Home | History | Annotate | Download | only in audioflinger
      1 /*
      2 **
      3 ** Copyright 2012, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 
     19 #define LOG_TAG "AudioFlinger"
     20 //#define LOG_NDEBUG 0
     21 #define ATRACE_TAG ATRACE_TAG_AUDIO
     22 
     23 #include "Configuration.h"
     24 #include <math.h>
     25 #include <fcntl.h>
     26 #include <linux/futex.h>
     27 #include <sys/stat.h>
     28 #include <sys/syscall.h>
     29 #include <cutils/properties.h>
     30 #include <media/AudioParameter.h>
     31 #include <media/AudioResamplerPublic.h>
     32 #include <utils/Log.h>
     33 #include <utils/Trace.h>
     34 
     35 #include <private/media/AudioTrackShared.h>
     36 #include <hardware/audio.h>
     37 #include <audio_effects/effect_ns.h>
     38 #include <audio_effects/effect_aec.h>
     39 #include <audio_utils/conversion.h>
     40 #include <audio_utils/primitives.h>
     41 #include <audio_utils/format.h>
     42 #include <audio_utils/minifloat.h>
     43 
     44 // NBAIO implementations
     45 #include <media/nbaio/AudioStreamInSource.h>
     46 #include <media/nbaio/AudioStreamOutSink.h>
     47 #include <media/nbaio/MonoPipe.h>
     48 #include <media/nbaio/MonoPipeReader.h>
     49 #include <media/nbaio/Pipe.h>
     50 #include <media/nbaio/PipeReader.h>
     51 #include <media/nbaio/SourceAudioBufferProvider.h>
     52 #include <mediautils/BatteryNotifier.h>
     53 
     54 #include <powermanager/PowerManager.h>
     55 
     56 #include "AudioFlinger.h"
     57 #include "AudioMixer.h"
     58 #include "BufferProviders.h"
     59 #include "FastMixer.h"
     60 #include "FastCapture.h"
     61 #include "ServiceUtilities.h"
     62 #include "mediautils/SchedulingPolicyService.h"
     63 
     64 #ifdef ADD_BATTERY_DATA
     65 #include <media/IMediaPlayerService.h>
     66 #include <media/IMediaDeathNotifier.h>
     67 #endif
     68 
     69 #ifdef DEBUG_CPU_USAGE
     70 #include <cpustats/CentralTendencyStatistics.h>
     71 #include <cpustats/ThreadCpuUsage.h>
     72 #endif
     73 
     74 #include "AutoPark.h"
     75 
     76 // ----------------------------------------------------------------------------
     77 
     78 // Note: the following macro is used for extremely verbose logging message.  In
     79 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
     80 // 0; but one side effect of this is to turn all LOGV's as well.  Some messages
     81 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
     82 // turned on.  Do not uncomment the #def below unless you really know what you
     83 // are doing and want to see all of the extremely verbose messages.
     84 //#define VERY_VERY_VERBOSE_LOGGING
     85 #ifdef VERY_VERY_VERBOSE_LOGGING
     86 #define ALOGVV ALOGV
     87 #else
     88 #define ALOGVV(a...) do { } while(0)
     89 #endif
     90 
     91 // TODO: Move these macro/inlines to a header file.
     92 #define max(a, b) ((a) > (b) ? (a) : (b))
     93 template <typename T>
     94 static inline T min(const T& a, const T& b)
     95 {
     96     return a < b ? a : b;
     97 }
     98 
     99 #ifndef ARRAY_SIZE
    100 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
    101 #endif
    102 
    103 namespace android {
    104 
    105 // retry counts for buffer fill timeout
    106 // 50 * ~20msecs = 1 second
    107 static const int8_t kMaxTrackRetries = 50;
    108 static const int8_t kMaxTrackStartupRetries = 50;
    109 // allow less retry attempts on direct output thread.
    110 // direct outputs can be a scarce resource in audio hardware and should
    111 // be released as quickly as possible.
