Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
      6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
      7 
      8 #include "src/arm64/assembler-arm64.h"
      9 #include "src/assembler.h"
     10 #include "src/debug/debug.h"
     11 
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 
     17 bool CpuFeatures::SupportsCrankshaft() { return true; }
     18 
     19 
     20 void RelocInfo::apply(intptr_t delta) {
     21   // On arm64 only internal references need extra work.
     22   DCHECK(RelocInfo::IsInternalReference(rmode_));
     23 
     24   // Absolute code pointer inside code object moves with the code object.
     25   intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
     26   *p += delta;  // Relocate entry.
     27 }
     28 
     29 
     30 void RelocInfo::set_target_address(Address target,
     31                                    WriteBarrierMode write_barrier_mode,
     32                                    ICacheFlushMode icache_flush_mode) {
     33   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
     34   Assembler::set_target_address_at(isolate_, pc_, host_, target,
     35                                    icache_flush_mode);
     36   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
     37       IsCodeTarget(rmode_)) {
     38     Object* target_code = Code::GetCodeFromTargetAddress(target);
     39     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
     40         host(), this, HeapObject::cast(target_code));
     41   }
     42 }
     43 
     44 
     45 inline int CPURegister::code() const {
     46   DCHECK(IsValid());
     47   return reg_code;
     48 }
     49 
     50 
     51 inline CPURegister::RegisterType CPURegister::type() const {
     52   DCHECK(IsValidOrNone());
     53   return reg_type;
     54 }
     55 
     56 
     57 inline RegList CPURegister::Bit() const {
     58   DCHECK(static_cast<size_t>(reg_code) < (sizeof(RegList) * kBitsPerByte));
     59   return IsValid() ? 1UL << reg_code : 0;
     60 }
     61 
     62 
     63 inline int CPURegister::SizeInBits() const {
     64   DCHECK(IsValid());
     65   return reg_size;
     66 }
     67 
     68 
     69 inline int CPURegister::SizeInBytes() const {
     70   DCHECK(IsValid());
     71   DCHECK(SizeInBits() % 8 == 0);
     72   return reg_size / 8;
     73 }
     74 
     75 
     76 inline bool CPURegister::Is32Bits() const {
     77   DCHECK(IsValid());
     78   return reg_size == 32;
     79 }
     80 
     81 
     82 inline bool CPURegister::Is64Bits() const {
     83   DCHECK(IsValid());
     84   return reg_size == 64;
     85 }
     86 
     87 
     88 inline bool CPURegister::IsValid() const {
     89   if (IsValidRegister() || IsValidFPRegister()) {
     90     DCHECK(!IsNone());
     91     return true;
     92   } else {
     93     DCHECK(IsNone());
     94     return false;
     95   }
     96 }
     97 
     98 
     99 inline bool CPURegister::IsValidRegister() const {
    100   return IsRegister() &&
    101          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
    102          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
    103 }
    104 
    105 
    106 inline bool CPURegister::IsValidFPRegister() const {
    107   return IsFPRegister() &&
    108          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
    109          (reg_code < kNumberOfFPRegisters);
    110 }
    111 
    112 
    113 inline bool CPURegister::IsNone() const {
    114   // kNoRegister types should always have size 0 and code 0.
    115   DCHECK((reg_type != kNoRegister) || (reg_code == 0));
    116   DCHECK((reg_type != kNoRegister) || (reg_size == 0));
    117 
    118   return reg_type == kNoRegister;
    119 }
    120 
    121 
    122 inline bool CPURegister::Is(const CPURegister& other) const {
    123   DCHECK(IsValidOrNone() && other.IsValidOrNone());
    124   return Aliases(other) && (reg_size == other.reg_size);
    125 }
    126 
    127 
    128 inline bool CPURegister::Aliases(const CPURegister& other) const {
    129   DCHECK(IsValidOrNone() && other.IsValidOrNone());
    130   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
    131 }
    132 
    133 
    134 inline bool CPURegister::IsRegister() const {
    135   return reg_type == kRegister;
    136 }
    137 
    138 
    139 inline bool CPURegister::IsFPRegister() const {
    140   return reg_type == kFPRegister;
    141 }
    142 
    143 
    144 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
    145   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
    146 }
    147 
    148 
    149 inline bool CPURegister::IsValidOrNone() const {
    150   return IsValid() || IsNone();
    151 }
    152 
    153 
    154 inline bool CPURegister::IsZero() const {
    155   DCHECK(IsValid());
    156   return IsRegister() && (reg_code == kZeroRegCode);
    157 }
    158 
    159 
    160 inline bool CPURegister::IsSP() const {
    161   DCHECK(IsValid());
    162   return IsRegister() && (reg_code == kSPRegInternalCode);
    163 }
    164 
    165 
    166 inline void CPURegList::Combine(const CPURegList& other) {
