1 /* 2 ** 3 ** Copyright 2012, The Android Open Source Project 4 ** 5 ** Licensed under the Apache License, Version 2.0 (the "License"); 6 ** you may not use this file except in compliance with the License. 7 ** You may obtain a copy of the License at 8 ** 9 ** http://www.apache.org/licenses/LICENSE-2.0 10 ** 11 ** Unless required by applicable law or agreed to in writing, software 12 ** distributed under the License is distributed on an "AS IS" BASIS, 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 ** See the License for the specific language governing permissions and 15 ** limitations under the License. 16 */ 17 18 19 #define LOG_TAG "AudioFlinger" 20 //#define LOG_NDEBUG 0 21 #define ATRACE_TAG ATRACE_TAG_AUDIO 22 23 #include "Configuration.h" 24 #include <math.h> 25 #include <fcntl.h> 26 #include <linux/futex.h> 27 #include <sys/stat.h> 28 #include <sys/syscall.h> 29 #include <cutils/properties.h> 30 #include <media/AudioParameter.h> 31 #include <media/AudioResamplerPublic.h> 32 #include <utils/Log.h> 33 #include <utils/Trace.h> 34 35 #include <private/media/AudioTrackShared.h> 36 #include <hardware/audio.h> 37 #include <audio_effects/effect_ns.h> 38 #include <audio_effects/effect_aec.h> 39 #include <audio_utils/conversion.h> 40 #include <audio_utils/primitives.h> 41 #include <audio_utils/format.h> 42 #include <audio_utils/minifloat.h> 43 44 // NBAIO implementations 45 #include <media/nbaio/AudioStreamInSource.h> 46 #include <media/nbaio/AudioStreamOutSink.h> 47 #include <media/nbaio/MonoPipe.h> 48 #include <media/nbaio/MonoPipeReader.h> 49 #include <media/nbaio/Pipe.h> 50 #include <media/nbaio/PipeReader.h> 51 #include <media/nbaio/SourceAudioBufferProvider.h> 52 #include <mediautils/BatteryNotifier.h> 53 54 #include <powermanager/PowerManager.h> 55 56 #include "AudioFlinger.h" 57 #include "AudioMixer.h" 58 #include "BufferProviders.h" 59 #include "FastMixer.h" 60 #include "FastCapture.h" 61 #include "ServiceUtilities.h" 62 #include "mediautils/SchedulingPolicyService.h" 63 64 #ifdef ADD_BATTERY_DATA 65 #include <media/IMediaPlayerService.h> 66 #include <media/IMediaDeathNotifier.h> 67 #endif 68 69 #ifdef DEBUG_CPU_USAGE 70 #include <cpustats/CentralTendencyStatistics.h> 71 #include <cpustats/ThreadCpuUsage.h> 72 #endif 73 74 #include "AutoPark.h" 75 76 // ---------------------------------------------------------------------------- 77 78 // Note: the following macro is used for extremely verbose logging message. In 79 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to 80 // 0; but one side effect of this is to turn all LOGV's as well. Some messages 81 // are so verbose that we want to suppress them even when we have ALOG_ASSERT 82 // turned on. Do not uncomment the #def below unless you really know what you 83 // are doing and want to see all of the extremely verbose messages. 84 //#define VERY_VERY_VERBOSE_LOGGING 85 #ifdef VERY_VERY_VERBOSE_LOGGING 86 #define ALOGVV ALOGV 87 #else 88 #define ALOGVV(a...) do { } while(0) 89 #endif 90 91 // TODO: Move these macro/inlines to a header file. 92 #define max(a, b) ((a) > (b) ? (a) : (b)) 93 template <typename T> 94 static inline T min(const T& a, const T& b) 95 { 96 return a < b ? a : b; 97 } 98 99 #ifndef ARRAY_SIZE 100 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) 101 #endif 102 103 namespace android { 104 105 // retry counts for buffer fill timeout 106 // 50 * ~20msecs = 1 second 107 static const int8_t kMaxTrackRetries = 50; 108 static const int8_t kMaxTrackStartupRetries = 50; 109 // allow less retry attempts on direct output thread. 110 // direct outputs can be a scarce resource in audio hardware and should 111 // be released as quickly as possible. 112 static const int8_t kMaxTrackRetriesDirect = 2; 113 114 115 116 // don't warn about blocked writes or record buffer overflows more often than this 117 static const nsecs_t kWarningThrottleNs = seconds(5); 118 119 // RecordThread loop sleep time upon application overrun or audio HAL read error 120 static const int kRecordThreadSleepUs = 5000; 121 122 // maximum time to wait in sendConfigEvent_l() for a status to be received 123 static const nsecs_t kConfigEventTimeoutNs = seconds(2); 124 125 // minimum sleep time for the mixer thread loop when tracks are active but in underrun 126 static const uint32_t kMinThreadSleepTimeUs = 5000; 127 // maximum divider applied to the active sleep time in the mixer thread loop 128 static const uint32_t kMaxThreadSleepTimeShift = 2; 129 130 // minimum normal sink buffer size, expressed in milliseconds rather than frames 131 // FIXME This should be based on experimentally observed scheduling jitter 132 static const uint32_t kMinNormalSinkBufferSizeMs = 20; 133 // maximum normal sink buffer size 134 static const uint32_t kMaxNormalSinkBufferSizeMs = 24; 135 136 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread 137 // FIXME This should be based on experimentally observed scheduling jitter 138 static const uint32_t kMinNormalCaptureBufferSizeMs = 12; 139 140 // Offloaded output thread standby delay: allows track transition without going to standby 141 static const nsecs_t kOffloadStandbyDelayNs = seconds(1); 142 143 // Direct output thread minimum sleep time in idle or active(underrun) state 144 static const nsecs_t kDirectMinSleepTimeUs = 10000; 145 146 147 // Whether to use fast mixer 148 static const enum { 149 FastMixer_Never, // never initialize or use: for debugging only 150 FastMixer_Always, // always initialize and use, even if not needed: for debugging only 151 // normal mixer multiplier is 1 152 FastMixer_Static, // initialize if needed, then use all the time if initialized, 153 // multiplier is calculated based on min & max normal mixer buffer size 154 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load, 155 // multiplier is calculated based on min & max normal mixer buffer size 156 // FIXME for FastMixer_Dynamic: 157 // Supporting this option will require fixing HALs that can't handle large writes. 158 // For example, one HAL implementation returns an error from a large write, 159 // and another HAL implementation corrupts memory, possibly in the sample rate converter. 160 // We could either fix the HAL implementations, or provide a wrapper that breaks 161 // up large writes into smaller ones, and the wrapper would need to deal with scheduler. 162 } kUseFastMixer = FastMixer_Static; 163 164 // Whether to use fast capture 165 static const enum { 166 FastCapture_Never, // never initialize or use: for debugging only 167 FastCapture_Always, // always initialize and use, even if not needed: for debugging only 168 FastCapture_Static, // initialize if needed, then use all the time if initialized 169 } kUseFastCapture = FastCapture_Static; 170 171 // Priorities for requestPriority 172 static const int kPriorityAudioApp = 2; 173 static const int kPriorityFastMixer = 3; 174 static const int kPriorityFastCapture = 3; 175 176 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the 177 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks, 178 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'. 179 180 // This is the default value, if not specified by property. 181 static const int kFastTrackMultiplier = 2; 182 183 // The minimum and maximum allowed values 184 static const int kFastTrackMultiplierMin = 1; 185 static const int kFastTrackMultiplierMax = 2; 186 187 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier. 188 static int sFastTrackMultiplier = kFastTrackMultiplier; 189 190 // See Thread::readOnlyHeap(). 191 // Initially this heap is used to allocate client buffers for "fast" AudioRecord. 192 // Eventually it will be the single buffer that FastCapture writes into via HAL read(), 193 // and that all "fast" AudioRecord clients read from. In either case, the size can be small. 194 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000; 195 196 // ---------------------------------------------------------------------------- 197 198 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT; 199 200 static void sFastTrackMultiplierInit() 201 { 202 char value[PROPERTY_VALUE_MAX]; 203 if (property_get("af.fast_track_multiplier", value, NULL) > 0) { 204 char *endptr; 205 unsigned long ul = strtoul(value, &endptr, 0); 206 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) { 207 sFastTrackMultiplier = (int) ul; 208 } 209 } 210 } 211 212 // ---------------------------------------------------------------------------- 213 214 #ifdef ADD_BATTERY_DATA 215 // To collect the amplifier usage 216 static void addBatteryData(uint32_t params) { 217 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService(); 218 if (service == NULL) { 219 // it already logged 220 return; 221 } 222 223 service->addBatteryData(params); 224 } 225 #endif 226 227 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset 228 struct { 229 // call when you acquire a partial wakelock 230 void acquire(const sp<IBinder> &wakeLockToken) { 231 pthread_mutex_lock(&mLock); 232 if (wakeLockToken.get() == nullptr) { 233 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME); 234 } else { 235 if (mCount == 0) { 236 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME); 237 } 238 ++mCount; 239 } 240 pthread_mutex_unlock(&mLock); 241 } 242 243 // call when you release a partial wakelock. 244 void release(const sp<IBinder> &wakeLockToken) { 245 if (wakeLockToken.get() == nullptr) { 246 return; 247 } 248 pthread_mutex_lock(&mLock); 249 if (--mCount < 0) { 250 ALOGE("negative wakelock count"); 251 mCount = 0; 252 } 253 pthread_mutex_unlock(&mLock); 254 } 255 256 // retrieves the boottime timebase offset from monotonic. 257 int64_t getBoottimeOffset() { 258 pthread_mutex_lock(&mLock); 259 int64_t boottimeOffset = mBoottimeOffset; 260 pthread_mutex_unlock(&mLock); 261 return boottimeOffset; 262 } 263 264 // Adjusts the timebase offset between TIMEBASE_MONOTONIC 265 // and the selected timebase. 266 // Currently only TIMEBASE_BOOTTIME is allowed. 267 // 268 // This only needs to be called upon acquiring the first partial wakelock 269 // after all other partial wakelocks are released. 270 // 271 // We do an empirical measurement of the offset rather than parsing 272 // /proc/timer_list since the latter is not a formal kernel ABI. 273 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) { 274 int clockbase; 275 switch (timebase) { 276 case ExtendedTimestamp::TIMEBASE_BOOTTIME: 277 clockbase = SYSTEM_TIME_BOOTTIME; 278 break; 279 default: 280 LOG_ALWAYS_FATAL("invalid timebase %d", timebase); 281 break; 282 } 283 // try three times to get the clock offset, choose the one 284 // with the minimum gap in measurements. 285 const int tries = 3; 286 nsecs_t bestGap, measured; 287 for (int i = 0; i < tries; ++i) { 288 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC); 289 const nsecs_t tbase = systemTime(clockbase); 290 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC); 291 const nsecs_t gap = tmono2 - tmono; 292 if (i == 0 || gap < bestGap) { 293 bestGap = gap; 294 measured = tbase - ((tmono + tmono2) >> 1); 295 } 296 } 297 298 // to avoid micro-adjusting, we don't change the timebase 299 // unless it is significantly different. 300 // 301 // Assumption: It probably takes more than toleranceNs to 302 // suspend and resume the device. 303 static int64_t toleranceNs = 10000; // 10 us 304 if (llabs(*offset - measured) > toleranceNs) { 305 ALOGV("Adjusting timebase offset old: %lld new: %lld", 306 (long long)*offset, (long long)measured); 307 *offset = measured; 308 } 309 } 310 311 pthread_mutex_t mLock; 312 int32_t mCount; 313 int64_t mBoottimeOffset; 314 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization 315 316 // ---------------------------------------------------------------------------- 317 // CPU Stats 318 // ---------------------------------------------------------------------------- 319 320 class CpuStats { 321 public: 322 CpuStats(); 323 void sample(const String8 &title); 324 #ifdef DEBUG_CPU_USAGE 325 private: 326 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns 327 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns 328 329 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles 330 331 int mCpuNum; // thread's current CPU number 332 int mCpukHz; // frequency of thread's current CPU in kHz 333 #endif 334 }; 335 336 CpuStats::CpuStats() 337 #ifdef DEBUG_CPU_USAGE 338 : mCpuNum(-1), mCpukHz(-1) 339 #endif 340 { 341 } 342 343 void CpuStats::sample(const String8 &title 344 #ifndef DEBUG_CPU_USAGE 345 __unused 346 #endif 347 ) { 348 #ifdef DEBUG_CPU_USAGE 349 // get current thread's delta CPU time in wall clock ns 350 double wcNs; 351 bool valid = mCpuUsage.sampleAndEnable(wcNs); 352 353 // record sample for wall clock statistics 354 if (valid) { 355 mWcStats.sample(wcNs); 356 } 357 358 // get the current CPU number 359 int cpuNum = sched_getcpu(); 360 361 // get the current CPU frequency in kHz 362 int cpukHz = mCpuUsage.getCpukHz(cpuNum); 363 364 // check if either CPU number or frequency changed 365 if (cpuNum != mCpuNum || cpukHz != mCpukHz) { 366 mCpuNum = cpuNum; 367 mCpukHz = cpukHz; 368 // ignore sample for purposes of cycles 369 valid = false; 370 } 371 372 // if no change in CPU number or frequency, then record sample for cycle statistics 373 if (valid && mCpukHz > 0) { 374 double cycles = wcNs * cpukHz * 0.000001; 375 mHzStats.sample(cycles); 376 } 377 378 unsigned n = mWcStats.n(); 379 // mCpuUsage.elapsed() is expensive, so don't call it every loop 380 if ((n & 127) == 1) { 381 long long elapsed = mCpuUsage.elapsed(); 382 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) { 383 double perLoop = elapsed / (double) n; 384 double perLoop100 = perLoop * 0.01; 385 double perLoop1k = perLoop * 0.001; 386 double mean = mWcStats.mean(); 387 double stddev = mWcStats.stddev(); 388 double minimum = mWcStats.minimum(); 389 double maximum = mWcStats.maximum(); 390 double meanCycles = mHzStats.mean(); 391 double stddevCycles = mHzStats.stddev(); 392 double minCycles = mHzStats.minimum(); 393 double maxCycles = mHzStats.maximum(); 394 mCpuUsage.resetElapsed(); 395 mWcStats.reset(); 396 mHzStats.reset(); 397 ALOGD("CPU usage for %s over past %.1f secs\n" 398 " (%u mixer loops at %.1f mean ms per loop):\n" 399 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n" 400 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n" 401 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f", 402 title.string(), 403 elapsed * .000000001, n, perLoop * .000001, 404 mean * .001, 405 stddev * .001, 406 minimum * .001, 407 maximum * .001, 408 mean / perLoop100, 409 stddev / perLoop100, 410 minimum / perLoop100, 411 maximum / perLoop100, 412 meanCycles / perLoop1k, 413 stddevCycles / perLoop1k, 414 minCycles / perLoop1k, 415 maxCycles / perLoop1k); 416 417 } 418 } 419 #endif 420 }; 421 422 // ---------------------------------------------------------------------------- 423 // ThreadBase 424 // ---------------------------------------------------------------------------- 425 426 // static 427 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type) 428 { 429 switch (type) { 430 case MIXER: 431 return "MIXER"; 432 case DIRECT: 433 return "DIRECT"; 434 case DUPLICATING: 435 return "DUPLICATING"; 436 case RECORD: 437 return "RECORD"; 438 case OFFLOAD: 439 return "OFFLOAD"; 440 default: 441 return "unknown"; 442 } 443 } 444 445 String8 devicesToString(audio_devices_t devices) 446 { 447 static const struct mapping { 448 audio_devices_t mDevices; 449 const char * mString; 450 } mappingsOut[] = { 451 {AUDIO_DEVICE_OUT_EARPIECE, "EARPIECE"}, 452 {AUDIO_DEVICE_OUT_SPEAKER, "SPEAKER"}, 453 {AUDIO_DEVICE_OUT_WIRED_HEADSET, "WIRED_HEADSET"}, 454 {AUDIO_DEVICE_OUT_WIRED_HEADPHONE, "WIRED_HEADPHONE"}, 455 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO, "BLUETOOTH_SCO"}, 456 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"}, 457 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT, "BLUETOOTH_SCO_CARKIT"}, 458 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP, "BLUETOOTH_A2DP"}, 459 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"}, 460 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER, "BLUETOOTH_A2DP_SPEAKER"}, 461 {AUDIO_DEVICE_OUT_AUX_DIGITAL, "AUX_DIGITAL"}, 462 {AUDIO_DEVICE_OUT_HDMI, "HDMI"}, 463 {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"}, 464 {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"}, 465 {AUDIO_DEVICE_OUT_USB_ACCESSORY, "USB_ACCESSORY"}, 466 {AUDIO_DEVICE_OUT_USB_DEVICE, "USB_DEVICE"}, 467 {AUDIO_DEVICE_OUT_TELEPHONY_TX, "TELEPHONY_TX"}, 468 {AUDIO_DEVICE_OUT_LINE, "LINE"}, 469 {AUDIO_DEVICE_OUT_HDMI_ARC, "HDMI_ARC"}, 470 {AUDIO_DEVICE_OUT_SPDIF, "SPDIF"}, 471 {AUDIO_DEVICE_OUT_FM, "FM"}, 472 {AUDIO_DEVICE_OUT_AUX_LINE, "AUX_LINE"}, 473 {AUDIO_DEVICE_OUT_SPEAKER_SAFE, "SPEAKER_SAFE"}, 474 {AUDIO_DEVICE_OUT_IP, "IP"}, 475 {AUDIO_DEVICE_OUT_BUS, "BUS"}, 476 {AUDIO_DEVICE_NONE, "NONE"}, // must be last 477 }, mappingsIn[] = { 478 {AUDIO_DEVICE_IN_COMMUNICATION, "COMMUNICATION"}, 479 {AUDIO_DEVICE_IN_AMBIENT, "AMBIENT"}, 480 {AUDIO_DEVICE_IN_BUILTIN_MIC, "BUILTIN_MIC"}, 481 {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"}, 482 {AUDIO_DEVICE_IN_WIRED_HEADSET, "WIRED_HEADSET"}, 483 {AUDIO_DEVICE_IN_AUX_DIGITAL, "AUX_DIGITAL"}, 484 {AUDIO_DEVICE_IN_VOICE_CALL, "VOICE_CALL"}, 485 {AUDIO_DEVICE_IN_TELEPHONY_RX, "TELEPHONY_RX"}, 486 {AUDIO_DEVICE_IN_BACK_MIC, "BACK_MIC"}, 487 {AUDIO_DEVICE_IN_REMOTE_SUBMIX, "REMOTE_SUBMIX"}, 488 {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"}, 489 {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"}, 490 {AUDIO_DEVICE_IN_USB_ACCESSORY, "USB_ACCESSORY"}, 491 {AUDIO_DEVICE_IN_USB_DEVICE, "USB_DEVICE"}, 492 {AUDIO_DEVICE_IN_FM_TUNER, "FM_TUNER"}, 493 {AUDIO_DEVICE_IN_TV_TUNER, "TV_TUNER"}, 494 {AUDIO_DEVICE_IN_LINE, "LINE"}, 495 {AUDIO_DEVICE_IN_SPDIF, "SPDIF"}, 496 {AUDIO_DEVICE_IN_BLUETOOTH_A2DP, "BLUETOOTH_A2DP"}, 497 {AUDIO_DEVICE_IN_LOOPBACK, "LOOPBACK"}, 498 {AUDIO_DEVICE_IN_IP, "IP"}, 499 {AUDIO_DEVICE_IN_BUS, "BUS"}, 500 {AUDIO_DEVICE_NONE, "NONE"}, // must be last 501 }; 502 String8 result; 503 audio_devices_t allDevices = AUDIO_DEVICE_NONE; 504 const mapping *entry; 505 if (devices & AUDIO_DEVICE_BIT_IN) { 506 devices &= ~AUDIO_DEVICE_BIT_IN; 507 entry = mappingsIn; 508 } else { 509 entry = mappingsOut; 510 } 511 for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) { 512 allDevices = (audio_devices_t) (allDevices | entry->mDevices); 513 if (devices & entry->mDevices) { 514 if (!result.isEmpty()) { 515 result.append("|"); 516 } 517 result.append(entry->mString); 518 } 519 } 520 if (devices & ~allDevices) { 521 if (!result.isEmpty()) { 522 result.append("|"); 523 } 524 result.appendFormat("0x%X", devices & ~allDevices); 525 } 526 if (result.isEmpty()) { 527 result.append(entry->mString); 528 } 529 return result; 530 } 531 532 String8 inputFlagsToString(audio_input_flags_t flags) 533 { 534 static const struct mapping { 535 audio_input_flags_t mFlag; 536 const char * mString; 537 } mappings[] = { 538 {AUDIO_INPUT_FLAG_FAST, "FAST"}, 539 {AUDIO_INPUT_FLAG_HW_HOTWORD, "HW_HOTWORD"}, 540 {AUDIO_INPUT_FLAG_RAW, "RAW"}, 541 {AUDIO_INPUT_FLAG_SYNC, "SYNC"}, 542 {AUDIO_INPUT_FLAG_NONE, "NONE"}, // must be last 543 }; 544 String8 result; 545 audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE; 546 const mapping *entry; 547 for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) { 548 allFlags = (audio_input_flags_t) (allFlags | entry->mFlag); 549 if (flags & entry->mFlag) { 550 if (!result.isEmpty()) { 551 result.append("|"); 552 } 553 result.append(entry->mString); 554 } 555 } 556 if (flags & ~allFlags) { 557 if (!result.isEmpty()) { 558 result.append("|"); 559 } 560 result.appendFormat("0x%X", flags & ~allFlags); 561 } 562 if (result.isEmpty()) { 563 result.append(entry->mString); 564 } 565 return result; 566 } 567 568 String8 outputFlagsToString(audio_output_flags_t flags) 569 { 570 static const struct mapping { 571 audio_output_flags_t mFlag; 572 const char * mString; 573 } mappings[] = { 574 {AUDIO_OUTPUT_FLAG_DIRECT, "DIRECT"}, 575 {AUDIO_OUTPUT_FLAG_PRIMARY, "PRIMARY"}, 576 {AUDIO_OUTPUT_FLAG_FAST, "FAST"}, 577 {AUDIO_OUTPUT_FLAG_DEEP_BUFFER, "DEEP_BUFFER"}, 578 {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"}, 579 {AUDIO_OUTPUT_FLAG_NON_BLOCKING, "NON_BLOCKING"}, 580 {AUDIO_OUTPUT_FLAG_HW_AV_SYNC, "HW_AV_SYNC"}, 581 {AUDIO_OUTPUT_FLAG_RAW, "RAW"}, 582 {AUDIO_OUTPUT_FLAG_SYNC, "SYNC"}, 583 {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"}, 584 {AUDIO_OUTPUT_FLAG_NONE, "NONE"}, // must be last 585 }; 586 String8 result; 587 audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE; 588 const mapping *entry; 589 for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) { 590 allFlags = (audio_output_flags_t) (allFlags | entry->mFlag); 591 if (flags & entry->mFlag) { 592 if (!result.isEmpty()) { 593 result.append("|"); 594 } 595 result.append(entry->mString); 596 } 597 } 598 if (flags & ~allFlags) { 599 if (!result.isEmpty()) { 600 result.append("|"); 601 } 602 result.appendFormat("0x%X", flags & ~allFlags); 603 } 604 if (result.isEmpty()) { 605 result.append(entry->mString); 606 } 607 return result; 608 } 609 610 const char *sourceToString(audio_source_t source) 611 { 612 switch (source) { 613 case AUDIO_SOURCE_DEFAULT: return "default"; 614 case AUDIO_SOURCE_MIC: return "mic"; 615 case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink"; 616 case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink"; 617 case AUDIO_SOURCE_VOICE_CALL: return "voice call"; 618 case AUDIO_SOURCE_CAMCORDER: return "camcorder"; 619 case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition"; 620 case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication"; 621 case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix"; 622 case AUDIO_SOURCE_UNPROCESSED: return "unprocessed"; 623 case AUDIO_SOURCE_FM_TUNER: return "FM tuner"; 624 case AUDIO_SOURCE_HOTWORD: return "hotword"; 625 default: return "unknown"; 626 } 627 } 628 629 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id, 630 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady) 631 : Thread(false /*canCallJava*/), 632 mType(type), 633 mAudioFlinger(audioFlinger), 634 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize 635 // are set by PlaybackThread::readOutputParameters_l() or 636 // RecordThread::readInputParameters_l() 637 //FIXME: mStandby should be true here. Is this some kind of hack? 638 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice), 639 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE), 640 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id), 641 // mName will be set by concrete (non-virtual) subclass 642 mDeathRecipient(new PMDeathRecipient(this)), 643 mSystemReady(systemReady), 644 mNotifiedBatteryStart(false) 645 { 646 memset(&mPatch, 0, sizeof(struct audio_patch)); 647 } 648 649 AudioFlinger::ThreadBase::~ThreadBase() 650 { 651 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns 652 mConfigEvents.clear(); 653 654 // do not lock the mutex in destructor 655 releaseWakeLock_l(); 656 if (mPowerManager != 0) { 657 sp<IBinder> binder = IInterface::asBinder(mPowerManager); 658 binder->unlinkToDeath(mDeathRecipient); 659 } 660 } 661 662 status_t AudioFlinger::ThreadBase::readyToRun() 663 { 664 status_t status = initCheck(); 665 if (status == NO_ERROR) { 666 ALOGI("AudioFlinger's thread %p ready to run", this); 667 } else { 668 ALOGE("No working audio driver found."); 669 } 670 return status; 671 } 672 673 void AudioFlinger::ThreadBase::exit() 674 { 675 ALOGV("ThreadBase::exit"); 676 // do any cleanup required for exit to succeed 677 preExit(); 678 { 679 // This lock prevents the following race in thread (uniprocessor for illustration): 680 // if (!exitPending()) { 681 // // context switch from here to exit() 682 // // exit() calls requestExit(), what exitPending() observes 683 // // exit() calls signal(), which is dropped since no waiters 684 // // context switch back from exit() to here 685 // mWaitWorkCV.wait(...); 686 // // now thread is hung 687 // } 688 AutoMutex lock(mLock); 689 requestExit(); 690 mWaitWorkCV.broadcast(); 691 } 692 // When Thread::requestExitAndWait is made virtual and this method is renamed to 693 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();" 694 requestExitAndWait(); 695 } 696 697 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs) 698 { 699 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string()); 700 Mutex::Autolock _l(mLock); 701 702 return sendSetParameterConfigEvent_l(keyValuePairs); 703 } 704 705 // sendConfigEvent_l() must be called with ThreadBase::mLock held 706 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l(). 707 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event) 708 { 709 status_t status = NO_ERROR; 710 711 if (event->mRequiresSystemReady && !mSystemReady) { 712 event->mWaitStatus = false; 713 mPendingConfigEvents.add(event); 714 return status; 715 } 716 mConfigEvents.add(event); 717 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType); 718 mWaitWorkCV.signal(); 719 mLock.unlock(); 720 { 721 Mutex::Autolock _l(event->mLock); 722 while (event->mWaitStatus) { 723 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) { 724 event->mStatus = TIMED_OUT; 725 event->mWaitStatus = false; 726 } 727 } 728 status = event->mStatus; 729 } 730 mLock.lock(); 731 return status; 732 } 733 734 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid) 735 { 736 Mutex::Autolock _l(mLock); 737 sendIoConfigEvent_l(event, pid); 738 } 739 740 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held 741 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid) 742 { 743 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid); 744 sendConfigEvent_l(configEvent); 745 } 746 747 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio) 748 { 749 Mutex::Autolock _l(mLock); 750 sendPrioConfigEvent_l(pid, tid, prio); 751 } 752 753 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held 754 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio) 755 { 756 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio); 757 sendConfigEvent_l(configEvent); 758 } 759 760 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held 761 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair) 762 { 763 sp<ConfigEvent> configEvent; 764 AudioParameter param(keyValuePair); 765 int value; 766 if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) { 767 setMasterMono_l(value != 0); 768 if (param.size() == 1) { 769 return NO_ERROR; // should be a solo parameter - we don't pass down 770 } 771 param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT)); 772 configEvent = new SetParameterConfigEvent(param.toString()); 773 } else { 774 configEvent = new SetParameterConfigEvent(keyValuePair); 775 } 776 return sendConfigEvent_l(configEvent); 777 } 778 779 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent( 780 const struct audio_patch *patch, 781 audio_patch_handle_t *handle) 782 { 783 Mutex::Autolock _l(mLock); 784 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle); 785 status_t status = sendConfigEvent_l(configEvent); 786 if (status == NO_ERROR) { 787 CreateAudioPatchConfigEventData *data = 788 (CreateAudioPatchConfigEventData *)configEvent->mData.get(); 789 *handle = data->mHandle; 790 } 791 return status; 792 } 793 794 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent( 795 const audio_patch_handle_t handle) 796 { 797 Mutex::Autolock _l(mLock); 798 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle); 799 return sendConfigEvent_l(configEvent); 800 } 801 802 803 // post condition: mConfigEvents.isEmpty() 804 void AudioFlinger::ThreadBase::processConfigEvents_l() 805 { 806 bool configChanged = false; 807 808 while (!mConfigEvents.isEmpty()) { 809 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size()); 810 sp<ConfigEvent> event = mConfigEvents[0]; 811 mConfigEvents.removeAt(0); 812 switch (event->mType) { 813 case CFG_EVENT_PRIO: { 814 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get(); 815 // FIXME Need to understand why this has to be done asynchronously 816 int err = requestPriority(data->mPid, data->mTid, data->mPrio, 817 true /*asynchronous*/); 818 if (err != 0) { 819 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d", 820 data->mPrio, data->mPid, data->mTid, err); 821 } 822 } break; 823 case CFG_EVENT_IO: { 824 IoConfigEventData *data = (IoConfigEventData *)event->mData.get(); 825 ioConfigChanged(data->mEvent, data->mPid); 826 } break; 827 case CFG_EVENT_SET_PARAMETER: { 828 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get(); 829 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) { 830 configChanged = true; 831 } 832 } break; 833 case CFG_EVENT_CREATE_AUDIO_PATCH: { 834 CreateAudioPatchConfigEventData *data = 835 (CreateAudioPatchConfigEventData *)event->mData.get(); 836 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle); 837 } break; 838 case CFG_EVENT_RELEASE_AUDIO_PATCH: { 839 ReleaseAudioPatchConfigEventData *data = 840 (ReleaseAudioPatchConfigEventData *)event->mData.get(); 841 event->mStatus = releaseAudioPatch_l(data->mHandle); 842 } break; 843 default: 844 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType); 845 break; 846 } 847 { 848 Mutex::Autolock _l(event->mLock); 849 if (event->mWaitStatus) { 850 event->mWaitStatus = false; 851 event->mCond.signal(); 852 } 853 } 854 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this); 855 } 856 857 if (configChanged) { 858 cacheParameters_l(); 859 } 860 } 861 862 String8 channelMaskToString(audio_channel_mask_t mask, bool output) { 863 String8 s; 864 const audio_channel_representation_t representation = 865 audio_channel_mask_get_representation(mask); 866 867 switch (representation) { 868 case AUDIO_CHANNEL_REPRESENTATION_POSITION: { 869 if (output) { 870 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, "); 871 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, "); 872 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, "); 873 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, "); 874 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, "); 875 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, "); 876 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, "); 877 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, "); 878 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, "); 879 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, "); 880 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, "); 881 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,"); 882 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, "); 883 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, "); 884 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, "); 885 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, "); 886 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " ); 887 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " ); 888 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, "); 889 } else { 890 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, "); 891 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, "); 892 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, "); 893 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, "); 894 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, "); 895 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, "); 896 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, "); 897 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, "); 898 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, "); 899 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, "); 900 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, "); 901 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, "); 902 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, "); 903 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, "); 904 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, "); 905 } 906 const int len = s.length(); 907 if (len > 2) { 908 (void) s.lockBuffer(len); // needed? 