    112 static const int8_t kMaxTrackRetriesDirect = 2;
    113 
    114 
    115 
    116 // don't warn about blocked writes or record buffer overflows more often than this
    117 static const nsecs_t kWarningThrottleNs = seconds(5);
    118 
    119 // RecordThread loop sleep time upon application overrun or audio HAL read error
    120 static const int kRecordThreadSleepUs = 5000;
    121 
    122 // maximum time to wait in sendConfigEvent_l() for a status to be received
    123 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
    124 
    125 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
    126 static const uint32_t kMinThreadSleepTimeUs = 5000;
    127 // maximum divider applied to the active sleep time in the mixer thread loop
    128 static const uint32_t kMaxThreadSleepTimeShift = 2;
    129 
    130 // minimum normal sink buffer size, expressed in milliseconds rather than frames
    131 // FIXME This should be based on experimentally observed scheduling jitter
    132 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
    133 // maximum normal sink buffer size
    134 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
    135 
    136 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
    137 // FIXME This should be based on experimentally observed scheduling jitter
    138 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
    139 
    140 // Offloaded output thread standby delay: allows track transition without going to standby
    141 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
    142 
    143 // Direct output thread minimum sleep time in idle or active(underrun) state
    144 static const nsecs_t kDirectMinSleepTimeUs = 10000;
    145 
    146 
    147 // Whether to use fast mixer
    148 static const enum {
    149     FastMixer_Never,    // never initialize or use: for debugging only
    150     FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
    151                         // normal mixer multiplier is 1
    152     FastMixer_Static,   // initialize if needed, then use all the time if initialized,
    153                         // multiplier is calculated based on min & max normal mixer buffer size
    154     FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
    155                         // multiplier is calculated based on min & max normal mixer buffer size
    156     // FIXME for FastMixer_Dynamic:
    157     //  Supporting this option will require fixing HALs that can't handle large writes.
    158     //  For example, one HAL implementation returns an error from a large write,
    159     //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
    160     //  We could either fix the HAL implementations, or provide a wrapper that breaks
    161     //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
    162 } kUseFastMixer = FastMixer_Static;
    163 
    164 // Whether to use fast capture
    165 static const enum {
    166     FastCapture_Never,  // never initialize or use: for debugging only
    167     FastCapture_Always, // always initialize and use, even if not needed: for debugging only
    168     FastCapture_Static, // initialize if needed, then use all the time if initialized
    169 } kUseFastCapture = FastCapture_Static;
    170 
    171 // Priorities for requestPriority
    172 static const int kPriorityAudioApp = 2;
    173 static const int kPriorityFastMixer = 3;
    174 static const int kPriorityFastCapture = 3;
    175 
    176 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
    177 // track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
    178 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
    179 
    180 // This is the default value, if not specified by property.
    181 static const int kFastTrackMultiplier = 2;
    182 
    183 // The minimum and maximum allowed values
    184 static const int kFastTrackMultiplierMin = 1;
    185 static const int kFastTrackMultiplierMax = 2;
    186 
    187 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
    188 static int sFastTrackMultiplier = kFastTrackMultiplier;
    189 
    190 // See Thread::readOnlyHeap().
    191 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
    192 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
    193 // and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
    194 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
    195 
    196 // ----------------------------------------------------------------------------
    197 
    198 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
    199 
    200 static void sFastTrackMultiplierInit()
    201 {
    202     char value[PROPERTY_VALUE_MAX];
    203     if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
    204         char *endptr;
    205         unsigned long ul = strtoul(value, &endptr, 0);
    206         if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
    207             sFastTrackMultiplier = (int) ul;
    208         }
    209     }
    210 }
    211 
    212 // ----------------------------------------------------------------------------
    213 
    214 #ifdef ADD_BATTERY_DATA
    215 // To collect the amplifier usage
    216 static void addBatteryData(uint32_t params) {
    217     sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
    218     if (service == NULL) {
    219         // it already logged
    220         return;
    221     }
    222 
    223     service->addBatteryData(params);
    224 }
    225 #endif
    226 
    227 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
    228 struct {
    229     // call when you acquire a partial wakelock
    230     void acquire(const sp<IBinder> &wakeLockToken) {
    231         pthread_mutex_lock(&mLock);
    232         if (wakeLockToken.get() == nullptr) {
    233             adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
    234         } else {
    235             if (mCount == 0) {
    236                 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
    237             }
    238             ++mCount;
    239         }
    240         pthread_mutex_unlock(&mLock);
    241     }
    242 
    243     // call when you release a partial wakelock.
