Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Utils/Local.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SetOperations.h"
     18 #include "llvm/ADT/SetVector.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/ConstantFolding.h"
     23 #include "llvm/Analysis/InstructionSimplify.h"
     24 #include "llvm/Analysis/TargetTransformInfo.h"
     25 #include "llvm/Analysis/ValueTracking.h"
     26 #include "llvm/IR/CFG.h"
     27 #include "llvm/IR/ConstantRange.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/IRBuilder.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/LLVMContext.h"
     36 #include "llvm/IR/MDBuilder.h"
     37 #include "llvm/IR/Metadata.h"
     38 #include "llvm/IR/Module.h"
     39 #include "llvm/IR/NoFolder.h"
     40 #include "llvm/IR/Operator.h"
     41 #include "llvm/IR/PatternMatch.h"
     42 #include "llvm/IR/Type.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     47 #include "llvm/Transforms/Utils/ValueMapper.h"
     48 #include <algorithm>
     49 #include <map>
     50 #include <set>
     51 using namespace llvm;
     52 using namespace PatternMatch;
     53 
     54 #define DEBUG_TYPE "simplifycfg"
     55 
     56 // Chosen as 2 so as to be cheap, but still to have enough power to fold
     57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
     58 // To catch this, we need to fold a compare and a select, hence '2' being the
     59 // minimum reasonable default.
     60 static cl::opt<unsigned>
     61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
     62    cl::desc("Control the amount of phi node folding to perform (default = 2)"));
     63 
     64 static cl::opt<bool>
     65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     66        cl::desc("Duplicate return instructions into unconditional branches"));
     67 
     68 static cl::opt<bool>
     69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
     70        cl::desc("Sink common instructions down to the end block"));
     71 
     72 static cl::opt<bool> HoistCondStores(
     73     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
     74     cl::desc("Hoist conditional stores if an unconditional store precedes"));
     75 
     76 static cl::opt<bool> MergeCondStores(
     77     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
     78     cl::desc("Hoist conditional stores even if an unconditional store does not "
     79              "precede - hoist multiple conditional stores into a single "
     80              "predicated store"));
     81 
     82 static cl::opt<bool> MergeCondStoresAggressively(
     83     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
     84     cl::desc("When merging conditional stores, do so even if the resultant "
     85              "basic blocks are unlikely to be if-converted as a result"));
     86 
     87 static cl::opt<bool> SpeculateOneExpensiveInst(
     88     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
     89     cl::desc("Allow exactly one expensive instruction to be speculatively "
     90              "executed"));
     91 
     92 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
     93 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
     94 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
     95 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
     96 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
     97 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
     98 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
     99 
    100 namespace {
    101   // The first field contains the value that the switch produces when a certain
    102   // case group is selected, and the second field is a vector containing the
    103   // cases composing the case group.
    104   typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
    105     SwitchCaseResultVectorTy;
    106   // The first field contains the phi node that generates a result of the switch
    107   // and the second field contains the value generated for a certain case in the
    108   // switch for that PHI.
    109   typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
    110 
    111   /// ValueEqualityComparisonCase - Represents a case of a switch.
    112   struct ValueEqualityComparisonCase {
    113     ConstantInt *Value;
    114     BasicBlock *Dest;
    115 
    116     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
    117       : Value(Value), Dest(Dest) {}
    118 
    119     bool operator<(ValueEqualityComparisonCase RHS) const {
    120       // Comparing pointers is ok as we only rely on the order for uniquing.
    121       return Value < RHS.Value;
    122     }
    123 
    124     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
    125   };
    126 
    127 class SimplifyCFGOpt {
    128   const TargetTransformInfo &TTI;
    129   const DataLayout &DL;
    130   unsigned BonusInstThreshold;
    131   AssumptionCache *AC;
    132   Value *isValueEqualityComparison(TerminatorInst *TI);
    133   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
    134                                std::vector<ValueEqualityComparisonCase> &Cases);
    135   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    136                                                      BasicBlock *Pred,
    137                                                      IRBuilder<> &Builder);
    138   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    139                                            IRBuilder<> &Builder);
    140 
    141   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
    142   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
    143   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
    144   bool SimplifyUnreachable(UnreachableInst *UI);
    145   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
    146   bool SimplifyIndirectBr(IndirectBrInst *IBI);
    147   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
    148   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
    149 
    150 public:
    151   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
    152                  unsigned BonusInstThreshold, AssumptionCache *AC)
    153       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
    154   bool run(BasicBlock *BB);
    155 };
    156 }
    157 
    158 /// Return true if it is safe to merge these two
    159 /// terminator instructions together.
    160 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
    161   if (SI1 == SI2) return false;  // Can't merge with self!
    162 
    163   // It is not safe to merge these two switch instructions if they have a common
    164   // successor, and if that successor has a PHI node, and if *that* PHI node has
    165   // conflicting incoming values from the two switch blocks.
    166   BasicBlock *SI1BB = SI1->getParent();
    167   BasicBlock *SI2BB = SI2->getParent();
    168   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    169 
    170   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    171     if (SI1Succs.count(*I))
    172       for (BasicBlock::iterator BBI = (*I)->begin();
    173            isa<PHINode>(BBI); ++BBI) {
    174         PHINode *PN = cast<PHINode>(BBI);
    175         if (PN->getIncomingValueForBlock(SI1BB) !=
    176             PN->getIncomingValueForBlock(SI2BB))
    177           return false;
    178       }
    179 
    180   return true;
    181 }
    182 
    183 /// Return true if it is safe and profitable to merge these two terminator
    184 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
    185 /// store all PHI nodes in common successors.
    186 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
    187                                           BranchInst *SI2,
    188                                           Instruction *Cond,
    189                                           SmallVectorImpl<PHINode*> &PhiNodes) {
    190   if (SI1 == SI2) return false;  // Can't merge with self!
    191   assert(SI1->isUnconditional() && SI2->isConditional());
    192 
    193   // We fold the unconditional branch if we can easily update all PHI nodes in
    194   // common successors:
    195   // 1> We have a constant incoming value for the conditional branch;
    196   // 2> We have "Cond" as the incoming value for the unconditional branch;
    197   // 3> SI2->getCondition() and Cond have same operands.
    198   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
    199   if (!Ci2) return false;
    200   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
    201         Cond->getOperand(1) == Ci2->getOperand(1)) &&
    202       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
    203         Cond->getOperand(1) == Ci2->getOperand(0)))
    204     return false;
    205 
    206   BasicBlock *SI1BB = SI1->getParent();
    207   BasicBlock *SI2BB = SI2->getParent();
    208   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    209   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    210     if (SI1Succs.count(*I))
    211       for (BasicBlock::iterator BBI = (*I)->begin();
    212            isa<PHINode>(BBI); ++BBI) {
    213         PHINode *PN = cast<PHINode>(BBI);
    214         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
    215             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
    216           return false;
    217         PhiNodes.push_back(PN);
    218       }
    219   return true;
    220 }
    221 
    222 /// Update PHI nodes in Succ to indicate that there will now be entries in it
    223 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
    224 /// will be the same as those coming in from ExistPred, an existing predecessor
    225 /// of Succ.
    226 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    227                                   BasicBlock *ExistPred) {
    228   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
    229 
    230   PHINode *PN;
    231   for (BasicBlock::iterator I = Succ->begin();
    232        (PN = dyn_cast<PHINode>(I)); ++I)
    233     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    234 }
    235 
    236 /// Compute an abstract "cost" of speculating the given instruction,
    237 /// which is assumed to be safe to speculate. TCC_Free means cheap,
    238 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
    239 /// expensive.
    240 static unsigned ComputeSpeculationCost(const User *I,
    241                                        const TargetTransformInfo &TTI) {
    242   assert(isSafeToSpeculativelyExecute(I) &&
    243          "Instruction is not safe to speculatively execute!");
    244   return TTI.getUserCost(I);
    245 }
    246 
    247 /// If we have a merge point of an "if condition" as accepted above,
    248 /// return true if the specified value dominates the block.  We
    249 /// don't handle the true generality of domination here, just a special case
    250 /// which works well enough for us.
    251 ///
    252 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    253 /// see if V (which must be an instruction) and its recursive operands
    254 /// that do not dominate BB have a combined cost lower than CostRemaining and
    255 /// are non-trapping.  If both are true, the instruction is inserted into the
    256 /// set and true is returned.
    257 ///
    258 /// The cost for most non-trapping instructions is defined as 1 except for
    259 /// Select whose cost is 2.
    260 ///
    261 /// After this function returns, CostRemaining is decreased by the cost of
    262 /// V plus its non-dominating operands.  If that cost is greater than
    263 /// CostRemaining, false is returned and CostRemaining is undefined.
    264 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    265                                 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
    266                                 unsigned &CostRemaining,
    267                                 const TargetTransformInfo &TTI,
    268                                 unsigned Depth = 0) {
    269   Instruction *I = dyn_cast<Instruction>(V);
    270   if (!I) {
    271     // Non-instructions all dominate instructions, but not all constantexprs
    272     // can be executed unconditionally.
    273     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    274       if (C->canTrap())
    275         return false;
    276     return true;
    277   }
    278   BasicBlock *PBB = I->getParent();
    279 
    280   // We don't want to allow weird loops that might have the "if condition" in
    281   // the bottom of this block.
    282   if (PBB == BB) return false;
    283 
    284   // If this instruction is defined in a block that contains an unconditional
    285   // branch to BB, then it must be in the 'conditional' part of the "if
    286   // statement".  If not, it definitely dominates the region.
    287   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    288   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
    289     return true;
    290 
    291   // If we aren't allowing aggressive promotion anymore, then don't consider
    292   // instructions in the 'if region'.
    293   if (!AggressiveInsts) return false;
    294 
    295   // If we have seen this instruction before, don't count it again.
    296   if (AggressiveInsts->count(I)) return true;
    297 
    298   // Okay, it looks like the instruction IS in the "condition".  Check to
    299   // see if it's a cheap instruction to unconditionally compute, and if it
    300   // only uses stuff defined outside of the condition.  If so, hoist it out.
    301   if (!isSafeToSpeculativelyExecute(I))
    302     return false;
    303 
    304   unsigned Cost = ComputeSpeculationCost(I, TTI);
    305 
    306   // Allow exactly one instruction to be speculated regardless of its cost
    307   // (as long as it is safe to do so).
    308   // This is intended to flatten the CFG even if the instruction is a division
    309   // or other expensive operation. The speculation of an expensive instruction
    310   // is expected to be undone in CodeGenPrepare if the speculation has not
    311   // enabled further IR optimizations.
    312   if (Cost > CostRemaining &&
    313       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
    314     return false;
    315 
    316   // Avoid unsigned wrap.
    317   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
    318 
    319   // Okay, we can only really hoist these out if their operands do
    320   // not take us over the cost threshold.
    321   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    322     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
    323                              Depth + 1))
    324       return false;
    325   // Okay, it's safe to do this!  Remember this instruction.
    326   AggressiveInsts->insert(I);
    327   return true;
    328 }
    329 
    330 /// Extract ConstantInt from value, looking through IntToPtr
    331 /// and PointerNullValue. Return NULL if value is not a constant int.
    332 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
    333   // Normal constant int.
    334   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    335   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
    336     return CI;
    337 
    338   // This is some kind of pointer constant. Turn it into a pointer-sized
    339   // ConstantInt if possible.
    340   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
    341 
    342   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    343   if (isa<ConstantPointerNull>(V))
    344     return ConstantInt::get(PtrTy, 0);
    345 
    346   // IntToPtr const int.
    347   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    348     if (CE->getOpcode() == Instruction::IntToPtr)
    349       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    350         // The constant is very likely to have the right type already.
    351         if (CI->getType() == PtrTy)
    352           return CI;
    353         else
    354           return cast<ConstantInt>
    355             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    356       }
    357   return nullptr;
    358 }
    359 
    360 namespace {
    361 
    362 /// Given a chain of or (||) or and (&&) comparison of a value against a
    363 /// constant, this will try to recover the information required for a switch
    364 /// structure.
    365 /// It will depth-first traverse the chain of comparison, seeking for patterns
    366 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
    367 /// representing the different cases for the switch.
    368 /// Note that if the chain is composed of '||' it will build the set of elements
    369 /// that matches the comparisons (i.e. any of this value validate the chain)
    370 /// while for a chain of '&&' it will build the set elements that make the test
    371 /// fail.
    372 struct ConstantComparesGatherer {
    373   const DataLayout &DL;
    374   Value *CompValue; /// Value found for the switch comparison
    375   Value *Extra;     /// Extra clause to be checked before the switch
    376   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
    377   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
    378 
    379   /// Construct and compute the result for the comparison instruction Cond
    380   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
    381       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
    382     gather(Cond);
    383   }
    384 
    385   /// Prevent copy
    386   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
    387   ConstantComparesGatherer &
    388   operator=(const ConstantComparesGatherer &) = delete;
    389 
    390 private:
    391 
    392   /// Try to set the current value used for the comparison, it succeeds only if
    393   /// it wasn't set before or if the new value is the same as the old one
    394   bool setValueOnce(Value *NewVal) {
    395     if(CompValue && CompValue != NewVal) return false;
    396     CompValue = NewVal;
    397     return (CompValue != nullptr);
    398   }
    399 
    400   /// Try to match Instruction "I" as a comparison against a constant and
    401   /// populates the array Vals with the set of values that match (or do not
    402   /// match depending on isEQ).
    403   /// Return false on failure. On success, the Value the comparison matched
    404   /// against is placed in CompValue.
    405   /// If CompValue is already set, the function is expected to fail if a match
    406   /// is found but the value compared to is different.
    407   bool matchInstruction(Instruction *I, bool isEQ) {
    408     // If this is an icmp against a constant, handle this as one of the cases.
    409     ICmpInst *ICI;
    410     ConstantInt *C;
    411     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
    412              (C = GetConstantInt(I->getOperand(1), DL)))) {
    413       return false;
    414     }
    415 
    416     Value *RHSVal;
    417     ConstantInt *RHSC;
    418 
    419     // Pattern match a special case
    420     // (x & ~2^x) == y --> x == y || x == y|2^x
    421     // This undoes a transformation done by instcombine to fuse 2 compares.
    422     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
    423       if (match(ICI->getOperand(0),
    424                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
    425         APInt Not = ~RHSC->getValue();
    426         if (Not.isPowerOf2()) {
    427           // If we already have a value for the switch, it has to match!
    428           if(!setValueOnce(RHSVal))
    429             return false;
    430 
    431           Vals.push_back(C);
    432           Vals.push_back(ConstantInt::get(C->getContext(),
    433                                           C->getValue() | Not));
    434           UsedICmps++;
    435           return true;
    436         }
    437       }
    438 
    439       // If we already have a value for the switch, it has to match!
    440       if(!setValueOnce(ICI->getOperand(0)))
    441         return false;
    442 
    443       UsedICmps++;
    444       Vals.push_back(C);
    445       return ICI->getOperand(0);
    446     }
    447 
    448     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
    449     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
    450         ICI->getPredicate(), C->getValue());
    451 
    452     // Shift the range if the compare is fed by an add. This is the range
    453     // compare idiom as emitted by instcombine.
    454     Value *CandidateVal = I->getOperand(0);
    455     if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
    456       Span = Span.subtract(RHSC->getValue());
    457       CandidateVal = RHSVal;
    458     }
    459 
    460     // If this is an and/!= check, then we are looking to build the set of
    461     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
    462     // x != 0 && x != 1.
    463     if (!isEQ)
    464       Span = Span.inverse();
    465 
    466     // If there are a ton of values, we don't want to make a ginormous switch.
    467     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
    468       return false;
    469     }
    470 
    471     // If we already have a value for the switch, it has to match!
    472     if(!setValueOnce(CandidateVal))
    473       return false;
    474 
    475     // Add all values from the range to the set
    476     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    477       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
    478 
    479     UsedICmps++;
    480     return true;
    481 
    482   }
    483 
    484   /// Given a potentially 'or'd or 'and'd together collection of icmp
    485   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
    486   /// the value being compared, and stick the list constants into the Vals
    487   /// vector.
    488   /// One "Extra" case is allowed to differ from the other.
    489   void gather(Value *V) {
    490     Instruction *I = dyn_cast<Instruction>(V);
    491     bool isEQ = (I->getOpcode() == Instruction::Or);
    492 
    493     // Keep a stack (SmallVector for efficiency) for depth-first traversal
    494     SmallVector<Value *, 8> DFT;
    495 
    496     // Initialize
    497     DFT.push_back(V);
    498 
    499     while(!DFT.empty()) {
    500       V = DFT.pop_back_val();
    501 
    502       if (Instruction *I = dyn_cast<Instruction>(V)) {
    503         // If it is a || (or && depending on isEQ), process the operands.
    504         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
    505           DFT.push_back(I->getOperand(1));
    506           DFT.push_back(I->getOperand(0));
    507           continue;
    508         }
    509 
    510         // Try to match the current instruction
    511         if (matchInstruction(I, isEQ))
    512           // Match succeed, continue the loop
    513           continue;
    514       }
    515 
    516       // One element of the sequence of || (or &&) could not be match as a
    517       // comparison against the same value as the others.
    518       // We allow only one "Extra" case to be checked before the switch
    519       if (!Extra) {
    520         Extra = V;
    521         continue;
    522       }
    523       // Failed to parse a proper sequence, abort now
    524       CompValue = nullptr;
    525       break;
    526     }
    527   }
    528 };
    529 
    530 }
    531 
    532 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    533   Instruction *Cond = nullptr;
    534   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    535     Cond = dyn_cast<Instruction>(SI->getCondition());
    536   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    537     if (BI->isConditional())
    538       Cond = dyn_cast<Instruction>(BI->getCondition());
    539   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    540     Cond = dyn_cast<Instruction>(IBI->getAddress());
    541   }
    542 
    543   TI->eraseFromParent();
    544   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
    545 }
    546 
    547 /// Return true if the specified terminator checks
    548 /// to see if a value is equal to constant integer value.
    549 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    550   Value *CV = nullptr;
    551   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    552     // Do not permit merging of large switch instructions into their
    553     // predecessors unless there is only one predecessor.
    554     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
    555                                              pred_end(SI->getParent())) <= 128)
    556       CV = SI->getCondition();
    557   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    558     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    559       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
    560         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
    561           CV = ICI->getOperand(0);
    562       }
    563 
    564   // Unwrap any lossless ptrtoint cast.
    565   if (CV) {
    566     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
    567       Value *Ptr = PTII->getPointerOperand();
    568       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
    569         CV = Ptr;
    570     }
    571   }
    572   return CV;
    573 }
    574 
    575 /// Given a value comparison instruction,
    576 /// decode all of the 'cases' that it represents and return the 'default' block.
    577 BasicBlock *SimplifyCFGOpt::
    578 GetValueEqualityComparisonCases(TerminatorInst *TI,
    579                                 std::vector<ValueEqualityComparisonCase>
    580                                                                        &Cases) {
    581   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    582     Cases.reserve(SI->getNumCases());
    583     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    584       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
    585                                                   i.getCaseSuccessor()));
    586     return SI->getDefaultDest();
    587   }
    588 
    589   BranchInst *BI = cast<BranchInst>(TI);
    590   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    591   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
    592   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
    593                                                              DL),
    594                                               Succ));
    595   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    596 }
    597 
    598 
    599 /// Given a vector of bb/value pairs, remove any entries
    600 /// in the list that match the specified block.
    601 static void EliminateBlockCases(BasicBlock *BB,
    602                               std::vector<ValueEqualityComparisonCase> &Cases) {
    603   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
    604 }
    605 
    606 /// Return true if there are any keys in C1 that exist in C2 as well.
    607 static bool
    608 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
    609               std::vector<ValueEqualityComparisonCase > &C2) {
    610   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
    611 
    612   // Make V1 be smaller than V2.
    613   if (V1->size() > V2->size())
    614     std::swap(V1, V2);
    615 
    616   if (V1->size() == 0) return false;
    617   if (V1->size() == 1) {
    618     // Just scan V2.
    619     ConstantInt *TheVal = (*V1)[0].Value;
    620     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    621       if (TheVal == (*V2)[i].Value)
    622         return true;
    623   }
    624 
    625   // Otherwise, just sort both lists and compare element by element.
    626   array_pod_sort(V1->begin(), V1->end());
    627   array_pod_sort(V2->begin(), V2->end());
    628   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    629   while (i1 != e1 && i2 != e2) {
    630     if ((*V1)[i1].Value == (*V2)[i2].Value)
    631       return true;
    632     if ((*V1)[i1].Value < (*V2)[i2].Value)
    633       ++i1;
    634     else
    635       ++i2;
    636   }
    637   return false;
    638 }
    639 
    640 /// If TI is known to be a terminator instruction and its block is known to
    641 /// only have a single predecessor block, check to see if that predecessor is
    642 /// also a value comparison with the same value, and if that comparison
    643 /// determines the outcome of this comparison. If so, simplify TI. This does a
    644 /// very limited form of jump threading.
    645 bool SimplifyCFGOpt::
    646 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    647                                               BasicBlock *Pred,
    648                                               IRBuilder<> &Builder) {
    649   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    650   if (!PredVal) return false;  // Not a value comparison in predecessor.
    651 
    652   Value *ThisVal = isValueEqualityComparison(TI);
    653   assert(ThisVal && "This isn't a value comparison!!");
    654   if (ThisVal != PredVal) return false;  // Different predicates.
    655 
    656   // TODO: Preserve branch weight metadata, similarly to how
    657   // FoldValueComparisonIntoPredecessors preserves it.
    658 
    659   // Find out information about when control will move from Pred to TI's block.
    660   std::vector<ValueEqualityComparisonCase> PredCases;
    661   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
    662                                                         PredCases);
    663   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
    664 
    665   // Find information about how control leaves this block.
    666   std::vector<ValueEqualityComparisonCase> ThisCases;
    667   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    668   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
    669 
    670   // If TI's block is the default block from Pred's comparison, potentially
    671   // simplify TI based on this knowledge.
    672   if (PredDef == TI->getParent()) {
    673     // If we are here, we know that the value is none of those cases listed in
    674     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    675     // can simplify TI.
    676     if (!ValuesOverlap(PredCases, ThisCases))
    677       return false;
    678 
    679     if (isa<BranchInst>(TI)) {
    680       // Okay, one of the successors of this condbr is dead.  Convert it to a
    681       // uncond br.
    682       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    683       // Insert the new branch.
    684       Instruction *NI = Builder.CreateBr(ThisDef);
    685       (void) NI;
    686 
    687       // Remove PHI node entries for the dead edge.
    688       ThisCases[0].Dest->removePredecessor(TI->getParent());
    689 
    690       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    691            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    692 
    693       EraseTerminatorInstAndDCECond(TI);
    694       return true;
    695     }
    696 
    697     SwitchInst *SI = cast<SwitchInst>(TI);
    698     // Okay, TI has cases that are statically dead, prune them away.
    699     SmallPtrSet<Constant*, 16> DeadCases;
    700     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    701       DeadCases.insert(PredCases[i].Value);
    702 
    703     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    704                  << "Through successor TI: " << *TI);
    705 
    706     // Collect branch weights into a vector.
