < 0) {
    478     negative_str = "-";
    479     byte_count = -byte_count;
    480   }
    481   int i = arraysize(kUnitThresholds);
    482   while (--i > 0) {
    483     if (byte_count >= kUnitThresholds[i]) {
    484       break;
    485     }
    486   }
    487   return StringPrintf("%s%" PRId64 "%s",
    488                       negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]);
    489 }
    490 
    491 std::string PrintableChar(uint16_t ch) {
    492   std::string result;
    493   result += '\'';
    494   if (NeedsEscaping(ch)) {
    495     StringAppendF(&result, "\\u%04x", ch);
    496   } else {
    497     result += ch;
    498   }
    499   result += '\'';
    500   return result;
    501 }
    502 
    503 std::string PrintableString(const char* utf) {
    504   std::string result;
    505   result += '"';
    506   const char* p = utf;
    507   size_t char_count = CountModifiedUtf8Chars(p);
    508   for (size_t i = 0; i < char_count; ++i) {
    509     uint32_t ch = GetUtf16FromUtf8(&p);
    510     if (ch == '\\') {
    511       result += "\\\\";
    512     } else if (ch == '\n') {
    513       result += "\\n";
    514     } else if (ch == '\r') {
    515       result += "\\r";
    516     } else if (ch == '\t') {
    517       result += "\\t";
    518     } else {
    519       const uint16_t leading = GetLeadingUtf16Char(ch);
    520 
    521       if (NeedsEscaping(leading)) {
    522         StringAppendF(&result, "\\u%04x", leading);
    523       } else {
    524         result += leading;
    525       }
    526 
    527       const uint32_t trailing = GetTrailingUtf16Char(ch);
    528       if (trailing != 0) {
    529         // All high surrogates will need escaping.
    530         StringAppendF(&result, "\\u%04x", trailing);
    531       }
    532     }
    533   }
    534   result += '"';
    535   return result;
    536 }
    537 
    538 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
    539 std::string MangleForJni(const std::string& s) {
    540   std::string result;
    541   size_t char_count = CountModifiedUtf8Chars(s.c_str());
    542   const char* cp = &s[0];
    543   for (size_t i = 0; i < char_count; ++i) {
    544     uint32_t ch = GetUtf16FromUtf8(&cp);
    545     if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
    546       result.push_back(ch);
    547     } else if (ch == '.' || ch == '/') {
    548       result += "_";
    549     } else if (ch == '_') {
    550       result += "_1";
    551     } else if (ch == ';') {
    552       result += "_2";
    553     } else if (ch == '[') {
    554       result += "_3";
    555     } else {
    556       const uint16_t leading = GetLeadingUtf16Char(ch);
    557       const uint32_t trailing = GetTrailingUtf16Char(ch);
    558 
    559       StringAppendF(&result, "_0%04x", leading);
    560       if (trailing != 0) {
    561         StringAppendF(&result, "_0%04x", trailing);
    562       }
    563     }
    564   }
    565   return result;
    566 }
    567 
    568 std::string DotToDescriptor(const char* class_name) {
    569   std::string descriptor(class_name);
    570   std::replace(descriptor.begin(), descriptor.end(), '.', '/');
    571   if (descriptor.length() > 0 && descriptor[0] != '[') {
    572     descriptor = "L" + descriptor + ";";
    573   }
    574   return descriptor;
    575 }
    576 
    577 std::string DescriptorToDot(const char* descriptor) {
    578   size_t length = strlen(descriptor);
    579   if (length > 1) {
    580     if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
    581       // Descriptors have the leading 'L' and trailing ';' stripped.
    582       std::string result(descriptor + 1, length - 2);
    583       std::replace(result.begin(), result.end(), '/', '.');
    584       return result;
    585     } else {
    586       // For arrays the 'L' and ';' remain intact.
    587       std::string result(descriptor);
    588       std::replace(result.begin(), result.end(), '/', '.');
    589       return result;
    590     }
    591   }
    592   // Do nothing for non-class/array descriptors.
    593   return descriptor;
    594 }
    595 
    596 std::string DescriptorToName(const char* descriptor) {
    597   size_t length = strlen(descriptor);
    598   if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
    599     std::string result(descriptor + 1, length - 2);
    600     return result;
    601   }
    602   return descriptor;
    603 }
    604 
    605 std::string JniShortName(ArtMethod* m) {
    606   std::string class_name(m->GetDeclaringClassDescriptor());
    607   // Remove the leading 'L' and trailing ';'...
    608   CHECK_EQ(class_name[0], 'L') << class_name;
    609   CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
    610   class_name.erase(0, 1);
    611   class_name.erase(class_name.size() - 1, 1);
    612 
    613   std::string method_name(m->GetName());
    614 
    615   std::string short_name;
    616   short_name += "Java_";
    617   short_name += MangleForJni(class_name);
    618   short_name += "_";
    619   short_name += MangleForJni(method_name);
    620   return short_name;
    621 }
    622 
    623 std::string JniLongName(ArtMethod* m) {
    624   std::string long_name;
    625   long_name += JniShortName(m);
    626   long_name += "__";
    627 
    628   std::string signature(m->GetSignature().ToString());
    629   signature.erase(0, 1);
    630   signature.erase(signature.begin() + signature.find(')'), signature.end());
    631 
    632   long_name += MangleForJni(signature);
    633 
    634   return long_name;
    635 }
    636 
    637 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
    638 uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
    639   0x00000000,  // 00..1f low control characters; nothing valid
    640   0x03ff2010,  // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
    641   0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
    642   0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
    643 };
    644 
    645 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
    646 bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
    647   /*
    648    * It's a multibyte encoded character. Decode it and analyze. We
    649    * accept anything that isn't (a) an improperly encoded low value,
    650    * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
    651    * control character, or (e) a high space, layout, or special
    652    * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
    653    * U+fff0..U+ffff). This is all specified in the dex format
    654    * document.
    655    */
    656 
    657   const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr);
    658   const uint16_t leading = GetLeadingUtf16Char(pair);
    659 
    660   // We have a surrogate pair resulting from a valid 4 byte UTF sequence.
    661   // No further checks are necessary because 4 byte sequences span code
    662   // points [U+10000, U+1FFFFF], which are valid codepoints in a dex
    663   // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of
    664   // the surrogate halves are valid and well formed in this instance.
    665   if (GetTrailingUtf16Char(pair) != 0) {
    666     return true;
    667   }
    668 
    669 
    670   // We've encountered a one, two or three byte UTF-8 sequence. The
    671   // three byte UTF-8 sequence could be one half of a surrogate pair.
    672   switch (leading >> 8) {
    673     case 0x00:
    674       // It's only valid if it's above the ISO-8859-1 high space (0xa0).