    244     void release(const sp<IBinder> &wakeLockToken) {
    245         if (wakeLockToken.get() == nullptr) {
    246             return;
    247         }
    248         pthread_mutex_lock(&mLock);
    249         if (--mCount < 0) {
    250             ALOGE("negative wakelock count");
    251             mCount = 0;
    252         }
    253         pthread_mutex_unlock(&mLock);
    254     }
    255 
    256     // retrieves the boottime timebase offset from monotonic.
    257     int64_t getBoottimeOffset() {
    258         pthread_mutex_lock(&mLock);
    259         int64_t boottimeOffset = mBoottimeOffset;
    260         pthread_mutex_unlock(&mLock);
    261         return boottimeOffset;
    262     }
    263 
    264     // Adjusts the timebase offset between TIMEBASE_MONOTONIC
    265     // and the selected timebase.
    266     // Currently only TIMEBASE_BOOTTIME is allowed.
    267     //
    268     // This only needs to be called upon acquiring the first partial wakelock
    269     // after all other partial wakelocks are released.
    270     //
    271     // We do an empirical measurement of the offset rather than parsing
    272     // /proc/timer_list since the latter is not a formal kernel ABI.
    273     static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
    274         int clockbase;
    275         switch (timebase) {
    276         case ExtendedTimestamp::TIMEBASE_BOOTTIME:
    277             clockbase = SYSTEM_TIME_BOOTTIME;
    278             break;
    279         default:
    280             LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
    281             break;
    282         }
    283         // try three times to get the clock offset, choose the one
    284         // with the minimum gap in measurements.
    285         const int tries = 3;
    286         nsecs_t bestGap, measured;
    287         for (int i = 0; i < tries; ++i) {
    288             const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
    289             const nsecs_t tbase = systemTime(clockbase);
    290             const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
    291             const nsecs_t gap = tmono2 - tmono;
    292             if (i == 0 || gap < bestGap) {
    293                 bestGap = gap;
    294                 measured = tbase - ((tmono + tmono2) >> 1);
    295             }
    296         }
    297 
    298         // to avoid micro-adjusting, we don't change the timebase
    299         // unless it is significantly different.
    300         //
    301         // Assumption: It probably takes more than toleranceNs to
    302         // suspend and resume the device.
    303         static int64_t toleranceNs = 10000; // 10 us
    304         if (llabs(*offset - measured) > toleranceNs) {
    305             ALOGV("Adjusting timebase offset old: %lld  new: %lld",
    306                     (long long)*offset, (long long)measured);
    307             *offset = measured;
    308         }
    309     }
    310 
    311     pthread_mutex_t mLock;
    312     int32_t mCount;
    313     int64_t mBoottimeOffset;
    314 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
    315 
    316 // ----------------------------------------------------------------------------
    317 //      CPU Stats
    318 // ----------------------------------------------------------------------------
    319 
    320 class CpuStats {
    321 public:
    322     CpuStats();
    323     void sample(const String8 &title);
    324 #ifdef DEBUG_CPU_USAGE
    325 private:
    326     ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
    327     CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
    328 
    329     CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
    330 
    331     int mCpuNum;                        // thread's current CPU number
    332     int mCpukHz;                        // frequency of thread's current CPU in kHz
    333 #endif
    334 };
    335 
    336 CpuStats::CpuStats()
    337 #ifdef DEBUG_CPU_USAGE
    338     : mCpuNum(-1), mCpukHz(-1)
    339 #endif
    340 {
    341 }
    342 
    343 void CpuStats::sample(const String8 &title
    344 #ifndef DEBUG_CPU_USAGE
    345                 __unused
    346 #endif
    347         ) {
    348 #ifdef DEBUG_CPU_USAGE
    349     // get current thread's delta CPU time in wall clock ns
    350     double wcNs;
    351     bool valid = mCpuUsage.sampleAndEnable(wcNs);
    352 
    353     // record sample for wall clock statistics
    354     if (valid) {
    355         mWcStats.sample(wcNs);
    356     }
    357 
    358     // get the current CPU number
    359     int cpuNum = sched_getcpu();
    360 
    361     // get the current CPU frequency in kHz
    362     int cpukHz = mCpuUsage.getCpukHz(cpuNum);
    363 
    364     // check if either CPU number or frequency changed
    365     if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
    366         mCpuNum = cpuNum;
    367         mCpukHz = cpukHz;
    368         // ignore sample for purposes of cycles
    369         valid = false;
    370     }
    371 
    372     // if no change in CPU number or frequency, then record sample for cycle statistics
    373     if (valid && mCpukHz > 0) {
    374         double cycles = wcNs * cpukHz * 0.000001;
    375         mHzStats.sample(cycles);
    376     }
    377 
    378     unsigned n = mWcStats.n();
    379     // mCpuUsage.elapsed() is expensive, so don't call it every loop
    380     if ((n & 127) == 1) {
    381         long long elapsed = mCpuUsage.elapsed();
    382         if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
    383             double perLoop = elapsed / (double) n;
    384             double perLoop100 = perLoop * 0.01;
    385             double perLoop1k = perLoop * 0.001;
    386             double mean = mWcStats.mean();
    387             double stddev = mWcStats.stddev();
    388             double minimum = mWcStats.minimum();