    707     SmallVector<uint32_t, 8> Weights;
    708     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    709     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
    710     if (HasWeight)
    711       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    712            ++MD_i) {
    713         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
    714         Weights.push_back(CI->getValue().getZExtValue());
    715       }
    716     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
    717       --i;
    718       if (DeadCases.count(i.getCaseValue())) {
    719         if (HasWeight) {
    720           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
    721           Weights.pop_back();
    722         }
    723         i.getCaseSuccessor()->removePredecessor(TI->getParent());
    724         SI->removeCase(i);
    725       }
    726     }
    727     if (HasWeight && Weights.size() >= 2)
    728       SI->setMetadata(LLVMContext::MD_prof,
    729                       MDBuilder(SI->getParent()->getContext()).
    730                       createBranchWeights(Weights));
    731 
    732     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    733     return true;
    734   }
    735 
    736   // Otherwise, TI's block must correspond to some matched value.  Find out
    737   // which value (or set of values) this is.
    738   ConstantInt *TIV = nullptr;
    739   BasicBlock *TIBB = TI->getParent();
    740   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    741     if (PredCases[i].Dest == TIBB) {
    742       if (TIV)
    743         return false;  // Cannot handle multiple values coming to this block.
    744       TIV = PredCases[i].Value;
    745     }
    746   assert(TIV && "No edge from pred to succ?");
    747 
    748   // Okay, we found the one constant that our value can be if we get into TI's
    749   // BB.  Find out which successor will unconditionally be branched to.
    750   BasicBlock *TheRealDest = nullptr;
    751   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    752     if (ThisCases[i].Value == TIV) {
    753       TheRealDest = ThisCases[i].Dest;
    754       break;
    755     }
    756 
    757   // If not handled by any explicit cases, it is handled by the default case.
    758   if (!TheRealDest) TheRealDest = ThisDef;
    759 
    760   // Remove PHI node entries for dead edges.
    761   BasicBlock *CheckEdge = TheRealDest;
    762   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
    763     if (*SI != CheckEdge)
    764       (*SI)->removePredecessor(TIBB);
    765     else
    766       CheckEdge = nullptr;
    767 
    768   // Insert the new branch.
    769   Instruction *NI = Builder.CreateBr(TheRealDest);
    770   (void) NI;
    771 
    772   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    773             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    774 
    775   EraseTerminatorInstAndDCECond(TI);
    776   return true;
    777 }
    778 
    779 namespace {
    780   /// This class implements a stable ordering of constant
    781   /// integers that does not depend on their address.  This is important for
    782   /// applications that sort ConstantInt's to ensure uniqueness.
    783   struct ConstantIntOrdering {
    784     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    785       return LHS->getValue().ult(RHS->getValue());
    786     }
    787   };
    788 }
    789 
    790 static int ConstantIntSortPredicate(ConstantInt *const *P1,
    791                                     ConstantInt *const *P2) {
    792   const ConstantInt *LHS = *P1;
    793   const ConstantInt *RHS = *P2;
    794   if (LHS->getValue().ult(RHS->getValue()))
    795     return 1;
    796   if (LHS->getValue() == RHS->getValue())
    797     return 0;
    798   return -1;
    799 }
    800 
    801 static inline bool HasBranchWeights(const Instruction* I) {
    802   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
    803   if (ProfMD && ProfMD->getOperand(0))
    804     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
    805       return MDS->getString().equals("branch_weights");
    806 
    807   return false;
    808 }
    809 
    810 /// Get Weights of a given TerminatorInst, the default weight is at the front
    811 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
    812 /// metadata.
    813 static void GetBranchWeights(TerminatorInst *TI,
    814                              SmallVectorImpl<uint64_t> &Weights) {
    815   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
    816   assert(MD);
    817   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    818     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
    819     Weights.push_back(CI->getValue().getZExtValue());
    820   }
    821 
    822   // If TI is a conditional eq, the default case is the false case,
    823   // and the corresponding branch-weight data is at index 2. We swap the
    824   // default weight to be the first entry.
    825   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
    826     assert(Weights.size() == 2);
    827     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    828     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    829       std::swap(Weights.front(), Weights.back());
    830   }
    831 }
    832 
    833 /// Keep halving the weights until all can fit in uint32_t.
    834 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
    835   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
    836   if (Max > UINT_MAX) {
    837     unsigned Offset = 32 - countLeadingZeros(Max);
    838     for (uint64_t &I : Weights)
    839       I >>= Offset;
    840   }
    841 }
    842 
    843 /// The specified terminator is a value equality comparison instruction
    844 /// (either a switch or a branch on "X == c").
    845 /// See if any of the predecessors of the terminator block are value comparisons
    846 /// on the same value.  If so, and if safe to do so, fold them together.
    847 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    848                                                          IRBuilder<> &Builder) {
    849   BasicBlock *BB = TI->getParent();
    850   Value *CV = isValueEqualityComparison(TI);  // CondVal
    851   assert(CV && "Not a comparison?");
    852   bool Changed = false;
    853 
    854   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    855   while (!Preds.empty()) {
    856     BasicBlock *Pred = Preds.pop_back_val();
    857 
    858     // See if the predecessor is a comparison with the same value.
    859     TerminatorInst *PTI = Pred->getTerminator();
    860     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
    861 
    862     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    863       // Figure out which 'cases' to copy from SI to PSI.
    864       std::vector<ValueEqualityComparisonCase> BBCases;
    865       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    866 
    867       std::vector<ValueEqualityComparisonCase> PredCases;
    868       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    869 
    870       // Based on whether the default edge from PTI goes to BB or not, fill in
    871       // PredCases and PredDefault with the new switch cases we would like to
    872       // build.
    873       SmallVector<BasicBlock*, 8> NewSuccessors;
    874 
    875       // Update the branch weight metadata along the way
    876       SmallVector<uint64_t, 8> Weights;
    877       bool PredHasWeights = HasBranchWeights(PTI);
    878       bool SuccHasWeights = HasBranchWeights(TI);
    879 
    880       if (PredHasWeights) {
    881         GetBranchWeights(PTI, Weights);
    882         // branch-weight metadata is inconsistent here.
    883         if (Weights.size() != 1 + PredCases.size())
    884           PredHasWeights = SuccHasWeights = false;
    885       } else if (SuccHasWeights)
    886         // If there are no predecessor weights but there are successor weights,
    887         // populate Weights with 1, which will later be scaled to the sum of
    888         // successor's weights
    889         Weights.assign(1 + PredCases.size(), 1);
    890 
    891       SmallVector<uint64_t, 8> SuccWeights;
    892       if (SuccHasWeights) {
    893         GetBranchWeights(TI, SuccWeights);
    894         // branch-weight metadata is inconsistent here.
    895         if (SuccWeights.size() != 1 + BBCases.size())
    896           PredHasWeights = SuccHasWeights = false;
    897       } else if (PredHasWeights)
    898         SuccWeights.assign(1 + BBCases.size(), 1);
    899 
    900       if (PredDefault == BB) {
    901         // If this is the default destination from PTI, only the edges in TI
    902         // that don't occur in PTI, or that branch to BB will be activated.
    903         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    904         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    905           if (PredCases[i].Dest != BB)
    906             PTIHandled.insert(PredCases[i].Value);
    907           else {
    908             // The default destination is BB, we don't need explicit targets.
    909             std::swap(PredCases[i], PredCases.back());
    910 
    911             if (PredHasWeights || SuccHasWeights) {
    912               // Increase weight for the default case.
    913               Weights[0] += Weights[i+1];
    914               std::swap(Weights[i+1], Weights.back());
    915               Weights.pop_back();
    916             }
    917 
    918             PredCases.pop_back();
    919             --i; --e;
    920           }
    921 
    922         // Reconstruct the new switch statement we will be building.
    923         if (PredDefault != BBDefault) {
    924           PredDefault->removePredecessor(Pred);
    925           PredDefault = BBDefault;
    926           NewSuccessors.push_back(BBDefault);
    927         }
    928 
    929         unsigned CasesFromPred = Weights.size();
    930         uint64_t ValidTotalSuccWeight = 0;
    931         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    932           if (!PTIHandled.count(BBCases[i].Value) &&
    933               BBCases[i].Dest != BBDefault) {
    934             PredCases.push_back(BBCases[i]);
    935             NewSuccessors.push_back(BBCases[i].Dest);
    936             if (SuccHasWeights || PredHasWeights) {
    937               // The default weight is at index 0, so weight for the ith case
    938               // should be at index i+1. Scale the cases from successor by
    939               // PredDefaultWeight (Weights[0]).
    940               Weights.push_back(Weights[0] * SuccWeights[i+1]);
    941               ValidTotalSuccWeight += SuccWeights[i+1];
    942             }
    943           }
    944 
    945         if (SuccHasWeights || PredHasWeights) {
    946           ValidTotalSuccWeight += SuccWeights[0];
    947           // Scale the cases from predecessor by ValidTotalSuccWeight.
    948           for (unsigned i = 1; i < CasesFromPred; ++i)
    949             Weights[i] *= ValidTotalSuccWeight;
    950           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
    951           Weights[0] *= SuccWeights[0];
    952         }
    953       } else {
    954         // If this is not the default destination from PSI, only the edges
    955         // in SI that occur in PSI with a destination of BB will be
    956         // activated.
    957         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    958         std::map<ConstantInt*, uint64_t> WeightsForHandled;
    959         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    960           if (PredCases[i].Dest == BB) {
    961             PTIHandled.insert(PredCases[i].Value);
    962 
    963             if (PredHasWeights || SuccHasWeights) {
    964               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
    965               std::swap(Weights[i+1], Weights.back());
    966               Weights.pop_back();
    967             }
    968 
    969             std::swap(PredCases[i], PredCases.back());
    970             PredCases.pop_back();
    971             --i; --e;
    972           }
    973 
    974         // Okay, now we know which constants were sent to BB from the
    975         // predecessor.  Figure out where they will all go now.
    976         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    977           if (PTIHandled.count(BBCases[i].Value)) {
    978             // If this is one we are capable of getting...
    979             if (PredHasWeights || SuccHasWeights)
    980               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
    981             PredCases.push_back(BBCases[i]);
    982             NewSuccessors.push_back(BBCases[i].Dest);
    983             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
    984           }
    985 
    986         // If there are any constants vectored to BB that TI doesn't handle,
    987         // they must go to the default destination of TI.
    988         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
    989                                     PTIHandled.begin(),
    990                E = PTIHandled.end(); I != E; ++I) {
    991           if (PredHasWeights || SuccHasWeights)
    992             Weights.push_back(WeightsForHandled[*I]);
    993           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
    994           NewSuccessors.push_back(BBDefault);
    995         }
    996       }
    997 
    998       // Okay, at this point, we know which new successor Pred will get.  Make
    999       // sure we update the number of entries in the PHI nodes for these
   1000       // successors.
   1001       for (BasicBlock *NewSuccessor : NewSuccessors)
   1002         AddPredecessorToBlock(NewSuccessor, Pred, BB);
   1003 
   1004       Builder.SetInsertPoint(PTI);
   1005       // Convert pointer to int before we switch.
   1006       if (CV->getType()->isPointerTy()) {
   1007         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
   1008                                     "magicptr");
   1009       }
   1010 
   1011       // Now that the successors are updated, create the new Switch instruction.
   1012       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
   1013                                                PredCases.size());
   1014       NewSI->setDebugLoc(PTI->getDebugLoc());
   1015       for (ValueEqualityComparisonCase &V : PredCases)
   1016         NewSI->addCase(V.Value, V.Dest);
   1017 
   1018       if (PredHasWeights || SuccHasWeights) {
   1019         // Halve the weights if any of them cannot fit in an uint32_t
   1020         FitWeights(Weights);
   1021 
   1022         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   1023 
   1024         NewSI->setMetadata(LLVMContext::MD_prof,
   1025                            MDBuilder(BB->getContext()).
   1026                            createBranchWeights(MDWeights));
   1027       }
   1028 
   1029       EraseTerminatorInstAndDCECond(PTI);
   1030 
   1031       // Okay, last check.  If BB is still a successor of PSI, then we must
   1032       // have an infinite loop case.  If so, add an infinitely looping block
   1033       // to handle the case to preserve the behavior of the code.
   1034       BasicBlock *InfLoopBlock = nullptr;
   1035       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
   1036         if (NewSI->getSuccessor(i) == BB) {
   1037           if (!InfLoopBlock) {
   1038             // Insert it at the end of the function, because it's either code,
   1039             // or it won't matter if it's hot. :)
   1040             InfLoopBlock = BasicBlock::Create(BB->getContext(),
   1041                                               "infloop", BB->getParent());
   1042             BranchInst::Create(InfLoopBlock, InfLoopBlock);
   1043           }
   1044           NewSI->setSuccessor(i, InfLoopBlock);
   1045         }
   1046 
   1047       Changed = true;
   1048     }
   1049   }
   1050   return Changed;
   1051 }
   1052 
   1053 // If we would need to insert a select that uses the value of this invoke
   1054 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
   1055 // can't hoist the invoke, as there is nowhere to put the select in this case.
   1056 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
   1057                                 Instruction *I1, Instruction *I2) {
   1058   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1059     PHINode *PN;
   1060     for (BasicBlock::iterator BBI = SI->begin();
   1061          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1062       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1063       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1064       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
   1065         return false;
   1066       }
   1067     }
   1068   }
   1069   return true;
   1070 }
   1071 
   1072 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
   1073 
   1074 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
   1075 /// in the two blocks up into the branch block. The caller of this function
   1076 /// guarantees that BI's block dominates BB1 and BB2.
   1077 static bool HoistThenElseCodeToIf(BranchInst *BI,
   1078                                   const TargetTransformInfo &TTI) {
   1079   // This does very trivial matching, with limited scanning, to find identical
   1080   // instructions in the two blocks.  In particular, we don't want to get into
   1081   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
   1082   // such, we currently just scan for obviously identical instructions in an
   1083   // identical order.
   1084   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
   1085   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
   1086 
   1087   BasicBlock::iterator BB1_Itr = BB1->begin();
   1088   BasicBlock::iterator BB2_Itr = BB2->begin();
   1089 
   1090   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
   1091   // Skip debug info if it is not identical.
   1092   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1093   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1094   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1095     while (isa<DbgInfoIntrinsic>(I1))
   1096       I1 = &*BB1_Itr++;
   1097     while (isa<DbgInfoIntrinsic>(I2))
   1098       I2 = &*BB2_Itr++;
   1099   }
   1100   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
   1101       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
   1102     return false;
   1103 
   1104   BasicBlock *BIParent = BI->getParent();
   1105 
   1106   bool Changed = false;
   1107   do {
   1108     // If we are hoisting the terminator instruction, don't move one (making a
   1109     // broken BB), instead clone it, and remove BI.
   1110     if (isa<TerminatorInst>(I1))
   1111       goto HoistTerminator;
   1112 
   1113     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
   1114       return Changed;
   1115 
   1116     // For a normal instruction, we just move one to right before the branch,
   1117     // then replace all uses of the other with the first.  Finally, we remove
   1118     // the now redundant second instruction.
   1119     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
   1120     if (!I2->use_empty())
   1121       I2->replaceAllUsesWith(I1);
   1122     I1->intersectOptionalDataWith(I2);
   1123     unsigned KnownIDs[] = {
   1124         LLVMContext::MD_tbaa,    LLVMContext::MD_range,
   1125         LLVMContext::MD_fpmath,  LLVMContext::MD_invariant_load,
   1126         LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group,
   1127         LLVMContext::MD_align,   LLVMContext::MD_dereferenceable,
   1128         LLVMContext::MD_dereferenceable_or_null};
   1129     combineMetadata(I1, I2, KnownIDs);
   1130     I2->eraseFromParent();
   1131     Changed = true;
   1132 
   1133     I1 = &*BB1_Itr++;
   1134     I2 = &*BB2_Itr++;
   1135     // Skip debug info if it is not identical.
   1136     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1137     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1138     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1139       while (isa<DbgInfoIntrinsic>(I1))
   1140         I1 = &*BB1_Itr++;
   1141       while (isa<DbgInfoIntrinsic>(I2))
   1142         I2 = &*BB2_Itr++;
   1143     }
   1144   } while (I1->isIdenticalToWhenDefined(I2));
   1145 
   1146   return true;
   1147 
   1148 HoistTerminator:
   1149   // It may not be possible to hoist an invoke.
   1150   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
   1151     return Changed;
   1152 
   1153   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1154     PHINode *PN;
   1155     for (BasicBlock::iterator BBI = SI->begin();
   1156          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1157       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1158       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1159       if (BB1V == BB2V)
   1160         continue;
   1161 
   1162       // Check for passingValueIsAlwaysUndefined here because we would rather
   1163       // eliminate undefined control flow then converting it to a select.
   1164       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
   1165           passingValueIsAlwaysUndefined(BB2V, PN))
   1166        return Changed;
   1167 
   1168       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
   1169         return Changed;
   1170       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
   1171         return Changed;
   1172     }
   1173   }
   1174 
   1175   // Okay, it is safe to hoist the terminator.
   1176   Instruction *NT = I1->clone();
   1177   BIParent->getInstList().insert(BI->getIterator(), NT);
   1178   if (!NT->getType()->isVoidTy()) {
   1179     I1->replaceAllUsesWith(NT);
   1180     I2->replaceAllUsesWith(NT);
   1181     NT->takeName(I1);
   1182   }
   1183 
   1184   IRBuilder<true, NoFolder> Builder(NT);
   1185   // Hoisting one of the terminators from our successor is a great thing.
   1186   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
   1187   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
   1188   // nodes, so we insert select instruction to compute the final result.
   1189   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
   1190   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1191     PHINode *PN;
   1192     for (BasicBlock::iterator BBI = SI->begin();
   1193          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1194       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1195       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1196       if (BB1V == BB2V) continue;
   1197 
   1198       // These values do not agree.  Insert a select instruction before NT
   1199       // that determines the right value.
   1200       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
   1201       if (!SI)
   1202         SI = cast<SelectInst>
   1203           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
   1204                                 BB1V->getName()+"."+BB2V->getName()));
   1205 
   1206       // Make the PHI node use the select for all incoming values for BB1/BB2
   1207       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1208         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
   1209           PN->setIncomingValue(i, SI);
   1210     }
   1211   }
   1212 
   1213   // Update any PHI nodes in our new successors.
   1214   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
   1215     AddPredecessorToBlock(*SI, BIParent, BB1);
   1216 
   1217   EraseTerminatorInstAndDCECond(BI);
   1218   return true;
   1219 }
   1220 
   1221 /// Given an unconditional branch that goes to BBEnd,
   1222 /// check whether BBEnd has only two predecessors and the other predecessor
   1223 /// ends with an unconditional branch. If it is true, sink any common code
   1224 /// in the two predecessors to BBEnd.
   1225 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
   1226   assert(BI1->isUnconditional());
   1227   BasicBlock *BB1 = BI1->getParent();
   1228   BasicBlock *BBEnd = BI1->getSuccessor(0);
   1229 
   1230   // Check that BBEnd has two predecessors and the other predecessor ends with
   1231   // an unconditional branch.
   1232   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
   1233   BasicBlock *Pred0 = *PI++;
   1234   if (PI == PE) // Only one predecessor.
   1235     return false;
   1236   BasicBlock *Pred1 = *PI++;
   1237   if (PI != PE) // More than two predecessors.
   1238     return false;
   1239   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
   1240   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
   1241   if (!BI2 || !BI2->isUnconditional())
   1242     return false;
   1243 
   1244   // Gather the PHI nodes in BBEnd.
   1245   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
   1246   Instruction *FirstNonPhiInBBEnd = nullptr;
   1247   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
   1248     if (PHINode *PN = dyn_cast<PHINode>(I)) {
   1249       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1250       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1251       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
   1252     } else {
   1253       FirstNonPhiInBBEnd = &*I;
   1254       break;
   1255     }
   1256   }
   1257   if (!FirstNonPhiInBBEnd)
   1258     return false;
   1259 
   1260   // This does very trivial matching, with limited scanning, to find identical
   1261   // instructions in the two blocks.  We scan backward for obviously identical
   1262   // instructions in an identical order.
   1263   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
   1264                                              RE1 = BB1->getInstList().rend(),
   1265                                              RI2 = BB2->getInstList().rbegin(),
   1266                                              RE2 = BB2->getInstList().rend();
   1267   // Skip debug info.
   1268   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1269   if (RI1 == RE1)
   1270     return false;
   1271   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1272   if (RI2 == RE2)
   1273     return false;
   1274   // Skip the unconditional branches.
   1275   ++RI1;
   1276   ++RI2;
   1277 
   1278   bool Changed = false;
   1279   while (RI1 != RE1 && RI2 != RE2) {
   1280     // Skip debug info.
   1281     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1282     if (RI1 == RE1)
   1283       return Changed;
   1284     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1285     if (RI2 == RE2)
   1286       return Changed;
   1287 
   1288     Instruction *I1 = &*RI1, *I2 = &*RI2;
   1289     auto InstPair = std::make_pair(I1, I2);
   1290     // I1 and I2 should have a single use in the same PHI node, and they
   1291     // perform the same operation.
   1292     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   1293     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
   1294         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
   1295         I1->isEHPad() || I2->isEHPad() ||
   1296         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
   1297         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
   1298         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
   1299         !I1->hasOneUse() || !I2->hasOneUse() ||
   1300         !JointValueMap.count(InstPair))
   1301       return Changed;
   1302 
   1303     // Check whether we should swap the operands of ICmpInst.
   1304     // TODO: Add support of communativity.
   1305     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
   1306     bool SwapOpnds = false;
   1307     if (ICmp1 && ICmp2 &&
   1308         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
   1309         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
   1310         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
   1311          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
   1312       ICmp2->swapOperands();
   1313       SwapOpnds = true;
   1314     }
   1315     if (!I1->isSameOperationAs(I2)) {
   1316       if (SwapOpnds)
   1317         ICmp2->swapOperands();
   1318       return Changed;
   1319     }
   1320 
   1321     // The operands should be either the same or they need to be generated
   1322     // with a PHI node after sinking. We only handle the case where there is
   1323     // a single pair of different operands.
   1324     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
   1325     unsigned Op1Idx = ~0U;
   1326     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
   1327       if (I1->getOperand(I) == I2->getOperand(I))
   1328         continue;
   1329       // Early exit if we have more-than one pair of different operands or if
   1330       // we need a PHI node to replace a constant.
   1331       if (Op1Idx != ~0U ||
   1332           isa<Constant>(I1->getOperand(I)) ||
   1333           isa<Constant>(I2->getOperand(I))) {
   1334         // If we can't sink the instructions, undo the swapping.
   1335         if (SwapOpnds)
   1336           ICmp2->swapOperands();
   1337         return Changed;
   1338       }
   1339       DifferentOp1 = I1->getOperand(I);
   1340       Op1Idx = I;
   1341       DifferentOp2 = I2->getOperand(I);
   1342     }
   1343 
   1344     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
   1345     DEBUG(dbgs() << "                         " << *I2 << "\n");
   1346 
   1347     // We insert the pair of different operands to JointValueMap and
   1348     // remove (I1, I2) from JointValueMap.