    675       return (leading > 0x00a0);
    676     case 0xd8:
    677     case 0xd9:
    678     case 0xda:
    679     case 0xdb:
    680       {
    681         // We found a three byte sequence encoding one half of a surrogate.
    682         // Look for the other half.
    683         const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr);
    684         const uint16_t trailing = GetLeadingUtf16Char(pair2);
    685 
    686         return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff);
    687       }
    688     case 0xdc:
    689     case 0xdd:
    690     case 0xde:
    691     case 0xdf:
    692       // It's a trailing surrogate, which is not valid at this point.
    693       return false;
    694     case 0x20:
    695     case 0xff:
    696       // It's in the range that has spaces, controls, and specials.
    697       switch (leading & 0xfff8) {
    698         case 0x2000:
    699         case 0x2008:
    700         case 0x2028:
    701         case 0xfff0:
    702         case 0xfff8:
    703           return false;
    704       }
    705       return true;
    706     default:
    707       return true;
    708   }
    709 
    710   UNREACHABLE();
    711 }
    712 
    713 /* Return whether the pointed-at modified-UTF-8 encoded character is
    714  * valid as part of a member name, updating the pointer to point past
    715  * the consumed character. This will consume two encoded UTF-16 code
    716  * points if the character is encoded as a surrogate pair. Also, if
    717  * this function returns false, then the given pointer may only have
    718  * been partially advanced.
    719  */
    720 static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
    721   uint8_t c = (uint8_t) **pUtf8Ptr;
    722   if (LIKELY(c <= 0x7f)) {
    723     // It's low-ascii, so check the table.
    724     uint32_t wordIdx = c >> 5;
    725     uint32_t bitIdx = c & 0x1f;
    726     (*pUtf8Ptr)++;
    727     return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
    728   }
    729 
    730   // It's a multibyte encoded character. Call a non-inline function
    731   // for the heavy lifting.
    732   return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
    733 }
    734 
    735 bool IsValidMemberName(const char* s) {
    736   bool angle_name = false;
    737 
    738   switch (*s) {
    739     case '\0':
    740       // The empty string is not a valid name.
    741       return false;
    742     case '<':
    743       angle_name = true;
    744       s++;
    745       break;
    746   }
    747 
    748   while (true) {
    749     switch (*s) {
    750       case '\0':
    751         return !angle_name;
    752       case '>':
    753         return angle_name && s[1] == '\0';
    754     }
    755 
    756     if (!IsValidPartOfMemberNameUtf8(&s)) {
    757       return false;
    758     }
    759   }
    760 }
    761 
    762 enum ClassNameType { kName, kDescriptor };
    763 template<ClassNameType kType, char kSeparator>
    764 static bool IsValidClassName(const char* s) {
    765   int arrayCount = 0;
    766   while (*s == '[') {
    767     arrayCount++;
    768     s++;
    769   }
    770 
    771   if (arrayCount > 255) {
    772     // Arrays may have no more than 255 dimensions.
    773     return false;
    774   }
    775 
    776   ClassNameType type = kType;
    777   if (type != kDescriptor && arrayCount != 0) {
    778     /*
    779      * If we're looking at an array of some sort, then it doesn't
    780      * matter if what is being asked for is a class name; the
    781      * format looks the same as a type descriptor in that case, so
    782      * treat it as such.
    783      */
    784     type = kDescriptor;
    785   }
    786 
    787   if (type == kDescriptor) {
    788     /*
    789      * We are looking for a descriptor. Either validate it as a
    790      * single-character primitive type, or continue on to check the
    791      * embedded class name (bracketed by "L" and ";").
    792      */
    793     switch (*(s++)) {
    794     case 'B':
    795     case 'C':
    796     case 'D':
    797     case 'F':
    798     case 'I':
    799     case 'J':
    800     case 'S':
    801     case 'Z':
    802       // These are all single-character descriptors for primitive types.
    803       return (*s == '\0');
    804     case 'V':
    805       // Non-array void is valid, but you can't have an array of void.
    806       return (arrayCount == 0) && (*s == '\0');
    807     case 'L':
    808       // Class name: Break out and continue below.
    809       break;
    810     default:
    811       // Oddball descriptor character.
    812       return false;
    813     }
    814   }
    815 
    816   /*
    817    * We just consumed the 'L' that introduces a class name as part
    818    * of a type descriptor, or we are looking for an unadorned class
    819    * name.
    820    */
    821 
    822   bool sepOrFirst = true;  // first character or just encountered a separator.
    823   for (;;) {
    824     uint8_t c = (uint8_t) *s;
    825     switch (c) {
    826     case '\0':
    827       /*
    828        * Premature end for a type descriptor, but valid for
    829        * a class name as long as we haven't encountered an
    830        * empty component (including the degenerate case of
    831        * the empty string "").
    832        */
    833       return (type == kName) && !sepOrFirst;
    834     case ';':
    835       /*
    836        * Invalid character for a class name, but the
    837        * legitimate end of a type descriptor. In the latter
    838        * case, make sure that this is the end of the string
    839        * and that it doesn't end with an empty component
    840        * (including the degenerate case of "L;").
    841        */
    842       return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
    843     case '/':
    844     case '.':
    845       if (c != kSeparator) {
    846         // The wrong separator character.
    847         return false;
    848       }
    849       if (sepOrFirst) {
    850         // Separator at start or two separators in a row.
    851         return false;
    852       }
    853       sepOrFirst = true;
    854       s++;
    855       break;
    856     default:
    857       if (!IsValidPartOfMemberNameUtf8(&s)) {
    858         return false;
    859       }
    860       sepOrFirst = false;
    861       break;
    862     }
    863   }
    864 }
    865 
    866 bool IsValidBinaryClassName(const char* s) {
    867   return IsValidClassName<kName, '.'>(s);
    868 }
    869 
    870 bool IsValidJniClassName(const char* s) {
    871   return IsValidClassName<kName, '/'>(s);
    872 }
    873 
    874 bool IsValidDescriptor(const char* s) {
    875   return IsValidClassName<kDescriptor, '/'>(s);
    876 }
    877 
    878 void Split(const std::string& s, char separator, std::vector<std::string>* result) {
    879   const char* p = s.data();
    880   const char* end = p + s.size();
    881   while (p != end) {
    882     if (*p == separator) {
    883       ++p;
    884     } else {
    885       const char* start = p;
    886       while (++p != end && *p != separator) {
    887         // Skip to the next occurrence of the separator.
    888       }
    889       result->push_back(std::string(start, p - start));
    890     }
    891   }
    892 }
    893 
    894 std::string Trim(const std::string& s) {
    895   std::string result;
    896   unsigned int start_index = 0;
    897   unsigned int end_index = s.size() - 1;
    898 
    899   // Skip initial whitespace.