909 s.unlockBuffer(len - 2); // remove trailing ", " 910 } 911 return s; 912 } 913 case AUDIO_CHANNEL_REPRESENTATION_INDEX: 914 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask)); 915 return s; 916 default: 917 s.appendFormat("unknown mask, representation:%d bits:%#x", 918 representation, audio_channel_mask_get_bits(mask)); 919 return s; 920 } 921 } 922 923 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused) 924 { 925 const size_t SIZE = 256; 926 char buffer[SIZE]; 927 String8 result; 928 929 bool locked = AudioFlinger::dumpTryLock(mLock); 930 if (!locked) { 931 dprintf(fd, "thread %p may be deadlocked\n", this); 932 } 933 934 dprintf(fd, " Thread name: %s\n", mThreadName); 935 dprintf(fd, " I/O handle: %d\n", mId); 936 dprintf(fd, " TID: %d\n", getTid()); 937 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no"); 938 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate); 939 dprintf(fd, " HAL frame count: %zu\n", mFrameCount); 940 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat)); 941 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize); 942 dprintf(fd, " Channel count: %u\n", mChannelCount); 943 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask, 944 channelMaskToString(mChannelMask, mType != RECORD).string()); 945 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat)); 946 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize); 947 dprintf(fd, " Pending config events:"); 948 size_t numConfig = mConfigEvents.size(); 949 if (numConfig) { 950 for (size_t i = 0; i < numConfig; i++) { 951 mConfigEvents[i]->dump(buffer, SIZE); 952 dprintf(fd, "\n %s", buffer); 953 } 954 dprintf(fd, "\n"); 955 } else { 956 dprintf(fd, " none\n"); 957 } 958 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string()); 959 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string()); 960 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource)); 961 962 if (locked) { 963 mLock.unlock(); 964 } 965 } 966 967 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args) 968 { 969 const size_t SIZE = 256; 970 char buffer[SIZE]; 971 String8 result; 972 973 size_t numEffectChains = mEffectChains.size(); 974 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains); 975 write(fd, buffer, strlen(buffer)); 976 977 for (size_t i = 0; i < numEffectChains; ++i) { 978 sp<EffectChain> chain = mEffectChains[i]; 979 if (chain != 0) { 980 chain->dump(fd, args); 981 } 982 } 983 } 984 985 void AudioFlinger::ThreadBase::acquireWakeLock(int uid) 986 { 987 Mutex::Autolock _l(mLock); 988 acquireWakeLock_l(uid); 989 } 990 991 String16 AudioFlinger::ThreadBase::getWakeLockTag() 992 { 993 switch (mType) { 994 case MIXER: 995 return String16("AudioMix"); 996 case DIRECT: 997 return String16("AudioDirectOut"); 998 case DUPLICATING: 999 return String16("AudioDup"); 1000 case RECORD: 1001 return String16("AudioIn"); 1002 case OFFLOAD: 1003 return String16("AudioOffload"); 1004 default: 1005 ALOG_ASSERT(false); 1006 return String16("AudioUnknown"); 1007 } 1008 } 1009 1010 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid) 1011 { 1012 getPowerManager_l(); 1013 if (mPowerManager != 0) { 1014 sp<IBinder> binder = new BBinder(); 1015 status_t status; 1016 if (uid >= 0) { 1017 status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK, 1018 binder, 1019 getWakeLockTag(), 1020 String16("audioserver"), 1021 uid, 1022 true /* FIXME force oneway contrary to .aidl */); 1023 } else { 1024 status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK, 1025 binder, 1026 getWakeLockTag(), 1027 String16("audioserver"), 1028 true /* FIXME force oneway contrary to .aidl */); 1029 } 1030 if (status == NO_ERROR) { 1031 mWakeLockToken = binder; 1032 } 1033 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status); 1034 } 1035 1036 if (!mNotifiedBatteryStart) { 1037 BatteryNotifier::getInstance().noteStartAudio(); 1038 mNotifiedBatteryStart = true; 1039 } 1040 gBoottime.acquire(mWakeLockToken); 1041 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] = 1042 gBoottime.getBoottimeOffset(); 1043 } 1044 1045 void AudioFlinger::ThreadBase::releaseWakeLock() 1046 { 1047 Mutex::Autolock _l(mLock); 1048 releaseWakeLock_l(); 1049 } 1050 1051 void AudioFlinger::ThreadBase::releaseWakeLock_l() 1052 { 1053 gBoottime.release(mWakeLockToken); 1054 if (mWakeLockToken != 0) { 1055 ALOGV("releaseWakeLock_l() %s", mThreadName); 1056 if (mPowerManager != 0) { 1057 mPowerManager->releaseWakeLock(mWakeLockToken, 0, 1058 true /* FIXME force oneway contrary to .aidl */); 1059 } 1060 mWakeLockToken.clear(); 1061 } 1062 1063 if (mNotifiedBatteryStart) { 1064 BatteryNotifier::getInstance().noteStopAudio(); 1065 mNotifiedBatteryStart = false; 1066 } 1067 } 1068 1069 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) { 1070 Mutex::Autolock _l(mLock); 1071 updateWakeLockUids_l(uids); 1072 } 1073 1074 void AudioFlinger::ThreadBase::getPowerManager_l() { 1075 if (mSystemReady && mPowerManager == 0) { 1076 // use checkService() to avoid blocking if power service is not up yet 1077 sp<IBinder> binder = 1078 defaultServiceManager()->checkService(String16("power")); 1079 if (binder == 0) { 1080 ALOGW("Thread %s cannot connect to the power manager service", mThreadName); 1081 } else { 1082 mPowerManager = interface_cast<IPowerManager>(binder); 1083 binder->linkToDeath(mDeathRecipient); 1084 } 1085 } 1086 } 1087 1088 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) { 1089 getPowerManager_l(); 1090 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called. 1091 if (mSystemReady) { 1092 ALOGE("no wake lock to update, but system ready!"); 1093 } else { 1094 ALOGW("no wake lock to update, system not ready yet"); 1095 } 1096 return; 1097 } 1098 if (mPowerManager != 0) { 1099 sp<IBinder> binder = new BBinder(); 1100 status_t status; 1101 status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(), 1102 true /* FIXME force oneway contrary to .aidl */); 1103 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status); 1104 } 1105 } 1106 1107 void AudioFlinger::ThreadBase::clearPowerManager() 1108 { 1109 Mutex::Autolock _l(mLock); 1110 releaseWakeLock_l(); 1111 mPowerManager.clear(); 1112 } 1113 1114 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused) 1115 { 1116 sp<ThreadBase> thread = mThread.promote(); 1117 if (thread != 0) { 1118 thread->clearPowerManager(); 1119 } 1120 ALOGW("power manager service died !!!"); 1121 } 1122 1123 void AudioFlinger::ThreadBase::setEffectSuspended( 1124 const effect_uuid_t *type, bool suspend, audio_session_t sessionId) 1125 { 1126 Mutex::Autolock _l(mLock); 1127 setEffectSuspended_l(type, suspend, sessionId); 1128 } 1129 1130 void AudioFlinger::ThreadBase::setEffectSuspended_l( 1131 const effect_uuid_t *type, bool suspend, audio_session_t sessionId) 1132 { 1133 sp<EffectChain> chain = getEffectChain_l(sessionId); 1134 if (chain != 0) { 1135 if (type != NULL) { 1136 chain->setEffectSuspended_l(type, suspend); 1137 } else { 1138 chain->setEffectSuspendedAll_l(suspend); 1139 } 1140 } 1141 1142 updateSuspendedSessions_l(type, suspend, sessionId); 1143 } 1144 1145 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain) 1146 { 1147 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId()); 1148 if (index < 0) { 1149 return; 1150 } 1151 1152 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects = 1153 mSuspendedSessions.valueAt(index); 1154 1155 for (size_t i = 0; i < sessionEffects.size(); i++) { 1156 sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i); 1157 for (int j = 0; j < desc->mRefCount; j++) { 1158 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) { 1159 chain->setEffectSuspendedAll_l(true); 1160 } else { 1161 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x", 1162 desc->mType.timeLow); 1163 chain->setEffectSuspended_l(&desc->mType, true); 1164 } 1165 } 1166 } 1167 } 1168 1169 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type, 1170 bool suspend, 1171 audio_session_t sessionId) 1172 { 1173 ssize_t index = mSuspendedSessions.indexOfKey(sessionId); 1174 1175 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects; 1176 1177 if (suspend) { 1178 if (index >= 0) { 1179 sessionEffects = mSuspendedSessions.valueAt(index); 1180 } else { 1181 mSuspendedSessions.add(sessionId, sessionEffects); 1182 } 1183 } else { 1184 if (index < 0) { 1185 return; 1186 } 1187 sessionEffects = mSuspendedSessions.valueAt(index); 1188 } 1189 1190 1191 int key = EffectChain::kKeyForSuspendAll; 1192 if (type != NULL) { 1193 key = type->timeLow; 1194 } 1195 index = sessionEffects.indexOfKey(key); 1196 1197 sp<SuspendedSessionDesc> desc; 1198 if (suspend) { 1199 if (index >= 0) { 1200 desc = sessionEffects.valueAt(index); 1201 } else { 1202 desc = new SuspendedSessionDesc(); 1203 if (type != NULL) { 1204 desc->mType = *type; 1205 } 1206 sessionEffects.add(key, desc); 1207 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key); 1208 } 1209 desc->mRefCount++; 1210 } else { 1211 if (index < 0) { 1212 return; 1213 } 1214 desc = sessionEffects.valueAt(index); 1215 if (--desc->mRefCount == 0) { 1216 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key); 1217 sessionEffects.removeItemsAt(index); 1218 if (sessionEffects.isEmpty()) { 1219 ALOGV("updateSuspendedSessions_l() restore removing session %d", 1220 sessionId); 1221 mSuspendedSessions.removeItem(sessionId); 1222 } 1223 } 1224 } 1225 if (!sessionEffects.isEmpty()) { 1226 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects); 1227 } 1228 } 1229 1230 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect, 1231 bool enabled, 1232 audio_session_t sessionId) 1233 { 1234 Mutex::Autolock _l(mLock); 1235 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId); 1236 } 1237 1238 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect, 1239 bool enabled, 1240 audio_session_t sessionId) 1241 { 1242 if (mType != RECORD) { 1243 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on 1244 // another session. This gives the priority to well behaved effect control panels 1245 // and applications not using global effects. 1246 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect 1247 // global effects 1248 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) { 1249 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX); 1250 } 1251 } 1252 1253 sp<EffectChain> chain = getEffectChain_l(sessionId); 1254 if (chain != 0) { 1255 chain->checkSuspendOnEffectEnabled(effect, enabled); 1256 } 1257 } 1258 1259 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held 1260 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l( 1261 const sp<AudioFlinger::Client>& client, 1262 const sp<IEffectClient>& effectClient, 1263 int32_t priority, 1264 audio_session_t sessionId, 1265 effect_descriptor_t *desc, 1266 int *enabled, 1267 status_t *status) 1268 { 1269 sp<EffectModule> effect; 1270 sp<EffectHandle> handle; 1271 status_t lStatus; 1272 sp<EffectChain> chain; 1273 bool chainCreated = false; 1274 bool effectCreated = false; 1275 bool effectRegistered = false; 1276 1277 lStatus = initCheck(); 1278 if (lStatus != NO_ERROR) { 1279 ALOGW("createEffect_l() Audio driver not initialized."); 1280 goto Exit; 1281 } 1282 1283 // Reject any effect on Direct output threads for now, since the format of 1284 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo). 1285 if (mType == DIRECT) { 1286 ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s", 1287 desc->name, mThreadName); 1288 lStatus = BAD_VALUE; 1289 goto Exit; 1290 } 1291 1292 // Reject any effect on mixer or duplicating multichannel sinks. 1293 // TODO: fix both format and multichannel issues with effects. 1294 if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) { 1295 ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads", 1296 desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING"); 1297 lStatus = BAD_VALUE; 1298 goto Exit; 1299 } 1300 1301 // Allow global effects only on offloaded and mixer threads 1302 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { 1303 switch (mType) { 1304 case MIXER: 1305 case OFFLOAD: 1306 break; 1307 case DIRECT: 1308 case DUPLICATING: 1309 case RECORD: 1310 default: 1311 ALOGW("createEffect_l() Cannot add global effect %s on thread %s", 1312 desc->name, mThreadName); 1313 lStatus = BAD_VALUE; 1314 goto Exit; 1315 } 1316 } 1317 1318 // Only Pre processor effects are allowed on input threads and only on input threads 1319 if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) { 1320 ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d", 1321 desc->name, desc->flags, mType); 1322 lStatus = BAD_VALUE; 1323 goto Exit; 1324 } 1325 1326 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId); 1327 1328 { // scope for mLock 1329 Mutex::Autolock _l(mLock); 1330 1331 // check for existing effect chain with the requested audio session 1332 chain = getEffectChain_l(sessionId); 1333 if (chain == 0) { 1334 // create a new chain for this session 1335 ALOGV("createEffect_l() new effect chain for session %d", sessionId); 1336 chain = new EffectChain(this, sessionId); 1337 addEffectChain_l(chain); 1338 chain->setStrategy(getStrategyForSession_l(sessionId)); 1339 chainCreated = true; 1340 } else { 1341 effect = chain->getEffectFromDesc_l(desc); 1342 } 1343 1344 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get()); 1345 1346 if (effect == 0) { 1347 audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT); 1348 // Check CPU and memory usage 1349 lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id); 1350 if (lStatus != NO_ERROR) { 1351 goto Exit; 1352 } 1353 effectRegistered = true; 1354 // create a new effect module if none present in the chain 1355 effect = new EffectModule(this, chain, desc, id, sessionId); 1356 lStatus = effect->status(); 1357 if (lStatus != NO_ERROR) { 1358 goto Exit; 1359 } 1360 effect->setOffloaded(mType == OFFLOAD, mId); 1361 1362 lStatus = chain->addEffect_l(effect); 1363 if (lStatus != NO_ERROR) { 1364 goto Exit; 1365 } 1366 effectCreated = true; 1367 1368 effect->setDevice(mOutDevice); 1369 effect->setDevice(mInDevice); 1370 effect->setMode(mAudioFlinger->getMode()); 1371 effect->setAudioSource(mAudioSource); 1372 } 1373 // create effect handle and connect it to effect module 1374 handle = new EffectHandle(effect, client, effectClient, priority); 1375 lStatus = handle->initCheck(); 1376 if (lStatus == OK) { 1377 lStatus = effect->addHandle(handle.get()); 1378 } 1379 if (enabled != NULL) { 1380 *enabled = (int)effect->isEnabled(); 1381 } 1382 } 1383 1384 Exit: 1385 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) { 1386 Mutex::Autolock _l(mLock); 1387 if (effectCreated) { 1388 chain->removeEffect_l(effect); 1389 } 1390 if (effectRegistered) { 1391 AudioSystem::unregisterEffect(effect->id()); 1392 } 1393 if (chainCreated) { 1394 removeEffectChain_l(chain); 1395 } 1396 handle.clear(); 1397 } 1398 1399 *status = lStatus; 1400 return handle; 1401 } 1402 1403 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId, 1404 int effectId) 1405 { 1406 Mutex::Autolock _l(mLock); 1407 return getEffect_l(sessionId, effectId); 1408 } 1409 1410 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId, 1411 int effectId) 1412 { 1413 sp<EffectChain> chain = getEffectChain_l(sessionId); 1414 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0; 1415 } 1416 1417 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and 1418 // PlaybackThread::mLock held 1419 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect) 1420 { 1421 // check for existing effect chain with the requested audio session 1422 audio_session_t sessionId = effect->sessionId(); 1423 sp<EffectChain> chain = getEffectChain_l(sessionId); 1424 bool chainCreated = false; 1425 1426 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(), 1427 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x", 1428 this, effect->desc().name, effect->desc().flags); 1429 1430 if (chain == 0) { 1431 // create a new chain for this session 1432 ALOGV("addEffect_l() new effect chain for session %d", sessionId); 1433 chain = new EffectChain(this, sessionId); 1434 addEffectChain_l(chain); 1435 chain->setStrategy(getStrategyForSession_l(sessionId)); 1436 chainCreated = true; 1437 } 1438 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get()); 1439 1440 if (chain->getEffectFromId_l(effect->id()) != 0) { 1441 ALOGW("addEffect_l() %p effect %s already present in chain %p", 1442 this, effect->desc().name, chain.get()); 1443 return BAD_VALUE; 1444 } 1445 1446 effect->setOffloaded(mType == OFFLOAD, mId); 1447 1448 status_t status = chain->addEffect_l(effect); 1449 if (status != NO_ERROR) { 1450 if (chainCreated) { 1451 removeEffectChain_l(chain); 1452 } 1453 return status; 1454 } 1455 1456 effect->setDevice(mOutDevice); 1457 effect->setDevice(mInDevice); 1458 effect->setMode(mAudioFlinger->getMode()); 1459 effect->setAudioSource(mAudioSource); 1460 return NO_ERROR; 1461 } 1462 1463 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) { 1464 1465 ALOGV("removeEffect_l() %p effect %p", this, effect.get()); 1466 effect_descriptor_t desc = effect->desc(); 1467 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { 1468 detachAuxEffect_l(effect->id()); 1469 } 1470 1471 sp<EffectChain> chain = effect->chain().promote(); 1472 if (chain != 0) { 1473 // remove effect chain if removing last effect 1474 if (chain->removeEffect_l(effect) == 0) { 1475 removeEffectChain_l(chain); 1476 } 1477 } else { 1478 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get()); 1479 } 1480 } 1481 1482 void AudioFlinger::ThreadBase::lockEffectChains_l( 1483 Vector< sp<AudioFlinger::EffectChain> >& effectChains) 1484 { 1485 effectChains = mEffectChains; 1486 for (size_t i = 0; i < mEffectChains.size(); i++) { 1487 mEffectChains[i]->lock(); 1488 } 1489 } 1490 1491 void AudioFlinger::ThreadBase::unlockEffectChains( 1492 const Vector< sp<AudioFlinger::EffectChain> >& effectChains) 1493 { 1494 for (size_t i = 0; i < effectChains.size(); i++) { 1495 effectChains[i]->unlock(); 1496 } 1497 } 1498 1499 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId) 1500 { 1501 Mutex::Autolock _l(mLock); 1502 return getEffectChain_l(sessionId); 1503 } 1504 1505 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId) 1506 const 1507 { 1508 size_t size = mEffectChains.size(); 1509 for (size_t i = 0; i < size; i++) { 1510 if (mEffectChains[i]->sessionId() == sessionId) { 1511 return mEffectChains[i]; 1512 } 1513 } 1514 return 0; 1515 } 1516 1517 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode) 1518 { 1519 Mutex::Autolock _l(mLock); 1520 size_t size = mEffectChains.size(); 1521 for (size_t i = 0; i < size; i++) { 1522 mEffectChains[i]->setMode_l(mode); 1523 } 1524 } 1525 1526 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config) 1527 { 1528 config->type = AUDIO_PORT_TYPE_MIX; 1529 config->ext.mix.handle = mId; 1530 config->sample_rate = mSampleRate; 1531 config->format = mFormat; 1532 config->channel_mask = mChannelMask; 1533 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK| 1534 AUDIO_PORT_CONFIG_FORMAT; 1535 } 1536 1537 void AudioFlinger::ThreadBase::systemReady() 1538 { 1539 Mutex::Autolock _l(mLock); 1540 if (mSystemReady) { 1541 return; 1542 } 1543 mSystemReady = true; 1544 1545 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) { 1546 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i)); 1547 } 1548 mPendingConfigEvents.clear(); 1549 } 1550 1551 1552 // ---------------------------------------------------------------------------- 1553 // Playback 1554 // ---------------------------------------------------------------------------- 1555 1556 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger, 1557 AudioStreamOut* output, 1558 audio_io_handle_t id, 1559 audio_devices_t device, 1560 type_t type, 1561 bool systemReady) 1562 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady), 1563 mNormalFrameCount(0), mSinkBuffer(NULL), 1564 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision), 1565 mMixerBuffer(NULL), 1566 mMixerBufferSize(0), 1567 mMixerBufferFormat(AUDIO_FORMAT_INVALID), 1568 mMixerBufferValid(false), 1569 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision), 1570 mEffectBuffer(NULL), 1571 mEffectBufferSize(0), 1572 mEffectBufferFormat(AUDIO_FORMAT_INVALID), 1573 mEffectBufferValid(false), 1574 mSuspended(0), mBytesWritten(0), 1575 mFramesWritten(0), 1576 mActiveTracksGeneration(0), 1577 // mStreamTypes[] initialized in constructor body 1578 mOutput(output), 1579 mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false), 1580 mMixerStatus(MIXER_IDLE), 1581 mMixerStatusIgnoringFastTracks(MIXER_IDLE), 1582 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs), 1583 mBytesRemaining(0), 1584 mCurrentWriteLength(0), 1585 mUseAsyncWrite(false), 1586 mWriteAckSequence(0), 1587 mDrainSequence(0), 1588 mSignalPending(false), 1589 mScreenState(AudioFlinger::mScreenState), 1590 // index 0 is reserved for normal mixer's submix 1591 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1), 1592 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false) 1593 { 1594 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id); 1595 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName); 1596 1597 // Assumes constructor is called by AudioFlinger with it's mLock held, but 1598 // it would be safer to explicitly pass initial masterVolume/masterMute as 1599 // parameter. 1600 // 1601 // If the HAL we are using has support for master volume or master mute, 1602 // then do not attenuate or mute during mixing (just leave the volume at 1.0 1603 // and the mute set to false). 1604 mMasterVolume = audioFlinger->masterVolume_l(); 1605 mMasterMute = audioFlinger->masterMute_l(); 1606 if (mOutput && mOutput->audioHwDev) { 1607 if (mOutput->audioHwDev->canSetMasterVolume()) { 1608 mMasterVolume = 1.0; 1609 } 1610 1611 if (mOutput->audioHwDev->canSetMasterMute()) { 1612 mMasterMute = false; 1613 } 1614 } 1615 1616 readOutputParameters_l(); 1617 1618 // ++ operator does not compile 1619 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT; 1620 stream = (audio_stream_type_t) (stream + 1)) { 1621 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream); 1622 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream); 1623 } 1624 } 1625 1626 AudioFlinger::PlaybackThread::~PlaybackThread() 1627 { 1628 mAudioFlinger->unregisterWriter(mNBLogWriter); 1629 free(mSinkBuffer); 1630 free(mMixerBuffer); 1631 free(mEffectBuffer); 1632 } 1633 1634 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args) 1635 { 1636 dumpInternals(fd, args); 1637 dumpTracks(fd, args); 1638 dumpEffectChains(fd, args); 1639 } 1640 1641 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused) 1642 { 1643 const size_t SIZE = 256; 1644 char buffer[SIZE]; 1645 String8 result; 1646 1647 result.appendFormat(" Stream volumes in dB: "); 1648 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) { 1649 const stream_type_t *st = &mStreamTypes[i]; 1650 if (i > 0) { 1651 result.appendFormat(", "); 1652 } 1653 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume)); 1654 if (st->mute) { 1655 result.append("M"); 1656 } 1657 } 1658 result.append("\n"); 1659 write(fd, result.string(), result.length()); 1660 result.clear(); 1661 1662 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way. 1663 FastTrackUnderruns underruns = getFastTrackUnderruns(0); 1664 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n", 1665 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty); 1666 1667 size_t numtracks = mTracks.size(); 1668 size_t numactive = mActiveTracks.size(); 1669 dprintf(fd, " %zu Tracks", numtracks); 1670 size_t numactiveseen = 0; 1671 if (numtracks) { 1672 dprintf(fd, " of which %zu are active\n", numactive); 1673 Track::appendDumpHeader(result); 1674 for (size_t i = 0; i < numtracks; ++i) { 1675 sp<Track> track = mTracks[i]; 1676 if (track != 0) { 1677 bool active = mActiveTracks.indexOf(track) >= 0; 1678 if (active) { 1679 numactiveseen++; 1680 } 1681 track->dump(buffer, SIZE, active); 1682 result.append(buffer); 1683 } 1684 } 1685 } else { 1686 result.append("\n"); 1687 } 1688 if (numactiveseen != numactive) { 1689 // some tracks in the active list were not in the tracks list 1690 snprintf(buffer, SIZE, " The following tracks are in the active list but" 1691 " not in the track list\n"); 1692 result.append(buffer); 1693 Track::appendDumpHeader(result); 1694 for (size_t i = 0; i < numactive; ++i) { 1695 sp<Track> track = mActiveTracks[i].promote(); 1696 if (track != 0 && mTracks.indexOf(track) < 0) { 1697 track->dump(buffer, SIZE, true); 1698 result.append(buffer); 1699 } 1700 } 1701 } 1702 1703 write(fd, result.string(), result.size()); 1704 } 1705 1706 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args) 1707 { 1708 dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type())); 1709 1710 dumpBase(fd, args); 1711 1712 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount); 1713 dprintf(fd, " Last write occurred (msecs): %llu\n", 1714 (unsigned long long) ns2ms(systemTime() - mLastWriteTime)); 1715 dprintf(fd, " Total writes: %d\n", mNumWrites); 1716 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites); 1717 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no"); 1718 dprintf(fd, " Suspend count: %d\n", mSuspended); 1719 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer); 1720 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer); 1721 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer); 1722 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask); 1723 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs); 1724 AudioStreamOut *output = mOutput; 1725 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE; 1726 String8 flagsAsString = outputFlagsToString(flags); 1727 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string()); 1728 } 1729 1730 // Thread virtuals 1731 1732 void AudioFlinger::PlaybackThread::onFirstRef() 1733 { 1734 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO); 1735 } 1736 1737 // ThreadBase virtuals 1738 void AudioFlinger::PlaybackThread::preExit() 1739 { 1740 ALOGV(" preExit()"); 1741 // FIXME this is using hard-coded strings but in the future, this functionality will be 1742 // converted to use audio HAL extensions required to support tunneling 1743 mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1"); 1744 } 1745 1746 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held 1747 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l( 1748 const sp<AudioFlinger::Client>& client, 1749 audio_stream_type_t streamType, 1750 uint32_t sampleRate, 1751 audio_format_t format, 1752 audio_channel_mask_t channelMask, 1753 size_t *pFrameCount, 1754 const sp<IMemory>& sharedBuffer, 1755 audio_session_t sessionId, 1756 IAudioFlinger::track_flags_t *flags, 1757 pid_t tid, 1758 int uid, 1759 status_t *status) 1760 { 1761 size_t frameCount = *pFrameCount; 1762 sp<Track> track; 1763 status_t lStatus; 1764 1765 // client expresses a preference for FAST, but we get the final say 1766 if (*flags & IAudioFlinger::TRACK_FAST) { 1767 if ( 1768 // PCM data 1769 audio_is_linear_pcm(format) && 1770 // TODO: extract as a data library function that checks that a computationally 1771 // expensive downmixer is not required: isFastOutputChannelConversion() 1772 (channelMask == mChannelMask || 1773 mChannelMask != AUDIO_CHANNEL_OUT_STEREO || 1774 (channelMask == AUDIO_CHANNEL_OUT_MONO 1775 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) && 1776 // hardware sample rate 1777 (sampleRate == mSampleRate) && 1778 // normal mixer has an associated fast mixer 1779 hasFastMixer() && 1780 // there are sufficient fast track slots available 1781 (mFastTrackAvailMask != 0) 1782 // FIXME test that MixerThread for this fast track has a capable output HAL 1783 // FIXME add a permission test also? 1784 ) { 1785 // static tracks can have any nonzero framecount, streaming tracks check against minimum. 1786 if (sharedBuffer == 0) { 1787 // read the fast track multiplier property the first time it is needed 1788 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit); 1789 if (ok != 0) { 1790 ALOGE("%s pthread_once failed: %d", __func__, ok); 1791 } 1792 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0 1793 } 1794 ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu", 1795 frameCount, mFrameCount); 1796 } else { 1797 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu " 1798 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x " 1799 "sampleRate=%u mSampleRate=%u " 1800 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x", 1801 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat, 1802 audio_is_linear_pcm(format), 1803 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask); 1804 *flags &= ~IAudioFlinger::TRACK_FAST; 1805 } 1806 } 1807 // For normal PCM streaming tracks, update minimum frame count. 1808 // For compatibility with AudioTrack calculation, buffer depth is forced 1809 // to be at least 2 x the normal mixer frame count and cover audio hardware latency. 1810 // This is probably too conservative, but legacy application code may depend on it. 1811 // If you change this calculation, also review the start threshold which is related. 1812 if (!(*flags & IAudioFlinger::TRACK_FAST) 1813 && audio_has_proportional_frames(format) && sharedBuffer == 0) { 1814 // this must match AudioTrack.cpp calculateMinFrameCount(). 1815 // TODO: Move to a common library 1816 uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream); 1817 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate); 1818 if (minBufCount < 2) { 1819 minBufCount = 2; 1820 } 1821 // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack 1822 // or the client should compute and pass in a larger buffer request. 1823 size_t minFrameCount = 1824 minBufCount * sourceFramesNeededWithTimestretch( 1825 sampleRate, mNormalFrameCount, 1826 mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/); 1827 if (frameCount < minFrameCount) { // including frameCount == 0 1828 frameCount = minFrameCount; 1829 } 1830 } 1831 *pFrameCount = frameCount; 1832 1833 switch (mType) { 1834 1835 case DIRECT: 1836 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()? 