    389             double maximum = mWcStats.maximum();
    390             double meanCycles = mHzStats.mean();
    391             double stddevCycles = mHzStats.stddev();
    392             double minCycles = mHzStats.minimum();
    393             double maxCycles = mHzStats.maximum();
    394             mCpuUsage.resetElapsed();
    395             mWcStats.reset();
    396             mHzStats.reset();
    397             ALOGD("CPU usage for %s over past %.1f secs\n"
    398                 "  (%u mixer loops at %.1f mean ms per loop):\n"
    399                 "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
    400                 "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
    401                 "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
    402                     title.string(),
    403                     elapsed * .000000001, n, perLoop * .000001,
    404                     mean * .001,
    405                     stddev * .001,
    406                     minimum * .001,
    407                     maximum * .001,
    408                     mean / perLoop100,
    409                     stddev / perLoop100,
    410                     minimum / perLoop100,
    411                     maximum / perLoop100,
    412                     meanCycles / perLoop1k,
    413                     stddevCycles / perLoop1k,
    414                     minCycles / perLoop1k,
    415                     maxCycles / perLoop1k);
    416 
    417         }
    418     }
    419 #endif
    420 };
    421 
    422 // ----------------------------------------------------------------------------
    423 //      ThreadBase
    424 // ----------------------------------------------------------------------------
    425 
    426 // static
    427 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
    428 {
    429     switch (type) {
    430     case MIXER:
    431         return "MIXER";
    432     case DIRECT:
    433         return "DIRECT";
    434     case DUPLICATING:
    435         return "DUPLICATING";
    436     case RECORD:
    437         return "RECORD";
    438     case OFFLOAD:
    439         return "OFFLOAD";
    440     default:
    441         return "unknown";
    442     }
    443 }
    444 
    445 String8 devicesToString(audio_devices_t devices)
    446 {
    447     static const struct mapping {
    448         audio_devices_t mDevices;
    449         const char *    mString;
    450     } mappingsOut[] = {
    451         {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
    452         {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
    453         {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
    454         {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
    455         {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
    456         {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
    457         {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
    458         {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
    459         {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
    460         {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
    461         {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
    462         {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
    463         {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
    464         {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
    465         {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
    466         {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
    467         {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
    468         {AUDIO_DEVICE_OUT_LINE,             "LINE"},
    469         {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
    470         {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
    471         {AUDIO_DEVICE_OUT_FM,               "FM"},
    472         {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
    473         {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
    474         {AUDIO_DEVICE_OUT_IP,               "IP"},
    475         {AUDIO_DEVICE_OUT_BUS,              "BUS"},
    476         {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
    477     }, mappingsIn[] = {
    478         {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
    479         {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
    480         {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
    481         {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
    482         {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
    483         {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
    484         {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
    485         {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
    486         {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
    487         {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
    488         {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
    489         {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
    490         {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
    491         {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
    492         {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
    493         {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
    494         {AUDIO_DEVICE_IN_LINE,              "LINE"},
    495         {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
    496         {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
    497         {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
    498         {AUDIO_DEVICE_IN_IP,                "IP"},
    499         {AUDIO_DEVICE_IN_BUS,               "BUS"},
    500         {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
    501     };
    502     String8 result;