   1349     if (Op1Idx != ~0U) {
   1350       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
   1351       if (!NewPN) {
   1352         NewPN =
   1353             PHINode::Create(DifferentOp1->getType(), 2,
   1354                             DifferentOp1->getName() + ".sink", &BBEnd->front());
   1355         NewPN->addIncoming(DifferentOp1, BB1);
   1356         NewPN->addIncoming(DifferentOp2, BB2);
   1357         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
   1358       }
   1359       // I1 should use NewPN instead of DifferentOp1.
   1360       I1->setOperand(Op1Idx, NewPN);
   1361     }
   1362     PHINode *OldPN = JointValueMap[InstPair];
   1363     JointValueMap.erase(InstPair);
   1364 
   1365     // We need to update RE1 and RE2 if we are going to sink the first
   1366     // instruction in the basic block down.
   1367     bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
   1368     // Sink the instruction.
   1369     BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
   1370                                 BB1->getInstList(), I1);
   1371     if (!OldPN->use_empty())
   1372       OldPN->replaceAllUsesWith(I1);
   1373     OldPN->eraseFromParent();
   1374 
   1375     if (!I2->use_empty())
   1376       I2->replaceAllUsesWith(I1);
   1377     I1->intersectOptionalDataWith(I2);
   1378     // TODO: Use combineMetadata here to preserve what metadata we can
   1379     // (analogous to the hoisting case above).
   1380     I2->eraseFromParent();
   1381 
   1382     if (UpdateRE1)
   1383       RE1 = BB1->getInstList().rend();
   1384     if (UpdateRE2)
   1385       RE2 = BB2->getInstList().rend();
   1386     FirstNonPhiInBBEnd = &*I1;
   1387     NumSinkCommons++;
   1388     Changed = true;
   1389   }
   1390   return Changed;
   1391 }
   1392 
   1393 /// \brief Determine if we can hoist sink a sole store instruction out of a
   1394 /// conditional block.
   1395 ///
   1396 /// We are looking for code like the following:
   1397 ///   BrBB:
   1398 ///     store i32 %add, i32* %arrayidx2
   1399 ///     ... // No other stores or function calls (we could be calling a memory
   1400 ///     ... // function).
   1401 ///     %cmp = icmp ult %x, %y
   1402 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1403 ///   ThenBB:
   1404 ///     store i32 %add5, i32* %arrayidx2
   1405 ///     br label EndBB
   1406 ///   EndBB:
   1407 ///     ...
   1408 ///   We are going to transform this into:
   1409 ///   BrBB:
   1410 ///     store i32 %add, i32* %arrayidx2
   1411 ///     ... //
   1412 ///     %cmp = icmp ult %x, %y
   1413 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
   1414 ///     store i32 %add.add5, i32* %arrayidx2
   1415 ///     ...
   1416 ///
   1417 /// \return The pointer to the value of the previous store if the store can be
   1418 ///         hoisted into the predecessor block. 0 otherwise.
   1419 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
   1420                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
   1421   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
   1422   if (!StoreToHoist)
   1423     return nullptr;
   1424 
   1425   // Volatile or atomic.
   1426   if (!StoreToHoist->isSimple())
   1427     return nullptr;
   1428 
   1429   Value *StorePtr = StoreToHoist->getPointerOperand();
   1430 
   1431   // Look for a store to the same pointer in BrBB.
   1432   unsigned MaxNumInstToLookAt = 10;
   1433   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
   1434        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
   1435     Instruction *CurI = &*RI;
   1436 
   1437     // Could be calling an instruction that effects memory like free().
   1438     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
   1439       return nullptr;
   1440 
   1441     StoreInst *SI = dyn_cast<StoreInst>(CurI);
   1442     // Found the previous store make sure it stores to the same location.
   1443     if (SI && SI->getPointerOperand() == StorePtr)
   1444       // Found the previous store, return its value operand.
   1445       return SI->getValueOperand();
   1446     else if (SI)
   1447       return nullptr; // Unknown store.
   1448   }
   1449 
   1450   return nullptr;
   1451 }
   1452 
   1453 /// \brief Speculate a conditional basic block flattening the CFG.
   1454 ///
   1455 /// Note that this is a very risky transform currently. Speculating
   1456 /// instructions like this is most often not desirable. Instead, there is an MI
   1457 /// pass which can do it with full awareness of the resource constraints.
   1458 /// However, some cases are "obvious" and we should do directly. An example of
   1459 /// this is speculating a single, reasonably cheap instruction.
   1460 ///
   1461 /// There is only one distinct advantage to flattening the CFG at the IR level:
   1462 /// it makes very common but simplistic optimizations such as are common in
   1463 /// instcombine and the DAG combiner more powerful by removing CFG edges and
   1464 /// modeling their effects with easier to reason about SSA value graphs.
   1465 ///
   1466 ///
   1467 /// An illustration of this transform is turning this IR:
   1468 /// \code
   1469 ///   BB:
   1470 ///     %cmp = icmp ult %x, %y
   1471 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1472 ///   ThenBB:
   1473 ///     %sub = sub %x, %y
   1474 ///     br label BB2
   1475 ///   EndBB:
   1476 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
   1477 ///     ...
   1478 /// \endcode
   1479 ///
   1480 /// Into this IR:
   1481 /// \code
   1482 ///   BB:
   1483 ///     %cmp = icmp ult %x, %y
   1484 ///     %sub = sub %x, %y
   1485 ///     %cond = select i1 %cmp, 0, %sub
   1486 ///     ...
   1487 /// \endcode
   1488 ///
   1489 /// \returns true if the conditional block is removed.
   1490 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
   1491                                    const TargetTransformInfo &TTI) {
   1492   // Be conservative for now. FP select instruction can often be expensive.
   1493   Value *BrCond = BI->getCondition();
   1494   if (isa<FCmpInst>(BrCond))
   1495     return false;
   1496 
   1497   BasicBlock *BB = BI->getParent();
   1498   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
   1499 
   1500   // If ThenBB is actually on the false edge of the conditional branch, remember
   1501   // to swap the select operands later.
   1502   bool Invert = false;
   1503   if (ThenBB != BI->getSuccessor(0)) {
   1504     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
   1505     Invert = true;
   1506   }
   1507   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
   1508 
   1509   // Keep a count of how many times instructions are used within CondBB when
   1510   // they are candidates for sinking into CondBB. Specifically:
   1511   // - They are defined in BB, and
   1512   // - They have no side effects, and
   1513   // - All of their uses are in CondBB.
   1514   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
   1515 
   1516   unsigned SpeculationCost = 0;
   1517   Value *SpeculatedStoreValue = nullptr;
   1518   StoreInst *SpeculatedStore = nullptr;
   1519   for (BasicBlock::iterator BBI = ThenBB->begin(),
   1520                             BBE = std::prev(ThenBB->end());
   1521        BBI != BBE; ++BBI) {
   1522     Instruction *I = &*BBI;
   1523     // Skip debug info.
   1524     if (isa<DbgInfoIntrinsic>(I))
   1525       continue;
   1526 
   1527     // Only speculatively execute a single instruction (not counting the
   1528     // terminator) for now.
   1529     ++SpeculationCost;
   1530     if (SpeculationCost > 1)
   1531       return false;
   1532 
   1533     // Don't hoist the instruction if it's unsafe or expensive.
   1534     if (!isSafeToSpeculativelyExecute(I) &&
   1535         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
   1536                                   I, BB, ThenBB, EndBB))))
   1537       return false;
   1538     if (!SpeculatedStoreValue &&
   1539         ComputeSpeculationCost(I, TTI) >
   1540             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
   1541       return false;
   1542 
   1543     // Store the store speculation candidate.
   1544     if (SpeculatedStoreValue)
   1545       SpeculatedStore = cast<StoreInst>(I);
   1546 
   1547     // Do not hoist the instruction if any of its operands are defined but not
   1548     // used in BB. The transformation will prevent the operand from
   1549     // being sunk into the use block.
   1550     for (User::op_iterator i = I->op_begin(), e = I->op_end();
   1551          i != e; ++i) {
   1552       Instruction *OpI = dyn_cast<Instruction>(*i);
   1553       if (!OpI || OpI->getParent() != BB ||
   1554           OpI->mayHaveSideEffects())
   1555         continue; // Not a candidate for sinking.
   1556 
   1557       ++SinkCandidateUseCounts[OpI];
   1558     }
   1559   }
   1560 
   1561   // Consider any sink candidates which are only used in CondBB as costs for
   1562   // speculation. Note, while we iterate over a DenseMap here, we are summing
   1563   // and so iteration order isn't significant.
   1564   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
   1565            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
   1566        I != E; ++I)
   1567     if (I->first->getNumUses() == I->second) {
   1568       ++SpeculationCost;
   1569       if (SpeculationCost > 1)
   1570         return false;
   1571     }
   1572 
   1573   // Check that the PHI nodes can be converted to selects.
   1574   bool HaveRewritablePHIs = false;
   1575   for (BasicBlock::iterator I = EndBB->begin();
   1576        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1577     Value *OrigV = PN->getIncomingValueForBlock(BB);
   1578     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
   1579 
   1580     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
   1581     // Skip PHIs which are trivial.
   1582     if (ThenV == OrigV)
   1583       continue;
   1584 
   1585     // Don't convert to selects if we could remove undefined behavior instead.
   1586     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
   1587         passingValueIsAlwaysUndefined(ThenV, PN))
   1588       return false;
   1589 
   1590     HaveRewritablePHIs = true;
   1591     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
   1592     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
   1593     if (!OrigCE && !ThenCE)
   1594       continue; // Known safe and cheap.
   1595 
   1596     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
   1597         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
   1598       return false;
   1599     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
   1600     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
   1601     unsigned MaxCost = 2 * PHINodeFoldingThreshold *
   1602       TargetTransformInfo::TCC_Basic;
   1603     if (OrigCost + ThenCost > MaxCost)
   1604       return false;
   1605 
   1606     // Account for the cost of an unfolded ConstantExpr which could end up
   1607     // getting expanded into Instructions.
   1608     // FIXME: This doesn't account for how many operations are combined in the
   1609     // constant expression.
   1610     ++SpeculationCost;
   1611     if (SpeculationCost > 1)
   1612       return false;
   1613   }
   1614 
   1615   // If there are no PHIs to process, bail early. This helps ensure idempotence
   1616   // as well.
   1617   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
   1618     return false;
   1619 
   1620   // If we get here, we can hoist the instruction and if-convert.
   1621   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
   1622 
   1623   // Insert a select of the value of the speculated store.
   1624   if (SpeculatedStoreValue) {
   1625     IRBuilder<true, NoFolder> Builder(BI);
   1626     Value *TrueV = SpeculatedStore->getValueOperand();
   1627     Value *FalseV = SpeculatedStoreValue;
   1628     if (Invert)
   1629       std::swap(TrueV, FalseV);
   1630     Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
   1631                                     "." + FalseV->getName());
   1632     SpeculatedStore->setOperand(0, S);
   1633   }
   1634 
   1635   // Metadata can be dependent on the condition we are hoisting above.
   1636   // Conservatively strip all metadata on the instruction.
   1637   for (auto &I: *ThenBB)
   1638     I.dropUnknownNonDebugMetadata();
   1639 
   1640   // Hoist the instructions.
   1641   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
   1642                            ThenBB->begin(), std::prev(ThenBB->end()));
   1643 
   1644   // Insert selects and rewrite the PHI operands.
   1645   IRBuilder<true, NoFolder> Builder(BI);
   1646   for (BasicBlock::iterator I = EndBB->begin();
   1647        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1648     unsigned OrigI = PN->getBasicBlockIndex(BB);
   1649     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
   1650     Value *OrigV = PN->getIncomingValue(OrigI);
   1651     Value *ThenV = PN->getIncomingValue(ThenI);
   1652 
   1653     // Skip PHIs which are trivial.
   1654     if (OrigV == ThenV)
   1655       continue;
   1656 
   1657     // Create a select whose true value is the speculatively executed value and
   1658     // false value is the preexisting value. Swap them if the branch
   1659     // destinations were inverted.
   1660     Value *TrueV = ThenV, *FalseV = OrigV;
   1661     if (Invert)
   1662       std::swap(TrueV, FalseV);
   1663     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
   1664                                     TrueV->getName() + "." + FalseV->getName());
   1665     PN->setIncomingValue(OrigI, V);
   1666     PN->setIncomingValue(ThenI, V);
   1667   }
   1668 
   1669   ++NumSpeculations;
   1670   return true;
   1671 }
   1672 
   1673 /// \returns True if this block contains a CallInst with the NoDuplicate
   1674 /// attribute.
   1675 static bool HasNoDuplicateCall(const BasicBlock *BB) {
   1676   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1677     const CallInst *CI = dyn_cast<CallInst>(I);
   1678     if (!CI)
   1679       continue;
   1680     if (CI->cannotDuplicate())
   1681       return true;
   1682   }
   1683   return false;
   1684 }
   1685 
   1686 /// Return true if we can thread a branch across this block.
   1687 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1688   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1689   unsigned Size = 0;
   1690 
   1691   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1692     if (isa<DbgInfoIntrinsic>(BBI))
   1693       continue;
   1694     if (Size > 10) return false;  // Don't clone large BB's.
   1695     ++Size;
   1696 
   1697     // We can only support instructions that do not define values that are
   1698     // live outside of the current basic block.
   1699     for (User *U : BBI->users()) {
   1700       Instruction *UI = cast<Instruction>(U);
   1701       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
   1702     }
   1703 
   1704     // Looks ok, continue checking.
   1705   }
   1706 
   1707   return true;
   1708 }
   1709 
   1710 /// If we have a conditional branch on a PHI node value that is defined in the
   1711 /// same block as the branch and if any PHI entries are constants, thread edges
   1712 /// corresponding to that entry to be branches to their ultimate destination.
   1713 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
   1714   BasicBlock *BB = BI->getParent();
   1715   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1716   // NOTE: we currently cannot transform this case if the PHI node is used
   1717   // outside of the block.
   1718   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1719     return false;
   1720 
   1721   // Degenerate case of a single entry PHI.
   1722   if (PN->getNumIncomingValues() == 1) {
   1723     FoldSingleEntryPHINodes(PN->getParent());
   1724     return true;
   1725   }
   1726 
   1727   // Now we know that this block has multiple preds and two succs.
   1728   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
   1729 
   1730   if (HasNoDuplicateCall(BB)) return false;
   1731 
   1732   // Okay, this is a simple enough basic block.  See if any phi values are
   1733   // constants.
   1734   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1735     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1736     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
   1737 
   1738     // Okay, we now know that all edges from PredBB should be revectored to
   1739     // branch to RealDest.
   1740     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1741     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1742 
   1743     if (RealDest == BB) continue;  // Skip self loops.
   1744     // Skip if the predecessor's terminator is an indirect branch.
   1745     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
   1746 
   1747     // The dest block might have PHI nodes, other predecessors and other
   1748     // difficult cases.  Instead of being smart about this, just insert a new
   1749     // block that jumps to the destination block, effectively splitting
   1750     // the edge we are about to create.
   1751     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
   1752                                             RealDest->getName()+".critedge",
   1753                                             RealDest->getParent(), RealDest);
   1754     BranchInst::Create(RealDest, EdgeBB);
   1755 
   1756     // Update PHI nodes.
   1757     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1758 
   1759     // BB may have instructions that are being threaded over.  Clone these
   1760     // instructions into EdgeBB.  We know that there will be no uses of the
   1761     // cloned instructions outside of EdgeBB.
   1762     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1763     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
   1764     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1765       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1766         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1767         continue;
   1768       }
   1769       // Clone the instruction.
   1770       Instruction *N = BBI->clone();
   1771       if (BBI->hasName()) N->setName(BBI->getName()+".c");
   1772 
   1773       // Update operands due to translation.
   1774       for (User::op_iterator i = N->op_begin(), e = N->op_end();
   1775            i != e; ++i) {
   1776         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
   1777         if (PI != TranslateMap.end())
   1778           *i = PI->second;
   1779       }
   1780 
   1781       // Check for trivial simplification.
   1782       if (Value *V = SimplifyInstruction(N, DL)) {
   1783         TranslateMap[&*BBI] = V;
   1784         delete N;   // Instruction folded away, don't need actual inst
   1785       } else {
   1786         // Insert the new instruction into its new home.
   1787         EdgeBB->getInstList().insert(InsertPt, N);
   1788         if (!BBI->use_empty())
   1789           TranslateMap[&*BBI] = N;
   1790       }
   1791     }
   1792 
   1793     // Loop over all of the edges from PredBB to BB, changing them to branch
   1794     // to EdgeBB instead.
   1795     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1796     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1797       if (PredBBTI->getSuccessor(i) == BB) {
   1798         BB->removePredecessor(PredBB);
   1799         PredBBTI->setSuccessor(i, EdgeBB);
   1800       }
   1801 
   1802     // Recurse, simplifying any other constants.
   1803     return FoldCondBranchOnPHI(BI, DL) | true;
   1804   }
   1805 
   1806   return false;
   1807 }
   1808 
   1809 /// Given a BB that starts with the specified two-entry PHI node,
   1810 /// see if we can eliminate it.
   1811 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
   1812                                 const DataLayout &DL) {
   1813   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1814   // statement", which has a very simple dominance structure.  Basically, we
   1815   // are trying to find the condition that is being branched on, which
   1816   // subsequently causes this merge to happen.  We really want control
   1817   // dependence information for this check, but simplifycfg can't keep it up
   1818   // to date, and this catches most of the cases we care about anyway.
   1819   BasicBlock *BB = PN->getParent();
   1820   BasicBlock *IfTrue, *IfFalse;
   1821   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1822   if (!IfCond ||
   1823       // Don't bother if the branch will be constant folded trivially.
   1824       isa<ConstantInt>(IfCond))
   1825     return false;
   1826 
   1827   // Okay, we found that we can merge this two-entry phi node into a select.
   1828   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1829   // At some point this becomes non-profitable (particularly if the target
   1830   // doesn't support cmov's).  Only do this transformation if there are two or
   1831   // fewer PHI nodes in this block.
   1832   unsigned NumPhis = 0;
   1833   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1834     if (NumPhis > 2)
   1835       return false;
   1836 
   1837   // Loop over the PHI's seeing if we can promote them all to select
   1838   // instructions.  While we are at it, keep track of the instructions
   1839   // that need to be moved to the dominating block.
   1840   SmallPtrSet<Instruction*, 4> AggressiveInsts;
   1841   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1842            MaxCostVal1 = PHINodeFoldingThreshold;
   1843   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
   1844   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
   1845 
   1846   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1847     PHINode *PN = cast<PHINode>(II++);
   1848     if (Value *V = SimplifyInstruction(PN, DL)) {
   1849       PN->replaceAllUsesWith(V);
   1850       PN->eraseFromParent();
   1851       continue;
   1852     }
   1853 
   1854     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1855                              MaxCostVal0, TTI) ||
   1856         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1857                              MaxCostVal1, TTI))
   1858       return false;
   1859   }
   1860 
   1861   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
   1862   // we ran out of PHIs then we simplified them all.
   1863   PN = dyn_cast<PHINode>(BB->begin());
   1864   if (!PN) return true;
   1865 
   1866   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1867   // often be turned into switches and other things.
   1868   if (PN->getType()->isIntegerTy(1) &&
   1869       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1870        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1871        isa<BinaryOperator>(IfCond)))
   1872     return false;
   1873 
   1874   // If we all PHI nodes are promotable, check to make sure that all
   1875   // instructions in the predecessor blocks can be promoted as well.  If
   1876   // not, we won't be able to get rid of the control flow, so it's not
   1877   // worth promoting to select instructions.
   1878   BasicBlock *DomBlock = nullptr;
   1879   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1880   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1881   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1882     IfBlock1 = nullptr;
   1883   } else {
   1884     DomBlock = *pred_begin(IfBlock1);
   1885     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
   1886       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
   1887         // This is not an aggressive instruction that we can promote.
   1888         // Because of this, we won't be able to get rid of the control
   1889         // flow, so the xform is not worth it.
   1890         return false;
   1891       }
   1892   }
   1893 
   1894   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   1895     IfBlock2 = nullptr;
   1896   } else {
   1897     DomBlock = *pred_begin(IfBlock2);
   1898     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
   1899       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
   1900         // This is not an aggressive instruction that we can promote.
   1901         // Because of this, we won't be able to get rid of the control
   1902         // flow, so the xform is not worth it.
   1903         return false;
   1904       }
   1905   }
   1906 
   1907   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   1908                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   1909 
   1910   // If we can still promote the PHI nodes after this gauntlet of tests,
   1911   // do all of the PHI's now.
   1912   Instruction *InsertPt = DomBlock->getTerminator();
   1913   IRBuilder<true, NoFolder> Builder(InsertPt);
   1914 
   1915   // Move all 'aggressive' instructions, which are defined in the
   1916   // conditional parts of the if's up to the dominating block.
   1917   if (IfBlock1)
   1918     DomBlock->getInstList().splice(InsertPt->getIterator(),
   1919                                    IfBlock1->getInstList(), IfBlock1->begin(),
   1920                                    IfBlock1->getTerminator()->getIterator());
   1921   if (IfBlock2)
   1922     DomBlock->getInstList().splice(InsertPt->getIterator(),
   1923                                    IfBlock2->getInstList(), IfBlock2->begin(),
   1924                                    IfBlock2->getTerminator()->getIterator());
   1925 
   1926   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   1927     // Change the PHI node into a select instruction.
   1928     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   1929     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   1930 
   1931     SelectInst *NV =
   1932       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
   1933     PN->replaceAllUsesWith(NV);
   1934     NV->takeName(PN);
   1935     PN->eraseFromParent();
   1936   }
   1937 
   1938   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   1939   // has been flattened.  Change DomBlock to jump directly to our new block to
   1940   // avoid other simplifycfg's kicking in on the diamond.
   1941   TerminatorInst *OldTI = DomBlock->getTerminator();
   1942   Builder.SetInsertPoint(OldTI);
   1943   Builder.CreateBr(BB);
   1944   OldTI->eraseFromParent();
   1945   return true;
   1946 }
   1947 
   1948 /// If we found a conditional branch that goes to two returning blocks,
   1949 /// try to merge them together into one return,
   1950 /// introducing a select if the return values disagree.
   1951 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   1952                                            IRBuilder<> &Builder) {
   1953   assert(BI->isConditional() && "Must be a conditional branch");
   1954   BasicBlock *TrueSucc = BI->getSuccessor(0);
   1955   BasicBlock *FalseSucc = BI->getSuccessor(1);
   1956   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   1957   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   1958 
   1959   // Check to ensure both blocks are empty (just a return) or optionally empty
   1960   // with PHI nodes.  If there are other instructions, merging would cause extra
   1961   // computation on one path or the other.