1837 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { 1838 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x " 1839 "for output %p with format %#x", 1840 sampleRate, format, channelMask, mOutput, mFormat); 1841 lStatus = BAD_VALUE; 1842 goto Exit; 1843 } 1844 } 1845 break; 1846 1847 case OFFLOAD: 1848 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { 1849 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \"" 1850 "for output %p with format %#x", 1851 sampleRate, format, channelMask, mOutput, mFormat); 1852 lStatus = BAD_VALUE; 1853 goto Exit; 1854 } 1855 break; 1856 1857 default: 1858 if (!audio_is_linear_pcm(format)) { 1859 ALOGE("createTrack_l() Bad parameter: format %#x \"" 1860 "for output %p with format %#x", 1861 format, mOutput, mFormat); 1862 lStatus = BAD_VALUE; 1863 goto Exit; 1864 } 1865 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) { 1866 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate); 1867 lStatus = BAD_VALUE; 1868 goto Exit; 1869 } 1870 break; 1871 1872 } 1873 1874 lStatus = initCheck(); 1875 if (lStatus != NO_ERROR) { 1876 ALOGE("createTrack_l() audio driver not initialized"); 1877 goto Exit; 1878 } 1879 1880 { // scope for mLock 1881 Mutex::Autolock _l(mLock); 1882 1883 // all tracks in same audio session must share the same routing strategy otherwise 1884 // conflicts will happen when tracks are moved from one output to another by audio policy 1885 // manager 1886 uint32_t strategy = AudioSystem::getStrategyForStream(streamType); 1887 for (size_t i = 0; i < mTracks.size(); ++i) { 1888 sp<Track> t = mTracks[i]; 1889 if (t != 0 && t->isExternalTrack()) { 1890 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType()); 1891 if (sessionId == t->sessionId() && strategy != actual) { 1892 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u", 1893 strategy, actual); 1894 lStatus = BAD_VALUE; 1895 goto Exit; 1896 } 1897 } 1898 } 1899 1900 track = new Track(this, client, streamType, sampleRate, format, 1901 channelMask, frameCount, NULL, sharedBuffer, 1902 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT); 1903 1904 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY; 1905 if (lStatus != NO_ERROR) { 1906 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus); 1907 // track must be cleared from the caller as the caller has the AF lock 1908 goto Exit; 1909 } 1910 mTracks.add(track); 1911 1912 sp<EffectChain> chain = getEffectChain_l(sessionId); 1913 if (chain != 0) { 1914 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer()); 1915 track->setMainBuffer(chain->inBuffer()); 1916 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType())); 1917 chain->incTrackCnt(); 1918 } 1919 1920 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) { 1921 pid_t callingPid = IPCThreadState::self()->getCallingPid(); 1922 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful, 1923 // so ask activity manager to do this on our behalf 1924 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp); 1925 } 1926 } 1927 1928 lStatus = NO_ERROR; 1929 1930 Exit: 1931 *status = lStatus; 1932 return track; 1933 } 1934 1935 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const 1936 { 1937 return latency; 1938 } 1939 1940 uint32_t AudioFlinger::PlaybackThread::latency() const 1941 { 1942 Mutex::Autolock _l(mLock); 1943 return latency_l(); 1944 } 1945 uint32_t AudioFlinger::PlaybackThread::latency_l() const 1946 { 1947 if (initCheck() == NO_ERROR) { 1948 return correctLatency_l(mOutput->stream->get_latency(mOutput->stream)); 1949 } else { 1950 return 0; 1951 } 1952 } 1953 1954 void AudioFlinger::PlaybackThread::setMasterVolume(float value) 1955 { 1956 Mutex::Autolock _l(mLock); 1957 // Don't apply master volume in SW if our HAL can do it for us. 1958 if (mOutput && mOutput->audioHwDev && 1959 mOutput->audioHwDev->canSetMasterVolume()) { 1960 mMasterVolume = 1.0; 1961 } else { 1962 mMasterVolume = value; 1963 } 1964 } 1965 1966 void AudioFlinger::PlaybackThread::setMasterMute(bool muted) 1967 { 1968 Mutex::Autolock _l(mLock); 1969 // Don't apply master mute in SW if our HAL can do it for us. 1970 if (mOutput && mOutput->audioHwDev && 1971 mOutput->audioHwDev->canSetMasterMute()) { 1972 mMasterMute = false; 1973 } else { 1974 mMasterMute = muted; 1975 } 1976 } 1977 1978 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value) 1979 { 1980 Mutex::Autolock _l(mLock); 1981 mStreamTypes[stream].volume = value; 1982 broadcast_l(); 1983 } 1984 1985 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted) 1986 { 1987 Mutex::Autolock _l(mLock); 1988 mStreamTypes[stream].mute = muted; 1989 broadcast_l(); 1990 } 1991 1992 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const 1993 { 1994 Mutex::Autolock _l(mLock); 1995 return mStreamTypes[stream].volume; 1996 } 1997 1998 // addTrack_l() must be called with ThreadBase::mLock held 1999 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track) 2000 { 2001 status_t status = ALREADY_EXISTS; 2002 2003 if (mActiveTracks.indexOf(track) < 0) { 2004 // the track is newly added, make sure it fills up all its 2005 // buffers before playing. This is to ensure the client will 2006 // effectively get the latency it requested. 2007 if (track->isExternalTrack()) { 2008 TrackBase::track_state state = track->mState; 2009 mLock.unlock(); 2010 status = AudioSystem::startOutput(mId, track->streamType(), 2011 track->sessionId()); 2012 mLock.lock(); 2013 // abort track was stopped/paused while we released the lock 2014 if (state != track->mState) { 2015 if (status == NO_ERROR) { 2016 mLock.unlock(); 2017 AudioSystem::stopOutput(mId, track->streamType(), 2018 track->sessionId()); 2019 mLock.lock(); 2020 } 2021 return INVALID_OPERATION; 2022 } 2023 // abort if start is rejected by audio policy manager 2024 if (status != NO_ERROR) { 2025 return PERMISSION_DENIED; 2026 } 2027 #ifdef ADD_BATTERY_DATA 2028 // to track the speaker usage 2029 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart); 2030 #endif 2031 } 2032 2033 // set retry count for buffer fill 2034 if (track->isOffloaded()) { 2035 if (track->isStopping_1()) { 2036 track->mRetryCount = kMaxTrackStopRetriesOffload; 2037 } else { 2038 track->mRetryCount = kMaxTrackStartupRetriesOffload; 2039 } 2040 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED; 2041 } else { 2042 track->mRetryCount = kMaxTrackStartupRetries; 2043 track->mFillingUpStatus = 2044 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING; 2045 } 2046 2047 track->mResetDone = false; 2048 track->mPresentationCompleteFrames = 0; 2049 mActiveTracks.add(track); 2050 mWakeLockUids.add(track->uid()); 2051 mActiveTracksGeneration++; 2052 mLatestActiveTrack = track; 2053 sp<EffectChain> chain = getEffectChain_l(track->sessionId()); 2054 if (chain != 0) { 2055 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(), 2056 track->sessionId()); 2057 chain->incActiveTrackCnt(); 2058 } 2059 2060 status = NO_ERROR; 2061 } 2062 2063 onAddNewTrack_l(); 2064 return status; 2065 } 2066 2067 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track) 2068 { 2069 track->terminate(); 2070 // active tracks are removed by threadLoop() 2071 bool trackActive = (mActiveTracks.indexOf(track) >= 0); 2072 track->mState = TrackBase::STOPPED; 2073 if (!trackActive) { 2074 removeTrack_l(track); 2075 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) { 2076 track->mState = TrackBase::STOPPING_1; 2077 } 2078 2079 return trackActive; 2080 } 2081 2082 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track) 2083 { 2084 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE); 2085 mTracks.remove(track); 2086 deleteTrackName_l(track->name()); 2087 // redundant as track is about to be destroyed, for dumpsys only 2088 track->mName = -1; 2089 if (track->isFastTrack()) { 2090 int index = track->mFastIndex; 2091 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks); 2092 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index))); 2093 mFastTrackAvailMask |= 1 << index; 2094 // redundant as track is about to be destroyed, for dumpsys only 2095 track->mFastIndex = -1; 2096 } 2097 sp<EffectChain> chain = getEffectChain_l(track->sessionId()); 2098 if (chain != 0) { 2099 chain->decTrackCnt(); 2100 } 2101 } 2102 2103 void AudioFlinger::PlaybackThread::broadcast_l() 2104 { 2105 // Thread could be blocked waiting for async 2106 // so signal it to handle state changes immediately 2107 // If threadLoop is currently unlocked a signal of mWaitWorkCV will 2108 // be lost so we also flag to prevent it blocking on mWaitWorkCV 2109 mSignalPending = true; 2110 mWaitWorkCV.broadcast(); 2111 } 2112 2113 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys) 2114 { 2115 Mutex::Autolock _l(mLock); 2116 if (initCheck() != NO_ERROR) { 2117 return String8(); 2118 } 2119 2120 char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string()); 2121 const String8 out_s8(s); 2122 free(s); 2123 return out_s8; 2124 } 2125 2126 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) { 2127 sp<AudioIoDescriptor> desc = new AudioIoDescriptor(); 2128 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event); 2129 2130 desc->mIoHandle = mId; 2131 2132 switch (event) { 2133 case AUDIO_OUTPUT_OPENED: 2134 case AUDIO_OUTPUT_CONFIG_CHANGED: 2135 desc->mPatch = mPatch; 2136 desc->mChannelMask = mChannelMask; 2137 desc->mSamplingRate = mSampleRate; 2138 desc->mFormat = mFormat; 2139 desc->mFrameCount = mNormalFrameCount; // FIXME see 2140 // AudioFlinger::frameCount(audio_io_handle_t) 2141 desc->mFrameCountHAL = mFrameCount; 2142 desc->mLatency = latency_l(); 2143 break; 2144 2145 case AUDIO_OUTPUT_CLOSED: 2146 default: 2147 break; 2148 } 2149 mAudioFlinger->ioConfigChanged(event, desc, pid); 2150 } 2151 2152 void AudioFlinger::PlaybackThread::writeCallback() 2153 { 2154 ALOG_ASSERT(mCallbackThread != 0); 2155 mCallbackThread->resetWriteBlocked(); 2156 } 2157 2158 void AudioFlinger::PlaybackThread::drainCallback() 2159 { 2160 ALOG_ASSERT(mCallbackThread != 0); 2161 mCallbackThread->resetDraining(); 2162 } 2163 2164 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence) 2165 { 2166 Mutex::Autolock _l(mLock); 2167 // reject out of sequence requests 2168 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) { 2169 mWriteAckSequence &= ~1; 2170 mWaitWorkCV.signal(); 2171 } 2172 } 2173 2174 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence) 2175 { 2176 Mutex::Autolock _l(mLock); 2177 // reject out of sequence requests 2178 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) { 2179 mDrainSequence &= ~1; 2180 mWaitWorkCV.signal(); 2181 } 2182 } 2183 2184 // static 2185 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event, 2186 void *param __unused, 2187 void *cookie) 2188 { 2189 AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie; 2190 ALOGV("asyncCallback() event %d", event); 2191 switch (event) { 2192 case STREAM_CBK_EVENT_WRITE_READY: 2193 me->writeCallback(); 2194 break; 2195 case STREAM_CBK_EVENT_DRAIN_READY: 2196 me->drainCallback(); 2197 break; 2198 default: 2199 ALOGW("asyncCallback() unknown event %d", event); 2200 break; 2201 } 2202 return 0; 2203 } 2204 2205 void AudioFlinger::PlaybackThread::readOutputParameters_l() 2206 { 2207 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL 2208 mSampleRate = mOutput->getSampleRate(); 2209 mChannelMask = mOutput->getChannelMask(); 2210 if (!audio_is_output_channel(mChannelMask)) { 2211 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask); 2212 } 2213 if ((mType == MIXER || mType == DUPLICATING) 2214 && !isValidPcmSinkChannelMask(mChannelMask)) { 2215 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output", 2216 mChannelMask); 2217 } 2218 mChannelCount = audio_channel_count_from_out_mask(mChannelMask); 2219 2220 // Get actual HAL format. 2221 mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common); 2222 // Get format from the shim, which will be different than the HAL format 2223 // if playing compressed audio over HDMI passthrough. 2224 mFormat = mOutput->getFormat(); 2225 if (!audio_is_valid_format(mFormat)) { 2226 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat); 2227 } 2228 if ((mType == MIXER || mType == DUPLICATING) 2229 && !isValidPcmSinkFormat(mFormat)) { 2230 LOG_FATAL("HAL format %#x not supported for mixed output", 2231 mFormat); 2232 } 2233 mFrameSize = mOutput->getFrameSize(); 2234 mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common); 2235 mFrameCount = mBufferSize / mFrameSize; 2236 if (mFrameCount & 15) { 2237 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames", 2238 mFrameCount); 2239 } 2240 2241 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) && 2242 (mOutput->stream->set_callback != NULL)) { 2243 if (mOutput->stream->set_callback(mOutput->stream, 2244 AudioFlinger::PlaybackThread::asyncCallback, this) == 0) { 2245 mUseAsyncWrite = true; 2246 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this); 2247 } 2248 } 2249 2250 mHwSupportsPause = false; 2251 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) { 2252 if (mOutput->stream->pause != NULL) { 2253 if (mOutput->stream->resume != NULL) { 2254 mHwSupportsPause = true; 2255 } else { 2256 ALOGW("direct output implements pause but not resume"); 2257 } 2258 } else if (mOutput->stream->resume != NULL) { 2259 ALOGW("direct output implements resume but not pause"); 2260 } 2261 } 2262 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) { 2263 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume"); 2264 } 2265 2266 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) { 2267 // For best precision, we use float instead of the associated output 2268 // device format (typically PCM 16 bit). 2269 2270 mFormat = AUDIO_FORMAT_PCM_FLOAT; 2271 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat); 2272 mBufferSize = mFrameSize * mFrameCount; 2273 2274 // TODO: We currently use the associated output device channel mask and sample rate. 2275 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads 2276 // (if a valid mask) to avoid premature downmix. 2277 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads 2278 // instead of the output device sample rate to avoid loss of high frequency information. 2279 // This may need to be updated as MixerThread/OutputTracks are added and not here. 2280 } 2281 2282 // Calculate size of normal sink buffer relative to the HAL output buffer size 2283 double multiplier = 1.0; 2284 if (mType == MIXER && (kUseFastMixer == FastMixer_Static || 2285 kUseFastMixer == FastMixer_Dynamic)) { 2286 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000; 2287 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000; 2288 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer 2289 minNormalFrameCount = (minNormalFrameCount + 15) & ~15; 2290 maxNormalFrameCount = maxNormalFrameCount & ~15; 2291 if (maxNormalFrameCount < minNormalFrameCount) { 2292 maxNormalFrameCount = minNormalFrameCount; 2293 } 2294 multiplier = (double) minNormalFrameCount / (double) mFrameCount; 2295 if (multiplier <= 1.0) { 2296 multiplier = 1.0; 2297 } else if (multiplier <= 2.0) { 2298 if (2 * mFrameCount <= maxNormalFrameCount) { 2299 multiplier = 2.0; 2300 } else { 2301 multiplier = (double) maxNormalFrameCount / (double) mFrameCount; 2302 } 2303 } else { 2304 // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL 2305 // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast 2306 // track, but we sometimes have to do this to satisfy the maximum frame count 2307 // constraint) 2308 // FIXME this rounding up should not be done if no HAL SRC 2309 uint32_t truncMult = (uint32_t) multiplier; 2310 if ((truncMult & 1)) { 2311 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) { 2312 ++truncMult; 2313 } 2314 } 2315 multiplier = (double) truncMult; 2316 } 2317 } 2318 mNormalFrameCount = multiplier * mFrameCount; 2319 // round up to nearest 16 frames to satisfy AudioMixer 2320 if (mType == MIXER || mType == DUPLICATING) { 2321 mNormalFrameCount = (mNormalFrameCount + 15) & ~15; 2322 } 2323 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount, 2324 mNormalFrameCount); 2325 2326 // Check if we want to throttle the processing to no more than 2x normal rate 2327 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */); 2328 mThreadThrottleTimeMs = 0; 2329 mThreadThrottleEndMs = 0; 2330 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate); 2331 2332 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames. 2333 // Originally this was int16_t[] array, need to remove legacy implications. 2334 free(mSinkBuffer); 2335 mSinkBuffer = NULL; 2336 // For sink buffer size, we use the frame size from the downstream sink to avoid problems 2337 // with non PCM formats for compressed music, e.g. AAC, and Offload threads. 2338 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize; 2339 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize); 2340 2341 // We resize the mMixerBuffer according to the requirements of the sink buffer which 2342 // drives the output. 2343 free(mMixerBuffer); 2344 mMixerBuffer = NULL; 2345 if (mMixerBufferEnabled) { 2346 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT. 2347 mMixerBufferSize = mNormalFrameCount * mChannelCount 2348 * audio_bytes_per_sample(mMixerBufferFormat); 2349 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize); 2350 } 2351 free(mEffectBuffer); 2352 mEffectBuffer = NULL; 2353 if (mEffectBufferEnabled) { 2354 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only 2355 mEffectBufferSize = mNormalFrameCount * mChannelCount 2356 * audio_bytes_per_sample(mEffectBufferFormat); 2357 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize); 2358 } 2359 2360 // force reconfiguration of effect chains and engines to take new buffer size and audio 2361 // parameters into account 2362 // Note that mLock is not held when readOutputParameters_l() is called from the constructor 2363 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't 2364 // matter. 2365 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains 2366 Vector< sp<EffectChain> > effectChains = mEffectChains; 2367 for (size_t i = 0; i < effectChains.size(); i ++) { 2368 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false); 2369 } 2370 } 2371 2372 2373 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames) 2374 { 2375 if (halFrames == NULL || dspFrames == NULL) { 2376 return BAD_VALUE; 2377 } 2378 Mutex::Autolock _l(mLock); 2379 if (initCheck() != NO_ERROR) { 2380 return INVALID_OPERATION; 2381 } 2382 int64_t framesWritten = mBytesWritten / mFrameSize; 2383 *halFrames = framesWritten; 2384 2385 if (isSuspended()) { 2386 // return an estimation of rendered frames when the output is suspended 2387 size_t latencyFrames = (latency_l() * mSampleRate) / 1000; 2388 *dspFrames = (uint32_t) 2389 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0); 2390 return NO_ERROR; 2391 } else { 2392 status_t status; 2393 uint32_t frames; 2394 status = mOutput->getRenderPosition(&frames); 2395 *dspFrames = (size_t)frames; 2396 return status; 2397 } 2398 } 2399 2400 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(audio_session_t sessionId) const 2401 { 2402 Mutex::Autolock _l(mLock); 2403 uint32_t result = 0; 2404 if (getEffectChain_l(sessionId) != 0) { 2405 result = EFFECT_SESSION; 2406 } 2407 2408 for (size_t i = 0; i < mTracks.size(); ++i) { 2409 sp<Track> track = mTracks[i]; 2410 if (sessionId == track->sessionId() && !track->isInvalid()) { 2411 result |= TRACK_SESSION; 2412 break; 2413 } 2414 } 2415 2416 return result; 2417 } 2418 2419 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId) 2420 { 2421 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that 2422 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected 2423 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { 2424 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC); 2425 } 2426 for (size_t i = 0; i < mTracks.size(); i++) { 2427 sp<Track> track = mTracks[i]; 2428 if (sessionId == track->sessionId() && !track->isInvalid()) { 2429 return AudioSystem::getStrategyForStream(track->streamType()); 2430 } 2431 } 2432 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC); 2433 } 2434 2435 2436 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const 2437 { 2438 Mutex::Autolock _l(mLock); 2439 return mOutput; 2440 } 2441 2442 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput() 2443 { 2444 Mutex::Autolock _l(mLock); 2445 AudioStreamOut *output = mOutput; 2446 mOutput = NULL; 2447 // FIXME FastMixer might also have a raw ptr to mOutputSink; 2448 // must push a NULL and wait for ack 2449 mOutputSink.clear(); 2450 mPipeSink.clear(); 2451 mNormalSink.clear(); 2452 return output; 2453 } 2454 2455 // this method must always be called either with ThreadBase mLock held or inside the thread loop 2456 audio_stream_t* AudioFlinger::PlaybackThread::stream() const 2457 { 2458 if (mOutput == NULL) { 2459 return NULL; 2460 } 2461 return &mOutput->stream->common; 2462 } 2463 2464 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const 2465 { 2466 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000); 2467 } 2468 2469 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event) 2470 { 2471 if (!isValidSyncEvent(event)) { 2472 return BAD_VALUE; 2473 } 2474 2475 Mutex::Autolock _l(mLock); 2476 2477 for (size_t i = 0; i < mTracks.size(); ++i) { 2478 sp<Track> track = mTracks[i]; 2479 if (event->triggerSession() == track->sessionId()) { 2480 (void) track->setSyncEvent(event); 2481 return NO_ERROR; 2482 } 2483 } 2484 2485 return NAME_NOT_FOUND; 2486 } 2487 2488 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const 2489 { 2490 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE; 2491 } 2492 2493 void AudioFlinger::PlaybackThread::threadLoop_removeTracks( 2494 const Vector< sp<Track> >& tracksToRemove) 2495 { 2496 size_t count = tracksToRemove.size(); 2497 if (count > 0) { 2498 for (size_t i = 0 ; i < count ; i++) { 2499 const sp<Track>& track = tracksToRemove.itemAt(i); 2500 if (track->isExternalTrack()) { 2501 AudioSystem::stopOutput(mId, track->streamType(), 2502 track->sessionId()); 2503 #ifdef ADD_BATTERY_DATA 2504 // to track the speaker usage 2505 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop); 2506 #endif 2507 if (track->isTerminated()) { 2508 AudioSystem::releaseOutput(mId, track->streamType(), 2509 track->sessionId()); 2510 } 2511 } 2512 } 2513 } 2514 } 2515 2516 void AudioFlinger::PlaybackThread::checkSilentMode_l() 2517 { 2518 if (!mMasterMute) { 2519 char value[PROPERTY_VALUE_MAX]; 2520 if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) { 2521 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX"); 2522 return; 2523 } 2524 if (property_get("ro.audio.silent", value, "0") > 0) { 2525 char *endptr; 2526 unsigned long ul = strtoul(value, &endptr, 0); 2527 if (*endptr == '\0' && ul != 0) { 2528 ALOGD("Silence is golden"); 2529 // The setprop command will not allow a property to be changed after 2530 // the first time it is set, so we don't have to worry about un-muting. 2531 setMasterMute_l(true); 2532 } 2533 } 2534 } 2535 } 2536 2537 // shared by MIXER and DIRECT, overridden by DUPLICATING 2538 ssize_t AudioFlinger::PlaybackThread::threadLoop_write() 2539 { 2540 mInWrite = true; 2541 ssize_t bytesWritten; 2542 const size_t offset = mCurrentWriteLength - mBytesRemaining; 2543 2544 // If an NBAIO sink is present, use it to write the normal mixer's submix 2545 if (mNormalSink != 0) { 2546 2547 const size_t count = mBytesRemaining / mFrameSize; 2548 2549 ATRACE_BEGIN("write"); 2550 // update the setpoint when AudioFlinger::mScreenState changes 2551 uint32_t screenState = AudioFlinger::mScreenState; 2552 if (screenState != mScreenState) { 2553 mScreenState = screenState; 2554 MonoPipe *pipe = (MonoPipe *)mPipeSink.get(); 2555 if (pipe != NULL) { 2556 pipe->setAvgFrames((mScreenState & 1) ? 2557 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2); 2558 } 2559 } 2560 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count); 2561 ATRACE_END(); 2562 if (framesWritten > 0) { 2563 bytesWritten = framesWritten * mFrameSize; 2564 } else { 2565 bytesWritten = framesWritten; 2566 } 2567 // otherwise use the HAL / AudioStreamOut directly 2568 } else { 2569 // Direct output and offload threads 2570 2571 if (mUseAsyncWrite) { 2572 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request"); 2573 mWriteAckSequence += 2; 2574 mWriteAckSequence |= 1; 2575 ALOG_ASSERT(mCallbackThread != 0); 2576 mCallbackThread->setWriteBlocked(mWriteAckSequence); 2577 } 2578 // FIXME We should have an implementation of timestamps for direct output threads. 2579 // They are used e.g for multichannel PCM playback over HDMI. 2580 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining); 2581 2582 if (mUseAsyncWrite && 2583 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) { 2584 // do not wait for async callback in case of error of full write 2585 mWriteAckSequence &= ~1; 2586 ALOG_ASSERT(mCallbackThread != 0); 2587 mCallbackThread->setWriteBlocked(mWriteAckSequence); 2588 } 2589 } 2590 2591 mNumWrites++; 2592 mInWrite = false; 2593 mStandby = false; 2594 return bytesWritten; 2595 } 2596 2597 void AudioFlinger::PlaybackThread::threadLoop_drain() 2598 { 2599 if (mOutput->stream->drain) { 2600 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full"); 2601 if (mUseAsyncWrite) { 2602 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request"); 2603 mDrainSequence |= 1; 2604 ALOG_ASSERT(mCallbackThread != 0); 2605 mCallbackThread->setDraining(mDrainSequence); 2606 } 2607 mOutput->stream->drain(mOutput->stream, 2608 (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY 2609 : AUDIO_DRAIN_ALL); 2610 } 2611 } 2612 2613 void AudioFlinger::PlaybackThread::threadLoop_exit() 2614 { 2615 { 2616 Mutex::Autolock _l(mLock); 2617 for (size_t i = 0; i < mTracks.size(); i++) { 2618 sp<Track> track = mTracks[i]; 2619 track->invalidate(); 2620 } 2621 } 2622 } 2623 2624 /* 2625 The derived values that are cached: 2626 - mSinkBufferSize from frame count * frame size 2627 - mActiveSleepTimeUs from activeSleepTimeUs() 2628 - mIdleSleepTimeUs from idleSleepTimeUs() 2629 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least 2630 kDefaultStandbyTimeInNsecs when connected to an A2DP device. 2631 - maxPeriod from frame count and sample rate (MIXER only) 2632 2633 The parameters that affect these derived values are: 2634 - frame count 2635 - frame size 2636 - sample rate 2637 - device type: A2DP or not 2638 - device latency 2639 - format: PCM or not 2640 - active sleep time 2641 - idle sleep time 2642 */ 2643 2644 void AudioFlinger::PlaybackThread::cacheParameters_l() 2645 { 2646 mSinkBufferSize = mNormalFrameCount * mFrameSize; 2647 mActiveSleepTimeUs = activeSleepTimeUs(); 2648 mIdleSleepTimeUs = idleSleepTimeUs(); 2649 2650 // make sure standby delay is not too short when connected to an A2DP sink to avoid 2651 // truncating audio when going to standby. 2652 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs; 2653 if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) { 2654 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) { 2655 mStandbyDelayNs = kDefaultStandbyTimeInNsecs; 2656 } 2657 } 2658 } 2659 2660 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType) 2661 { 2662 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu", 2663 this, streamType, mTracks.size()); 2664 bool trackMatch = false; 2665 size_t size = mTracks.size(); 2666 for (size_t i = 0; i < size; i++) { 2667 sp<Track> t = mTracks[i]; 2668 if (t->streamType() == streamType && t->isExternalTrack()) { 2669 t->invalidate(); 2670 trackMatch = true; 2671 } 2672 } 2673 return trackMatch; 2674 } 2675 2676 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType) 2677 { 2678 Mutex::Autolock _l(mLock); 2679 invalidateTracks_l(streamType); 2680 } 2681 2682 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain) 2683 { 2684 audio_session_t session = chain->sessionId(); 2685 int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled 2686 ? mEffectBuffer : mSinkBuffer); 2687 bool ownsBuffer = false; 2688 2689 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session); 2690 if (session > AUDIO_SESSION_OUTPUT_MIX) { 2691 // Only one effect chain can be present in direct output thread and it uses 2692 // the sink buffer as input 2693 if (mType != DIRECT) { 2694 size_t numSamples = mNormalFrameCount * mChannelCount; 2695 buffer = new int16_t[numSamples]; 2696 memset(buffer, 0, numSamples * sizeof(int16_t)); 2697 ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session); 2698 ownsBuffer = true; 2699 } 2700 2701 // Attach all tracks with same session ID to this chain. 2702 for (size_t i = 0; i < mTracks.size(); ++i) { 2703 sp<Track> track = mTracks[i]; 2704 if (session == track->sessionId()) { 2705 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(), 2706 buffer); 2707 track->setMainBuffer(buffer); 2708 chain->incTrackCnt(); 2709 } 2710 } 2711 2712 // indicate all active tracks in the chain 2713 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) { 2714 sp<Track> track = mActiveTracks[i].promote(); 2715 if (track == 0) { 2716 continue; 2717 } 2718 if (session == track->sessionId()) { 2719 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session); 2720 chain->incActiveTrackCnt(); 2721 } 2722 } 2723 } 2724 chain->setThread(this); 2725 chain->setInBuffer(buffer, ownsBuffer); 2726 chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled 2727 ? mEffectBuffer : mSinkBuffer)); 2728 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect 2729 // chains list in order to be processed last as it contains output stage effects. 2730 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before 2731 // session AUDIO_SESSION_OUTPUT_STAGE to be processed 2732 // after track specific effects and before output stage. 2733 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and 2734 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX. 2735 // Effect chain for other sessions are inserted at beginning of effect 2736 // chains list to be processed before output mix effects. Relative order between other 2737 // sessions is not important. 