Home | History | Annotate | Download | only in heap
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/heap/mark-compact.h"
      6 
      7 #include "src/base/atomicops.h"
      8 #include "src/base/bits.h"
      9 #include "src/base/sys-info.h"
     10 #include "src/code-stubs.h"
     11 #include "src/compilation-cache.h"
     12 #include "src/deoptimizer.h"
     13 #include "src/execution.h"
     14 #include "src/frames-inl.h"
     15 #include "src/gdb-jit.h"
     16 #include "src/global-handles.h"
     17 #include "src/heap/array-buffer-tracker.h"
     18 #include "src/heap/gc-tracer.h"
     19 #include "src/heap/incremental-marking.h"
     20 #include "src/heap/mark-compact-inl.h"
     21 #include "src/heap/object-stats.h"
     22 #include "src/heap/objects-visiting.h"
     23 #include "src/heap/objects-visiting-inl.h"
     24 #include "src/heap/slots-buffer.h"
     25 #include "src/heap/spaces-inl.h"
     26 #include "src/ic/ic.h"
     27 #include "src/ic/stub-cache.h"
     28 #include "src/profiler/cpu-profiler.h"
     29 #include "src/v8.h"
     30 
     31 namespace v8 {
     32 namespace internal {
     33 
     34 
     35 const char* Marking::kWhiteBitPattern = "00";
     36 const char* Marking::kBlackBitPattern = "11";
     37 const char* Marking::kGreyBitPattern = "10";
     38 const char* Marking::kImpossibleBitPattern = "01";
     39 
     40 
     41 // The following has to hold in order for {Marking::MarkBitFrom} to not produce
     42 // invalid {kImpossibleBitPattern} in the marking bitmap by overlapping.
     43 STATIC_ASSERT(Heap::kMinObjectSizeInWords >= 2);
     44 
     45 
     46 // -------------------------------------------------------------------------
     47 // MarkCompactCollector
     48 
     49 MarkCompactCollector::MarkCompactCollector(Heap* heap)
     50     :  // NOLINT
     51 #ifdef DEBUG
     52       state_(IDLE),
     53 #endif
     54       marking_parity_(ODD_MARKING_PARITY),
     55       was_marked_incrementally_(false),
     56       evacuation_(false),
     57       slots_buffer_allocator_(nullptr),
     58       migration_slots_buffer_(nullptr),
     59       heap_(heap),
     60       marking_deque_memory_(NULL),
     61       marking_deque_memory_committed_(0),
     62       code_flusher_(nullptr),
     63       have_code_to_deoptimize_(false),
     64       compacting_(false),
     65       sweeping_in_progress_(false),
     66       compaction_in_progress_(false),
     67       pending_sweeper_tasks_semaphore_(0),
     68       pending_compaction_tasks_semaphore_(0) {
     69 }
     70 
     71 #ifdef VERIFY_HEAP
     72 class VerifyMarkingVisitor : public ObjectVisitor {
     73  public:
     74   explicit VerifyMarkingVisitor(Heap* heap) : heap_(heap) {}
     75 
     76   void VisitPointers(Object** start, Object** end) override {
     77     for (Object** current = start; current < end; current++) {
     78       if ((*current)->IsHeapObject()) {
     79         HeapObject* object = HeapObject::cast(*current);
     80         CHECK(heap_->mark_compact_collector()->IsMarked(object));
     81       }
     82     }
     83   }
     84 
     85   void VisitEmbeddedPointer(RelocInfo* rinfo) override {
     86     DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
     87     if (!rinfo->host()->IsWeakObject(rinfo->target_object())) {
     88       Object* p = rinfo->target_object();
     89       VisitPointer(&p);
     90     }
     91   }
     92 
     93   void VisitCell(RelocInfo* rinfo) override {
     94     Code* code = rinfo->host();
     95     DCHECK(rinfo->rmode() == RelocInfo::CELL);
     96     if (!code->IsWeakObject(rinfo->target_cell())) {
     97       ObjectVisitor::VisitCell(rinfo);
     98     }
     99   }
    100 
    101  private:
    102   Heap* heap_;
    103 };
    104 
    105 
    106 static void VerifyMarking(Heap* heap, Address bottom, Address top) {
    107   VerifyMarkingVisitor visitor(heap);
    108   HeapObject* object;
    109   Address next_object_must_be_here_or_later = bottom;
    110 
    111   for (Address current = bottom; current < top; current += kPointerSize) {
    112     object = HeapObject::FromAddress(current);
    113     if (MarkCompactCollector::IsMarked(object)) {
    114       CHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
    115       CHECK(current >= next_object_must_be_here_or_later);
    116       object->Iterate(&visitor);
    117       next_object_must_be_here_or_later = current + object->Size();
    118       // The next word for sure belongs to the current object, jump over it.
    119       current += kPointerSize;
    120     }
    121   }
    122 }
    123 
    124 
    125 static void VerifyMarking(NewSpace* space) {
    126   Address end = space->top();
    127   NewSpacePageIterator it(space->bottom(), end);
    128   // The bottom position is at the start of its page. Allows us to use
    129   // page->area_start() as start of range on all pages.
    130   CHECK_EQ(space->bottom(),
    131            NewSpacePage::FromAddress(space->bottom())->area_start());
    132   while (it.has_next()) {
    133     NewSpacePage* page = it.next();
    134     Address limit = it.has_next() ? page->area_end() : end;
    135     CHECK(limit == end || !page->Contains(end));
    136     VerifyMarking(space->heap(), page->area_start(), limit);
    137   }
    138 }
    139 
    140 
    141 static void VerifyMarking(PagedSpace* space) {
    142   PageIterator it(space);
    143 
    144   while (it.has_next()) {
    145     Page* p = it.next();
    146     VerifyMarking(space->heap(), p->area_start(), p->area_end());
    147   }
    148 }
    149 
    150 
    151 static void VerifyMarking(Heap* heap) {
    152   VerifyMarking(heap->old_space());
    153   VerifyMarking(heap->code_space());
    154   VerifyMarking(heap->map_space());
    155   VerifyMarking(heap->new_space());
    156 
    157   VerifyMarkingVisitor visitor(heap);
    158 
    159   LargeObjectIterator it(heap->lo_space());
    160   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
    161     if (MarkCompactCollector::IsMarked(obj)) {
    162       obj->Iterate(&visitor);
    163     }
    164   }
    165 
    166   heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
    167 }
    168 
    169 
    170 class VerifyEvacuationVisitor : public ObjectVisitor {
    171  public:
    172   void VisitPointers(Object** start, Object** end) override {
    173     for (Object** current = start; current < end; current++) {
    174       if ((*current)->IsHeapObject()) {
    175         HeapObject* object = HeapObject::cast(*current);
    176         CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object));
    177       }
    178     }
    179   }
    180 };
    181 
    182 
    183 static void VerifyEvacuation(Page* page) {
    184   VerifyEvacuationVisitor visitor;
    185   HeapObjectIterator iterator(page);
    186   for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
    187        heap_object = iterator.Next()) {
    188     // We skip free space objects.
    189     if (!heap_object->IsFiller()) {
    190       heap_object->Iterate(&visitor);
    191     }
    192   }
    193 }
    194 
    195 
    196 static void VerifyEvacuation(NewSpace* space) {
    197   NewSpacePageIterator it(space->bottom(), space->top());
    198   VerifyEvacuationVisitor visitor;
    199 
    200   while (it.has_next()) {
    201     NewSpacePage* page = it.next();
    202     Address current = page->area_start();
    203     Address limit = it.has_next() ? page->area_end() : space->top();
    204     CHECK(limit == space->top() || !page->Contains(space->top()));
    205     while (current < limit) {
    206       HeapObject* object = HeapObject::FromAddress(current);
    207       object->Iterate(&visitor);
    208       current += object->Size();
    209     }
    210   }
    211 }
    212 
    213 
    214 static void VerifyEvacuation(Heap* heap, PagedSpace* space) {
    215   if (FLAG_use_allocation_folding && (space == heap->old_space())) {
    216     return;
    217   }
    218   PageIterator it(space);
    219 
    220   while (it.has_next()) {
    221     Page* p = it.next();
    222     if (p->IsEvacuationCandidate()) continue;
    223     VerifyEvacuation(p);
    224   }
    225 }
    226 
    227 
    228 static void VerifyEvacuation(Heap* heap) {
    229   VerifyEvacuation(heap, heap->old_space());
    230   VerifyEvacuation(heap, heap->code_space());
    231   VerifyEvacuation(heap, heap->map_space());
    232   VerifyEvacuation(heap->new_space());
    233 
    234   VerifyEvacuationVisitor visitor;
    235   heap->IterateStrongRoots(&visitor, VISIT_ALL);
    236 }
    237 #endif  // VERIFY_HEAP
    238 
    239 
    240 void MarkCompactCollector::SetUp() {
    241   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
    242   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
    243   DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
    244   DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
    245 
    246   free_list_old_space_.Reset(new FreeList(heap_->old_space()));
    247   free_list_code_space_.Reset(new FreeList(heap_->code_space()));
    248   free_list_map_space_.Reset(new FreeList(heap_->map_space()));
    249   EnsureMarkingDequeIsReserved();
    250   EnsureMarkingDequeIsCommitted(kMinMarkingDequeSize);
    251   slots_buffer_allocator_ = new SlotsBufferAllocator();
    252 
    253   if (FLAG_flush_code) {
    254     code_flusher_ = new CodeFlusher(isolate());
    255     if (FLAG_trace_code_flushing) {
    256       PrintF("[code-flushing is now on]\n");
    257     }
    258   }
    259 }
    260 
    261 
    262 void MarkCompactCollector::TearDown() {
    263   AbortCompaction();
    264   delete marking_deque_memory_;
    265   delete slots_buffer_allocator_;
    266   delete code_flusher_;
    267 }
    268 
    269 
    270 void MarkCompactCollector::AddEvacuationCandidate(Page* p) {
    271   DCHECK(!p->NeverEvacuate());
    272   p->MarkEvacuationCandidate();
    273   evacuation_candidates_.Add(p);
    274 }
    275 
    276 
    277 static void TraceFragmentation(PagedSpace* space) {
    278   int number_of_pages = space->CountTotalPages();
    279   intptr_t reserved = (number_of_pages * space->AreaSize());
    280   intptr_t free = reserved - space->SizeOfObjects();
    281   PrintF("[%s]: %d pages, %d (%.1f%%) free\n",
    282          AllocationSpaceName(space->identity()), number_of_pages,
    283          static_cast<int>(free), static_cast<double>(free) * 100 / reserved);
    284 }
    285 
    286 
    287 bool MarkCompactCollector::StartCompaction(CompactionMode mode) {
    288   if (!compacting_) {
    289     DCHECK(evacuation_candidates_.length() == 0);
    290 
    291     CollectEvacuationCandidates(heap()->old_space());
    292 
    293     if (FLAG_compact_code_space) {
    294       CollectEvacuationCandidates(heap()->code_space());
    295     } else if (FLAG_trace_fragmentation) {
    296       TraceFragmentation(heap()->code_space());
    297     }
    298 
    299     if (FLAG_trace_fragmentation) {
    300       TraceFragmentation(heap()->map_space());
    301     }
    302 
    303     heap()->old_space()->EvictEvacuationCandidatesFromLinearAllocationArea();
    304     heap()->code_space()->EvictEvacuationCandidatesFromLinearAllocationArea();
    305 
    306     compacting_ = evacuation_candidates_.length() > 0;
    307   }
    308 
    309   return compacting_;
    310 }
    311 
    312 
    313 void MarkCompactCollector::ClearInvalidStoreAndSlotsBufferEntries() {
    314   {
    315     GCTracer::Scope gc_scope(heap()->tracer(),
    316                              GCTracer::Scope::MC_CLEAR_STORE_BUFFER);
    317     heap_->store_buffer()->ClearInvalidStoreBufferEntries();
    318   }
    319 
    320   {
    321     GCTracer::Scope gc_scope(heap()->tracer(),
    322                              GCTracer::Scope::MC_CLEAR_SLOTS_BUFFER);
    323     int number_of_pages = evacuation_candidates_.length();
    324     for (int i = 0; i < number_of_pages; i++) {
    325       Page* p = evacuation_candidates_[i];
    326       SlotsBuffer::RemoveInvalidSlots(heap_, p->slots_buffer());
    327     }
    328   }
    329 #ifdef VERIFY_HEAP
    330   if (FLAG_verify_heap) {
    331     VerifyValidStoreAndSlotsBufferEntries();
    332   }
    333 #endif
    334 }
    335 
    336 
    337 #ifdef VERIFY_HEAP
    338 static void VerifyValidSlotsBufferEntries(Heap* heap, PagedSpace* space) {
    339   PageIterator it(space);
    340   while (it.has_next()) {
    341     Page* p = it.next();
    342     SlotsBuffer::VerifySlots(heap, p->slots_buffer());
    343   }
    344 }
    345 
    346 
    347 void MarkCompactCollector::VerifyValidStoreAndSlotsBufferEntries() {
    348   heap()->store_buffer()->VerifyValidStoreBufferEntries();
    349 
    350   VerifyValidSlotsBufferEntries(heap(), heap()->old_space());
    351   VerifyValidSlotsBufferEntries(heap(), heap()->code_space());
    352   VerifyValidSlotsBufferEntries(heap(), heap()->map_space());
    353 
    354   LargeObjectIterator it(heap()->lo_space());
    355   for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
    356     MemoryChunk* chunk = MemoryChunk::FromAddress(object->address());
    357     SlotsBuffer::VerifySlots(heap(), chunk->slots_buffer());
    358   }
    359 }
    360 #endif
    361 
    362 
    363 void MarkCompactCollector::CollectGarbage() {
    364   // Make sure that Prepare() has been called. The individual steps below will
    365   // update the state as they proceed.
    366   DCHECK(state_ == PREPARE_GC);
    367 
    368   MarkLiveObjects();
    369 
    370   DCHECK(heap_->incremental_marking()->IsStopped());
    371 
    372   ClearNonLiveReferences();
    373 
    374 #ifdef VERIFY_HEAP
    375   if (FLAG_verify_heap) {
    376     VerifyMarking(heap_);
    377   }
    378 #endif
    379 
    380   SweepSpaces();
    381 
    382   EvacuateNewSpaceAndCandidates();
    383 
    384   Finish();
    385 }
    386 
    387 
    388 #ifdef VERIFY_HEAP
    389 void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) {
    390   PageIterator it(space);
    391 
    392   while (it.has_next()) {
    393     Page* p = it.next();
    394     CHECK(p->markbits()->IsClean());
    395     CHECK_EQ(0, p->LiveBytes());
    396   }
    397 }
    398 
    399 
    400 void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) {
    401   NewSpacePageIterator it(space->bottom(), space->top());
    402 
    403   while (it.has_next()) {
    404     NewSpacePage* p = it.next();
    405     CHECK(p->markbits()->IsClean());
    406     CHECK_EQ(0, p->LiveBytes());
    407   }
    408 }
    409 
    410 
    411 void MarkCompactCollector::VerifyMarkbitsAreClean() {
    412   VerifyMarkbitsAreClean(heap_->old_space());
    413   VerifyMarkbitsAreClean(heap_->code_space());
    414   VerifyMarkbitsAreClean(heap_->map_space());
    415   VerifyMarkbitsAreClean(heap_->new_space());
    416 
    417   LargeObjectIterator it(heap_->lo_space());
    418   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
    419     MarkBit mark_bit = Marking::MarkBitFrom(obj);
    420     CHECK(Marking::IsWhite(mark_bit));
    421     CHECK_EQ(0, Page::FromAddress(obj->address())->LiveBytes());
    422   }
    423 }
    424 
    425 
    426 void MarkCompactCollector::VerifyWeakEmbeddedObjectsInCode() {
    427   HeapObjectIterator code_iterator(heap()->code_space());
    428   for (HeapObject* obj = code_iterator.Next(); obj != NULL;
    429        obj = code_iterator.Next()) {
    430     Code* code = Code::cast(obj);
    431     if (!code->is_optimized_code()) continue;
    432     if (WillBeDeoptimized(code)) continue;
    433     code->VerifyEmbeddedObjectsDependency();
    434   }
    435 }
    436 
    437 
    438 void MarkCompactCollector::VerifyOmittedMapChecks() {
    439   HeapObjectIterator iterator(heap()->map_space());
    440   for (HeapObject* obj = iterator.Next(); obj != NULL; obj = iterator.Next()) {
    441     Map* map = Map::cast(obj);
    442     map->VerifyOmittedMapChecks();
    443   }
    444 }
    445 #endif  // VERIFY_HEAP
    446 
    447 
    448 static void ClearMarkbitsInPagedSpace(PagedSpace* space) {
    449   PageIterator it(space);
    450 
    451   while (it.has_next()) {
    452     Bitmap::Clear(it.next());
    453   }
    454 }
    455 
    456 
    457 static void ClearMarkbitsInNewSpace(NewSpace* space) {
    458   NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
    459 
    460   while (it.has_next()) {
    461     Bitmap::Clear(it.next());
    462   }
    463 }
    464 
    465 
    466 void MarkCompactCollector::ClearMarkbits() {
    467   ClearMarkbitsInPagedSpace(heap_->code_space());
    468   ClearMarkbitsInPagedSpace(heap_->map_space());
    469   ClearMarkbitsInPagedSpace(heap_->old_space());
    470   ClearMarkbitsInNewSpace(heap_->new_space());
    471 
    472   LargeObjectIterator it(heap_->lo_space());
    473   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
    474     Marking::MarkWhite(Marking::MarkBitFrom(obj));
    475     Page::FromAddress(obj->address())->ResetProgressBar();
    476     Page::FromAddress(obj->address())->ResetLiveBytes();
    477   }
    478 }
    479 
    480 
    481 class MarkCompactCollector::CompactionTask : public CancelableTask {
    482  public:
    483   explicit CompactionTask(Heap* heap, CompactionSpaceCollection* spaces)
    484       : CancelableTask(heap->isolate()), spaces_(spaces) {}
    485 
    486   virtual ~CompactionTask() {}
    487 
    488  private:
    489   // v8::internal::CancelableTask overrides.
    490   void RunInternal() override {
    491     MarkCompactCollector* mark_compact =
    492         isolate()->heap()->mark_compact_collector();
    493     SlotsBuffer* evacuation_slots_buffer = nullptr;
    494     mark_compact->EvacuatePages(spaces_, &evacuation_slots_buffer);
    495     mark_compact->AddEvacuationSlotsBufferSynchronized(evacuation_slots_buffer);
    496     mark_compact->pending_compaction_tasks_semaphore_.Signal();
    497   }
    498 
    499   CompactionSpaceCollection* spaces_;
    500 
    501   DISALLOW_COPY_AND_ASSIGN(CompactionTask);
    502 };
    503 
    504 
    505 class MarkCompactCollector::SweeperTask : public v8::Task {
    506  public:
    507   SweeperTask(Heap* heap, PagedSpace* space) : heap_(heap), space_(space) {}
    508 
    509   virtual ~SweeperTask() {}
    510 
    511  private:
    512   // v8::Task overrides.
    513   void Run() override {
    514     heap_->mark_compact_collector()->SweepInParallel(space_, 0);
    515     heap_->mark_compact_collector()->pending_sweeper_tasks_semaphore_.Signal();
    516   }
    517 
    518   Heap* heap_;
    519   PagedSpace* space_;
    520 
    521   DISALLOW_COPY_AND_ASSIGN(SweeperTask);
    522 };
    523 
    524 
    525 void MarkCompactCollector::StartSweeperThreads() {
    526   DCHECK(free_list_old_space_.get()->IsEmpty());
    527   DCHECK(free_list_code_space_.get()->IsEmpty());
    528   DCHECK(free_list_map_space_.get()->IsEmpty());
    529   V8::GetCurrentPlatform()->CallOnBackgroundThread(
    530       new SweeperTask(heap(), heap()->old_space()),
    531       v8::Platform::kShortRunningTask);
    532   V8::GetCurrentPlatform()->CallOnBackgroundThread(
    533       new SweeperTask(heap(), heap()->code_space()),
    534       v8::Platform::kShortRunningTask);
    535   V8::GetCurrentPlatform()->CallOnBackgroundThread(
    536       new SweeperTask(heap(), heap()->map_space()),
    537       v8::Platform::kShortRunningTask);
    538 }
    539 
    540 
    541 void MarkCompactCollector::SweepOrWaitUntilSweepingCompleted(Page* page) {
    542   PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
    543   if (!page->SweepingCompleted()) {
    544     SweepInParallel(page, owner);
    545     if (!page->SweepingCompleted()) {
    546       // We were not able to sweep that page, i.e., a concurrent
    547       // sweeper thread currently owns this page. Wait for the sweeper
    548       // thread to be done with this page.
    549       page->WaitUntilSweepingCompleted();
    550     }
    551   }
    552 }
    553 
    554 
    555 void MarkCompactCollector::SweepAndRefill(CompactionSpace* space) {
    556   if (FLAG_concurrent_sweeping && !IsSweepingCompleted()) {
    557     SweepInParallel(heap()->paged_space(space->identity()), 0);
    558     space->RefillFreeList();
    559   }
    560 }
    561 
    562 
    563 void MarkCompactCollector::EnsureSweepingCompleted() {
    564   DCHECK(sweeping_in_progress_ == true);
    565 
    566   // If sweeping is not completed or not running at all, we try to complete it
    567   // here.