   1962   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   1963     return false;
   1964   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   1965     return false;
   1966 
   1967   Builder.SetInsertPoint(BI);
   1968   // Okay, we found a branch that is going to two return nodes.  If
   1969   // there is no return value for this function, just change the
   1970   // branch into a return.
   1971   if (FalseRet->getNumOperands() == 0) {
   1972     TrueSucc->removePredecessor(BI->getParent());
   1973     FalseSucc->removePredecessor(BI->getParent());
   1974     Builder.CreateRetVoid();
   1975     EraseTerminatorInstAndDCECond(BI);
   1976     return true;
   1977   }
   1978 
   1979   // Otherwise, figure out what the true and false return values are
   1980   // so we can insert a new select instruction.
   1981   Value *TrueValue = TrueRet->getReturnValue();
   1982   Value *FalseValue = FalseRet->getReturnValue();
   1983 
   1984   // Unwrap any PHI nodes in the return blocks.
   1985   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   1986     if (TVPN->getParent() == TrueSucc)
   1987       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   1988   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   1989     if (FVPN->getParent() == FalseSucc)
   1990       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   1991 
   1992   // In order for this transformation to be safe, we must be able to
   1993   // unconditionally execute both operands to the return.  This is
   1994   // normally the case, but we could have a potentially-trapping
   1995   // constant expression that prevents this transformation from being
   1996   // safe.
   1997   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   1998     if (TCV->canTrap())
   1999       return false;
   2000   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   2001     if (FCV->canTrap())
   2002       return false;
   2003 
   2004   // Okay, we collected all the mapped values and checked them for sanity, and
   2005   // defined to really do this transformation.  First, update the CFG.
   2006   TrueSucc->removePredecessor(BI->getParent());
   2007   FalseSucc->removePredecessor(BI->getParent());
   2008 
   2009   // Insert select instructions where needed.
   2010   Value *BrCond = BI->getCondition();
   2011   if (TrueValue) {
   2012     // Insert a select if the results differ.
   2013     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   2014     } else if (isa<UndefValue>(TrueValue)) {
   2015       TrueValue = FalseValue;
   2016     } else {
   2017       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
   2018                                        FalseValue, "retval");
   2019     }
   2020   }
   2021 
   2022   Value *RI = !TrueValue ?
   2023     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   2024 
   2025   (void) RI;
   2026 
   2027   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   2028                << "\n  " << *BI << "NewRet = " << *RI
   2029                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
   2030 
   2031   EraseTerminatorInstAndDCECond(BI);
   2032 
   2033   return true;
   2034 }
   2035 
   2036 /// Given a conditional BranchInstruction, retrieve the probabilities of the
   2037 /// branch taking each edge. Fills in the two APInt parameters and returns true,
   2038 /// or returns false if no or invalid metadata was found.
   2039 static bool ExtractBranchMetadata(BranchInst *BI,
   2040                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
   2041   assert(BI->isConditional() &&
   2042          "Looking for probabilities on unconditional branch?");
   2043   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
   2044   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
   2045   ConstantInt *CITrue =
   2046       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
   2047   ConstantInt *CIFalse =
   2048       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
   2049   if (!CITrue || !CIFalse) return false;
   2050   ProbTrue = CITrue->getValue().getZExtValue();
   2051   ProbFalse = CIFalse->getValue().getZExtValue();
   2052   return true;
   2053 }
   2054 
   2055 /// Return true if the given instruction is available
   2056 /// in its predecessor block. If yes, the instruction will be removed.
   2057 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
   2058   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
   2059     return false;
   2060   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
   2061     Instruction *PBI = &*I;
   2062     // Check whether Inst and PBI generate the same value.
   2063     if (Inst->isIdenticalTo(PBI)) {
   2064       Inst->replaceAllUsesWith(PBI);
   2065       Inst->eraseFromParent();
   2066       return true;
   2067     }
   2068   }
   2069   return false;
   2070 }
   2071 
   2072 /// If this basic block is simple enough, and if a predecessor branches to us
   2073 /// and one of our successors, fold the block into the predecessor and use
   2074 /// logical operations to pick the right destination.
   2075 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
   2076   BasicBlock *BB = BI->getParent();
   2077 
   2078   Instruction *Cond = nullptr;
   2079   if (BI->isConditional())
   2080     Cond = dyn_cast<Instruction>(BI->getCondition());
   2081   else {
   2082     // For unconditional branch, check for a simple CFG pattern, where
   2083     // BB has a single predecessor and BB's successor is also its predecessor's
   2084     // successor. If such pattern exisits, check for CSE between BB and its
   2085     // predecessor.
   2086     if (BasicBlock *PB = BB->getSinglePredecessor())
   2087       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
   2088         if (PBI->isConditional() &&
   2089             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
   2090              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
   2091           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
   2092                I != E; ) {
   2093             Instruction *Curr = &*I++;
   2094             if (isa<CmpInst>(Curr)) {
   2095               Cond = Curr;
   2096               break;
   2097             }
   2098             // Quit if we can't remove this instruction.
   2099             if (!checkCSEInPredecessor(Curr, PB))
   2100               return false;
   2101           }
   2102         }
   2103 
   2104     if (!Cond)
   2105       return false;
   2106   }
   2107 
   2108   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   2109       Cond->getParent() != BB || !Cond->hasOneUse())
   2110   return false;
   2111 
   2112   // Make sure the instruction after the condition is the cond branch.
   2113   BasicBlock::iterator CondIt = ++Cond->getIterator();
   2114 
   2115   // Ignore dbg intrinsics.
   2116   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
   2117 
   2118   if (&*CondIt != BI)
   2119     return false;
   2120 
   2121   // Only allow this transformation if computing the condition doesn't involve
   2122   // too many instructions and these involved instructions can be executed
   2123   // unconditionally. We denote all involved instructions except the condition
   2124   // as "bonus instructions", and only allow this transformation when the
   2125   // number of the bonus instructions does not exceed a certain threshold.
   2126   unsigned NumBonusInsts = 0;
   2127   for (auto I = BB->begin(); Cond != I; ++I) {
   2128     // Ignore dbg intrinsics.
   2129     if (isa<DbgInfoIntrinsic>(I))
   2130       continue;
   2131     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
   2132       return false;
   2133     // I has only one use and can be executed unconditionally.
   2134     Instruction *User = dyn_cast<Instruction>(I->user_back());
   2135     if (User == nullptr || User->getParent() != BB)
   2136       return false;
   2137     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
   2138     // to use any other instruction, User must be an instruction between next(I)
   2139     // and Cond.
   2140     ++NumBonusInsts;
   2141     // Early exits once we reach the limit.
   2142     if (NumBonusInsts > BonusInstThreshold)
   2143       return false;
   2144   }
   2145 
   2146   // Cond is known to be a compare or binary operator.  Check to make sure that
   2147   // neither operand is a potentially-trapping constant expression.
   2148   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   2149     if (CE->canTrap())
   2150       return false;
   2151   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   2152     if (CE->canTrap())
   2153       return false;
   2154 
   2155   // Finally, don't infinitely unroll conditional loops.
   2156   BasicBlock *TrueDest  = BI->getSuccessor(0);
   2157   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
   2158   if (TrueDest == BB || FalseDest == BB)
   2159     return false;
   2160 
   2161   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2162     BasicBlock *PredBlock = *PI;
   2163     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   2164 
   2165     // Check that we have two conditional branches.  If there is a PHI node in
   2166     // the common successor, verify that the same value flows in from both
   2167     // blocks.
   2168     SmallVector<PHINode*, 4> PHIs;
   2169     if (!PBI || PBI->isUnconditional() ||
   2170         (BI->isConditional() &&
   2171          !SafeToMergeTerminators(BI, PBI)) ||
   2172         (!BI->isConditional() &&
   2173          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
   2174       continue;
   2175 
   2176     // Determine if the two branches share a common destination.
   2177     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
   2178     bool InvertPredCond = false;
   2179 
   2180     if (BI->isConditional()) {
   2181       if (PBI->getSuccessor(0) == TrueDest)
   2182         Opc = Instruction::Or;
   2183       else if (PBI->getSuccessor(1) == FalseDest)
   2184         Opc = Instruction::And;
   2185       else if (PBI->getSuccessor(0) == FalseDest)
   2186         Opc = Instruction::And, InvertPredCond = true;
   2187       else if (PBI->getSuccessor(1) == TrueDest)
   2188         Opc = Instruction::Or, InvertPredCond = true;
   2189       else
   2190         continue;
   2191     } else {
   2192       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
   2193         continue;
   2194     }
   2195 
   2196     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   2197     IRBuilder<> Builder(PBI);
   2198 
   2199     // If we need to invert the condition in the pred block to match, do so now.
   2200     if (InvertPredCond) {
   2201       Value *NewCond = PBI->getCondition();
   2202 
   2203       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   2204         CmpInst *CI = cast<CmpInst>(NewCond);
   2205         CI->setPredicate(CI->getInversePredicate());
   2206       } else {
   2207         NewCond = Builder.CreateNot(NewCond,
   2208                                     PBI->getCondition()->getName()+".not");
   2209       }
   2210 
   2211       PBI->setCondition(NewCond);
   2212       PBI->swapSuccessors();
   2213     }
   2214 
   2215     // If we have bonus instructions, clone them into the predecessor block.
   2216     // Note that there may be multiple predecessor blocks, so we cannot move
   2217     // bonus instructions to a predecessor block.
   2218     ValueToValueMapTy VMap; // maps original values to cloned values
   2219     // We already make sure Cond is the last instruction before BI. Therefore,
   2220     // all instructions before Cond other than DbgInfoIntrinsic are bonus
   2221     // instructions.
   2222     for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
   2223       if (isa<DbgInfoIntrinsic>(BonusInst))
   2224         continue;
   2225       Instruction *NewBonusInst = BonusInst->clone();
   2226       RemapInstruction(NewBonusInst, VMap,
   2227                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
   2228       VMap[&*BonusInst] = NewBonusInst;
   2229 
   2230       // If we moved a load, we cannot any longer claim any knowledge about
   2231       // its potential value. The previous information might have been valid
   2232       // only given the branch precondition.
   2233       // For an analogous reason, we must also drop all the metadata whose
   2234       // semantics we don't understand.
   2235       NewBonusInst->dropUnknownNonDebugMetadata();
   2236 
   2237       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
   2238       NewBonusInst->takeName(&*BonusInst);
   2239       BonusInst->setName(BonusInst->getName() + ".old");
   2240     }
   2241 
   2242     // Clone Cond into the predecessor basic block, and or/and the
   2243     // two conditions together.
   2244     Instruction *New = Cond->clone();
   2245     RemapInstruction(New, VMap,
   2246                      RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
   2247     PredBlock->getInstList().insert(PBI->getIterator(), New);
   2248     New->takeName(Cond);
   2249     Cond->setName(New->getName() + ".old");
   2250 
   2251     if (BI->isConditional()) {
   2252       Instruction *NewCond =
   2253         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
   2254                                             New, "or.cond"));
   2255       PBI->setCondition(NewCond);
   2256 
   2257       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2258       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2259                                                   PredFalseWeight);
   2260       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2261                                                   SuccFalseWeight);
   2262       SmallVector<uint64_t, 8> NewWeights;
   2263 
   2264       if (PBI->getSuccessor(0) == BB) {
   2265         if (PredHasWeights && SuccHasWeights) {
   2266           // PBI: br i1 %x, BB, FalseDest
   2267           // BI:  br i1 %y, TrueDest, FalseDest
   2268           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
   2269           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
   2270           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
   2271           //               TrueWeight for PBI * FalseWeight for BI.
   2272           // We assume that total weights of a BranchInst can fit into 32 bits.
   2273           // Therefore, we will not have overflow using 64-bit arithmetic.
   2274           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
   2275                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
   2276         }
   2277         AddPredecessorToBlock(TrueDest, PredBlock, BB);
   2278         PBI->setSuccessor(0, TrueDest);
   2279       }
   2280       if (PBI->getSuccessor(1) == BB) {
   2281         if (PredHasWeights && SuccHasWeights) {
   2282           // PBI: br i1 %x, TrueDest, BB
   2283           // BI:  br i1 %y, TrueDest, FalseDest
   2284           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
   2285           //              FalseWeight for PBI * TrueWeight for BI.
   2286           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
   2287               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
   2288           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
   2289           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
   2290         }
   2291         AddPredecessorToBlock(FalseDest, PredBlock, BB);
   2292         PBI->setSuccessor(1, FalseDest);
   2293       }
   2294       if (NewWeights.size() == 2) {
   2295         // Halve the weights if any of them cannot fit in an uint32_t
   2296         FitWeights(NewWeights);
   2297 
   2298         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
   2299         PBI->setMetadata(LLVMContext::MD_prof,
   2300                          MDBuilder(BI->getContext()).
   2301                          createBranchWeights(MDWeights));
   2302       } else
   2303         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
   2304     } else {
   2305       // Update PHI nodes in the common successors.
   2306       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
   2307         ConstantInt *PBI_C = cast<ConstantInt>(
   2308           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
   2309         assert(PBI_C->getType()->isIntegerTy(1));
   2310         Instruction *MergedCond = nullptr;
   2311         if (PBI->getSuccessor(0) == TrueDest) {
   2312           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
   2313           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
   2314           //       is false: !PBI_Cond and BI_Value
   2315           Instruction *NotCond =
   2316             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2317                                 "not.cond"));
   2318           MergedCond =
   2319             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2320                                 NotCond, New,
   2321                                 "and.cond"));
   2322           if (PBI_C->isOne())
   2323             MergedCond =
   2324               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2325                                   PBI->getCondition(), MergedCond,
   2326                                   "or.cond"));
   2327         } else {
   2328           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
   2329           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
   2330           //       is false: PBI_Cond and BI_Value
   2331           MergedCond =
   2332             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2333                                 PBI->getCondition(), New,
   2334                                 "and.cond"));
   2335           if (PBI_C->isOne()) {
   2336             Instruction *NotCond =
   2337               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2338                                   "not.cond"));
   2339             MergedCond =
   2340               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2341                                   NotCond, MergedCond,
   2342                                   "or.cond"));
   2343           }
   2344         }
   2345         // Update PHI Node.
   2346         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
   2347                                   MergedCond);
   2348       }
   2349       // Change PBI from Conditional to Unconditional.
   2350       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
   2351       EraseTerminatorInstAndDCECond(PBI);
   2352       PBI = New_PBI;
   2353     }
   2354 
   2355     // TODO: If BB is reachable from all paths through PredBlock, then we
   2356     // could replace PBI's branch probabilities with BI's.
   2357 
   2358     // Copy any debug value intrinsics into the end of PredBlock.
   2359     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   2360       if (isa<DbgInfoIntrinsic>(*I))
   2361         I->clone()->insertBefore(PBI);
   2362 
   2363     return true;
   2364   }
   2365   return false;
   2366 }
   2367 
   2368 // If there is only one store in BB1 and BB2, return it, otherwise return
   2369 // nullptr.
   2370 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
   2371   StoreInst *S = nullptr;
   2372   for (auto *BB : {BB1, BB2}) {
   2373     if (!BB)
   2374       continue;
   2375     for (auto &I : *BB)
   2376       if (auto *SI = dyn_cast<StoreInst>(&I)) {
   2377         if (S)
   2378           // Multiple stores seen.
   2379           return nullptr;
   2380         else
   2381           S = SI;
   2382       }
   2383   }
   2384   return S;
   2385 }
   2386 
   2387 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
   2388                                               Value *AlternativeV = nullptr) {
   2389   // PHI is going to be a PHI node that allows the value V that is defined in
   2390   // BB to be referenced in BB's only successor.
   2391   //
   2392   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
   2393   // doesn't matter to us what the other operand is (it'll never get used). We
   2394   // could just create a new PHI with an undef incoming value, but that could
   2395   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
   2396   // other PHI. So here we directly look for some PHI in BB's successor with V
   2397   // as an incoming operand. If we find one, we use it, else we create a new
   2398   // one.
   2399   //
   2400   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
   2401   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
   2402   // where OtherBB is the single other predecessor of BB's only successor.
   2403   PHINode *PHI = nullptr;
   2404   BasicBlock *Succ = BB->getSingleSuccessor();
   2405 
   2406   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
   2407     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
   2408       PHI = cast<PHINode>(I);
   2409       if (!AlternativeV)
   2410         break;
   2411 
   2412       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
   2413       auto PredI = pred_begin(Succ);
   2414       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
   2415       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
   2416         break;
   2417       PHI = nullptr;
   2418     }
   2419   if (PHI)
   2420     return PHI;
   2421 
   2422   // If V is not an instruction defined in BB, just return it.
   2423   if (!AlternativeV &&
   2424       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
   2425     return V;
   2426 
   2427   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
   2428   PHI->addIncoming(V, BB);
   2429   for (BasicBlock *PredBB : predecessors(Succ))
   2430     if (PredBB != BB)
   2431       PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()),
   2432                        PredBB);
   2433   return PHI;
   2434 }
   2435 
   2436 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
   2437                                            BasicBlock *QTB, BasicBlock *QFB,
   2438                                            BasicBlock *PostBB, Value *Address,
   2439                                            bool InvertPCond, bool InvertQCond) {
   2440   auto IsaBitcastOfPointerType = [](const Instruction &I) {
   2441     return Operator::getOpcode(&I) == Instruction::BitCast &&
   2442            I.getType()->isPointerTy();
   2443   };
   2444 
   2445   // If we're not in aggressive mode, we only optimize if we have some
   2446   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
   2447   auto IsWorthwhile = [&](BasicBlock *BB) {
   2448     if (!BB)
   2449       return true;
   2450     // Heuristic: if the block can be if-converted/phi-folded and the
   2451     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
   2452     // thread this store.
   2453     unsigned N = 0;
   2454     for (auto &I : *BB) {
   2455       // Cheap instructions viable for folding.
   2456       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
   2457           isa<StoreInst>(I))
   2458         ++N;
   2459       // Free instructions.
   2460       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
   2461                IsaBitcastOfPointerType(I))
   2462         continue;
   2463       else
   2464         return false;
   2465     }
   2466     return N <= PHINodeFoldingThreshold;
   2467   };
   2468 
   2469   if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) ||
   2470                                        !IsWorthwhile(PFB) ||
   2471                                        !IsWorthwhile(QTB) ||
   2472                                        !IsWorthwhile(QFB)))
   2473     return false;
   2474 
   2475   // For every pointer, there must be exactly two stores, one coming from
   2476   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
   2477   // store (to any address) in PTB,PFB or QTB,QFB.
   2478   // FIXME: We could relax this restriction with a bit more work and performance
   2479   // testing.
   2480   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
   2481   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
   2482   if (!PStore || !QStore)
   2483     return false;
   2484 
   2485   // Now check the stores are compatible.
   2486   if (!QStore->isUnordered() || !PStore->isUnordered())
   2487     return false;
   2488 
   2489   // Check that sinking the store won't cause program behavior changes. Sinking
   2490   // the store out of the Q blocks won't change any behavior as we're sinking
   2491   // from a block to its unconditional successor. But we're moving a store from
   2492   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
   2493   // So we need to check that there are no aliasing loads or stores in
   2494   // QBI, QTB and QFB. We also need to check there are no conflicting memory
   2495   // operations between PStore and the end of its parent block.
   2496   //
   2497   // The ideal way to do this is to query AliasAnalysis, but we don't
   2498   // preserve AA currently so that is dangerous. Be super safe and just
   2499   // check there are no other memory operations at all.
   2500   for (auto &I : *QFB->getSinglePredecessor())
   2501     if (I.mayReadOrWriteMemory())
   2502       return false;
   2503   for (auto &I : *QFB)
   2504     if (&I != QStore && I.mayReadOrWriteMemory())
   2505       return false;
   2506   if (QTB)
   2507     for (auto &I : *QTB)
   2508       if (&I != QStore && I.mayReadOrWriteMemory())
   2509         return false;
   2510   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
   2511        I != E; ++I)
   2512     if (&*I != PStore && I->mayReadOrWriteMemory())
   2513       return false;
   2514 
   2515   // OK, we're going to sink the stores to PostBB. The store has to be
   2516   // conditional though, so first create the predicate.
   2517   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
   2518                      ->getCondition();
   2519   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
   2520                      ->getCondition();
   2521 
   2522   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
   2523                                                 PStore->getParent());
   2524   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
   2525                                                 QStore->getParent(), PPHI);
   2526 
   2527   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
   2528 
   2529   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
   2530   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
   2531 
   2532   if (InvertPCond)
   2533     PPred = QB.CreateNot(PPred);
   2534   if (InvertQCond)
   2535     QPred = QB.CreateNot(QPred);
   2536   Value *CombinedPred = QB.CreateOr(PPred, QPred);
   2537 
   2538   auto *T =
   2539       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
   2540   QB.SetInsertPoint(T);
   2541   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
   2542   AAMDNodes AAMD;
   2543   PStore->getAAMetadata(AAMD, /*Merge=*/false);
   2544   PStore->getAAMetadata(AAMD, /*Merge=*/true);
   2545   SI->setAAMetadata(AAMD);
   2546 
   2547   QStore->eraseFromParent();
   2548   PStore->eraseFromParent();
   2549 
   2550   return true;
   2551 }
   2552 
   2553 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
   2554   // The intention here is to find diamonds or triangles (see below) where each
   2555   // conditional block contains a store to the same address. Both of these
   2556   // stores are conditional, so they can't be unconditionally sunk. But it may
   2557   // be profitable to speculatively sink the stores into one merged store at the
   2558   // end, and predicate the merged store on the union of the two conditions of
   2559   // PBI and QBI.
   2560   //
   2561   // This can reduce the number of stores executed if both of the conditions are
   2562   // true, and can allow the blocks to become small enough to be if-converted.
   2563   // This optimization will also chain, so that ladders of test-and-set
   2564   // sequences can be if-converted away.
   2565   //
   2566   // We only deal with simple diamonds or triangles:
   2567   //
   2568   //     PBI       or      PBI        or a combination of the two
   2569   //    /   \               | \
   2570   //   PTB  PFB             |  PFB
   2571   //    \   /               | /
   2572   //     QBI                QBI
   2573   //    /  \                | \
   2574   //   QTB  QFB             |  QFB
   2575   //    \  /                | /
   2576   //    PostBB            PostBB
   2577   //
   2578   // We model triangles as a type of diamond with a nullptr "true" block.
   2579   // Triangles are canonicalized so that the fallthrough edge is represented by
   2580   // a true condition, as in the diagram above.
   2581   //
   2582   BasicBlock *PTB = PBI->getSuccessor(0);
   2583   BasicBlock *PFB = PBI->getSuccessor(1);
   2584   BasicBlock *QTB = QBI->getSuccessor(0);
   2585   BasicBlock *QFB = QBI->getSuccessor(1);
   2586   BasicBlock *PostBB = QFB->getSingleSuccessor();
   2587 
   2588   bool InvertPCond = false, InvertQCond = false;
   2589   // Canonicalize fallthroughs to the true branches.