2738 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 && 2739 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX, 2740 "audio_session_t constants misdefined"); 2741 size_t size = mEffectChains.size(); 2742 size_t i = 0; 2743 for (i = 0; i < size; i++) { 2744 if (mEffectChains[i]->sessionId() < session) { 2745 break; 2746 } 2747 } 2748 mEffectChains.insertAt(chain, i); 2749 checkSuspendOnAddEffectChain_l(chain); 2750 2751 return NO_ERROR; 2752 } 2753 2754 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain) 2755 { 2756 audio_session_t session = chain->sessionId(); 2757 2758 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session); 2759 2760 for (size_t i = 0; i < mEffectChains.size(); i++) { 2761 if (chain == mEffectChains[i]) { 2762 mEffectChains.removeAt(i); 2763 // detach all active tracks from the chain 2764 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) { 2765 sp<Track> track = mActiveTracks[i].promote(); 2766 if (track == 0) { 2767 continue; 2768 } 2769 if (session == track->sessionId()) { 2770 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d", 2771 chain.get(), session); 2772 chain->decActiveTrackCnt(); 2773 } 2774 } 2775 2776 // detach all tracks with same session ID from this chain 2777 for (size_t i = 0; i < mTracks.size(); ++i) { 2778 sp<Track> track = mTracks[i]; 2779 if (session == track->sessionId()) { 2780 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer)); 2781 chain->decTrackCnt(); 2782 } 2783 } 2784 break; 2785 } 2786 } 2787 return mEffectChains.size(); 2788 } 2789 2790 status_t AudioFlinger::PlaybackThread::attachAuxEffect( 2791 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId) 2792 { 2793 Mutex::Autolock _l(mLock); 2794 return attachAuxEffect_l(track, EffectId); 2795 } 2796 2797 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l( 2798 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId) 2799 { 2800 status_t status = NO_ERROR; 2801 2802 if (EffectId == 0) { 2803 track->setAuxBuffer(0, NULL); 2804 } else { 2805 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX 2806 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId); 2807 if (effect != 0) { 2808 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { 2809 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer()); 2810 } else { 2811 status = INVALID_OPERATION; 2812 } 2813 } else { 2814 status = BAD_VALUE; 2815 } 2816 } 2817 return status; 2818 } 2819 2820 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId) 2821 { 2822 for (size_t i = 0; i < mTracks.size(); ++i) { 2823 sp<Track> track = mTracks[i]; 2824 if (track->auxEffectId() == effectId) { 2825 attachAuxEffect_l(track, 0); 2826 } 2827 } 2828 } 2829 2830 bool AudioFlinger::PlaybackThread::threadLoop() 2831 { 2832 Vector< sp<Track> > tracksToRemove; 2833 2834 mStandbyTimeNs = systemTime(); 2835 nsecs_t lastWriteFinished = -1; // time last server write completed 2836 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written 2837 2838 // MIXER 2839 nsecs_t lastWarning = 0; 2840 2841 // DUPLICATING 2842 // FIXME could this be made local to while loop? 2843 writeFrames = 0; 2844 2845 int lastGeneration = 0; 2846 2847 cacheParameters_l(); 2848 mSleepTimeUs = mIdleSleepTimeUs; 2849 2850 if (mType == MIXER) { 2851 sleepTimeShift = 0; 2852 } 2853 2854 CpuStats cpuStats; 2855 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid())); 2856 2857 acquireWakeLock(); 2858 2859 // mNBLogWriter->log can only be called while thread mutex mLock is held. 2860 // So if you need to log when mutex is unlocked, set logString to a non-NULL string, 2861 // and then that string will be logged at the next convenient opportunity. 2862 const char *logString = NULL; 2863 2864 checkSilentMode_l(); 2865 2866 while (!exitPending()) 2867 { 2868 cpuStats.sample(myName); 2869 2870 Vector< sp<EffectChain> > effectChains; 2871 2872 { // scope for mLock 2873 2874 Mutex::Autolock _l(mLock); 2875 2876 processConfigEvents_l(); 2877 2878 if (logString != NULL) { 2879 mNBLogWriter->logTimestamp(); 2880 mNBLogWriter->log(logString); 2881 logString = NULL; 2882 } 2883 2884 // Gather the framesReleased counters for all active tracks, 2885 // and associate with the sink frames written out. We need 2886 // this to convert the sink timestamp to the track timestamp. 2887 bool kernelLocationUpdate = false; 2888 if (mNormalSink != 0) { 2889 // Note: The DuplicatingThread may not have a mNormalSink. 2890 // We always fetch the timestamp here because often the downstream 2891 // sink will block while writing. 2892 ExtendedTimestamp timestamp; // use private copy to fetch 2893 (void) mNormalSink->getTimestamp(timestamp); 2894 2895 // We keep track of the last valid kernel position in case we are in underrun 2896 // and the normal mixer period is the same as the fast mixer period, or there 2897 // is some error from the HAL. 2898 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) { 2899 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] = 2900 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]; 2901 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] = 2902 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]; 2903 2904 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] = 2905 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER]; 2906 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] = 2907 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER]; 2908 } 2909 2910 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) { 2911 kernelLocationUpdate = true; 2912 } else { 2913 ALOGV("getTimestamp error - no valid kernel position"); 2914 } 2915 2916 // copy over kernel info 2917 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = 2918 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]; 2919 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = 2920 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]; 2921 } 2922 // mFramesWritten for non-offloaded tracks are contiguous 2923 // even after standby() is called. This is useful for the track frame 2924 // to sink frame mapping. 2925 bool serverLocationUpdate = false; 2926 if (mFramesWritten != lastFramesWritten) { 2927 serverLocationUpdate = true; 2928 lastFramesWritten = mFramesWritten; 2929 } 2930 // Only update timestamps if there is a meaningful change. 2931 // Either the kernel timestamp must be valid or we have written something. 2932 if (kernelLocationUpdate || serverLocationUpdate) { 2933 if (serverLocationUpdate) { 2934 // use the time before we called the HAL write - it is a bit more accurate 2935 // to when the server last read data than the current time here. 2936 // 2937 // If we haven't written anything, mLastWriteTime will be -1 2938 // and we use systemTime(). 2939 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten; 2940 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1 2941 ? systemTime() : mLastWriteTime; 2942 } 2943 const size_t size = mActiveTracks.size(); 2944 for (size_t i = 0; i < size; ++i) { 2945 sp<Track> t = mActiveTracks[i].promote(); 2946 if (t != 0 && !t->isFastTrack()) { 2947 t->updateTrackFrameInfo( 2948 t->mAudioTrackServerProxy->framesReleased(), 2949 mFramesWritten, 2950 mTimestamp); 2951 } 2952 } 2953 } 2954 2955 saveOutputTracks(); 2956 if (mSignalPending) { 2957 // A signal was raised while we were unlocked 2958 mSignalPending = false; 2959 } else if (waitingAsyncCallback_l()) { 2960 if (exitPending()) { 2961 break; 2962 } 2963 bool released = false; 2964 if (!keepWakeLock()) { 2965 releaseWakeLock_l(); 2966 released = true; 2967 } 2968 mWakeLockUids.clear(); 2969 mActiveTracksGeneration++; 2970 ALOGV("wait async completion"); 2971 mWaitWorkCV.wait(mLock); 2972 ALOGV("async completion/wake"); 2973 if (released) { 2974 acquireWakeLock_l(); 2975 } 2976 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 2977 mSleepTimeUs = 0; 2978 2979 continue; 2980 } 2981 if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) || 2982 isSuspended()) { 2983 // put audio hardware into standby after short delay 2984 if (shouldStandby_l()) { 2985 2986 threadLoop_standby(); 2987 2988 mStandby = true; 2989 } 2990 2991 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) { 2992 // we're about to wait, flush the binder command buffer 2993 IPCThreadState::self()->flushCommands(); 2994 2995 clearOutputTracks(); 2996 2997 if (exitPending()) { 2998 break; 2999 } 3000 3001 releaseWakeLock_l(); 3002 mWakeLockUids.clear(); 3003 mActiveTracksGeneration++; 3004 // wait until we have something to do... 3005 ALOGV("%s going to sleep", myName.string()); 3006 mWaitWorkCV.wait(mLock); 3007 ALOGV("%s waking up", myName.string()); 3008 acquireWakeLock_l(); 3009 3010 mMixerStatus = MIXER_IDLE; 3011 mMixerStatusIgnoringFastTracks = MIXER_IDLE; 3012 mBytesWritten = 0; 3013 mBytesRemaining = 0; 3014 checkSilentMode_l(); 3015 3016 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 3017 mSleepTimeUs = mIdleSleepTimeUs; 3018 if (mType == MIXER) { 3019 sleepTimeShift = 0; 3020 } 3021 3022 continue; 3023 } 3024 } 3025 // mMixerStatusIgnoringFastTracks is also updated internally 3026 mMixerStatus = prepareTracks_l(&tracksToRemove); 3027 3028 // compare with previously applied list 3029 if (lastGeneration != mActiveTracksGeneration) { 3030 // update wakelock 3031 updateWakeLockUids_l(mWakeLockUids); 3032 lastGeneration = mActiveTracksGeneration; 3033 } 3034 3035 // prevent any changes in effect chain list and in each effect chain 3036 // during mixing and effect process as the audio buffers could be deleted 3037 // or modified if an effect is created or deleted 3038 lockEffectChains_l(effectChains); 3039 } // mLock scope ends 3040 3041 if (mBytesRemaining == 0) { 3042 mCurrentWriteLength = 0; 3043 if (mMixerStatus == MIXER_TRACKS_READY) { 3044 // threadLoop_mix() sets mCurrentWriteLength 3045 threadLoop_mix(); 3046 } else if ((mMixerStatus != MIXER_DRAIN_TRACK) 3047 && (mMixerStatus != MIXER_DRAIN_ALL)) { 3048 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data 3049 // must be written to HAL 3050 threadLoop_sleepTime(); 3051 if (mSleepTimeUs == 0) { 3052 mCurrentWriteLength = mSinkBufferSize; 3053 } 3054 } 3055 // Either threadLoop_mix() or threadLoop_sleepTime() should have set 3056 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0. 3057 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid) 3058 // or mSinkBuffer (if there are no effects). 3059 // 3060 // This is done pre-effects computation; if effects change to 3061 // support higher precision, this needs to move. 3062 // 3063 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l(). 3064 // TODO use mSleepTimeUs == 0 as an additional condition. 3065 if (mMixerBufferValid) { 3066 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer; 3067 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat; 3068 3069 // mono blend occurs for mixer threads only (not direct or offloaded) 3070 // and is handled here if we're going directly to the sink. 3071 if (requireMonoBlend() && !mEffectBufferValid) { 3072 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount, 3073 true /*limit*/); 3074 } 3075 3076 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat, 3077 mNormalFrameCount * mChannelCount); 3078 } 3079 3080 mBytesRemaining = mCurrentWriteLength; 3081 if (isSuspended()) { 3082 mSleepTimeUs = suspendSleepTimeUs(); 3083 // simulate write to HAL when suspended 3084 mBytesWritten += mSinkBufferSize; 3085 mFramesWritten += mSinkBufferSize / mFrameSize; 3086 mBytesRemaining = 0; 3087 } 3088 3089 // only process effects if we're going to write 3090 if (mSleepTimeUs == 0 && mType != OFFLOAD) { 3091 for (size_t i = 0; i < effectChains.size(); i ++) { 3092 effectChains[i]->process_l(); 3093 } 3094 } 3095 } 3096 // Process effect chains for offloaded thread even if no audio 3097 // was read from audio track: process only updates effect state 3098 // and thus does have to be synchronized with audio writes but may have 3099 // to be called while waiting for async write callback 3100 if (mType == OFFLOAD) { 3101 for (size_t i = 0; i < effectChains.size(); i ++) { 3102 effectChains[i]->process_l(); 3103 } 3104 } 3105 3106 // Only if the Effects buffer is enabled and there is data in the 3107 // Effects buffer (buffer valid), we need to 3108 // copy into the sink buffer. 3109 // TODO use mSleepTimeUs == 0 as an additional condition. 3110 if (mEffectBufferValid) { 3111 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat); 3112 3113 if (requireMonoBlend()) { 3114 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount, 3115 true /*limit*/); 3116 } 3117 3118 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat, 3119 mNormalFrameCount * mChannelCount); 3120 } 3121 3122 // enable changes in effect chain 3123 unlockEffectChains(effectChains); 3124 3125 if (!waitingAsyncCallback()) { 3126 // mSleepTimeUs == 0 means we must write to audio hardware 3127 if (mSleepTimeUs == 0) { 3128 ssize_t ret = 0; 3129 // We save lastWriteFinished here, as previousLastWriteFinished, 3130 // for throttling. On thread start, previousLastWriteFinished will be 3131 // set to -1, which properly results in no throttling after the first write. 3132 nsecs_t previousLastWriteFinished = lastWriteFinished; 3133 nsecs_t delta = 0; 3134 if (mBytesRemaining) { 3135 // FIXME rewrite to reduce number of system calls 3136 mLastWriteTime = systemTime(); // also used for dumpsys 3137 ret = threadLoop_write(); 3138 lastWriteFinished = systemTime(); 3139 delta = lastWriteFinished - mLastWriteTime; 3140 if (ret < 0) { 3141 mBytesRemaining = 0; 3142 } else { 3143 mBytesWritten += ret; 3144 mBytesRemaining -= ret; 3145 mFramesWritten += ret / mFrameSize; 3146 } 3147 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) || 3148 (mMixerStatus == MIXER_DRAIN_ALL)) { 3149 threadLoop_drain(); 3150 } 3151 if (mType == MIXER && !mStandby) { 3152 // write blocked detection 3153 if (delta > maxPeriod) { 3154 mNumDelayedWrites++; 3155 if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) { 3156 ATRACE_NAME("underrun"); 3157 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p", 3158 (unsigned long long) ns2ms(delta), mNumDelayedWrites, this); 3159 lastWarning = lastWriteFinished; 3160 } 3161 } 3162 3163 if (mThreadThrottle 3164 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks) 3165 && ret > 0) { // we wrote something 3166 // Limit MixerThread data processing to no more than twice the 3167 // expected processing rate. 3168 // 3169 // This helps prevent underruns with NuPlayer and other applications 3170 // which may set up buffers that are close to the minimum size, or use 3171 // deep buffers, and rely on a double-buffering sleep strategy to fill. 3172 // 3173 // The throttle smooths out sudden large data drains from the device, 3174 // e.g. when it comes out of standby, which often causes problems with 3175 // (1) mixer threads without a fast mixer (which has its own warm-up) 3176 // (2) minimum buffer sized tracks (even if the track is full, 3177 // the app won't fill fast enough to handle the sudden draw). 3178 3179 // it's OK if deltaMs is an overestimate. 3180 const int32_t deltaMs = 3181 (lastWriteFinished - previousLastWriteFinished) / 1000000; 3182 const int32_t throttleMs = mHalfBufferMs - deltaMs; 3183 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) { 3184 usleep(throttleMs * 1000); 3185 // notify of throttle start on verbose log 3186 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs, 3187 "mixer(%p) throttle begin:" 3188 " ret(%zd) deltaMs(%d) requires sleep %d ms", 3189 this, ret, deltaMs, throttleMs); 3190 mThreadThrottleTimeMs += throttleMs; 3191 } else { 3192 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs; 3193 if (diff > 0) { 3194 // notify of throttle end on debug log 3195 // but prevent spamming for bluetooth 3196 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()), 3197 "mixer(%p) throttle end: throttle time(%u)", this, diff); 3198 mThreadThrottleEndMs = mThreadThrottleTimeMs; 3199 } 3200 } 3201 } 3202 } 3203 3204 } else { 3205 ATRACE_BEGIN("sleep"); 3206 Mutex::Autolock _l(mLock); 3207 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) { 3208 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs)); 3209 } 3210 ATRACE_END(); 3211 } 3212 } 3213 3214 // Finally let go of removed track(s), without the lock held 3215 // since we can't guarantee the destructors won't acquire that 3216 // same lock. This will also mutate and push a new fast mixer state. 3217 threadLoop_removeTracks(tracksToRemove); 3218 tracksToRemove.clear(); 3219 3220 // FIXME I don't understand the need for this here; 3221 // it was in the original code but maybe the 3222 // assignment in saveOutputTracks() makes this unnecessary? 3223 clearOutputTracks(); 3224 3225 // Effect chains will be actually deleted here if they were removed from 3226 // mEffectChains list during mixing or effects processing 3227 effectChains.clear(); 3228 3229 // FIXME Note that the above .clear() is no longer necessary since effectChains 3230 // is now local to this block, but will keep it for now (at least until merge done). 3231 } 3232 3233 threadLoop_exit(); 3234 3235 if (!mStandby) { 3236 threadLoop_standby(); 3237 mStandby = true; 3238 } 3239 3240 releaseWakeLock(); 3241 mWakeLockUids.clear(); 3242 mActiveTracksGeneration++; 3243 3244 ALOGV("Thread %p type %d exiting", this, mType); 3245 return false; 3246 } 3247 3248 // removeTracks_l() must be called with ThreadBase::mLock held 3249 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove) 3250 { 3251 size_t count = tracksToRemove.size(); 3252 if (count > 0) { 3253 for (size_t i=0 ; i<count ; i++) { 3254 const sp<Track>& track = tracksToRemove.itemAt(i); 3255 mActiveTracks.remove(track); 3256 mWakeLockUids.remove(track->uid()); 3257 mActiveTracksGeneration++; 3258 ALOGV("removeTracks_l removing track on session %d", track->sessionId()); 3259 sp<EffectChain> chain = getEffectChain_l(track->sessionId()); 3260 if (chain != 0) { 3261 ALOGV("stopping track on chain %p for session Id: %d", chain.get(), 3262 track->sessionId()); 3263 chain->decActiveTrackCnt(); 3264 } 3265 if (track->isTerminated()) { 3266 removeTrack_l(track); 3267 } 3268 } 3269 } 3270 3271 } 3272 3273 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp) 3274 { 3275 if (mNormalSink != 0) { 3276 ExtendedTimestamp ets; 3277 status_t status = mNormalSink->getTimestamp(ets); 3278 if (status == NO_ERROR) { 3279 status = ets.getBestTimestamp(×tamp); 3280 } 3281 return status; 3282 } 3283 if ((mType == OFFLOAD || mType == DIRECT) 3284 && mOutput != NULL && mOutput->stream->get_presentation_position) { 3285 uint64_t position64; 3286 int ret = mOutput->getPresentationPosition(&position64, ×tamp.mTime); 3287 if (ret == 0) { 3288 timestamp.mPosition = (uint32_t)position64; 3289 return NO_ERROR; 3290 } 3291 } 3292 return INVALID_OPERATION; 3293 } 3294 3295 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch, 3296 audio_patch_handle_t *handle) 3297 { 3298 AutoPark<FastMixer> park(mFastMixer); 3299 3300 status_t status = PlaybackThread::createAudioPatch_l(patch, handle); 3301 3302 return status; 3303 } 3304 3305 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch, 3306 audio_patch_handle_t *handle) 3307 { 3308 status_t status = NO_ERROR; 3309 3310 // store new device and send to effects 3311 audio_devices_t type = AUDIO_DEVICE_NONE; 3312 for (unsigned int i = 0; i < patch->num_sinks; i++) { 3313 type |= patch->sinks[i].ext.device.type; 3314 } 3315 3316 #ifdef ADD_BATTERY_DATA 3317 // when changing the audio output device, call addBatteryData to notify 3318 // the change 3319 if (mOutDevice != type) { 3320 uint32_t params = 0; 3321 // check whether speaker is on 3322 if (type & AUDIO_DEVICE_OUT_SPEAKER) { 3323 params |= IMediaPlayerService::kBatteryDataSpeakerOn; 3324 } 3325 3326 audio_devices_t deviceWithoutSpeaker 3327 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER; 3328 // check if any other device (except speaker) is on 3329 if (type & deviceWithoutSpeaker) { 3330 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn; 3331 } 3332 3333 if (params != 0) { 3334 addBatteryData(params); 3335 } 3336 } 3337 #endif 3338 3339 for (size_t i = 0; i < mEffectChains.size(); i++) { 3340 mEffectChains[i]->setDevice_l(type); 3341 } 3342 3343 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when 3344 // the thread is created so that the first patch creation triggers an ioConfigChanged callback 3345 bool configChanged = mPrevOutDevice != type; 3346 mOutDevice = type; 3347 mPatch = *patch; 3348 3349 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { 3350 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice(); 3351 status = hwDevice->create_audio_patch(hwDevice, 3352 patch->num_sources, 3353 patch->sources, 3354 patch->num_sinks, 3355 patch->sinks, 3356 handle); 3357 } else { 3358 char *address; 3359 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) { 3360 //FIXME: we only support address on first sink with HAL version < 3.0 3361 address = audio_device_address_to_parameter( 3362 patch->sinks[0].ext.device.type, 3363 patch->sinks[0].ext.device.address); 3364 } else { 3365 address = (char *)calloc(1, 1); 3366 } 3367 AudioParameter param = AudioParameter(String8(address)); 3368 free(address); 3369 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type); 3370 status = mOutput->stream->common.set_parameters(&mOutput->stream->common, 3371 param.toString().string()); 3372 *handle = AUDIO_PATCH_HANDLE_NONE; 3373 } 3374 if (configChanged) { 3375 mPrevOutDevice = type; 3376 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); 3377 } 3378 return status; 3379 } 3380 3381 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle) 3382 { 3383 AutoPark<FastMixer> park(mFastMixer); 3384 3385 status_t status = PlaybackThread::releaseAudioPatch_l(handle); 3386 3387 return status; 3388 } 3389 3390 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle) 3391 { 3392 status_t status = NO_ERROR; 3393 3394 mOutDevice = AUDIO_DEVICE_NONE; 3395 3396 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { 3397 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice(); 3398 status = hwDevice->release_audio_patch(hwDevice, handle); 3399 } else { 3400 AudioParameter param; 3401 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0); 3402 status = mOutput->stream->common.set_parameters(&mOutput->stream->common, 3403 param.toString().string()); 3404 } 3405 return status; 3406 } 3407 3408 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track) 3409 { 3410 Mutex::Autolock _l(mLock); 3411 mTracks.add(track); 3412 } 3413 3414 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track) 3415 { 3416 Mutex::Autolock _l(mLock); 3417 destroyTrack_l(track); 3418 } 3419 3420 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config) 3421 { 3422 ThreadBase::getAudioPortConfig(config); 3423 config->role = AUDIO_PORT_ROLE_SOURCE; 3424 config->ext.mix.hw_module = mOutput->audioHwDev->handle(); 3425 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT; 3426 } 3427 3428 // ---------------------------------------------------------------------------- 3429 3430 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output, 3431 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type) 3432 : PlaybackThread(audioFlinger, output, id, device, type, systemReady), 3433 // mAudioMixer below 3434 // mFastMixer below 3435 mFastMixerFutex(0), 3436 mMasterMono(false) 3437 // mOutputSink below 3438 // mPipeSink below 3439 // mNormalSink below 3440 { 3441 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type); 3442 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, " 3443 "mFrameCount=%zu, mNormalFrameCount=%zu", 3444 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount, 3445 mNormalFrameCount); 3446 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate); 3447 3448 if (type == DUPLICATING) { 3449 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks 3450 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write(). 3451 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink. 3452 return; 3453 } 3454 // create an NBAIO sink for the HAL output stream, and negotiate 3455 mOutputSink = new AudioStreamOutSink(output->stream); 3456 size_t numCounterOffers = 0; 3457 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)}; 3458 #if !LOG_NDEBUG 3459 ssize_t index = 3460 #else 3461 (void) 3462 #endif 3463 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers); 3464 ALOG_ASSERT(index == 0); 3465 3466 // initialize fast mixer depending on configuration 3467 bool initFastMixer; 3468 switch (kUseFastMixer) { 3469 case FastMixer_Never: 3470 initFastMixer = false; 3471 break; 3472 case FastMixer_Always: 3473 initFastMixer = true; 3474 break; 3475 case FastMixer_Static: 3476 case FastMixer_Dynamic: 3477 initFastMixer = mFrameCount < mNormalFrameCount; 3478 break; 3479 } 3480 if (initFastMixer) { 3481 audio_format_t fastMixerFormat; 3482 if (mMixerBufferEnabled && mEffectBufferEnabled) { 3483 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT; 3484 } else { 3485 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT; 3486 } 3487 if (mFormat != fastMixerFormat) { 3488 // change our Sink format to accept our intermediate precision 3489 mFormat = fastMixerFormat; 3490 free(mSinkBuffer); 3491 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat); 3492 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize; 3493 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize); 3494 } 3495 3496 // create a MonoPipe to connect our submix to FastMixer 3497 NBAIO_Format format = mOutputSink->format(); 3498 #ifdef TEE_SINK 3499 NBAIO_Format origformat = format; 3500 #endif 3501 // adjust format to match that of the Fast Mixer 3502 ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat); 3503 format.mFormat = fastMixerFormat; 3504 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount; 3505 3506 // This pipe depth compensates for scheduling latency of the normal mixer thread. 3507 // When it wakes up after a maximum latency, it runs a few cycles quickly before 3508 // finally blocking. Note the pipe implementation rounds up the request to a power of 2. 3509 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/); 3510 const NBAIO_Format offers[1] = {format}; 3511 size_t numCounterOffers = 0; 3512 #if !LOG_NDEBUG || defined(TEE_SINK) 3513 ssize_t index = 3514 #else 3515 (void) 3516 #endif 3517 monoPipe->negotiate(offers, 1, NULL, numCounterOffers); 3518 ALOG_ASSERT(index == 0); 3519 monoPipe->setAvgFrames((mScreenState & 1) ? 3520 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2); 3521 mPipeSink = monoPipe; 3522 3523 #ifdef TEE_SINK 3524 if (mTeeSinkOutputEnabled) { 3525 // create a Pipe to archive a copy of FastMixer's output for dumpsys 3526 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat); 3527 const NBAIO_Format offers2[1] = {origformat}; 3528 numCounterOffers = 0; 3529 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers); 3530 ALOG_ASSERT(index == 0); 3531 mTeeSink = teeSink; 3532 PipeReader *teeSource = new PipeReader(*teeSink); 3533 numCounterOffers = 0; 3534 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers); 3535 ALOG_ASSERT(index == 0); 3536 mTeeSource = teeSource; 3537 } 3538 #endif 3539 3540 // create fast mixer and configure it initially with just one fast track for our submix 3541 mFastMixer = new FastMixer(); 3542 FastMixerStateQueue *sq = mFastMixer->sq(); 3543 #ifdef STATE_QUEUE_DUMP 3544 sq->setObserverDump(&mStateQueueObserverDump); 3545 sq->setMutatorDump(&mStateQueueMutatorDump); 3546 #endif 3547 FastMixerState *state = sq->begin(); 3548 FastTrack *fastTrack = &state->mFastTracks[0]; 3549 // wrap the source side of the MonoPipe to make it an AudioBufferProvider 3550 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe)); 3551 fastTrack->mVolumeProvider = NULL; 3552 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer 3553 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer 3554 fastTrack->mGeneration++; 3555 state->mFastTracksGen++; 3556 state->mTrackMask = 1; 3557 // fast mixer will use the HAL output sink 3558 state->mOutputSink = mOutputSink.get(); 3559 state->mOutputSinkGen++; 3560 state->mFrameCount = mFrameCount; 3561 state->mCommand = FastMixerState::COLD_IDLE; 3562 // already done in constructor initialization list 3563 //mFastMixerFutex = 0; 3564 state->mColdFutexAddr = &mFastMixerFutex; 3565 state->mColdGen++; 3566 state->mDumpState = &mFastMixerDumpState; 3567 #ifdef TEE_SINK 3568 state->mTeeSink = mTeeSink.get(); 3569 #endif 3570 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer"); 3571 state->mNBLogWriter = mFastMixerNBLogWriter.get(); 3572 sq->end(); 3573 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); 3574 3575 // start the fast mixer 3576 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO); 3577 pid_t tid = mFastMixer->getTid(); 3578 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer); 3579 3580 #ifdef AUDIO_WATCHDOG 3581 // create and start the watchdog 3582 mAudioWatchdog = new AudioWatchdog(); 3583 mAudioWatchdog->setDump(&mAudioWatchdogDump); 3584 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO); 3585 tid = mAudioWatchdog->getTid(); 3586 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer); 3587 #endif 3588 3589 } 3590 3591 switch (kUseFastMixer) { 3592 case FastMixer_Never: 3593 case FastMixer_Dynamic: 3594 mNormalSink = mOutputSink; 3595 break; 3596 case FastMixer_Always: 3597 mNormalSink = mPipeSink; 3598 break; 3599 case FastMixer_Static: 3600 mNormalSink = initFastMixer ? mPipeSink : mOutputSink; 3601 break; 3602 } 3603 } 3604 3605 AudioFlinger::MixerThread::~MixerThread() 3606 { 3607 if (mFastMixer != 0) { 3608 FastMixerStateQueue *sq = mFastMixer->sq(); 3609 FastMixerState *state = sq->begin(); 3610 if (state->mCommand == FastMixerState::COLD_IDLE) { 3611 int32_t old = android_atomic_inc(&mFastMixerFutex); 3612 if (old == -1) { 3613 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1); 3614 } 3615 } 3616 state->mCommand = FastMixerState::EXIT; 3617 sq->end(); 3618 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); 3619 mFastMixer->join(); 3620 // Though the fast mixer thread has exited, it's state queue is still valid. 3621 // We'll use that extract the final state which contains one remaining fast track 3622 // corresponding to our sub-mix. 3623 state = sq->begin(); 3624 ALOG_ASSERT(state->mTrackMask == 1); 3625 FastTrack *fastTrack = &state->mFastTracks[0]; 3626 ALOG_ASSERT(fastTrack->mBufferProvider != NULL); 3627 delete fastTrack->mBufferProvider; 3628 sq->end(false /*didModify*/); 3629 mFastMixer.clear(); 3630 #ifdef AUDIO_WATCHDOG 3631 if (mAudioWatchdog != 0) { 3632 mAudioWatchdog->requestExit(); 3633 mAudioWatchdog->requestExitAndWait(); 3634 mAudioWatchdog.clear(); 3635 } 3636 #endif 3637 } 3638 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter); 3639 delete mAudioMixer; 3640 } 3641 3642 3643 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const 3644 { 3645 if (mFastMixer != 0) { 3646 MonoPipe *pipe = (MonoPipe *)mPipeSink.get(); 3647 latency += (pipe->getAvgFrames() * 1000) / mSampleRate; 3648 } 3649 return latency; 3650 } 3651 3652 3653 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove) 3654 { 3655 PlaybackThread::threadLoop_removeTracks(tracksToRemove); 3656 } 3657 3658 ssize_t AudioFlinger::MixerThread::threadLoop_write() 3659 { 3660 // FIXME we should only do one push per cycle; confirm this is true 3661 // Start the fast mixer if it's not already running 3662 if (mFastMixer != 0) { 3663 FastMixerStateQueue *sq = mFastMixer->sq(); 3664 FastMixerState *state = sq->begin(); 3665 if (state->mCommand != FastMixerState::MIX_WRITE && 3666 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) { 3667 if (state->mCommand == FastMixerState::COLD_IDLE) { 3668 3669 // FIXME workaround for first HAL write being CPU bound on some devices 3670 ATRACE_BEGIN("write"); 3671 mOutput->write((char *)mSinkBuffer, 0); 3672 ATRACE_END(); 3673 3674 int32_t old = android_atomic_inc(&mFastMixerFutex); 3675 if (old == -1) { 3676 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1); 3677 } 3678 #ifdef AUDIO_WATCHDOG 3679 if (mAudioWatchdog != 0) { 3680 mAudioWatchdog->resume(); 3681 } 3682 #endif 3683 } 3684 state->mCommand = FastMixerState::MIX_WRITE; 3685 #ifdef FAST_THREAD_STATISTICS 3686 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ? 3687 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN); 3688 #endif 3689 sq->end(); 3690 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); 3691 if (kUseFastMixer == FastMixer_Dynamic) { 3692 mNormalSink = mPipeSink; 3693 } 3694 } else { 3695 sq->end(false /*didModify*/); 3696 } 3697 } 3698 return PlaybackThread::threadLoop_write(); 3699 } 3700 3701 void AudioFlinger::MixerThread::threadLoop_standby() 3702 { 3703 // Idle the fast mixer if it's currently running 3704 if (mFastMixer != 0) { 3705 FastMixerStateQueue *sq = mFastMixer->sq(); 3706 FastMixerState *state = sq->begin(); 3707 if (!