    167   DCHECK(IsValid());
    168   DCHECK(other.type() == type_);
    169   DCHECK(other.RegisterSizeInBits() == size_);
    170   list_ |= other.list();
    171 }
    172 
    173 
    174 inline void CPURegList::Remove(const CPURegList& other) {
    175   DCHECK(IsValid());
    176   if (other.type() == type_) {
    177     list_ &= ~other.list();
    178   }
    179 }
    180 
    181 
    182 inline void CPURegList::Combine(const CPURegister& other) {
    183   DCHECK(other.type() == type_);
    184   DCHECK(other.SizeInBits() == size_);
    185   Combine(other.code());
    186 }
    187 
    188 
    189 inline void CPURegList::Remove(const CPURegister& other1,
    190                                const CPURegister& other2,
    191                                const CPURegister& other3,
    192                                const CPURegister& other4) {
    193   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
    194   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
    195   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
    196   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
    197 }
    198 
    199 
    200 inline void CPURegList::Combine(int code) {
    201   DCHECK(IsValid());
    202   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
    203   list_ |= (1UL << code);
    204 }
    205 
    206 
    207 inline void CPURegList::Remove(int code) {
    208   DCHECK(IsValid());
    209   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
    210   list_ &= ~(1UL << code);
    211 }
    212 
    213 
    214 inline Register Register::XRegFromCode(unsigned code) {
    215   if (code == kSPRegInternalCode) {
    216     return csp;
    217   } else {
    218     DCHECK(code < kNumberOfRegisters);
    219     return Register::Create(code, kXRegSizeInBits);
    220   }
    221 }
    222 
    223 
    224 inline Register Register::WRegFromCode(unsigned code) {
    225   if (code == kSPRegInternalCode) {
    226     return wcsp;
    227   } else {
    228     DCHECK(code < kNumberOfRegisters);
    229     return Register::Create(code, kWRegSizeInBits);
    230   }
    231 }
    232 
    233 
    234 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
    235   DCHECK(code < kNumberOfFPRegisters);
    236   return FPRegister::Create(code, kSRegSizeInBits);
    237 }
    238 
    239 
    240 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
    241   DCHECK(code < kNumberOfFPRegisters);
    242   return FPRegister::Create(code, kDRegSizeInBits);
    243 }
    244 
    245 
    246 inline Register CPURegister::W() const {
    247   DCHECK(IsValidRegister());
    248   return Register::WRegFromCode(reg_code);
    249 }
    250 
    251 
    252 inline Register CPURegister::X() const {
    253   DCHECK(IsValidRegister());
    254   return Register::XRegFromCode(reg_code);
    255 }
    256 
    257 
    258 inline FPRegister CPURegister::S() const {
    259   DCHECK(IsValidFPRegister());
    260   return FPRegister::SRegFromCode(reg_code);
    261 }
    262 
    263 
    264 inline FPRegister CPURegister::D() const {
    265   DCHECK(IsValidFPRegister());
    266   return FPRegister::DRegFromCode(reg_code);
    267 }
    268 
    269 
    270 // Immediate.
    271 // Default initializer is for int types
    272 template<typename T>
    273 struct ImmediateInitializer {
    274   static const bool kIsIntType = true;
    275   static inline RelocInfo::Mode rmode_for(T) {
    276     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
    277   }
    278   static inline int64_t immediate_for(T t) {
    279     STATIC_ASSERT(sizeof(T) <= 8);
    280     return t;
    281   }
    282 };
    283 
    284 
    285 template<>
    286 struct ImmediateInitializer<Smi*> {
    287   static const bool kIsIntType = false;
    288   static inline RelocInfo::Mode rmode_for(Smi* t) {
    289     return RelocInfo::NONE64;
    290   }
    291   static inline int64_t immediate_for(Smi* t) {;
    292     return reinterpret_cast<int64_t>(t);
    293   }
    294 };
    295 
    296 
    297 template<>
    298 struct ImmediateInitializer<ExternalReference> {
    299   static const bool kIsIntType = false;
    300   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
    301     return RelocInfo::EXTERNAL_REFERENCE;
    302   }
    303   static inline int64_t immediate_for(ExternalReference t) {;
    304     return reinterpret_cast<int64_t>(t.address());
    305   }
    306 };
    307 
    308 
    309 template<typename T>
    310 Immediate::Immediate(Handle<T> value) {
    311   InitializeHandle(value);
    312 }
    313 
    314 
    315 template<typename T>
    316 Immediate::Immediate(T t)
    317     : value_(ImmediateInitializer<T>::immediate_for(t)),
    318       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
    319 
    320 
    321 template<typename T>
    322 Immediate::Immediate(T t, RelocInfo::Mode rmode)
    323     : value_(ImmediateInitializer<T>::immediate_for(t)),
    324       rmode_(rmode) {
    325   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
    326 }
    327 
    328 
    329 // Operand.