   2590   if (PFB == QBI->getParent()) {
   2591     std::swap(PFB, PTB);
   2592     InvertPCond = true;
   2593   }
   2594   if (QFB == PostBB) {
   2595     std::swap(QFB, QTB);
   2596     InvertQCond = true;
   2597   }
   2598 
   2599   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
   2600   // and QFB may not. Model fallthroughs as a nullptr block.
   2601   if (PTB == QBI->getParent())
   2602     PTB = nullptr;
   2603   if (QTB == PostBB)
   2604     QTB = nullptr;
   2605 
   2606   // Legality bailouts. We must have at least the non-fallthrough blocks and
   2607   // the post-dominating block, and the non-fallthroughs must only have one
   2608   // predecessor.
   2609   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
   2610     return BB->getSinglePredecessor() == P &&
   2611            BB->getSingleSuccessor() == S;
   2612   };
   2613   if (!PostBB ||
   2614       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
   2615       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
   2616     return false;
   2617   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
   2618       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
   2619     return false;
   2620   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
   2621     return false;
   2622 
   2623   // OK, this is a sequence of two diamonds or triangles.
   2624   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
   2625   SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses;
   2626   for (auto *BB : {PTB, PFB}) {
   2627     if (!BB)
   2628       continue;
   2629     for (auto &I : *BB)
   2630       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
   2631         PStoreAddresses.insert(SI->getPointerOperand());
   2632   }
   2633   for (auto *BB : {QTB, QFB}) {
   2634     if (!BB)
   2635       continue;
   2636     for (auto &I : *BB)
   2637       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
   2638         QStoreAddresses.insert(SI->getPointerOperand());
   2639   }
   2640 
   2641   set_intersect(PStoreAddresses, QStoreAddresses);
   2642   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
   2643   // clear what it contains.
   2644   auto &CommonAddresses = PStoreAddresses;
   2645 
   2646   bool Changed = false;
   2647   for (auto *Address : CommonAddresses)
   2648     Changed |= mergeConditionalStoreToAddress(
   2649         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
   2650   return Changed;
   2651 }
   2652 
   2653 /// If we have a conditional branch as a predecessor of another block,
   2654 /// this function tries to simplify it.  We know
   2655 /// that PBI and BI are both conditional branches, and BI is in one of the
   2656 /// successor blocks of PBI - PBI branches to BI.
   2657 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
   2658                                            const DataLayout &DL) {
   2659   assert(PBI->isConditional() && BI->isConditional());
   2660   BasicBlock *BB = BI->getParent();
   2661 
   2662   // If this block ends with a branch instruction, and if there is a
   2663   // predecessor that ends on a branch of the same condition, make
   2664   // this conditional branch redundant.
   2665   if (PBI->getCondition() == BI->getCondition() &&
   2666       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2667     // Okay, the outcome of this conditional branch is statically
   2668     // knowable.  If this block had a single pred, handle specially.
   2669     if (BB->getSinglePredecessor()) {
   2670       // Turn this into a branch on constant.
   2671       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2672       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2673                                         CondIsTrue));
   2674       return true;  // Nuke the branch on constant.
   2675     }
   2676 
   2677     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   2678     // in the constant and simplify the block result.  Subsequent passes of
   2679     // simplifycfg will thread the block.
   2680     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   2681       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   2682       PHINode *NewPN = PHINode::Create(
   2683           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
   2684           BI->getCondition()->getName() + ".pr", &BB->front());
   2685       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   2686       // predecessor, compute the PHI'd conditional value for all of the preds.
   2687       // Any predecessor where the condition is not computable we keep symbolic.
   2688       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2689         BasicBlock *P = *PI;
   2690         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
   2691             PBI != BI && PBI->isConditional() &&
   2692             PBI->getCondition() == BI->getCondition() &&
   2693             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2694           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2695           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2696                                               CondIsTrue), P);
   2697         } else {
   2698           NewPN->addIncoming(BI->getCondition(), P);
   2699         }
   2700       }
   2701 
   2702       BI->setCondition(NewPN);
   2703       return true;
   2704     }
   2705   }
   2706 
   2707   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   2708     if (CE->canTrap())
   2709       return false;
   2710 
   2711   // If BI is reached from the true path of PBI and PBI's condition implies
   2712   // BI's condition, we know the direction of the BI branch.
   2713   if (PBI->getSuccessor(0) == BI->getParent() &&
   2714       isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) &&
   2715       PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
   2716       BB->getSinglePredecessor()) {
   2717     // Turn this into a branch on constant.
   2718     auto *OldCond = BI->getCondition();
   2719     BI->setCondition(ConstantInt::getTrue(BB->getContext()));
   2720     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
   2721     return true;  // Nuke the branch on constant.
   2722   }
   2723 
   2724   // If both branches are conditional and both contain stores to the same
   2725   // address, remove the stores from the conditionals and create a conditional
   2726   // merged store at the end.
   2727   if (MergeCondStores && mergeConditionalStores(PBI, BI))
   2728     return true;
   2729 
   2730   // If this is a conditional branch in an empty block, and if any
   2731   // predecessors are a conditional branch to one of our destinations,
   2732   // fold the conditions into logical ops and one cond br.
   2733   BasicBlock::iterator BBI = BB->begin();
   2734   // Ignore dbg intrinsics.
   2735   while (isa<DbgInfoIntrinsic>(BBI))
   2736     ++BBI;
   2737   if (&*BBI != BI)
   2738     return false;
   2739 
   2740   int PBIOp, BIOp;
   2741   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
   2742     PBIOp = BIOp = 0;
   2743   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
   2744     PBIOp = 0, BIOp = 1;
   2745   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
   2746     PBIOp = 1, BIOp = 0;
   2747   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
   2748     PBIOp = BIOp = 1;
   2749   else
   2750     return false;
   2751 
   2752   // Check to make sure that the other destination of this branch
   2753   // isn't BB itself.  If so, this is an infinite loop that will
   2754   // keep getting unwound.
   2755   if (PBI->getSuccessor(PBIOp) == BB)
   2756     return false;
   2757 
   2758   // Do not perform this transformation if it would require
   2759   // insertion of a large number of select instructions. For targets
   2760   // without predication/cmovs, this is a big pessimization.
   2761 
   2762   // Also do not perform this transformation if any phi node in the common
   2763   // destination block can trap when reached by BB or PBB (PR17073). In that
   2764   // case, it would be unsafe to hoist the operation into a select instruction.
   2765 
   2766   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   2767   unsigned NumPhis = 0;
   2768   for (BasicBlock::iterator II = CommonDest->begin();
   2769        isa<PHINode>(II); ++II, ++NumPhis) {
   2770     if (NumPhis > 2) // Disable this xform.
   2771       return false;
   2772 
   2773     PHINode *PN = cast<PHINode>(II);
   2774     Value *BIV = PN->getIncomingValueForBlock(BB);
   2775     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
   2776       if (CE->canTrap())
   2777         return false;
   2778 
   2779     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2780     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2781     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
   2782       if (CE->canTrap())
   2783         return false;
   2784   }
   2785 
   2786   // Finally, if everything is ok, fold the branches to logical ops.
   2787   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
   2788 
   2789   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   2790                << "AND: " << *BI->getParent());
   2791 
   2792 
   2793   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   2794   // branch in it, where one edge (OtherDest) goes back to itself but the other
   2795   // exits.  We don't *know* that the program avoids the infinite loop
   2796   // (even though that seems likely).  If we do this xform naively, we'll end up
   2797   // recursively unpeeling the loop.  Since we know that (after the xform is
   2798   // done) that the block *is* infinite if reached, we just make it an obviously
   2799   // infinite loop with no cond branch.
   2800   if (OtherDest == BB) {
   2801     // Insert it at the end of the function, because it's either code,
   2802     // or it won't matter if it's hot. :)
   2803     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
   2804                                                   "infloop", BB->getParent());
   2805     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   2806     OtherDest = InfLoopBlock;
   2807   }
   2808 
   2809   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2810 
   2811   // BI may have other predecessors.  Because of this, we leave
   2812   // it alone, but modify PBI.
   2813 
   2814   // Make sure we get to CommonDest on True&True directions.
   2815   Value *PBICond = PBI->getCondition();
   2816   IRBuilder<true, NoFolder> Builder(PBI);
   2817   if (PBIOp)
   2818     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
   2819 
   2820   Value *BICond = BI->getCondition();
   2821   if (BIOp)
   2822     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
   2823 
   2824   // Merge the conditions.
   2825   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   2826 
   2827   // Modify PBI to branch on the new condition to the new dests.
   2828   PBI->setCondition(Cond);
   2829   PBI->setSuccessor(0, CommonDest);
   2830   PBI->setSuccessor(1, OtherDest);
   2831 
   2832   // Update branch weight for PBI.
   2833   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2834   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2835                                               PredFalseWeight);
   2836   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2837                                               SuccFalseWeight);
   2838   if (PredHasWeights && SuccHasWeights) {
   2839     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   2840     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
   2841     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   2842     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   2843     // The weight to CommonDest should be PredCommon * SuccTotal +
   2844     //                                    PredOther * SuccCommon.
   2845     // The weight to OtherDest should be PredOther * SuccOther.
   2846     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
   2847                                   PredOther * SuccCommon,
   2848                               PredOther * SuccOther};
   2849     // Halve the weights if any of them cannot fit in an uint32_t
   2850     FitWeights(NewWeights);
   2851 
   2852     PBI->setMetadata(LLVMContext::MD_prof,
   2853                      MDBuilder(BI->getContext())
   2854                          .createBranchWeights(NewWeights[0], NewWeights[1]));
   2855   }
   2856 
   2857   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   2858   // block that are identical to the entries for BI's block.
   2859   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   2860 
   2861   // We know that the CommonDest already had an edge from PBI to
   2862   // it.  If it has PHIs though, the PHIs may have different
   2863   // entries for BB and PBI's BB.  If so, insert a select to make
   2864   // them agree.
   2865   PHINode *PN;
   2866   for (BasicBlock::iterator II = CommonDest->begin();
   2867        (PN = dyn_cast<PHINode>(II)); ++II) {
   2868     Value *BIV = PN->getIncomingValueForBlock(BB);
   2869     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2870     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2871     if (BIV != PBIV) {
   2872       // Insert a select in PBI to pick the right value.
   2873       Value *NV = cast<SelectInst>
   2874         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
   2875       PN->setIncomingValue(PBBIdx, NV);
   2876     }
   2877   }
   2878 
   2879   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   2880   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2881 
   2882   // This basic block is probably dead.  We know it has at least
   2883   // one fewer predecessor.
   2884   return true;
   2885 }
   2886 
   2887 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
   2888 // true or to FalseBB if Cond is false.
   2889 // Takes care of updating the successors and removing the old terminator.
   2890 // Also makes sure not to introduce new successors by assuming that edges to
   2891 // non-successor TrueBBs and FalseBBs aren't reachable.
   2892 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   2893                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
   2894                                        uint32_t TrueWeight,
   2895                                        uint32_t FalseWeight){
   2896   // Remove any superfluous successor edges from the CFG.
   2897   // First, figure out which successors to preserve.
   2898   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   2899   // successor.
   2900   BasicBlock *KeepEdge1 = TrueBB;
   2901   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
   2902 
   2903   // Then remove the rest.
   2904   for (BasicBlock *Succ : OldTerm->successors()) {
   2905     // Make sure only to keep exactly one copy of each edge.
   2906     if (Succ == KeepEdge1)
   2907       KeepEdge1 = nullptr;
   2908     else if (Succ == KeepEdge2)
   2909       KeepEdge2 = nullptr;
   2910     else
   2911       Succ->removePredecessor(OldTerm->getParent(),
   2912                               /*DontDeleteUselessPHIs=*/true);
   2913   }
   2914 
   2915   IRBuilder<> Builder(OldTerm);
   2916   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   2917 
   2918   // Insert an appropriate new terminator.
   2919   if (!KeepEdge1 && !KeepEdge2) {
   2920     if (TrueBB == FalseBB)
   2921       // We were only looking for one successor, and it was present.
   2922       // Create an unconditional branch to it.
   2923       Builder.CreateBr(TrueBB);
   2924     else {
   2925       // We found both of the successors we were looking for.
   2926       // Create a conditional branch sharing the condition of the select.
   2927       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   2928       if (TrueWeight != FalseWeight)
   2929         NewBI->setMetadata(LLVMContext::MD_prof,
   2930                            MDBuilder(OldTerm->getContext()).
   2931                            createBranchWeights(TrueWeight, FalseWeight));
   2932     }
   2933   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   2934     // Neither of the selected blocks were successors, so this
   2935     // terminator must be unreachable.
   2936     new UnreachableInst(OldTerm->getContext(), OldTerm);
   2937   } else {
   2938     // One of the selected values was a successor, but the other wasn't.
   2939     // Insert an unconditional branch to the one that was found;
   2940     // the edge to the one that wasn't must be unreachable.
   2941     if (!KeepEdge1)
   2942       // Only TrueBB was found.
   2943       Builder.CreateBr(TrueBB);
   2944     else
   2945       // Only FalseBB was found.
   2946       Builder.CreateBr(FalseBB);
   2947   }
   2948 
   2949   EraseTerminatorInstAndDCECond(OldTerm);
   2950   return true;
   2951 }
   2952 
   2953 // Replaces
   2954 //   (switch (select cond, X, Y)) on constant X, Y
   2955 // with a branch - conditional if X and Y lead to distinct BBs,
   2956 // unconditional otherwise.
   2957 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   2958   // Check for constant integer values in the select.
   2959   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   2960   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   2961   if (!TrueVal || !FalseVal)
   2962     return false;
   2963 
   2964   // Find the relevant condition and destinations.
   2965   Value *Condition = Select->getCondition();
   2966   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
   2967   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
   2968 
   2969   // Get weight for TrueBB and FalseBB.
   2970   uint32_t TrueWeight = 0, FalseWeight = 0;
   2971   SmallVector<uint64_t, 8> Weights;
   2972   bool HasWeights = HasBranchWeights(SI);
   2973   if (HasWeights) {
   2974     GetBranchWeights(SI, Weights);
   2975     if (Weights.size() == 1 + SI->getNumCases()) {
   2976       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
   2977                                      getSuccessorIndex()];
   2978       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
   2979                                       getSuccessorIndex()];
   2980     }
   2981   }
   2982 
   2983   // Perform the actual simplification.
   2984   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
   2985                                     TrueWeight, FalseWeight);
   2986 }
   2987 
   2988 // Replaces
   2989 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   2990 //                             blockaddress(@fn, BlockB)))
   2991 // with
   2992 //   (br cond, BlockA, BlockB).
   2993 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   2994   // Check that both operands of the select are block addresses.
   2995   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   2996   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   2997   if (!TBA || !FBA)
   2998     return false;
   2999 
   3000   // Extract the actual blocks.
   3001   BasicBlock *TrueBB = TBA->getBasicBlock();
   3002   BasicBlock *FalseBB = FBA->getBasicBlock();
   3003 
   3004   // Perform the actual simplification.
   3005   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
   3006                                     0, 0);
   3007 }
   3008 
   3009 /// This is called when we find an icmp instruction
   3010 /// (a seteq/setne with a constant) as the only instruction in a
   3011 /// block that ends with an uncond branch.  We are looking for a very specific
   3012 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   3013 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   3014 /// default value goes to an uncond block with a seteq in it, we get something
   3015 /// like:
   3016 ///
   3017 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   3018 /// DEFAULT:
   3019 ///   %tmp = icmp eq i8 %A, 92
   3020 ///   br label %end
   3021 /// end:
   3022 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   3023 ///
   3024 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   3025 /// the PHI, merging the third icmp into the switch.
   3026 static bool TryToSimplifyUncondBranchWithICmpInIt(
   3027     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
   3028     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
   3029     AssumptionCache *AC) {
   3030   BasicBlock *BB = ICI->getParent();
   3031 
   3032   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   3033   // complex.
   3034   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
   3035 
   3036   Value *V = ICI->getOperand(0);
   3037   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   3038 
   3039   // The pattern we're looking for is where our only predecessor is a switch on
   3040   // 'V' and this block is the default case for the switch.  In this case we can
   3041   // fold the compared value into the switch to simplify things.
   3042   BasicBlock *Pred = BB->getSinglePredecessor();
   3043   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
   3044 
   3045   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   3046   if (SI->getCondition() != V)
   3047     return false;
   3048 
   3049   // If BB is reachable on a non-default case, then we simply know the value of
   3050   // V in this block.  Substitute it and constant fold the icmp instruction
   3051   // away.
   3052   if (SI->getDefaultDest() != BB) {
   3053     ConstantInt *VVal = SI->findCaseDest(BB);
   3054     assert(VVal && "Should have a unique destination value");
   3055     ICI->setOperand(0, VVal);
   3056 
   3057     if (Value *V = SimplifyInstruction(ICI, DL)) {
   3058       ICI->replaceAllUsesWith(V);
   3059       ICI->eraseFromParent();
   3060     }
   3061     // BB is now empty, so it is likely to simplify away.
   3062     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   3063   }
   3064 
   3065   // Ok, the block is reachable from the default dest.  If the constant we're
   3066   // comparing exists in one of the other edges, then we can constant fold ICI
   3067   // and zap it.
   3068   if (SI->findCaseValue(Cst) != SI->case_default()) {
   3069     Value *V;
   3070     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   3071       V = ConstantInt::getFalse(BB->getContext());
   3072     else
   3073       V = ConstantInt::getTrue(BB->getContext());
   3074 
   3075     ICI->replaceAllUsesWith(V);
   3076     ICI->eraseFromParent();
   3077     // BB is now empty, so it is likely to simplify away.
   3078     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   3079   }
   3080 
   3081   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   3082   // the block.
   3083   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   3084   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
   3085   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
   3086       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   3087     return false;
   3088 
   3089   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   3090   // true in the PHI.
   3091   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   3092   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
   3093 
   3094   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   3095     std::swap(DefaultCst, NewCst);
   3096 
   3097   // Replace ICI (which is used by the PHI for the default value) with true or
   3098   // false depending on if it is EQ or NE.
   3099   ICI->replaceAllUsesWith(DefaultCst);
   3100   ICI->eraseFromParent();
   3101 
   3102   // Okay, the switch goes to this block on a default value.  Add an edge from
   3103   // the switch to the merge point on the compared value.
   3104   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
   3105                                          BB->getParent(), BB);
   3106   SmallVector<uint64_t, 8> Weights;
   3107   bool HasWeights = HasBranchWeights(SI);
   3108   if (HasWeights) {
   3109     GetBranchWeights(SI, Weights);
   3110     if (Weights.size() == 1 + SI->getNumCases()) {
   3111       // Split weight for default case to case for "Cst".
   3112       Weights[0] = (Weights[0]+1) >> 1;
   3113       Weights.push_back(Weights[0]);
   3114 
   3115       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   3116       SI->setMetadata(LLVMContext::MD_prof,
   3117                       MDBuilder(SI->getContext()).
   3118                       createBranchWeights(MDWeights));
   3119     }
   3120   }
   3121   SI->addCase(Cst, NewBB);
   3122 
   3123   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   3124   Builder.SetInsertPoint(NewBB);
   3125   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   3126   Builder.CreateBr(SuccBlock);
   3127   PHIUse->addIncoming(NewCst, NewBB);
   3128   return true;
   3129 }
   3130 
   3131 /// The specified branch is a conditional branch.
   3132 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   3133 /// fold it into a switch instruction if so.
   3134 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
   3135                                       const DataLayout &DL) {
   3136   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   3137   if (!Cond) return false;
   3138 
   3139   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   3140   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   3141   // 'setne's and'ed together, collect them.
   3142 
   3143   // Try to gather values from a chain of and/or to be turned into a switch
   3144   ConstantComparesGatherer ConstantCompare(Cond, DL);
   3145   // Unpack the result
   3146   SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
   3147   Value *CompVal = ConstantCompare.CompValue;
   3148   unsigned UsedICmps = ConstantCompare.UsedICmps;
   3149   Value *ExtraCase = ConstantCompare.Extra;
   3150 
   3151   // If we didn't have a multiply compared value, fail.
   3152   if (!CompVal) return false;
   3153 
   3154   // Avoid turning single icmps into a switch.
   3155   if (UsedICmps <= 1)
   3156     return false;
   3157 
   3158   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
   3159 
   3160   // There might be duplicate constants in the list, which the switch
   3161   // instruction can't handle, remove them now.
   3162   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   3163   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   3164 
   3165   // If Extra was used, we require at least two switch values to do the
   3166   // transformation.  A switch with one value is just a conditional branch.
   3167   if (ExtraCase && Values.size() < 2) return false;
   3168 
   3169   // TODO: Preserve branch weight metadata, similarly to how
   3170   // FoldValueComparisonIntoPredecessors preserves it.
   3171 
   3172   // Figure out which block is which destination.
   3173   BasicBlock *DefaultBB = BI->getSuccessor(1);
   3174   BasicBlock *EdgeBB    = BI->getSuccessor(0);
   3175   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
   3176 
   3177   BasicBlock *BB = BI->getParent();
   3178 
   3179   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   3180                << " cases into SWITCH.  BB is:\n" << *BB);
   3181 
   3182   // If there are any extra values that couldn't be folded into the switch
   3183   // then we evaluate them with an explicit branch first.  Split the block
   3184   // right before the condbr to handle it.
   3185   if (ExtraCase) {
   3186     BasicBlock *NewBB =
   3187         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
   3188     // Remove the uncond branch added to the old block.
   3189     TerminatorInst *OldTI = BB->getTerminator();
   3190     Builder.SetInsertPoint(OldTI);
   3191 
   3192     if (TrueWhenEqual)
   3193       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   3194     else
   3195       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   3196 
   3197     OldTI->eraseFromParent();
   3198 
   3199     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   3200     // for the edge we just added.
   3201     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   3202 
   3203     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   3204           << "\nEXTRABB = " << *BB);
   3205     BB = NewBB;
   3206   }
   3207 
   3208   Builder.SetInsertPoint(BI);
   3209   // Convert pointer to int before we switch.
   3210   if (CompVal->getType()->isPointerTy()) {
   3211     CompVal = Builder.CreatePtrToInt(
   3212         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
   3213   }
   3214 
   3215   // Create the new switch instruction now.
   3216   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   3217 
   3218   // Add all of the 'cases' to the switch instruction.
   3219   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   3220     New->addCase(Values[i], EdgeBB);
   3221 
   3222   // We added edges from PI to the EdgeBB.  As such, if there were any
   3223   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   3224   // the number of edges added.
   3225   for (BasicBlock::iterator BBI = EdgeBB->begin();
   3226        isa<PHINode>(BBI); ++BBI) {
   3227     PHINode *PN = cast<PHINode>(BBI);
   3228     Value *InVal = PN->getIncomingValueForBlock(BB);
   3229     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
   3230       PN->addIncoming(InVal, BB);
   3231   }
   3232 
   3233   // Erase the old branch instruction.
   3234   EraseTerminatorInstAndDCECond(BI);
   3235 
   3236   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   3237   return true;
   3238 }
   3239 
   3240 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   3241   // If this is a trivial landing pad that just continues unwinding the caught
   3242   // exception then zap the landing pad, turning its invokes into calls.