(state->mCommand & FastMixerState::IDLE)) { 3708 state->mCommand = FastMixerState::COLD_IDLE; 3709 state->mColdFutexAddr = &mFastMixerFutex; 3710 state->mColdGen++; 3711 mFastMixerFutex = 0; 3712 sq->end(); 3713 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now 3714 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED); 3715 if (kUseFastMixer == FastMixer_Dynamic) { 3716 mNormalSink = mOutputSink; 3717 } 3718 #ifdef AUDIO_WATCHDOG 3719 if (mAudioWatchdog != 0) { 3720 mAudioWatchdog->pause(); 3721 } 3722 #endif 3723 } else { 3724 sq->end(false /*didModify*/); 3725 } 3726 } 3727 PlaybackThread::threadLoop_standby(); 3728 } 3729 3730 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l() 3731 { 3732 return false; 3733 } 3734 3735 bool AudioFlinger::PlaybackThread::shouldStandby_l() 3736 { 3737 return !mStandby; 3738 } 3739 3740 bool AudioFlinger::PlaybackThread::waitingAsyncCallback() 3741 { 3742 Mutex::Autolock _l(mLock); 3743 return waitingAsyncCallback_l(); 3744 } 3745 3746 // shared by MIXER and DIRECT, overridden by DUPLICATING 3747 void AudioFlinger::PlaybackThread::threadLoop_standby() 3748 { 3749 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended); 3750 mOutput->standby(); 3751 if (mUseAsyncWrite != 0) { 3752 // discard any pending drain or write ack by incrementing sequence 3753 mWriteAckSequence = (mWriteAckSequence + 2) & ~1; 3754 mDrainSequence = (mDrainSequence + 2) & ~1; 3755 ALOG_ASSERT(mCallbackThread != 0); 3756 mCallbackThread->setWriteBlocked(mWriteAckSequence); 3757 mCallbackThread->setDraining(mDrainSequence); 3758 } 3759 mHwPaused = false; 3760 } 3761 3762 void AudioFlinger::PlaybackThread::onAddNewTrack_l() 3763 { 3764 ALOGV("signal playback thread"); 3765 broadcast_l(); 3766 } 3767 3768 void AudioFlinger::MixerThread::threadLoop_mix() 3769 { 3770 // mix buffers... 3771 mAudioMixer->process(); 3772 mCurrentWriteLength = mSinkBufferSize; 3773 // increase sleep time progressively when application underrun condition clears. 3774 // Only increase sleep time if the mixer is ready for two consecutive times to avoid 3775 // that a steady state of alternating ready/not ready conditions keeps the sleep time 3776 // such that we would underrun the audio HAL. 3777 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) { 3778 sleepTimeShift--; 3779 } 3780 mSleepTimeUs = 0; 3781 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 3782 //TODO: delay standby when effects have a tail 3783 3784 } 3785 3786 void AudioFlinger::MixerThread::threadLoop_sleepTime() 3787 { 3788 // If no tracks are ready, sleep once for the duration of an output 3789 // buffer size, then write 0s to the output 3790 if (mSleepTimeUs == 0) { 3791 if (mMixerStatus == MIXER_TRACKS_ENABLED) { 3792 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift; 3793 if (mSleepTimeUs < kMinThreadSleepTimeUs) { 3794 mSleepTimeUs = kMinThreadSleepTimeUs; 3795 } 3796 // reduce sleep time in case of consecutive application underruns to avoid 3797 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer 3798 // duration we would end up writing less data than needed by the audio HAL if 3799 // the condition persists. 3800 if (sleepTimeShift < kMaxThreadSleepTimeShift) { 3801 sleepTimeShift++; 3802 } 3803 } else { 3804 mSleepTimeUs = mIdleSleepTimeUs; 3805 } 3806 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) { 3807 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared 3808 // before effects processing or output. 3809 if (mMixerBufferValid) { 3810 memset(mMixerBuffer, 0, mMixerBufferSize); 3811 } else { 3812 memset(mSinkBuffer, 0, mSinkBufferSize); 3813 } 3814 mSleepTimeUs = 0; 3815 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED), 3816 "anticipated start"); 3817 } 3818 // TODO add standby time extension fct of effect tail 3819 } 3820 3821 // prepareTracks_l() must be called with ThreadBase::mLock held 3822 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l( 3823 Vector< sp<Track> > *tracksToRemove) 3824 { 3825 3826 mixer_state mixerStatus = MIXER_IDLE; 3827 // find out which tracks need to be processed 3828 size_t count = mActiveTracks.size(); 3829 size_t mixedTracks = 0; 3830 size_t tracksWithEffect = 0; 3831 // counts only _active_ fast tracks 3832 size_t fastTracks = 0; 3833 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset 3834 3835 float masterVolume = mMasterVolume; 3836 bool masterMute = mMasterMute; 3837 3838 if (masterMute) { 3839 masterVolume = 0; 3840 } 3841 // Delegate master volume control to effect in output mix effect chain if needed 3842 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX); 3843 if (chain != 0) { 3844 uint32_t v = (uint32_t)(masterVolume * (1 << 24)); 3845 chain->setVolume_l(&v, &v); 3846 masterVolume = (float)((v + (1 << 23)) >> 24); 3847 chain.clear(); 3848 } 3849 3850 // prepare a new state to push 3851 FastMixerStateQueue *sq = NULL; 3852 FastMixerState *state = NULL; 3853 bool didModify = false; 3854 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED; 3855 if (mFastMixer != 0) { 3856 sq = mFastMixer->sq(); 3857 state = sq->begin(); 3858 } 3859 3860 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found. 3861 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found. 3862 3863 for (size_t i=0 ; i<count ; i++) { 3864 const sp<Track> t = mActiveTracks[i].promote(); 3865 if (t == 0) { 3866 continue; 3867 } 3868 3869 // this const just means the local variable doesn't change 3870 Track* const track = t.get(); 3871 3872 // process fast tracks 3873 if (track->isFastTrack()) { 3874 3875 // It's theoretically possible (though unlikely) for a fast track to be created 3876 // and then removed within the same normal mix cycle. This is not a problem, as 3877 // the track never becomes active so it's fast mixer slot is never touched. 3878 // The converse, of removing an (active) track and then creating a new track 3879 // at the identical fast mixer slot within the same normal mix cycle, 3880 // is impossible because the slot isn't marked available until the end of each cycle. 3881 int j = track->mFastIndex; 3882 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks); 3883 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j))); 3884 FastTrack *fastTrack = &state->mFastTracks[j]; 3885 3886 // Determine whether the track is currently in underrun condition, 3887 // and whether it had a recent underrun. 3888 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j]; 3889 FastTrackUnderruns underruns = ftDump->mUnderruns; 3890 uint32_t recentFull = (underruns.mBitFields.mFull - 3891 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK; 3892 uint32_t recentPartial = (underruns.mBitFields.mPartial - 3893 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK; 3894 uint32_t recentEmpty = (underruns.mBitFields.mEmpty - 3895 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK; 3896 uint32_t recentUnderruns = recentPartial + recentEmpty; 3897 track->mObservedUnderruns = underruns; 3898 // don't count underruns that occur while stopping or pausing 3899 // or stopped which can occur when flush() is called while active 3900 if (!(track->isStopping() || track->isPausing() || track->isStopped()) && 3901 recentUnderruns > 0) { 3902 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun 3903 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount); 3904 } else { 3905 track->mAudioTrackServerProxy->tallyUnderrunFrames(0); 3906 } 3907 3908 // This is similar to the state machine for normal tracks, 3909 // with a few modifications for fast tracks. 3910 bool isActive = true; 3911 switch (track->mState) { 3912 case TrackBase::STOPPING_1: 3913 // track stays active in STOPPING_1 state until first underrun 3914 if (recentUnderruns > 0 || track->isTerminated()) { 3915 track->mState = TrackBase::STOPPING_2; 3916 } 3917 break; 3918 case TrackBase::PAUSING: 3919 // ramp down is not yet implemented 3920 track->setPaused(); 3921 break; 3922 case TrackBase::RESUMING: 3923 // ramp up is not yet implemented 3924 track->mState = TrackBase::ACTIVE; 3925 break; 3926 case TrackBase::ACTIVE: 3927 if (recentFull > 0 || recentPartial > 0) { 3928 // track has provided at least some frames recently: reset retry count 3929 track->mRetryCount = kMaxTrackRetries; 3930 } 3931 if (recentUnderruns == 0) { 3932 // no recent underruns: stay active 3933 break; 3934 } 3935 // there has recently been an underrun of some kind 3936 if (track->sharedBuffer() == 0) { 3937 // were any of the recent underruns "empty" (no frames available)? 3938 if (recentEmpty == 0) { 3939 // no, then ignore the partial underruns as they are allowed indefinitely 3940 break; 3941 } 3942 // there has recently been an "empty" underrun: decrement the retry counter 3943 if (--(track->mRetryCount) > 0) { 3944 break; 3945 } 3946 // indicate to client process that the track was disabled because of underrun; 3947 // it will then automatically call start() when data is available 3948 track->disable(); 3949 // remove from active list, but state remains ACTIVE [confusing but true] 3950 isActive = false; 3951 break; 3952 } 3953 // fall through 3954 case TrackBase::STOPPING_2: 3955 case TrackBase::PAUSED: 3956 case TrackBase::STOPPED: 3957 case TrackBase::FLUSHED: // flush() while active 3958 // Check for presentation complete if track is inactive 3959 // We have consumed all the buffers of this track. 3960 // This would be incomplete if we auto-paused on underrun 3961 { 3962 size_t audioHALFrames = 3963 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000; 3964 int64_t framesWritten = mBytesWritten / mFrameSize; 3965 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) { 3966 // track stays in active list until presentation is complete 3967 break; 3968 } 3969 } 3970 if (track->isStopping_2()) { 3971 track->mState = TrackBase::STOPPED; 3972 } 3973 if (track->isStopped()) { 3974 // Can't reset directly, as fast mixer is still polling this track 3975 // track->reset(); 3976 // So instead mark this track as needing to be reset after push with ack 3977 resetMask |= 1 << i; 3978 } 3979 isActive = false; 3980 break; 3981 case TrackBase::IDLE: 3982 default: 3983 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState); 3984 } 3985 3986 if (isActive) { 3987 // was it previously inactive? 3988 if (!(state->mTrackMask & (1 << j))) { 3989 ExtendedAudioBufferProvider *eabp = track; 3990 VolumeProvider *vp = track; 3991 fastTrack->mBufferProvider = eabp; 3992 fastTrack->mVolumeProvider = vp; 3993 fastTrack->mChannelMask = track->mChannelMask; 3994 fastTrack->mFormat = track->mFormat; 3995 fastTrack->mGeneration++; 3996 state->mTrackMask |= 1 << j; 3997 didModify = true; 3998 // no acknowledgement required for newly active tracks 3999 } 4000 // cache the combined master volume and stream type volume for fast mixer; this 4001 // lacks any synchronization or barrier so VolumeProvider may read a stale value 4002 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume; 4003 ++fastTracks; 4004 } else { 4005 // was it previously active? 4006 if (state->mTrackMask & (1 << j)) { 4007 fastTrack->mBufferProvider = NULL; 4008 fastTrack->mGeneration++; 4009 state->mTrackMask &= ~(1 << j); 4010 didModify = true; 4011 // If any fast tracks were removed, we must wait for acknowledgement 4012 // because we're about to decrement the last sp<> on those tracks. 4013 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED; 4014 } else { 4015 LOG_ALWAYS_FATAL("fast track %d should have been active; " 4016 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d", 4017 j, track->mState, state->mTrackMask, recentUnderruns, 4018 track->sharedBuffer() != 0); 4019 } 4020 tracksToRemove->add(track); 4021 // Avoids a misleading display in dumpsys 4022 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL; 4023 } 4024 continue; 4025 } 4026 4027 { // local variable scope to avoid goto warning 4028 4029 audio_track_cblk_t* cblk = track->cblk(); 4030 4031 // The first time a track is added we wait 4032 // for all its buffers to be filled before processing it 4033 int name = track->name(); 4034 // make sure that we have enough frames to mix one full buffer. 4035 // enforce this condition only once to enable draining the buffer in case the client 4036 // app does not call stop() and relies on underrun to stop: 4037 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed 4038 // during last round 4039 size_t desiredFrames; 4040 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate(); 4041 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate(); 4042 4043 desiredFrames = sourceFramesNeededWithTimestretch( 4044 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed); 4045 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed. 4046 // add frames already consumed but not yet released by the resampler 4047 // because mAudioTrackServerProxy->framesReady() will include these frames 4048 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name()); 4049 4050 uint32_t minFrames = 1; 4051 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() && 4052 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) { 4053 minFrames = desiredFrames; 4054 } 4055 4056 size_t framesReady = track->framesReady(); 4057 if (ATRACE_ENABLED()) { 4058 // I wish we had formatted trace names 4059 char traceName[16]; 4060 strcpy(traceName, "nRdy"); 4061 int name = track->name(); 4062 if (AudioMixer::TRACK0 <= name && 4063 name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) { 4064 name -= AudioMixer::TRACK0; 4065 traceName[4] = (name / 10) + '0'; 4066 traceName[5] = (name % 10) + '0'; 4067 } else { 4068 traceName[4] = '?'; 4069 traceName[5] = '?'; 4070 } 4071 traceName[6] = '\0'; 4072 ATRACE_INT(traceName, framesReady); 4073 } 4074 if ((framesReady >= minFrames) && track->isReady() && 4075 !track->isPaused() && !track->isTerminated()) 4076 { 4077 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this); 4078 4079 mixedTracks++; 4080 4081 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means 4082 // there is an effect chain connected to the track 4083 chain.clear(); 4084 if (track->mainBuffer() != mSinkBuffer && 4085 track->mainBuffer() != mMixerBuffer) { 4086 if (mEffectBufferEnabled) { 4087 mEffectBufferValid = true; // Later can set directly. 4088 } 4089 chain = getEffectChain_l(track->sessionId()); 4090 // Delegate volume control to effect in track effect chain if needed 4091 if (chain != 0) { 4092 tracksWithEffect++; 4093 } else { 4094 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on " 4095 "session %d", 4096 name, track->sessionId()); 4097 } 4098 } 4099 4100 4101 int param = AudioMixer::VOLUME; 4102 if (track->mFillingUpStatus == Track::FS_FILLED) { 4103 // no ramp for the first volume setting 4104 track->mFillingUpStatus = Track::FS_ACTIVE; 4105 if (track->mState == TrackBase::RESUMING) { 4106 track->mState = TrackBase::ACTIVE; 4107 param = AudioMixer::RAMP_VOLUME; 4108 } 4109 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL); 4110 // FIXME should not make a decision based on mServer 4111 } else if (cblk->mServer != 0) { 4112 // If the track is stopped before the first frame was mixed, 4113 // do not apply ramp 4114 param = AudioMixer::RAMP_VOLUME; 4115 } 4116 4117 // compute volume for this track 4118 uint32_t vl, vr; // in U8.24 integer format 4119 float vlf, vrf, vaf; // in [0.0, 1.0] float format 4120 if (track->isPausing() || mStreamTypes[track->streamType()].mute) { 4121 vl = vr = 0; 4122 vlf = vrf = vaf = 0.; 4123 if (track->isPausing()) { 4124 track->setPaused(); 4125 } 4126 } else { 4127 4128 // read original volumes with volume control 4129 float typeVolume = mStreamTypes[track->streamType()].volume; 4130 float v = masterVolume * typeVolume; 4131 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy; 4132 gain_minifloat_packed_t vlr = proxy->getVolumeLR(); 4133 vlf = float_from_gain(gain_minifloat_unpack_left(vlr)); 4134 vrf = float_from_gain(gain_minifloat_unpack_right(vlr)); 4135 // track volumes come from shared memory, so can't be trusted and must be clamped 4136 if (vlf > GAIN_FLOAT_UNITY) { 4137 ALOGV("Track left volume out of range: %.3g", vlf); 4138 vlf = GAIN_FLOAT_UNITY; 4139 } 4140 if (vrf > GAIN_FLOAT_UNITY) { 4141 ALOGV("Track right volume out of range: %.3g", vrf); 4142 vrf = GAIN_FLOAT_UNITY; 4143 } 4144 // now apply the master volume and stream type volume 4145 vlf *= v; 4146 vrf *= v; 4147 // assuming master volume and stream type volume each go up to 1.0, 4148 // then derive vl and vr as U8.24 versions for the effect chain 4149 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT; 4150 vl = (uint32_t) (scaleto8_24 * vlf); 4151 vr = (uint32_t) (scaleto8_24 * vrf); 4152 // vl and vr are now in U8.24 format 4153 uint16_t sendLevel = proxy->getSendLevel_U4_12(); 4154 // send level comes from shared memory and so may be corrupt 4155 if (sendLevel > MAX_GAIN_INT) { 4156 ALOGV("Track send level out of range: %04X", sendLevel); 4157 sendLevel = MAX_GAIN_INT; 4158 } 4159 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel 4160 vaf = v * sendLevel * (1. / MAX_GAIN_INT); 4161 } 4162 4163 // Delegate volume control to effect in track effect chain if needed 4164 if (chain != 0 && chain->setVolume_l(&vl, &vr)) { 4165 // Do not ramp volume if volume is controlled by effect 4166 param = AudioMixer::VOLUME; 4167 // Update remaining floating point volume levels 4168 vlf = (float)vl / (1 << 24); 4169 vrf = (float)vr / (1 << 24); 4170 track->mHasVolumeController = true; 4171 } else { 4172 // force no volume ramp when volume controller was just disabled or removed 4173 // from effect chain to avoid volume spike 4174 if (track->mHasVolumeController) { 4175 param = AudioMixer::VOLUME; 4176 } 4177 track->mHasVolumeController = false; 4178 } 4179 4180 // XXX: these things DON'T need to be done each time 4181 mAudioMixer->setBufferProvider(name, track); 4182 mAudioMixer->enable(name); 4183 4184 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf); 4185 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf); 4186 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf); 4187 mAudioMixer->setParameter( 4188 name, 4189 AudioMixer::TRACK, 4190 AudioMixer::FORMAT, (void *)track->format()); 4191 mAudioMixer->setParameter( 4192 name, 4193 AudioMixer::TRACK, 4194 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask()); 4195 mAudioMixer->setParameter( 4196 name, 4197 AudioMixer::TRACK, 4198 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask); 4199 // limit track sample rate to 2 x output sample rate, which changes at re-configuration 4200 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX; 4201 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate(); 4202 if (reqSampleRate == 0) { 4203 reqSampleRate = mSampleRate; 4204 } else if (reqSampleRate > maxSampleRate) { 4205 reqSampleRate = maxSampleRate; 4206 } 4207 mAudioMixer->setParameter( 4208 name, 4209 AudioMixer::RESAMPLE, 4210 AudioMixer::SAMPLE_RATE, 4211 (void *)(uintptr_t)reqSampleRate); 4212 4213 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate(); 4214 mAudioMixer->setParameter( 4215 name, 4216 AudioMixer::TIMESTRETCH, 4217 AudioMixer::PLAYBACK_RATE, 4218 &playbackRate); 4219 4220 /* 4221 * Select the appropriate output buffer for the track. 4222 * 4223 * Tracks with effects go into their own effects chain buffer 4224 * and from there into either mEffectBuffer or mSinkBuffer. 4225 * 4226 * Other tracks can use mMixerBuffer for higher precision 4227 * channel accumulation. If this buffer is enabled 4228 * (mMixerBufferEnabled true), then selected tracks will accumulate 4229 * into it. 4230 * 4231 */ 4232 if (mMixerBufferEnabled 4233 && (track->mainBuffer() == mSinkBuffer 4234 || track->mainBuffer() == mMixerBuffer)) { 4235 mAudioMixer->setParameter( 4236 name, 4237 AudioMixer::TRACK, 4238 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat); 4239 mAudioMixer->setParameter( 4240 name, 4241 AudioMixer::TRACK, 4242 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer); 4243 // TODO: override track->mainBuffer()? 4244 mMixerBufferValid = true; 4245 } else { 4246 mAudioMixer->setParameter( 4247 name, 4248 AudioMixer::TRACK, 4249 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT); 4250 mAudioMixer->setParameter( 4251 name, 4252 AudioMixer::TRACK, 4253 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer()); 4254 } 4255 mAudioMixer->setParameter( 4256 name, 4257 AudioMixer::TRACK, 4258 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer()); 4259 4260 // reset retry count 4261 track->mRetryCount = kMaxTrackRetries; 4262 4263 // If one track is ready, set the mixer ready if: 4264 // - the mixer was not ready during previous round OR 4265 // - no other track is not ready 4266 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY || 4267 mixerStatus != MIXER_TRACKS_ENABLED) { 4268 mixerStatus = MIXER_TRACKS_READY; 4269 } 4270 } else { 4271 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) { 4272 ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)", 4273 track, framesReady, desiredFrames); 4274 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames); 4275 } else { 4276 track->mAudioTrackServerProxy->tallyUnderrunFrames(0); 4277 } 4278 4279 // clear effect chain input buffer if an active track underruns to avoid sending 4280 // previous audio buffer again to effects 4281 chain = getEffectChain_l(track->sessionId()); 4282 if (chain != 0) { 4283 chain->clearInputBuffer(); 4284 } 4285 4286 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this); 4287 if ((track->sharedBuffer() != 0) || track->isTerminated() || 4288 track->isStopped() || track->isPaused()) { 4289 // We have consumed all the buffers of this track. 4290 // Remove it from the list of active tracks. 4291 // TODO: use actual buffer filling status instead of latency when available from 4292 // audio HAL 4293 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000; 4294 int64_t framesWritten = mBytesWritten / mFrameSize; 4295 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) { 4296 if (track->isStopped()) { 4297 track->reset(); 4298 } 4299 tracksToRemove->add(track); 4300 } 4301 } else { 4302 // No buffers for this track. Give it a few chances to 4303 // fill a buffer, then remove it from active list. 4304 if (--(track->mRetryCount) <= 0) { 4305 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this); 4306 tracksToRemove->add(track); 4307 // indicate to client process that the track was disabled because of underrun; 4308 // it will then automatically call start() when data is available 4309 track->disable(); 4310 // If one track is not ready, mark the mixer also not ready if: 4311 // - the mixer was ready during previous round OR 4312 // - no other track is ready 4313 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY || 4314 mixerStatus != MIXER_TRACKS_READY) { 4315 mixerStatus = MIXER_TRACKS_ENABLED; 4316 } 4317 } 4318 mAudioMixer->disable(name); 4319 } 4320 4321 } // local variable scope to avoid goto warning 4322 4323 } 4324 4325 // Push the new FastMixer state if necessary 4326 bool pauseAudioWatchdog = false; 4327 if (didModify) { 4328 state->mFastTracksGen++; 4329 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle 4330 if (kUseFastMixer == FastMixer_Dynamic && 4331 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) { 4332 state->mCommand = FastMixerState::COLD_IDLE; 4333 state->mColdFutexAddr = &mFastMixerFutex; 4334 state->mColdGen++; 4335 mFastMixerFutex = 0; 4336 if (kUseFastMixer == FastMixer_Dynamic) { 4337 mNormalSink = mOutputSink; 4338 } 4339 // If we go into cold idle, need to wait for acknowledgement 4340 // so that fast mixer stops doing I/O. 4341 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED; 4342 pauseAudioWatchdog = true; 4343 } 4344 } 4345 if (sq != NULL) { 4346 sq->end(didModify); 4347 sq->push(block); 4348 } 4349 #ifdef AUDIO_WATCHDOG 4350 if (pauseAudioWatchdog && mAudioWatchdog != 0) { 4351 mAudioWatchdog->pause(); 4352 } 4353 #endif 4354 4355 // Now perform the deferred reset on fast tracks that have stopped 4356 while (resetMask != 0) { 4357 size_t i = __builtin_ctz(resetMask); 4358 ALOG_ASSERT(i < count); 4359 resetMask &= ~(1 << i); 4360 sp<Track> t = mActiveTracks[i].promote(); 4361 if (t == 0) { 4362 continue; 4363 } 4364 Track* track = t.get(); 4365 ALOG_ASSERT(track->isFastTrack() && track->isStopped()); 4366 track->reset(); 4367 } 4368 4369 // remove all the tracks that need to be... 4370 removeTracks_l(*tracksToRemove); 4371 4372 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) { 4373 mEffectBufferValid = true; 4374 } 4375 4376 if (mEffectBufferValid) { 4377 // as long as there are effects we should clear the effects buffer, to avoid 4378 // passing a non-clean buffer to the effect chain 4379 memset(mEffectBuffer, 0, mEffectBufferSize); 4380 } 4381 // sink or mix buffer must be cleared if all tracks are connected to an 4382 // effect chain as in this case the mixer will not write to the sink or mix buffer 4383 // and track effects will accumulate into it 4384 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) || 4385 (mixedTracks == 0 && fastTracks > 0))) { 4386 // FIXME as a performance optimization, should remember previous zero status 4387 if (mMixerBufferValid) { 4388 memset(mMixerBuffer, 0, mMixerBufferSize); 4389 // TODO: In testing, mSinkBuffer below need not be cleared because 4390 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer 4391 // after mixing. 4392 // 4393 // To enforce this guarantee: 4394 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) || 4395 // (mixedTracks == 0 && fastTracks > 0)) 4396 // must imply MIXER_TRACKS_READY. 4397 // Later, we may clear buffers regardless, and skip much of this logic. 4398 } 4399 // FIXME as a performance optimization, should remember previous zero status 4400 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize); 4401 } 4402 4403 // if any fast tracks, then status is ready 4404 mMixerStatusIgnoringFastTracks = mixerStatus; 4405 if (fastTracks > 0) { 4406 mixerStatus = MIXER_TRACKS_READY; 4407 } 4408 return mixerStatus; 4409 } 4410 4411 // getTrackName_l() must be called with ThreadBase::mLock held 4412 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask, 4413 audio_format_t format, audio_session_t sessionId) 4414 { 4415 return mAudioMixer->getTrackName(channelMask, format, sessionId); 4416 } 4417 4418 // deleteTrackName_l() must be called with ThreadBase::mLock held 4419 void AudioFlinger::MixerThread::deleteTrackName_l(int name) 4420 { 4421 ALOGV("remove track (%d) and delete from mixer", name); 4422 mAudioMixer->deleteTrackName(name); 4423 } 4424 4425 // checkForNewParameter_l() must be called with ThreadBase::mLock held 4426 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair, 4427 status_t& status) 4428 { 4429 bool reconfig = false; 4430 bool a2dpDeviceChanged = false; 4431 4432 status = NO_ERROR; 4433 4434 AutoPark<FastMixer> park(mFastMixer); 4435 4436 AudioParameter param = AudioParameter(keyValuePair); 4437 int value; 4438 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) { 4439 reconfig = true; 4440 } 4441 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) { 4442 if (!isValidPcmSinkFormat((audio_format_t) value)) { 4443 status = BAD_VALUE; 4444 } else { 4445 // no need to save value, since it's constant 4446 reconfig = true; 4447 } 4448 } 4449 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) { 4450 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) { 4451 status = BAD_VALUE; 4452 } else { 4453 // no need to save value, since it's constant 4454 reconfig = true; 4455 } 4456 } 4457 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { 4458 // do not accept frame count changes if tracks are open as the track buffer 4459 // size depends on frame count and correct behavior would not be guaranteed 4460 // if frame count is changed after track creation 4461 if (!mTracks.isEmpty()) { 4462 status = INVALID_OPERATION; 4463 } else { 4464 reconfig = true; 4465 } 4466 } 4467 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { 4468 #ifdef ADD_BATTERY_DATA 4469 // when changing the audio output device, call addBatteryData to notify 4470 // the change 4471 if (mOutDevice != value) { 4472 uint32_t params = 0; 4473 // check whether speaker is on 4474 if (value & AUDIO_DEVICE_OUT_SPEAKER) { 4475 params |= IMediaPlayerService::kBatteryDataSpeakerOn; 4476 } 4477 4478 audio_devices_t deviceWithoutSpeaker 4479 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER; 4480 // check if any other device (except speaker) is on 4481 if (value & deviceWithoutSpeaker) { 4482 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn; 4483 } 4484 4485 if (params != 0) { 4486 addBatteryData(params); 4487 } 4488 } 4489 #endif 4490 4491 // forward device change to effects that have requested to be 4492 // aware of attached audio device. 4493 if (value != AUDIO_DEVICE_NONE) { 4494 a2dpDeviceChanged = 4495 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP); 4496 mOutDevice = value; 4497 for (size_t i = 0; i < mEffectChains.size(); i++) { 4498 mEffectChains[i]->setDevice_l(mOutDevice); 4499 } 4500 } 4501 } 4502 4503 if (status == NO_ERROR) { 4504 status = mOutput->stream->common.set_parameters(&mOutput->stream->common, 4505 keyValuePair.string()); 4506 if (!mStandby && status == INVALID_OPERATION) { 4507 mOutput->standby(); 4508 mStandby = true; 4509 mBytesWritten = 0; 4510 status = mOutput->stream->common.set_parameters(&mOutput->stream->common, 4511 keyValuePair.string()); 4512 } 4513 if (status == NO_ERROR && reconfig) { 4514 readOutputParameters_l(); 4515 delete mAudioMixer; 4516 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate); 4517 for (size_t i = 0; i < mTracks.size() ; i++) { 4518 int name = getTrackName_l(mTracks[i]->mChannelMask, 4519 mTracks[i]->mFormat, mTracks[i]->mSessionId); 4520 if (name < 0) { 4521 break; 4522 } 4523 mTracks[i]->mName = name; 4524 } 4525 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); 4526 } 4527 } 4528 4529 return reconfig || a2dpDeviceChanged; 4530 } 4531 4532 4533 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args) 4534 { 4535 PlaybackThread::dumpInternals(fd, args); 4536 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs); 4537 dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames()); 4538 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off"); 4539 4540 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us 4541 // while we are dumping it. It may be inconsistent, but it won't mutate! 