    330 template<typename T>
    331 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
    332 
    333 
    334 template<typename T>
    335 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
    336 
    337 
    338 template<typename T>
    339 Operand::Operand(T t, RelocInfo::Mode rmode)
    340     : immediate_(t, rmode),
    341       reg_(NoReg) {}
    342 
    343 
    344 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
    345     : immediate_(0),
    346       reg_(reg),
    347       shift_(shift),
    348       extend_(NO_EXTEND),
    349       shift_amount_(shift_amount) {
    350   DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
    351   DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
    352   DCHECK(!reg.IsSP());
    353 }
    354 
    355 
    356 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
    357     : immediate_(0),
    358       reg_(reg),
    359       shift_(NO_SHIFT),
    360       extend_(extend),
    361       shift_amount_(shift_amount) {
    362   DCHECK(reg.IsValid());
    363   DCHECK(shift_amount <= 4);
    364   DCHECK(!reg.IsSP());
    365 
    366   // Extend modes SXTX and UXTX require a 64-bit register.
    367   DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
    368 }
    369 
    370 
    371 bool Operand::IsImmediate() const {
    372   return reg_.Is(NoReg);
    373 }
    374 
    375 
    376 bool Operand::IsShiftedRegister() const {
    377   return reg_.IsValid() && (shift_ != NO_SHIFT);
    378 }
    379 
    380 
    381 bool Operand::IsExtendedRegister() const {
    382   return reg_.IsValid() && (extend_ != NO_EXTEND);
    383 }
    384 
    385 
    386 bool Operand::IsZero() const {
    387   if (IsImmediate()) {
    388     return ImmediateValue() == 0;
    389   } else {
    390     return reg().IsZero();
    391   }
    392 }
    393 
    394 
    395 Operand Operand::ToExtendedRegister() const {
    396   DCHECK(IsShiftedRegister());
    397   DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
    398   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
    399 }
    400 
    401 
    402 Immediate Operand::immediate() const {
    403   DCHECK(IsImmediate());
    404   return immediate_;
    405 }
    406 
    407 
    408 int64_t Operand::ImmediateValue() const {
    409   DCHECK(IsImmediate());
    410   return immediate_.value();
    411 }
    412 
    413 
    414 Register Operand::reg() const {
    415   DCHECK(IsShiftedRegister() || IsExtendedRegister());
    416   return reg_;
    417 }
    418 
    419 
    420 Shift Operand::shift() const {
    421   DCHECK(IsShiftedRegister());
    422   return shift_;
    423 }
    424 
    425 
    426 Extend Operand::extend() const {
    427   DCHECK(IsExtendedRegister());
    428   return extend_;
    429 }
    430 
    431 
    432 unsigned Operand::shift_amount() const {
    433   DCHECK(IsShiftedRegister() || IsExtendedRegister());
    434   return shift_amount_;
    435 }
    436 
    437 
    438 Operand Operand::UntagSmi(Register smi) {
    439   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
    440                                                          kSmiValueSize));
    441   DCHECK(smi.Is64Bits());
    442   return Operand(smi, ASR, kSmiShift);
    443 }
    444 
    445 
    446 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
    447   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
    448                                                          kSmiValueSize));
    449   DCHECK(smi.Is64Bits());
    450   DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
    451   if (scale > kSmiShift) {
    452     return Operand(smi, LSL, scale - kSmiShift);
    453   } else if (scale < kSmiShift) {
    454     return Operand(smi, ASR, kSmiShift - scale);
    455   }
    456   return Operand(smi);
    457 }
    458 
    459 
    460 MemOperand::MemOperand()
    461   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
    462     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    463 }
    464 
    465 
    466 MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
    467   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
    468     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    469   DCHECK(base.Is64Bits() && !base.IsZero());
    470 }
    471 
    472 
    473 MemOperand::MemOperand(Register base,
    474                        Register regoffset,
    475                        Extend extend,
    476                        unsigned shift_amount)
    477   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    478     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
    479   DCHECK(base.Is64Bits() && !base.IsZero());
    480   DCHECK(!regoffset.IsSP());
    481   DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
    482 
    483   // SXTX extend mode requires a 64-bit offset register.
    484   DCHECK(regoffset.Is64Bits() || (extend != SXTX));
    485 }
    486 
    487 
    488 MemOperand::MemOperand(Register base,
    489                        Register regoffset,
    490                        Shift shift,
    491                        unsigned shift_amount)
    492   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    493     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
    494   DCHECK(base.Is64Bits() && !base.IsZero());
    495   DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
    496   DCHECK(shift == LSL);
    497 }
    498 
    499 
    500 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
    501   : base_(base), addrmode_(addrmode) {
    502   DCHECK(base.Is64Bits() && !base.IsZero());
    503 
    504   if (offset.IsImmediate()) {
    505     offset_ = offset.ImmediateValue();
    506 
    507     regoffset_ = NoReg;
    508   } else if (offset.IsShiftedRegister()) {
    509     DCHECK(addrmode == Offset);
    510 
    511     regoffset_ = offset.reg();
    512     shift_ = offset.shift();
    513     shift_amount_ = offset.shift_amount();
    514 
    515     extend_ = NO_EXTEND;
    516     offset_ = 0;
    517 
    518     // These assertions match those in the shifted-register constructor.