    568   if (!FLAG_concurrent_sweeping || !IsSweepingCompleted()) {
    569     SweepInParallel(heap()->paged_space(OLD_SPACE), 0);
    570     SweepInParallel(heap()->paged_space(CODE_SPACE), 0);
    571     SweepInParallel(heap()->paged_space(MAP_SPACE), 0);
    572   }
    573 
    574   if (FLAG_concurrent_sweeping) {
    575     pending_sweeper_tasks_semaphore_.Wait();
    576     pending_sweeper_tasks_semaphore_.Wait();
    577     pending_sweeper_tasks_semaphore_.Wait();
    578   }
    579 
    580   ParallelSweepSpacesComplete();
    581   sweeping_in_progress_ = false;
    582   heap()->old_space()->RefillFreeList();
    583   heap()->code_space()->RefillFreeList();
    584   heap()->map_space()->RefillFreeList();
    585 
    586 #ifdef VERIFY_HEAP
    587   if (FLAG_verify_heap && !evacuation()) {
    588     VerifyEvacuation(heap_);
    589   }
    590 #endif
    591 }
    592 
    593 
    594 bool MarkCompactCollector::IsSweepingCompleted() {
    595   if (!pending_sweeper_tasks_semaphore_.WaitFor(
    596           base::TimeDelta::FromSeconds(0))) {
    597     return false;
    598   }
    599   pending_sweeper_tasks_semaphore_.Signal();
    600   return true;
    601 }
    602 
    603 
    604 void Marking::TransferMark(Heap* heap, Address old_start, Address new_start) {
    605   // This is only used when resizing an object.
    606   DCHECK(MemoryChunk::FromAddress(old_start) ==
    607          MemoryChunk::FromAddress(new_start));
    608 
    609   if (!heap->incremental_marking()->IsMarking()) return;
    610 
    611   // If the mark doesn't move, we don't check the color of the object.
    612   // It doesn't matter whether the object is black, since it hasn't changed
    613   // size, so the adjustment to the live data count will be zero anyway.
    614   if (old_start == new_start) return;
    615 
    616   MarkBit new_mark_bit = MarkBitFrom(new_start);
    617   MarkBit old_mark_bit = MarkBitFrom(old_start);
    618 
    619 #ifdef DEBUG
    620   ObjectColor old_color = Color(old_mark_bit);
    621 #endif
    622 
    623   if (Marking::IsBlack(old_mark_bit)) {
    624     Marking::BlackToWhite(old_mark_bit);
    625     Marking::MarkBlack(new_mark_bit);
    626     return;
    627   } else if (Marking::IsGrey(old_mark_bit)) {
    628     Marking::GreyToWhite(old_mark_bit);
    629     heap->incremental_marking()->WhiteToGreyAndPush(
    630         HeapObject::FromAddress(new_start), new_mark_bit);
    631     heap->incremental_marking()->RestartIfNotMarking();
    632   }
    633 
    634 #ifdef DEBUG
    635   ObjectColor new_color = Color(new_mark_bit);
    636   DCHECK(new_color == old_color);
    637 #endif
    638 }
    639 
    640 
    641 const char* AllocationSpaceName(AllocationSpace space) {
    642   switch (space) {
    643     case NEW_SPACE:
    644       return "NEW_SPACE";
    645     case OLD_SPACE:
    646       return "OLD_SPACE";
    647     case CODE_SPACE:
    648       return "CODE_SPACE";
    649     case MAP_SPACE:
    650       return "MAP_SPACE";
    651     case LO_SPACE:
    652       return "LO_SPACE";
    653     default:
    654       UNREACHABLE();
    655   }
    656 
    657   return NULL;
    658 }
    659 
    660 
    661 void MarkCompactCollector::ComputeEvacuationHeuristics(
    662     int area_size, int* target_fragmentation_percent,
    663     int* max_evacuated_bytes) {
    664   // For memory reducing mode we directly define both constants.
    665   const int kTargetFragmentationPercentForReduceMemory = 20;
    666   const int kMaxEvacuatedBytesForReduceMemory = 12 * Page::kPageSize;
    667 
    668   // For regular mode (which is latency critical) we define less aggressive
    669   // defaults to start and switch to a trace-based (using compaction speed)
    670   // approach as soon as we have enough samples.
    671   const int kTargetFragmentationPercent = 70;
    672   const int kMaxEvacuatedBytes = 4 * Page::kPageSize;
    673   // Time to take for a single area (=payload of page). Used as soon as there
    674   // exist enough compaction speed samples.
    675   const int kTargetMsPerArea = 1;
    676 
    677   if (heap()->ShouldReduceMemory()) {
    678     *target_fragmentation_percent = kTargetFragmentationPercentForReduceMemory;
    679     *max_evacuated_bytes = kMaxEvacuatedBytesForReduceMemory;
    680   } else {
    681     const intptr_t estimated_compaction_speed =
    682         heap()->tracer()->CompactionSpeedInBytesPerMillisecond();
    683     if (estimated_compaction_speed != 0) {
    684       // Estimate the target fragmentation based on traced compaction speed
    685       // and a goal for a single page.
    686       const intptr_t estimated_ms_per_area =
    687           1 + static_cast<intptr_t>(area_size) / estimated_compaction_speed;
    688       *target_fragmentation_percent =
    689           100 - 100 * kTargetMsPerArea / estimated_ms_per_area;
    690       if (*target_fragmentation_percent <
    691           kTargetFragmentationPercentForReduceMemory) {
    692         *target_fragmentation_percent =
    693             kTargetFragmentationPercentForReduceMemory;
    694       }
    695     } else {
    696       *target_fragmentation_percent = kTargetFragmentationPercent;
    697     }
    698     *max_evacuated_bytes = kMaxEvacuatedBytes;
    699   }
    700 }
    701 
    702 
    703 void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) {
    704   DCHECK(space->identity() == OLD_SPACE || space->identity() == CODE_SPACE);
    705 
    706   int number_of_pages = space->CountTotalPages();
    707   int area_size = space->AreaSize();
    708 
    709   // Pairs of (live_bytes_in_page, page).
    710   typedef std::pair<int, Page*> LiveBytesPagePair;
    711   std::vector<LiveBytesPagePair> pages;
    712   pages.reserve(number_of_pages);
    713 
    714   PageIterator it(space);
    715   while (it.has_next()) {
    716     Page* p = it.next();
    717     if (p->NeverEvacuate()) continue;
    718     if (p->IsFlagSet(Page::POPULAR_PAGE)) {
    719       // This page had slots buffer overflow on previous GC, skip it.
    720       p->ClearFlag(Page::POPULAR_PAGE);
    721       continue;
    722     }
    723     // Invariant: Evacuation candidates are just created when marking is
    724     // started. At the end of a GC all evacuation candidates are cleared and
    725     // their slot buffers are released.
    726     CHECK(!p->IsEvacuationCandidate());
    727     CHECK(p->slots_buffer() == NULL);
    728     DCHECK(p->area_size() == area_size);
    729     int live_bytes =
    730         p->WasSwept() ? p->LiveBytesFromFreeList() : p->LiveBytes();
    731     pages.push_back(std::make_pair(live_bytes, p));
    732   }
    733 
    734   int candidate_count = 0;
    735   int total_live_bytes = 0;
    736 
    737   const bool reduce_memory = heap()->ShouldReduceMemory();
    738   if (FLAG_manual_evacuation_candidates_selection) {
    739     for (size_t i = 0; i < pages.size(); i++) {
    740       Page* p = pages[i].second;
    741       if (p->IsFlagSet(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING)) {
    742         candidate_count++;
    743         total_live_bytes += pages[i].first;
    744         p->ClearFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
    745         AddEvacuationCandidate(p);
    746       }
    747     }
    748   } else if (FLAG_stress_compaction) {
    749     for (size_t i = 0; i < pages.size(); i++) {
    750       Page* p = pages[i].second;
    751       if (i % 2 == 0) {
    752         candidate_count++;
    753         total_live_bytes += pages[i].first;
    754         AddEvacuationCandidate(p);
    755       }
    756     }
    757   } else {
    758     // The following approach determines the pages that should be evacuated.
    759     //
    760     // We use two conditions to decide whether a page qualifies as an evacuation
    761     // candidate, or not:
    762     // * Target fragmentation: How fragmented is a page, i.e., how is the ratio
    763     //   between live bytes and capacity of this page (= area).
    764     // * Evacuation quota: A global quota determining how much bytes should be
    765     //   compacted.
    766     //
    767     // The algorithm sorts all pages by live bytes and then iterates through
    768     // them starting with the page with the most free memory, adding them to the
    769     // set of evacuation candidates as long as both conditions (fragmentation
    770     // and quota) hold.
    771     int max_evacuated_bytes;
    772     int target_fragmentation_percent;
    773     ComputeEvacuationHeuristics(area_size, &target_fragmentation_percent,
    774                                 &max_evacuated_bytes);
    775 
    776     const intptr_t free_bytes_threshold =
    777         target_fragmentation_percent * (area_size / 100);
    778 
    779     // Sort pages from the most free to the least free, then select
    780     // the first n pages for evacuation such that:
    781     // - the total size of evacuated objects does not exceed the specified
    782     // limit.
    783     // - fragmentation of (n+1)-th page does not exceed the specified limit.
    784     std::sort(pages.begin(), pages.end(),
    785               [](const LiveBytesPagePair& a, const LiveBytesPagePair& b) {
    786                 return a.first < b.first;
    787               });
    788     for (size_t i = 0; i < pages.size(); i++) {
    789       int live_bytes = pages[i].first;
    790       int free_bytes = area_size - live_bytes;
    791       if (FLAG_always_compact ||
    792           ((free_bytes >= free_bytes_threshold) &&
    793            ((total_live_bytes + live_bytes) <= max_evacuated_bytes))) {
    794         candidate_count++;
    795         total_live_bytes += live_bytes;
    796       }
    797       if (FLAG_trace_fragmentation_verbose) {
    798         PrintIsolate(isolate(),
    799                      "compaction-selection-page: space=%s free_bytes_page=%d "
    800                      "fragmentation_limit_kb=%d fragmentation_limit_percent=%d "
    801                      "sum_compaction_kb=%d "
    802                      "compaction_limit_kb=%d\n",
    803                      AllocationSpaceName(space->identity()), free_bytes / KB,
    804                      free_bytes_threshold / KB, target_fragmentation_percent,
    805                      total_live_bytes / KB, max_evacuated_bytes / KB);
    806       }
    807     }
    808     // How many pages we will allocated for the evacuated objects
    809     // in the worst case: ceil(total_live_bytes / area_size)
    810     int estimated_new_pages = (total_live_bytes + area_size - 1) / area_size;
    811     DCHECK_LE(estimated_new_pages, candidate_count);
    812     int estimated_released_pages = candidate_count - estimated_new_pages;
    813     // Avoid (compact -> expand) cycles.
    814     if ((estimated_released_pages == 0) && !FLAG_always_compact) {
    815       candidate_count = 0;
    816     }
    817     for (int i = 0; i < candidate_count; i++) {
    818       AddEvacuationCandidate(pages[i].second);
    819     }
    820   }
    821 
    822   if (FLAG_trace_fragmentation) {
    823     PrintIsolate(isolate(),
    824                  "compaction-selection: space=%s reduce_memory=%d pages=%d "
    825                  "total_live_bytes=%d\n",
    826                  AllocationSpaceName(space->identity()), reduce_memory,
    827                  candidate_count, total_live_bytes / KB);
    828   }
    829 }
    830 
    831 
    832 void MarkCompactCollector::AbortCompaction() {
    833   if (compacting_) {
    834     int npages = evacuation_candidates_.length();
    835     for (int i = 0; i < npages; i++) {
    836       Page* p = evacuation_candidates_[i];
    837       slots_buffer_allocator_->DeallocateChain(p->slots_buffer_address());
    838       p->ClearEvacuationCandidate();
    839       p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
    840     }
    841     compacting_ = false;
    842     evacuation_candidates_.Rewind(0);
    843   }
    844   DCHECK_EQ(0, evacuation_candidates_.length());
    845 }
    846 
    847 
    848 void MarkCompactCollector::Prepare() {
    849   was_marked_incrementally_ = heap()->incremental_marking()->IsMarking();
    850 
    851 #ifdef DEBUG
    852   DCHECK(state_ == IDLE);
    853   state_ = PREPARE_GC;
    854 #endif
    855 
    856   DCHECK(!FLAG_never_compact || !FLAG_always_compact);
    857 
    858   if (sweeping_in_progress()) {
    859     // Instead of waiting we could also abort the sweeper threads here.
    860     EnsureSweepingCompleted();
    861   }
    862 
    863   // If concurrent unmapping tasks are still running, we should wait for
    864   // them here.
    865   heap()->WaitUntilUnmappingOfFreeChunksCompleted();
    866 
    867   // Clear marking bits if incremental marking is aborted.
    868   if (was_marked_incrementally_ && heap_->ShouldAbortIncrementalMarking()) {
    869     heap()->incremental_marking()->Stop();
    870     ClearMarkbits();
    871     AbortWeakCollections();
    872     AbortWeakCells();
    873     AbortTransitionArrays();
    874     AbortCompaction();
    875     was_marked_incrementally_ = false;
    876   }
    877 
    878   // Don't start compaction if we are in the middle of incremental
    879   // marking cycle. We did not collect any slots.
    880   if (!FLAG_never_compact && !was_marked_incrementally_) {
    881     StartCompaction(NON_INCREMENTAL_COMPACTION);
    882   }
    883 
    884   PagedSpaces spaces(heap());
    885   for (PagedSpace* space = spaces.next(); space != NULL;
    886        space = spaces.next()) {
    887     space->PrepareForMarkCompact();
    888   }
    889 
    890 #ifdef VERIFY_HEAP
    891   if (!was_marked_incrementally_ && FLAG_verify_heap) {
    892     VerifyMarkbitsAreClean();
    893   }
    894 #endif
    895 }
    896 
    897 
    898 void MarkCompactCollector::Finish() {
    899   GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_FINISH);
    900 
    901   // The hashing of weak_object_to_code_table is no longer valid.
    902   heap()->weak_object_to_code_table()->Rehash(
    903       heap()->isolate()->factory()->undefined_value());
    904 
    905   // Clear the marking state of live large objects.
    906   heap_->lo_space()->ClearMarkingStateOfLiveObjects();
    907 
    908 #ifdef DEBUG
    909   DCHECK(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
    910   state_ = IDLE;
    911 #endif
    912   heap_->isolate()->inner_pointer_to_code_cache()->Flush();
    913 
    914   // The stub cache is not traversed during GC; clear the cache to
    915   // force lazy re-initialization of it. This must be done after the
    916   // GC, because it relies on the new address of certain old space
    917   // objects (empty string, illegal builtin).
    918   isolate()->stub_cache()->Clear();
    919 
    920   if (have_code_to_deoptimize_) {
    921     // Some code objects were marked for deoptimization during the GC.
    922     Deoptimizer::DeoptimizeMarkedCode(isolate());
    923     have_code_to_deoptimize_ = false;
    924   }
    925 
    926   heap_->incremental_marking()->ClearIdleMarkingDelayCounter();
    927 
    928   if (marking_parity_ == EVEN_MARKING_PARITY) {
    929     marking_parity_ = ODD_MARKING_PARITY;
    930   } else {
    931     DCHECK(marking_parity_ == ODD_MARKING_PARITY);
    932     marking_parity_ = EVEN_MARKING_PARITY;
    933   }
    934 }
    935 
    936 
    937 // -------------------------------------------------------------------------
    938 // Phase 1: tracing and marking live objects.
    939 //   before: all objects are in normal state.
    940 //   after: a live object's map pointer is marked as '00'.
    941 
    942 // Marking all live objects in the heap as part of mark-sweep or mark-compact
    943 // collection.  Before marking, all objects are in their normal state.  After
    944 // marking, live objects' map pointers are marked indicating that the object
    945 // has been found reachable.
    946 //
    947 // The marking algorithm is a (mostly) depth-first (because of possible stack
    948 // overflow) traversal of the graph of objects reachable from the roots.  It
    949 // uses an explicit stack of pointers rather than recursion.  The young
    950 // generation's inactive ('from') space is used as a marking stack.  The
    951 // objects in the marking stack are the ones that have been reached and marked
    952 // but their children have not yet been visited.
    953 //
    954 // The marking stack can overflow during traversal.  In that case, we set an
    955 // overflow flag.  When the overflow flag is set, we continue marking objects
    956 // reachable from the objects on the marking stack, but no longer push them on
    957 // the marking stack.  Instead, we mark them as both marked and overflowed.
    958 // When the stack is in the overflowed state, objects marked as overflowed
    959 // have been reached and marked but their children have not been visited yet.
    960 // After emptying the marking stack, we clear the overflow flag and traverse
    961 // the heap looking for objects marked as overflowed, push them on the stack,
    962 // and continue with marking.  This process repeats until all reachable
    963 // objects have been marked.
    964 
    965 void CodeFlusher::ProcessJSFunctionCandidates() {
    966   Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
    967   Object* undefined = isolate_->heap()->undefined_value();
    968 
    969   JSFunction* candidate = jsfunction_candidates_head_;
    970   JSFunction* next_candidate;
    971   while (candidate != NULL) {
    972     next_candidate = GetNextCandidate(candidate);
    973     ClearNextCandidate(candidate, undefined);
    974 
    975     SharedFunctionInfo* shared = candidate->shared();
    976 
    977     Code* code = shared->code();
    978     MarkBit code_mark = Marking::MarkBitFrom(code);
    979     if (Marking::IsWhite(code_mark)) {
    980       if (FLAG_trace_code_flushing && shared->is_compiled()) {
    981         PrintF("[code-flushing clears: ");
    982         shared->ShortPrint();
    983         PrintF(" - age: %d]\n", code->GetAge());
    984       }
    985       // Always flush the optimized code map if there is one.
    986       if (!shared->OptimizedCodeMapIsCleared()) {
    987         shared->ClearOptimizedCodeMap();
    988       }
    989       shared->set_code(lazy_compile);
    990       candidate->set_code(lazy_compile);
    991     } else {
    992       DCHECK(Marking::IsBlack(code_mark));
    993       candidate->set_code(code);
    994     }
    995 
    996     // We are in the middle of a GC cycle so the write barrier in the code
    997     // setter did not record the slot update and we have to do that manually.
    998     Address slot = candidate->address() + JSFunction::kCodeEntryOffset;
    999     Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot));
   1000     isolate_->heap()->mark_compact_collector()->RecordCodeEntrySlot(
   1001         candidate, slot, target);
   1002 
   1003     Object** shared_code_slot =
   1004         HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset);
   1005     isolate_->heap()->mark_compact_collector()->RecordSlot(
   1006         shared, shared_code_slot, *shared_code_slot);
   1007 
   1008     candidate = next_candidate;
   1009   }
   1010 
   1011   jsfunction_candidates_head_ = NULL;
   1012 }
   1013 
   1014 
   1015 void CodeFlusher::ProcessSharedFunctionInfoCandidates() {
   1016   Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
   1017 
   1018   SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
   1019   SharedFunctionInfo* next_candidate;
   1020   while (candidate != NULL) {
   1021     next_candidate = GetNextCandidate(candidate);
   1022     ClearNextCandidate(candidate);
   1023 
   1024     Code* code = candidate->code();
   1025     MarkBit code_mark = Marking::MarkBitFrom(code);
   1026     if (Marking::IsWhite(code_mark)) {
   1027       if (FLAG_trace_code_flushing && candidate->is_compiled()) {
   1028         PrintF("[code-flushing clears: ");
   1029         candidate->ShortPrint();
   1030         PrintF(" - age: %d]\n", code->GetAge());
   1031       }
   1032       // Always flush the optimized code map if there is one.
   1033       if (!candidate->OptimizedCodeMapIsCleared()) {
   1034         candidate->ClearOptimizedCodeMap();
   1035       }
   1036       candidate->set_code(lazy_compile);
   1037     }
   1038 
   1039     Object** code_slot =
   1040         HeapObject::RawField(candidate, SharedFunctionInfo::kCodeOffset);
   1041     isolate_->heap()->mark_compact_collector()->RecordSlot(candidate, code_slot,
   1042                                                            *code_slot);
   1043 
   1044     candidate = next_candidate;
   1045   }
   1046 
   1047   shared_function_info_candidates_head_ = NULL;
   1048 }
   1049 
   1050 
   1051 void CodeFlusher::EvictCandidate(SharedFunctionInfo* shared_info) {
   1052   // Make sure previous flushing decisions are revisited.
   1053   isolate_->heap()->incremental_marking()->RecordWrites(shared_info);
   1054 
   1055   if (FLAG_trace_code_flushing) {
   1056     PrintF("[code-flushing abandons function-info: ");
   1057     shared_info->ShortPrint();
   1058     PrintF("]\n");
   1059   }
   1060 
   1061   SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
   1062   SharedFunctionInfo* next_candidate;
   1063   if (candidate == shared_info) {
   1064     next_candidate = GetNextCandidate(shared_info);
   1065     shared_function_info_candidates_head_ = next_candidate;
   1066     ClearNextCandidate(shared_info);
   1067   } else {
   1068     while (candidate != NULL) {
   1069       next_candidate = GetNextCandidate(candidate);
   1070 
   1071       if (next_candidate == shared_info) {
   1072         next_candidate = GetNextCandidate(shared_info);
   1073         SetNextCandidate(candidate, next_candidate);
   1074         ClearNextCandidate(shared_info);
   1075         break;
   1076       }
   1077 
   1078       candidate = next_candidate;
   1079     }
   1080   }
   1081 }
   1082 
   1083 
   1084 void CodeFlusher::EvictCandidate(JSFunction* function) {
   1085   DCHECK(!function->next_function_link()->IsUndefined());
   1086   Object* undefined = isolate_->heap()->undefined_value();
   1087 
   1088   // Make sure previous flushing decisions are revisited.