4542 // This is a large object so we place it on the heap. 4543 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages. 4544 const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState); 4545 copy->dump(fd); 4546 delete copy; 4547 4548 #ifdef STATE_QUEUE_DUMP 4549 // Similar for state queue 4550 StateQueueObserverDump observerCopy = mStateQueueObserverDump; 4551 observerCopy.dump(fd); 4552 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump; 4553 mutatorCopy.dump(fd); 4554 #endif 4555 4556 #ifdef TEE_SINK 4557 // Write the tee output to a .wav file 4558 dumpTee(fd, mTeeSource, mId); 4559 #endif 4560 4561 #ifdef AUDIO_WATCHDOG 4562 if (mAudioWatchdog != 0) { 4563 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us 4564 AudioWatchdogDump wdCopy = mAudioWatchdogDump; 4565 wdCopy.dump(fd); 4566 } 4567 #endif 4568 } 4569 4570 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const 4571 { 4572 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2; 4573 } 4574 4575 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const 4576 { 4577 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000); 4578 } 4579 4580 void AudioFlinger::MixerThread::cacheParameters_l() 4581 { 4582 PlaybackThread::cacheParameters_l(); 4583 4584 // FIXME: Relaxed timing because of a certain device that can't meet latency 4585 // Should be reduced to 2x after the vendor fixes the driver issue 4586 // increase threshold again due to low power audio mode. The way this warning 4587 // threshold is calculated and its usefulness should be reconsidered anyway. 4588 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15; 4589 } 4590 4591 // ---------------------------------------------------------------------------- 4592 4593 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger, 4594 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady) 4595 : PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady) 4596 // mLeftVolFloat, mRightVolFloat 4597 { 4598 } 4599 4600 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger, 4601 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, 4602 ThreadBase::type_t type, bool systemReady) 4603 : PlaybackThread(audioFlinger, output, id, device, type, systemReady) 4604 // mLeftVolFloat, mRightVolFloat 4605 { 4606 } 4607 4608 AudioFlinger::DirectOutputThread::~DirectOutputThread() 4609 { 4610 } 4611 4612 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack) 4613 { 4614 float left, right; 4615 4616 if (mMasterMute || mStreamTypes[track->streamType()].mute) { 4617 left = right = 0; 4618 } else { 4619 float typeVolume = mStreamTypes[track->streamType()].volume; 4620 float v = mMasterVolume * typeVolume; 4621 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy; 4622 gain_minifloat_packed_t vlr = proxy->getVolumeLR(); 4623 left = float_from_gain(gain_minifloat_unpack_left(vlr)); 4624 if (left > GAIN_FLOAT_UNITY) { 4625 left = GAIN_FLOAT_UNITY; 4626 } 4627 left *= v; 4628 right = float_from_gain(gain_minifloat_unpack_right(vlr)); 4629 if (right > GAIN_FLOAT_UNITY) { 4630 right = GAIN_FLOAT_UNITY; 4631 } 4632 right *= v; 4633 } 4634 4635 if (lastTrack) { 4636 if (left != mLeftVolFloat || right != mRightVolFloat) { 4637 mLeftVolFloat = left; 4638 mRightVolFloat = right; 4639 4640 // Convert volumes from float to 8.24 4641 uint32_t vl = (uint32_t)(left * (1 << 24)); 4642 uint32_t vr = (uint32_t)(right * (1 << 24)); 4643 4644 // Delegate volume control to effect in track effect chain if needed 4645 // only one effect chain can be present on DirectOutputThread, so if 4646 // there is one, the track is connected to it 4647 if (!mEffectChains.isEmpty()) { 4648 mEffectChains[0]->setVolume_l(&vl, &vr); 4649 left = (float)vl / (1 << 24); 4650 right = (float)vr / (1 << 24); 4651 } 4652 if (mOutput->stream->set_volume) { 4653 mOutput->stream->set_volume(mOutput->stream, left, right); 4654 } 4655 } 4656 } 4657 } 4658 4659 void AudioFlinger::DirectOutputThread::onAddNewTrack_l() 4660 { 4661 sp<Track> previousTrack = mPreviousTrack.promote(); 4662 sp<Track> latestTrack = mLatestActiveTrack.promote(); 4663 4664 if (previousTrack != 0 && latestTrack != 0) { 4665 if (mType == DIRECT) { 4666 if (previousTrack.get() != latestTrack.get()) { 4667 mFlushPending = true; 4668 } 4669 } else /* mType == OFFLOAD */ { 4670 if (previousTrack->sessionId() != latestTrack->sessionId()) { 4671 mFlushPending = true; 4672 } 4673 } 4674 } 4675 PlaybackThread::onAddNewTrack_l(); 4676 } 4677 4678 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l( 4679 Vector< sp<Track> > *tracksToRemove 4680 ) 4681 { 4682 size_t count = mActiveTracks.size(); 4683 mixer_state mixerStatus = MIXER_IDLE; 4684 bool doHwPause = false; 4685 bool doHwResume = false; 4686 4687 // find out which tracks need to be processed 4688 for (size_t i = 0; i < count; i++) { 4689 sp<Track> t = mActiveTracks[i].promote(); 4690 // The track died recently 4691 if (t == 0) { 4692 continue; 4693 } 4694 4695 if (t->isInvalid()) { 4696 ALOGW("An invalidated track shouldn't be in active list"); 4697 tracksToRemove->add(t); 4698 continue; 4699 } 4700 4701 Track* const track = t.get(); 4702 #ifdef VERY_VERY_VERBOSE_LOGGING 4703 audio_track_cblk_t* cblk = track->cblk(); 4704 #endif 4705 // Only consider last track started for volume and mixer state control. 4706 // In theory an older track could underrun and restart after the new one starts 4707 // but as we only care about the transition phase between two tracks on a 4708 // direct output, it is not a problem to ignore the underrun case. 4709 sp<Track> l = mLatestActiveTrack.promote(); 4710 bool last = l.get() == track; 4711 4712 if (track->isPausing()) { 4713 track->setPaused(); 4714 if (mHwSupportsPause && last && !mHwPaused) { 4715 doHwPause = true; 4716 mHwPaused = true; 4717 } 4718 tracksToRemove->add(track); 4719 } else if (track->isFlushPending()) { 4720 track->flushAck(); 4721 if (last) { 4722 mFlushPending = true; 4723 } 4724 } else if (track->isResumePending()) { 4725 track->resumeAck(); 4726 if (last && mHwPaused) { 4727 doHwResume = true; 4728 mHwPaused = false; 4729 } 4730 } 4731 4732 // The first time a track is added we wait 4733 // for all its buffers to be filled before processing it. 4734 // Allow draining the buffer in case the client 4735 // app does not call stop() and relies on underrun to stop: 4736 // hence the test on (track->mRetryCount > 1). 4737 // If retryCount<=1 then track is about to underrun and be removed. 4738 // Do not use a high threshold for compressed audio. 4739 uint32_t minFrames; 4740 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing() 4741 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) { 4742 minFrames = mNormalFrameCount; 4743 } else { 4744 minFrames = 1; 4745 } 4746 4747 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() && 4748 !track->isStopping_2() && !track->isStopped()) 4749 { 4750 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer); 4751 4752 if (track->mFillingUpStatus == Track::FS_FILLED) { 4753 track->mFillingUpStatus = Track::FS_ACTIVE; 4754 // make sure processVolume_l() will apply new volume even if 0 4755 mLeftVolFloat = mRightVolFloat = -1.0; 4756 if (!mHwSupportsPause) { 4757 track->resumeAck(); 4758 } 4759 } 4760 4761 // compute volume for this track 4762 processVolume_l(track, last); 4763 if (last) { 4764 sp<Track> previousTrack = mPreviousTrack.promote(); 4765 if (previousTrack != 0) { 4766 if (track != previousTrack.get()) { 4767 // Flush any data still being written from last track 4768 mBytesRemaining = 0; 4769 // Invalidate previous track to force a seek when resuming. 4770 previousTrack->invalidate(); 4771 } 4772 } 4773 mPreviousTrack = track; 4774 4775 // reset retry count 4776 track->mRetryCount = kMaxTrackRetriesDirect; 4777 mActiveTrack = t; 4778 mixerStatus = MIXER_TRACKS_READY; 4779 if (mHwPaused) { 4780 doHwResume = true; 4781 mHwPaused = false; 4782 } 4783 } 4784 } else { 4785 // clear effect chain input buffer if the last active track started underruns 4786 // to avoid sending previous audio buffer again to effects 4787 if (!mEffectChains.isEmpty() && last) { 4788 mEffectChains[0]->clearInputBuffer(); 4789 } 4790 if (track->isStopping_1()) { 4791 track->mState = TrackBase::STOPPING_2; 4792 if (last && mHwPaused) { 4793 doHwResume = true; 4794 mHwPaused = false; 4795 } 4796 } 4797 if ((track->sharedBuffer() != 0) || track->isStopped() || 4798 track->isStopping_2() || track->isPaused()) { 4799 // We have consumed all the buffers of this track. 4800 // Remove it from the list of active tracks. 4801 size_t audioHALFrames; 4802 if (audio_has_proportional_frames(mFormat)) { 4803 audioHALFrames = (latency_l() * mSampleRate) / 1000; 4804 } else { 4805 audioHALFrames = 0; 4806 } 4807 4808 int64_t framesWritten = mBytesWritten / mFrameSize; 4809 if (mStandby || !last || 4810 track->presentationComplete(framesWritten, audioHALFrames)) { 4811 if (track->isStopping_2()) { 4812 track->mState = TrackBase::STOPPED; 4813 } 4814 if (track->isStopped()) { 4815 track->reset(); 4816 } 4817 tracksToRemove->add(track); 4818 } 4819 } else { 4820 // No buffers for this track. Give it a few chances to 4821 // fill a buffer, then remove it from active list. 4822 // Only consider last track started for mixer state control 4823 if (--(track->mRetryCount) <= 0) { 4824 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name()); 4825 tracksToRemove->add(track); 4826 // indicate to client process that the track was disabled because of underrun; 4827 // it will then automatically call start() when data is available 4828 track->disable(); 4829 } else if (last) { 4830 ALOGW("pause because of UNDERRUN, framesReady = %zu," 4831 "minFrames = %u, mFormat = %#x", 4832 track->framesReady(), minFrames, mFormat); 4833 mixerStatus = MIXER_TRACKS_ENABLED; 4834 if (mHwSupportsPause && !mHwPaused && !mStandby) { 4835 doHwPause = true; 4836 mHwPaused = true; 4837 } 4838 } 4839 } 4840 } 4841 } 4842 4843 // if an active track did not command a flush, check for pending flush on stopped tracks 4844 if (!mFlushPending) { 4845 for (size_t i = 0; i < mTracks.size(); i++) { 4846 if (mTracks[i]->isFlushPending()) { 4847 mTracks[i]->flushAck(); 4848 mFlushPending = true; 4849 } 4850 } 4851 } 4852 4853 // make sure the pause/flush/resume sequence is executed in the right order. 4854 // If a flush is pending and a track is active but the HW is not paused, force a HW pause 4855 // before flush and then resume HW. This can happen in case of pause/flush/resume 4856 // if resume is received before pause is executed. 4857 if (mHwSupportsPause && !mStandby && 4858 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) { 4859 mOutput->stream->pause(mOutput->stream); 4860 } 4861 if (mFlushPending) { 4862 flushHw_l(); 4863 } 4864 if (mHwSupportsPause && !mStandby && doHwResume) { 4865 mOutput->stream->resume(mOutput->stream); 4866 } 4867 // remove all the tracks that need to be... 4868 removeTracks_l(*tracksToRemove); 4869 4870 return mixerStatus; 4871 } 4872 4873 void AudioFlinger::DirectOutputThread::threadLoop_mix() 4874 { 4875 size_t frameCount = mFrameCount; 4876 int8_t *curBuf = (int8_t *)mSinkBuffer; 4877 // output audio to hardware 4878 while (frameCount) { 4879 AudioBufferProvider::Buffer buffer; 4880 buffer.frameCount = frameCount; 4881 status_t status = mActiveTrack->getNextBuffer(&buffer); 4882 if (status != NO_ERROR || buffer.raw == NULL) { 4883 // no need to pad with 0 for compressed audio 4884 if (audio_has_proportional_frames(mFormat)) { 4885 memset(curBuf, 0, frameCount * mFrameSize); 4886 } 4887 break; 4888 } 4889 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize); 4890 frameCount -= buffer.frameCount; 4891 curBuf += buffer.frameCount * mFrameSize; 4892 mActiveTrack->releaseBuffer(&buffer); 4893 } 4894 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer; 4895 mSleepTimeUs = 0; 4896 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 4897 mActiveTrack.clear(); 4898 } 4899 4900 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime() 4901 { 4902 // do not write to HAL when paused 4903 if (mHwPaused || (usesHwAvSync() && mStandby)) { 4904 mSleepTimeUs = mIdleSleepTimeUs; 4905 return; 4906 } 4907 if (mSleepTimeUs == 0) { 4908 if (mMixerStatus == MIXER_TRACKS_ENABLED) { 4909 mSleepTimeUs = mActiveSleepTimeUs; 4910 } else { 4911 mSleepTimeUs = mIdleSleepTimeUs; 4912 } 4913 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) { 4914 memset(mSinkBuffer, 0, mFrameCount * mFrameSize); 4915 mSleepTimeUs = 0; 4916 } 4917 } 4918 4919 void AudioFlinger::DirectOutputThread::threadLoop_exit() 4920 { 4921 { 4922 Mutex::Autolock _l(mLock); 4923 for (size_t i = 0; i < mTracks.size(); i++) { 4924 if (mTracks[i]->isFlushPending()) { 4925 mTracks[i]->flushAck(); 4926 mFlushPending = true; 4927 } 4928 } 4929 if (mFlushPending) { 4930 flushHw_l(); 4931 } 4932 } 4933 PlaybackThread::threadLoop_exit(); 4934 } 4935 4936 // must be called with thread mutex locked 4937 bool AudioFlinger::DirectOutputThread::shouldStandby_l() 4938 { 4939 bool trackPaused = false; 4940 bool trackStopped = false; 4941 4942 if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) { 4943 return !mStandby; 4944 } 4945 4946 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack 4947 // after a timeout and we will enter standby then. 4948 if (mTracks.size() > 0) { 4949 trackPaused = mTracks[mTracks.size() - 1]->isPaused(); 4950 trackStopped = mTracks[mTracks.size() - 1]->isStopped() || 4951 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE; 4952 } 4953 4954 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped)); 4955 } 4956 4957 // getTrackName_l() must be called with ThreadBase::mLock held 4958 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused, 4959 audio_format_t format __unused, audio_session_t sessionId __unused) 4960 { 4961 return 0; 4962 } 4963 4964 // deleteTrackName_l() must be called with ThreadBase::mLock held 4965 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused) 4966 { 4967 } 4968 4969 // checkForNewParameter_l() must be called with ThreadBase::mLock held 4970 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair, 4971 status_t& status) 4972 { 4973 bool reconfig = false; 4974 bool a2dpDeviceChanged = false; 4975 4976 status = NO_ERROR; 4977 4978 AudioParameter param = AudioParameter(keyValuePair); 4979 int value; 4980 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { 4981 // forward device change to effects that have requested to be 4982 // aware of attached audio device. 4983 if (value != AUDIO_DEVICE_NONE) { 4984 a2dpDeviceChanged = 4985 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP); 4986 mOutDevice = value; 4987 for (size_t i = 0; i < mEffectChains.size(); i++) { 4988 mEffectChains[i]->setDevice_l(mOutDevice); 4989 } 4990 } 4991 } 4992 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { 4993 // do not accept frame count changes if tracks are open as the track buffer 4994 // size depends on frame count and correct behavior would not be garantied 4995 // if frame count is changed after track creation 4996 if (!mTracks.isEmpty()) { 4997 status = INVALID_OPERATION; 4998 } else { 4999 reconfig = true; 5000 } 5001 } 5002 if (status == NO_ERROR) { 5003 status = mOutput->stream->common.set_parameters(&mOutput->stream->common, 5004 keyValuePair.string()); 5005 if (!mStandby && status == INVALID_OPERATION) { 5006 mOutput->standby(); 5007 mStandby = true; 5008 mBytesWritten = 0; 5009 status = mOutput->stream->common.set_parameters(&mOutput->stream->common, 5010 keyValuePair.string()); 5011 } 5012 if (status == NO_ERROR && reconfig) { 5013 readOutputParameters_l(); 5014 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); 5015 } 5016 } 5017 5018 return reconfig || a2dpDeviceChanged; 5019 } 5020 5021 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const 5022 { 5023 uint32_t time; 5024 if (audio_has_proportional_frames(mFormat)) { 5025 time = PlaybackThread::activeSleepTimeUs(); 5026 } else { 5027 time = kDirectMinSleepTimeUs; 5028 } 5029 return time; 5030 } 5031 5032 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const 5033 { 5034 uint32_t time; 5035 if (audio_has_proportional_frames(mFormat)) { 5036 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2; 5037 } else { 5038 time = kDirectMinSleepTimeUs; 5039 } 5040 return time; 5041 } 5042 5043 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const 5044 { 5045 uint32_t time; 5046 if (audio_has_proportional_frames(mFormat)) { 5047 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000); 5048 } else { 5049 time = kDirectMinSleepTimeUs; 5050 } 5051 return time; 5052 } 5053 5054 void AudioFlinger::DirectOutputThread::cacheParameters_l() 5055 { 5056 PlaybackThread::cacheParameters_l(); 5057 5058 // use shorter standby delay as on normal output to release 5059 // hardware resources as soon as possible 5060 // no delay on outputs with HW A/V sync 5061 if (usesHwAvSync()) { 5062 mStandbyDelayNs = 0; 5063 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) { 5064 mStandbyDelayNs = kOffloadStandbyDelayNs; 5065 } else { 5066 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2); 5067 } 5068 } 5069 5070 void AudioFlinger::DirectOutputThread::flushHw_l() 5071 { 5072 mOutput->flush(); 5073 mHwPaused = false; 5074 mFlushPending = false; 5075 } 5076 5077 // ---------------------------------------------------------------------------- 5078 5079 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread( 5080 const wp<AudioFlinger::PlaybackThread>& playbackThread) 5081 : Thread(false /*canCallJava*/), 5082 mPlaybackThread(playbackThread), 5083 mWriteAckSequence(0), 5084 mDrainSequence(0) 5085 { 5086 } 5087 5088 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread() 5089 { 5090 } 5091 5092 void AudioFlinger::AsyncCallbackThread::onFirstRef() 5093 { 5094 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO); 5095 } 5096 5097 bool AudioFlinger::AsyncCallbackThread::threadLoop() 5098 { 5099 while (!exitPending()) { 5100 uint32_t writeAckSequence; 5101 uint32_t drainSequence; 5102 5103 { 5104 Mutex::Autolock _l(mLock); 5105 while (!((mWriteAckSequence & 1) || 5106 (mDrainSequence & 1) || 5107 exitPending())) { 5108 mWaitWorkCV.wait(mLock); 5109 } 5110 5111 if (exitPending()) { 5112 break; 5113 } 5114 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d", 5115 mWriteAckSequence, mDrainSequence); 5116 writeAckSequence = mWriteAckSequence; 5117 mWriteAckSequence &= ~1; 5118 drainSequence = mDrainSequence; 5119 mDrainSequence &= ~1; 5120 } 5121 { 5122 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote(); 5123 if (playbackThread != 0) { 5124 if (writeAckSequence & 1) { 5125 playbackThread->resetWriteBlocked(writeAckSequence >> 1); 5126 } 5127 if (drainSequence & 1) { 5128 playbackThread->resetDraining(drainSequence >> 1); 5129 } 5130 } 5131 } 5132 } 5133 return false; 5134 } 5135 5136 void AudioFlinger::AsyncCallbackThread::exit() 5137 { 5138 ALOGV("AsyncCallbackThread::exit"); 5139 Mutex::Autolock _l(mLock); 5140 requestExit(); 5141 mWaitWorkCV.broadcast(); 5142 } 5143 5144 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence) 5145 { 5146 Mutex::Autolock _l(mLock); 5147 // bit 0 is cleared 5148 mWriteAckSequence = sequence << 1; 5149 } 5150 5151 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked() 5152 { 5153 Mutex::Autolock _l(mLock); 5154 // ignore unexpected callbacks 5155 if (mWriteAckSequence & 2) { 5156 mWriteAckSequence |= 1; 5157 mWaitWorkCV.signal(); 5158 } 5159 } 5160 5161 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence) 5162 { 5163 Mutex::Autolock _l(mLock); 5164 // bit 0 is cleared 5165 mDrainSequence = sequence << 1; 5166 } 5167 5168 void AudioFlinger::AsyncCallbackThread::resetDraining() 5169 { 5170 Mutex::Autolock _l(mLock); 5171 // ignore unexpected callbacks 5172 if (mDrainSequence & 2) { 5173 mDrainSequence |= 1; 5174 mWaitWorkCV.signal(); 5175 } 5176 } 5177 5178 5179 // ---------------------------------------------------------------------------- 5180 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger, 5181 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady) 5182 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady), 5183 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true) 5184 { 5185 //FIXME: mStandby should be set to true by ThreadBase constructor 5186 mStandby = true; 5187 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */); 5188 } 5189 5190 void AudioFlinger::OffloadThread::threadLoop_exit() 5191 { 5192 if (mFlushPending || mHwPaused) { 5193 // If a flush is pending or track was paused, just discard buffered data 5194 flushHw_l(); 5195 } else { 5196 mMixerStatus = MIXER_DRAIN_ALL; 5197 threadLoop_drain(); 5198 } 5199 if (mUseAsyncWrite) { 5200 ALOG_ASSERT(mCallbackThread != 0); 5201 mCallbackThread->exit(); 5202 } 5203 PlaybackThread::threadLoop_exit(); 5204 } 5205 5206 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l( 5207 Vector< sp<Track> > *tracksToRemove 5208 ) 5209 { 5210 size_t count = mActiveTracks.size(); 5211 5212 mixer_state mixerStatus = MIXER_IDLE; 5213 bool doHwPause = false; 5214 bool doHwResume = false; 5215 5216 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count); 5217 5218 // find out which tracks need to be processed 5219 for (size_t i = 0; i < count; i++) { 5220 sp<Track> t = mActiveTracks[i].promote(); 5221 // The track died recently 5222 if (t == 0) { 5223 continue; 5224 } 5225 Track* const track = t.get(); 5226 #ifdef VERY_VERY_VERBOSE_LOGGING 5227 audio_track_cblk_t* cblk = track->cblk(); 5228 #endif 5229 // Only consider last track started for volume and mixer state control. 5230 // In theory an older track could underrun and restart after the new one starts 5231 // but as we only care about the transition phase between two tracks on a 5232 // direct output, it is not a problem to ignore the underrun case. 5233 sp<Track> l = mLatestActiveTrack.promote(); 5234 bool last = l.get() == track; 5235 5236 if (track->isInvalid()) { 5237 ALOGW("An invalidated track shouldn't be in active list"); 5238 tracksToRemove->add(track); 5239 continue; 5240 } 5241 5242 if (track->mState == TrackBase::IDLE) { 5243 ALOGW("An idle track shouldn't be in active list"); 5244 continue; 5245 } 5246 5247 if (track->isPausing()) { 5248 track->setPaused(); 5249 if (last) { 5250 if (mHwSupportsPause && !mHwPaused) { 5251 doHwPause = true; 5252 mHwPaused = true; 5253 } 5254 // If we were part way through writing the mixbuffer to 5255 // the HAL we must save this until we resume 5256 // BUG - this will be wrong if a different track is made active, 5257 // in that case we want to discard the pending data in the 5258 // mixbuffer and tell the client to present it again when the 5259 // track is resumed 5260 mPausedWriteLength = mCurrentWriteLength; 5261 mPausedBytesRemaining = mBytesRemaining; 5262 mBytesRemaining = 0; // stop writing 5263 } 5264 tracksToRemove->add(track); 5265 } else if (track->isFlushPending()) { 5266 if (track->isStopping_1()) { 5267 track->mRetryCount = kMaxTrackStopRetriesOffload; 5268 } else { 5269 track->mRetryCount = kMaxTrackRetriesOffload; 5270 } 5271 track->flushAck(); 5272 if (last) { 5273 mFlushPending = true; 5274 } 5275 } else if (track->isResumePending()){ 5276 track->resumeAck(); 5277 if (last) { 5278 if (mPausedBytesRemaining) { 5279 // Need to continue write that was interrupted 5280 mCurrentWriteLength = mPausedWriteLength; 5281 mBytesRemaining = mPausedBytesRemaining; 5282 mPausedBytesRemaining = 0; 5283 } 5284 if (mHwPaused) { 5285 doHwResume = true; 5286 mHwPaused = false; 5287 // threadLoop_mix() will handle the case that we need to 5288 // resume an interrupted write 5289 } 5290 // enable write to audio HAL 5291 mSleepTimeUs = 0; 5292 5293 // Do not handle new data in this iteration even if track->framesReady() 5294 mixerStatus = MIXER_TRACKS_ENABLED; 5295 } 5296 } else if (track->framesReady() && track->isReady() && 5297 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) { 5298 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer); 5299 if (track->mFillingUpStatus == Track::FS_FILLED) { 5300 track->mFillingUpStatus = Track::FS_ACTIVE; 5301 // make sure processVolume_l() will apply new volume even if 0 5302 mLeftVolFloat = mRightVolFloat = -1.0; 5303 } 5304 5305 if (last) { 5306 sp<Track> previousTrack = mPreviousTrack.promote(); 5307 if (previousTrack != 0) { 5308 if (track != previousTrack.get()) { 5309 // Flush any data still being written from last track 5310 mBytesRemaining = 0; 5311 if (mPausedBytesRemaining) { 5312 // Last track was paused so we also need to flush saved 5313 // mixbuffer state and invalidate track so that it will 5314 // re-submit that unwritten data when it is next resumed 5315 mPausedBytesRemaining = 0; 5316 // Invalidate is a bit drastic - would be more efficient 5317 // to have a flag to tell client that some of the 5318 // previously written data was lost 5319 previousTrack->invalidate(); 5320 } 5321 // flush data already sent to the DSP if changing audio session as audio 5322 // comes from a different source. Also invalidate previous track to force a 5323 // seek when resuming. 5324 if (previousTrack->sessionId() != track->sessionId()) { 5325 previousTrack->invalidate(); 5326 } 5327 } 5328 } 5329 mPreviousTrack = track; 5330 // reset retry count 5331 if (track->isStopping_1()) { 5332 track->mRetryCount = kMaxTrackStopRetriesOffload; 5333 } else { 5334 track->mRetryCount = kMaxTrackRetriesOffload; 5335 } 5336 mActiveTrack = t; 5337 mixerStatus = MIXER_TRACKS_READY; 5338 } 5339 } else { 5340 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer); 5341 if (track->isStopping_1()) { 5342 if (--(track->mRetryCount) <= 0) { 5343 // Hardware buffer can hold a large amount of audio so we must 5344 // wait for all current track's data to drain before we say 5345 // that the track is stopped. 5346 if (mBytesRemaining == 0) { 5347 // Only start draining when all data in mixbuffer 5348 // has been written 5349 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2"); 5350 track->mState = TrackBase::STOPPING_2; // so presentation completes after 5351 // drain do not drain if no data was ever sent to HAL (mStandby == true) 5352 if (last && !mStandby) { 5353 // do not modify drain sequence if we are already draining. This happens 5354 // when resuming from pause after drain. 5355 if ((mDrainSequence & 1) == 0) { 5356 mSleepTimeUs = 0; 5357 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 5358 mixerStatus = MIXER_DRAIN_TRACK; 5359 mDrainSequence += 2; 5360 } 5361 if (mHwPaused) { 5362 // It is possible to move from PAUSED to STOPPING_1 without 5363 // a resume so we must ensure hardware is running 5364 doHwResume = true; 5365 mHwPaused = false; 5366 } 5367 } 5368 } 5369 } else if (last) { 5370 ALOGV("stopping1 underrun retries left %d", track->mRetryCount); 5371 mixerStatus = MIXER_TRACKS_ENABLED; 5372 } 5373 } else if (track->isStopping_2()) { 5374 // Drain has completed or we are in standby, signal presentation complete 5375 if (!(mDrainSequence & 1) || !last || mStandby) { 5376 track->mState = TrackBase::STOPPED; 5377 size_t audioHALFrames = 5378 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000; 5379 int64_t framesWritten = 5380 mBytesWritten / mOutput->getFrameSize(); 5381 track->presentationComplete(framesWritten, audioHALFrames); 5382 track->reset(); 5383 tracksToRemove->add(track); 5384 } 5385 } else { 5386 // No buffers for this track. Give it a few chances to 5387 // fill a buffer, then remove it from active list. 5388 if (--(track->mRetryCount) <= 0) { 5389 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list", 5390 track->name()); 5391 tracksToRemove->add(track); 5392 // indicate to client process that the track was disabled because of underrun; 5393 // it will then automatically call start() when data is available 5394 track->disable(); 5395 } else if (last){ 5396 mixerStatus = MIXER_TRACKS_ENABLED; 5397 } 5398 } 5399 } 5400 // compute volume for this track 5401 processVolume_l(track, last); 5402 } 5403 5404 // make sure the pause/flush/resume sequence is executed in the right order. 5405 // If a flush is pending and a track is active but the HW is not paused, force a HW pause 5406 // before flush and then resume HW. This can happen in case of pause/flush/resume 5407 // if resume is received before pause is executed. 5408 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) { 5409 mOutput->stream->pause(mOutput->stream); 5410 } 5411 if (mFlushPending) { 5412 flushHw_l(); 5413 } 5414 if (!mStandby && doHwResume) { 5415 mOutput->stream->resume(mOutput->stream); 5416 } 5417 5418 // remove all the tracks that need to be... 5419 removeTracks_l(*tracksToRemove); 5420 5421 return mixerStatus; 5422 } 5423 5424 // must be called with thread mutex locked 5425 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l() 5426 { 5427 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d", 5428 mWriteAckSequence, mDrainSequence); 5429 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) { 5430 return true; 5431 } 5432 return false; 5433 } 5434 5435 bool AudioFlinger::OffloadThread::waitingAsyncCallback() 5436 { 5437 Mutex::Autolock _l(mLock); 5438 return waitingAsyncCallback_l(); 5439 } 5440 5441 void AudioFlinger::OffloadThread::flushHw_l() 5442 { 5443 DirectOutputThread::flushHw_l(); 5444 // Flush anything still waiting in the mixbuffer 5445 mCurrentWriteLength = 0; 5446 mBytesRemaining = 0; 5447 mPausedWriteLength = 0; 5448 mPausedBytesRemaining = 0; 5449 // reset bytes written count to reflect that DSP buffers are empty after flush. 5450 mBytesWritten = 0; 5451 5452 if (mUseAsyncWrite) { 5453 // discard any pending drain or write ack by incrementing sequence 5454 mWriteAckSequence = (mWriteAckSequence + 2) & ~1; 5455 mDrainSequence = (mDrainSequence + 2) & ~1; 5456 ALOG_ASSERT(mCallbackThread != 0); 5457 mCallbackThread->setWriteBlocked(mWriteAckSequence); 5458 mCallbackThread->setDraining(mDrainSequence); 5459 } 5460 } 5461 5462 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType) 5463 { 5464 Mutex::Autolock _l(mLock); 5465 if (PlaybackThread::invalidateTracks_l(streamType)) { 5466 mFlushPending = true; 5467 } 5468 } 5469 5470 // ---------------------------------------------------------------------------- 5471 5472 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger, 5473 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady) 5474 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(), 5475 systemReady, DUPLICATING), 5476 mWaitTimeMs(UINT_MAX) 5477 { 5478 addOutputTrack(mainThread); 5479 } 5480 5481 AudioFlinger::DuplicatingThread::~DuplicatingThread() 5482 { 5483 for (size_t i = 0; i < mOutputTracks.size(); i++) { 5484 mOutputTracks[i]->destroy(); 5485 } 5486 } 5487 5488 void AudioFlinger::DuplicatingThread::threadLoop_mix() 5489 { 5490 // mix buffers... 5491 if (outputsReady(outputTracks)) { 5492 mAudioMixer->process(); 5493 } else { 5494 if (mMixerBufferValid) { 5495 memset(mMixerBuffer, 0, mMixerBufferSize); 5496 } else { 5497 memset(mSinkBuffer, 0, mSinkBufferSize); 5498 } 5499 } 5500 mSleepTimeUs = 0; 5501 writeFrames = mNormalFrameCount; 5502 mCurrentWriteLength = mSinkBufferSize; 5503 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 5504 } 5505 5506 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime() 5507 { 5508 if (mSleepTimeUs == 0) { 5509 if (mMixerStatus == MIXER_TRACKS_ENABLED) { 5510 mSleepTimeUs = mActiveSleepTimeUs; 5511 } else { 5512 mSleepTimeUs = mIdleSleepTimeUs; 5513 } 5514 } else if (mBytesWritten != 0) { 5515 if (mMixerStatus == MIXER_TRACKS_ENABLED) { 5516 writeFrames = mNormalFrameCount; 5517 memset(mSinkBuffer, 0, mSinkBufferSize); 5518 } else { 5519 // flush remaining overflow buffers in output tracks 5520 writeFrames = 0; 5521 } 5522 mSleepTimeUs = 0; 5523 } 5524 } 5525 5526 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write() 5527 { 5528 for (size_t i = 0; i < outputTracks.size(); i++) { 5529 outputTracks[i]->write(mSinkBuffer, writeFrames); 5530 } 5531 mStandby = false; 5532 return (ssize_t)mSinkBufferSize; 5533 } 5534 5535 void AudioFlinger::DuplicatingThread::threadLoop_standby() 5536 { 5537 // DuplicatingThread implements standby by stopping all tracks 5538 for (size_t i = 0; i < outputTracks.size(); i++) { 5539 outputTracks[i]->stop(); 5540 } 5541 } 5542 5543 void AudioFlinger::DuplicatingThread::saveOutputTracks() 5544 { 5545 outputTracks = mOutputTracks; 5546 } 5547 5548 void AudioFlinger::DuplicatingThread::clearOutputTracks() 5549 { 5550 outputTracks.clear(); 5551 } 5552 5553 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread) 5554 { 5555 Mutex::Autolock _l(mLock); 5556 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass. 5557 // Adjust for thread->sampleRate() to determine minimum buffer frame count. 