    503     audio_devices_t allDevices = AUDIO_DEVICE_NONE;
    504     const mapping *entry;
    505     if (devices & AUDIO_DEVICE_BIT_IN) {
    506         devices &= ~AUDIO_DEVICE_BIT_IN;
    507         entry = mappingsIn;
    508     } else {
    509         entry = mappingsOut;
    510     }
    511     for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
    512         allDevices = (audio_devices_t) (allDevices | entry->mDevices);
    513         if (devices & entry->mDevices) {
    514             if (!result.isEmpty()) {
    515                 result.append("|");
    516             }
    517             result.append(entry->mString);
    518         }
    519     }
    520     if (devices & ~allDevices) {
    521         if (!result.isEmpty()) {
    522             result.append("|");
    523         }
    524         result.appendFormat("0x%X", devices & ~allDevices);
    525     }
    526     if (result.isEmpty()) {
    527         result.append(entry->mString);
    528     }
    529     return result;
    530 }
    531 
    532 String8 inputFlagsToString(audio_input_flags_t flags)
    533 {
    534     static const struct mapping {
    535         audio_input_flags_t     mFlag;
    536         const char *            mString;
    537     } mappings[] = {
    538         {AUDIO_INPUT_FLAG_FAST,             "FAST"},
    539         {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
    540         {AUDIO_INPUT_FLAG_RAW,              "RAW"},
    541         {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
    542         {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
    543     };
    544     String8 result;
    545     audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
    546     const mapping *entry;
    547     for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
    548         allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
    549         if (flags & entry->mFlag) {
    550             if (!result.isEmpty()) {
    551                 result.append("|");
    552             }
    553             result.append(entry->mString);
    554         }
    555     }
    556     if (flags & ~allFlags) {
    557         if (!result.isEmpty()) {
    558             result.append("|");
    559         }
    560         result.appendFormat("0x%X", flags & ~allFlags);
    561     }
    562     if (result.isEmpty()) {
    563         result.append(entry->mString);
    564     }
    565     return result;
    566 }
    567 
    568 String8 outputFlagsToString(audio_output_flags_t flags)
    569 {
    570     static const struct mapping {
    571         audio_output_flags_t    mFlag;
    572         const char *            mString;
    573     } mappings[] = {
    574         {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
    575         {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
    576         {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
    577         {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
    578         {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
    579         {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
    580         {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
    581         {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
    582         {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
    583         {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
    584         {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
    585     };
    586     String8 result;
    587     audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
    588     const mapping *entry;
    589     for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
    590         allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
    591         if (flags & entry->mFlag) {
    592             if (!result.isEmpty()) {
    593                 result.append("|");
    594             }
    595             result.append(entry->mString);
    596         }
    597     }
    598     if (flags & ~allFlags) {
    599         if (!result.isEmpty()) {
    600             result.append("|");
    601         }
    602         result.appendFormat("0x%X", flags & ~allFlags);
    603     }
    604     if (result.isEmpty()) {
    605         result.append(entry->mString);
    606     }
    607     return result;
    608 }
    609 
    610 const char *sourceToString(audio_source_t source)
    611 {
    612     switch (source) {
    613     case AUDIO_SOURCE_DEFAULT:              return "default";
    614     case AUDIO_SOURCE_MIC:                  return "mic";
    615     case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
    616     case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
    617     case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
    618     case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
    619     case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
    620     case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
    621     case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
    622     case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
    623     case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
    624     case AUDIO_SOURCE_HOTWORD:              return "hotword";
    625     default:                                return "unknown";
    626     }
    627 }
    628 
    629 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
    630         audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
    631     :   Thread(false /*canCallJava*/),
    632         mType(type),
    633         mAudioFlinger(audioFlinger),
    634         // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
    635         // are set by PlaybackThread::readOutputParameters_l() or
    636         // RecordThread::readInputParameters_l()
    637         //FIXME: mStandby should be true here. Is this some kind of hack?