    900   while (start_index < s.size()) {
    901     if (!isspace(s[start_index])) {
    902       break;
    903     }
    904     start_index++;
    905   }
    906 
    907   // Skip terminating whitespace.
    908   while (end_index >= start_index) {
    909     if (!isspace(s[end_index])) {
    910       break;
    911     }
    912     end_index--;
    913   }
    914 
    915   // All spaces, no beef.
    916   if (end_index < start_index) {
    917     return "";
    918   }
    919   // Start_index is the first non-space, end_index is the last one.
    920   return s.substr(start_index, end_index - start_index + 1);
    921 }
    922 
    923 template <typename StringT>
    924 std::string Join(const std::vector<StringT>& strings, char separator) {
    925   if (strings.empty()) {
    926     return "";
    927   }
    928 
    929   std::string result(strings[0]);
    930   for (size_t i = 1; i < strings.size(); ++i) {
    931     result += separator;
    932     result += strings[i];
    933   }
    934   return result;
    935 }
    936 
    937 // Explicit instantiations.
    938 template std::string Join<std::string>(const std::vector<std::string>& strings, char separator);
    939 template std::string Join<const char*>(const std::vector<const char*>& strings, char separator);
    940 
    941 bool StartsWith(const std::string& s, const char* prefix) {
    942   return s.compare(0, strlen(prefix), prefix) == 0;
    943 }
    944 
    945 bool EndsWith(const std::string& s, const char* suffix) {
    946   size_t suffix_length = strlen(suffix);
    947   size_t string_length = s.size();
    948   if (suffix_length > string_length) {
    949     return false;
    950   }
    951   size_t offset = string_length - suffix_length;
    952   return s.compare(offset, suffix_length, suffix) == 0;
    953 }
    954 
    955 void SetThreadName(const char* thread_name) {
    956   int hasAt = 0;
    957   int hasDot = 0;
    958   const char* s = thread_name;
    959   while (*s) {
    960     if (*s == '.') {
    961       hasDot = 1;
    962     } else if (*s == '@') {
    963       hasAt = 1;
    964     }
    965     s++;
    966   }
    967   int len = s - thread_name;
    968   if (len < 15 || hasAt || !hasDot) {
    969     s = thread_name;
    970   } else {
    971     s = thread_name + len - 15;
    972   }
    973 #if defined(__linux__)
    974   // pthread_setname_np fails rather than truncating long strings.
    975   char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel.
    976   strncpy(buf, s, sizeof(buf)-1);
    977   buf[sizeof(buf)-1] = '\0';
    978   errno = pthread_setname_np(pthread_self(), buf);
    979   if (errno != 0) {
    980     PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
    981   }
    982 #else  // __APPLE__
    983   pthread_setname_np(thread_name);
    984 #endif
    985 }
    986 
    987 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
    988   *utime = *stime = *task_cpu = 0;
    989   std::string stats;
    990   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
    991     return;
    992   }
    993   // Skip the command, which may contain spaces.
    994   stats = stats.substr(stats.find(')') + 2);
    995   // Extract the three fields we care about.
    996   std::vector<std::string> fields;
    997   Split(stats, ' ', &fields);
    998   *state = fields[0][0];
    999   *utime = strtoull(fields[11].c_str(), nullptr, 10);
   1000   *stime = strtoull(fields[12].c_str(), nullptr, 10);
   1001   *task_cpu = strtoull(fields[36].c_str(), nullptr, 10);
   1002 }
   1003 
   1004 std::string GetSchedulerGroupName(pid_t tid) {
   1005   // /proc/<pid>/cgroup looks like this:
   1006   // 2:devices:/
   1007   // 1:cpuacct,cpu:/
   1008   // We want the third field from the line whose second field contains the "cpu" token.
   1009   std::string cgroup_file;
   1010   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
   1011     return "";
   1012   }
   1013   std::vector<std::string> cgroup_lines;
   1014   Split(cgroup_file, '\n', &cgroup_lines);
   1015   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
   1016     std::vector<std::string> cgroup_fields;
   1017     Split(cgroup_lines[i], ':', &cgroup_fields);
   1018     std::vector<std::string> cgroups;
   1019     Split(cgroup_fields[1], ',', &cgroups);
   1020     for (size_t j = 0; j < cgroups.size(); ++j) {
   1021       if (cgroups[j] == "cpu") {
   1022         return cgroup_fields[2].substr(1);  // Skip the leading slash.
   1023       }
   1024     }
   1025   }
   1026   return "";
   1027 }
   1028 
   1029 #if defined(__linux__)
   1030 
   1031 ALWAYS_INLINE
   1032 static inline void WritePrefix(std::ostream* os, const char* prefix, bool odd) {
   1033   if (prefix != nullptr) {
   1034     *os << prefix;
   1035   }
   1036   *os << "  ";
   1037   if (!odd) {
   1038     *os << " ";
   1039   }
   1040 }
   1041 
   1042 static bool RunCommand(std::string cmd, std::ostream* os, const char* prefix) {
   1043   FILE* stream = popen(cmd.c_str(), "r");
   1044   if (stream) {
   1045     if (os != nullptr) {
   1046       bool odd_line = true;               // We indent them differently.
   1047       bool wrote_prefix = false;          // Have we already written a prefix?
   1048       constexpr size_t kMaxBuffer = 128;  // Relatively small buffer. Should be OK as we're on an
   1049                                           // alt stack, but just to be sure...
   1050       char buffer[kMaxBuffer];
   1051       while (!feof(stream)) {
   1052         if (fgets(buffer, kMaxBuffer, stream) != nullptr) {
   1053           // Split on newlines.
   1054           char* tmp = buffer;
   1055           for (;;) {
   1056             char* new_line = strchr(tmp, '\n');
   1057             if (new_line == nullptr) {
   1058               // Print the rest.