   1089   isolate_->heap()->incremental_marking()->RecordWrites(function);
   1090   isolate_->heap()->incremental_marking()->RecordWrites(function->shared());
   1091 
   1092   if (FLAG_trace_code_flushing) {
   1093     PrintF("[code-flushing abandons closure: ");
   1094     function->shared()->ShortPrint();
   1095     PrintF("]\n");
   1096   }
   1097 
   1098   JSFunction* candidate = jsfunction_candidates_head_;
   1099   JSFunction* next_candidate;
   1100   if (candidate == function) {
   1101     next_candidate = GetNextCandidate(function);
   1102     jsfunction_candidates_head_ = next_candidate;
   1103     ClearNextCandidate(function, undefined);
   1104   } else {
   1105     while (candidate != NULL) {
   1106       next_candidate = GetNextCandidate(candidate);
   1107 
   1108       if (next_candidate == function) {
   1109         next_candidate = GetNextCandidate(function);
   1110         SetNextCandidate(candidate, next_candidate);
   1111         ClearNextCandidate(function, undefined);
   1112         break;
   1113       }
   1114 
   1115       candidate = next_candidate;
   1116     }
   1117   }
   1118 }
   1119 
   1120 
   1121 void CodeFlusher::IteratePointersToFromSpace(ObjectVisitor* v) {
   1122   Heap* heap = isolate_->heap();
   1123 
   1124   JSFunction** slot = &jsfunction_candidates_head_;
   1125   JSFunction* candidate = jsfunction_candidates_head_;
   1126   while (candidate != NULL) {
   1127     if (heap->InFromSpace(candidate)) {
   1128       v->VisitPointer(reinterpret_cast<Object**>(slot));
   1129     }
   1130     candidate = GetNextCandidate(*slot);
   1131     slot = GetNextCandidateSlot(*slot);
   1132   }
   1133 }
   1134 
   1135 
   1136 class MarkCompactMarkingVisitor
   1137     : public StaticMarkingVisitor<MarkCompactMarkingVisitor> {
   1138  public:
   1139   static void Initialize();
   1140 
   1141   INLINE(static void VisitPointer(Heap* heap, HeapObject* object, Object** p)) {
   1142     MarkObjectByPointer(heap->mark_compact_collector(), object, p);
   1143   }
   1144 
   1145   INLINE(static void VisitPointers(Heap* heap, HeapObject* object,
   1146                                    Object** start, Object** end)) {
   1147     // Mark all objects pointed to in [start, end).
   1148     const int kMinRangeForMarkingRecursion = 64;
   1149     if (end - start >= kMinRangeForMarkingRecursion) {
   1150       if (VisitUnmarkedObjects(heap, object, start, end)) return;
   1151       // We are close to a stack overflow, so just mark the objects.
   1152     }
   1153     MarkCompactCollector* collector = heap->mark_compact_collector();
   1154     for (Object** p = start; p < end; p++) {
   1155       MarkObjectByPointer(collector, object, p);
   1156     }
   1157   }
   1158 
   1159   // Marks the object black and pushes it on the marking stack.
   1160   INLINE(static void MarkObject(Heap* heap, HeapObject* object)) {
   1161     MarkBit mark = Marking::MarkBitFrom(object);
   1162     heap->mark_compact_collector()->MarkObject(object, mark);
   1163   }
   1164 
   1165   // Marks the object black without pushing it on the marking stack.
   1166   // Returns true if object needed marking and false otherwise.
   1167   INLINE(static bool MarkObjectWithoutPush(Heap* heap, HeapObject* object)) {
   1168     MarkBit mark_bit = Marking::MarkBitFrom(object);
   1169     if (Marking::IsWhite(mark_bit)) {
   1170       heap->mark_compact_collector()->SetMark(object, mark_bit);
   1171       return true;
   1172     }
   1173     return false;
   1174   }
   1175 
   1176   // Mark object pointed to by p.
   1177   INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector,
   1178                                          HeapObject* object, Object** p)) {
   1179     if (!(*p)->IsHeapObject()) return;
   1180     HeapObject* target_object = HeapObject::cast(*p);
   1181     collector->RecordSlot(object, p, target_object);
   1182     MarkBit mark = Marking::MarkBitFrom(target_object);
   1183     collector->MarkObject(target_object, mark);
   1184   }
   1185 
   1186 
   1187   // Visit an unmarked object.
   1188   INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
   1189                                          HeapObject* obj)) {
   1190 #ifdef DEBUG
   1191     DCHECK(collector->heap()->Contains(obj));
   1192     DCHECK(!collector->heap()->mark_compact_collector()->IsMarked(obj));
   1193 #endif
   1194     Map* map = obj->map();
   1195     Heap* heap = obj->GetHeap();
   1196     MarkBit mark = Marking::MarkBitFrom(obj);
   1197     heap->mark_compact_collector()->SetMark(obj, mark);
   1198     // Mark the map pointer and the body.
   1199     MarkBit map_mark = Marking::MarkBitFrom(map);
   1200     heap->mark_compact_collector()->MarkObject(map, map_mark);
   1201     IterateBody(map, obj);
   1202   }
   1203 
   1204   // Visit all unmarked objects pointed to by [start, end).
   1205   // Returns false if the operation fails (lack of stack space).
   1206   INLINE(static bool VisitUnmarkedObjects(Heap* heap, HeapObject* object,
   1207                                           Object** start, Object** end)) {
   1208     // Return false is we are close to the stack limit.
   1209     StackLimitCheck check(heap->isolate());
   1210     if (check.HasOverflowed()) return false;
   1211 
   1212     MarkCompactCollector* collector = heap->mark_compact_collector();
   1213     // Visit the unmarked objects.
   1214     for (Object** p = start; p < end; p++) {
   1215       Object* o = *p;
   1216       if (!o->IsHeapObject()) continue;
   1217       collector->RecordSlot(object, p, o);
   1218       HeapObject* obj = HeapObject::cast(o);
   1219       MarkBit mark = Marking::MarkBitFrom(obj);
   1220       if (Marking::IsBlackOrGrey(mark)) continue;
   1221       VisitUnmarkedObject(collector, obj);
   1222     }
   1223     return true;
   1224   }
   1225 
   1226  private:
   1227   template <int id>
   1228   static inline void TrackObjectStatsAndVisit(Map* map, HeapObject* obj);
   1229 
   1230   // Code flushing support.
   1231 
   1232   static const int kRegExpCodeThreshold = 5;
   1233 
   1234   static void UpdateRegExpCodeAgeAndFlush(Heap* heap, JSRegExp* re,
   1235                                           bool is_one_byte) {
   1236     // Make sure that the fixed array is in fact initialized on the RegExp.
   1237     // We could potentially trigger a GC when initializing the RegExp.
   1238     if (HeapObject::cast(re->data())->map()->instance_type() !=
   1239         FIXED_ARRAY_TYPE)
   1240       return;
   1241 
   1242     // Make sure this is a RegExp that actually contains code.
   1243     if (re->TypeTag() != JSRegExp::IRREGEXP) return;
   1244 
   1245     Object* code = re->DataAt(JSRegExp::code_index(is_one_byte));
   1246     if (!code->IsSmi() &&
   1247         HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) {
   1248       // Save a copy that can be reinstated if we need the code again.
   1249       re->SetDataAt(JSRegExp::saved_code_index(is_one_byte), code);
   1250 
   1251       // Saving a copy might create a pointer into compaction candidate
   1252       // that was not observed by marker.  This might happen if JSRegExp data
   1253       // was marked through the compilation cache before marker reached JSRegExp
   1254       // object.
   1255       FixedArray* data = FixedArray::cast(re->data());
   1256       Object** slot =
   1257           data->data_start() + JSRegExp::saved_code_index(is_one_byte);
   1258       heap->mark_compact_collector()->RecordSlot(data, slot, code);
   1259 
   1260       // Set a number in the 0-255 range to guarantee no smi overflow.
   1261       re->SetDataAt(JSRegExp::code_index(is_one_byte),
   1262                     Smi::FromInt(heap->ms_count() & 0xff));
   1263     } else if (code->IsSmi()) {
   1264       int value = Smi::cast(code)->value();
   1265       // The regexp has not been compiled yet or there was a compilation error.
   1266       if (value == JSRegExp::kUninitializedValue ||
   1267           value == JSRegExp::kCompilationErrorValue) {
   1268         return;
   1269       }
   1270 
   1271       // Check if we should flush now.
   1272       if (value == ((heap->ms_count() - kRegExpCodeThreshold) & 0xff)) {
   1273         re->SetDataAt(JSRegExp::code_index(is_one_byte),
   1274                       Smi::FromInt(JSRegExp::kUninitializedValue));
   1275         re->SetDataAt(JSRegExp::saved_code_index(is_one_byte),
   1276                       Smi::FromInt(JSRegExp::kUninitializedValue));
   1277       }
   1278     }
   1279   }
   1280 
   1281 
   1282   // Works by setting the current sweep_generation (as a smi) in the
   1283   // code object place in the data array of the RegExp and keeps a copy
   1284   // around that can be reinstated if we reuse the RegExp before flushing.
   1285   // If we did not use the code for kRegExpCodeThreshold mark sweep GCs
   1286   // we flush the code.
   1287   static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) {
   1288     Heap* heap = map->GetHeap();
   1289     MarkCompactCollector* collector = heap->mark_compact_collector();
   1290     if (!collector->is_code_flushing_enabled()) {
   1291       VisitJSRegExp(map, object);
   1292       return;
   1293     }
   1294     JSRegExp* re = reinterpret_cast<JSRegExp*>(object);
   1295     // Flush code or set age on both one byte and two byte code.
   1296     UpdateRegExpCodeAgeAndFlush(heap, re, true);
   1297     UpdateRegExpCodeAgeAndFlush(heap, re, false);
   1298     // Visit the fields of the RegExp, including the updated FixedArray.
   1299     VisitJSRegExp(map, object);
   1300   }
   1301 };
   1302 
   1303 
   1304 void MarkCompactMarkingVisitor::Initialize() {
   1305   StaticMarkingVisitor<MarkCompactMarkingVisitor>::Initialize();
   1306 
   1307   table_.Register(kVisitJSRegExp, &VisitRegExpAndFlushCode);
   1308 
   1309   if (FLAG_track_gc_object_stats) {
   1310     ObjectStatsVisitor::Initialize(&table_);
   1311   }
   1312 }
   1313 
   1314 
   1315 class CodeMarkingVisitor : public ThreadVisitor {
   1316  public:
   1317   explicit CodeMarkingVisitor(MarkCompactCollector* collector)
   1318       : collector_(collector) {}
   1319 
   1320   void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
   1321     collector_->PrepareThreadForCodeFlushing(isolate, top);
   1322   }
   1323 
   1324  private:
   1325   MarkCompactCollector* collector_;
   1326 };
   1327 
   1328 
   1329 class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
   1330  public:
   1331   explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
   1332       : collector_(collector) {}
   1333 
   1334   void VisitPointers(Object** start, Object** end) override {
   1335     for (Object** p = start; p < end; p++) VisitPointer(p);
   1336   }
   1337 
   1338   void VisitPointer(Object** slot) override {
   1339     Object* obj = *slot;
   1340     if (obj->IsSharedFunctionInfo()) {
   1341       SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
   1342       MarkBit shared_mark = Marking::MarkBitFrom(shared);
   1343       MarkBit code_mark = Marking::MarkBitFrom(shared->code());
   1344       collector_->MarkObject(shared->code(), code_mark);
   1345       collector_->MarkObject(shared, shared_mark);
   1346     }
   1347   }
   1348 
   1349  private:
   1350   MarkCompactCollector* collector_;
   1351 };
   1352 
   1353 
   1354 void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate,
   1355                                                         ThreadLocalTop* top) {
   1356   for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
   1357     // Note: for the frame that has a pending lazy deoptimization
   1358     // StackFrame::unchecked_code will return a non-optimized code object for
   1359     // the outermost function and StackFrame::LookupCode will return
   1360     // actual optimized code object.
   1361     StackFrame* frame = it.frame();
   1362     Code* code = frame->unchecked_code();
   1363     MarkBit code_mark = Marking::MarkBitFrom(code);
   1364     MarkObject(code, code_mark);
   1365     if (frame->is_optimized()) {
   1366       Code* optimized_code = frame->LookupCode();
   1367       MarkBit optimized_code_mark = Marking::MarkBitFrom(optimized_code);
   1368       MarkObject(optimized_code, optimized_code_mark);
   1369     }
   1370   }
   1371 }
   1372 
   1373 
   1374 void MarkCompactCollector::PrepareForCodeFlushing() {
   1375   // If code flushing is disabled, there is no need to prepare for it.
   1376   if (!is_code_flushing_enabled()) return;
   1377 
   1378   // Ensure that empty descriptor array is marked. Method MarkDescriptorArray
   1379   // relies on it being marked before any other descriptor array.
   1380   HeapObject* descriptor_array = heap()->empty_descriptor_array();
   1381   MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array);
   1382   MarkObject(descriptor_array, descriptor_array_mark);
   1383 
   1384   // Make sure we are not referencing the code from the stack.
   1385   DCHECK(this == heap()->mark_compact_collector());
   1386   PrepareThreadForCodeFlushing(heap()->isolate(),
   1387                                heap()->isolate()->thread_local_top());
   1388 
   1389   // Iterate the archived stacks in all threads to check if
   1390   // the code is referenced.
   1391   CodeMarkingVisitor code_marking_visitor(this);
   1392   heap()->isolate()->thread_manager()->IterateArchivedThreads(
   1393       &code_marking_visitor);
   1394 
   1395   SharedFunctionInfoMarkingVisitor visitor(this);
   1396   heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
   1397   heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
   1398 
   1399   ProcessMarkingDeque();
   1400 }
   1401 
   1402 
   1403 // Visitor class for marking heap roots.
   1404 class RootMarkingVisitor : public ObjectVisitor {
   1405  public:
   1406   explicit RootMarkingVisitor(Heap* heap)
   1407       : collector_(heap->mark_compact_collector()) {}
   1408 
   1409   void VisitPointer(Object** p) override { MarkObjectByPointer(p); }
   1410 
   1411   void VisitPointers(Object** start, Object** end) override {
   1412     for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
   1413   }
   1414 
   1415   // Skip the weak next code link in a code object, which is visited in
   1416   // ProcessTopOptimizedFrame.
   1417   void VisitNextCodeLink(Object** p) override {}
   1418 
   1419  private:
   1420   void MarkObjectByPointer(Object** p) {
   1421     if (!(*p)->IsHeapObject()) return;
   1422 
   1423     // Replace flat cons strings in place.
   1424     HeapObject* object = HeapObject::cast(*p);
   1425     MarkBit mark_bit = Marking::MarkBitFrom(object);
   1426     if (Marking::IsBlackOrGrey(mark_bit)) return;
   1427 
   1428     Map* map = object->map();
   1429     // Mark the object.
   1430     collector_->SetMark(object, mark_bit);
   1431 
   1432     // Mark the map pointer and body, and push them on the marking stack.
   1433     MarkBit map_mark = Marking::MarkBitFrom(map);
   1434     collector_->MarkObject(map, map_mark);
   1435     MarkCompactMarkingVisitor::IterateBody(map, object);
   1436 
   1437     // Mark all the objects reachable from the map and body.  May leave
   1438     // overflowed objects in the heap.
   1439     collector_->EmptyMarkingDeque();
   1440   }
   1441 
   1442   MarkCompactCollector* collector_;
   1443 };
   1444 
   1445 
   1446 // Helper class for pruning the string table.
   1447 template <bool finalize_external_strings>
   1448 class StringTableCleaner : public ObjectVisitor {
   1449  public:
   1450   explicit StringTableCleaner(Heap* heap) : heap_(heap), pointers_removed_(0) {}
   1451 
   1452   void VisitPointers(Object** start, Object** end) override {
   1453     // Visit all HeapObject pointers in [start, end).
   1454     for (Object** p = start; p < end; p++) {
   1455       Object* o = *p;
   1456       if (o->IsHeapObject() &&
   1457           Marking::IsWhite(Marking::MarkBitFrom(HeapObject::cast(o)))) {
   1458         if (finalize_external_strings) {
   1459           DCHECK(o->IsExternalString());
   1460           heap_->FinalizeExternalString(String::cast(*p));
   1461         } else {
   1462           pointers_removed_++;
   1463         }
   1464         // Set the entry to the_hole_value (as deleted).
   1465         *p = heap_->the_hole_value();
   1466       }
   1467     }
   1468   }
   1469 
   1470   int PointersRemoved() {
   1471     DCHECK(!finalize_external_strings);
   1472     return pointers_removed_;
   1473   }
   1474 
   1475  private:
   1476   Heap* heap_;
   1477   int pointers_removed_;
   1478 };
   1479 
   1480 
   1481 typedef StringTableCleaner<false> InternalizedStringTableCleaner;
   1482 typedef StringTableCleaner<true> ExternalStringTableCleaner;
   1483 
   1484 
   1485 // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
   1486 // are retained.
   1487 class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
   1488  public:
   1489   virtual Object* RetainAs(Object* object) {
   1490     MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::cast(object));
   1491     DCHECK(!Marking::IsGrey(mark_bit));
   1492     if (Marking::IsBlack(mark_bit)) {
   1493       return object;
   1494     } else if (object->IsAllocationSite() &&
   1495                !(AllocationSite::cast(object)->IsZombie())) {
   1496       // "dead" AllocationSites need to live long enough for a traversal of new
   1497       // space. These sites get a one-time reprieve.
   1498       AllocationSite* site = AllocationSite::cast(object);
   1499       site->MarkZombie();
   1500       site->GetHeap()->mark_compact_collector()->MarkAllocationSite(site);
   1501       return object;
   1502     } else {
   1503       return NULL;
   1504     }
   1505   }
   1506 };
   1507 
   1508 
   1509 // Fill the marking stack with overflowed objects returned by the given
   1510 // iterator.  Stop when the marking stack is filled or the end of the space
   1511 // is reached, whichever comes first.
   1512 template <class T>
   1513 void MarkCompactCollector::DiscoverGreyObjectsWithIterator(T* it) {
   1514   // The caller should ensure that the marking stack is initially not full,
   1515   // so that we don't waste effort pointlessly scanning for objects.
   1516   DCHECK(!marking_deque()->IsFull());
   1517 
   1518   Map* filler_map = heap()->one_pointer_filler_map();
   1519   for (HeapObject* object = it->Next(); object != NULL; object = it->Next()) {
   1520     MarkBit markbit = Marking::MarkBitFrom(object);
   1521     if ((object->map() != filler_map) && Marking::IsGrey(markbit)) {
   1522       Marking::GreyToBlack(markbit);
   1523       PushBlack(object);
   1524       if (marking_deque()->IsFull()) return;
   1525     }
   1526   }
   1527 }
   1528 
   1529 
   1530 void MarkCompactCollector::DiscoverGreyObjectsOnPage(MemoryChunk* p) {
   1531   DCHECK(!marking_deque()->IsFull());
   1532   LiveObjectIterator<kGreyObjects> it(p);
   1533   HeapObject* object = NULL;
   1534   while ((object = it.Next()) != NULL) {
   1535     MarkBit markbit = Marking::MarkBitFrom(object);
   1536     DCHECK(Marking::IsGrey(markbit));
   1537     Marking::GreyToBlack(markbit);
   1538     PushBlack(object);
   1539     if (marking_deque()->IsFull()) return;
   1540   }
   1541 }
   1542 
   1543 
   1544 class MarkCompactCollector::HeapObjectVisitor {
   1545  public:
   1546   virtual ~HeapObjectVisitor() {}
   1547   virtual bool Visit(HeapObject* object) = 0;
   1548 };
   1549 
   1550 
   1551 class MarkCompactCollector::EvacuateVisitorBase
   1552     : public MarkCompactCollector::HeapObjectVisitor {
   1553  public:
   1554   EvacuateVisitorBase(Heap* heap, SlotsBuffer** evacuation_slots_buffer)
   1555       : heap_(heap), evacuation_slots_buffer_(evacuation_slots_buffer) {}
   1556 
   1557   bool TryEvacuateObject(PagedSpace* target_space, HeapObject* object,
   1558                          HeapObject** target_object) {
   1559     int size = object->Size();
   1560     AllocationAlignment alignment = object->RequiredAlignment();
   1561     AllocationResult allocation = target_space->AllocateRaw(size, alignment);
   1562     if (allocation.To(target_object)) {
   1563       heap_->mark_compact_collector()->MigrateObject(
   1564           *target_object, object, size, target_space->identity(),
   1565           evacuation_slots_buffer_);
   1566       return true;
   1567     }
   1568     return false;
   1569   }
   1570 
   1571  protected:
   1572   Heap* heap_;
   1573   SlotsBuffer** evacuation_slots_buffer_;
   1574 };
   1575 
   1576 
   1577 class MarkCompactCollector::EvacuateNewSpaceVisitor final
   1578     : public MarkCompactCollector::EvacuateVisitorBase {
   1579  public:
   1580   static const intptr_t kLabSize = 4 * KB;
   1581   static const intptr_t kMaxLabObjectSize = 256;
   1582 
   1583   explicit EvacuateNewSpaceVisitor(Heap* heap,
   1584                                    SlotsBuffer** evacuation_slots_buffer,
   1585                                    HashMap* local_pretenuring_feedback)
   1586       : EvacuateVisitorBase(heap, evacuation_slots_buffer),
   1587         buffer_(LocalAllocationBuffer::InvalidBuffer()),
   1588         space_to_allocate_(NEW_SPACE),
   1589         promoted_size_(0),
   1590         semispace_copied_size_(0),
   1591         local_pretenuring_feedback_(local_pretenuring_feedback) {}
   1592 
   1593   bool Visit(HeapObject* object) override {
   1594     heap_->UpdateAllocationSite(object, local_pretenuring_feedback_);
   1595     int size = object->Size();
   1596     HeapObject* target_object = nullptr;
   1597     if (heap_->ShouldBePromoted(object->address(), size) &&
   1598         TryEvacuateObject(heap_->old_space(), object, &target_object)) {
   1599       // If we end up needing more special cases, we should factor this out.