    519     DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
    520     DCHECK(shift_ == LSL);
    521   } else {
    522     DCHECK(offset.IsExtendedRegister());
    523     DCHECK(addrmode == Offset);
    524 
    525     regoffset_ = offset.reg();
    526     extend_ = offset.extend();
    527     shift_amount_ = offset.shift_amount();
    528 
    529     shift_ = NO_SHIFT;
    530     offset_ = 0;
    531 
    532     // These assertions match those in the extended-register constructor.
    533     DCHECK(!regoffset_.IsSP());
    534     DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
    535     DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
    536   }
    537 }
    538 
    539 bool MemOperand::IsImmediateOffset() const {
    540   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
    541 }
    542 
    543 
    544 bool MemOperand::IsRegisterOffset() const {
    545   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
    546 }
    547 
    548 
    549 bool MemOperand::IsPreIndex() const {
    550   return addrmode_ == PreIndex;
    551 }
    552 
    553 
    554 bool MemOperand::IsPostIndex() const {
    555   return addrmode_ == PostIndex;
    556 }
    557 
    558 Operand MemOperand::OffsetAsOperand() const {
    559   if (IsImmediateOffset()) {
    560     return offset();
    561   } else {
    562     DCHECK(IsRegisterOffset());
    563     if (extend() == NO_EXTEND) {
    564       return Operand(regoffset(), shift(), shift_amount());
    565     } else {
    566       return Operand(regoffset(), extend(), shift_amount());
    567     }
    568   }
    569 }
    570 
    571 
    572 void Assembler::Unreachable() {
    573 #ifdef USE_SIMULATOR
    574   debug("UNREACHABLE", __LINE__, BREAK);
    575 #else
    576   // Crash by branching to 0. lr now points near the fault.
    577   Emit(BLR | Rn(xzr));
    578 #endif
    579 }
    580 
    581 
    582 Address Assembler::target_pointer_address_at(Address pc) {
    583   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    584   DCHECK(instr->IsLdrLiteralX());
    585   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
    586 }
    587 
    588 
    589 // Read/Modify the code target address in the branch/call instruction at pc.
    590 Address Assembler::target_address_at(Address pc, Address constant_pool) {
    591   return Memory::Address_at(target_pointer_address_at(pc));
    592 }
    593 
    594 
    595 Address Assembler::target_address_at(Address pc, Code* code) {
    596   Address constant_pool = code ? code->constant_pool() : NULL;
    597   return target_address_at(pc, constant_pool);
    598 }
    599 
    600 
    601 Address Assembler::target_address_from_return_address(Address pc) {
    602   // Returns the address of the call target from the return address that will
    603   // be returned to after a call.
    604   // Call sequence on ARM64 is:
    605   //  ldr ip0, #... @ load from literal pool
    606   //  blr ip0
    607   Address candidate = pc - 2 * kInstructionSize;
    608   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
    609   USE(instr);
    610   DCHECK(instr->IsLdrLiteralX());
    611   return candidate;
    612 }
    613 
    614 
    615 Address Assembler::return_address_from_call_start(Address pc) {
    616   // The call, generated by MacroAssembler::Call, is one of two possible
    617   // sequences:
    618   //
    619   // Without relocation:
    620   //  movz  temp, #(target & 0x000000000000ffff)
    621   //  movk  temp, #(target & 0x00000000ffff0000)
    622   //  movk  temp, #(target & 0x0000ffff00000000)
    623   //  blr   temp
    624   //
    625   // With relocation:
    626   //  ldr   temp, =target
    627   //  blr   temp
    628   //
    629   // The return address is immediately after the blr instruction in both cases,
    630   // so it can be found by adding the call size to the address at the start of
    631   // the call sequence.
    632   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
    633   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
    634 
    635   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    636   if (instr->IsMovz()) {
    637     // Verify the instruction sequence.
    638     DCHECK(instr->following(1)->IsMovk());
    639     DCHECK(instr->following(2)->IsMovk());
    640     DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
    641     return pc + Assembler::kCallSizeWithoutRelocation;
    642   } else {
    643     // Verify the instruction sequence.