   1059               if (*tmp != 0) {
   1060                 if (!wrote_prefix) {
   1061                   WritePrefix(os, prefix, odd_line);
   1062                 }
   1063                 wrote_prefix = true;
   1064                 *os << tmp;
   1065               }
   1066               break;
   1067             }
   1068             if (!wrote_prefix) {
   1069               WritePrefix(os, prefix, odd_line);
   1070             }
   1071             char saved = *(new_line + 1);
   1072             *(new_line + 1) = 0;
   1073             *os << tmp;
   1074             *(new_line + 1) = saved;
   1075             tmp = new_line + 1;
   1076             odd_line = !odd_line;
   1077             wrote_prefix = false;
   1078           }
   1079         }
   1080       }
   1081     }
   1082     pclose(stream);
   1083     return true;
   1084   } else {
   1085     return false;
   1086   }
   1087 }
   1088 
   1089 static void Addr2line(const std::string& map_src, uintptr_t offset, std::ostream& os,
   1090                       const char* prefix) {
   1091   std::string cmdline(StringPrintf("addr2line --functions --inlines --demangle -e %s %zx",
   1092                                    map_src.c_str(), offset));
   1093   RunCommand(cmdline.c_str(), &os, prefix);
   1094 }
   1095 
   1096 static bool PcIsWithinQuickCode(ArtMethod* method, uintptr_t pc) NO_THREAD_SAFETY_ANALYSIS {
   1097   uintptr_t code = reinterpret_cast<uintptr_t>(EntryPointToCodePointer(
   1098       method->GetEntryPointFromQuickCompiledCode()));
   1099   if (code == 0) {
   1100     return pc == 0;
   1101   }
   1102   uintptr_t code_size = reinterpret_cast<const OatQuickMethodHeader*>(code)[-1].code_size_;
   1103   return code <= pc && pc <= (code + code_size);
   1104 }
   1105 #endif
   1106 
   1107 void DumpNativeStack(std::ostream& os, pid_t tid, BacktraceMap* existing_map, const char* prefix,
   1108     ArtMethod* current_method, void* ucontext_ptr) {
   1109 #if __linux__
   1110   // b/18119146
   1111   if (RUNNING_ON_MEMORY_TOOL != 0) {
   1112     return;
   1113   }
   1114 
   1115   BacktraceMap* map = existing_map;
   1116   std::unique_ptr<BacktraceMap> tmp_map;
   1117   if (map == nullptr) {
   1118     tmp_map.reset(BacktraceMap::Create(getpid()));
   1119     map = tmp_map.get();
   1120   }
   1121   std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid, map));
   1122   if (!backtrace->Unwind(0, reinterpret_cast<ucontext*>(ucontext_ptr))) {
   1123     os << prefix << "(backtrace::Unwind failed for thread " << tid
   1124        << ": " <<  backtrace->GetErrorString(backtrace->GetError()) << ")\n";
   1125     return;
   1126   } else if (backtrace->NumFrames() == 0) {
   1127     os << prefix << "(no native stack frames for thread " << tid << ")\n";
   1128     return;
   1129   }
   1130 
   1131   // Check whether we have and should use addr2line.
   1132   bool use_addr2line;
   1133   if (kUseAddr2line) {
   1134     // Try to run it to see whether we have it. Push an argument so that it doesn't assume a.out
   1135     // and print to stderr.
   1136     use_addr2line = (gAborting > 0) && RunCommand("addr2line -h", nullptr, nullptr);
   1137   } else {
   1138     use_addr2line = false;
   1139   }
   1140 
   1141   for (Backtrace::const_iterator it = backtrace->begin();
   1142        it != backtrace->end(); ++it) {
   1143     // We produce output like this:
   1144     // ]    #00 pc 000075bb8  /system/lib/libc.so (unwind_backtrace_thread+536)
   1145     // In order for parsing tools to continue to function, the stack dump
   1146     // format must at least adhere to this format:
   1147     //  #XX pc <RELATIVE_ADDR>  <FULL_PATH_TO_SHARED_LIBRARY> ...
   1148     // The parsers require a single space before and after pc, and two spaces
   1149     // after the <RELATIVE_ADDR>. There can be any prefix data before the
   1150     // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix.
   1151     os << prefix << StringPrintf("#%02zu pc ", it->num);
   1152     bool try_addr2line = false;
   1153     if (!BacktraceMap::IsValid(it->map)) {
   1154       os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR "  ???"
   1155                                                             : "%08" PRIxPTR "  ???",
   1156                          it->pc);
   1157     } else {
   1158       os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR "  "
   1159                                                             : "%08" PRIxPTR "  ",
   1160                          BacktraceMap::GetRelativePc(it->map, it->pc));
   1161       os << it->map.name;
   1162       os << " (";
   1163       if (!it->func_name.empty()) {
   1164         os << it->func_name;
   1165         if (it->func_offset != 0) {
   1166           os << "+" << it->func_offset;
   1167         }
   1168         try_addr2line = true;
   1169       } else if (current_method != nullptr &&
   1170           Locks::mutator_lock_->IsSharedHeld(Thread::Current()) &&
   1171           PcIsWithinQuickCode(current_method, it->pc)) {
   1172         const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode();
   1173         os << JniLongName(current_method) << "+"
   1174            << (it->pc - reinterpret_cast<uintptr_t>(start_of_code));
   1175       } else {
   1176         os << "???";
   1177       }
   1178       os << ")";
   1179     }
   1180     os << "\n";
   1181     if (try_addr2line && use_addr2line) {
   1182       Addr2line(it->map.name, it->pc - it->map.start, os, prefix);
   1183     }
   1184   }
   1185 #else
   1186   UNUSED(os, tid, existing_map, prefix, current_method, ucontext_ptr);
   1187 #endif
   1188 }
   1189 
   1190 #if defined(__APPLE__)
   1191 
   1192 // TODO: is there any way to get the kernel stack on Mac OS?
   1193 void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
   1194 
   1195 #else
   1196 
   1197 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
   1198   if (tid == GetTid()) {
   1199     // There's no point showing that we're reading our stack out of /proc!
   1200     return;
   1201   }
   1202 
   1203   std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
   1204   std::string kernel_stack;
   1205   if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
   1206     os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
   1207     return;
   1208   }
   1209 
   1210   std::vector<std::string> kernel_stack_frames;
   1211   Split(kernel_stack, '\n', &kernel_stack_frames);
   1212   // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
   1213   // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
   1214   kernel_stack_frames.pop_back();
   1215   for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
   1216     // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110"
   1217     // into "futex_wait_queue_me+0xcd/0x110".