   1600       if (V8_UNLIKELY(target_object->IsJSArrayBuffer())) {
   1601         heap_->array_buffer_tracker()->Promote(
   1602             JSArrayBuffer::cast(target_object));
   1603       }
   1604       promoted_size_ += size;
   1605       return true;
   1606     }
   1607     HeapObject* target = nullptr;
   1608     AllocationSpace space = AllocateTargetObject(object, &target);
   1609     heap_->mark_compact_collector()->MigrateObject(
   1610         HeapObject::cast(target), object, size, space,
   1611         (space == NEW_SPACE) ? nullptr : evacuation_slots_buffer_);
   1612     if (V8_UNLIKELY(target->IsJSArrayBuffer())) {
   1613       heap_->array_buffer_tracker()->MarkLive(JSArrayBuffer::cast(target));
   1614     }
   1615     semispace_copied_size_ += size;
   1616     return true;
   1617   }
   1618 
   1619   intptr_t promoted_size() { return promoted_size_; }
   1620   intptr_t semispace_copied_size() { return semispace_copied_size_; }
   1621 
   1622  private:
   1623   enum NewSpaceAllocationMode {
   1624     kNonstickyBailoutOldSpace,
   1625     kStickyBailoutOldSpace,
   1626   };
   1627 
   1628   inline AllocationSpace AllocateTargetObject(HeapObject* old_object,
   1629                                               HeapObject** target_object) {
   1630     const int size = old_object->Size();
   1631     AllocationAlignment alignment = old_object->RequiredAlignment();
   1632     AllocationResult allocation;
   1633     if (space_to_allocate_ == NEW_SPACE) {
   1634       if (size > kMaxLabObjectSize) {
   1635         allocation =
   1636             AllocateInNewSpace(size, alignment, kNonstickyBailoutOldSpace);
   1637       } else {
   1638         allocation = AllocateInLab(size, alignment);
   1639       }
   1640     }
   1641     if (allocation.IsRetry() || (space_to_allocate_ == OLD_SPACE)) {
   1642       allocation = AllocateInOldSpace(size, alignment);
   1643     }
   1644     bool ok = allocation.To(target_object);
   1645     DCHECK(ok);
   1646     USE(ok);
   1647     return space_to_allocate_;
   1648   }
   1649 
   1650   inline bool NewLocalAllocationBuffer() {
   1651     AllocationResult result =
   1652         AllocateInNewSpace(kLabSize, kWordAligned, kStickyBailoutOldSpace);
   1653     LocalAllocationBuffer saved_old_buffer = buffer_;
   1654     buffer_ = LocalAllocationBuffer::FromResult(heap_, result, kLabSize);
   1655     if (buffer_.IsValid()) {
   1656       buffer_.TryMerge(&saved_old_buffer);
   1657       return true;
   1658     }
   1659     return false;
   1660   }
   1661 
   1662   inline AllocationResult AllocateInNewSpace(int size_in_bytes,
   1663                                              AllocationAlignment alignment,
   1664                                              NewSpaceAllocationMode mode) {
   1665     AllocationResult allocation =
   1666         heap_->new_space()->AllocateRawSynchronized(size_in_bytes, alignment);
   1667     if (allocation.IsRetry()) {
   1668       if (!heap_->new_space()->AddFreshPageSynchronized()) {
   1669         if (mode == kStickyBailoutOldSpace) space_to_allocate_ = OLD_SPACE;
   1670       } else {
   1671         allocation = heap_->new_space()->AllocateRawSynchronized(size_in_bytes,
   1672                                                                  alignment);
   1673         if (allocation.IsRetry()) {
   1674           if (mode == kStickyBailoutOldSpace) space_to_allocate_ = OLD_SPACE;
   1675         }
   1676       }
   1677     }
   1678     return allocation;
   1679   }
   1680 
   1681   inline AllocationResult AllocateInOldSpace(int size_in_bytes,
   1682                                              AllocationAlignment alignment) {
   1683     AllocationResult allocation =
   1684         heap_->old_space()->AllocateRaw(size_in_bytes, alignment);
   1685     if (allocation.IsRetry()) {
   1686       FatalProcessOutOfMemory(
   1687           "MarkCompactCollector: semi-space copy, fallback in old gen\n");
   1688     }
   1689     return allocation;
   1690   }
   1691 
   1692   inline AllocationResult AllocateInLab(int size_in_bytes,
   1693                                         AllocationAlignment alignment) {
   1694     AllocationResult allocation;
   1695     if (!buffer_.IsValid()) {
   1696       if (!NewLocalAllocationBuffer()) {
   1697         space_to_allocate_ = OLD_SPACE;
   1698         return AllocationResult::Retry(OLD_SPACE);
   1699       }
   1700     }
   1701     allocation = buffer_.AllocateRawAligned(size_in_bytes, alignment);
   1702     if (allocation.IsRetry()) {
   1703       if (!NewLocalAllocationBuffer()) {
   1704         space_to_allocate_ = OLD_SPACE;
   1705         return AllocationResult::Retry(OLD_SPACE);
   1706       } else {
   1707         allocation = buffer_.AllocateRawAligned(size_in_bytes, alignment);
   1708         if (allocation.IsRetry()) {
   1709           space_to_allocate_ = OLD_SPACE;
   1710           return AllocationResult::Retry(OLD_SPACE);
   1711         }
   1712       }
   1713     }
   1714     return allocation;
   1715   }
   1716 
   1717   LocalAllocationBuffer buffer_;
   1718   AllocationSpace space_to_allocate_;
   1719   intptr_t promoted_size_;
   1720   intptr_t semispace_copied_size_;
   1721   HashMap* local_pretenuring_feedback_;
   1722 };
   1723 
   1724 
   1725 class MarkCompactCollector::EvacuateOldSpaceVisitor final
   1726     : public MarkCompactCollector::EvacuateVisitorBase {
   1727  public:
   1728   EvacuateOldSpaceVisitor(Heap* heap,
   1729                           CompactionSpaceCollection* compaction_spaces,
   1730                           SlotsBuffer** evacuation_slots_buffer)
   1731       : EvacuateVisitorBase(heap, evacuation_slots_buffer),
   1732         compaction_spaces_(compaction_spaces) {}
   1733 
   1734   bool Visit(HeapObject* object) override {
   1735     CompactionSpace* target_space = compaction_spaces_->Get(
   1736         Page::FromAddress(object->address())->owner()->identity());
   1737     HeapObject* target_object = nullptr;
   1738     if (TryEvacuateObject(target_space, object, &target_object)) {
   1739       DCHECK(object->map_word().IsForwardingAddress());
   1740       return true;
   1741     }
   1742     return false;
   1743   }
   1744 
   1745  private:
   1746   CompactionSpaceCollection* compaction_spaces_;
   1747 };
   1748 
   1749 
   1750 void MarkCompactCollector::DiscoverGreyObjectsInSpace(PagedSpace* space) {
   1751   PageIterator it(space);
   1752   while (it.has_next()) {
   1753     Page* p = it.next();
   1754     DiscoverGreyObjectsOnPage(p);
   1755     if (marking_deque()->IsFull()) return;
   1756   }
   1757 }
   1758 
   1759 
   1760 void MarkCompactCollector::DiscoverGreyObjectsInNewSpace() {
   1761   NewSpace* space = heap()->new_space();
   1762   NewSpacePageIterator it(space->bottom(), space->top());
   1763   while (it.has_next()) {
   1764     NewSpacePage* page = it.next();
   1765     DiscoverGreyObjectsOnPage(page);
   1766     if (marking_deque()->IsFull()) return;
   1767   }
   1768 }
   1769 
   1770 
   1771 bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
   1772   Object* o = *p;
   1773   if (!o->IsHeapObject()) return false;
   1774   HeapObject* heap_object = HeapObject::cast(o);
   1775   MarkBit mark = Marking::MarkBitFrom(heap_object);
   1776   return Marking::IsWhite(mark);
   1777 }
   1778 
   1779 
   1780 bool MarkCompactCollector::IsUnmarkedHeapObjectWithHeap(Heap* heap,
   1781                                                         Object** p) {
   1782   Object* o = *p;
   1783   DCHECK(o->IsHeapObject());
   1784   HeapObject* heap_object = HeapObject::cast(o);
   1785   MarkBit mark = Marking::MarkBitFrom(heap_object);
   1786   return Marking::IsWhite(mark);
   1787 }
   1788 
   1789 
   1790 void MarkCompactCollector::MarkStringTable(RootMarkingVisitor* visitor) {
   1791   StringTable* string_table = heap()->string_table();
   1792   // Mark the string table itself.
   1793   MarkBit string_table_mark = Marking::MarkBitFrom(string_table);
   1794   if (Marking::IsWhite(string_table_mark)) {
   1795     // String table could have already been marked by visiting the handles list.
   1796     SetMark(string_table, string_table_mark);
   1797   }
   1798   // Explicitly mark the prefix.
   1799   string_table->IteratePrefix(visitor);
   1800   ProcessMarkingDeque();
   1801 }
   1802 
   1803 
   1804 void MarkCompactCollector::MarkAllocationSite(AllocationSite* site) {
   1805   MarkBit mark_bit = Marking::MarkBitFrom(site);
   1806   SetMark(site, mark_bit);
   1807 }
   1808 
   1809 
   1810 void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
   1811   // Mark the heap roots including global variables, stack variables,
   1812   // etc., and all objects reachable from them.
   1813   heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
   1814 
   1815   // Handle the string table specially.
   1816   MarkStringTable(visitor);
   1817 
   1818   // There may be overflowed objects in the heap.  Visit them now.
   1819   while (marking_deque_.overflowed()) {
   1820     RefillMarkingDeque();
   1821     EmptyMarkingDeque();
   1822   }
   1823 }
   1824 
   1825 
   1826 void MarkCompactCollector::MarkImplicitRefGroups(
   1827     MarkObjectFunction mark_object) {
   1828   List<ImplicitRefGroup*>* ref_groups =
   1829       isolate()->global_handles()->implicit_ref_groups();
   1830 
   1831   int last = 0;
   1832   for (int i = 0; i < ref_groups->length(); i++) {
   1833     ImplicitRefGroup* entry = ref_groups->at(i);
   1834     DCHECK(entry != NULL);
   1835 
   1836     if (!IsMarked(*entry->parent)) {
   1837       (*ref_groups)[last++] = entry;
   1838       continue;
   1839     }
   1840 
   1841     Object*** children = entry->children;
   1842     // A parent object is marked, so mark all child heap objects.
   1843     for (size_t j = 0; j < entry->length; ++j) {
   1844       if ((*children[j])->IsHeapObject()) {
   1845         mark_object(heap(), HeapObject::cast(*children[j]));
   1846       }
   1847     }
   1848 
   1849     // Once the entire group has been marked, dispose it because it's
   1850     // not needed anymore.
   1851     delete entry;
   1852   }
   1853   ref_groups->Rewind(last);
   1854 }
   1855 
   1856 
   1857 // Mark all objects reachable from the objects on the marking stack.
   1858 // Before: the marking stack contains zero or more heap object pointers.
   1859 // After: the marking stack is empty, and all objects reachable from the
   1860 // marking stack have been marked, or are overflowed in the heap.
   1861 void MarkCompactCollector::EmptyMarkingDeque() {
   1862   Map* filler_map = heap_->one_pointer_filler_map();
   1863   while (!marking_deque_.IsEmpty()) {
   1864     HeapObject* object = marking_deque_.Pop();
   1865     // Explicitly skip one word fillers. Incremental markbit patterns are
   1866     // correct only for objects that occupy at least two words.
   1867     Map* map = object->map();
   1868     if (map == filler_map) continue;
   1869 
   1870     DCHECK(object->IsHeapObject());
   1871     DCHECK(heap()->Contains(object));
   1872     DCHECK(!Marking::IsWhite(Marking::MarkBitFrom(object)));
   1873 
   1874     MarkBit map_mark = Marking::MarkBitFrom(map);
   1875     MarkObject(map, map_mark);
   1876 
   1877     MarkCompactMarkingVisitor::IterateBody(map, object);
   1878   }
   1879 }
   1880 
   1881 
   1882 // Sweep the heap for overflowed objects, clear their overflow bits, and
   1883 // push them on the marking stack.  Stop early if the marking stack fills
   1884 // before sweeping completes.  If sweeping completes, there are no remaining
   1885 // overflowed objects in the heap so the overflow flag on the markings stack
   1886 // is cleared.
   1887 void MarkCompactCollector::RefillMarkingDeque() {
   1888   isolate()->CountUsage(v8::Isolate::UseCounterFeature::kMarkDequeOverflow);
   1889   DCHECK(marking_deque_.overflowed());
   1890 
   1891   DiscoverGreyObjectsInNewSpace();
   1892   if (marking_deque_.IsFull()) return;
   1893 
   1894   DiscoverGreyObjectsInSpace(heap()->old_space());
   1895   if (marking_deque_.IsFull()) return;
   1896 
   1897   DiscoverGreyObjectsInSpace(heap()->code_space());
   1898   if (marking_deque_.IsFull()) return;
   1899 
   1900   DiscoverGreyObjectsInSpace(heap()->map_space());
   1901   if (marking_deque_.IsFull()) return;
   1902 
   1903   LargeObjectIterator lo_it(heap()->lo_space());
   1904   DiscoverGreyObjectsWithIterator(&lo_it);
   1905   if (marking_deque_.IsFull()) return;
   1906 
   1907   marking_deque_.ClearOverflowed();
   1908 }
   1909 
   1910 
   1911 // Mark all objects reachable (transitively) from objects on the marking
   1912 // stack.  Before: the marking stack contains zero or more heap object
   1913 // pointers.  After: the marking stack is empty and there are no overflowed
   1914 // objects in the heap.
   1915 void MarkCompactCollector::ProcessMarkingDeque() {
   1916   EmptyMarkingDeque();
   1917   while (marking_deque_.overflowed()) {
   1918     RefillMarkingDeque();
   1919     EmptyMarkingDeque();
   1920   }
   1921 }
   1922 
   1923 
   1924 // Mark all objects reachable (transitively) from objects on the marking
   1925 // stack including references only considered in the atomic marking pause.
   1926 void MarkCompactCollector::ProcessEphemeralMarking(
   1927     ObjectVisitor* visitor, bool only_process_harmony_weak_collections) {
   1928   bool work_to_do = true;
   1929   DCHECK(marking_deque_.IsEmpty() && !marking_deque_.overflowed());
   1930   while (work_to_do) {
   1931     if (!only_process_harmony_weak_collections) {
   1932       isolate()->global_handles()->IterateObjectGroups(
   1933           visitor, &IsUnmarkedHeapObjectWithHeap);
   1934       MarkImplicitRefGroups(&MarkCompactMarkingVisitor::MarkObject);
   1935     }
   1936     ProcessWeakCollections();
   1937     work_to_do = !marking_deque_.IsEmpty();
   1938     ProcessMarkingDeque();
   1939   }
   1940 }
   1941 
   1942 
   1943 void MarkCompactCollector::ProcessTopOptimizedFrame(ObjectVisitor* visitor) {
   1944   for (StackFrameIterator it(isolate(), isolate()->thread_local_top());
   1945        !it.done(); it.Advance()) {
   1946     if (it.frame()->type() == StackFrame::JAVA_SCRIPT) {
   1947       return;
   1948     }
   1949     if (it.frame()->type() == StackFrame::OPTIMIZED) {
   1950       Code* code = it.frame()->LookupCode();
   1951       if (!code->CanDeoptAt(it.frame()->pc())) {
   1952         Code::BodyDescriptor::IterateBody(code, visitor);
   1953       }
   1954       ProcessMarkingDeque();
   1955       return;
   1956     }
   1957   }
   1958 }
   1959 
   1960 
   1961 void MarkCompactCollector::EnsureMarkingDequeIsReserved() {
   1962   DCHECK(!marking_deque_.in_use());
   1963   if (marking_deque_memory_ == NULL) {
   1964     marking_deque_memory_ = new base::VirtualMemory(kMaxMarkingDequeSize);
   1965     marking_deque_memory_committed_ = 0;
   1966   }
   1967   if (marking_deque_memory_ == NULL) {
   1968     V8::FatalProcessOutOfMemory("EnsureMarkingDequeIsReserved");
   1969   }
   1970 }
   1971 
   1972 
   1973 void MarkCompactCollector::EnsureMarkingDequeIsCommitted(size_t max_size) {
   1974   // If the marking deque is too small, we try to allocate a bigger one.
   1975   // If that fails, make do with a smaller one.
   1976   CHECK(!marking_deque_.in_use());
   1977   for (size_t size = max_size; size >= kMinMarkingDequeSize; size >>= 1) {
   1978     base::VirtualMemory* memory = marking_deque_memory_;
   1979     size_t currently_committed = marking_deque_memory_committed_;
   1980 
   1981     if (currently_committed == size) return;
   1982 
   1983     if (currently_committed > size) {
   1984       bool success = marking_deque_memory_->Uncommit(
   1985           reinterpret_cast<Address>(marking_deque_memory_->address()) + size,
   1986           currently_committed - size);
   1987       if (success) {
   1988         marking_deque_memory_committed_ = size;
   1989         return;
   1990       }
   1991       UNREACHABLE();
   1992     }
   1993 
   1994     bool success = memory->Commit(
   1995         reinterpret_cast<Address>(memory->address()) + currently_committed,
   1996         size - currently_committed,
   1997         false);  // Not executable.
   1998     if (success) {
   1999       marking_deque_memory_committed_ = size;
   2000       return;
   2001     }
   2002   }
   2003   V8::FatalProcessOutOfMemory("EnsureMarkingDequeIsCommitted");
   2004 }
   2005 
   2006 
   2007 void MarkCompactCollector::InitializeMarkingDeque() {
   2008   DCHECK(!marking_deque_.in_use());
   2009   DCHECK(marking_deque_memory_committed_ > 0);
   2010   Address addr = static_cast<Address>(marking_deque_memory_->address());
   2011   size_t size = marking_deque_memory_committed_;
   2012   if (FLAG_force_marking_deque_overflows) size = 64 * kPointerSize;
   2013   marking_deque_.Initialize(addr, addr + size);
   2014 }
   2015 
   2016 
   2017 void MarkingDeque::Initialize(Address low, Address high) {
   2018   DCHECK(!in_use_);
   2019   HeapObject** obj_low = reinterpret_cast<HeapObject**>(low);
   2020   HeapObject** obj_high = reinterpret_cast<HeapObject**>(high);
   2021   array_ = obj_low;
   2022   mask_ = base::bits::RoundDownToPowerOfTwo32(
   2023               static_cast<uint32_t>(obj_high - obj_low)) -
   2024           1;
   2025   top_ = bottom_ = 0;
   2026   overflowed_ = false;
   2027   in_use_ = true;
   2028 }
   2029 
   2030 
   2031 void MarkingDeque::Uninitialize(bool aborting) {
   2032   if (!aborting) {
   2033     DCHECK(IsEmpty());
   2034     DCHECK(!overflowed_);
   2035   }
   2036   DCHECK(in_use_);
   2037   top_ = bottom_ = 0xdecbad;
   2038   in_use_ = false;
   2039 }
   2040 
   2041 
   2042 void MarkCompactCollector::MarkLiveObjects() {
   2043   GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK);
   2044   double start_time = 0.0;
   2045   if (FLAG_print_cumulative_gc_stat) {
   2046     start_time = heap_->MonotonicallyIncreasingTimeInMs();
   2047   }
   2048   // The recursive GC marker detects when it is nearing stack overflow,
   2049   // and switches to a different marking system.  JS interrupts interfere
   2050   // with the C stack limit check.
   2051   PostponeInterruptsScope postpone(isolate());
   2052 
   2053   {
   2054     GCTracer::Scope gc_scope(heap()->tracer(),
   2055                              GCTracer::Scope::MC_MARK_FINISH_INCREMENTAL);
   2056     IncrementalMarking* incremental_marking = heap_->incremental_marking();
   2057     if (was_marked_incrementally_) {
   2058       incremental_marking->Finalize();
   2059     } else {
   2060       // Abort any pending incremental activities e.g. incremental sweeping.
   2061       incremental_marking->Stop();
   2062       if (marking_deque_.in_use()) {
   2063         marking_deque_.Uninitialize(true);
   2064       }
   2065     }
   2066   }
   2067 
   2068 #ifdef DEBUG
   2069   DCHECK(state_ == PREPARE_GC);
   2070   state_ = MARK_LIVE_OBJECTS;
   2071 #endif
   2072 
   2073   EnsureMarkingDequeIsCommittedAndInitialize(
   2074       MarkCompactCollector::kMaxMarkingDequeSize);
   2075 
   2076   {
   2077     GCTracer::Scope gc_scope(heap()->tracer(),
   2078                              GCTracer::Scope::MC_MARK_PREPARE_CODE_FLUSH);
   2079     PrepareForCodeFlushing();
   2080   }
   2081 
   2082   RootMarkingVisitor root_visitor(heap());
   2083 
   2084   {
   2085     GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK_ROOTS);
   2086     MarkRoots(&root_visitor);
   2087     ProcessTopOptimizedFrame(&root_visitor);
   2088   }
   2089 
   2090   {
   2091     GCTracer::Scope gc_scope(heap()->tracer(),
   2092                              GCTracer::Scope::MC_MARK_WEAK_CLOSURE);
   2093 
   2094     // The objects reachable from the roots are marked, yet unreachable
   2095     // objects are unmarked.  Mark objects reachable due to host
   2096     // application specific logic or through Harmony weak maps.
   2097     ProcessEphemeralMarking(&root_visitor, false);
   2098 
   2099     // The objects reachable from the roots, weak maps or object groups
   2100     // are marked. Objects pointed to only by weak global handles cannot be
   2101     // immediately reclaimed. Instead, we have to mark them as pending and mark
   2102     // objects reachable from them.
   2103     //
   2104     // First we identify nonlive weak handles and mark them as pending
   2105     // destruction.
   2106     heap()->isolate()->global_handles()->IdentifyWeakHandles(
   2107         &IsUnmarkedHeapObject);
   2108     // Then we mark the objects.
   2109     heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
   2110     ProcessMarkingDeque();
   2111 
   2112     // Repeat Harmony weak maps marking to mark unmarked objects reachable from
   2113     // the weak roots we just marked as pending destruction.