    644     DCHECK(instr->IsLdrLiteralX());
    645     DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
    646     return pc + Assembler::kCallSizeWithRelocation;
    647   }
    648 }
    649 
    650 
    651 void Assembler::deserialization_set_special_target_at(
    652     Isolate* isolate, Address constant_pool_entry, Code* code, Address target) {
    653   Memory::Address_at(constant_pool_entry) = target;
    654 }
    655 
    656 
    657 void Assembler::deserialization_set_target_internal_reference_at(
    658     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
    659   Memory::Address_at(pc) = target;
    660 }
    661 
    662 
    663 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
    664                                       Address constant_pool, Address target,
    665                                       ICacheFlushMode icache_flush_mode) {
    666   Memory::Address_at(target_pointer_address_at(pc)) = target;
    667   // Intuitively, we would think it is necessary to always flush the
    668   // instruction cache after patching a target address in the code as follows:
    669   //   Assembler::FlushICache(isolate(), pc, sizeof(target));
    670   // However, on ARM, an instruction is actually patched in the case of
    671   // embedded constants of the form:
    672   // ldr   ip, [pc, #...]
    673   // since the instruction accessing this address in the constant pool remains
    674   // unchanged, a flush is not required.
    675 }
    676 
    677 
    678 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
    679                                       Address target,
    680                                       ICacheFlushMode icache_flush_mode) {
    681   Address constant_pool = code ? code->constant_pool() : NULL;
    682   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
    683 }
    684 
    685 
    686 int RelocInfo::target_address_size() {
    687   return kPointerSize;
    688 }
    689 
    690 
    691 Address RelocInfo::target_address() {
    692   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    693   return Assembler::target_address_at(pc_, host_);
    694 }
    695 
    696 
    697 Address RelocInfo::target_address_address() {
    698   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    699                               || rmode_ == EMBEDDED_OBJECT
    700                               || rmode_ == EXTERNAL_REFERENCE);
    701   return Assembler::target_pointer_address_at(pc_);
    702 }
    703 
    704 
    705 Address RelocInfo::constant_pool_entry_address() {
    706   DCHECK(IsInConstantPool());
    707   return Assembler::target_pointer_address_at(pc_);
    708 }
    709 
    710 
    711 Object* RelocInfo::target_object() {
    712   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    713   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    714 }
    715 
    716 
    717 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    718   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    719   return Handle<Object>(reinterpret_cast<Object**>(
    720       Assembler::target_address_at(pc_, host_)));
    721 }
    722 
    723 
    724 void RelocInfo::set_target_object(Object* target,
    725                                   WriteBarrierMode write_barrier_mode,
    726                                   ICacheFlushMode icache_flush_mode) {
    727   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    728   Assembler::set_target_address_at(isolate_, pc_, host_,
    729                                    reinterpret_cast<Address>(target),
    730                                    icache_flush_mode);
    731   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    732       host() != NULL &&
    733       target->IsHeapObject()) {
    734     host()->GetHeap()->incremental_marking()->RecordWrite(
    735         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
    736   }
    737 }
    738 
    739 
    740 Address RelocInfo::target_external_reference() {
    741   DCHECK(rmode_ == EXTERNAL_REFERENCE);
    742   return Assembler::target_address_at(pc_, host_);
    743 }
    744 
    745 
    746 Address RelocInfo::target_internal_reference() {
    747   DCHECK(rmode_ == INTERNAL_REFERENCE);
    748   return Memory::Address_at(pc_);
    749 }
    750 
    751 
    752 Address RelocInfo::target_internal_reference_address() {
    753   DCHECK(rmode_ == INTERNAL_REFERENCE);
    754   return reinterpret_cast<Address>(pc_);
    755 }
    756 
    757 
    758 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    759   DCHECK(IsRuntimeEntry(rmode_));
    760   return target_address();
    761 }
    762 
    763 
    764 void RelocInfo::set_target_runtime_entry(Address target,
    765                                          WriteBarrierMode write_barrier_mode,
    766                                          ICacheFlushMode icache_flush_mode) {
    767   DCHECK(IsRuntimeEntry(rmode_));
    768   if (target_address() != target) {
    769     set_target_address(target, write_barrier_mode, icache_flush_mode);
    770   }
    771 }
    772 
    773 
    774 Handle<Cell> RelocInfo::target_cell_handle() {
    775   UNIMPLEMENTED();
    776   Cell *null_cell = NULL;
    777   return Handle<Cell>(null_cell);
    778 }
    779 
    780 
    781 Cell* RelocInfo::target_cell() {
    782   DCHECK(rmode_ == RelocInfo::CELL);
    783   return Cell::FromValueAddress(Memory::Address_at(pc_));
    784 }
    785 
    786 
    787 void RelocInfo::set_target_cell(Cell* cell,
    788                                 WriteBarrierMode write_barrier_mode,
    789                                 ICacheFlushMode icache_flush_mode) {
    790   UNIMPLEMENTED();
    791 }
    792 
    793 
    794 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
    795 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
    796 
    797 
    798 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    799   UNREACHABLE();  // This should never be reached on ARM64.
    800   return Handle<Object>();
    801 }
    802 
    803 
    804 Code* RelocInfo::code_age_stub() {
    805   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    806   // Read the stub entry point from the code age sequence.