   1218     const char* text = kernel_stack_frames[i].c_str();
   1219     const char* close_bracket = strchr(text, ']');
   1220     if (close_bracket != nullptr) {
   1221       text = close_bracket + 2;
   1222     }
   1223     os << prefix;
   1224     if (include_count) {
   1225       os << StringPrintf("#%02zd ", i);
   1226     }
   1227     os << text << "\n";
   1228   }
   1229 }
   1230 
   1231 #endif
   1232 
   1233 const char* GetAndroidRoot() {
   1234   const char* android_root = getenv("ANDROID_ROOT");
   1235   if (android_root == nullptr) {
   1236     if (OS::DirectoryExists("/system")) {
   1237       android_root = "/system";
   1238     } else {
   1239       LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
   1240       return "";
   1241     }
   1242   }
   1243   if (!OS::DirectoryExists(android_root)) {
   1244     LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
   1245     return "";
   1246   }
   1247   return android_root;
   1248 }
   1249 
   1250 const char* GetAndroidData() {
   1251   std::string error_msg;
   1252   const char* dir = GetAndroidDataSafe(&error_msg);
   1253   if (dir != nullptr) {
   1254     return dir;
   1255   } else {
   1256     LOG(FATAL) << error_msg;
   1257     return "";
   1258   }
   1259 }
   1260 
   1261 const char* GetAndroidDataSafe(std::string* error_msg) {
   1262   const char* android_data = getenv("ANDROID_DATA");
   1263   if (android_data == nullptr) {
   1264     if (OS::DirectoryExists("/data")) {
   1265       android_data = "/data";
   1266     } else {
   1267       *error_msg = "ANDROID_DATA not set and /data does not exist";
   1268       return nullptr;
   1269     }
   1270   }
   1271   if (!OS::DirectoryExists(android_data)) {
   1272     *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data);
   1273     return nullptr;
   1274   }
   1275   return android_data;
   1276 }
   1277 
   1278 void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache,
   1279                     bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) {
   1280   CHECK(subdir != nullptr);
   1281   std::string error_msg;
   1282   const char* android_data = GetAndroidDataSafe(&error_msg);
   1283   if (android_data == nullptr) {
   1284     *have_android_data = false;
   1285     *dalvik_cache_exists = false;
   1286     *is_global_cache = false;
   1287     return;
   1288   } else {
   1289     *have_android_data = true;
   1290   }
   1291   const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
   1292   *dalvik_cache = dalvik_cache_root + subdir;
   1293   *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str());
   1294   *is_global_cache = strcmp(android_data, "/data") == 0;
   1295   if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) {
   1296     // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
   1297     *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) &&
   1298                             (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST));
   1299   }
   1300 }
   1301 
   1302 static std::string GetDalvikCacheImpl(const char* subdir,
   1303                                       const bool create_if_absent,
   1304                                       const bool abort_on_error) {
   1305   CHECK(subdir != nullptr);
   1306   const char* android_data = GetAndroidData();
   1307   const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
   1308   const std::string dalvik_cache = dalvik_cache_root + subdir;
   1309   if (!OS::DirectoryExists(dalvik_cache.c_str())) {
   1310     if (!create_if_absent) {
   1311       // TODO: Check callers. Traditional behavior is to not to abort, even when abort_on_error.
   1312       return "";
   1313     }
   1314 
   1315     // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
   1316     if (strcmp(android_data, "/data") == 0) {
   1317       if (abort_on_error) {
   1318         LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache
   1319                    << ", cannot create /data dalvik-cache.";
   1320         UNREACHABLE();
   1321       }
   1322       return "";
   1323     }
   1324 
   1325     int result = mkdir(dalvik_cache_root.c_str(), 0700);
   1326     if (result != 0 && errno != EEXIST) {
   1327       if (abort_on_error) {
   1328         PLOG(FATAL) << "Failed to create dalvik-cache root directory " << dalvik_cache_root;
   1329         UNREACHABLE();
   1330       }
   1331       return "";
   1332     }
   1333 
   1334     result = mkdir(dalvik_cache.c_str(), 0700);
   1335     if (result != 0) {
   1336       if (abort_on_error) {
   1337         PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
   1338         UNREACHABLE();
   1339       }
   1340       return "";
   1341     }
   1342   }
   1343   return dalvik_cache;
   1344 }
   1345 
   1346 std::string GetDalvikCache(const char* subdir, const bool create_if_absent) {
   1347   return GetDalvikCacheImpl(subdir, create_if_absent, false);
   1348 }
   1349 
   1350 std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) {
   1351   return GetDalvikCacheImpl(subdir, create_if_absent, true);
   1352 }
   1353 
   1354 bool GetDalvikCacheFilename(const char* location, const char* cache_location,
   1355                             std::string* filename, std::string* error_msg) {
   1356   if (location[0] != '/') {
   1357     *error_msg = StringPrintf("Expected path in location to be absolute: %s", location);
   1358     return false;
   1359   }
   1360   std::string cache_file(&location[1]);  // skip leading slash
   1361   if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) {
   1362     cache_file += "/";
   1363     cache_file += DexFile::kClassesDex;
   1364   }
   1365   std::replace(cache_file.begin(), cache_file.end(), '/', '@');
   1366   *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str());
   1367   return true;
   1368 }
   1369 
   1370 std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) {
   1371   std::string ret;
   1372   std::string error_msg;
   1373   if (!GetDalvikCacheFilename(location, cache_location, &ret, &error_msg)) {
   1374     LOG(FATAL) << error_msg;
   1375   }
   1376   return ret;
   1377 }
   1378 
   1379 static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) {
   1380   // in = /foo/bar/baz
   1381   // out = /foo/bar/<isa>/baz
   1382   size_t pos = filename->rfind('/');
   1383   CHECK_NE(pos, std::string::npos) << *filename << " " << isa;
   1384   filename->insert(pos, "/", 1);
   1385   filename->insert(pos + 1, GetInstructionSetString(isa));
   1386 }
   1387 
   1388 std::string GetSystemImageFilename(const char* location, const InstructionSet isa) {
   1389   // location = /system/framework/boot.art
   1390   // filename = /system/framework/<isa>/boot.art
   1391   std::string filename(location);
   1392   InsertIsaDirectory(isa, &filename);
   1393   return filename;
   1394 }
   1395 
   1396 int ExecAndReturnCode(std::vector<std::string>& arg_vector, std::string* error_msg) {
   1397   const std::string command_line(Join(arg_vector, ' '));
   1398   CHECK_GE(arg_vector.size(), 1U) << command_line;
   1399 
   1400   // Convert the args to char pointers.
   1401   const char* program = arg_vector[0].c_str();
   1402   std::vector<char*> args;
   1403   for (size_t i = 0; i < arg_vector.size(); ++i) {
   1404     const std::string& arg = arg_vector[i];
   1405     char* arg_str = const_cast<char*>(arg.c_str());
   1406     CHECK(arg_str != nullptr) << i;
   1407     args.push_back(arg_str);
   1408   }
   1409   args.push_back(nullptr);
   1410 
   1411   // fork and exec
   1412   pid_t pid = fork();
   1413   if (pid == 0) {
   1414     // no allocation allowed between fork and exec
   1415 
   1416     // change process groups, so we don't get reaped by ProcessManager
   1417     setpgid(0, 0);
   1418 
   1419     execv(program, &args[0]);
   1420     PLOG(ERROR) << "Failed to execv(" << command_line << ")";
   1421     // _exit to avoid atexit handlers in child.