   2114     //
   2115     // We only process harmony collections, as all object groups have been fully
   2116     // processed and no weakly reachable node can discover new objects groups.
   2117     ProcessEphemeralMarking(&root_visitor, true);
   2118   }
   2119 
   2120   if (FLAG_print_cumulative_gc_stat) {
   2121     heap_->tracer()->AddMarkingTime(heap_->MonotonicallyIncreasingTimeInMs() -
   2122                                     start_time);
   2123   }
   2124   if (FLAG_track_gc_object_stats) {
   2125     if (FLAG_trace_gc_object_stats) {
   2126       heap()->object_stats_->TraceObjectStats();
   2127     }
   2128     heap()->object_stats_->CheckpointObjectStats();
   2129   }
   2130 }
   2131 
   2132 
   2133 void MarkCompactCollector::ClearNonLiveReferences() {
   2134   GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR);
   2135 
   2136   {
   2137     GCTracer::Scope gc_scope(heap()->tracer(),
   2138                              GCTracer::Scope::MC_CLEAR_STRING_TABLE);
   2139 
   2140     // Prune the string table removing all strings only pointed to by the
   2141     // string table.  Cannot use string_table() here because the string
   2142     // table is marked.
   2143     StringTable* string_table = heap()->string_table();
   2144     InternalizedStringTableCleaner internalized_visitor(heap());
   2145     string_table->IterateElements(&internalized_visitor);
   2146     string_table->ElementsRemoved(internalized_visitor.PointersRemoved());
   2147 
   2148     ExternalStringTableCleaner external_visitor(heap());
   2149     heap()->external_string_table_.Iterate(&external_visitor);
   2150     heap()->external_string_table_.CleanUp();
   2151   }
   2152 
   2153   {
   2154     GCTracer::Scope gc_scope(heap()->tracer(),
   2155                              GCTracer::Scope::MC_CLEAR_WEAK_LISTS);
   2156     // Process the weak references.
   2157     MarkCompactWeakObjectRetainer mark_compact_object_retainer;
   2158     heap()->ProcessAllWeakReferences(&mark_compact_object_retainer);
   2159   }
   2160 
   2161   {
   2162     GCTracer::Scope gc_scope(heap()->tracer(),
   2163                              GCTracer::Scope::MC_CLEAR_GLOBAL_HANDLES);
   2164 
   2165     // Remove object groups after marking phase.
   2166     heap()->isolate()->global_handles()->RemoveObjectGroups();
   2167     heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
   2168   }
   2169 
   2170   // Flush code from collected candidates.
   2171   if (is_code_flushing_enabled()) {
   2172     GCTracer::Scope gc_scope(heap()->tracer(),
   2173                              GCTracer::Scope::MC_CLEAR_CODE_FLUSH);
   2174     code_flusher_->ProcessCandidates();
   2175   }
   2176 
   2177 
   2178   DependentCode* dependent_code_list;
   2179   Object* non_live_map_list;
   2180   ClearWeakCells(&non_live_map_list, &dependent_code_list);
   2181 
   2182   {
   2183     GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_MAPS);
   2184     ClearSimpleMapTransitions(non_live_map_list);
   2185     ClearFullMapTransitions();
   2186   }
   2187 
   2188   MarkDependentCodeForDeoptimization(dependent_code_list);
   2189 
   2190   ClearWeakCollections();
   2191 
   2192   ClearInvalidStoreAndSlotsBufferEntries();
   2193 }
   2194 
   2195 
   2196 void MarkCompactCollector::MarkDependentCodeForDeoptimization(
   2197     DependentCode* list_head) {
   2198   GCTracer::Scope gc_scope(heap()->tracer(),
   2199                            GCTracer::Scope::MC_CLEAR_DEPENDENT_CODE);
   2200   Isolate* isolate = this->isolate();
   2201   DependentCode* current = list_head;
   2202   while (current->length() > 0) {
   2203     have_code_to_deoptimize_ |= current->MarkCodeForDeoptimization(
   2204         isolate, DependentCode::kWeakCodeGroup);
   2205     current = current->next_link();
   2206   }
   2207 
   2208   WeakHashTable* table = heap_->weak_object_to_code_table();
   2209   uint32_t capacity = table->Capacity();
   2210   for (uint32_t i = 0; i < capacity; i++) {
   2211     uint32_t key_index = table->EntryToIndex(i);
   2212     Object* key = table->get(key_index);
   2213     if (!table->IsKey(key)) continue;
   2214     uint32_t value_index = table->EntryToValueIndex(i);
   2215     Object* value = table->get(value_index);
   2216     DCHECK(key->IsWeakCell());
   2217     if (WeakCell::cast(key)->cleared()) {
   2218       have_code_to_deoptimize_ |=
   2219           DependentCode::cast(value)->MarkCodeForDeoptimization(
   2220               isolate, DependentCode::kWeakCodeGroup);
   2221       table->set(key_index, heap_->the_hole_value());
   2222       table->set(value_index, heap_->the_hole_value());
   2223       table->ElementRemoved();
   2224     }
   2225   }
   2226 }
   2227 
   2228 
   2229 void MarkCompactCollector::ClearSimpleMapTransitions(
   2230     Object* non_live_map_list) {
   2231   Object* the_hole_value = heap()->the_hole_value();
   2232   Object* weak_cell_obj = non_live_map_list;
   2233   while (weak_cell_obj != Smi::FromInt(0)) {
   2234     WeakCell* weak_cell = WeakCell::cast(weak_cell_obj);
   2235     Map* map = Map::cast(weak_cell->value());
   2236     DCHECK(Marking::IsWhite(Marking::MarkBitFrom(map)));
   2237     Object* potential_parent = map->constructor_or_backpointer();
   2238     if (potential_parent->IsMap()) {
   2239       Map* parent = Map::cast(potential_parent);
   2240       if (Marking::IsBlackOrGrey(Marking::MarkBitFrom(parent)) &&
   2241           parent->raw_transitions() == weak_cell) {
   2242         ClearSimpleMapTransition(parent, map);
   2243       }
   2244     }
   2245     weak_cell->clear();
   2246     weak_cell_obj = weak_cell->next();
   2247     weak_cell->clear_next(the_hole_value);
   2248   }
   2249 }
   2250 
   2251 
   2252 void MarkCompactCollector::ClearSimpleMapTransition(Map* map,
   2253                                                     Map* dead_transition) {
   2254   // A previously existing simple transition (stored in a WeakCell) is going
   2255   // to be cleared. Clear the useless cell pointer, and take ownership
   2256   // of the descriptor array.
   2257   map->set_raw_transitions(Smi::FromInt(0));
   2258   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   2259   DescriptorArray* descriptors = map->instance_descriptors();
   2260   if (descriptors == dead_transition->instance_descriptors() &&
   2261       number_of_own_descriptors > 0) {
   2262     TrimDescriptorArray(map, descriptors);
   2263     DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
   2264     map->set_owns_descriptors(true);
   2265   }
   2266 }
   2267 
   2268 
   2269 void MarkCompactCollector::ClearFullMapTransitions() {
   2270   HeapObject* undefined = heap()->undefined_value();
   2271   Object* obj = heap()->encountered_transition_arrays();
   2272   while (obj != Smi::FromInt(0)) {
   2273     TransitionArray* array = TransitionArray::cast(obj);
   2274     int num_transitions = array->number_of_entries();
   2275     DCHECK_EQ(TransitionArray::NumberOfTransitions(array), num_transitions);
   2276     if (num_transitions > 0) {
   2277       Map* map = array->GetTarget(0);
   2278       Map* parent = Map::cast(map->constructor_or_backpointer());
   2279       bool parent_is_alive =
   2280           Marking::IsBlackOrGrey(Marking::MarkBitFrom(parent));
   2281       DescriptorArray* descriptors =
   2282           parent_is_alive ? parent->instance_descriptors() : nullptr;
   2283       bool descriptors_owner_died =
   2284           CompactTransitionArray(parent, array, descriptors);
   2285       if (descriptors_owner_died) {
   2286         TrimDescriptorArray(parent, descriptors);
   2287       }
   2288     }
   2289     obj = array->next_link();
   2290     array->set_next_link(undefined, SKIP_WRITE_BARRIER);
   2291   }
   2292   heap()->set_encountered_transition_arrays(Smi::FromInt(0));
   2293 }
   2294 
   2295 
   2296 bool MarkCompactCollector::CompactTransitionArray(
   2297     Map* map, TransitionArray* transitions, DescriptorArray* descriptors) {
   2298   int num_transitions = transitions->number_of_entries();
   2299   bool descriptors_owner_died = false;
   2300   int transition_index = 0;
   2301   // Compact all live transitions to the left.
   2302   for (int i = 0; i < num_transitions; ++i) {
   2303     Map* target = transitions->GetTarget(i);
   2304     DCHECK_EQ(target->constructor_or_backpointer(), map);
   2305     if (Marking::IsWhite(Marking::MarkBitFrom(target))) {
   2306       if (descriptors != nullptr &&
   2307           target->instance_descriptors() == descriptors) {
   2308         descriptors_owner_died = true;
   2309       }
   2310     } else {
   2311       if (i != transition_index) {
   2312         Name* key = transitions->GetKey(i);
   2313         transitions->SetKey(transition_index, key);
   2314         Object** key_slot = transitions->GetKeySlot(transition_index);
   2315         RecordSlot(transitions, key_slot, key);
   2316         // Target slots do not need to be recorded since maps are not compacted.
   2317         transitions->SetTarget(transition_index, transitions->GetTarget(i));
   2318       }
   2319       transition_index++;
   2320     }
   2321   }
   2322   // If there are no transitions to be cleared, return.
   2323   if (transition_index == num_transitions) {
   2324     DCHECK(!descriptors_owner_died);
   2325     return false;
   2326   }
   2327   // Note that we never eliminate a transition array, though we might right-trim
   2328   // such that number_of_transitions() == 0. If this assumption changes,
   2329   // TransitionArray::Insert() will need to deal with the case that a transition
   2330   // array disappeared during GC.
   2331   int trim = TransitionArray::Capacity(transitions) - transition_index;
   2332   if (trim > 0) {
   2333     heap_->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(
   2334         transitions, trim * TransitionArray::kTransitionSize);
   2335     transitions->SetNumberOfTransitions(transition_index);
   2336   }
   2337   return descriptors_owner_died;
   2338 }
   2339 
   2340 
   2341 void MarkCompactCollector::TrimDescriptorArray(Map* map,
   2342                                                DescriptorArray* descriptors) {
   2343   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   2344   if (number_of_own_descriptors == 0) {
   2345     DCHECK(descriptors == heap_->empty_descriptor_array());
   2346     return;
   2347   }
   2348 
   2349   int number_of_descriptors = descriptors->number_of_descriptors_storage();
   2350   int to_trim = number_of_descriptors - number_of_own_descriptors;
   2351   if (to_trim > 0) {
   2352     heap_->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(
   2353         descriptors, to_trim * DescriptorArray::kDescriptorSize);
   2354     descriptors->SetNumberOfDescriptors(number_of_own_descriptors);
   2355 
   2356     if (descriptors->HasEnumCache()) TrimEnumCache(map, descriptors);
   2357     descriptors->Sort();
   2358 
   2359     if (FLAG_unbox_double_fields) {
   2360       LayoutDescriptor* layout_descriptor = map->layout_descriptor();
   2361       layout_descriptor = layout_descriptor->Trim(heap_, map, descriptors,
   2362                                                   number_of_own_descriptors);
   2363       SLOW_DCHECK(layout_descriptor->IsConsistentWithMap(map, true));
   2364     }
   2365   }
   2366   DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
   2367   map->set_owns_descriptors(true);
   2368 }
   2369 
   2370 
   2371 void MarkCompactCollector::TrimEnumCache(Map* map,
   2372                                          DescriptorArray* descriptors) {
   2373   int live_enum = map->EnumLength();
   2374   if (live_enum == kInvalidEnumCacheSentinel) {
   2375     live_enum =
   2376         map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS);
   2377   }
   2378   if (live_enum == 0) return descriptors->ClearEnumCache();
   2379 
   2380   FixedArray* enum_cache = descriptors->GetEnumCache();
   2381 
   2382   int to_trim = enum_cache->length() - live_enum;
   2383   if (to_trim <= 0) return;
   2384   heap_->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(
   2385       descriptors->GetEnumCache(), to_trim);
   2386 
   2387   if (!descriptors->HasEnumIndicesCache()) return;
   2388   FixedArray* enum_indices_cache = descriptors->GetEnumIndicesCache();
   2389   heap_->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(enum_indices_cache,
   2390                                                           to_trim);
   2391 }
   2392 
   2393 
   2394 void MarkCompactCollector::ProcessWeakCollections() {
   2395   Object* weak_collection_obj = heap()->encountered_weak_collections();
   2396   while (weak_collection_obj != Smi::FromInt(0)) {
   2397     JSWeakCollection* weak_collection =
   2398         reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
   2399     DCHECK(MarkCompactCollector::IsMarked(weak_collection));
   2400     if (weak_collection->table()->IsHashTable()) {
   2401       ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
   2402       for (int i = 0; i < table->Capacity(); i++) {
   2403         if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
   2404           Object** key_slot =
   2405               table->RawFieldOfElementAt(ObjectHashTable::EntryToIndex(i));
   2406           RecordSlot(table, key_slot, *key_slot);
   2407           Object** value_slot =
   2408               table->RawFieldOfElementAt(ObjectHashTable::EntryToValueIndex(i));
   2409           MarkCompactMarkingVisitor::MarkObjectByPointer(this, table,
   2410                                                          value_slot);
   2411         }
   2412       }
   2413     }
   2414     weak_collection_obj = weak_collection->next();
   2415   }
   2416 }
   2417 
   2418 
   2419 void MarkCompactCollector::ClearWeakCollections() {
   2420   GCTracer::Scope gc_scope(heap()->tracer(),
   2421                            GCTracer::Scope::MC_CLEAR_WEAK_COLLECTIONS);
   2422   Object* weak_collection_obj = heap()->encountered_weak_collections();
   2423   while (weak_collection_obj != Smi::FromInt(0)) {
   2424     JSWeakCollection* weak_collection =
   2425         reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
   2426     DCHECK(MarkCompactCollector::IsMarked(weak_collection));
   2427     if (weak_collection->table()->IsHashTable()) {
   2428       ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
   2429       for (int i = 0; i < table->Capacity(); i++) {
   2430         HeapObject* key = HeapObject::cast(table->KeyAt(i));
   2431         if (!MarkCompactCollector::IsMarked(key)) {
   2432           table->RemoveEntry(i);
   2433         }
   2434       }
   2435     }
   2436     weak_collection_obj = weak_collection->next();
   2437     weak_collection->set_next(heap()->undefined_value());
   2438   }
   2439   heap()->set_encountered_weak_collections(Smi::FromInt(0));
   2440 }
   2441 
   2442 
   2443 void MarkCompactCollector::AbortWeakCollections() {
   2444   Object* weak_collection_obj = heap()->encountered_weak_collections();
   2445   while (weak_collection_obj != Smi::FromInt(0)) {
   2446     JSWeakCollection* weak_collection =
   2447         reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
   2448     weak_collection_obj = weak_collection->next();
   2449     weak_collection->set_next(heap()->undefined_value());
   2450   }
   2451   heap()->set_encountered_weak_collections(Smi::FromInt(0));
   2452 }
   2453 
   2454 
   2455 void MarkCompactCollector::ClearWeakCells(Object** non_live_map_list,
   2456                                           DependentCode** dependent_code_list) {
   2457   Heap* heap = this->heap();
   2458   GCTracer::Scope gc_scope(heap->tracer(),
   2459                            GCTracer::Scope::MC_CLEAR_WEAK_CELLS);
   2460   Object* weak_cell_obj = heap->encountered_weak_cells();
   2461   Object* the_hole_value = heap->the_hole_value();
   2462   DependentCode* dependent_code_head =
   2463       DependentCode::cast(heap->empty_fixed_array());
   2464   Object* non_live_map_head = Smi::FromInt(0);
   2465   while (weak_cell_obj != Smi::FromInt(0)) {
   2466     WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj);
   2467     Object* next_weak_cell = weak_cell->next();
   2468     bool clear_value = true;
   2469     bool clear_next = true;
   2470     // We do not insert cleared weak cells into the list, so the value
   2471     // cannot be a Smi here.
   2472     HeapObject* value = HeapObject::cast(weak_cell->value());
   2473     if (!MarkCompactCollector::IsMarked(value)) {
   2474       // Cells for new-space objects embedded in optimized code are wrapped in
   2475       // WeakCell and put into Heap::weak_object_to_code_table.
   2476       // Such cells do not have any strong references but we want to keep them
   2477       // alive as long as the cell value is alive.
   2478       // TODO(ulan): remove this once we remove Heap::weak_object_to_code_table.
   2479       if (value->IsCell()) {
   2480         Object* cell_value = Cell::cast(value)->value();
   2481         if (cell_value->IsHeapObject() &&
   2482             MarkCompactCollector::IsMarked(HeapObject::cast(cell_value))) {
   2483           // Resurrect the cell.
   2484           MarkBit mark = Marking::MarkBitFrom(value);
   2485           SetMark(value, mark);
   2486           Object** slot = HeapObject::RawField(value, Cell::kValueOffset);
   2487           RecordSlot(value, slot, *slot);
   2488           slot = HeapObject::RawField(weak_cell, WeakCell::kValueOffset);
   2489           RecordSlot(weak_cell, slot, *slot);
   2490           clear_value = false;
   2491         }
   2492       }
   2493       if (value->IsMap()) {
   2494         // The map is non-live.
   2495         Map* map = Map::cast(value);
   2496         // Add dependent code to the dependent_code_list.
   2497         DependentCode* candidate = map->dependent_code();
   2498         // We rely on the fact that the weak code group comes first.
   2499         STATIC_ASSERT(DependentCode::kWeakCodeGroup == 0);
   2500         if (candidate->length() > 0 &&
   2501             candidate->group() == DependentCode::kWeakCodeGroup) {
   2502           candidate->set_next_link(dependent_code_head);
   2503           dependent_code_head = candidate;
   2504         }
   2505         // Add the weak cell to the non_live_map list.
   2506         weak_cell->set_next(non_live_map_head);
   2507         non_live_map_head = weak_cell;
   2508         clear_value = false;
   2509         clear_next = false;
   2510       }
   2511     } else {
   2512       // The value of the weak cell is alive.
   2513       Object** slot = HeapObject::RawField(weak_cell, WeakCell::kValueOffset);
   2514       RecordSlot(weak_cell, slot, *slot);
   2515       clear_value = false;
   2516     }
   2517     if (clear_value) {
   2518       weak_cell->clear();
   2519     }
   2520     if (clear_next) {
   2521       weak_cell->clear_next(the_hole_value);
   2522     }
   2523     weak_cell_obj = next_weak_cell;
   2524   }
   2525   heap->set_encountered_weak_cells(Smi::FromInt(0));
   2526   *non_live_map_list = non_live_map_head;
   2527   *dependent_code_list = dependent_code_head;
   2528 }
   2529 
   2530 
   2531 void MarkCompactCollector::AbortWeakCells() {
   2532   Object* the_hole_value = heap()->the_hole_value();
   2533   Object* weak_cell_obj = heap()->encountered_weak_cells();
   2534   while (weak_cell_obj != Smi::FromInt(0)) {
   2535     WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj);
   2536     weak_cell_obj = weak_cell->next();
   2537     weak_cell->clear_next(the_hole_value);
   2538   }
   2539   heap()->set_encountered_weak_cells(Smi::FromInt(0));
   2540 }
   2541 
   2542 
   2543 void MarkCompactCollector::AbortTransitionArrays() {
   2544   HeapObject* undefined = heap()->undefined_value();
   2545   Object* obj = heap()->encountered_transition_arrays();
   2546   while (obj != Smi::FromInt(0)) {
   2547     TransitionArray* array = TransitionArray::cast(obj);
   2548     obj = array->next_link();
   2549     array->set_next_link(undefined, SKIP_WRITE_BARRIER);
   2550   }
   2551   heap()->set_encountered_transition_arrays(Smi::FromInt(0));
   2552 }
   2553 
   2554 
   2555 void MarkCompactCollector::RecordMigratedSlot(
   2556     Object* value, Address slot, SlotsBuffer** evacuation_slots_buffer) {
   2557   // When parallel compaction is in progress, store and slots buffer entries
   2558   // require synchronization.