    638         mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
    639         mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
    640         mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
    641         // mName will be set by concrete (non-virtual) subclass
    642         mDeathRecipient(new PMDeathRecipient(this)),
    643         mSystemReady(systemReady),
    644         mNotifiedBatteryStart(false)
    645 {
    646     memset(&mPatch, 0, sizeof(struct audio_patch));
    647 }
    648 
    649 AudioFlinger::ThreadBase::~ThreadBase()
    650 {
    651     // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
    652     mConfigEvents.clear();
    653 
    654     // do not lock the mutex in destructor
    655     releaseWakeLock_l();
    656     if (mPowerManager != 0) {
    657         sp<IBinder> binder = IInterface::asBinder(mPowerManager);
    658         binder->unlinkToDeath(mDeathRecipient);
    659     }
    660 }
    661 
    662 status_t AudioFlinger::ThreadBase::readyToRun()
    663 {
    664     status_t status = initCheck();
    665     if (status == NO_ERROR) {
    666         ALOGI("AudioFlinger's thread %p ready to run", this);
    667     } else {
    668         ALOGE("No working audio driver found.");
    669     }
    670     return status;
    671 }
    672 
    673 void AudioFlinger::ThreadBase::exit()
    674 {
    675     ALOGV("ThreadBase::exit");
    676     // do any cleanup required for exit to succeed
    677     preExit();
    678     {
    679         // This lock prevents the following race in thread (uniprocessor for illustration):
    680         //  if (!exitPending()) {
    681         //      // context switch from here to exit()
    682         //      // exit() calls requestExit(), what exitPending() observes
    683         //      // exit() calls signal(), which is dropped since no waiters
    684         //      // context switch back from exit() to here
    685         //      mWaitWorkCV.wait(...);
    686         //      // now thread is hung
    687         //  }
    688         AutoMutex lock(mLock);
    689         requestExit();
    690         mWaitWorkCV.broadcast();
    691     }
    692     // When Thread::requestExitAndWait is made virtual and this method is renamed to
    693     // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
    694     requestExitAndWait();
    695 }
    696 
    697 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
    698 {
    699     ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
    700     Mutex::Autolock _l(mLock);
    701 
    702     return sendSetParameterConfigEvent_l(keyValuePairs);
    703 }
    704 
    705 // sendConfigEvent_l() must be called with ThreadBase::mLock held
    706 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
    707 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
    708 {
    709     status_t status = NO_ERROR;
    710 
    711     if (event->mRequiresSystemReady && !mSystemReady) {
    712         event->mWaitStatus = false;
    713         mPendingConfigEvents.add(event);
    714         return status;
    715     }
    716     mConfigEvents.add(event);
    717     ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
    718     mWaitWorkCV.signal();
    719     mLock.unlock();
    720     {
    721         Mutex::Autolock _l(event->mLock);
    722         while (event->mWaitStatus) {
    723             if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
    724                 event->mStatus = TIMED_OUT;
    725                 event->mWaitStatus = false;
    726             }
    727         }
    728         status = event->mStatus;
    729     }
    730     mLock.lock();
    731     return status;
    732 }
    733 
    734 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
    735 {
    736     Mutex::Autolock _l(mLock);
    737     sendIoConfigEvent_l(event, pid);
    738 }
    739 
    740 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
    741 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
    742 {
    743     sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
    744     sendConfigEvent_l(configEvent);
    745 }
    746 
    747 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
    748 {
    749     Mutex::Autolock _l(mLock);
    750     sendPrioConfigEvent_l(pid, tid, prio);
    751 }
    752 
    753 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
    754 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
    755 {
    756     sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
    757     sendConfigEvent_l(configEvent);
    758 }
    759 
    760 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
    761 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
    762 {
    763     sp<ConfigEvent> configEvent;
    764     AudioParameter param(keyValuePair);
    765     int value;
    766     if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
    767         setMasterMono_l(value != 0);
    768         if (param.size() == 1) {
    769             return NO_ERROR; // should be a solo parameter - we don't pass down
    770         }
    771         param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
    772         configEvent = new SetParameterConfigEvent(param.toString());
    773     } else {
    774         configEvent = new SetParameterConfigEvent(keyValuePair);
    775     }
    776     return sendConfigEvent_l(configEvent);
    777 }
    778 
    779 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
    780                                                         const struct audio_patch *patch,
    781                                                         audio_patch_handle_t *handle)
    782 {
    783     Mutex::Autolock _l(mLock);
    784     sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
    785     status_t status = sendConfigEvent_l(configEvent);
    786     if (status == NO_ERROR) {
    787         CreateAudioPatchConfigEventData *data =
    788                                         (CreateAudioPatchConfigEventData *)configEvent->mData.get();
    789         *handle = data->mHandle;
    790     }
    791     return status;
    792 }
    793 
    794 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
    795                                                                 const audio_patch_handle_t handle)
    796 {