    807   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    808   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
    809 }
    810 
    811 
    812 void RelocInfo::set_code_age_stub(Code* stub,
    813                                   ICacheFlushMode icache_flush_mode) {
    814   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    815   DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
    816   // Overwrite the stub entry point in the code age sequence. This is loaded as
    817   // a literal so there is no need to call FlushICache here.
    818   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    819   Memory::Address_at(stub_entry_address) = stub->instruction_start();
    820 }
    821 
    822 
    823 Address RelocInfo::debug_call_address() {
    824   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    825   // For the above sequences the Relocinfo points to the load literal loading
    826   // the call address.
    827   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
    828   return Assembler::target_address_at(pc_, host_);
    829 }
    830 
    831 
    832 void RelocInfo::set_debug_call_address(Address target) {
    833   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    834   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
    835   Assembler::set_target_address_at(isolate_, pc_, host_, target);
    836   if (host() != NULL) {
    837     Object* target_code = Code::GetCodeFromTargetAddress(target);
    838     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    839         host(), this, HeapObject::cast(target_code));
    840   }
    841 }
    842 
    843 
    844 void RelocInfo::WipeOut() {
    845   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
    846          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
    847          IsInternalReference(rmode_));
    848   if (IsInternalReference(rmode_)) {
    849     Memory::Address_at(pc_) = NULL;
    850   } else {
    851     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
    852   }
    853 }
    854 
    855 
    856 bool RelocInfo::IsPatchedReturnSequence() {
    857   // The sequence must be:
    858   //   ldr ip0, [pc, #offset]
    859   //   blr ip0
    860   // See arm64/debug-arm64.cc DebugCodegen::PatchDebugBreakSlot
    861   Instruction* i1 = reinterpret_cast<Instruction*>(pc_);
    862   Instruction* i2 = i1->following();
    863   return i1->IsLdrLiteralX() && (i1->Rt() == kIp0Code) &&
    864          i2->IsBranchAndLinkToRegister() && (i2->Rn() == kIp0Code);
    865 }
    866 
    867 
    868 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
    869   Instruction* current_instr = reinterpret_cast<Instruction*>(pc_);
    870   return !current_instr->IsNop(Assembler::DEBUG_BREAK_NOP);
    871 }
    872 
    873 
    874 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    875   RelocInfo::Mode mode = rmode();
    876   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    877     visitor->VisitEmbeddedPointer(this);
    878   } else if (RelocInfo::IsCodeTarget(mode)) {
    879     visitor->VisitCodeTarget(this);
    880   } else if (mode == RelocInfo::CELL) {
    881     visitor->VisitCell(this);
    882   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    883     visitor->VisitExternalReference(this);
    884   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    885     visitor->VisitInternalReference(this);
    886   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    887              IsPatchedDebugBreakSlotSequence()) {
    888     visitor->VisitDebugTarget(this);
    889   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    890     visitor->VisitRuntimeEntry(this);
    891   }
    892 }
    893 
    894 
    895 template<typename StaticVisitor>
    896 void RelocInfo::Visit(Heap* heap) {
    897   RelocInfo::Mode mode = rmode();
    898   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    899     StaticVisitor::VisitEmbeddedPointer(heap, this);
    900   } else if (RelocInfo::IsCodeTarget(mode)) {
    901     StaticVisitor::VisitCodeTarget(heap, this);
    902   } else if (mode == RelocInfo::CELL) {
    903     StaticVisitor::VisitCell(heap, this);
    904   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    905     StaticVisitor::VisitExternalReference(this);
    906   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    907     StaticVisitor::VisitInternalReference(this);
    908   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    909              IsPatchedDebugBreakSlotSequence()) {
    910     StaticVisitor::VisitDebugTarget(heap, this);
    911   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    912     StaticVisitor::VisitRuntimeEntry(this);
    913   }
    914 }
    915 
    916 
    917 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
    918   DCHECK(rt.IsValid());
    919   if (rt.IsRegister()) {
    920     return rt.Is64Bits() ? LDR_x : LDR_w;
    921   } else {
    922     DCHECK(rt.IsFPRegister());
    923     return rt.Is64Bits() ? LDR_d : LDR_s;
    924   }
    925 }
    926 
    927 
    928 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