5558 // Then triple buffer because Threads do not run synchronously and may not be clock locked. 5559 const size_t frameCount = 5560 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate()); 5561 // TODO: Consider asynchronous sample rate conversion to handle clock disparity 5562 // from different OutputTracks and their associated MixerThreads (e.g. one may 5563 // nearly empty and the other may be dropping data). 5564 5565 sp<OutputTrack> outputTrack = new OutputTrack(thread, 5566 this, 5567 mSampleRate, 5568 mFormat, 5569 mChannelMask, 5570 frameCount, 5571 IPCThreadState::self()->getCallingUid()); 5572 if (outputTrack->cblk() != NULL) { 5573 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f); 5574 mOutputTracks.add(outputTrack); 5575 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread); 5576 updateWaitTime_l(); 5577 } 5578 } 5579 5580 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread) 5581 { 5582 Mutex::Autolock _l(mLock); 5583 for (size_t i = 0; i < mOutputTracks.size(); i++) { 5584 if (mOutputTracks[i]->thread() == thread) { 5585 mOutputTracks[i]->destroy(); 5586 mOutputTracks.removeAt(i); 5587 updateWaitTime_l(); 5588 if (thread->getOutput() == mOutput) { 5589 mOutput = NULL; 5590 } 5591 return; 5592 } 5593 } 5594 ALOGV("removeOutputTrack(): unknown thread: %p", thread); 5595 } 5596 5597 // caller must hold mLock 5598 void AudioFlinger::DuplicatingThread::updateWaitTime_l() 5599 { 5600 mWaitTimeMs = UINT_MAX; 5601 for (size_t i = 0; i < mOutputTracks.size(); i++) { 5602 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote(); 5603 if (strong != 0) { 5604 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate(); 5605 if (waitTimeMs < mWaitTimeMs) { 5606 mWaitTimeMs = waitTimeMs; 5607 } 5608 } 5609 } 5610 } 5611 5612 5613 bool AudioFlinger::DuplicatingThread::outputsReady( 5614 const SortedVector< sp<OutputTrack> > &outputTracks) 5615 { 5616 for (size_t i = 0; i < outputTracks.size(); i++) { 5617 sp<ThreadBase> thread = outputTracks[i]->thread().promote(); 5618 if (thread == 0) { 5619 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p", 5620 outputTracks[i].get()); 5621 return false; 5622 } 5623 PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); 5624 // see note at standby() declaration 5625 if (playbackThread->standby() && !playbackThread->isSuspended()) { 5626 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(), 5627 thread.get()); 5628 return false; 5629 } 5630 } 5631 return true; 5632 } 5633 5634 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const 5635 { 5636 return (mWaitTimeMs * 1000) / 2; 5637 } 5638 5639 void AudioFlinger::DuplicatingThread::cacheParameters_l() 5640 { 5641 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first 5642 updateWaitTime_l(); 5643 5644 MixerThread::cacheParameters_l(); 5645 } 5646 5647 // ---------------------------------------------------------------------------- 5648 // Record 5649 // ---------------------------------------------------------------------------- 5650 5651 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger, 5652 AudioStreamIn *input, 5653 audio_io_handle_t id, 5654 audio_devices_t outDevice, 5655 audio_devices_t inDevice, 5656 bool systemReady 5657 #ifdef TEE_SINK 5658 , const sp<NBAIO_Sink>& teeSink 5659 #endif 5660 ) : 5661 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady), 5662 mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL), 5663 // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l() 5664 mRsmpInRear(0) 5665 #ifdef TEE_SINK 5666 , mTeeSink(teeSink) 5667 #endif 5668 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize, 5669 "RecordThreadRO", MemoryHeapBase::READ_ONLY)) 5670 // mFastCapture below 5671 , mFastCaptureFutex(0) 5672 // mInputSource 5673 // mPipeSink 5674 // mPipeSource 5675 , mPipeFramesP2(0) 5676 // mPipeMemory 5677 // mFastCaptureNBLogWriter 5678 , mFastTrackAvail(false) 5679 { 5680 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id); 5681 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName); 5682 5683 readInputParameters_l(); 5684 5685 // create an NBAIO source for the HAL input stream, and negotiate 5686 mInputSource = new AudioStreamInSource(input->stream); 5687 size_t numCounterOffers = 0; 5688 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)}; 5689 #if !LOG_NDEBUG 5690 ssize_t index = 5691 #else 5692 (void) 5693 #endif 5694 mInputSource->negotiate(offers, 1, NULL, numCounterOffers); 5695 ALOG_ASSERT(index == 0); 5696 5697 // initialize fast capture depending on configuration 5698 bool initFastCapture; 5699 switch (kUseFastCapture) { 5700 case FastCapture_Never: 5701 initFastCapture = false; 5702 break; 5703 case FastCapture_Always: 5704 initFastCapture = true; 5705 break; 5706 case FastCapture_Static: 5707 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs; 5708 break; 5709 // case FastCapture_Dynamic: 5710 } 5711 5712 if (initFastCapture) { 5713 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from 5714 NBAIO_Format format = mInputSource->format(); 5715 size_t pipeFramesP2 = roundup(mSampleRate / 25); // double-buffering of 20 ms each 5716 size_t pipeSize = pipeFramesP2 * Format_frameSize(format); 5717 void *pipeBuffer; 5718 const sp<MemoryDealer> roHeap(readOnlyHeap()); 5719 sp<IMemory> pipeMemory; 5720 if ((roHeap == 0) || 5721 (pipeMemory = roHeap->allocate(pipeSize)) == 0 || 5722 (pipeBuffer = pipeMemory->pointer()) == NULL) { 5723 ALOGE("not enough memory for pipe buffer size=%zu", pipeSize); 5724 goto failed; 5725 } 5726 // pipe will be shared directly with fast clients, so clear to avoid leaking old information 5727 memset(pipeBuffer, 0, pipeSize); 5728 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer); 5729 const NBAIO_Format offers[1] = {format}; 5730 size_t numCounterOffers = 0; 5731 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers); 5732 ALOG_ASSERT(index == 0); 5733 mPipeSink = pipe; 5734 PipeReader *pipeReader = new PipeReader(*pipe); 5735 numCounterOffers = 0; 5736 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers); 5737 ALOG_ASSERT(index == 0); 5738 mPipeSource = pipeReader; 5739 mPipeFramesP2 = pipeFramesP2; 5740 mPipeMemory = pipeMemory; 5741 5742 // create fast capture 5743 mFastCapture = new FastCapture(); 5744 FastCaptureStateQueue *sq = mFastCapture->sq(); 5745 #ifdef STATE_QUEUE_DUMP 5746 // FIXME 5747 #endif 5748 FastCaptureState *state = sq->begin(); 5749 state->mCblk = NULL; 5750 state->mInputSource = mInputSource.get(); 5751 state->mInputSourceGen++; 5752 state->mPipeSink = pipe; 5753 state->mPipeSinkGen++; 5754 state->mFrameCount = mFrameCount; 5755 state->mCommand = FastCaptureState::COLD_IDLE; 5756 // already done in constructor initialization list 5757 //mFastCaptureFutex = 0; 5758 state->mColdFutexAddr = &mFastCaptureFutex; 5759 state->mColdGen++; 5760 state->mDumpState = &mFastCaptureDumpState; 5761 #ifdef TEE_SINK 5762 // FIXME 5763 #endif 5764 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture"); 5765 state->mNBLogWriter = mFastCaptureNBLogWriter.get(); 5766 sq->end(); 5767 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED); 5768 5769 // start the fast capture 5770 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO); 5771 pid_t tid = mFastCapture->getTid(); 5772 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture); 5773 #ifdef AUDIO_WATCHDOG 5774 // FIXME 5775 #endif 5776 5777 mFastTrackAvail = true; 5778 } 5779 failed: ; 5780 5781 // FIXME mNormalSource 5782 } 5783 5784 AudioFlinger::RecordThread::~RecordThread() 5785 { 5786 if (mFastCapture != 0) { 5787 FastCaptureStateQueue *sq = mFastCapture->sq(); 5788 FastCaptureState *state = sq->begin(); 5789 if (state->mCommand == FastCaptureState::COLD_IDLE) { 5790 int32_t old = android_atomic_inc(&mFastCaptureFutex); 5791 if (old == -1) { 5792 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1); 5793 } 5794 } 5795 state->mCommand = FastCaptureState::EXIT; 5796 sq->end(); 5797 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED); 5798 mFastCapture->join(); 5799 mFastCapture.clear(); 5800 } 5801 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter); 5802 mAudioFlinger->unregisterWriter(mNBLogWriter); 5803 free(mRsmpInBuffer); 5804 } 5805 5806 void AudioFlinger::RecordThread::onFirstRef() 5807 { 5808 run(mThreadName, PRIORITY_URGENT_AUDIO); 5809 } 5810 5811 bool AudioFlinger::RecordThread::threadLoop() 5812 { 5813 nsecs_t lastWarning = 0; 5814 5815 inputStandBy(); 5816 5817 reacquire_wakelock: 5818 sp<RecordTrack> activeTrack; 5819 int activeTracksGen; 5820 { 5821 Mutex::Autolock _l(mLock); 5822 size_t size = mActiveTracks.size(); 5823 activeTracksGen = mActiveTracksGen; 5824 if (size > 0) { 5825 // FIXME an arbitrary choice 5826 activeTrack = mActiveTracks[0]; 5827 acquireWakeLock_l(activeTrack->uid()); 5828 if (size > 1) { 5829 SortedVector<int> tmp; 5830 for (size_t i = 0; i < size; i++) { 5831 tmp.add(mActiveTracks[i]->uid()); 5832 } 5833 updateWakeLockUids_l(tmp); 5834 } 5835 } else { 5836 acquireWakeLock_l(-1); 5837 } 5838 } 5839 5840 // used to request a deferred sleep, to be executed later while mutex is unlocked 5841 uint32_t sleepUs = 0; 5842 5843 // loop while there is work to do 5844 for (;;) { 5845 Vector< sp<EffectChain> > effectChains; 5846 5847 // sleep with mutex unlocked 5848 if (sleepUs > 0) { 5849 ATRACE_BEGIN("sleep"); 5850 usleep(sleepUs); 5851 ATRACE_END(); 5852 sleepUs = 0; 5853 } 5854 5855 // activeTracks accumulates a copy of a subset of mActiveTracks 5856 Vector< sp<RecordTrack> > activeTracks; 5857 5858 // reference to the (first and only) active fast track 5859 sp<RecordTrack> fastTrack; 5860 5861 // reference to a fast track which is about to be removed 5862 sp<RecordTrack> fastTrackToRemove; 5863 5864 { // scope for mLock 5865 Mutex::Autolock _l(mLock); 5866 5867 processConfigEvents_l(); 5868 5869 // check exitPending here because checkForNewParameters_l() and 5870 // checkForNewParameters_l() can temporarily release mLock 5871 if (exitPending()) { 5872 break; 5873 } 5874 5875 // if no active track(s), then standby and release wakelock 5876 size_t size = mActiveTracks.size(); 5877 if (size == 0) { 5878 standbyIfNotAlreadyInStandby(); 5879 // exitPending() can't become true here 5880 releaseWakeLock_l(); 5881 ALOGV("RecordThread: loop stopping"); 5882 // go to sleep 5883 mWaitWorkCV.wait(mLock); 5884 ALOGV("RecordThread: loop starting"); 5885 goto reacquire_wakelock; 5886 } 5887 5888 if (mActiveTracksGen != activeTracksGen) { 5889 activeTracksGen = mActiveTracksGen; 5890 SortedVector<int> tmp; 5891 for (size_t i = 0; i < size; i++) { 5892 tmp.add(mActiveTracks[i]->uid()); 5893 } 5894 updateWakeLockUids_l(tmp); 5895 } 5896 5897 bool doBroadcast = false; 5898 for (size_t i = 0; i < size; ) { 5899 5900 activeTrack = mActiveTracks[i]; 5901 if (activeTrack->isTerminated()) { 5902 if (activeTrack->isFastTrack()) { 5903 ALOG_ASSERT(fastTrackToRemove == 0); 5904 fastTrackToRemove = activeTrack; 5905 } 5906 removeTrack_l(activeTrack); 5907 mActiveTracks.remove(activeTrack); 5908 mActiveTracksGen++; 5909 size--; 5910 continue; 5911 } 5912 5913 TrackBase::track_state activeTrackState = activeTrack->mState; 5914 switch (activeTrackState) { 5915 5916 case TrackBase::PAUSING: 5917 mActiveTracks.remove(activeTrack); 5918 mActiveTracksGen++; 5919 doBroadcast = true; 5920 size--; 5921 continue; 5922 5923 case TrackBase::STARTING_1: 5924 sleepUs = 10000; 5925 i++; 5926 continue; 5927 5928 case TrackBase::STARTING_2: 5929 doBroadcast = true; 5930 mStandby = false; 5931 activeTrack->mState = TrackBase::ACTIVE; 5932 break; 5933 5934 case TrackBase::ACTIVE: 5935 break; 5936 5937 case TrackBase::IDLE: 5938 i++; 5939 continue; 5940 5941 default: 5942 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState); 5943 } 5944 5945 activeTracks.add(activeTrack); 5946 i++; 5947 5948 if (activeTrack->isFastTrack()) { 5949 ALOG_ASSERT(!mFastTrackAvail); 5950 ALOG_ASSERT(fastTrack == 0); 5951 fastTrack = activeTrack; 5952 } 5953 } 5954 if (doBroadcast) { 5955 mStartStopCond.broadcast(); 5956 } 5957 5958 // sleep if there are no active tracks to process 5959 if (activeTracks.size() == 0) { 5960 if (sleepUs == 0) { 5961 sleepUs = kRecordThreadSleepUs; 5962 } 5963 continue; 5964 } 5965 sleepUs = 0; 5966 5967 lockEffectChains_l(effectChains); 5968 } 5969 5970 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0 5971 5972 size_t size = effectChains.size(); 5973 for (size_t i = 0; i < size; i++) { 5974 // thread mutex is not locked, but effect chain is locked 5975 effectChains[i]->process_l(); 5976 } 5977 5978 // Push a new fast capture state if fast capture is not already running, or cblk change 5979 if (mFastCapture != 0) { 5980 FastCaptureStateQueue *sq = mFastCapture->sq(); 5981 FastCaptureState *state = sq->begin(); 5982 bool didModify = false; 5983 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED; 5984 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME && 5985 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) { 5986 if (state->mCommand == FastCaptureState::COLD_IDLE) { 5987 int32_t old = android_atomic_inc(&mFastCaptureFutex); 5988 if (old == -1) { 5989 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1); 5990 } 5991 } 5992 state->mCommand = FastCaptureState::READ_WRITE; 5993 #if 0 // FIXME 5994 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ? 5995 FastThreadDumpState::kSamplingNforLowRamDevice : 5996 FastThreadDumpState::kSamplingN); 5997 #endif 5998 didModify = true; 5999 } 6000 audio_track_cblk_t *cblkOld = state->mCblk; 6001 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL; 6002 if (cblkNew != cblkOld) { 6003 state->mCblk = cblkNew; 6004 // block until acked if removing a fast track 6005 if (cblkOld != NULL) { 6006 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED; 6007 } 6008 didModify = true; 6009 } 6010 sq->end(didModify); 6011 if (didModify) { 6012 sq->push(block); 6013 #if 0 6014 if (kUseFastCapture == FastCapture_Dynamic) { 6015 mNormalSource = mPipeSource; 6016 } 6017 #endif 6018 } 6019 } 6020 6021 // now run the fast track destructor with thread mutex unlocked 6022 fastTrackToRemove.clear(); 6023 6024 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one. 6025 // Only the client(s) that are too slow will overrun. But if even the fastest client is too 6026 // slow, then this RecordThread will overrun by not calling HAL read often enough. 6027 // If destination is non-contiguous, first read past the nominal end of buffer, then 6028 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated. 6029 6030 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1); 6031 ssize_t framesRead; 6032 6033 // If an NBAIO source is present, use it to read the normal capture's data 6034 if (mPipeSource != 0) { 6035 size_t framesToRead = mBufferSize / mFrameSize; 6036 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize, 6037 framesToRead); 6038 if (framesRead == 0) { 6039 // since pipe is non-blocking, simulate blocking input 6040 sleepUs = (framesToRead * 1000000LL) / mSampleRate; 6041 } 6042 // otherwise use the HAL / AudioStreamIn directly 6043 } else { 6044 ATRACE_BEGIN("read"); 6045 ssize_t bytesRead = mInput->stream->read(mInput->stream, 6046 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize); 6047 ATRACE_END(); 6048 if (bytesRead < 0) { 6049 framesRead = bytesRead; 6050 } else { 6051 framesRead = bytesRead / mFrameSize; 6052 } 6053 } 6054 6055 // Update server timestamp with server stats 6056 // systemTime() is optional if the hardware supports timestamps. 6057 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead; 6058 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime(); 6059 6060 // Update server timestamp with kernel stats 6061 if (mInput->stream->get_capture_position != nullptr) { 6062 int64_t position, time; 6063 int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time); 6064 if (ret == NO_ERROR) { 6065 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position; 6066 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time; 6067 // Note: In general record buffers should tend to be empty in 6068 // a properly running pipeline. 6069 // 6070 // Also, it is not advantageous to call get_presentation_position during the read 6071 // as the read obtains a lock, preventing the timestamp call from executing. 6072 } 6073 } 6074 // Use this to track timestamp information 6075 // ALOGD("%s", mTimestamp.toString().c_str()); 6076 6077 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) { 6078 ALOGE("read failed: framesRead=%zd", framesRead); 6079 // Force input into standby so that it tries to recover at next read attempt 6080 inputStandBy(); 6081 sleepUs = kRecordThreadSleepUs; 6082 } 6083 if (framesRead <= 0) { 6084 goto unlock; 6085 } 6086 ALOG_ASSERT(framesRead > 0); 6087 6088 if (mTeeSink != 0) { 6089 (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead); 6090 } 6091 // If destination is non-contiguous, we now correct for reading past end of buffer. 6092 { 6093 size_t part1 = mRsmpInFramesP2 - rear; 6094 if ((size_t) framesRead > part1) { 6095 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize, 6096 (framesRead - part1) * mFrameSize); 6097 } 6098 } 6099 rear = mRsmpInRear += framesRead; 6100 6101 size = activeTracks.size(); 6102 // loop over each active track 6103 for (size_t i = 0; i < size; i++) { 6104 activeTrack = activeTracks[i]; 6105 6106 // skip fast tracks, as those are handled directly by FastCapture 6107 if (activeTrack->isFastTrack()) { 6108 continue; 6109 } 6110 6111 // TODO: This code probably should be moved to RecordTrack. 6112 // TODO: Update the activeTrack buffer converter in case of reconfigure. 6113 6114 enum { 6115 OVERRUN_UNKNOWN, 6116 OVERRUN_TRUE, 6117 OVERRUN_FALSE 6118 } overrun = OVERRUN_UNKNOWN; 6119 6120 // loop over getNextBuffer to handle circular sink 6121 for (;;) { 6122 6123 activeTrack->mSink.frameCount = ~0; 6124 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink); 6125 size_t framesOut = activeTrack->mSink.frameCount; 6126 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0)); 6127 6128 // check available frames and handle overrun conditions 6129 // if the record track isn't draining fast enough. 6130 bool hasOverrun; 6131 size_t framesIn; 6132 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun); 6133 if (hasOverrun) { 6134 overrun = OVERRUN_TRUE; 6135 } 6136 if (framesOut == 0 || framesIn == 0) { 6137 break; 6138 } 6139 6140 // Don't allow framesOut to be larger than what is possible with resampling 6141 // from framesIn. 6142 // This isn't strictly necessary but helps limit buffer resizing in 6143 // RecordBufferConverter. TODO: remove when no longer needed. 6144 framesOut = min(framesOut, 6145 destinationFramesPossible( 6146 framesIn, mSampleRate, activeTrack->mSampleRate)); 6147 // process frames from the RecordThread buffer provider to the RecordTrack buffer 6148 framesOut = activeTrack->mRecordBufferConverter->convert( 6149 activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut); 6150 6151 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) { 6152 overrun = OVERRUN_FALSE; 6153 } 6154 6155 if (activeTrack->mFramesToDrop == 0) { 6156 if (framesOut > 0) { 6157 activeTrack->mSink.frameCount = framesOut; 6158 activeTrack->releaseBuffer(&activeTrack->mSink); 6159 } 6160 } else { 6161 // FIXME could do a partial drop of framesOut 6162 if (activeTrack->mFramesToDrop > 0) { 6163 activeTrack->mFramesToDrop -= framesOut; 6164 if (activeTrack->mFramesToDrop <= 0) { 6165 activeTrack->clearSyncStartEvent(); 6166 } 6167 } else { 6168 activeTrack->mFramesToDrop += framesOut; 6169 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 || 6170 activeTrack->mSyncStartEvent->isCancelled()) { 6171 ALOGW("Synced record %s, session %d, trigger session %d", 6172 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled", 6173 activeTrack->sessionId(), 6174 (activeTrack->mSyncStartEvent != 0) ? 6175 activeTrack->mSyncStartEvent->triggerSession() : 6176 AUDIO_SESSION_NONE); 6177 activeTrack->clearSyncStartEvent(); 6178 } 6179 } 6180 } 6181 6182 if (framesOut == 0) { 6183 break; 6184 } 6185 } 6186 6187 switch (overrun) { 6188 case OVERRUN_TRUE: 6189 // client isn't retrieving buffers fast enough 6190 if (!activeTrack->setOverflow()) { 6191 nsecs_t now = systemTime(); 6192 // FIXME should lastWarning per track? 6193 if ((now - lastWarning) > kWarningThrottleNs) { 6194 ALOGW("RecordThread: buffer overflow"); 6195 lastWarning = now; 6196 } 6197 } 6198 break; 6199 case OVERRUN_FALSE: 6200 activeTrack->clearOverflow(); 6201 break; 6202 case OVERRUN_UNKNOWN: 6203 break; 6204 } 6205 6206 // update frame information and push timestamp out 6207 activeTrack->updateTrackFrameInfo( 6208 activeTrack->mServerProxy->framesReleased(), 6209 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER], 6210 mSampleRate, mTimestamp); 6211 } 6212 6213 unlock: 6214 // enable changes in effect chain 6215 unlockEffectChains(effectChains); 6216 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end 6217 } 6218 6219 standbyIfNotAlreadyInStandby(); 6220 6221 { 6222 Mutex::Autolock _l(mLock); 6223 for (size_t i = 0; i < mTracks.size(); i++) { 6224 sp<RecordTrack> track = mTracks[i]; 6225 track->invalidate(); 6226 } 6227 mActiveTracks.clear(); 6228 mActiveTracksGen++; 6229 mStartStopCond.broadcast(); 6230 } 6231 6232 releaseWakeLock(); 6233 6234 ALOGV("RecordThread %p exiting", this); 6235 return false; 6236 } 6237 6238 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby() 6239 { 6240 if (!mStandby) { 6241 inputStandBy(); 6242 mStandby = true; 6243 } 6244 } 6245 6246 void AudioFlinger::RecordThread::inputStandBy() 6247 { 6248 // Idle the fast capture if it's currently running 6249 if (mFastCapture != 0) { 6250 FastCaptureStateQueue *sq = mFastCapture->sq(); 6251 FastCaptureState *state = sq->begin(); 6252 if (!(state->mCommand & FastCaptureState::IDLE)) { 6253 state->mCommand = FastCaptureState::COLD_IDLE; 6254 state->mColdFutexAddr = &mFastCaptureFutex; 6255 state->mColdGen++; 6256 mFastCaptureFutex = 0; 6257 sq->end(); 6258 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now 6259 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED); 6260 #if 0 6261 if (kUseFastCapture == FastCapture_Dynamic) { 6262 // FIXME 6263 } 6264 #endif 6265 #ifdef AUDIO_WATCHDOG 6266 // FIXME 6267 #endif 6268 } else { 6269 sq->end(false /*didModify*/); 6270 } 6271 } 6272 mInput->stream->common.standby(&mInput->stream->common); 6273 } 6274 6275 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held 6276 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l( 6277 const sp<AudioFlinger::Client>& client, 6278 uint32_t sampleRate, 6279 audio_format_t format, 6280 audio_channel_mask_t channelMask, 6281 size_t *pFrameCount, 6282 audio_session_t sessionId, 6283 size_t *notificationFrames, 6284 int uid, 6285 IAudioFlinger::track_flags_t *flags, 6286 pid_t tid, 6287 status_t *status) 6288 { 6289 size_t frameCount = *pFrameCount; 6290 sp<RecordTrack> track; 6291 status_t lStatus; 6292 6293 // client expresses a preference for FAST, but we get the final say 6294 if (*flags & IAudioFlinger::TRACK_FAST) { 6295 if ( 6296 // we formerly checked for a callback handler (non-0 tid), 6297 // but that is no longer required for TRANSFER_OBTAIN mode 6298 // 6299 // frame count is not specified, or is exactly the pipe depth 6300 ((frameCount == 0) || (frameCount == mPipeFramesP2)) && 6301 // PCM data 6302 audio_is_linear_pcm(format) && 6303 // hardware format 6304 (format == mFormat) && 6305 // hardware channel mask 6306 (channelMask == mChannelMask) && 6307 // hardware sample rate 6308 (sampleRate == mSampleRate) && 6309 // record thread has an associated fast capture 6310 hasFastCapture() && 6311 // there are sufficient fast track slots available 6312 mFastTrackAvail 6313 ) { 6314 ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu", 6315 frameCount, mFrameCount); 6316 } else { 6317 ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu " 6318 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u " 6319 "hasFastCapture=%d tid=%d mFastTrackAvail=%d", 6320 frameCount, mFrameCount, mPipeFramesP2, 6321 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate, 6322 hasFastCapture(), tid, mFastTrackAvail); 6323 *flags &= ~IAudioFlinger::TRACK_FAST; 6324 } 6325 } 6326 6327 // compute track buffer size in frames, and suggest the notification frame count 6328 if (*flags & IAudioFlinger::TRACK_FAST) { 6329 // fast track: frame count is exactly the pipe depth 6330 frameCount = mPipeFramesP2; 6331 // ignore requested notificationFrames, and always notify exactly once every HAL buffer 6332 *notificationFrames = mFrameCount; 6333 } else { 6334 // not fast track: max notification period is resampled equivalent of one HAL buffer time 6335 // or 20 ms if there is a fast capture 6336 // TODO This could be a roundupRatio inline, and const 6337 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount) 6338 * sampleRate + mSampleRate - 1) / mSampleRate; 6339 // minimum number of notification periods is at least kMinNotifications, 6340 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs) 6341 static const size_t kMinNotifications = 3; 6342 static const uint32_t kMinMs = 30; 6343 // TODO This could be a roundupRatio inline 6344 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000; 6345 // TODO This could be a roundupRatio inline 6346 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) / 6347 maxNotificationFrames; 6348 const size_t minFrameCount = maxNotificationFrames * 6349 max(kMinNotifications, minNotificationsByMs); 6350 frameCount = max(frameCount, minFrameCount); 6351 if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) { 6352 *notificationFrames = maxNotificationFrames; 6353 } 6354 } 6355 *pFrameCount = frameCount; 6356 6357 lStatus = initCheck(); 6358 if (lStatus != NO_ERROR) { 6359 ALOGE("createRecordTrack_l() audio driver not initialized"); 6360 goto Exit; 6361 } 6362 6363 { // scope for mLock 6364 Mutex::Autolock _l(mLock); 6365 6366 track = new RecordTrack(this, client, sampleRate, 6367 format, channelMask, frameCount, NULL, sessionId, uid, 6368 *flags, TrackBase::TYPE_DEFAULT); 6369 6370 lStatus = track->initCheck(); 6371 if (lStatus != NO_ERROR) { 6372 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus); 6373 // track must be cleared from the caller as the caller has the AF lock 6374 goto Exit; 6375 } 6376 mTracks.add(track); 6377 6378 // disable AEC and NS if the device is a BT SCO headset supporting those pre processings 6379 bool suspend = audio_is_bluetooth_sco_device(mInDevice) && 6380 mAudioFlinger->btNrecIsOff(); 6381 setEffectSuspended_l(FX_IID_AEC, suspend, sessionId); 6382 setEffectSuspended_l(FX_IID_NS, suspend, sessionId); 6383 6384 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) { 6385 pid_t callingPid = IPCThreadState::self()->getCallingPid(); 6386 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful, 6387 // so ask activity manager to do this on our behalf 6388 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp); 6389 } 6390 } 6391 6392 lStatus = NO_ERROR; 6393 6394 Exit: 6395 *status = lStatus; 6396 return track; 6397 } 6398 6399 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack, 6400 AudioSystem::sync_event_t event, 6401 audio_session_t triggerSession) 6402 { 6403 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession); 6404 sp<ThreadBase> strongMe = this; 6405 status_t status = NO_ERROR; 6406 6407 if (event == AudioSystem::SYNC_EVENT_NONE) { 6408 recordTrack->clearSyncStartEvent(); 6409 } else if (event != AudioSystem::SYNC_EVENT_SAME) { 6410 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event, 6411 triggerSession, 6412 recordTrack->sessionId(), 6413 syncStartEventCallback, 6414 recordTrack); 6415 // Sync event can be cancelled by the trigger session if the track is not in a 6416 // compatible state in which case we start record immediately 6417 if (recordTrack->mSyncStartEvent->isCancelled()) { 6418 recordTrack->clearSyncStartEvent(); 6419 } else { 6420 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs 6421 recordTrack->mFramesToDrop = - 6422 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000); 6423 } 6424 } 6425 6426 { 6427 // This section is a rendezvous between binder thread executing start() and RecordThread 6428 AutoMutex lock(mLock); 6429 if (mActiveTracks.indexOf(recordTrack) >= 0) { 6430 if (recordTrack->mState == TrackBase::PAUSING) { 6431 ALOGV("active record track PAUSING -> ACTIVE"); 6432 recordTrack->mState = TrackBase::ACTIVE; 6433 } else { 6434 ALOGV("active record track state %d", recordTrack->mState); 6435 } 6436 return status; 6437 } 6438 6439 // TODO consider other ways of handling this, such as changing the state to :STARTING and 6440 // adding the track to mActiveTracks after returning from AudioSystem::startInput(), 6441 // or using a separate command thread 6442 recordTrack->mState = TrackBase::STARTING_1; 6443 mActiveTracks.add(recordTrack); 6444 mActiveTracksGen++; 6445 status_t status = NO_ERROR; 6446 if (recordTrack->isExternalTrack()) { 6447 mLock.unlock(); 6448 status = AudioSystem::startInput(mId, recordTrack->sessionId()); 6449 mLock.lock(); 6450 // FIXME should verify that recordTrack is still in mActiveTracks 6451 if (status != NO_ERROR) { 6452 mActiveTracks.remove(recordTrack); 6453 mActiveTracksGen++; 6454 recordTrack->clearSyncStartEvent(); 6455 ALOGV("RecordThread::start error %d", status); 6456 return status; 6457 } 6458 } 6459 // Catch up with current buffer indices if thread is already running. 6460 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront 6461 // was initialized to some value closer to the thread's mRsmpInFront, then the track could 6462 // see previously buffered data before it called start(), but with greater risk of overrun. 