   3243   BasicBlock *BB = RI->getParent();
   3244   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   3245   if (RI->getValue() != LPInst)
   3246     // Not a landing pad, or the resume is not unwinding the exception that
   3247     // caused control to branch here.
   3248     return false;
   3249 
   3250   // Check that there are no other instructions except for debug intrinsics.
   3251   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
   3252   while (++I != E)
   3253     if (!isa<DbgInfoIntrinsic>(I))
   3254       return false;
   3255 
   3256   // Turn all invokes that unwind here into calls and delete the basic block.
   3257   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   3258     BasicBlock *Pred = *PI++;
   3259     removeUnwindEdge(Pred);
   3260   }
   3261 
   3262   // The landingpad is now unreachable.  Zap it.
   3263   BB->eraseFromParent();
   3264   return true;
   3265 }
   3266 
   3267 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
   3268   // If this is a trivial cleanup pad that executes no instructions, it can be
   3269   // eliminated.  If the cleanup pad continues to the caller, any predecessor
   3270   // that is an EH pad will be updated to continue to the caller and any
   3271   // predecessor that terminates with an invoke instruction will have its invoke
   3272   // instruction converted to a call instruction.  If the cleanup pad being
   3273   // simplified does not continue to the caller, each predecessor will be
   3274   // updated to continue to the unwind destination of the cleanup pad being
   3275   // simplified.
   3276   BasicBlock *BB = RI->getParent();
   3277   CleanupPadInst *CPInst = RI->getCleanupPad();
   3278   if (CPInst->getParent() != BB)
   3279     // This isn't an empty cleanup.
   3280     return false;
   3281 
   3282   // Check that there are no other instructions except for debug intrinsics.
   3283   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
   3284   while (++I != E)
   3285     if (!isa<DbgInfoIntrinsic>(I))
   3286       return false;
   3287 
   3288   // If the cleanup return we are simplifying unwinds to the caller, this will
   3289   // set UnwindDest to nullptr.
   3290   BasicBlock *UnwindDest = RI->getUnwindDest();
   3291   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
   3292 
   3293   // We're about to remove BB from the control flow.  Before we do, sink any
   3294   // PHINodes into the unwind destination.  Doing this before changing the
   3295   // control flow avoids some potentially slow checks, since we can currently
   3296   // be certain that UnwindDest and BB have no common predecessors (since they
   3297   // are both EH pads).
   3298   if (UnwindDest) {
   3299     // First, go through the PHI nodes in UnwindDest and update any nodes that
   3300     // reference the block we are removing
   3301     for (BasicBlock::iterator I = UnwindDest->begin(),
   3302                               IE = DestEHPad->getIterator();
   3303          I != IE; ++I) {
   3304       PHINode *DestPN = cast<PHINode>(I);
   3305 
   3306       int Idx = DestPN->getBasicBlockIndex(BB);
   3307       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
   3308       assert(Idx != -1);
   3309       // This PHI node has an incoming value that corresponds to a control
   3310       // path through the cleanup pad we are removing.  If the incoming
   3311       // value is in the cleanup pad, it must be a PHINode (because we
   3312       // verified above that the block is otherwise empty).  Otherwise, the
   3313       // value is either a constant or a value that dominates the cleanup
   3314       // pad being removed.
   3315       //
   3316       // Because BB and UnwindDest are both EH pads, all of their
   3317       // predecessors must unwind to these blocks, and since no instruction
   3318       // can have multiple unwind destinations, there will be no overlap in
   3319       // incoming blocks between SrcPN and DestPN.
   3320       Value *SrcVal = DestPN->getIncomingValue(Idx);
   3321       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
   3322 
   3323       // Remove the entry for the block we are deleting.
   3324       DestPN->removeIncomingValue(Idx, false);
   3325 
   3326       if (SrcPN && SrcPN->getParent() == BB) {
   3327         // If the incoming value was a PHI node in the cleanup pad we are
   3328         // removing, we need to merge that PHI node's incoming values into
   3329         // DestPN.
   3330         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
   3331               SrcIdx != SrcE; ++SrcIdx) {
   3332           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
   3333                               SrcPN->getIncomingBlock(SrcIdx));
   3334         }
   3335       } else {
   3336         // Otherwise, the incoming value came from above BB and
   3337         // so we can just reuse it.  We must associate all of BB's
   3338         // predecessors with this value.
   3339         for (auto *pred : predecessors(BB)) {
   3340           DestPN->addIncoming(SrcVal, pred);
   3341         }
   3342       }
   3343     }
   3344 
   3345     // Sink any remaining PHI nodes directly into UnwindDest.
   3346     Instruction *InsertPt = DestEHPad;
   3347     for (BasicBlock::iterator I = BB->begin(),
   3348                               IE = BB->getFirstNonPHI()->getIterator();
   3349          I != IE;) {
   3350       // The iterator must be incremented here because the instructions are
   3351       // being moved to another block.
   3352       PHINode *PN = cast<PHINode>(I++);
   3353       if (PN->use_empty())
   3354         // If the PHI node has no uses, just leave it.  It will be erased
   3355         // when we erase BB below.
   3356         continue;
   3357 
   3358       // Otherwise, sink this PHI node into UnwindDest.
   3359       // Any predecessors to UnwindDest which are not already represented
   3360       // must be back edges which inherit the value from the path through
   3361       // BB.  In this case, the PHI value must reference itself.
   3362       for (auto *pred : predecessors(UnwindDest))
   3363         if (pred != BB)
   3364           PN->addIncoming(PN, pred);
   3365       PN->moveBefore(InsertPt);
   3366     }
   3367   }
   3368 
   3369   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   3370     // The iterator must be updated here because we are removing this pred.
   3371     BasicBlock *PredBB = *PI++;
   3372     if (UnwindDest == nullptr) {
   3373       removeUnwindEdge(PredBB);
   3374     } else {
   3375       TerminatorInst *TI = PredBB->getTerminator();
   3376       TI->replaceUsesOfWith(BB, UnwindDest);
   3377     }
   3378   }
   3379 
   3380   // The cleanup pad is now unreachable.  Zap it.
   3381   BB->eraseFromParent();
   3382   return true;
   3383 }
   3384 
   3385 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   3386   BasicBlock *BB = RI->getParent();
   3387   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   3388 
   3389   // Find predecessors that end with branches.
   3390   SmallVector<BasicBlock*, 8> UncondBranchPreds;
   3391   SmallVector<BranchInst*, 8> CondBranchPreds;
   3392   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   3393     BasicBlock *P = *PI;
   3394     TerminatorInst *PTI = P->getTerminator();
   3395     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   3396       if (BI->isUnconditional())
   3397         UncondBranchPreds.push_back(P);
   3398       else
   3399         CondBranchPreds.push_back(BI);
   3400     }
   3401   }
   3402 
   3403   // If we found some, do the transformation!
   3404   if (!UncondBranchPreds.empty() && DupRet) {
   3405     while (!UncondBranchPreds.empty()) {
   3406       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   3407       DEBUG(dbgs() << "FOLDING: " << *BB
   3408             << "INTO UNCOND BRANCH PRED: " << *Pred);
   3409       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   3410     }
   3411 
   3412     // If we eliminated all predecessors of the block, delete the block now.
   3413     if (pred_empty(BB))
   3414       // We know there are no successors, so just nuke the block.
   3415       BB->eraseFromParent();
   3416 
   3417     return true;
   3418   }
   3419 
   3420   // Check out all of the conditional branches going to this return
   3421   // instruction.  If any of them just select between returns, change the
   3422   // branch itself into a select/return pair.
   3423   while (!CondBranchPreds.empty()) {
   3424     BranchInst *BI = CondBranchPreds.pop_back_val();
   3425 
   3426     // Check to see if the non-BB successor is also a return block.
   3427     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   3428         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   3429         SimplifyCondBranchToTwoReturns(BI, Builder))
   3430       return true;
   3431   }
   3432   return false;
   3433 }
   3434 
   3435 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   3436   BasicBlock *BB = UI->getParent();
   3437 
   3438   bool Changed = false;
   3439 
   3440   // If there are any instructions immediately before the unreachable that can
   3441   // be removed, do so.
   3442   while (UI->getIterator() != BB->begin()) {
   3443     BasicBlock::iterator BBI = UI->getIterator();
   3444     --BBI;
   3445     // Do not delete instructions that can have side effects which might cause
   3446     // the unreachable to not be reachable; specifically, calls and volatile
   3447     // operations may have this effect.
   3448     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
   3449 
   3450     if (BBI->mayHaveSideEffects()) {
   3451       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   3452         if (SI->isVolatile())
   3453           break;
   3454       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
   3455         if (LI->isVolatile())
   3456           break;
   3457       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   3458         if (RMWI->isVolatile())
   3459           break;
   3460       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   3461         if (CXI->isVolatile())
   3462           break;
   3463       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   3464                  !isa<LandingPadInst>(BBI)) {
   3465         break;
   3466       }
   3467       // Note that deleting LandingPad's here is in fact okay, although it
   3468       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   3469       // all the predecessors of this block will be the unwind edges of Invokes,
   3470       // and we can therefore guarantee this block will be erased.
   3471     }
   3472 
   3473     // Delete this instruction (any uses are guaranteed to be dead)
   3474     if (!BBI->use_empty())
   3475       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   3476     BBI->eraseFromParent();
   3477     Changed = true;
   3478   }
   3479 
   3480   // If the unreachable instruction is the first in the block, take a gander
   3481   // at all of the predecessors of this instruction, and simplify them.
   3482   if (&BB->front() != UI) return Changed;
   3483 
   3484   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   3485   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   3486     TerminatorInst *TI = Preds[i]->getTerminator();
   3487     IRBuilder<> Builder(TI);
   3488     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   3489       if (BI->isUnconditional()) {
   3490         if (BI->getSuccessor(0) == BB) {
   3491           new UnreachableInst(TI->getContext(), TI);
   3492           TI->eraseFromParent();
   3493           Changed = true;
   3494         }
   3495       } else {
   3496         if (BI->getSuccessor(0) == BB) {
   3497           Builder.CreateBr(BI->getSuccessor(1));
   3498           EraseTerminatorInstAndDCECond(BI);
   3499         } else if (BI->getSuccessor(1) == BB) {
   3500           Builder.CreateBr(BI->getSuccessor(0));
   3501           EraseTerminatorInstAndDCECond(BI);
   3502           Changed = true;
   3503         }
   3504       }
   3505     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   3506       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3507            i != e; ++i)
   3508         if (i.getCaseSuccessor() == BB) {
   3509           BB->removePredecessor(SI->getParent());
   3510           SI->removeCase(i);
   3511           --i; --e;
   3512           Changed = true;
   3513         }
   3514     } else if ((isa<InvokeInst>(TI) &&
   3515                 cast<InvokeInst>(TI)->getUnwindDest() == BB) ||
   3516                isa<CatchSwitchInst>(TI)) {
   3517       removeUnwindEdge(TI->getParent());
   3518       Changed = true;
   3519     } else if (isa<CleanupReturnInst>(TI)) {
   3520       new UnreachableInst(TI->getContext(), TI);
   3521       TI->eraseFromParent();
   3522       Changed = true;
   3523     }
   3524     // TODO: We can remove a catchswitch if all it's catchpads end in
   3525     // unreachable.
   3526   }
   3527 
   3528   // If this block is now dead, remove it.
   3529   if (pred_empty(BB) &&
   3530       BB != &BB->getParent()->getEntryBlock()) {
   3531     // We know there are no successors, so just nuke the block.
   3532     BB->eraseFromParent();
   3533     return true;
   3534   }
   3535 
   3536   return Changed;
   3537 }
   3538 
   3539 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
   3540   assert(Cases.size() >= 1);
   3541 
   3542   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   3543   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
   3544     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
   3545       return false;
   3546   }
   3547   return true;
   3548 }
   3549 
   3550 /// Turn a switch with two reachable destinations into an integer range
   3551 /// comparison and branch.
   3552 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   3553   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3554 
   3555   bool HasDefault =
   3556       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   3557 
   3558   // Partition the cases into two sets with different destinations.
   3559   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
   3560   BasicBlock *DestB = nullptr;
   3561   SmallVector <ConstantInt *, 16> CasesA;
   3562   SmallVector <ConstantInt *, 16> CasesB;
   3563 
   3564   for (SwitchInst::CaseIt I : SI->cases()) {
   3565     BasicBlock *Dest = I.getCaseSuccessor();
   3566     if (!DestA) DestA = Dest;
   3567     if (Dest == DestA) {
   3568       CasesA.push_back(I.getCaseValue());
   3569       continue;
   3570     }
   3571     if (!DestB) DestB = Dest;
   3572     if (Dest == DestB) {
   3573       CasesB.push_back(I.getCaseValue());
   3574       continue;
   3575     }
   3576     return false;  // More than two destinations.
   3577   }
   3578 
   3579   assert(DestA && DestB && "Single-destination switch should have been folded.");
   3580   assert(DestA != DestB);
   3581   assert(DestB != SI->getDefaultDest());
   3582   assert(!CasesB.empty() && "There must be non-default cases.");
   3583   assert(!CasesA.empty() || HasDefault);
   3584 
   3585   // Figure out if one of the sets of cases form a contiguous range.
   3586   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
   3587   BasicBlock *ContiguousDest = nullptr;
   3588   BasicBlock *OtherDest = nullptr;
   3589   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
   3590     ContiguousCases = &CasesA;
   3591     ContiguousDest = DestA;
   3592     OtherDest = DestB;
   3593   } else if (CasesAreContiguous(CasesB)) {
   3594     ContiguousCases = &CasesB;
   3595     ContiguousDest = DestB;
   3596     OtherDest = DestA;
   3597   } else
   3598     return false;
   3599 
   3600   // Start building the compare and branch.
   3601 
   3602   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
   3603   Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
   3604 
   3605   Value *Sub = SI->getCondition();
   3606   if (!Offset->isNullValue())
   3607     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
   3608 
   3609   Value *Cmp;
   3610   // If NumCases overflowed, then all possible values jump to the successor.
   3611   if (NumCases->isNullValue() && !ContiguousCases->empty())
   3612     Cmp = ConstantInt::getTrue(SI->getContext());
   3613   else
   3614     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   3615   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
   3616 
   3617   // Update weight for the newly-created conditional branch.
   3618   if (HasBranchWeights(SI)) {
   3619     SmallVector<uint64_t, 8> Weights;
   3620     GetBranchWeights(SI, Weights);
   3621     if (Weights.size() == 1 + SI->getNumCases()) {
   3622       uint64_t TrueWeight = 0;
   3623       uint64_t FalseWeight = 0;
   3624       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
   3625         if (SI->getSuccessor(I) == ContiguousDest)
   3626           TrueWeight += Weights[I];
   3627         else
   3628           FalseWeight += Weights[I];
   3629       }
   3630       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
   3631         TrueWeight /= 2;
   3632         FalseWeight /= 2;
   3633       }
   3634       NewBI->setMetadata(LLVMContext::MD_prof,
   3635                          MDBuilder(SI->getContext()).createBranchWeights(
   3636                              (uint32_t)TrueWeight, (uint32_t)FalseWeight));
   3637     }
   3638   }
   3639 
   3640   // Prune obsolete incoming values off the successors' PHI nodes.
   3641   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
   3642     unsigned PreviousEdges = ContiguousCases->size();
   3643     if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
   3644     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
   3645       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3646   }
   3647   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
   3648     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
   3649     if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
   3650     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
   3651       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3652   }
   3653 
   3654   // Drop the switch.
   3655   SI->eraseFromParent();
   3656 
   3657   return true;
   3658 }
   3659 
   3660 /// Compute masked bits for the condition of a switch
   3661 /// and use it to remove dead cases.
   3662 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
   3663                                      const DataLayout &DL) {
   3664   Value *Cond = SI->getCondition();
   3665   unsigned Bits = Cond->getType()->getIntegerBitWidth();
   3666   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   3667   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
   3668 
   3669   // Gather dead cases.
   3670   SmallVector<ConstantInt*, 8> DeadCases;
   3671   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3672     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
   3673         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
   3674       DeadCases.push_back(I.getCaseValue());
   3675       DEBUG(dbgs() << "SimplifyCFG: switch case '"
   3676                    << I.getCaseValue() << "' is dead.\n");
   3677     }
   3678   }
   3679 
   3680   // If we can prove that the cases must cover all possible values, the
   3681   // default destination becomes dead and we can remove it.  If we know some
   3682   // of the bits in the value, we can use that to more precisely compute the
   3683   // number of possible unique case values.
   3684   bool HasDefault =
   3685     !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   3686   const unsigned NumUnknownBits = Bits -
   3687     (KnownZero.Or(KnownOne)).countPopulation();
   3688   assert(NumUnknownBits <= Bits);
   3689   if (HasDefault && DeadCases.empty() &&
   3690       NumUnknownBits < 64 /* avoid overflow */ &&
   3691       SI->getNumCases() == (1ULL << NumUnknownBits)) {
   3692     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
   3693     BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
   3694                                                     SI->getParent(), "");
   3695     SI->setDefaultDest(&*NewDefault);
   3696     SplitBlock(&*NewDefault, &NewDefault->front());
   3697     auto *OldTI = NewDefault->getTerminator();
   3698     new UnreachableInst(SI->getContext(), OldTI);
   3699     EraseTerminatorInstAndDCECond(OldTI);
   3700     return true;
   3701   }
   3702 
   3703   SmallVector<uint64_t, 8> Weights;
   3704   bool HasWeight = HasBranchWeights(SI);
   3705   if (HasWeight) {
   3706     GetBranchWeights(SI, Weights);
   3707     HasWeight = (Weights.size() == 1 + SI->getNumCases());
   3708   }
   3709 
   3710   // Remove dead cases from the switch.
   3711   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
   3712     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
   3713     assert(Case != SI->case_default() &&
   3714            "Case was not found. Probably mistake in DeadCases forming.");
   3715     if (HasWeight) {
   3716       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
   3717       Weights.pop_back();
   3718     }
   3719 
   3720     // Prune unused values from PHI nodes.
   3721     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
   3722     SI->removeCase(Case);
   3723   }
   3724   if (HasWeight && Weights.size() >= 2) {
   3725     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   3726     SI->setMetadata(LLVMContext::MD_prof,
   3727                     MDBuilder(SI->getParent()->getContext()).
   3728                     createBranchWeights(MDWeights));
   3729   }
   3730 
   3731   return !DeadCases.empty();
   3732 }
   3733 
   3734 /// If BB would be eligible for simplification by
   3735 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   3736 /// by an unconditional branch), look at the phi node for BB in the successor
   3737 /// block and see if the incoming value is equal to CaseValue. If so, return
   3738 /// the phi node, and set PhiIndex to BB's index in the phi node.
   3739 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   3740                                               BasicBlock *BB,
   3741                                               int *PhiIndex) {
   3742   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   3743     return nullptr; // BB must be empty to be a candidate for simplification.
   3744   if (!BB->getSinglePredecessor())
   3745     return nullptr; // BB must be dominated by the switch.
   3746 
   3747   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   3748   if (!Branch || !Branch->isUnconditional())
   3749     return nullptr; // Terminator must be unconditional branch.
   3750 
   3751   BasicBlock *Succ = Branch->getSuccessor(0);
   3752 
   3753   BasicBlock::iterator I = Succ->begin();
   3754   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3755     int Idx = PHI->getBasicBlockIndex(BB);
   3756     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   3757 
   3758     Value *InValue = PHI->getIncomingValue(Idx);
   3759     if (InValue != CaseValue) continue;
   3760 
   3761     *PhiIndex = Idx;
   3762     return PHI;
   3763   }
   3764 
   3765   return nullptr;
   3766 }
   3767 
   3768 /// Try to forward the condition of a switch instruction to a phi node
   3769 /// dominated by the switch, if that would mean that some of the destination
   3770 /// blocks of the switch can be folded away.
   3771 /// Returns true if a change is made.
   3772 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   3773   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
   3774   ForwardingNodesMap ForwardingNodes;
   3775 
   3776   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3777     ConstantInt *CaseValue = I.getCaseValue();
   3778     BasicBlock *CaseDest = I.getCaseSuccessor();
   3779 
   3780     int PhiIndex;
   3781     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
   3782                                                  &PhiIndex);
   3783     if (!PHI) continue;
   3784 
   3785     ForwardingNodes[PHI].push_back(PhiIndex);
   3786   }
   3787 
   3788   bool Changed = false;
   3789 
   3790   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   3791        E = ForwardingNodes.end(); I != E; ++I) {
   3792     PHINode *Phi = I->first;
   3793     SmallVectorImpl<int> &Indexes = I->second;
   3794 
   3795     if (Indexes.size() < 2) continue;
   3796 
   3797     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   3798       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   3799     Changed = true;
   3800   }
   3801 
   3802   return Changed;
   3803 }
   3804 
   3805 /// Return true if the backend will be able to handle
   3806 /// initializing an array of constants like C.
   3807 static bool ValidLookupTableConstant(Constant *C) {
   3808   if (C->isThreadDependent())
   3809     return false;
   3810   if (C->isDLLImportDependent())
   3811     return false;
   3812 
   3813   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   3814     return CE->isGEPWithNoNotionalOverIndexing();
   3815 
   3816   return isa<ConstantFP>(C) ||
   3817       isa<ConstantInt>(C) ||
   3818       isa<ConstantPointerNull>(C) ||
   3819       isa<GlobalValue>(C) ||
   3820       isa<UndefValue>(C);
   3821 }
   3822 
   3823 /// If V is a Constant, return it. Otherwise, try to look up
   3824 /// its constant value in ConstantPool, returning 0 if it's not there.
   3825 static Constant *LookupConstant(Value *V,
   3826                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
   3827   if (Constant *C = dyn_cast<Constant>(V))
   3828     return C;
   3829   return ConstantPool.lookup(V);
   3830 }
   3831 
   3832 /// Try to fold instruction I into a constant. This works for
   3833 /// simple instructions such as binary operations where both operands are
   3834 /// constant or can be replaced by constants from the ConstantPool. Returns the
   3835 /// resulting constant on success, 0 otherwise.
   3836 static Constant *
   3837 ConstantFold(Instruction *I, const DataLayout &DL,
   3838              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
   3839   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
   3840     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
   3841     if (!A)
   3842       return nullptr;
   3843     if (A->isAllOnesValue())
   3844       return LookupConstant(Select->getTrueValue(), ConstantPool);
   3845     if (A->isNullValue())
   3846       return LookupConstant(Select->getFalseValue(), ConstantPool);
   3847     return nullptr;
   3848   }
   3849 
   3850   SmallVector<Constant *, 4> COps;
   3851   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
   3852     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
   3853       COps.push_back(A);
   3854     else
   3855       return nullptr;
   3856   }
   3857 
   3858   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
   3859     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
   3860                                            COps[1], DL);
   3861   }
   3862 
   3863   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
   3864 }
   3865 
   3866 /// Try to determine the resulting constant values in phi nodes
   3867 /// at the common destination basic block, *CommonDest, for one of the case
   3868 /// destionations CaseDest corresponding to value CaseVal (0 for the default
   3869 /// case), of a switch instruction SI.