   1422     _exit(1);
   1423   } else {
   1424     if (pid == -1) {
   1425       *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
   1426                                 command_line.c_str(), strerror(errno));
   1427       return -1;
   1428     }
   1429 
   1430     // wait for subprocess to finish
   1431     int status = -1;
   1432     pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
   1433     if (got_pid != pid) {
   1434       *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
   1435                                 "wanted %d, got %d: %s",
   1436                                 command_line.c_str(), pid, got_pid, strerror(errno));
   1437       return -1;
   1438     }
   1439     if (WIFEXITED(status)) {
   1440       return WEXITSTATUS(status);
   1441     }
   1442     return -1;
   1443   }
   1444 }
   1445 
   1446 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
   1447   int status = ExecAndReturnCode(arg_vector, error_msg);
   1448   if (status != 0) {
   1449     const std::string command_line(Join(arg_vector, ' '));
   1450     *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
   1451                               command_line.c_str());
   1452     return false;
   1453   }
   1454   return true;
   1455 }
   1456 
   1457 bool FileExists(const std::string& filename) {
   1458   struct stat buffer;
   1459   return stat(filename.c_str(), &buffer) == 0;
   1460 }
   1461 
   1462 bool FileExistsAndNotEmpty(const std::string& filename) {
   1463   struct stat buffer;
   1464   if (stat(filename.c_str(), &buffer) != 0) {
   1465     return false;
   1466   }
   1467   return buffer.st_size > 0;
   1468 }
   1469 
   1470 std::string PrettyDescriptor(Primitive::Type type) {
   1471   return PrettyDescriptor(Primitive::Descriptor(type));
   1472 }
   1473 
   1474 static void DumpMethodCFGImpl(const DexFile* dex_file,
   1475                               uint32_t dex_method_idx,
   1476                               const DexFile::CodeItem* code_item,
   1477                               std::ostream& os) {
   1478   os << "digraph {\n";
   1479   os << "  # /* " << PrettyMethod(dex_method_idx, *dex_file, true) << " */\n";
   1480 
   1481   std::set<uint32_t> dex_pc_is_branch_target;
   1482   {
   1483     // Go and populate.
   1484     const Instruction* inst = Instruction::At(code_item->insns_);
   1485     for (uint32_t dex_pc = 0;
   1486          dex_pc < code_item->insns_size_in_code_units_;
   1487          dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) {
   1488       if (inst->IsBranch()) {
   1489         dex_pc_is_branch_target.insert(dex_pc + inst->GetTargetOffset());
   1490       } else if (inst->IsSwitch()) {
   1491         const uint16_t* insns = code_item->insns_ + dex_pc;
   1492         int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
   1493         const uint16_t* switch_insns = insns + switch_offset;
   1494         uint32_t switch_count = switch_insns[1];
   1495         int32_t targets_offset;
   1496         if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
   1497           /* 0=sig, 1=count, 2/3=firstKey */
   1498           targets_offset = 4;
   1499         } else {
   1500           /* 0=sig, 1=count, 2..count*2 = keys */
   1501           targets_offset = 2 + 2 * switch_count;
   1502         }
   1503         for (uint32_t targ = 0; targ < switch_count; targ++) {
   1504           int32_t offset =
   1505               static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
   1506               static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
   1507           dex_pc_is_branch_target.insert(dex_pc + offset);
   1508         }
   1509       }
   1510     }
   1511   }
   1512 
   1513   // Create nodes for "basic blocks."
   1514   std::map<uint32_t, uint32_t> dex_pc_to_node_id;  // This only has entries for block starts.
   1515   std::map<uint32_t, uint32_t> dex_pc_to_incl_id;  // This has entries for all dex pcs.
   1516 
   1517   {
   1518     const Instruction* inst = Instruction::At(code_item->insns_);
   1519     bool first_in_block = true;
   1520     bool force_new_block = false;
   1521     for (uint32_t dex_pc = 0;
   1522          dex_pc < code_item->insns_size_in_code_units_;
   1523          dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) {
   1524       if (dex_pc == 0 ||
   1525           (dex_pc_is_branch_target.find(dex_pc) != dex_pc_is_branch_target.end()) ||
   1526           force_new_block) {
   1527         uint32_t id = dex_pc_to_node_id.size();
   1528         if (id > 0) {
   1529           // End last node.
   1530           os << "}\"];\n";
   1531         }
   1532         // Start next node.
   1533         os << "  node" << id << " [shape=record,label=\"{";
   1534         dex_pc_to_node_id.insert(std::make_pair(dex_pc, id));
   1535         first_in_block = true;
   1536         force_new_block = false;
   1537       }
   1538 
   1539       // Register instruction.
   1540       dex_pc_to_incl_id.insert(std::make_pair(dex_pc, dex_pc_to_node_id.size() - 1));
   1541 
   1542       // Print instruction.
   1543       if (!first_in_block) {
   1544         os << " | ";
   1545       } else {
   1546         first_in_block = false;
   1547       }
   1548 
   1549       // Dump the instruction. Need to escape '"', '<', '>', '{' and '}'.
   1550       os << "<" << "p" << dex_pc << ">";
   1551       os << " 0x" << std::hex << dex_pc << std::dec << ": ";
   1552       std::string inst_str = inst->DumpString(dex_file);
   1553       size_t cur_start = 0;  // It's OK to start at zero, instruction dumps don't start with chars
   1554                              // we need to escape.
   1555       while (cur_start != std::string::npos) {
   1556         size_t next_escape = inst_str.find_first_of("\"{}<>", cur_start + 1);
   1557         if (next_escape == std::string::npos) {
   1558           os << inst_str.substr(cur_start, inst_str.size() - cur_start);
   1559           break;
   1560         } else {
   1561           os << inst_str.substr(cur_start, next_escape - cur_start);
   1562           // Escape all necessary characters.
   1563           while (next_escape < inst_str.size()) {
   1564             char c = inst_str.at(next_escape);
   1565             if (c == '"' || c == '{' || c == '}' || c == '<' || c == '>') {
   1566               os << '\\' << c;
   1567             } else {
   1568               break;
   1569             }
   1570             next_escape++;
   1571           }
   1572           if (next_escape >= inst_str.size()) {
   1573             next_escape = std::string::npos;
   1574           }
   1575           cur_start = next_escape;
   1576         }
   1577       }
   1578 
   1579       // Force a new block for some fall-throughs and some instructions that terminate the "local"
   1580       // control flow.
   1581       force_new_block = inst->IsSwitch() || inst->IsBasicBlockEnd();
   1582     }
   1583     // Close last node.
   1584     if (dex_pc_to_node_id.size() > 0) {
   1585       os << "}\"];\n";
   1586     }
   1587   }
   1588 
   1589   // Create edges between them.
   1590   {
   1591     std::ostringstream regular_edges;
   1592     std::ostringstream taken_edges;
   1593     std::ostringstream exception_edges;
   1594 
   1595     // Common set of exception edges.