   2559   if (heap_->InNewSpace(value)) {
   2560     if (compaction_in_progress_) {
   2561       heap_->store_buffer()->MarkSynchronized(slot);
   2562     } else {
   2563       heap_->store_buffer()->Mark(slot);
   2564     }
   2565   } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) {
   2566     SlotsBuffer::AddTo(slots_buffer_allocator_, evacuation_slots_buffer,
   2567                        reinterpret_cast<Object**>(slot),
   2568                        SlotsBuffer::IGNORE_OVERFLOW);
   2569   }
   2570 }
   2571 
   2572 
   2573 void MarkCompactCollector::RecordMigratedCodeEntrySlot(
   2574     Address code_entry, Address code_entry_slot,
   2575     SlotsBuffer** evacuation_slots_buffer) {
   2576   if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
   2577     SlotsBuffer::AddTo(slots_buffer_allocator_, evacuation_slots_buffer,
   2578                        SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
   2579                        SlotsBuffer::IGNORE_OVERFLOW);
   2580   }
   2581 }
   2582 
   2583 
   2584 void MarkCompactCollector::RecordMigratedCodeObjectSlot(
   2585     Address code_object, SlotsBuffer** evacuation_slots_buffer) {
   2586   SlotsBuffer::AddTo(slots_buffer_allocator_, evacuation_slots_buffer,
   2587                      SlotsBuffer::RELOCATED_CODE_OBJECT, code_object,
   2588                      SlotsBuffer::IGNORE_OVERFLOW);
   2589 }
   2590 
   2591 
   2592 static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) {
   2593   if (RelocInfo::IsCodeTarget(rmode)) {
   2594     return SlotsBuffer::CODE_TARGET_SLOT;
   2595   } else if (RelocInfo::IsCell(rmode)) {
   2596     return SlotsBuffer::CELL_TARGET_SLOT;
   2597   } else if (RelocInfo::IsEmbeddedObject(rmode)) {
   2598     return SlotsBuffer::EMBEDDED_OBJECT_SLOT;
   2599   } else if (RelocInfo::IsDebugBreakSlot(rmode)) {
   2600     return SlotsBuffer::DEBUG_TARGET_SLOT;
   2601   }
   2602   UNREACHABLE();
   2603   return SlotsBuffer::NUMBER_OF_SLOT_TYPES;
   2604 }
   2605 
   2606 
   2607 static inline SlotsBuffer::SlotType DecodeSlotType(
   2608     SlotsBuffer::ObjectSlot slot) {
   2609   return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot));
   2610 }
   2611 
   2612 
   2613 void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) {
   2614   Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
   2615   RelocInfo::Mode rmode = rinfo->rmode();
   2616   if (target_page->IsEvacuationCandidate() &&
   2617       (rinfo->host() == NULL ||
   2618        !ShouldSkipEvacuationSlotRecording(rinfo->host()))) {
   2619     Address addr = rinfo->pc();
   2620     SlotsBuffer::SlotType slot_type = SlotTypeForRMode(rmode);
   2621     if (rinfo->IsInConstantPool()) {
   2622       addr = rinfo->constant_pool_entry_address();
   2623       if (RelocInfo::IsCodeTarget(rmode)) {
   2624         slot_type = SlotsBuffer::CODE_ENTRY_SLOT;
   2625       } else {
   2626         DCHECK(RelocInfo::IsEmbeddedObject(rmode));
   2627         slot_type = SlotsBuffer::OBJECT_SLOT;
   2628       }
   2629     }
   2630     bool success = SlotsBuffer::AddTo(
   2631         slots_buffer_allocator_, target_page->slots_buffer_address(), slot_type,
   2632         addr, SlotsBuffer::FAIL_ON_OVERFLOW);
   2633     if (!success) {
   2634       EvictPopularEvacuationCandidate(target_page);
   2635     }
   2636   }
   2637 }
   2638 
   2639 
   2640 class RecordMigratedSlotVisitor final : public ObjectVisitor {
   2641  public:
   2642   RecordMigratedSlotVisitor(MarkCompactCollector* collector,
   2643                             SlotsBuffer** evacuation_slots_buffer)
   2644       : collector_(collector),
   2645         evacuation_slots_buffer_(evacuation_slots_buffer) {}
   2646 
   2647   V8_INLINE void VisitPointer(Object** p) override {
   2648     collector_->RecordMigratedSlot(*p, reinterpret_cast<Address>(p),
   2649                                    evacuation_slots_buffer_);
   2650   }
   2651 
   2652   V8_INLINE void VisitPointers(Object** start, Object** end) override {
   2653     while (start < end) {
   2654       collector_->RecordMigratedSlot(*start, reinterpret_cast<Address>(start),
   2655                                      evacuation_slots_buffer_);
   2656       ++start;
   2657     }
   2658   }
   2659 
   2660   V8_INLINE void VisitCodeEntry(Address code_entry_slot) override {
   2661     if (collector_->compacting_) {
   2662       Address code_entry = Memory::Address_at(code_entry_slot);
   2663       collector_->RecordMigratedCodeEntrySlot(code_entry, code_entry_slot,
   2664                                               evacuation_slots_buffer_);
   2665     }
   2666   }
   2667 
   2668  private:
   2669   MarkCompactCollector* collector_;
   2670   SlotsBuffer** evacuation_slots_buffer_;
   2671 };
   2672 
   2673 
   2674 // We scavenge new space simultaneously with sweeping. This is done in two
   2675 // passes.
   2676 //
   2677 // The first pass migrates all alive objects from one semispace to another or
   2678 // promotes them to old space.  Forwarding address is written directly into
   2679 // first word of object without any encoding.  If object is dead we write
   2680 // NULL as a forwarding address.
   2681 //
   2682 // The second pass updates pointers to new space in all spaces.  It is possible
   2683 // to encounter pointers to dead new space objects during traversal of pointers
   2684 // to new space.  We should clear them to avoid encountering them during next
   2685 // pointer iteration.  This is an issue if the store buffer overflows and we
   2686 // have to scan the entire old space, including dead objects, looking for
   2687 // pointers to new space.
   2688 void MarkCompactCollector::MigrateObject(
   2689     HeapObject* dst, HeapObject* src, int size, AllocationSpace dest,
   2690     SlotsBuffer** evacuation_slots_buffer) {
   2691   Address dst_addr = dst->address();
   2692   Address src_addr = src->address();
   2693   DCHECK(heap()->AllowedToBeMigrated(src, dest));
   2694   DCHECK(dest != LO_SPACE);
   2695   if (dest == OLD_SPACE) {
   2696     DCHECK_OBJECT_SIZE(size);
   2697     DCHECK(evacuation_slots_buffer != nullptr);
   2698     DCHECK(IsAligned(size, kPointerSize));
   2699 
   2700     heap()->MoveBlock(dst->address(), src->address(), size);
   2701     RecordMigratedSlotVisitor visitor(this, evacuation_slots_buffer);
   2702     dst->IterateBody(&visitor);
   2703   } else if (dest == CODE_SPACE) {
   2704     DCHECK_CODEOBJECT_SIZE(size, heap()->code_space());
   2705     DCHECK(evacuation_slots_buffer != nullptr);
   2706     PROFILE(isolate(), CodeMoveEvent(src_addr, dst_addr));
   2707     heap()->MoveBlock(dst_addr, src_addr, size);
   2708     RecordMigratedCodeObjectSlot(dst_addr, evacuation_slots_buffer);
   2709     Code::cast(dst)->Relocate(dst_addr - src_addr);
   2710   } else {
   2711     DCHECK_OBJECT_SIZE(size);
   2712     DCHECK(evacuation_slots_buffer == nullptr);
   2713     DCHECK(dest == NEW_SPACE);
   2714     heap()->MoveBlock(dst_addr, src_addr, size);
   2715   }
   2716   heap()->OnMoveEvent(dst, src, size);
   2717   Memory::Address_at(src_addr) = dst_addr;
   2718 }
   2719 
   2720 
   2721 static inline void UpdateSlot(Isolate* isolate, ObjectVisitor* v,
   2722                               SlotsBuffer::SlotType slot_type, Address addr) {
   2723   switch (slot_type) {
   2724     case SlotsBuffer::CODE_TARGET_SLOT: {
   2725       RelocInfo rinfo(isolate, addr, RelocInfo::CODE_TARGET, 0, NULL);
   2726       rinfo.Visit(isolate, v);
   2727       break;
   2728     }
   2729     case SlotsBuffer::CELL_TARGET_SLOT: {
   2730       RelocInfo rinfo(isolate, addr, RelocInfo::CELL, 0, NULL);
   2731       rinfo.Visit(isolate, v);
   2732       break;
   2733     }
   2734     case SlotsBuffer::CODE_ENTRY_SLOT: {
   2735       v->VisitCodeEntry(addr);
   2736       break;
   2737     }
   2738     case SlotsBuffer::RELOCATED_CODE_OBJECT: {
   2739       HeapObject* obj = HeapObject::FromAddress(addr);
   2740       Code::BodyDescriptor::IterateBody(obj, v);
   2741       break;
   2742     }
   2743     case SlotsBuffer::DEBUG_TARGET_SLOT: {
   2744       RelocInfo rinfo(isolate, addr, RelocInfo::DEBUG_BREAK_SLOT_AT_POSITION, 0,
   2745                       NULL);
   2746       if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(isolate, v);
   2747       break;
   2748     }
   2749     case SlotsBuffer::EMBEDDED_OBJECT_SLOT: {
   2750       RelocInfo rinfo(isolate, addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL);
   2751       rinfo.Visit(isolate, v);
   2752       break;
   2753     }
   2754     case SlotsBuffer::OBJECT_SLOT: {
   2755       v->VisitPointer(reinterpret_cast<Object**>(addr));
   2756       break;
   2757     }
   2758     default:
   2759       UNREACHABLE();
   2760       break;
   2761   }
   2762 }
   2763 
   2764 
   2765 // Visitor for updating pointers from live objects in old spaces to new space.
   2766 // It does not expect to encounter pointers to dead objects.
   2767 class PointersUpdatingVisitor : public ObjectVisitor {
   2768  public:
   2769   explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) {}
   2770 
   2771   void VisitPointer(Object** p) override { UpdatePointer(p); }
   2772 
   2773   void VisitPointers(Object** start, Object** end) override {
   2774     for (Object** p = start; p < end; p++) UpdatePointer(p);
   2775   }
   2776 
   2777   void VisitCell(RelocInfo* rinfo) override {
   2778     DCHECK(rinfo->rmode() == RelocInfo::CELL);
   2779     Object* cell = rinfo->target_cell();
   2780     Object* old_cell = cell;
   2781     VisitPointer(&cell);
   2782     if (cell != old_cell) {
   2783       rinfo->set_target_cell(reinterpret_cast<Cell*>(cell));
   2784     }
   2785   }
   2786 
   2787   void VisitEmbeddedPointer(RelocInfo* rinfo) override {
   2788     DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
   2789     Object* target = rinfo->target_object();
   2790     Object* old_target = target;
   2791     VisitPointer(&target);
   2792     // Avoid unnecessary changes that might unnecessary flush the instruction
   2793     // cache.
   2794     if (target != old_target) {
   2795       rinfo->set_target_object(target);
   2796     }
   2797   }
   2798 
   2799   void VisitCodeTarget(RelocInfo* rinfo) override {
   2800     DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
   2801     Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
   2802     Object* old_target = target;
   2803     VisitPointer(&target);
   2804     if (target != old_target) {
   2805       rinfo->set_target_address(Code::cast(target)->instruction_start());
   2806     }
   2807   }
   2808 
   2809   void VisitCodeAgeSequence(RelocInfo* rinfo) override {
   2810     DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
   2811     Object* stub = rinfo->code_age_stub();
   2812     DCHECK(stub != NULL);
   2813     VisitPointer(&stub);
   2814     if (stub != rinfo->code_age_stub()) {
   2815       rinfo->set_code_age_stub(Code::cast(stub));
   2816     }
   2817   }
   2818 
   2819   void VisitDebugTarget(RelocInfo* rinfo) override {
   2820     DCHECK(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
   2821            rinfo->IsPatchedDebugBreakSlotSequence());
   2822     Object* target =
   2823         Code::GetCodeFromTargetAddress(rinfo->debug_call_address());
   2824     VisitPointer(&target);
   2825     rinfo->set_debug_call_address(Code::cast(target)->instruction_start());
   2826   }
   2827 
   2828   static inline void UpdateSlot(Heap* heap, Object** slot) {
   2829     Object* obj = reinterpret_cast<Object*>(
   2830         base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
   2831 
   2832     if (!obj->IsHeapObject()) return;
   2833 
   2834     HeapObject* heap_obj = HeapObject::cast(obj);
   2835 
   2836     MapWord map_word = heap_obj->map_word();
   2837     if (map_word.IsForwardingAddress()) {
   2838       DCHECK(heap->InFromSpace(heap_obj) ||
   2839              MarkCompactCollector::IsOnEvacuationCandidate(heap_obj) ||
   2840              Page::FromAddress(heap_obj->address())
   2841                  ->IsFlagSet(Page::COMPACTION_WAS_ABORTED));
   2842       HeapObject* target = map_word.ToForwardingAddress();
   2843       base::NoBarrier_CompareAndSwap(
   2844           reinterpret_cast<base::AtomicWord*>(slot),
   2845           reinterpret_cast<base::AtomicWord>(obj),
   2846           reinterpret_cast<base::AtomicWord>(target));
   2847       DCHECK(!heap->InFromSpace(target) &&
   2848              !MarkCompactCollector::IsOnEvacuationCandidate(target));
   2849     }
   2850   }
   2851 
   2852  private:
   2853   inline void UpdatePointer(Object** p) { UpdateSlot(heap_, p); }
   2854 
   2855   Heap* heap_;
   2856 };
   2857 
   2858 
   2859 void MarkCompactCollector::UpdateSlots(SlotsBuffer* buffer) {
   2860   PointersUpdatingVisitor v(heap_);
   2861   size_t buffer_size = buffer->Size();
   2862 
   2863   for (size_t slot_idx = 0; slot_idx < buffer_size; ++slot_idx) {
   2864     SlotsBuffer::ObjectSlot slot = buffer->Get(slot_idx);
   2865     if (!SlotsBuffer::IsTypedSlot(slot)) {
   2866       PointersUpdatingVisitor::UpdateSlot(heap_, slot);
   2867     } else {
   2868       ++slot_idx;
   2869       DCHECK(slot_idx < buffer_size);
   2870       UpdateSlot(heap_->isolate(), &v, DecodeSlotType(slot),
   2871                  reinterpret_cast<Address>(buffer->Get(slot_idx)));
   2872     }
   2873   }
   2874 }
   2875 
   2876 
   2877 void MarkCompactCollector::UpdateSlotsRecordedIn(SlotsBuffer* buffer) {
   2878   while (buffer != NULL) {
   2879     UpdateSlots(buffer);
   2880     buffer = buffer->next();
   2881   }
   2882 }
   2883 
   2884 
   2885 static void UpdatePointer(HeapObject** address, HeapObject* object) {
   2886   MapWord map_word = object->map_word();
   2887   // The store buffer can still contain stale pointers in dead large objects.
   2888   // Ignore these pointers here.
   2889   DCHECK(map_word.IsForwardingAddress() ||
   2890          object->GetHeap()->lo_space()->FindPage(
   2891              reinterpret_cast<Address>(address)) != NULL);
   2892   if (map_word.IsForwardingAddress()) {
   2893     // Update the corresponding slot.
   2894     *address = map_word.ToForwardingAddress();
   2895   }
   2896 }
   2897 
   2898 
   2899 static String* UpdateReferenceInExternalStringTableEntry(Heap* heap,
   2900                                                          Object** p) {
   2901   MapWord map_word = HeapObject::cast(*p)->map_word();
   2902 
   2903   if (map_word.IsForwardingAddress()) {
   2904     return String::cast(map_word.ToForwardingAddress());
   2905   }
   2906 
   2907   return String::cast(*p);
   2908 }
   2909 
   2910 
   2911 bool MarkCompactCollector::IsSlotInBlackObject(Page* p, Address slot,
   2912                                                HeapObject** out_object) {
   2913   Space* owner = p->owner();
   2914   if (owner == heap_->lo_space() || owner == NULL) {
   2915     Object* large_object = heap_->lo_space()->FindObject(slot);
   2916     // This object has to exist, otherwise we would not have recorded a slot
   2917     // for it.
   2918     CHECK(large_object->IsHeapObject());
   2919     HeapObject* large_heap_object = HeapObject::cast(large_object);
   2920     if (IsMarked(large_heap_object)) {
   2921       *out_object = large_heap_object;
   2922       return true;
   2923     }
   2924     return false;
   2925   }
   2926 
   2927   uint32_t mark_bit_index = p->AddressToMarkbitIndex(slot);
   2928   unsigned int cell_index = mark_bit_index >> Bitmap::kBitsPerCellLog2;
   2929   MarkBit::CellType index_mask = 1u << Bitmap::IndexInCell(mark_bit_index);
   2930   MarkBit::CellType* cells = p->markbits()->cells();
   2931   Address base_address = p->area_start();
   2932   unsigned int base_address_cell_index = Bitmap::IndexToCell(
   2933       Bitmap::CellAlignIndex(p->AddressToMarkbitIndex(base_address)));
   2934 
   2935   // Check if the slot points to the start of an object. This can happen e.g.
   2936   // when we left trim a fixed array. Such slots are invalid and we can remove
   2937   // them.
   2938   if (index_mask > 1) {
   2939     if ((cells[cell_index] & index_mask) != 0 &&
   2940         (cells[cell_index] & (index_mask >> 1)) == 0) {
   2941       return false;
   2942     }
   2943   } else {
   2944     // Left trimming moves the mark bits so we cannot be in the very first cell.
   2945     DCHECK(cell_index != base_address_cell_index);
   2946     if ((cells[cell_index] & index_mask) != 0 &&
   2947         (cells[cell_index - 1] & (1u << Bitmap::kBitIndexMask)) == 0) {
   2948       return false;
   2949     }
   2950   }
   2951 
   2952   // Check if the object is in the current cell.
   2953   MarkBit::CellType slot_mask;
   2954   if ((cells[cell_index] == 0) ||
   2955       (base::bits::CountTrailingZeros32(cells[cell_index]) >
   2956        base::bits::CountTrailingZeros32(cells[cell_index] | index_mask))) {
   2957     // If we are already in the first cell, there is no live object.
   2958     if (cell_index == base_address_cell_index) return false;
   2959 
   2960     // If not, find a cell in a preceding cell slot that has a mark bit set.
   2961     do {
   2962       cell_index--;
   2963     } while (cell_index > base_address_cell_index && cells[cell_index] == 0);
   2964 
   2965     // The slot must be in a dead object if there are no preceding cells that
   2966     // have mark bits set.
   2967     if (cells[cell_index] == 0) {
   2968       return false;
   2969     }
   2970 
   2971     // The object is in a preceding cell. Set the mask to find any object.
   2972     slot_mask = ~0u;
   2973   } else {
   2974     // We are interested in object mark bits right before the slot.
   2975     slot_mask = index_mask + (index_mask - 1);
   2976   }
   2977 
   2978   MarkBit::CellType current_cell = cells[cell_index];
   2979   CHECK(current_cell != 0);
   2980 
   2981   // Find the last live object in the cell.
   2982   unsigned int leading_zeros =
   2983       base::bits::CountLeadingZeros32(current_cell & slot_mask);
   2984   CHECK(leading_zeros != Bitmap::kBitsPerCell);
   2985   int offset = static_cast<int>(Bitmap::kBitIndexMask - leading_zeros) - 1;
   2986 
   2987   base_address += (cell_index - base_address_cell_index) *
   2988                   Bitmap::kBitsPerCell * kPointerSize;
   2989   Address address = base_address + offset * kPointerSize;
   2990   HeapObject* object = HeapObject::FromAddress(address);
   2991   CHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
   2992   CHECK(object->address() < reinterpret_cast<Address>(slot));
   2993   if ((object->address() + kPointerSize) <= slot &&
   2994       (object->address() + object->Size()) > slot) {
   2995     // If the slot is within the last found object in the cell, the slot is
   2996     // in a live object.
   2997     // Slots pointing to the first word of an object are invalid and removed.
   2998     // This can happen when we move the object header while left trimming.
   2999     *out_object = object;
   3000     return true;
   3001   }
   3002   return false;
   3003 }
   3004 
   3005 
   3006 bool MarkCompactCollector::IsSlotInBlackObjectSlow(Page* p, Address slot) {
   3007   // This function does not support large objects right now.
   3008   Space* owner = p->owner();
   3009   if (owner == heap_->lo_space() || owner == NULL) {
   3010     Object* large_object = heap_->lo_space()->FindObject(slot);
   3011     // This object has to exist, otherwise we would not have recorded a slot
   3012     // for it.
   3013     CHECK(large_object->IsHeapObject());
   3014     HeapObject* large_heap_object = HeapObject::cast(large_object);
   3015     if (IsMarked(large_heap_object)) {
   3016       return true;
   3017     }
   3018     return false;
   3019   }
   3020 
   3021   LiveObjectIterator<kBlackObjects> it(p);
   3022   HeapObject* object = NULL;
   3023   while ((object = it.Next()) != NULL) {
   3024     int size = object->Size();
   3025 
   3026     if (object->address() > slot) return false;
   3027     if (object->address() <= slot && slot < (object->address() + size)) {
   3028       return true;
   3029     }
   3030   }
   3031   return false;
   3032 }
   3033 
   3034 
   3035 bool MarkCompactCollector::IsSlotInLiveObject(Address slot) {
   3036   HeapObject* object = NULL;
   3037   // The target object is black but we don't know if the source slot is black.
   3038   // The source object could have died and the slot could be part of a free
   3039   // space. Find out based on mark bits if the slot is part of a live object.
   3040   if (!IsSlotInBlackObject(Page::FromAddress(slot), slot, &object)) {
   3041     return false;
   3042   }
   3043 
   3044   DCHECK(object != NULL);
   3045   int offset = static_cast<int>(slot - object->address());
   3046   return object->IsValidSlot(offset);
   3047 }
   3048 
   3049 
   3050 void MarkCompactCollector::VerifyIsSlotInLiveObject(Address slot,
   3051                                                     HeapObject* object) {
   3052   // The target object has to be black.
   3053   CHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
   3054 
   3055   // The target object is black but we don't know if the source slot is black.
   3056   // The source object could have died and the slot could be part of a free
   3057   // space. Use the mark bit iterator to find out about liveness of the slot.
   3058   CHECK(IsSlotInBlackObjectSlow(Page::FromAddress(slot), slot));
   3059 }
   3060 
   3061 
   3062 void MarkCompactCollector::EvacuateNewSpacePrologue() {
   3063   // There are soft limits in the allocation code, designed trigger a mark
   3064   // sweep collection by failing allocations.  But since we are already in
   3065   // a mark-sweep allocation, there is no sense in trying to trigger one.
   3066   AlwaysAllocateScope scope(isolate());
   3067 
   3068   NewSpace* new_space = heap()->new_space();
   3069 
   3070   // Store allocation range before flipping semispaces.
   3071   Address from_bottom = new_space->bottom();
   3072   Address from_top = new_space->top();
   3073 
   3074   // Flip the semispaces.  After flipping, to space is empty, from space has
   3075   // live objects.