   3870 static bool
   3871 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
   3872                BasicBlock **CommonDest,
   3873                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
   3874                const DataLayout &DL) {
   3875   // The block from which we enter the common destination.
   3876   BasicBlock *Pred = SI->getParent();
   3877 
   3878   // If CaseDest is empty except for some side-effect free instructions through
   3879   // which we can constant-propagate the CaseVal, continue to its successor.
   3880   SmallDenseMap<Value*, Constant*> ConstantPool;
   3881   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
   3882   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
   3883        ++I) {
   3884     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
   3885       // If the terminator is a simple branch, continue to the next block.
   3886       if (T->getNumSuccessors() != 1)
   3887         return false;
   3888       Pred = CaseDest;
   3889       CaseDest = T->getSuccessor(0);
   3890     } else if (isa<DbgInfoIntrinsic>(I)) {
   3891       // Skip debug intrinsic.
   3892       continue;
   3893     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
   3894       // Instruction is side-effect free and constant.
   3895 
   3896       // If the instruction has uses outside this block or a phi node slot for
   3897       // the block, it is not safe to bypass the instruction since it would then
   3898       // no longer dominate all its uses.
   3899       for (auto &Use : I->uses()) {
   3900         User *User = Use.getUser();
   3901         if (Instruction *I = dyn_cast<Instruction>(User))
   3902           if (I->getParent() == CaseDest)
   3903             continue;
   3904         if (PHINode *Phi = dyn_cast<PHINode>(User))
   3905           if (Phi->getIncomingBlock(Use) == CaseDest)
   3906             continue;
   3907         return false;
   3908       }
   3909 
   3910       ConstantPool.insert(std::make_pair(&*I, C));
   3911     } else {
   3912       break;
   3913     }
   3914   }
   3915 
   3916   // If we did not have a CommonDest before, use the current one.
   3917   if (!*CommonDest)
   3918     *CommonDest = CaseDest;
   3919   // If the destination isn't the common one, abort.
   3920   if (CaseDest != *CommonDest)
   3921     return false;
   3922 
   3923   // Get the values for this case from phi nodes in the destination block.
   3924   BasicBlock::iterator I = (*CommonDest)->begin();
   3925   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3926     int Idx = PHI->getBasicBlockIndex(Pred);
   3927     if (Idx == -1)
   3928       continue;
   3929 
   3930     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
   3931                                         ConstantPool);
   3932     if (!ConstVal)
   3933       return false;
   3934 
   3935     // Be conservative about which kinds of constants we support.
   3936     if (!ValidLookupTableConstant(ConstVal))
   3937       return false;
   3938 
   3939     Res.push_back(std::make_pair(PHI, ConstVal));
   3940   }
   3941 
   3942   return Res.size() > 0;
   3943 }
   3944 
   3945 // Helper function used to add CaseVal to the list of cases that generate
   3946 // Result.
   3947 static void MapCaseToResult(ConstantInt *CaseVal,
   3948     SwitchCaseResultVectorTy &UniqueResults,
   3949     Constant *Result) {
   3950   for (auto &I : UniqueResults) {
   3951     if (I.first == Result) {
   3952       I.second.push_back(CaseVal);
   3953       return;
   3954     }
   3955   }
   3956   UniqueResults.push_back(std::make_pair(Result,
   3957         SmallVector<ConstantInt*, 4>(1, CaseVal)));
   3958 }
   3959 
   3960 // Helper function that initializes a map containing
   3961 // results for the PHI node of the common destination block for a switch
   3962 // instruction. Returns false if multiple PHI nodes have been found or if
   3963 // there is not a common destination block for the switch.
   3964 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
   3965                                   BasicBlock *&CommonDest,
   3966                                   SwitchCaseResultVectorTy &UniqueResults,
   3967                                   Constant *&DefaultResult,
   3968                                   const DataLayout &DL) {
   3969   for (auto &I : SI->cases()) {
   3970     ConstantInt *CaseVal = I.getCaseValue();
   3971 
   3972     // Resulting value at phi nodes for this case value.
   3973     SwitchCaseResultsTy Results;
   3974     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
   3975                         DL))
   3976       return false;
   3977 
   3978     // Only one value per case is permitted
   3979     if (Results.size() > 1)
   3980       return false;
   3981     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
   3982 
   3983     // Check the PHI consistency.
   3984     if (!PHI)
   3985       PHI = Results[0].first;
   3986     else if (PHI != Results[0].first)
   3987       return false;
   3988   }
   3989   // Find the default result value.
   3990   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
   3991   BasicBlock *DefaultDest = SI->getDefaultDest();
   3992   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
   3993                  DL);
   3994   // If the default value is not found abort unless the default destination
   3995   // is unreachable.
   3996   DefaultResult =
   3997       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
   3998   if ((!DefaultResult &&
   3999         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
   4000     return false;
   4001 
   4002   return true;
   4003 }
   4004 
   4005 // Helper function that checks if it is possible to transform a switch with only
   4006 // two cases (or two cases + default) that produces a result into a select.
   4007 // Example:
   4008 // switch (a) {
   4009 //   case 10:                %0 = icmp eq i32 %a, 10
   4010 //     return 10;            %1 = select i1 %0, i32 10, i32 4
   4011 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
   4012 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
   4013 //   default:
   4014 //     return 4;
   4015 // }
   4016 static Value *
   4017 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
   4018                      Constant *DefaultResult, Value *Condition,
   4019                      IRBuilder<> &Builder) {
   4020   assert(ResultVector.size() == 2 &&
   4021       "We should have exactly two unique results at this point");
   4022   // If we are selecting between only two cases transform into a simple
   4023   // select or a two-way select if default is possible.
   4024   if (ResultVector[0].second.size() == 1 &&
   4025       ResultVector[1].second.size() == 1) {
   4026     ConstantInt *const FirstCase = ResultVector[0].second[0];
   4027     ConstantInt *const SecondCase = ResultVector[1].second[0];
   4028 
   4029     bool DefaultCanTrigger = DefaultResult;
   4030     Value *SelectValue = ResultVector[1].first;
   4031     if (DefaultCanTrigger) {
   4032       Value *const ValueCompare =
   4033           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
   4034       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
   4035                                          DefaultResult, "switch.select");
   4036     }
   4037     Value *const ValueCompare =
   4038         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
   4039     return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
   4040                                 "switch.select");
   4041   }
   4042 
   4043   return nullptr;
   4044 }
   4045 
   4046 // Helper function to cleanup a switch instruction that has been converted into
   4047 // a select, fixing up PHI nodes and basic blocks.
   4048 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
   4049                                               Value *SelectValue,
   4050                                               IRBuilder<> &Builder) {
   4051   BasicBlock *SelectBB = SI->getParent();
   4052   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
   4053     PHI->removeIncomingValue(SelectBB);
   4054   PHI->addIncoming(SelectValue, SelectBB);
   4055 
   4056   Builder.CreateBr(PHI->getParent());
   4057 
   4058   // Remove the switch.
   4059   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   4060     BasicBlock *Succ = SI->getSuccessor(i);
   4061 
   4062     if (Succ == PHI->getParent())
   4063       continue;
   4064     Succ->removePredecessor(SelectBB);
   4065   }
   4066   SI->eraseFromParent();
   4067 }
   4068 
   4069 /// If the switch is only used to initialize one or more
   4070 /// phi nodes in a common successor block with only two different
   4071 /// constant values, replace the switch with select.
   4072 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
   4073                            AssumptionCache *AC, const DataLayout &DL) {
   4074   Value *const Cond = SI->getCondition();
   4075   PHINode *PHI = nullptr;
   4076   BasicBlock *CommonDest = nullptr;
   4077   Constant *DefaultResult;
   4078   SwitchCaseResultVectorTy UniqueResults;
   4079   // Collect all the cases that will deliver the same value from the switch.
   4080   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
   4081                              DL))
   4082     return false;
   4083   // Selects choose between maximum two values.
   4084   if (UniqueResults.size() != 2)
   4085     return false;
   4086   assert(PHI != nullptr && "PHI for value select not found");
   4087 
   4088   Builder.SetInsertPoint(SI);
   4089   Value *SelectValue = ConvertTwoCaseSwitch(
   4090       UniqueResults,
   4091       DefaultResult, Cond, Builder);
   4092   if (SelectValue) {
   4093     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
   4094     return true;
   4095   }
   4096   // The switch couldn't be converted into a select.
   4097   return false;
   4098 }
   4099 
   4100 namespace {
   4101   /// This class represents a lookup table that can be used to replace a switch.
   4102   class SwitchLookupTable {
   4103   public:
   4104     /// Create a lookup table to use as a switch replacement with the contents
   4105     /// of Values, using DefaultValue to fill any holes in the table.
   4106     SwitchLookupTable(
   4107         Module &M, uint64_t TableSize, ConstantInt *Offset,
   4108         const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
   4109         Constant *DefaultValue, const DataLayout &DL);
   4110 
   4111     /// Build instructions with Builder to retrieve the value at
   4112     /// the position given by Index in the lookup table.
   4113     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
   4114 
   4115     /// Return true if a table with TableSize elements of
   4116     /// type ElementType would fit in a target-legal register.
   4117     static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
   4118                                    Type *ElementType);
   4119 
   4120   private:
   4121     // Depending on the contents of the table, it can be represented in
   4122     // different ways.
   4123     enum {
   4124       // For tables where each element contains the same value, we just have to
   4125       // store that single value and return it for each lookup.
   4126       SingleValueKind,
   4127 
   4128       // For tables where there is a linear relationship between table index
   4129       // and values. We calculate the result with a simple multiplication
   4130       // and addition instead of a table lookup.
   4131       LinearMapKind,
   4132 
   4133       // For small tables with integer elements, we can pack them into a bitmap
   4134       // that fits into a target-legal register. Values are retrieved by
   4135       // shift and mask operations.
   4136       BitMapKind,
   4137 
   4138       // The table is stored as an array of values. Values are retrieved by load
   4139       // instructions from the table.
   4140       ArrayKind
   4141     } Kind;
   4142 
   4143     // For SingleValueKind, this is the single value.
   4144     Constant *SingleValue;
   4145 
   4146     // For BitMapKind, this is the bitmap.
   4147     ConstantInt *BitMap;
   4148     IntegerType *BitMapElementTy;
   4149 
   4150     // For LinearMapKind, these are the constants used to derive the value.
   4151     ConstantInt *LinearOffset;
   4152     ConstantInt *LinearMultiplier;
   4153 
   4154     // For ArrayKind, this is the array.
   4155     GlobalVariable *Array;
   4156   };
   4157 }
   4158 
   4159 SwitchLookupTable::SwitchLookupTable(
   4160     Module &M, uint64_t TableSize, ConstantInt *Offset,
   4161     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
   4162     Constant *DefaultValue, const DataLayout &DL)
   4163     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
   4164       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
   4165   assert(Values.size() && "Can't build lookup table without values!");
   4166   assert(TableSize >= Values.size() && "Can't fit values in table!");
   4167 
   4168   // If all values in the table are equal, this is that value.
   4169   SingleValue = Values.begin()->second;
   4170 
   4171   Type *ValueType = Values.begin()->second->getType();
   4172 
   4173   // Build up the table contents.
   4174   SmallVector<Constant*, 64> TableContents(TableSize);
   4175   for (size_t I = 0, E = Values.size(); I != E; ++I) {
   4176     ConstantInt *CaseVal = Values[I].first;
   4177     Constant *CaseRes = Values[I].second;
   4178     assert(CaseRes->getType() == ValueType);
   4179 
   4180     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
   4181                    .getLimitedValue();
   4182     TableContents[Idx] = CaseRes;
   4183 
   4184     if (CaseRes != SingleValue)
   4185       SingleValue = nullptr;
   4186   }
   4187 
   4188   // Fill in any holes in the table with the default result.
   4189   if (Values.size() < TableSize) {
   4190     assert(DefaultValue &&
   4191            "Need a default value to fill the lookup table holes.");
   4192     assert(DefaultValue->getType() == ValueType);
   4193     for (uint64_t I = 0; I < TableSize; ++I) {
   4194       if (!TableContents[I])
   4195         TableContents[I] = DefaultValue;
   4196     }
   4197 
   4198     if (DefaultValue != SingleValue)
   4199       SingleValue = nullptr;
   4200   }
   4201 
   4202   // If each element in the table contains the same value, we only need to store
   4203   // that single value.
   4204   if (SingleValue) {
   4205     Kind = SingleValueKind;
   4206     return;
   4207   }
   4208 
   4209   // Check if we can derive the value with a linear transformation from the
   4210   // table index.
   4211   if (isa<IntegerType>(ValueType)) {
   4212     bool LinearMappingPossible = true;
   4213     APInt PrevVal;
   4214     APInt DistToPrev;
   4215     assert(TableSize >= 2 && "Should be a SingleValue table.");
   4216     // Check if there is the same distance between two consecutive values.
   4217     for (uint64_t I = 0; I < TableSize; ++I) {
   4218       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
   4219       if (!ConstVal) {
   4220         // This is an undef. We could deal with it, but undefs in lookup tables
   4221         // are very seldom. It's probably not worth the additional complexity.
   4222         LinearMappingPossible = false;
   4223         break;
   4224       }
   4225       APInt Val = ConstVal->getValue();
   4226       if (I != 0) {
   4227         APInt Dist = Val - PrevVal;
   4228         if (I == 1) {
   4229           DistToPrev = Dist;
   4230         } else if (Dist != DistToPrev) {
   4231           LinearMappingPossible = false;
   4232           break;
   4233         }
   4234       }
   4235       PrevVal = Val;
   4236     }
   4237     if (LinearMappingPossible) {
   4238       LinearOffset = cast<ConstantInt>(TableContents[0]);
   4239       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
   4240       Kind = LinearMapKind;
   4241       ++NumLinearMaps;
   4242       return;
   4243     }
   4244   }
   4245 
   4246   // If the type is integer and the table fits in a register, build a bitmap.
   4247   if (WouldFitInRegister(DL, TableSize, ValueType)) {
   4248     IntegerType *IT = cast<IntegerType>(ValueType);
   4249     APInt TableInt(TableSize * IT->getBitWidth(), 0);
   4250     for (uint64_t I = TableSize; I > 0; --I) {
   4251       TableInt <<= IT->getBitWidth();
   4252       // Insert values into the bitmap. Undef values are set to zero.
   4253       if (!isa<UndefValue>(TableContents[I - 1])) {
   4254         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
   4255         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
   4256       }
   4257     }
   4258     BitMap = ConstantInt::get(M.getContext(), TableInt);
   4259     BitMapElementTy = IT;
   4260     Kind = BitMapKind;
   4261     ++NumBitMaps;
   4262     return;
   4263   }
   4264 
   4265   // Store the table in an array.
   4266   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
   4267   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
   4268 
   4269   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
   4270                              GlobalVariable::PrivateLinkage,
   4271                              Initializer,
   4272                              "switch.table");
   4273   Array->setUnnamedAddr(true);
   4274   Kind = ArrayKind;
   4275 }
   4276 
   4277 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
   4278   switch (Kind) {
   4279     case SingleValueKind:
   4280       return SingleValue;
   4281     case LinearMapKind: {
   4282       // Derive the result value from the input value.
   4283       Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
   4284                                             false, "switch.idx.cast");
   4285       if (!LinearMultiplier->isOne())
   4286         Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
   4287       if (!LinearOffset->isZero())
   4288         Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
   4289       return Result;
   4290     }
   4291     case BitMapKind: {
   4292       // Type of the bitmap (e.g. i59).
   4293       IntegerType *MapTy = BitMap->getType();
   4294 
   4295       // Cast Index to the same type as the bitmap.
   4296       // Note: The Index is <= the number of elements in the table, so
   4297       // truncating it to the width of the bitmask is safe.
   4298       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
   4299 
   4300       // Multiply the shift amount by the element width.
   4301       ShiftAmt = Builder.CreateMul(ShiftAmt,
   4302                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
   4303                                    "switch.shiftamt");
   4304 
   4305       // Shift down.
   4306       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
   4307                                               "switch.downshift");
   4308       // Mask off.
   4309       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
   4310                                  "switch.masked");
   4311     }
   4312     case ArrayKind: {
   4313       // Make sure the table index will not overflow when treated as signed.
   4314       IntegerType *IT = cast<IntegerType>(Index->getType());
   4315       uint64_t TableSize = Array->getInitializer()->getType()
   4316                                 ->getArrayNumElements();
   4317       if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
   4318         Index = Builder.CreateZExt(Index,
   4319                                    IntegerType::get(IT->getContext(),
   4320                                                     IT->getBitWidth() + 1),
   4321                                    "switch.tableidx.zext");
   4322 
   4323       Value *GEPIndices[] = { Builder.getInt32(0), Index };
   4324       Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
   4325                                              GEPIndices, "switch.gep");
   4326       return Builder.CreateLoad(GEP, "switch.load");
   4327     }
   4328   }
   4329   llvm_unreachable("Unknown lookup table kind!");
   4330 }
   4331 
   4332 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
   4333                                            uint64_t TableSize,
   4334                                            Type *ElementType) {
   4335   auto *IT = dyn_cast<IntegerType>(ElementType);
   4336   if (!IT)
   4337     return false;
   4338   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
   4339   // are <= 15, we could try to narrow the type.
   4340 
   4341   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
   4342   if (TableSize >= UINT_MAX/IT->getBitWidth())
   4343     return false;
   4344   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
   4345 }
   4346 
   4347 /// Determine whether a lookup table should be built for this switch, based on
   4348 /// the number of cases, size of the table, and the types of the results.
   4349 static bool
   4350 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
   4351                        const TargetTransformInfo &TTI, const DataLayout &DL,
   4352                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
   4353   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
   4354     return false; // TableSize overflowed, or mul below might overflow.
   4355 
   4356   bool AllTablesFitInRegister = true;
   4357   bool HasIllegalType = false;
   4358   for (const auto &I : ResultTypes) {
   4359     Type *Ty = I.second;
   4360 
   4361     // Saturate this flag to true.
   4362     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
   4363 
   4364     // Saturate this flag to false.
   4365     AllTablesFitInRegister = AllTablesFitInRegister &&
   4366       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
   4367 
   4368     // If both flags saturate, we're done. NOTE: This *only* works with
   4369     // saturating flags, and all flags have to saturate first due to the
   4370     // non-deterministic behavior of iterating over a dense map.
   4371     if (HasIllegalType && !AllTablesFitInRegister)
   4372       break;
   4373   }
   4374 
   4375   // If each table would fit in a register, we should build it anyway.
   4376   if (AllTablesFitInRegister)
   4377     return true;
   4378 
   4379   // Don't build a table that doesn't fit in-register if it has illegal types.
   4380   if (HasIllegalType)
   4381     return false;
   4382 
   4383   // The table density should be at least 40%. This is the same criterion as for
   4384   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
   4385   // FIXME: Find the best cut-off.
   4386   return SI->getNumCases() * 10 >= TableSize * 4;
   4387 }
   4388 
   4389 /// Try to reuse the switch table index compare. Following pattern:
   4390 /// \code
   4391 ///     if (idx < tablesize)
   4392 ///        r = table[idx]; // table does not contain default_value
   4393 ///     else
   4394 ///        r = default_value;
   4395 ///     if (r != default_value)
   4396 ///        ...
   4397 /// \endcode
   4398 /// Is optimized to:
   4399 /// \code
   4400 ///     cond = idx < tablesize;
   4401 ///     if (cond)
   4402 ///        r = table[idx];
   4403 ///     else
   4404 ///        r = default_value;
   4405 ///     if (cond)
   4406 ///        ...
   4407 /// \endcode
   4408 /// Jump threading will then eliminate the second if(cond).
   4409 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
   4410           BranchInst *RangeCheckBranch, Constant *DefaultValue,
   4411           const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
   4412 
   4413   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
   4414   if (!CmpInst)
   4415     return;
   4416 
   4417   // We require that the compare is in the same block as the phi so that jump
   4418   // threading can do its work afterwards.
   4419   if (CmpInst->getParent() != PhiBlock)
   4420     return;
   4421 
   4422   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
   4423   if (!CmpOp1)
   4424     return;
   4425 
   4426   Value *RangeCmp = RangeCheckBranch->getCondition();
   4427   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
   4428   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
   4429 
   4430   // Check if the compare with the default value is constant true or false.
   4431   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
   4432                                                  DefaultValue, CmpOp1, true);
   4433   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
   4434     return;
   4435 
   4436   // Check if the compare with the case values is distinct from the default
   4437   // compare result.
   4438   for (auto ValuePair : Values) {
   4439     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
   4440                               ValuePair.second, CmpOp1, true);
   4441     if (!CaseConst || CaseConst == DefaultConst)
   4442       return;
   4443     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
   4444            "Expect true or false as compare result.");
   4445   }
   4446 
   4447   // Check if the branch instruction dominates the phi node. It's a simple
   4448   // dominance check, but sufficient for our needs.
   4449   // Although this check is invariant in the calling loops, it's better to do it
   4450   // at this late stage. Practically we do it at most once for a switch.
   4451   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
   4452   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
   4453     BasicBlock *Pred = *PI;
   4454     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
   4455       return;
   4456   }
   4457 
   4458   if (DefaultConst == FalseConst) {
   4459     // The compare yields the same result. We can replace it.
   4460     CmpInst->replaceAllUsesWith(RangeCmp);
   4461     ++NumTableCmpReuses;
   4462   } else {
   4463     // The compare yields the same result, just inverted. We can replace it.
   4464     Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
   4465                 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
   4466                 RangeCheckBranch);
   4467     CmpInst->replaceAllUsesWith(InvertedTableCmp);
   4468     ++NumTableCmpReuses;
   4469   }
   4470 }
   4471 
   4472 /// If the switch is only used to initialize one or more phi nodes in a common
   4473 /// successor block with different constant values, replace the switch with
   4474 /// lookup tables.
   4475 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
   4476                                 const DataLayout &DL,
   4477                                 const TargetTransformInfo &TTI) {
   4478   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   4479 
   4480   // Only build lookup table when we have a target that supports it.
   4481   if (!TTI.shouldBuildLookupTables())
   4482     return false;
   4483 
   4484   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
   4485   // split off a dense part and build a lookup table for that.
   4486 
   4487   // FIXME: This creates arrays of GEPs to constant strings, which means each
   4488   // GEP needs a runtime relocation in PIC code. We should just build one big
   4489   // string and lookup indices into that.
   4490 
   4491   // Ignore switches with less than three cases. Lookup tables will not make them
   4492   // faster, so we don't analyze them.
   4493   if (SI->getNumCases() < 3)
   4494     return false;
   4495 
   4496   // Figure out the corresponding result for each case value and phi node in the
   4497   // common destination, as well as the min and max case values.