   1596     std::set<uint32_t> exception_targets;
   1597 
   1598     // These blocks (given by the first dex pc) need exception per dex-pc handling in a second
   1599     // pass. In the first pass we try and see whether we can use a common set of edges.
   1600     std::set<uint32_t> blocks_with_detailed_exceptions;
   1601 
   1602     {
   1603       uint32_t last_node_id = std::numeric_limits<uint32_t>::max();
   1604       uint32_t old_dex_pc = 0;
   1605       uint32_t block_start_dex_pc = std::numeric_limits<uint32_t>::max();
   1606       const Instruction* inst = Instruction::At(code_item->insns_);
   1607       for (uint32_t dex_pc = 0;
   1608           dex_pc < code_item->insns_size_in_code_units_;
   1609           old_dex_pc = dex_pc, dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) {
   1610         {
   1611           auto it = dex_pc_to_node_id.find(dex_pc);
   1612           if (it != dex_pc_to_node_id.end()) {
   1613             if (!exception_targets.empty()) {
   1614               // It seems the last block had common exception handlers. Add the exception edges now.
   1615               uint32_t node_id = dex_pc_to_node_id.find(block_start_dex_pc)->second;
   1616               for (uint32_t handler_pc : exception_targets) {
   1617                 auto node_id_it = dex_pc_to_incl_id.find(handler_pc);
   1618                 if (node_id_it != dex_pc_to_incl_id.end()) {
   1619                   exception_edges << "  node" << node_id
   1620                       << " -> node" << node_id_it->second << ":p" << handler_pc
   1621                       << ";\n";
   1622                 }
   1623               }
   1624               exception_targets.clear();
   1625             }
   1626 
   1627             block_start_dex_pc = dex_pc;
   1628 
   1629             // Seems to be a fall-through, connect to last_node_id. May be spurious edges for things
   1630             // like switch data.
   1631             uint32_t old_last = last_node_id;
   1632             last_node_id = it->second;
   1633             if (old_last != std::numeric_limits<uint32_t>::max()) {
   1634               regular_edges << "  node" << old_last << ":p" << old_dex_pc
   1635                   << " -> node" << last_node_id << ":p" << dex_pc
   1636                   << ";\n";
   1637             }
   1638           }
   1639 
   1640           // Look at the exceptions of the first entry.
   1641           CatchHandlerIterator catch_it(*code_item, dex_pc);
   1642           for (; catch_it.HasNext(); catch_it.Next()) {
   1643             exception_targets.insert(catch_it.GetHandlerAddress());
   1644           }
   1645         }
   1646 
   1647         // Handle instruction.
   1648 
   1649         // Branch: something with at most two targets.
   1650         if (inst->IsBranch()) {
   1651           const int32_t offset = inst->GetTargetOffset();
   1652           const bool conditional = !inst->IsUnconditional();
   1653 
   1654           auto target_it = dex_pc_to_node_id.find(dex_pc + offset);
   1655           if (target_it != dex_pc_to_node_id.end()) {
   1656             taken_edges << "  node" << last_node_id << ":p" << dex_pc
   1657                 << " -> node" << target_it->second << ":p" << (dex_pc + offset)
   1658                 << ";\n";
   1659           }
   1660           if (!conditional) {
   1661             // No fall-through.
   1662             last_node_id = std::numeric_limits<uint32_t>::max();
   1663           }
   1664         } else if (inst->IsSwitch()) {
   1665           // TODO: Iterate through all switch targets.
   1666           const uint16_t* insns = code_item->insns_ + dex_pc;
   1667           /* make sure the start of the switch is in range */
   1668           int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
   1669           /* offset to switch table is a relative branch-style offset */
   1670           const uint16_t* switch_insns = insns + switch_offset;
   1671           uint32_t switch_count = switch_insns[1];
   1672           int32_t targets_offset;
   1673           if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
   1674             /* 0=sig, 1=count, 2/3=firstKey */
   1675             targets_offset = 4;
   1676           } else {
   1677             /* 0=sig, 1=count, 2..count*2 = keys */
   1678             targets_offset = 2 + 2 * switch_count;
   1679           }
   1680           /* make sure the end of the switch is in range */
   1681           /* verify each switch target */
   1682           for (uint32_t targ = 0; targ < switch_count; targ++) {
   1683             int32_t offset =
   1684                 static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
   1685                 static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
   1686             int32_t abs_offset = dex_pc + offset;
   1687             auto target_it = dex_pc_to_node_id.find(abs_offset);
   1688             if (target_it != dex_pc_to_node_id.end()) {
   1689               // TODO: value label.
   1690               taken_edges << "  node" << last_node_id << ":p" << dex_pc
   1691                   << " -> node" << target_it->second << ":p" << (abs_offset)
   1692                   << ";\n";
   1693             }
   1694           }
   1695         }
   1696 
   1697         // Exception edges. If this is not the first instruction in the block
   1698         if (block_start_dex_pc != dex_pc) {
   1699           std::set<uint32_t> current_handler_pcs;
   1700           CatchHandlerIterator catch_it(*code_item, dex_pc);
   1701           for (; catch_it.HasNext(); catch_it.Next()) {
   1702             current_handler_pcs.insert(catch_it.GetHandlerAddress());
   1703           }
   1704           if (current_handler_pcs != exception_targets) {
   1705             exception_targets.clear();  // Clear so we don't do something at the end.
   1706             blocks_with_detailed_exceptions.insert(block_start_dex_pc);
   1707           }
   1708         }
   1709 
   1710         if (inst->IsReturn() ||
   1711             (inst->Opcode() == Instruction::THROW) ||
   1712             (inst->IsBranch() && inst->IsUnconditional())) {
   1713           // No fall-through.
   1714           last_node_id = std::numeric_limits<uint32_t>::max();
   1715         }
   1716       }
   1717       // Finish up the last block, if it had common exceptions.
   1718       if (!exception_targets.empty()) {
   1719         // It seems the last block had common exception handlers. Add the exception edges now.
   1720         uint32_t node_id = dex_pc_to_node_id.find(block_start_dex_pc)->second;
   1721         for (uint32_t handler_pc : exception_targets) {
   1722           auto node_id_it = dex_pc_to_incl_id.find(handler_pc);
   1723           if (node_id_it != dex_pc_to_incl_id.end()) {
   1724             exception_edges << "  node" << node_id
   1725                 << " -> node" << node_id_it->second << ":p" << handler_pc
   1726                 << ";\n";
   1727           }
   1728         }
   1729         exception_targets.clear();
   1730       }
   1731     }
   1732 
   1733     // Second pass for detailed exception blocks.