    929                                          const CPURegister& rt2) {
    930   DCHECK(AreSameSizeAndType(rt, rt2));
    931   USE(rt2);
    932   if (rt.IsRegister()) {
    933     return rt.Is64Bits() ? LDP_x : LDP_w;
    934   } else {
    935     DCHECK(rt.IsFPRegister());
    936     return rt.Is64Bits() ? LDP_d : LDP_s;
    937   }
    938 }
    939 
    940 
    941 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
    942   DCHECK(rt.IsValid());
    943   if (rt.IsRegister()) {
    944     return rt.Is64Bits() ? STR_x : STR_w;
    945   } else {
    946     DCHECK(rt.IsFPRegister());
    947     return rt.Is64Bits() ? STR_d : STR_s;
    948   }
    949 }
    950 
    951 
    952 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
    953                                           const CPURegister& rt2) {
    954   DCHECK(AreSameSizeAndType(rt, rt2));
    955   USE(rt2);
    956   if (rt.IsRegister()) {
    957     return rt.Is64Bits() ? STP_x : STP_w;
    958   } else {
    959     DCHECK(rt.IsFPRegister());
    960     return rt.Is64Bits() ? STP_d : STP_s;
    961   }
    962 }
    963 
    964 
    965 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
    966   if (rt.IsRegister()) {
    967     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
    968   } else {
    969     DCHECK(rt.IsFPRegister());
    970     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
    971   }
    972 }
    973 
    974 
    975 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
    976   DCHECK(kStartOfLabelLinkChain == 0);
    977   int offset = LinkAndGetByteOffsetTo(label);
    978   DCHECK(IsAligned(offset, kInstructionSize));
    979   return offset >> kInstructionSizeLog2;
    980 }
    981 
    982 
    983 Instr Assembler::Flags(FlagsUpdate S) {
    984   if (S == SetFlags) {
    985     return 1 << FlagsUpdate_offset;
    986   } else if (S == LeaveFlags) {
    987     return 0 << FlagsUpdate_offset;
    988   }
    989   UNREACHABLE();
    990   return 0;
    991 }
    992 
    993 
    994 Instr Assembler::Cond(Condition cond) {
    995   return cond << Condition_offset;
    996 }
    997 
    998 
    999 Instr Assembler::ImmPCRelAddress(int imm21) {
   1000   CHECK(is_int21(imm21));
   1001   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
   1002   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
   1003   Instr immlo = imm << ImmPCRelLo_offset;
   1004   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
   1005 }
   1006 
   1007 
   1008 Instr Assembler::ImmUncondBranch(int imm26) {
   1009   CHECK(is_int26(imm26));
   1010   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
   1011 }
   1012 
   1013 
   1014 Instr Assembler::ImmCondBranch(int imm19) {
   1015   CHECK(is_int19(imm19));
   1016   return truncate_to_int19(imm19) << ImmCondBranch_offset;
   1017 }
   1018 
   1019 
   1020 Instr Assembler::ImmCmpBranch(int imm19) {
   1021   CHECK(is_int19(imm19));
   1022   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
   1023 }
   1024 
   1025 
   1026 Instr Assembler::ImmTestBranch(int imm14) {
   1027   CHECK(is_int14(imm14));
   1028   return truncate_to_int14(imm14) << ImmTestBranch_offset;
   1029 }
   1030 
   1031 
   1032 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
   1033   DCHECK(is_uint6(bit_pos));
   1034   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
   1035   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
   1036   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
   1037   b5 &= ImmTestBranchBit5_mask;
   1038   b40 &= ImmTestBranchBit40_mask;
   1039   return b5 | b40;
   1040 }
   1041 
   1042 
   1043 Instr Assembler::SF(Register rd) {
   1044     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
   1045 }
   1046 
   1047 
   1048 Instr Assembler::ImmAddSub(int imm) {
   1049   DCHECK(IsImmAddSub(imm));
   1050   if (is_uint12(imm)) {  // No shift required.
   1051     imm <<= ImmAddSub_offset;
   1052   } else {
   1053     imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
   1054   }
   1055   return imm;
   1056 }
   1057 
   1058 
   1059 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
   1060   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
   1061          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
   1062   USE(reg_size);
   1063   return imms << ImmS_offset;
   1064 }
   1065 
   1066 
   1067 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
   1068   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1069          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1070   USE(reg_size);
   1071   DCHECK(is_uint6(immr));
   1072   return immr << ImmR_offset;
   1073 }
   1074 
   1075 
   1076 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
   1077   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1078   DCHECK(is_uint6(imms));
   1079   DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
   1080   USE(reg_size);
   1081   return imms << ImmSetBits_offset;
   1082 }
   1083 
   1084 
   1085 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