   4498   assert(SI->case_begin() != SI->case_end());
   4499   SwitchInst::CaseIt CI = SI->case_begin();
   4500   ConstantInt *MinCaseVal = CI.getCaseValue();
   4501   ConstantInt *MaxCaseVal = CI.getCaseValue();
   4502 
   4503   BasicBlock *CommonDest = nullptr;
   4504   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
   4505   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
   4506   SmallDenseMap<PHINode*, Constant*> DefaultResults;
   4507   SmallDenseMap<PHINode*, Type*> ResultTypes;
   4508   SmallVector<PHINode*, 4> PHIs;
   4509 
   4510   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
   4511     ConstantInt *CaseVal = CI.getCaseValue();
   4512     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
   4513       MinCaseVal = CaseVal;
   4514     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
   4515       MaxCaseVal = CaseVal;
   4516 
   4517     // Resulting value at phi nodes for this case value.
   4518     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
   4519     ResultsTy Results;
   4520     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
   4521                         Results, DL))
   4522       return false;
   4523 
   4524     // Append the result from this case to the list for each phi.
   4525     for (const auto &I : Results) {
   4526       PHINode *PHI = I.first;
   4527       Constant *Value = I.second;
   4528       if (!ResultLists.count(PHI))
   4529         PHIs.push_back(PHI);
   4530       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
   4531     }
   4532   }
   4533 
   4534   // Keep track of the result types.
   4535   for (PHINode *PHI : PHIs) {
   4536     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
   4537   }
   4538 
   4539   uint64_t NumResults = ResultLists[PHIs[0]].size();
   4540   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
   4541   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
   4542   bool TableHasHoles = (NumResults < TableSize);
   4543 
   4544   // If the table has holes, we need a constant result for the default case
   4545   // or a bitmask that fits in a register.
   4546   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
   4547   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
   4548                                           &CommonDest, DefaultResultsList, DL);
   4549 
   4550   bool NeedMask = (TableHasHoles && !HasDefaultResults);
   4551   if (NeedMask) {
   4552     // As an extra penalty for the validity test we require more cases.
   4553     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
   4554       return false;
   4555     if (!DL.fitsInLegalInteger(TableSize))
   4556       return false;
   4557   }
   4558 
   4559   for (const auto &I : DefaultResultsList) {
   4560     PHINode *PHI = I.first;
   4561     Constant *Result = I.second;
   4562     DefaultResults[PHI] = Result;
   4563   }
   4564 
   4565   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
   4566     return false;
   4567 
   4568   // Create the BB that does the lookups.
   4569   Module &Mod = *CommonDest->getParent()->getParent();
   4570   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
   4571                                             "switch.lookup",
   4572                                             CommonDest->getParent(),
   4573                                             CommonDest);
   4574 
   4575   // Compute the table index value.
   4576   Builder.SetInsertPoint(SI);
   4577   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
   4578                                         "switch.tableidx");
   4579 
   4580   // Compute the maximum table size representable by the integer type we are
   4581   // switching upon.
   4582   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
   4583   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
   4584   assert(MaxTableSize >= TableSize &&
   4585          "It is impossible for a switch to have more entries than the max "
   4586          "representable value of its input integer type's size.");
   4587 
   4588   // If the default destination is unreachable, or if the lookup table covers
   4589   // all values of the conditional variable, branch directly to the lookup table
   4590   // BB. Otherwise, check that the condition is within the case range.
   4591   const bool DefaultIsReachable =
   4592       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   4593   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
   4594   BranchInst *RangeCheckBranch = nullptr;
   4595 
   4596   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
   4597     Builder.CreateBr(LookupBB);
   4598     // Note: We call removeProdecessor later since we need to be able to get the
   4599     // PHI value for the default case in case we're using a bit mask.
   4600   } else {
   4601     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
   4602                                        MinCaseVal->getType(), TableSize));
   4603     RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
   4604   }
   4605 
   4606   // Populate the BB that does the lookups.
   4607   Builder.SetInsertPoint(LookupBB);
   4608 
   4609   if (NeedMask) {
   4610     // Before doing the lookup we do the hole check.
   4611     // The LookupBB is therefore re-purposed to do the hole check
   4612     // and we create a new LookupBB.
   4613     BasicBlock *MaskBB = LookupBB;
   4614     MaskBB->setName("switch.hole_check");
   4615     LookupBB = BasicBlock::Create(Mod.getContext(),
   4616                                   "switch.lookup",
   4617                                   CommonDest->getParent(),
   4618                                   CommonDest);
   4619 
   4620     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
   4621     // unnecessary illegal types.
   4622     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
   4623     APInt MaskInt(TableSizePowOf2, 0);
   4624     APInt One(TableSizePowOf2, 1);
   4625     // Build bitmask; fill in a 1 bit for every case.
   4626     const ResultListTy &ResultList = ResultLists[PHIs[0]];
   4627     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
   4628       uint64_t Idx = (ResultList[I].first->getValue() -
   4629                       MinCaseVal->getValue()).getLimitedValue();
   4630       MaskInt |= One << Idx;
   4631     }
   4632     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
   4633 
   4634     // Get the TableIndex'th bit of the bitmask.
   4635     // If this bit is 0 (meaning hole) jump to the default destination,
   4636     // else continue with table lookup.
   4637     IntegerType *MapTy = TableMask->getType();
   4638     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
   4639                                                  "switch.maskindex");
   4640     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
   4641                                         "switch.shifted");
   4642     Value *LoBit = Builder.CreateTrunc(Shifted,
   4643                                        Type::getInt1Ty(Mod.getContext()),
   4644                                        "switch.lobit");
   4645     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
   4646 
   4647     Builder.SetInsertPoint(LookupBB);
   4648     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
   4649   }
   4650 
   4651   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
   4652     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
   4653     // do not delete PHINodes here.
   4654     SI->getDefaultDest()->removePredecessor(SI->getParent(),
   4655                                             /*DontDeleteUselessPHIs=*/true);
   4656   }
   4657 
   4658   bool ReturnedEarly = false;
   4659   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
   4660     PHINode *PHI = PHIs[I];
   4661     const ResultListTy &ResultList = ResultLists[PHI];
   4662 
   4663     // If using a bitmask, use any value to fill the lookup table holes.
   4664     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
   4665     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
   4666 
   4667     Value *Result = Table.BuildLookup(TableIndex, Builder);
   4668 
   4669     // If the result is used to return immediately from the function, we want to
   4670     // do that right here.
   4671     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
   4672         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
   4673       Builder.CreateRet(Result);
   4674       ReturnedEarly = true;
   4675       break;
   4676     }
   4677 
   4678     // Do a small peephole optimization: re-use the switch table compare if
   4679     // possible.
   4680     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
   4681       BasicBlock *PhiBlock = PHI->getParent();
   4682       // Search for compare instructions which use the phi.
   4683       for (auto *User : PHI->users()) {
   4684         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
   4685       }
   4686     }
   4687 
   4688     PHI->addIncoming(Result, LookupBB);
   4689   }
   4690 
   4691   if (!ReturnedEarly)
   4692     Builder.CreateBr(CommonDest);
   4693 
   4694   // Remove the switch.
   4695   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   4696     BasicBlock *Succ = SI->getSuccessor(i);
   4697 
   4698     if (Succ == SI->getDefaultDest())
   4699       continue;
   4700     Succ->removePredecessor(SI->getParent());
   4701   }
   4702   SI->eraseFromParent();
   4703 
   4704   ++NumLookupTables;
   4705   if (NeedMask)
   4706     ++NumLookupTablesHoles;
   4707   return true;
   4708 }
   4709 
   4710 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   4711   BasicBlock *BB = SI->getParent();
   4712 
   4713   if (isValueEqualityComparison(SI)) {
   4714     // If we only have one predecessor, and if it is a branch on this value,
   4715     // see if that predecessor totally determines the outcome of this switch.
   4716     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   4717       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   4718         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4719 
   4720     Value *Cond = SI->getCondition();
   4721     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   4722       if (SimplifySwitchOnSelect(SI, Select))
   4723         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4724 
   4725     // If the block only contains the switch, see if we can fold the block
   4726     // away into any preds.
   4727     BasicBlock::iterator BBI = BB->begin();
   4728     // Ignore dbg intrinsics.
   4729     while (isa<DbgInfoIntrinsic>(BBI))
   4730       ++BBI;
   4731     if (SI == &*BBI)
   4732       if (FoldValueComparisonIntoPredecessors(SI, Builder))
   4733         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4734   }
   4735 
   4736   // Try to transform the switch into an icmp and a branch.
   4737   if (TurnSwitchRangeIntoICmp(SI, Builder))
   4738     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4739 
   4740   // Remove unreachable cases.
   4741   if (EliminateDeadSwitchCases(SI, AC, DL))
   4742     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4743 
   4744   if (SwitchToSelect(SI, Builder, AC, DL))
   4745     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4746 
   4747   if (ForwardSwitchConditionToPHI(SI))
   4748     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4749 
   4750   if (SwitchToLookupTable(SI, Builder, DL, TTI))
   4751     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4752 
   4753   return false;
   4754 }
   4755 
   4756 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   4757   BasicBlock *BB = IBI->getParent();
   4758   bool Changed = false;
   4759 
   4760   // Eliminate redundant destinations.
   4761   SmallPtrSet<Value *, 8> Succs;
   4762   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   4763     BasicBlock *Dest = IBI->getDestination(i);
   4764     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
   4765       Dest->removePredecessor(BB);
   4766       IBI->removeDestination(i);
   4767       --i; --e;
   4768       Changed = true;
   4769     }
   4770   }
   4771 
   4772   if (IBI->getNumDestinations() == 0) {
   4773     // If the indirectbr has no successors, change it to unreachable.
   4774     new UnreachableInst(IBI->getContext(), IBI);
   4775     EraseTerminatorInstAndDCECond(IBI);
   4776     return true;
   4777   }
   4778 
   4779   if (IBI->getNumDestinations() == 1) {
   4780     // If the indirectbr has one successor, change it to a direct branch.
   4781     BranchInst::Create(IBI->getDestination(0), IBI);
   4782     EraseTerminatorInstAndDCECond(IBI);
   4783     return true;
   4784   }
   4785 
   4786   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   4787     if (SimplifyIndirectBrOnSelect(IBI, SI))
   4788       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4789   }
   4790   return Changed;
   4791 }
   4792 
   4793 /// Given an block with only a single landing pad and a unconditional branch
   4794 /// try to find another basic block which this one can be merged with.  This
   4795 /// handles cases where we have multiple invokes with unique landing pads, but
   4796 /// a shared handler.
   4797 ///
   4798 /// We specifically choose to not worry about merging non-empty blocks
   4799 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
   4800 /// practice, the optimizer produces empty landing pad blocks quite frequently
   4801 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
   4802 /// sinking in this file)
   4803 ///
   4804 /// This is primarily a code size optimization.  We need to avoid performing
   4805 /// any transform which might inhibit optimization (such as our ability to
   4806 /// specialize a particular handler via tail commoning).  We do this by not
   4807 /// merging any blocks which require us to introduce a phi.  Since the same
   4808 /// values are flowing through both blocks, we don't loose any ability to
   4809 /// specialize.  If anything, we make such specialization more likely.
   4810 ///
   4811 /// TODO - This transformation could remove entries from a phi in the target
   4812 /// block when the inputs in the phi are the same for the two blocks being
   4813 /// merged.  In some cases, this could result in removal of the PHI entirely.
   4814 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
   4815                                  BasicBlock *BB) {
   4816   auto Succ = BB->getUniqueSuccessor();
   4817   assert(Succ);
   4818   // If there's a phi in the successor block, we'd likely have to introduce
   4819   // a phi into the merged landing pad block.
   4820   if (isa<PHINode>(*Succ->begin()))
   4821     return false;
   4822 
   4823   for (BasicBlock *OtherPred : predecessors(Succ)) {
   4824     if (BB == OtherPred)
   4825       continue;
   4826     BasicBlock::iterator I = OtherPred->begin();
   4827     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
   4828     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
   4829       continue;
   4830     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
   4831     BranchInst *BI2 = dyn_cast<BranchInst>(I);
   4832     if (!BI2 || !BI2->isIdenticalTo(BI))
   4833       continue;
   4834 
   4835     // We've found an identical block.  Update our predeccessors to take that
   4836     // path instead and make ourselves dead.
   4837     SmallSet<BasicBlock *, 16> Preds;
   4838     Preds.insert(pred_begin(BB), pred_end(BB));
   4839     for (BasicBlock *Pred : Preds) {
   4840       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
   4841       assert(II->getNormalDest() != BB &&
   4842              II->getUnwindDest() == BB && "unexpected successor");
   4843       II->setUnwindDest(OtherPred);
   4844     }
   4845 
   4846     // The debug info in OtherPred doesn't cover the merged control flow that
   4847     // used to go through BB.  We need to delete it or update it.
   4848     for (auto I = OtherPred->begin(), E = OtherPred->end();
   4849          I != E;) {
   4850       Instruction &Inst = *I; I++;
   4851       if (isa<DbgInfoIntrinsic>(Inst))
   4852         Inst.eraseFromParent();
   4853     }
   4854 
   4855     SmallSet<BasicBlock *, 16> Succs;
   4856     Succs.insert(succ_begin(BB), succ_end(BB));
   4857     for (BasicBlock *Succ : Succs) {
   4858       Succ->removePredecessor(BB);
   4859     }
   4860 
   4861     IRBuilder<> Builder(BI);
   4862     Builder.CreateUnreachable();
   4863     BI->eraseFromParent();
   4864     return true;
   4865   }
   4866   return false;
   4867 }
   4868 
   4869 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
   4870   BasicBlock *BB = BI->getParent();
   4871 
   4872   if (SinkCommon && SinkThenElseCodeToEnd(BI))
   4873     return true;
   4874 
   4875   // If the Terminator is the only non-phi instruction, simplify the block.
   4876   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
   4877   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   4878       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   4879     return true;
   4880 
   4881   // If the only instruction in the block is a seteq/setne comparison
   4882   // against a constant, try to simplify the block.
   4883   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   4884     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   4885       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   4886         ;
   4887       if (I->isTerminator() &&
   4888           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
   4889                                                 BonusInstThreshold, AC))
   4890         return true;
   4891     }
   4892 
   4893   // See if we can merge an empty landing pad block with another which is
   4894   // equivalent.
   4895   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
   4896     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
   4897     if (I->isTerminator() &&
   4898         TryToMergeLandingPad(LPad, BI, BB))
   4899       return true;
   4900   }
   4901 
   4902   // If this basic block is ONLY a compare and a branch, and if a predecessor
   4903   // branches to us and our successor, fold the comparison into the
   4904   // predecessor and use logical operations to update the incoming value
   4905   // for PHI nodes in common successor.
   4906   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
   4907     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4908   return false;
   4909 }
   4910 
   4911 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
   4912   BasicBlock *PredPred = nullptr;
   4913   for (auto *P : predecessors(BB)) {
   4914     BasicBlock *PPred = P->getSinglePredecessor();
   4915     if (!PPred || (PredPred && PredPred != PPred))
   4916       return nullptr;
   4917     PredPred = PPred;
   4918   }
   4919   return PredPred;
   4920 }
   4921 
   4922 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   4923   BasicBlock *BB = BI->getParent();
   4924 
   4925   // Conditional branch
   4926   if (isValueEqualityComparison(BI)) {
   4927     // If we only have one predecessor, and if it is a branch on this value,
   4928     // see if that predecessor totally determines the outcome of this
   4929     // switch.
   4930     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   4931       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   4932         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4933 
   4934     // This block must be empty, except for the setcond inst, if it exists.
   4935     // Ignore dbg intrinsics.
   4936     BasicBlock::iterator I = BB->begin();
   4937     // Ignore dbg intrinsics.
   4938     while (isa<DbgInfoIntrinsic>(I))
   4939       ++I;
   4940     if (&*I == BI) {
   4941       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   4942         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4943     } else if (&*I == cast<Instruction>(BI->getCondition())){
   4944       ++I;
   4945       // Ignore dbg intrinsics.
   4946       while (isa<DbgInfoIntrinsic>(I))
   4947         ++I;
   4948       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   4949         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4950     }
   4951   }
   4952 
   4953   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   4954   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
   4955     return true;
   4956 
   4957   // If this basic block is ONLY a compare and a branch, and if a predecessor
   4958   // branches to us and one of our successors, fold the comparison into the
   4959   // predecessor and use logical operations to pick the right destination.
   4960   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
   4961     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4962 
   4963   // We have a conditional branch to two blocks that are only reachable
   4964   // from BI.  We know that the condbr dominates the two blocks, so see if
   4965   // there is any identical code in the "then" and "else" blocks.  If so, we
   4966   // can hoist it up to the branching block.
   4967   if (BI->getSuccessor(0)->getSinglePredecessor()) {
   4968     if (BI->getSuccessor(1)->getSinglePredecessor()) {
   4969       if (HoistThenElseCodeToIf(BI, TTI))
   4970         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4971     } else {
   4972       // If Successor #1 has multiple preds, we may be able to conditionally
   4973       // execute Successor #0 if it branches to Successor #1.
   4974       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   4975       if (Succ0TI->getNumSuccessors() == 1 &&
   4976           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   4977         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
   4978           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4979     }
   4980   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
   4981     // If Successor #0 has multiple preds, we may be able to conditionally
   4982     // execute Successor #1 if it branches to Successor #0.
   4983     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   4984     if (Succ1TI->getNumSuccessors() == 1 &&
   4985         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   4986       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
   4987         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4988   }
   4989 
   4990   // If this is a branch on a phi node in the current block, thread control
   4991   // through this block if any PHI node entries are constants.
   4992   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   4993     if (PN->getParent() == BI->getParent())
   4994       if (FoldCondBranchOnPHI(BI, DL))
   4995         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4996 
   4997   // Scan predecessor blocks for conditional branches.
   4998   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   4999     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   5000       if (PBI != BI && PBI->isConditional())
   5001         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
   5002           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5003 
   5004   // Look for diamond patterns.
   5005   if (MergeCondStores)
   5006     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
   5007       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
   5008         if (PBI != BI && PBI->isConditional())
   5009           if (mergeConditionalStores(PBI, BI))
   5010             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5011 
   5012   return false;
   5013 }
   5014 
   5015 /// Check if passing a value to an instruction will cause undefined behavior.
   5016 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   5017   Constant *C = dyn_cast<Constant>(V);
   5018   if (!C)
   5019     return false;
   5020 
   5021   if (I->use_empty())
   5022     return false;
   5023 
   5024   if (C->isNullValue()) {
   5025     // Only look at the first use, avoid hurting compile time with long uselists
   5026     User *Use = *I->user_begin();
   5027 
   5028     // Now make sure that there are no instructions in between that can alter
   5029     // control flow (eg. calls)
   5030     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
   5031       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   5032         return false;
   5033 
   5034     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   5035     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   5036       if (GEP->getPointerOperand() == I)
   5037         return passingValueIsAlwaysUndefined(V, GEP);
   5038 
   5039     // Look through bitcasts.
   5040     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   5041       return passingValueIsAlwaysUndefined(V, BC);
   5042 
   5043     // Load from null is undefined.
   5044     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   5045       if (!LI->isVolatile())
   5046         return LI->getPointerAddressSpace() == 0;
   5047 
   5048     // Store to null is undefined.
   5049     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   5050       if (!SI->isVolatile())
   5051         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
   5052   }
   5053   return false;
   5054 }
   5055 
   5056 /// If BB has an incoming value that will always trigger undefined behavior
   5057 /// (eg. null pointer dereference), remove the branch leading here.
   5058 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   5059   for (BasicBlock::iterator i = BB->begin();
   5060        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
   5061     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
   5062       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
   5063         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
   5064         IRBuilder<> Builder(T);
   5065         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   5066           BB->removePredecessor(PHI->getIncomingBlock(i));
   5067           // Turn uncoditional branches into unreachables and remove the dead
   5068           // destination from conditional branches.
   5069           if (BI->isUnconditional())
   5070             Builder.CreateUnreachable();
   5071           else
   5072             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
   5073                                                          BI->getSuccessor(0));
   5074           BI->eraseFromParent();
   5075           return true;
   5076         }
   5077         // TODO: SwitchInst.
   5078       }
   5079 
   5080   return false;
   5081 }
   5082 
   5083 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   5084   bool Changed = false;
   5085 
   5086   assert(BB && BB->getParent() && "Block not embedded in function!");
   5087   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   5088 
   5089   // Remove basic blocks that have no predecessors (except the entry block)...
   5090   // or that just have themself as a predecessor.  These are unreachable.
   5091   if ((pred_empty(BB) &&
   5092        BB != &BB->getParent()->getEntryBlock()) ||
   5093       BB->getSinglePredecessor() == BB) {
   5094     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   5095     DeleteDeadBlock(BB);
   5096     return true;
   5097   }
   5098 
   5099   // Check to see if we can constant propagate this terminator instruction
   5100   // away...
   5101   Changed |= ConstantFoldTerminator(BB, true);
   5102 
   5103   // Check for and eliminate duplicate PHI nodes in this block.
   5104   Changed |= EliminateDuplicatePHINodes(BB);
   5105 
   5106   // Check for and remove branches that will always cause undefined behavior.
   5107   Changed |= removeUndefIntroducingPredecessor(BB);
   5108 
   5109   // Merge basic blocks into their predecessor if there is only one distinct
   5110   // pred, and if there is only one distinct successor of the predecessor, and
   5111   // if there are no PHI nodes.
   5112   //
   5113   if (MergeBlockIntoPredecessor(BB))
   5114     return true;
   5115 
   5116   IRBuilder<> Builder(BB);
   5117 
   5118   // If there is a trivial two-entry PHI node in this basic block, and we can
   5119   // eliminate it, do so now.
   5120   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   5121     if (PN->getNumIncomingValues() == 2)
   5122       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
   5123 
   5124   Builder.SetInsertPoint(BB->getTerminator());
   5125   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   5126     if (BI->isUnconditional()) {
   5127       if (SimplifyUncondBranch(BI, Builder)) return true;
   5128     } else {
   5129       if (SimplifyCondBranch(BI, Builder)) return true;
   5130     }
   5131   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   5132     if (SimplifyReturn(RI, Builder)) return true;
   5133   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   5134     if (SimplifyResume(RI, Builder)) return true;
   5135   } else if (CleanupReturnInst *RI =
   5136                dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
   5137     if (SimplifyCleanupReturn(RI)) return true;
   5138   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   5139     if (SimplifySwitch(SI, Builder)) return true;
   5140   } else if (UnreachableInst *UI =
   5141                dyn_cast<UnreachableInst>(BB->getTerminator())) {
   5142     if (SimplifyUnreachable(UI)) return true;
   5143   } else if (IndirectBrInst *IBI =
   5144                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   5145     if (SimplifyIndirectBr(IBI)) return true;
   5146   }
   5147 
   5148   return Changed;
   5149 }
   5150 
   5151 /// This function is used to do simplification of a CFG.
   5152 /// For example, it adjusts branches to branches to eliminate the extra hop,
   5153 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   5154 /// of the CFG.  It returns true if a modification was made.
   5155 ///
   5156 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
   5157                        unsigned BonusInstThreshold, AssumptionCache *AC) {
   5158   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
   5159                         BonusInstThreshold, AC).run(BB);
   5160 }
   5161