   3076   new_space->Flip();
   3077   new_space->ResetAllocationInfo();
   3078 
   3079   newspace_evacuation_candidates_.Clear();
   3080   NewSpacePageIterator it(from_bottom, from_top);
   3081   while (it.has_next()) {
   3082     newspace_evacuation_candidates_.Add(it.next());
   3083   }
   3084 }
   3085 
   3086 
   3087 HashMap* MarkCompactCollector::EvacuateNewSpaceInParallel() {
   3088   HashMap* local_pretenuring_feedback = new HashMap(
   3089       HashMap::PointersMatch, kInitialLocalPretenuringFeedbackCapacity);
   3090   EvacuateNewSpaceVisitor new_space_visitor(heap(), &migration_slots_buffer_,
   3091                                             local_pretenuring_feedback);
   3092   // First pass: traverse all objects in inactive semispace, remove marks,
   3093   // migrate live objects and write forwarding addresses.  This stage puts
   3094   // new entries in the store buffer and may cause some pages to be marked
   3095   // scan-on-scavenge.
   3096   for (int i = 0; i < newspace_evacuation_candidates_.length(); i++) {
   3097     NewSpacePage* p =
   3098         reinterpret_cast<NewSpacePage*>(newspace_evacuation_candidates_[i]);
   3099     bool ok = VisitLiveObjects(p, &new_space_visitor, kClearMarkbits);
   3100     USE(ok);
   3101     DCHECK(ok);
   3102   }
   3103   heap_->IncrementPromotedObjectsSize(
   3104       static_cast<int>(new_space_visitor.promoted_size()));
   3105   heap_->IncrementSemiSpaceCopiedObjectSize(
   3106       static_cast<int>(new_space_visitor.semispace_copied_size()));
   3107   heap_->IncrementYoungSurvivorsCounter(
   3108       static_cast<int>(new_space_visitor.promoted_size()) +
   3109       static_cast<int>(new_space_visitor.semispace_copied_size()));
   3110   return local_pretenuring_feedback;
   3111 }
   3112 
   3113 
   3114 void MarkCompactCollector::AddEvacuationSlotsBufferSynchronized(
   3115     SlotsBuffer* evacuation_slots_buffer) {
   3116   base::LockGuard<base::Mutex> lock_guard(&evacuation_slots_buffers_mutex_);
   3117   evacuation_slots_buffers_.Add(evacuation_slots_buffer);
   3118 }
   3119 
   3120 
   3121 int MarkCompactCollector::NumberOfParallelCompactionTasks() {
   3122   if (!FLAG_parallel_compaction) return 1;
   3123   // Compute the number of needed tasks based on a target compaction time, the
   3124   // profiled compaction speed and marked live memory.
   3125   //
   3126   // The number of parallel compaction tasks is limited by:
   3127   // - #evacuation pages
   3128   // - (#cores - 1)
   3129   // - a hard limit
   3130   const double kTargetCompactionTimeInMs = 1;
   3131   const int kMaxCompactionTasks = 8;
   3132 
   3133   intptr_t compaction_speed =
   3134       heap()->tracer()->CompactionSpeedInBytesPerMillisecond();
   3135   if (compaction_speed == 0) return 1;
   3136 
   3137   intptr_t live_bytes = 0;
   3138   for (Page* page : evacuation_candidates_) {
   3139     live_bytes += page->LiveBytes();
   3140   }
   3141 
   3142   const int cores = Max(1, base::SysInfo::NumberOfProcessors() - 1);
   3143   const int tasks =
   3144       1 + static_cast<int>(static_cast<double>(live_bytes) / compaction_speed /
   3145                            kTargetCompactionTimeInMs);
   3146   const int tasks_capped_pages = Min(evacuation_candidates_.length(), tasks);
   3147   const int tasks_capped_cores = Min(cores, tasks_capped_pages);
   3148   const int tasks_capped_hard = Min(kMaxCompactionTasks, tasks_capped_cores);
   3149   return tasks_capped_hard;
   3150 }
   3151 
   3152 
   3153 void MarkCompactCollector::EvacuatePagesInParallel() {
   3154   const int num_pages = evacuation_candidates_.length();
   3155   if (num_pages == 0) return;
   3156 
   3157   // Used for trace summary.
   3158   intptr_t live_bytes = 0;
   3159   intptr_t compaction_speed = 0;
   3160   if (FLAG_trace_fragmentation) {
   3161     for (Page* page : evacuation_candidates_) {
   3162       live_bytes += page->LiveBytes();
   3163     }
   3164     compaction_speed = heap()->tracer()->CompactionSpeedInBytesPerMillisecond();
   3165   }
   3166   const int num_tasks = NumberOfParallelCompactionTasks();
   3167 
   3168   // Set up compaction spaces.
   3169   CompactionSpaceCollection** compaction_spaces_for_tasks =
   3170       new CompactionSpaceCollection*[num_tasks];
   3171   for (int i = 0; i < num_tasks; i++) {
   3172     compaction_spaces_for_tasks[i] = new CompactionSpaceCollection(heap());
   3173   }
   3174 
   3175   heap()->old_space()->DivideUponCompactionSpaces(compaction_spaces_for_tasks,
   3176                                                   num_tasks);
   3177   heap()->code_space()->DivideUponCompactionSpaces(compaction_spaces_for_tasks,
   3178                                                    num_tasks);
   3179 
   3180   uint32_t* task_ids = new uint32_t[num_tasks - 1];
   3181   // Kick off parallel tasks.
   3182   StartParallelCompaction(compaction_spaces_for_tasks, task_ids, num_tasks);
   3183   // Wait for unfinished and not-yet-started tasks.
   3184   WaitUntilCompactionCompleted(task_ids, num_tasks - 1);
   3185   delete[] task_ids;
   3186 
   3187   double compaction_duration = 0.0;
   3188   intptr_t compacted_memory = 0;
   3189   // Merge back memory (compacted and unused) from compaction spaces.
   3190   for (int i = 0; i < num_tasks; i++) {
   3191     heap()->old_space()->MergeCompactionSpace(
   3192         compaction_spaces_for_tasks[i]->Get(OLD_SPACE));
   3193     heap()->code_space()->MergeCompactionSpace(
   3194         compaction_spaces_for_tasks[i]->Get(CODE_SPACE));
   3195     compacted_memory += compaction_spaces_for_tasks[i]->bytes_compacted();
   3196     compaction_duration += compaction_spaces_for_tasks[i]->duration();
   3197     delete compaction_spaces_for_tasks[i];
   3198   }
   3199   delete[] compaction_spaces_for_tasks;
   3200   heap()->tracer()->AddCompactionEvent(compaction_duration, compacted_memory);
   3201 
   3202   // Finalize sequentially.
   3203   int abandoned_pages = 0;
   3204   for (int i = 0; i < num_pages; i++) {
   3205     Page* p = evacuation_candidates_[i];
   3206     switch (p->parallel_compaction_state().Value()) {
   3207       case MemoryChunk::ParallelCompactingState::kCompactingAborted:
   3208         // We have partially compacted the page, i.e., some objects may have
   3209         // moved, others are still in place.
   3210         // We need to:
   3211         // - Leave the evacuation candidate flag for later processing of
   3212         //   slots buffer entries.
   3213         // - Leave the slots buffer there for processing of entries added by
   3214         //   the write barrier.
   3215         // - Rescan the page as slot recording in the migration buffer only
   3216         //   happens upon moving (which we potentially didn't do).
   3217         // - Leave the page in the list of pages of a space since we could not
   3218         //   fully evacuate it.
   3219         // - Mark them for rescanning for store buffer entries as we otherwise
   3220         //   might have stale store buffer entries that become "valid" again
   3221         //   after reusing the memory. Note that all existing store buffer
   3222         //   entries of such pages are filtered before rescanning.
   3223         DCHECK(p->IsEvacuationCandidate());
   3224         p->SetFlag(Page::COMPACTION_WAS_ABORTED);
   3225         p->set_scan_on_scavenge(true);
   3226         abandoned_pages++;
   3227         break;
   3228       case MemoryChunk::kCompactingFinalize:
   3229         DCHECK(p->IsEvacuationCandidate());
   3230         p->SetWasSwept();
   3231         p->Unlink();
   3232         break;
   3233       case MemoryChunk::kCompactingDone:
   3234         DCHECK(p->IsFlagSet(Page::POPULAR_PAGE));
   3235         DCHECK(p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
   3236         break;
   3237       default:
   3238         // We should not observe kCompactingInProgress, or kCompactingDone.
   3239         UNREACHABLE();
   3240     }
   3241     p->parallel_compaction_state().SetValue(MemoryChunk::kCompactingDone);
   3242   }
   3243   if (FLAG_trace_fragmentation) {
   3244     PrintIsolate(isolate(),
   3245                  "%8.0f ms: compaction: parallel=%d pages=%d aborted=%d "
   3246                  "tasks=%d cores=%d live_bytes=%" V8_PTR_PREFIX
   3247                  "d compaction_speed=%" V8_PTR_PREFIX "d\n",
   3248                  isolate()->time_millis_since_init(), FLAG_parallel_compaction,
   3249                  num_pages, abandoned_pages, num_tasks,
   3250                  base::SysInfo::NumberOfProcessors(), live_bytes,
   3251                  compaction_speed);
   3252   }
   3253 }
   3254 
   3255 
   3256 void MarkCompactCollector::StartParallelCompaction(
   3257     CompactionSpaceCollection** compaction_spaces, uint32_t* task_ids,
   3258     int len) {
   3259   compaction_in_progress_ = true;
   3260   for (int i = 1; i < len; i++) {
   3261     CompactionTask* task = new CompactionTask(heap(), compaction_spaces[i]);
   3262     task_ids[i - 1] = task->id();
   3263     V8::GetCurrentPlatform()->CallOnBackgroundThread(
   3264         task, v8::Platform::kShortRunningTask);
   3265   }
   3266 
   3267   // Contribute in main thread.
   3268   EvacuatePages(compaction_spaces[0], &migration_slots_buffer_);
   3269 }
   3270 
   3271 
   3272 void MarkCompactCollector::WaitUntilCompactionCompleted(uint32_t* task_ids,
   3273                                                         int len) {
   3274   // Try to cancel compaction tasks that have not been run (as they might be
   3275   // stuck in a worker queue). Tasks that cannot be canceled, have either
   3276   // already completed or are still running, hence we need to wait for their
   3277   // semaphore signal.
   3278   for (int i = 0; i < len; i++) {
   3279     if (!heap()->isolate()->cancelable_task_manager()->TryAbort(task_ids[i])) {
   3280       pending_compaction_tasks_semaphore_.Wait();
   3281     }
   3282   }
   3283   compaction_in_progress_ = false;
   3284 }
   3285 
   3286 
   3287 void MarkCompactCollector::EvacuatePages(
   3288     CompactionSpaceCollection* compaction_spaces,
   3289     SlotsBuffer** evacuation_slots_buffer) {
   3290   EvacuateOldSpaceVisitor visitor(heap(), compaction_spaces,
   3291                                   evacuation_slots_buffer);
   3292   for (int i = 0; i < evacuation_candidates_.length(); i++) {
   3293     Page* p = evacuation_candidates_[i];
   3294     DCHECK(p->IsEvacuationCandidate() ||
   3295            p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
   3296     DCHECK(static_cast<int>(p->parallel_sweeping_state().Value()) ==
   3297            MemoryChunk::kSweepingDone);
   3298     if (p->parallel_compaction_state().TrySetValue(
   3299             MemoryChunk::kCompactingDone, MemoryChunk::kCompactingInProgress)) {
   3300       if (p->IsEvacuationCandidate()) {
   3301         DCHECK_EQ(p->parallel_compaction_state().Value(),
   3302                   MemoryChunk::kCompactingInProgress);
   3303         double start = heap()->MonotonicallyIncreasingTimeInMs();
   3304         intptr_t live_bytes = p->LiveBytes();
   3305         AlwaysAllocateScope always_allocate(isolate());
   3306         if (VisitLiveObjects(p, &visitor, kClearMarkbits)) {
   3307           p->ResetLiveBytes();
   3308           p->parallel_compaction_state().SetValue(
   3309               MemoryChunk::kCompactingFinalize);
   3310           compaction_spaces->ReportCompactionProgress(
   3311               heap()->MonotonicallyIncreasingTimeInMs() - start, live_bytes);
   3312         } else {
   3313           p->parallel_compaction_state().SetValue(
   3314               MemoryChunk::kCompactingAborted);
   3315         }
   3316       } else {
   3317         // There could be popular pages in the list of evacuation candidates
   3318         // which we do compact.
   3319         p->parallel_compaction_state().SetValue(MemoryChunk::kCompactingDone);
   3320       }
   3321     }
   3322   }
   3323 }
   3324 
   3325 
   3326 class EvacuationWeakObjectRetainer : public WeakObjectRetainer {
   3327  public:
   3328   virtual Object* RetainAs(Object* object) {
   3329     if (object->IsHeapObject()) {
   3330       HeapObject* heap_object = HeapObject::cast(object);
   3331       MapWord map_word = heap_object->map_word();
   3332       if (map_word.IsForwardingAddress()) {
   3333         return map_word.ToForwardingAddress();
   3334       }
   3335     }
   3336     return object;
   3337   }
   3338 };
   3339 
   3340 
   3341 enum SweepingMode { SWEEP_ONLY, SWEEP_AND_VISIT_LIVE_OBJECTS };
   3342 
   3343 
   3344 enum SkipListRebuildingMode { REBUILD_SKIP_LIST, IGNORE_SKIP_LIST };
   3345 
   3346 
   3347 enum FreeSpaceTreatmentMode { IGNORE_FREE_SPACE, ZAP_FREE_SPACE };
   3348 
   3349 
   3350 template <MarkCompactCollector::SweepingParallelism mode>
   3351 static intptr_t Free(PagedSpace* space, FreeList* free_list, Address start,
   3352                      int size) {
   3353   if (mode == MarkCompactCollector::SWEEP_ON_MAIN_THREAD) {
   3354     DCHECK(free_list == NULL);
   3355     return space->Free(start, size);
   3356   } else {
   3357     return size - free_list->Free(start, size);
   3358   }
   3359 }
   3360 
   3361 
   3362 // Sweeps a page. After sweeping the page can be iterated.
   3363 // Slots in live objects pointing into evacuation candidates are updated
   3364 // if requested.
   3365 // Returns the size of the biggest continuous freed memory chunk in bytes.
   3366 template <SweepingMode sweeping_mode,
   3367           MarkCompactCollector::SweepingParallelism parallelism,
   3368           SkipListRebuildingMode skip_list_mode,
   3369           FreeSpaceTreatmentMode free_space_mode>
   3370 static int Sweep(PagedSpace* space, FreeList* free_list, Page* p,
   3371                  ObjectVisitor* v) {
   3372   DCHECK(!p->IsEvacuationCandidate() && !p->WasSwept());
   3373   DCHECK_EQ(skip_list_mode == REBUILD_SKIP_LIST,
   3374             space->identity() == CODE_SPACE);
   3375   DCHECK((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST));
   3376   DCHECK(parallelism == MarkCompactCollector::SWEEP_ON_MAIN_THREAD ||
   3377          sweeping_mode == SWEEP_ONLY);
   3378 
   3379   Address free_start = p->area_start();
   3380   DCHECK(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0);
   3381 
   3382   // If we use the skip list for code space pages, we have to lock the skip
   3383   // list because it could be accessed concurrently by the runtime or the
   3384   // deoptimizer.
   3385   SkipList* skip_list = p->skip_list();
   3386   if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) {
   3387     skip_list->Clear();
   3388   }
   3389 
   3390   intptr_t freed_bytes = 0;
   3391   intptr_t max_freed_bytes = 0;
   3392   int curr_region = -1;
   3393 
   3394   LiveObjectIterator<kBlackObjects> it(p);
   3395   HeapObject* object = NULL;
   3396   while ((object = it.Next()) != NULL) {
   3397     DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
   3398     Address free_end = object->address();
   3399     if (free_end != free_start) {
   3400       int size = static_cast<int>(free_end - free_start);
   3401       if (free_space_mode == ZAP_FREE_SPACE) {
   3402         memset(free_start, 0xcc, size);
   3403       }
   3404       freed_bytes = Free<parallelism>(space, free_list, free_start, size);
   3405       max_freed_bytes = Max(freed_bytes, max_freed_bytes);
   3406     }
   3407     Map* map = object->synchronized_map();
   3408     int size = object->SizeFromMap(map);
   3409     if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) {
   3410       object->IterateBody(map->instance_type(), size, v);
   3411     }
   3412     if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) {
   3413       int new_region_start = SkipList::RegionNumber(free_end);
   3414       int new_region_end =
   3415           SkipList::RegionNumber(free_end + size - kPointerSize);
   3416       if (new_region_start != curr_region || new_region_end != curr_region) {
   3417         skip_list->AddObject(free_end, size);
   3418         curr_region = new_region_end;
   3419       }
   3420     }
   3421     free_start = free_end + size;
   3422   }
   3423 
   3424   // Clear the mark bits of that page and reset live bytes count.
   3425   Bitmap::Clear(p);
   3426 
   3427   if (free_start != p->area_end()) {
   3428     int size = static_cast<int>(p->area_end() - free_start);
   3429     if (free_space_mode == ZAP_FREE_SPACE) {
   3430       memset(free_start, 0xcc, size);
   3431     }
   3432     freed_bytes = Free<parallelism>(space, free_list, free_start, size);
   3433     max_freed_bytes = Max(freed_bytes, max_freed_bytes);
   3434   }
   3435 
   3436   if (parallelism == MarkCompactCollector::SWEEP_IN_PARALLEL) {
   3437     // When concurrent sweeping is active, the page will be marked after
   3438     // sweeping by the main thread.
   3439     p->parallel_sweeping_state().SetValue(MemoryChunk::kSweepingFinalize);
   3440   } else {
   3441     p->SetWasSwept();
   3442   }
   3443   return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes));
   3444 }
   3445 
   3446 
   3447 void MarkCompactCollector::InvalidateCode(Code* code) {
   3448   if (heap_->incremental_marking()->IsCompacting() &&
   3449       !ShouldSkipEvacuationSlotRecording(code)) {
   3450     DCHECK(compacting_);
   3451 
   3452     // If the object is white than no slots were recorded on it yet.
   3453     MarkBit mark_bit = Marking::MarkBitFrom(code);
   3454     if (Marking::IsWhite(mark_bit)) return;
   3455 
   3456     // Ignore all slots that might have been recorded in the body of the
   3457     // deoptimized code object. Assumption: no slots will be recorded for
   3458     // this object after invalidating it.
   3459     RemoveObjectSlots(code->instruction_start(),
   3460                       code->address() + code->Size());
   3461   }
   3462 }
   3463 
   3464 
   3465 // Return true if the given code is deoptimized or will be deoptimized.
   3466 bool MarkCompactCollector::WillBeDeoptimized(Code* code) {
   3467   return code->is_optimized_code() && code->marked_for_deoptimization();
   3468 }
   3469 
   3470 
   3471 void MarkCompactCollector::RemoveObjectSlots(Address start_slot,
   3472                                              Address end_slot) {
   3473   // Remove entries by replacing them with an old-space slot containing a smi
   3474   // that is located in an unmovable page.
   3475   int npages = evacuation_candidates_.length();
   3476   for (int i = 0; i < npages; i++) {
   3477     Page* p = evacuation_candidates_[i];
   3478     DCHECK(p->IsEvacuationCandidate() ||
   3479            p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
   3480     if (p->IsEvacuationCandidate()) {
   3481       SlotsBuffer::RemoveObjectSlots(heap_, p->slots_buffer(), start_slot,
   3482                                      end_slot);
   3483     }
   3484   }
   3485 }
   3486 
   3487 
   3488 #ifdef VERIFY_HEAP
   3489 static void VerifyAllBlackObjects(MemoryChunk* page) {
   3490   LiveObjectIterator<kAllLiveObjects> it(page);
   3491   HeapObject* object = NULL;
   3492   while ((object = it.Next()) != NULL) {
   3493     CHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
   3494   }
   3495 }
   3496 #endif  // VERIFY_HEAP
   3497 
   3498 
   3499 bool MarkCompactCollector::VisitLiveObjects(MemoryChunk* page,
   3500                                             HeapObjectVisitor* visitor,
   3501                                             IterationMode mode) {
   3502 #ifdef VERIFY_HEAP
   3503   VerifyAllBlackObjects(page);
   3504 #endif  // VERIFY_HEAP
   3505 
   3506   LiveObjectIterator<kBlackObjects> it(page);
   3507   HeapObject* object = nullptr;
   3508   while ((object = it.Next()) != nullptr) {
   3509     DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
   3510     if (!visitor->Visit(object)) {
   3511       if (mode == kClearMarkbits) {
   3512         page->markbits()->ClearRange(
   3513             page->AddressToMarkbitIndex(page->area_start()),
   3514             page->AddressToMarkbitIndex(object->address()));
   3515         RecomputeLiveBytes(page);
   3516       }
   3517       return false;
   3518     }
   3519   }
   3520   if (mode == kClearMarkbits) {
   3521     Bitmap::Clear(page);
   3522   }
   3523   return true;
   3524 }
   3525 
   3526 
   3527 void MarkCompactCollector::RecomputeLiveBytes(MemoryChunk* page) {
   3528   LiveObjectIterator<kBlackObjects> it(page);
   3529   int new_live_size = 0;
   3530   HeapObject* object = nullptr;
   3531   while ((object = it.Next()) != nullptr) {
   3532     new_live_size += object->Size();
   3533   }
   3534   page->SetLiveBytes(new_live_size);
   3535 }
   3536 
   3537 
   3538 void MarkCompactCollector::VisitLiveObjectsBody(Page* page,
   3539                                                 ObjectVisitor* visitor) {
   3540 #ifdef VERIFY_HEAP
   3541   VerifyAllBlackObjects(page);
   3542 #endif  // VERIFY_HEAP
   3543 
   3544   LiveObjectIterator<kBlackObjects> it(page);
   3545   HeapObject* object = NULL;
   3546   while ((object = it.Next()) != NULL) {
   3547     DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
   3548     Map* map = object->synchronized_map();
   3549     int size = object->SizeFromMap(map);
   3550     object->IterateBody(map->instance_type(), size, visitor);
   3551   }
   3552 }
   3553 
   3554 
   3555 void MarkCompactCollector::SweepAbortedPages() {
   3556   // Second pass on aborted pages.