   1086   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1087   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1088          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1089   USE(reg_size);
   1090   return immr << ImmRotate_offset;
   1091 }
   1092 
   1093 
   1094 Instr Assembler::ImmLLiteral(int imm19) {
   1095   CHECK(is_int19(imm19));
   1096   return truncate_to_int19(imm19) << ImmLLiteral_offset;
   1097 }
   1098 
   1099 
   1100 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
   1101   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1102   DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
   1103   USE(reg_size);
   1104   return bitn << BitN_offset;
   1105 }
   1106 
   1107 
   1108 Instr Assembler::ShiftDP(Shift shift) {
   1109   DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
   1110   return shift << ShiftDP_offset;
   1111 }
   1112 
   1113 
   1114 Instr Assembler::ImmDPShift(unsigned amount) {
   1115   DCHECK(is_uint6(amount));
   1116   return amount << ImmDPShift_offset;
   1117 }
   1118 
   1119 
   1120 Instr Assembler::ExtendMode(Extend extend) {
   1121   return extend << ExtendMode_offset;
   1122 }
   1123 
   1124 
   1125 Instr Assembler::ImmExtendShift(unsigned left_shift) {
   1126   DCHECK(left_shift <= 4);
   1127   return left_shift << ImmExtendShift_offset;
   1128 }
   1129 
   1130 
   1131 Instr Assembler::ImmCondCmp(unsigned imm) {
   1132   DCHECK(is_uint5(imm));
   1133   return imm << ImmCondCmp_offset;
   1134 }
   1135 
   1136 
   1137 Instr Assembler::Nzcv(StatusFlags nzcv) {
   1138   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
   1139 }
   1140 
   1141 
   1142 Instr Assembler::ImmLSUnsigned(int imm12) {
   1143   DCHECK(is_uint12(imm12));
   1144   return imm12 << ImmLSUnsigned_offset;
   1145 }
   1146 
   1147 
   1148 Instr Assembler::ImmLS(int imm9) {
   1149   DCHECK(is_int9(imm9));
   1150   return truncate_to_int9(imm9) << ImmLS_offset;
   1151 }
   1152 
   1153 
   1154 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
   1155   DCHECK(((imm7 >> size) << size) == imm7);
   1156   int scaled_imm7 = imm7 >> size;
   1157   DCHECK(is_int7(scaled_imm7));
   1158   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
   1159 }
   1160 
   1161 
   1162 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
   1163   DCHECK(is_uint1(shift_amount));
   1164   return shift_amount << ImmShiftLS_offset;
   1165 }
   1166 
   1167 
   1168 Instr Assembler::ImmException(int imm16) {
   1169   DCHECK(is_uint16(imm16));
   1170   return imm16 << ImmException_offset;
   1171 }
   1172 
   1173 
   1174 Instr Assembler::ImmSystemRegister(int imm15) {
   1175   DCHECK(is_uint15(imm15));
   1176   return imm15 << ImmSystemRegister_offset;
   1177 }
   1178 
   1179 
   1180 Instr Assembler::ImmHint(int imm7) {
   1181   DCHECK(is_uint7(imm7));
   1182   return imm7 << ImmHint_offset;
   1183 }
   1184 
   1185 
   1186 Instr Assembler::ImmBarrierDomain(int imm2) {
   1187   DCHECK(is_uint2(imm2));
   1188   return imm2 << ImmBarrierDomain_offset;
   1189 }
   1190 
   1191 
   1192 Instr Assembler::ImmBarrierType(int imm2) {
   1193   DCHECK(is_uint2(imm2));
   1194   return imm2 << ImmBarrierType_offset;
   1195 }
   1196 
   1197 
   1198 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
   1199   DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
   1200   return static_cast<LSDataSize>(op >> SizeLS_offset);
   1201 }
   1202 
   1203 
   1204 Instr Assembler::ImmMoveWide(int imm) {
   1205   DCHECK(is_uint16(imm));
   1206   return imm << ImmMoveWide_offset;
   1207 }
   1208 
   1209 
   1210 Instr Assembler::ShiftMoveWide(int shift) {
   1211   DCHECK(is_uint2(shift));
   1212   return shift << ShiftMoveWide_offset;
   1213 }
   1214 
   1215 
   1216 Instr Assembler::FPType(FPRegister fd) {
   1217   return fd.Is64Bits() ? FP64 : FP32;
   1218 }
   1219 
   1220 
   1221 Instr Assembler::FPScale(unsigned scale) {
   1222   DCHECK(is_uint6(scale));
   1223   return scale << FPScale_offset;
   1224 }
   1225 
   1226 
   1227 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
   1228   return reg.Is64Bits() ? xzr : wzr;
   1229 }
   1230 
   1231 
   1232 inline void Assembler::CheckBufferSpace() {
   1233   DCHECK(pc_ < (buffer_ + buffer_size_));
   1234   if (buffer_space() < kGap) {
   1235     GrowBuffer();
   1236   }
   1237 }
   1238 
   1239 
   1240 inline void Assembler::CheckBuffer() {
   1241   CheckBufferSpace();
   1242   if (pc_offset() >= next_veneer_pool_check_) {
   1243     CheckVeneerPool(false, true);
   1244   }
   1245   if (pc_offset() >= next_constant_pool_check_) {
   1246     CheckConstPool(false, true);
   1247   }
   1248 }
   1249 
   1250 
   1251 TypeFeedbackId Assembler::RecordedAstId() {
   1252   DCHECK(!recorded_ast_id_.IsNone());
   1253   return recorded_ast_id_;
   1254 }
   1255 
   1256 
   1257 void Assembler::ClearRecordedAstId() {
   1258   recorded_ast_id_ = TypeFeedbackId::None();
   1259 }
   1260 
   1261 
   1262 }  // namespace internal
   1263 }  // namespace v8
   1264 
   1265 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_
   1266