6463 6464 recordTrack->mResamplerBufferProvider->reset(); 6465 // clear any converter state as new data will be discontinuous 6466 recordTrack->mRecordBufferConverter->reset(); 6467 recordTrack->mState = TrackBase::STARTING_2; 6468 // signal thread to start 6469 mWaitWorkCV.broadcast(); 6470 if (mActiveTracks.indexOf(recordTrack) < 0) { 6471 ALOGV("Record failed to start"); 6472 status = BAD_VALUE; 6473 goto startError; 6474 } 6475 return status; 6476 } 6477 6478 startError: 6479 if (recordTrack->isExternalTrack()) { 6480 AudioSystem::stopInput(mId, recordTrack->sessionId()); 6481 } 6482 recordTrack->clearSyncStartEvent(); 6483 // FIXME I wonder why we do not reset the state here? 6484 return status; 6485 } 6486 6487 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event) 6488 { 6489 sp<SyncEvent> strongEvent = event.promote(); 6490 6491 if (strongEvent != 0) { 6492 sp<RefBase> ptr = strongEvent->cookie().promote(); 6493 if (ptr != 0) { 6494 RecordTrack *recordTrack = (RecordTrack *)ptr.get(); 6495 recordTrack->handleSyncStartEvent(strongEvent); 6496 } 6497 } 6498 } 6499 6500 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) { 6501 ALOGV("RecordThread::stop"); 6502 AutoMutex _l(mLock); 6503 if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) { 6504 return false; 6505 } 6506 // note that threadLoop may still be processing the track at this point [without lock] 6507 recordTrack->mState = TrackBase::PAUSING; 6508 // do not wait for mStartStopCond if exiting 6509 if (exitPending()) { 6510 return true; 6511 } 6512 // FIXME incorrect usage of wait: no explicit predicate or loop 6513 mStartStopCond.wait(mLock); 6514 // if we have been restarted, recordTrack is in mActiveTracks here 6515 if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) { 6516 ALOGV("Record stopped OK"); 6517 return true; 6518 } 6519 return false; 6520 } 6521 6522 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const 6523 { 6524 return false; 6525 } 6526 6527 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused) 6528 { 6529 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future 6530 if (!isValidSyncEvent(event)) { 6531 return BAD_VALUE; 6532 } 6533 6534 audio_session_t eventSession = event->triggerSession(); 6535 status_t ret = NAME_NOT_FOUND; 6536 6537 Mutex::Autolock _l(mLock); 6538 6539 for (size_t i = 0; i < mTracks.size(); i++) { 6540 sp<RecordTrack> track = mTracks[i]; 6541 if (eventSession == track->sessionId()) { 6542 (void) track->setSyncEvent(event); 6543 ret = NO_ERROR; 6544 } 6545 } 6546 return ret; 6547 #else 6548 return BAD_VALUE; 6549 #endif 6550 } 6551 6552 // destroyTrack_l() must be called with ThreadBase::mLock held 6553 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track) 6554 { 6555 track->terminate(); 6556 track->mState = TrackBase::STOPPED; 6557 // active tracks are removed by threadLoop() 6558 if (mActiveTracks.indexOf(track) < 0) { 6559 removeTrack_l(track); 6560 } 6561 } 6562 6563 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track) 6564 { 6565 mTracks.remove(track); 6566 // need anything related to effects here? 6567 if (track->isFastTrack()) { 6568 ALOG_ASSERT(!mFastTrackAvail); 6569 mFastTrackAvail = true; 6570 } 6571 } 6572 6573 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args) 6574 { 6575 dumpInternals(fd, args); 6576 dumpTracks(fd, args); 6577 dumpEffectChains(fd, args); 6578 } 6579 6580 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args) 6581 { 6582 dprintf(fd, "\nInput thread %p:\n", this); 6583 6584 dumpBase(fd, args); 6585 6586 if (mActiveTracks.size() == 0) { 6587 dprintf(fd, " No active record clients\n"); 6588 } 6589 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no"); 6590 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no"); 6591 6592 // Make a non-atomic copy of fast capture dump state so it won't change underneath us 6593 // while we are dumping it. It may be inconsistent, but it won't mutate! 6594 // This is a large object so we place it on the heap. 6595 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages. 6596 const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState); 6597 copy->dump(fd); 6598 delete copy; 6599 } 6600 6601 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused) 6602 { 6603 const size_t SIZE = 256; 6604 char buffer[SIZE]; 6605 String8 result; 6606 6607 size_t numtracks = mTracks.size(); 6608 size_t numactive = mActiveTracks.size(); 6609 size_t numactiveseen = 0; 6610 dprintf(fd, " %zu Tracks", numtracks); 6611 if (numtracks) { 6612 dprintf(fd, " of which %zu are active\n", numactive); 6613 RecordTrack::appendDumpHeader(result); 6614 for (size_t i = 0; i < numtracks ; ++i) { 6615 sp<RecordTrack> track = mTracks[i]; 6616 if (track != 0) { 6617 bool active = mActiveTracks.indexOf(track) >= 0; 6618 if (active) { 6619 numactiveseen++; 6620 } 6621 track->dump(buffer, SIZE, active); 6622 result.append(buffer); 6623 } 6624 } 6625 } else { 6626 dprintf(fd, "\n"); 6627 } 6628 6629 if (numactiveseen != numactive) { 6630 snprintf(buffer, SIZE, " The following tracks are in the active list but" 6631 " not in the track list\n"); 6632 result.append(buffer); 6633 RecordTrack::appendDumpHeader(result); 6634 for (size_t i = 0; i < numactive; ++i) { 6635 sp<RecordTrack> track = mActiveTracks[i]; 6636 if (mTracks.indexOf(track) < 0) { 6637 track->dump(buffer, SIZE, true); 6638 result.append(buffer); 6639 } 6640 } 6641 6642 } 6643 write(fd, result.string(), result.size()); 6644 } 6645 6646 6647 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset() 6648 { 6649 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote(); 6650 RecordThread *recordThread = (RecordThread *) threadBase.get(); 6651 mRsmpInFront = recordThread->mRsmpInRear; 6652 mRsmpInUnrel = 0; 6653 } 6654 6655 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync( 6656 size_t *framesAvailable, bool *hasOverrun) 6657 { 6658 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote(); 6659 RecordThread *recordThread = (RecordThread *) threadBase.get(); 6660 const int32_t rear = recordThread->mRsmpInRear; 6661 const int32_t front = mRsmpInFront; 6662 const ssize_t filled = rear - front; 6663 6664 size_t framesIn; 6665 bool overrun = false; 6666 if (filled < 0) { 6667 // should not happen, but treat like a massive overrun and re-sync 6668 framesIn = 0; 6669 mRsmpInFront = rear; 6670 overrun = true; 6671 } else if ((size_t) filled <= recordThread->mRsmpInFrames) { 6672 framesIn = (size_t) filled; 6673 } else { 6674 // client is not keeping up with server, but give it latest data 6675 framesIn = recordThread->mRsmpInFrames; 6676 mRsmpInFront = /* front = */ rear - framesIn; 6677 overrun = true; 6678 } 6679 if (framesAvailable != NULL) { 6680 *framesAvailable = framesIn; 6681 } 6682 if (hasOverrun != NULL) { 6683 *hasOverrun = overrun; 6684 } 6685 } 6686 6687 // AudioBufferProvider interface 6688 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer( 6689 AudioBufferProvider::Buffer* buffer) 6690 { 6691 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote(); 6692 if (threadBase == 0) { 6693 buffer->frameCount = 0; 6694 buffer->raw = NULL; 6695 return NOT_ENOUGH_DATA; 6696 } 6697 RecordThread *recordThread = (RecordThread *) threadBase.get(); 6698 int32_t rear = recordThread->mRsmpInRear; 6699 int32_t front = mRsmpInFront; 6700 ssize_t filled = rear - front; 6701 // FIXME should not be P2 (don't want to increase latency) 6702 // FIXME if client not keeping up, discard 6703 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames)); 6704 // 'filled' may be non-contiguous, so return only the first contiguous chunk 6705 front &= recordThread->mRsmpInFramesP2 - 1; 6706 size_t part1 = recordThread->mRsmpInFramesP2 - front; 6707 if (part1 > (size_t) filled) { 6708 part1 = filled; 6709 } 6710 size_t ask = buffer->frameCount; 6711 ALOG_ASSERT(ask > 0); 6712 if (part1 > ask) { 6713 part1 = ask; 6714 } 6715 if (part1 == 0) { 6716 // out of data is fine since the resampler will return a short-count. 6717 buffer->raw = NULL; 6718 buffer->frameCount = 0; 6719 mRsmpInUnrel = 0; 6720 return NOT_ENOUGH_DATA; 6721 } 6722 6723 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize; 6724 buffer->frameCount = part1; 6725 mRsmpInUnrel = part1; 6726 return NO_ERROR; 6727 } 6728 6729 // AudioBufferProvider interface 6730 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer( 6731 AudioBufferProvider::Buffer* buffer) 6732 { 6733 size_t stepCount = buffer->frameCount; 6734 if (stepCount == 0) { 6735 return; 6736 } 6737 ALOG_ASSERT(stepCount <= mRsmpInUnrel); 6738 mRsmpInUnrel -= stepCount; 6739 mRsmpInFront += stepCount; 6740 buffer->raw = NULL; 6741 buffer->frameCount = 0; 6742 } 6743 6744 AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter( 6745 audio_channel_mask_t srcChannelMask, audio_format_t srcFormat, 6746 uint32_t srcSampleRate, 6747 audio_channel_mask_t dstChannelMask, audio_format_t dstFormat, 6748 uint32_t dstSampleRate) : 6749 mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars 6750 // mSrcFormat 6751 // mSrcSampleRate 6752 // mDstChannelMask 6753 // mDstFormat 6754 // mDstSampleRate 6755 // mSrcChannelCount 6756 // mDstChannelCount 6757 // mDstFrameSize 6758 mBuf(NULL), mBufFrames(0), mBufFrameSize(0), 6759 mResampler(NULL), 6760 mIsLegacyDownmix(false), 6761 mIsLegacyUpmix(false), 6762 mRequiresFloat(false), 6763 mInputConverterProvider(NULL) 6764 { 6765 (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate, 6766 dstChannelMask, dstFormat, dstSampleRate); 6767 } 6768 6769 AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() { 6770 free(mBuf); 6771 delete mResampler; 6772 delete mInputConverterProvider; 6773 } 6774 6775 size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst, 6776 AudioBufferProvider *provider, size_t frames) 6777 { 6778 if (mInputConverterProvider != NULL) { 6779 mInputConverterProvider->setBufferProvider(provider); 6780 provider = mInputConverterProvider; 6781 } 6782 6783 if (mResampler == NULL) { 6784 ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x", 6785 mSrcSampleRate, mSrcFormat, mDstFormat); 6786 6787 AudioBufferProvider::Buffer buffer; 6788 for (size_t i = frames; i > 0; ) { 6789 buffer.frameCount = i; 6790 status_t status = provider->getNextBuffer(&buffer); 6791 if (status != OK || buffer.frameCount == 0) { 6792 frames -= i; // cannot fill request. 6793 break; 6794 } 6795 // format convert to destination buffer 6796 convertNoResampler(dst, buffer.raw, buffer.frameCount); 6797 6798 dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize; 6799 i -= buffer.frameCount; 6800 provider->releaseBuffer(&buffer); 6801 } 6802 } else { 6803 ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x", 6804 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat); 6805 6806 // reallocate buffer if needed 6807 if (mBufFrameSize != 0 && mBufFrames < frames) { 6808 free(mBuf); 6809 mBufFrames = frames; 6810 (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize); 6811 } 6812 // resampler accumulates, but we only have one source track 6813 memset(mBuf, 0, frames * mBufFrameSize); 6814 frames = mResampler->resample((int32_t*)mBuf, frames, provider); 6815 // format convert to destination buffer 6816 convertResampler(dst, mBuf, frames); 6817 } 6818 return frames; 6819 } 6820 6821 status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters( 6822 audio_channel_mask_t srcChannelMask, audio_format_t srcFormat, 6823 uint32_t srcSampleRate, 6824 audio_channel_mask_t dstChannelMask, audio_format_t dstFormat, 6825 uint32_t dstSampleRate) 6826 { 6827 // quick evaluation if there is any change. 6828 if (mSrcFormat == srcFormat 6829 && mSrcChannelMask == srcChannelMask 6830 && mSrcSampleRate == srcSampleRate 6831 && mDstFormat == dstFormat 6832 && mDstChannelMask == dstChannelMask 6833 && mDstSampleRate == dstSampleRate) { 6834 return NO_ERROR; 6835 } 6836 6837 ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x" 6838 " srcFormat:%#x dstFormat:%#x srcRate:%u dstRate:%u", 6839 srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate); 6840 const bool valid = 6841 audio_is_input_channel(srcChannelMask) 6842 && audio_is_input_channel(dstChannelMask) 6843 && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat) 6844 && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat) 6845 && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) 6846 ; // no upsampling checks for now 6847 if (!valid) { 6848 return BAD_VALUE; 6849 } 6850 6851 mSrcFormat = srcFormat; 6852 mSrcChannelMask = srcChannelMask; 6853 mSrcSampleRate = srcSampleRate; 6854 mDstFormat = dstFormat; 6855 mDstChannelMask = dstChannelMask; 6856 mDstSampleRate = dstSampleRate; 6857 6858 // compute derived parameters 6859 mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask); 6860 mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask); 6861 mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat); 6862 6863 // do we need to resample? 6864 delete mResampler; 6865 mResampler = NULL; 6866 if (mSrcSampleRate != mDstSampleRate) { 6867 mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT, 6868 mSrcChannelCount, mDstSampleRate); 6869 mResampler->setSampleRate(mSrcSampleRate); 6870 mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT); 6871 } 6872 6873 // are we running legacy channel conversion modes? 6874 mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO 6875 || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK) 6876 && mDstChannelMask == AUDIO_CHANNEL_IN_MONO; 6877 mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO 6878 && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO 6879 || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK); 6880 6881 // do we need to process in float? 6882 mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix; 6883 6884 // do we need a staging buffer to convert for destination (we can still optimize this)? 6885 // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity 6886 if (mResampler != NULL) { 6887 mBufFrameSize = max(mSrcChannelCount, FCC_2) 6888 * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT); 6889 } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float 6890 mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT); 6891 } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) { 6892 mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat); 6893 } else { 6894 mBufFrameSize = 0; 6895 } 6896 mBufFrames = 0; // force the buffer to be resized. 6897 6898 // do we need an input converter buffer provider to give us float? 6899 delete mInputConverterProvider; 6900 mInputConverterProvider = NULL; 6901 if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) { 6902 mInputConverterProvider = new ReformatBufferProvider( 6903 audio_channel_count_from_in_mask(mSrcChannelMask), 6904 mSrcFormat, 6905 AUDIO_FORMAT_PCM_FLOAT, 6906 256 /* provider buffer frame count */); 6907 } 6908 6909 // do we need a remixer to do channel mask conversion 6910 if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) { 6911 (void) memcpy_by_index_array_initialization_from_channel_mask( 6912 mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask); 6913 } 6914 return NO_ERROR; 6915 } 6916 6917 void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler( 6918 void *dst, const void *src, size_t frames) 6919 { 6920 // src is native type unless there is legacy upmix or downmix, whereupon it is float. 6921 if (mBufFrameSize != 0 && mBufFrames < frames) { 6922 free(mBuf); 6923 mBufFrames = frames; 6924 (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize); 6925 } 6926 // do we need to do legacy upmix and downmix? 6927 if (mIsLegacyUpmix || mIsLegacyDownmix) { 6928 void *dstBuf = mBuf != NULL ? mBuf : dst; 6929 if (mIsLegacyUpmix) { 6930 upmix_to_stereo_float_from_mono_float((float *)dstBuf, 6931 (const float *)src, frames); 6932 } else /*mIsLegacyDownmix */ { 6933 downmix_to_mono_float_from_stereo_float((float *)dstBuf, 6934 (const float *)src, frames); 6935 } 6936 if (mBuf != NULL) { 6937 memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT, 6938 frames * mDstChannelCount); 6939 } 6940 return; 6941 } 6942 // do we need to do channel mask conversion? 6943 if (mSrcChannelMask != mDstChannelMask) { 6944 void *dstBuf = mBuf != NULL ? mBuf : dst; 6945 memcpy_by_index_array(dstBuf, mDstChannelCount, 6946 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames); 6947 if (dstBuf == dst) { 6948 return; // format is the same 6949 } 6950 } 6951 // convert to destination buffer 6952 const void *convertBuf = mBuf != NULL ? mBuf : src; 6953 memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat, 6954 frames * mDstChannelCount); 6955 } 6956 6957 void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler( 6958 void *dst, /*not-a-const*/ void *src, size_t frames) 6959 { 6960 // src buffer format is ALWAYS float when entering this routine 6961 if (mIsLegacyUpmix) { 6962 ; // mono to stereo already handled by resampler 6963 } else if (mIsLegacyDownmix 6964 || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) { 6965 // the resampler outputs stereo for mono input channel (a feature?) 6966 // must convert to mono 6967 downmix_to_mono_float_from_stereo_float((float *)src, 6968 (const float *)src, frames); 6969 } else if (mSrcChannelMask != mDstChannelMask) { 6970 // convert to mono channel again for channel mask conversion (could be skipped 6971 // with further optimization). 6972 if (mSrcChannelCount == 1) { 6973 downmix_to_mono_float_from_stereo_float((float *)src, 6974 (const float *)src, frames); 6975 } 6976 // convert to destination format (in place, OK as float is larger than other types) 6977 if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) { 6978 memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT, 6979 frames * mSrcChannelCount); 6980 } 6981 // channel convert and save to dst 6982 memcpy_by_index_array(dst, mDstChannelCount, 6983 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames); 6984 return; 6985 } 6986 // convert to destination format and save to dst 6987 memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT, 6988 frames * mDstChannelCount); 6989 } 6990 6991 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair, 6992 status_t& status) 6993 { 6994 bool reconfig = false; 6995 6996 status = NO_ERROR; 6997 6998 audio_format_t reqFormat = mFormat; 6999 uint32_t samplingRate = mSampleRate; 7000 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs). 7001 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount); 7002 7003 AudioParameter param = AudioParameter(keyValuePair); 7004 int value; 7005 7006 // scope for AutoPark extends to end of method 7007 AutoPark<FastCapture> park(mFastCapture); 7008 7009 // TODO Investigate when this code runs. Check with audio policy when a sample rate and 7010 // channel count change can be requested. Do we mandate the first client defines the 7011 // HAL sampling rate and channel count or do we allow changes on the fly? 7012 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) { 7013 samplingRate = value; 7014 reconfig = true; 7015 } 7016 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) { 7017 if (!audio_is_linear_pcm((audio_format_t) value)) { 7018 status = BAD_VALUE; 7019 } else { 7020 reqFormat = (audio_format_t) value; 7021 reconfig = true; 7022 } 7023 } 7024 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) { 7025 audio_channel_mask_t mask = (audio_channel_mask_t) value; 7026 if (!audio_is_input_channel(mask) || 7027 audio_channel_count_from_in_mask(mask) > FCC_8) { 7028 status = BAD_VALUE; 7029 } else { 7030 channelMask = mask; 7031 reconfig = true; 7032 } 7033 } 7034 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { 7035 // do not accept frame count changes if tracks are open as the track buffer 7036 // size depends on frame count and correct behavior would not be guaranteed 7037 // if frame count is changed after track creation 7038 if (mActiveTracks.size() > 0) { 7039 status = INVALID_OPERATION; 7040 } else { 7041 reconfig = true; 7042 } 7043 } 7044 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { 7045 // forward device change to effects that have requested to be 7046 // aware of attached audio device. 7047 for (size_t i = 0; i < mEffectChains.size(); i++) { 7048 mEffectChains[i]->setDevice_l(value); 7049 } 7050 7051 // store input device and output device but do not forward output device to audio HAL. 7052 // Note that status is ignored by the caller for output device 7053 // (see AudioFlinger::setParameters() 7054 if (audio_is_output_devices(value)) { 7055 mOutDevice = value; 7056 status = BAD_VALUE; 7057 } else { 7058 mInDevice = value; 7059 if (value != AUDIO_DEVICE_NONE) { 7060 mPrevInDevice = value; 7061 } 7062 // disable AEC and NS if the device is a BT SCO headset supporting those 7063 // pre processings 7064 if (mTracks.size() > 0) { 7065 bool suspend = audio_is_bluetooth_sco_device(mInDevice) && 7066 mAudioFlinger->btNrecIsOff(); 7067 for (size_t i = 0; i < mTracks.size(); i++) { 7068 sp<RecordTrack> track = mTracks[i]; 7069 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId()); 7070 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId()); 7071 } 7072 } 7073 } 7074 } 7075 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR && 7076 mAudioSource != (audio_source_t)value) { 7077 // forward device change to effects that have requested to be 7078 // aware of attached audio device. 7079 for (size_t i = 0; i < mEffectChains.size(); i++) { 7080 mEffectChains[i]->setAudioSource_l((audio_source_t)value); 7081 } 7082 mAudioSource = (audio_source_t)value; 7083 } 7084 7085 if (status == NO_ERROR) { 7086 status = mInput->stream->common.set_parameters(&mInput->stream->common, 7087 keyValuePair.string()); 7088 if (status == INVALID_OPERATION) { 7089 inputStandBy(); 7090 status = mInput->stream->common.set_parameters(&mInput->stream->common, 7091 keyValuePair.string()); 7092 } 7093 if (reconfig) { 7094 if (status == BAD_VALUE && 7095 audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) && 7096 audio_is_linear_pcm(reqFormat) && 7097 (mInput->stream->common.get_sample_rate(&mInput->stream->common) 7098 <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) && 7099 audio_channel_count_from_in_mask( 7100 mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) { 7101 status = NO_ERROR; 7102 } 7103 if (status == NO_ERROR) { 7104 readInputParameters_l(); 7105 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED); 7106 } 7107 } 7108 } 7109 7110 return reconfig; 7111 } 7112 7113 String8 AudioFlinger::RecordThread::getParameters(const String8& keys) 7114 { 7115 Mutex::Autolock _l(mLock); 7116 if (initCheck() != NO_ERROR) { 7117 return String8(); 7118 } 7119 7120 char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string()); 7121 const String8 out_s8(s); 7122 free(s); 7123 return out_s8; 7124 } 7125 7126 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) { 7127 sp<AudioIoDescriptor> desc = new AudioIoDescriptor(); 7128 7129 desc->mIoHandle = mId; 7130 7131 switch (event) { 7132 case AUDIO_INPUT_OPENED: 7133 case AUDIO_INPUT_CONFIG_CHANGED: 7134 desc->mPatch = mPatch; 7135 desc->mChannelMask = mChannelMask; 7136 desc->mSamplingRate = mSampleRate; 7137 desc->mFormat = mFormat; 7138 desc->mFrameCount = mFrameCount; 7139 desc->mFrameCountHAL = mFrameCount; 7140 desc->mLatency = 0; 7141 break; 7142 7143 case AUDIO_INPUT_CLOSED: 7144 default: 7145 break; 7146 } 7147 mAudioFlinger->ioConfigChanged(event, desc, pid); 7148 } 7149 7150 void AudioFlinger::RecordThread::readInputParameters_l() 7151 { 7152 mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common); 7153 mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common); 7154 mChannelCount = audio_channel_count_from_in_mask(mChannelMask); 7155 if (mChannelCount > FCC_8) { 7156 ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8); 7157 } 7158 mHALFormat = mInput->stream->common.get_format(&mInput->stream->common); 7159 mFormat = mHALFormat; 7160 if (!audio_is_linear_pcm(mFormat)) { 7161 ALOGE("HAL format %#x is not linear pcm", mFormat); 7162 } 7163 mFrameSize = audio_stream_in_frame_size(mInput->stream); 7164 mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common); 7165 mFrameCount = mBufferSize / mFrameSize; 7166 // This is the formula for calculating the temporary buffer size. 7167 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to 7168 // 1 full output buffer, regardless of the alignment of the available input. 7169 // The value is somewhat arbitrary, and could probably be even larger. 7170 // A larger value should allow more old data to be read after a track calls start(), 7171 // without increasing latency. 7172 // 7173 // Note this is independent of the maximum downsampling ratio permitted for capture. 7174 mRsmpInFrames = mFrameCount * 7; 7175 mRsmpInFramesP2 = roundup(mRsmpInFrames); 7176 free(mRsmpInBuffer); 7177 mRsmpInBuffer = NULL; 7178 7179 // TODO optimize audio capture buffer sizes ... 7180 // Here we calculate the size of the sliding buffer used as a source 7181 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7). 7182 // For current HAL frame counts, this is usually 2048 = 40 ms. It would 7183 // be better to have it derived from the pipe depth in the long term. 7184 // The current value is higher than necessary. However it should not add to latency. 7185 7186 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer 7187 size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize; 7188 (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize); 7189 memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here. 7190 7191 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints. 7192 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks? 7193 } 7194 7195 uint32_t AudioFlinger::RecordThread::getInputFramesLost() 7196 { 7197 Mutex::Autolock _l(mLock); 7198 if (initCheck() != NO_ERROR) { 7199 return 0; 7200 } 7201 7202 return mInput->stream->get_input_frames_lost(mInput->stream); 7203 } 7204 7205 uint32_t AudioFlinger::RecordThread::hasAudioSession(audio_session_t sessionId) const 7206 { 7207 Mutex::Autolock _l(mLock); 7208 uint32_t result = 0; 7209 if (getEffectChain_l(sessionId) != 0) { 7210 result = EFFECT_SESSION; 7211 } 7212 7213 for (size_t i = 0; i < mTracks.size(); ++i) { 7214 if (sessionId == mTracks[i]->sessionId()) { 7215 result |= TRACK_SESSION; 7216 break; 7217 } 7218 } 7219 7220 return result; 7221 } 7222 7223 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const 7224 { 7225 KeyedVector<audio_session_t, bool> ids; 7226 Mutex::Autolock _l(mLock); 7227 for (size_t j = 0; j < mTracks.size(); ++j) { 7228 sp<RecordThread::RecordTrack> track = mTracks[j]; 7229 audio_session_t sessionId = track->sessionId(); 7230 if (ids.indexOfKey(sessionId) < 0) { 7231 ids.add(sessionId, true); 7232 } 7233 } 7234 return ids; 7235 } 7236 7237 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput() 7238 { 7239 Mutex::Autolock _l(mLock); 7240 AudioStreamIn *input = mInput; 7241 mInput = NULL; 7242 return input; 7243 } 7244 7245 // this method must always be called either with ThreadBase mLock held or inside the thread loop 7246 audio_stream_t* AudioFlinger::RecordThread::stream() const 7247 { 7248 if (mInput == NULL) { 7249 return NULL; 7250 } 7251 return &mInput->stream->common; 7252 } 7253 7254 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain) 7255 { 7256 // only one chain per input thread 7257 if (mEffectChains.size() != 0) { 7258 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this); 7259 return INVALID_OPERATION; 7260 } 7261 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this); 7262 chain->setThread(this); 7263 chain->setInBuffer(NULL); 7264 chain->setOutBuffer(NULL); 7265 7266 checkSuspendOnAddEffectChain_l(chain); 7267 7268 // make sure enabled pre processing effects state is communicated to the HAL as we 7269 // just moved them to a new input stream. 7270 chain->syncHalEffectsState(); 7271 7272 mEffectChains.add(chain); 7273 7274 return NO_ERROR; 7275 } 7276 7277 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain) 7278 { 7279 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this); 7280 ALOGW_IF(mEffectChains.size() != 1, 7281 "removeEffectChain_l() %p invalid chain size %zu on thread %p", 7282 chain.get(), mEffectChains.size(), this); 7283 if (mEffectChains.size() == 1) { 7284 mEffectChains.removeAt(0); 7285 } 7286 return 0; 7287 } 7288 7289 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch, 7290 audio_patch_handle_t *handle) 7291 { 7292 status_t status = NO_ERROR; 7293 7294 // store new device and send to effects 7295 mInDevice = patch->sources[0].ext.device.type; 7296 mPatch = *patch; 7297 for (size_t i = 0; i < mEffectChains.size(); i++) { 7298 mEffectChains[i]->setDevice_l(mInDevice); 7299 } 7300 7301 // disable AEC and NS if the device is a BT SCO headset supporting those 7302 // pre processings 7303 if (mTracks.size() > 0) { 7304 bool suspend = audio_is_bluetooth_sco_device(mInDevice) && 7305 mAudioFlinger->btNrecIsOff(); 7306 for (size_t i = 0; i < mTracks.size(); i++) { 7307 sp<RecordTrack> track = mTracks[i]; 7308 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId()); 7309 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId()); 7310 } 7311 } 7312 7313 // store new source and send to effects 7314 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) { 7315 mAudioSource = patch->sinks[0].ext.mix.usecase.source; 7316 for (size_t i = 0; i < mEffectChains.size(); i++) { 7317 mEffectChains[i]->setAudioSource_l(mAudioSource); 7318 } 7319 } 7320 7321 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { 7322 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice(); 7323 status = hwDevice->create_audio_patch(hwDevice, 7324 patch->num_sources, 7325 patch->sources, 7326 patch->num_sinks, 7327 patch->sinks, 7328 handle); 7329 } else { 7330 char *address; 7331 if (strcmp(patch->sources[0].ext.device.address, "") != 0) { 7332 address = audio_device_address_to_parameter( 7333 patch->sources[0].ext.device.type, 7334 patch->sources[0].ext.device.address); 7335 } else { 7336 address = (char *)calloc(1, 1); 7337 } 7338 AudioParameter param = AudioParameter(String8(address)); 7339 free(address); 7340 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 7341 (int)patch->sources[0].ext.device.type); 7342 param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE), 7343 (int)patch->sinks[0].ext.mix.usecase.source); 7344 status = mInput->stream->common.set_parameters(&mInput->stream->common, 7345 param.toString().string()); 7346 *handle = AUDIO_PATCH_HANDLE_NONE; 7347 } 7348 7349 if (mInDevice != mPrevInDevice) { 7350 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED); 7351 mPrevInDevice = mInDevice; 7352 } 7353 7354 return status; 7355 } 7356 7357 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle) 7358 { 7359 status_t status = NO_ERROR; 7360 7361 mInDevice = AUDIO_DEVICE_NONE; 7362 7363 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { 7364 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice(); 7365 status = hwDevice->release_audio_patch(hwDevice, handle); 7366 } else { 7367 AudioParameter param; 7368 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0); 7369 status = mInput->stream->common.set_parameters(&mInput->stream->common, 7370 param.toString().string()); 7371 } 7372 return status; 7373 } 7374 7375 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record) 7376 { 7377 Mutex::Autolock _l(mLock); 7378 mTracks.add(record); 7379 } 7380 7381 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record) 7382 { 7383 Mutex::Autolock _l(mLock); 7384 destroyTrack_l(record); 7385 } 7386 7387 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config) 7388 { 7389 ThreadBase::getAudioPortConfig(config); 7390 config->role = AUDIO_PORT_ROLE_SINK; 7391 config->ext.mix.hw_module = mInput->audioHwDev->handle(); 7392 config->ext.mix.usecase.source = mAudioSource; 7393 } 7394 7395 } // namespace android 7396