   3557   for (int i = 0; i < evacuation_candidates_.length(); i++) {
   3558     Page* p = evacuation_candidates_[i];
   3559     if (p->IsFlagSet(Page::COMPACTION_WAS_ABORTED)) {
   3560       p->ClearFlag(MemoryChunk::COMPACTION_WAS_ABORTED);
   3561       PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3562       switch (space->identity()) {
   3563         case OLD_SPACE:
   3564           Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
   3565                 IGNORE_FREE_SPACE>(space, nullptr, p, nullptr);
   3566           break;
   3567         case CODE_SPACE:
   3568           if (FLAG_zap_code_space) {
   3569             Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
   3570                   ZAP_FREE_SPACE>(space, NULL, p, nullptr);
   3571           } else {
   3572             Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
   3573                   IGNORE_FREE_SPACE>(space, NULL, p, nullptr);
   3574           }
   3575           break;
   3576         default:
   3577           UNREACHABLE();
   3578           break;
   3579       }
   3580     }
   3581   }
   3582 }
   3583 
   3584 
   3585 void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
   3586   GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_EVACUATE);
   3587   Heap::RelocationLock relocation_lock(heap());
   3588 
   3589   HashMap* local_pretenuring_feedback = nullptr;
   3590   {
   3591     GCTracer::Scope gc_scope(heap()->tracer(),
   3592                              GCTracer::Scope::MC_EVACUATE_NEW_SPACE);
   3593     EvacuationScope evacuation_scope(this);
   3594     EvacuateNewSpacePrologue();
   3595     local_pretenuring_feedback = EvacuateNewSpaceInParallel();
   3596     heap_->new_space()->set_age_mark(heap_->new_space()->top());
   3597   }
   3598 
   3599   {
   3600     GCTracer::Scope gc_scope(heap()->tracer(),
   3601                              GCTracer::Scope::MC_EVACUATE_CANDIDATES);
   3602     EvacuationScope evacuation_scope(this);
   3603     EvacuatePagesInParallel();
   3604   }
   3605 
   3606   {
   3607     heap_->MergeAllocationSitePretenuringFeedback(*local_pretenuring_feedback);
   3608     delete local_pretenuring_feedback;
   3609   }
   3610 
   3611   UpdatePointersAfterEvacuation();
   3612 
   3613   {
   3614     GCTracer::Scope gc_scope(heap()->tracer(),
   3615                              GCTracer::Scope::MC_EVACUATE_CLEAN_UP);
   3616     // After updating all pointers, we can finally sweep the aborted pages,
   3617     // effectively overriding any forward pointers.
   3618     SweepAbortedPages();
   3619 
   3620     // EvacuateNewSpaceAndCandidates iterates over new space objects and for
   3621     // ArrayBuffers either re-registers them as live or promotes them. This is
   3622     // needed to properly free them.
   3623     heap()->array_buffer_tracker()->FreeDead(false);
   3624 
   3625     // Deallocate evacuated candidate pages.
   3626     ReleaseEvacuationCandidates();
   3627   }
   3628 
   3629 #ifdef VERIFY_HEAP
   3630   if (FLAG_verify_heap && !sweeping_in_progress_) {
   3631     VerifyEvacuation(heap());
   3632   }
   3633 #endif
   3634 }
   3635 
   3636 
   3637 void MarkCompactCollector::UpdatePointersAfterEvacuation() {
   3638   GCTracer::Scope gc_scope(heap()->tracer(),
   3639                            GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS);
   3640   {
   3641     GCTracer::Scope gc_scope(
   3642         heap()->tracer(),
   3643         GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS_TO_EVACUATED);
   3644     UpdateSlotsRecordedIn(migration_slots_buffer_);
   3645     if (FLAG_trace_fragmentation_verbose) {
   3646       PrintF("  migration slots buffer: %d\n",
   3647              SlotsBuffer::SizeOfChain(migration_slots_buffer_));
   3648     }
   3649     slots_buffer_allocator_->DeallocateChain(&migration_slots_buffer_);
   3650     DCHECK(migration_slots_buffer_ == NULL);
   3651 
   3652     // TODO(hpayer): Process the slots buffers in parallel. This has to be done
   3653     // after evacuation of all pages finishes.
   3654     int buffers = evacuation_slots_buffers_.length();
   3655     for (int i = 0; i < buffers; i++) {
   3656       SlotsBuffer* buffer = evacuation_slots_buffers_[i];
   3657       UpdateSlotsRecordedIn(buffer);
   3658       slots_buffer_allocator_->DeallocateChain(&buffer);
   3659     }
   3660     evacuation_slots_buffers_.Rewind(0);
   3661   }
   3662 
   3663   // Second pass: find pointers to new space and update them.
   3664   PointersUpdatingVisitor updating_visitor(heap());
   3665 
   3666   {
   3667     GCTracer::Scope gc_scope(
   3668         heap()->tracer(), GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS_TO_NEW);
   3669     // Update pointers in to space.
   3670     SemiSpaceIterator to_it(heap()->new_space());
   3671     for (HeapObject* object = to_it.Next(); object != NULL;
   3672          object = to_it.Next()) {
   3673       Map* map = object->map();
   3674       object->IterateBody(map->instance_type(), object->SizeFromMap(map),
   3675                           &updating_visitor);
   3676     }
   3677     // Update roots.
   3678     heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE);
   3679 
   3680     StoreBufferRebuildScope scope(heap_, heap_->store_buffer(),
   3681                                   &Heap::ScavengeStoreBufferCallback);
   3682     heap_->store_buffer()->IteratePointersToNewSpace(&UpdatePointer);
   3683   }
   3684 
   3685   int npages = evacuation_candidates_.length();
   3686   {
   3687     GCTracer::Scope gc_scope(
   3688         heap()->tracer(),
   3689         GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS_BETWEEN_EVACUATED);
   3690     for (int i = 0; i < npages; i++) {
   3691       Page* p = evacuation_candidates_[i];
   3692       DCHECK(p->IsEvacuationCandidate() ||
   3693              p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
   3694 
   3695       if (p->IsEvacuationCandidate()) {
   3696         UpdateSlotsRecordedIn(p->slots_buffer());
   3697         if (FLAG_trace_fragmentation_verbose) {
   3698           PrintF("  page %p slots buffer: %d\n", reinterpret_cast<void*>(p),
   3699                  SlotsBuffer::SizeOfChain(p->slots_buffer()));
   3700         }
   3701         slots_buffer_allocator_->DeallocateChain(p->slots_buffer_address());
   3702 
   3703         // Important: skip list should be cleared only after roots were updated
   3704         // because root iteration traverses the stack and might have to find
   3705         // code objects from non-updated pc pointing into evacuation candidate.
   3706         SkipList* list = p->skip_list();
   3707         if (list != NULL) list->Clear();
   3708 
   3709         // First pass on aborted pages, fixing up all live objects.
   3710         if (p->IsFlagSet(Page::COMPACTION_WAS_ABORTED)) {
   3711           p->ClearEvacuationCandidate();
   3712           VisitLiveObjectsBody(p, &updating_visitor);
   3713         }
   3714       }
   3715 
   3716       if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
   3717         if (FLAG_gc_verbose) {
   3718           PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n",
   3719                  reinterpret_cast<intptr_t>(p));
   3720         }
   3721         PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3722         p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
   3723 
   3724         switch (space->identity()) {
   3725           case OLD_SPACE:
   3726             Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
   3727                   IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
   3728                                                        &updating_visitor);
   3729             break;
   3730           case CODE_SPACE:
   3731             if (FLAG_zap_code_space) {
   3732               Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
   3733                     REBUILD_SKIP_LIST, ZAP_FREE_SPACE>(space, NULL, p,
   3734                                                        &updating_visitor);
   3735             } else {
   3736               Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
   3737                     REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
   3738                                                           &updating_visitor);
   3739             }
   3740             break;
   3741           default:
   3742             UNREACHABLE();
   3743             break;
   3744         }
   3745       }
   3746     }
   3747   }
   3748 
   3749   {
   3750     GCTracer::Scope gc_scope(heap()->tracer(),
   3751                              GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS_WEAK);
   3752     heap_->string_table()->Iterate(&updating_visitor);
   3753 
   3754     // Update pointers from external string table.
   3755     heap_->UpdateReferencesInExternalStringTable(
   3756         &UpdateReferenceInExternalStringTableEntry);
   3757 
   3758     EvacuationWeakObjectRetainer evacuation_object_retainer;
   3759     heap()->ProcessAllWeakReferences(&evacuation_object_retainer);
   3760   }
   3761 }
   3762 
   3763 
   3764 void MarkCompactCollector::MoveEvacuationCandidatesToEndOfPagesList() {
   3765   int npages = evacuation_candidates_.length();
   3766   for (int i = 0; i < npages; i++) {
   3767     Page* p = evacuation_candidates_[i];
   3768     if (!p->IsEvacuationCandidate()) continue;
   3769     p->Unlink();
   3770     PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3771     p->InsertAfter(space->LastPage());
   3772   }
   3773 }
   3774 
   3775 
   3776 void MarkCompactCollector::ReleaseEvacuationCandidates() {
   3777   int npages = evacuation_candidates_.length();
   3778   for (int i = 0; i < npages; i++) {
   3779     Page* p = evacuation_candidates_[i];
   3780     if (!p->IsEvacuationCandidate()) continue;
   3781     PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3782     space->Free(p->area_start(), p->area_size());
   3783     p->set_scan_on_scavenge(false);
   3784     p->ResetLiveBytes();
   3785     CHECK(p->WasSwept());
   3786     space->ReleasePage(p);
   3787   }
   3788   evacuation_candidates_.Rewind(0);
   3789   compacting_ = false;
   3790   heap()->FilterStoreBufferEntriesOnAboutToBeFreedPages();
   3791   heap()->FreeQueuedChunks();
   3792 }
   3793 
   3794 
   3795 int MarkCompactCollector::SweepInParallel(PagedSpace* space,
   3796                                           int required_freed_bytes) {
   3797   int max_freed = 0;
   3798   int max_freed_overall = 0;
   3799   PageIterator it(space);
   3800   while (it.has_next()) {
   3801     Page* p = it.next();
   3802     max_freed = SweepInParallel(p, space);
   3803     DCHECK(max_freed >= 0);
   3804     if (required_freed_bytes > 0 && max_freed >= required_freed_bytes) {
   3805       return max_freed;
   3806     }
   3807     max_freed_overall = Max(max_freed, max_freed_overall);
   3808     if (p == space->end_of_unswept_pages()) break;
   3809   }
   3810   return max_freed_overall;
   3811 }
   3812 
   3813 
   3814 int MarkCompactCollector::SweepInParallel(Page* page, PagedSpace* space) {
   3815   int max_freed = 0;
   3816   if (page->TryLock()) {
   3817     // If this page was already swept in the meantime, we can return here.
   3818     if (page->parallel_sweeping_state().Value() !=
   3819         MemoryChunk::kSweepingPending) {
   3820       page->mutex()->Unlock();
   3821       return 0;
   3822     }
   3823     page->parallel_sweeping_state().SetValue(MemoryChunk::kSweepingInProgress);
   3824     FreeList* free_list;
   3825     FreeList private_free_list(space);
   3826     if (space->identity() == OLD_SPACE) {
   3827       free_list = free_list_old_space_.get();
   3828       max_freed =
   3829           Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, IGNORE_SKIP_LIST,
   3830                 IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL);
   3831     } else if (space->identity() == CODE_SPACE) {
   3832       free_list = free_list_code_space_.get();
   3833       max_freed =
   3834           Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, REBUILD_SKIP_LIST,
   3835                 IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL);
   3836     } else {
   3837       free_list = free_list_map_space_.get();
   3838       max_freed =
   3839           Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, IGNORE_SKIP_LIST,
   3840                 IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL);
   3841     }
   3842     free_list->Concatenate(&private_free_list);
   3843     page->mutex()->Unlock();
   3844   }
   3845   return max_freed;
   3846 }
   3847 
   3848 
   3849 void MarkCompactCollector::StartSweepSpace(PagedSpace* space) {
   3850   space->ClearStats();
   3851 
   3852   // We defensively initialize end_of_unswept_pages_ here with the first page
   3853   // of the pages list.
   3854   space->set_end_of_unswept_pages(space->FirstPage());
   3855 
   3856   PageIterator it(space);
   3857 
   3858   int pages_swept = 0;
   3859   bool unused_page_present = false;
   3860   bool parallel_sweeping_active = false;
   3861 
   3862   while (it.has_next()) {
   3863     Page* p = it.next();
   3864     DCHECK(p->parallel_sweeping_state().Value() == MemoryChunk::kSweepingDone);
   3865 
   3866     // Clear sweeping flags indicating that marking bits are still intact.
   3867     p->ClearWasSwept();
   3868 
   3869     if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION) ||
   3870         p->IsEvacuationCandidate()) {
   3871       // Will be processed in EvacuateNewSpaceAndCandidates.
   3872       DCHECK(evacuation_candidates_.length() > 0);
   3873       continue;
   3874     }
   3875 
   3876     if (p->IsFlagSet(Page::NEVER_ALLOCATE_ON_PAGE)) {
   3877       // We need to sweep the page to get it into an iterable state again. Note
   3878       // that this adds unusable memory into the free list that is later on
   3879       // (in the free list) dropped again. Since we only use the flag for
   3880       // testing this is fine.
   3881       Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
   3882             IGNORE_FREE_SPACE>(space, nullptr, p, nullptr);
   3883       continue;
   3884     }
   3885 
   3886     // One unused page is kept, all further are released before sweeping them.
   3887     if (p->LiveBytes() == 0) {
   3888       if (unused_page_present) {
   3889         if (FLAG_gc_verbose) {
   3890           PrintIsolate(isolate(), "sweeping: released page: %p", p);
   3891         }
   3892         space->ReleasePage(p);
   3893         continue;
   3894       }
   3895       unused_page_present = true;
   3896     }
   3897 
   3898     if (!parallel_sweeping_active) {
   3899       if (FLAG_gc_verbose) {
   3900         PrintIsolate(isolate(), "sweeping: %p", p);
   3901       }
   3902       if (space->identity() == CODE_SPACE) {
   3903         if (FLAG_zap_code_space) {
   3904           Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
   3905                 ZAP_FREE_SPACE>(space, NULL, p, NULL);
   3906         } else {
   3907           Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
   3908                 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
   3909         }
   3910       } else {
   3911         Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
   3912               IGNORE_FREE_SPACE>(space, NULL, p, NULL);
   3913       }
   3914       pages_swept++;
   3915       parallel_sweeping_active = true;
   3916     } else {
   3917       if (FLAG_gc_verbose) {
   3918         PrintIsolate(isolate(), "sweeping: initialized for parallel: %p", p);
   3919       }
   3920       p->parallel_sweeping_state().SetValue(MemoryChunk::kSweepingPending);
   3921       int to_sweep = p->area_size() - p->LiveBytes();
   3922       space->accounting_stats_.ShrinkSpace(to_sweep);
   3923     }
   3924     space->set_end_of_unswept_pages(p);
   3925   }
   3926 
   3927   if (FLAG_gc_verbose) {
   3928     PrintIsolate(isolate(), "sweeping: space=%s pages_swept=%d",
   3929                  AllocationSpaceName(space->identity()), pages_swept);
   3930   }
   3931 }
   3932 
   3933 
   3934 void MarkCompactCollector::SweepSpaces() {
   3935   GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP);
   3936   double start_time = 0.0;
   3937   if (FLAG_print_cumulative_gc_stat) {
   3938     start_time = heap_->MonotonicallyIncreasingTimeInMs();
   3939   }
   3940 
   3941 #ifdef DEBUG
   3942   state_ = SWEEP_SPACES;
   3943 #endif
   3944 
   3945   MoveEvacuationCandidatesToEndOfPagesList();
   3946 
   3947   {
   3948     sweeping_in_progress_ = true;
   3949     {
   3950       GCTracer::Scope sweep_scope(heap()->tracer(),
   3951                                   GCTracer::Scope::MC_SWEEP_OLD);
   3952       StartSweepSpace(heap()->old_space());
   3953     }
   3954     {
   3955       GCTracer::Scope sweep_scope(heap()->tracer(),
   3956                                   GCTracer::Scope::MC_SWEEP_CODE);
   3957       StartSweepSpace(heap()->code_space());
   3958     }
   3959     {
   3960       GCTracer::Scope sweep_scope(heap()->tracer(),
   3961                                   GCTracer::Scope::MC_SWEEP_MAP);
   3962       StartSweepSpace(heap()->map_space());
   3963     }
   3964     if (FLAG_concurrent_sweeping) {
   3965       StartSweeperThreads();
   3966     }
   3967   }
   3968 
   3969   // Deallocate unmarked large objects.
   3970   heap_->lo_space()->FreeUnmarkedObjects();
   3971 
   3972   // Give pages that are queued to be freed back to the OS. Invalid store
   3973   // buffer entries are already filter out. We can just release the memory.
   3974   heap()->FreeQueuedChunks();
   3975 
   3976   if (FLAG_print_cumulative_gc_stat) {
   3977     heap_->tracer()->AddSweepingTime(heap_->MonotonicallyIncreasingTimeInMs() -
   3978                                      start_time);
   3979   }
   3980 }
   3981 
   3982 
   3983 void MarkCompactCollector::ParallelSweepSpaceComplete(PagedSpace* space) {
   3984   PageIterator it(space);
   3985   while (it.has_next()) {
   3986     Page* p = it.next();
   3987     if (p->parallel_sweeping_state().Value() ==
   3988         MemoryChunk::kSweepingFinalize) {
   3989       p->parallel_sweeping_state().SetValue(MemoryChunk::kSweepingDone);
   3990       p->SetWasSwept();
   3991     }
   3992     DCHECK(p->parallel_sweeping_state().Value() == MemoryChunk::kSweepingDone);
   3993   }
   3994 }
   3995 
   3996 
   3997 void MarkCompactCollector::ParallelSweepSpacesComplete() {
   3998   ParallelSweepSpaceComplete(heap()->old_space());
   3999   ParallelSweepSpaceComplete(heap()->code_space());
   4000   ParallelSweepSpaceComplete(heap()->map_space());
   4001 }
   4002 
   4003 
   4004 // TODO(1466) ReportDeleteIfNeeded is not called currently.
   4005 // Our profiling tools do not expect intersections between
   4006 // code objects. We should either reenable it or change our tools.
   4007 void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
   4008                                                 Isolate* isolate) {
   4009   if (obj->IsCode()) {
   4010     PROFILE(isolate, CodeDeleteEvent(obj->address()));
   4011   }
   4012 }
   4013 
   4014 
   4015 Isolate* MarkCompactCollector::isolate() const { return heap_->isolate(); }
   4016 
   4017 
   4018 void MarkCompactCollector::Initialize() {
   4019   MarkCompactMarkingVisitor::Initialize();
   4020   IncrementalMarking::Initialize();
   4021 }
   4022 
   4023 
   4024 void MarkCompactCollector::EvictPopularEvacuationCandidate(Page* page) {
   4025   if (FLAG_trace_fragmentation) {
   4026     PrintF("Page %p is too popular. Disabling evacuation.\n",
   4027            reinterpret_cast<void*>(page));
   4028   }
   4029 
   4030   isolate()->CountUsage(v8::Isolate::UseCounterFeature::kSlotsBufferOverflow);
   4031 
   4032   // TODO(gc) If all evacuation candidates are too popular we
   4033   // should stop slots recording entirely.
   4034   page->ClearEvacuationCandidate();
   4035 
   4036   DCHECK(!page->IsFlagSet(Page::POPULAR_PAGE));
   4037   page->SetFlag(Page::POPULAR_PAGE);
   4038 
   4039   // We were not collecting slots on this page that point
   4040   // to other evacuation candidates thus we have to
   4041   // rescan the page after evacuation to discover and update all
   4042   // pointers to evacuated objects.
   4043   page->SetFlag(Page::RESCAN_ON_EVACUATION);
   4044 }
   4045 
   4046 
   4047 void MarkCompactCollector::RecordCodeEntrySlot(HeapObject* object, Address slot,
   4048                                                Code* target) {
   4049   Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
   4050   if (target_page->IsEvacuationCandidate() &&
   4051       !ShouldSkipEvacuationSlotRecording(object)) {
   4052     if (!SlotsBuffer::AddTo(slots_buffer_allocator_,
   4053                             target_page->slots_buffer_address(),
   4054                             SlotsBuffer::CODE_ENTRY_SLOT, slot,
   4055                             SlotsBuffer::FAIL_ON_OVERFLOW)) {
   4056       EvictPopularEvacuationCandidate(target_page);
   4057     }
   4058   }
   4059 }
   4060 
   4061 
   4062 void MarkCompactCollector::RecordCodeTargetPatch(Address pc, Code* target) {
   4063   DCHECK(heap()->gc_state() == Heap::MARK_COMPACT);
   4064   if (is_compacting()) {
   4065     Code* host =
   4066         isolate()->inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(
   4067             pc);
   4068     MarkBit mark_bit = Marking::MarkBitFrom(host);
   4069     if (Marking::IsBlack(mark_bit)) {
   4070       RelocInfo rinfo(isolate(), pc, RelocInfo::CODE_TARGET, 0, host);
   4071       RecordRelocSlot(&rinfo, target);
   4072     }
   4073   }
   4074 }
   4075 
   4076 }  // namespace internal
   4077 }  // namespace v8
   4078