   1734     // TODO
   1735     // Exception edges. If this is not the first instruction in the block
   1736     for (uint32_t dex_pc : blocks_with_detailed_exceptions) {
   1737       const Instruction* inst = Instruction::At(&code_item->insns_[dex_pc]);
   1738       uint32_t this_node_id = dex_pc_to_incl_id.find(dex_pc)->second;
   1739       while (true) {
   1740         CatchHandlerIterator catch_it(*code_item, dex_pc);
   1741         if (catch_it.HasNext()) {
   1742           std::set<uint32_t> handled_targets;
   1743           for (; catch_it.HasNext(); catch_it.Next()) {
   1744             uint32_t handler_pc = catch_it.GetHandlerAddress();
   1745             auto it = handled_targets.find(handler_pc);
   1746             if (it == handled_targets.end()) {
   1747               auto node_id_it = dex_pc_to_incl_id.find(handler_pc);
   1748               if (node_id_it != dex_pc_to_incl_id.end()) {
   1749                 exception_edges << "  node" << this_node_id << ":p" << dex_pc
   1750                     << " -> node" << node_id_it->second << ":p" << handler_pc
   1751                     << ";\n";
   1752               }
   1753 
   1754               // Mark as done.
   1755               handled_targets.insert(handler_pc);
   1756             }
   1757           }
   1758         }
   1759         if (inst->IsBasicBlockEnd()) {
   1760           break;
   1761         }
   1762 
   1763         // Loop update. Have a break-out if the next instruction is a branch target and thus in
   1764         // another block.
   1765         dex_pc += inst->SizeInCodeUnits();
   1766         if (dex_pc >= code_item->insns_size_in_code_units_) {
   1767           break;
   1768         }
   1769         if (dex_pc_to_node_id.find(dex_pc) != dex_pc_to_node_id.end()) {
   1770           break;
   1771         }
   1772         inst = inst->Next();
   1773       }
   1774     }
   1775 
   1776     // Write out the sub-graphs to make edges styled.
   1777     os << "\n";
   1778     os << "  subgraph regular_edges {\n";
   1779     os << "    edge [color=\"#000000\",weight=.3,len=3];\n\n";
   1780     os << "    " << regular_edges.str() << "\n";
   1781     os << "  }\n\n";
   1782 
   1783     os << "  subgraph taken_edges {\n";
   1784     os << "    edge [color=\"#00FF00\",weight=.3,len=3];\n\n";
   1785     os << "    " << taken_edges.str() << "\n";
   1786     os << "  }\n\n";
   1787 
   1788     os << "  subgraph exception_edges {\n";
   1789     os << "    edge [color=\"#FF0000\",weight=.3,len=3];\n\n";
   1790     os << "    " << exception_edges.str() << "\n";
   1791     os << "  }\n\n";
   1792   }
   1793 
   1794   os << "}\n";
   1795 }
   1796 
   1797 void DumpMethodCFG(ArtMethod* method, std::ostream& os) {
   1798   const DexFile* dex_file = method->GetDexFile();
   1799   const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
   1800 
   1801   DumpMethodCFGImpl(dex_file, method->GetDexMethodIndex(), code_item, os);
   1802 }
   1803 
   1804 void DumpMethodCFG(const DexFile* dex_file, uint32_t dex_method_idx, std::ostream& os) {
   1805   // This is painful, we need to find the code item. That means finding the class, and then
   1806   // iterating the table.
   1807   if (dex_method_idx >= dex_file->NumMethodIds()) {
   1808     os << "Could not find method-idx.";
   1809     return;
   1810   }
   1811   const DexFile::MethodId& method_id = dex_file->GetMethodId(dex_method_idx);
   1812 
   1813   const DexFile::ClassDef* class_def = dex_file->FindClassDef(method_id.class_idx_);
   1814   if (class_def == nullptr) {
   1815     os << "Could not find class-def.";
   1816     return;
   1817   }
   1818 
   1819   const uint8_t* class_data = dex_file->GetClassData(*class_def);
   1820   if (class_data == nullptr) {
   1821     os << "No class data.";
   1822     return;
   1823   }
   1824 
   1825   ClassDataItemIterator it(*dex_file, class_data);
   1826   // Skip fields
   1827   while (it.HasNextStaticField() || it.HasNextInstanceField()) {
   1828     it.Next();
   1829   }
   1830 
   1831   // Find method, and dump it.
   1832   while (it.HasNextDirectMethod() || it.HasNextVirtualMethod()) {
   1833     uint32_t method_idx = it.GetMemberIndex();
   1834     if (method_idx == dex_method_idx) {
   1835       DumpMethodCFGImpl(dex_file, dex_method_idx, it.GetMethodCodeItem(), os);
   1836       return;
   1837     }
   1838     it.Next();
   1839   }
   1840 
   1841   // Otherwise complain.
   1842   os << "Something went wrong, didn't find the method in the class data.";
   1843 }
   1844 
   1845 static void ParseStringAfterChar(const std::string& s,
   1846                                  char c,
   1847                                  std::string* parsed_value,
   1848                                  UsageFn Usage) {
   1849   std::string::size_type colon = s.find(c);
   1850   if (colon == std::string::npos) {
   1851     Usage("Missing char %c in option %s\n", c, s.c_str());
   1852   }
   1853   // Add one to remove the char we were trimming until.
   1854   *parsed_value = s.substr(colon + 1);
   1855 }
   1856 
   1857 void ParseDouble(const std::string& option,
   1858                  char after_char,
   1859                  double min,
   1860                  double max,
   1861                  double* parsed_value,
   1862                  UsageFn Usage) {
   1863   std::string substring;
   1864   ParseStringAfterChar(option, after_char, &substring, Usage);
   1865   bool sane_val = true;
   1866   double value;
   1867   if ((false)) {
   1868     // TODO: this doesn't seem to work on the emulator.  b/15114595
   1869     std::stringstream iss(substring);
   1870     iss >> value;
   1871     // Ensure that we have a value, there was no cruft after it and it satisfies a sensible range.
   1872     sane_val = iss.eof() && (value >= min) && (value <= max);
   1873   } else {
   1874     char* end = nullptr;
   1875     value = strtod(substring.c_str(), &end);
   1876     sane_val = *end == '\0' && value >= min && value <= max;
   1877   }
   1878   if (!sane_val) {
   1879     Usage("Invalid double value %s for option %s\n", substring.c_str(), option.c_str());
   1880   }
   1881   *parsed_value = value;
   1882 }
   1883 
   1884 int64_t GetFileSizeBytes(const std::string& filename) {
   1885   struct stat stat_buf;
   1886   int rc = stat(filename.c_str(), &stat_buf);
   1887   return rc == 0 ? stat_buf.st_size : -1;
   1888 }
   1889 
   1890 void SleepForever() {
   1891   while (true) {
   1892     usleep(1000000);
   1893   }
   1894 }
   1895 
   1896 }  // namespace art
   1897