    797     Mutex::Autolock _l(mLock);
    798     sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
    799     return sendConfigEvent_l(configEvent);
    800 }
    801 
    802 
    803 // post condition: mConfigEvents.isEmpty()
    804 void AudioFlinger::ThreadBase::processConfigEvents_l()
    805 {
    806     bool configChanged = false;
    807 
    808     while (!mConfigEvents.isEmpty()) {
    809         ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
    810         sp<ConfigEvent> event = mConfigEvents[0];
    811         mConfigEvents.removeAt(0);
    812         switch (event->mType) {
    813         case CFG_EVENT_PRIO: {
    814             PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
    815             // FIXME Need to understand why this has to be done asynchronously
    816             int err = requestPriority(data->mPid, data->mTid, data->mPrio,
    817                     true /*asynchronous*/);
    818             if (err != 0) {
    819                 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
    820                       data->mPrio, data->mPid, data->mTid, err);
    821             }
    822         } break;
    823         case CFG_EVENT_IO: {
    824             IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
    825             ioConfigChanged(data->mEvent, data->mPid);
    826         } break;
    827         case CFG_EVENT_SET_PARAMETER: {
    828             SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
    829             if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
    830                 configChanged = true;
    831             }
    832         } break;
    833         case CFG_EVENT_CREATE_AUDIO_PATCH: {
    834             CreateAudioPatchConfigEventData *data =
    835                                             (CreateAudioPatchConfigEventData *)event->mData.get();
    836             event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
    837         } break;
    838         case CFG_EVENT_RELEASE_AUDIO_PATCH: {
    839             ReleaseAudioPatchConfigEventData *data =
    840                                             (ReleaseAudioPatchConfigEventData *)event->mData.get();
    841             event->mStatus = releaseAudioPatch_l(data->mHandle);
    842         } break;
    843         default:
    844             ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
    845             break;
    846         }
    847         {
    848             Mutex::Autolock _l(event->mLock);
    849             if (event->mWaitStatus) {
    850                 event->mWaitStatus = false;
    851                 event->mCond.signal();
    852             }
    853         }
    854         ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
    855     }
    856 
    857     if (configChanged) {
    858         cacheParameters_l();
    859     }
    860 }
    861 
    862 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
    863     String8 s;
    864     const audio_channel_representation_t representation =
    865             audio_channel_mask_get_representation(mask);
    866 
    867     switch (representation) {
    868     case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
    869         if (output) {
    870             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
    871             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
    872             if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
    873             if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
    874             if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
    875             if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
    876             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
    877             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
    878             if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
    879             if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
    880             if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
    881             if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
    882             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
    883             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
    884             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
    885             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
    886             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
    887             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
    888             if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
    889         } else {
    890             if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
    891             if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
    892             if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
    893             if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
    894             if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
    895             if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
    896             if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
    897             if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
    898             if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
    899             if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
    900             if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
    901             if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
    902             if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
    903             if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
    904             if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
    905         }
    906         const int len = s.length();
    907         if (len > 2) {
    908             (void) s.lockBuffer(len);      // needed?
    909             s.unlockBuffer(len - 2);       // remove trailing ", "
    910         }
    911         return s;
    912     }
    913     case AUDIO_CHANNEL_REPRESENTATION_INDEX:
    914         s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
    915         return s;
    916     default:
    917         s.appendFormat("unknown mask, representation:%d  bits:%#x",
    918                 representation, audio_channel_mask_get_bits(mask));
    919         return s;
    920     }
    921 }
    922 
    923 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
    924 {
    925     const size_t SIZE = 256;
    926     char buffer[SIZE];
    927     String8 result;
    928 
    929     bool locked = AudioFlinger::dumpTryLock(mLock);
    930     if (!locked) {
    931         dprintf(fd, "thread %p may be deadlocked\n", this);
    932     }
    933 
    934     dprintf(fd, "  Thread name: %s\n", mThreadName);
    935     dprintf(fd, "  I/O handle: %d\n", mId);
    936     dprintf(fd, "  TID: %d\n", getTid());
    937     dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
    938     dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
    939     dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
    940     dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
    941     dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
    942     dprintf(fd, "  Channel count: %u\n", mChannelCount);
    943     dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
    944             channelMaskToString(mChannelMask, mType != RECORD).string());
    945     dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
    946     dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
    947     dprintf(fd, "  Pending config events:");
    948     size_t numConfig = mConfigEvents.size();
    949     if (numConfig) {
    950         for (size_t i = 0; i < numConfig; i++) {
    951             mConfigEvents[i]->dump(buffer, SIZE);
    952             dprintf(fd, "\n    %s", buffer);
    953         }
    954         dprintf(fd, "\n");
    955     } else {
    956         dprintf(fd, " none\n");
    957     }
    958     dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
    959     dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
    960     dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
    961 
    962     if (locked) {
    963         mLock.unlock();
    964     }
    965 }
    966 
    967 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
    968 {
    969     const size_t SIZE = 256;
    970     char buffer[SIZE];
    971     String8 result;
    972 
    973     size_t numEffectChains = mEffectChains.size();
    974     snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
    975     write(fd, buffer, strlen(buffer));
    976 
    977     for (size_t i = 0; i < numEffectChains; ++i) {
    978         sp<EffectChain> chain = mEffectChains[i];
    979         if (chain != 0) {
    980             chain->dump(fd, args);
    981         }
    982     }
    983 }
    984 
    985 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
    986 {
    987     Mutex::Autolock _l(mLock);
    988     acquireWakeLock_l(uid);
    989 }
    990 
    991 String16 AudioFlinger::ThreadBase::getWakeLockTag()
    992 {
    993     switch (mType) {
    994     case MIXER:
    995         return String16("AudioMix");
    996     case DIRECT:
    997         return String16("AudioDirectOut");
    998     case DUPLICATING:
    999         return String16("AudioDup");
   1000     case RECORD:
   1001         return String16("AudioIn");
   1002     case OFFLOAD:
   1003         return String16("AudioOffload");
   1004     default:
   1005         ALOG_ASSERT(false);
   1006         return String16("AudioUnknown");
   1007     }
   1008 }
   1009 
   1010 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
   1011 {
   1012     getPowerManager_l();
   1013     if (mPowerManager != 0) {
   1014         sp<IBinder> binder = new BBinder();
   1015         status_t status;
   1016         if (uid >= 0) {
   1017             status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
   1018                     binder,
   1019                     getWakeLockTag(),
   1020                     String16("audioserver"),
   1021                     uid,
   1022                     true /* FIXME force oneway contrary to .aidl */);
   1023         } else {
   1024             status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
   1025                     binder,
   1026                     getWakeLockTag(),
   1027                     String16("audioserver"),
   1028                     true /* FIXME force oneway contrary to .aidl */);
   1029         }
   1030         if (status == NO_ERROR) {
   1031             mWakeLockToken = binder;
   1032         }
   1033         ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
   1034     }
   1035 
   1036     if (!mNotifiedBatteryStart) {
   1037         BatteryNotifier::getInstance().noteStartAudio();
   1038         mNotifiedBatteryStart = true;
   1039     }
   1040     gBoottime.acquire(mWakeLockToken);
   1041     mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
   1042             gBoottime.getBoottimeOffset();
   1043 }
   1044 
   1045 void AudioFlinger::ThreadBase::releaseWakeLock()
   1046 {
   1047     Mutex::Autolock _l(mLock);
   1048     releaseWakeLock_l();
   1049 }
   1050 
   1051 void AudioFlinger::ThreadBase::releaseWakeLock_l()
   1052 {
   1053     gBoottime.release(mWakeLockToken);
   1054     if (mWakeLockToken != 0) {
   1055         ALOGV("releaseWakeLock_l() %s", mThreadName);
   1056         if (mPowerManager != 0) {
   1057             mPowerManager->releaseWakeLock(mWakeLockToken, 0,
   1058                     true /* FIXME force oneway contrary to .aidl */);
   1059         }
   1060         mWakeLockToken.clear();
   1061     }
   1062 
   1063     if (mNotifiedBatteryStart) {
   1064         BatteryNotifier::getInstance().noteStopAudio();
   1065         mNotifiedBatteryStart = false;
   1066     }
   1067 }
   1068 
   1069 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
   1070     Mutex::Autolock _l(mLock);
   1071     updateWakeLockUids_l(uids);
   1072 }
   1073 
   1074 void AudioFlinger::ThreadBase::getPowerManager_l() {
   1075     if (mSystemReady && mPowerManager == 0) {
   1076         // use checkService() to avoid blocking if power service is not up yet
   1077         sp<IBinder> binder =
   1078             defaultServiceManager()->checkService(String16("power"));
   1079         if (binder == 0) {
   1080             ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
   1081         } else {
   1082             mPowerManager = interface_cast<IPowerManager>(binder);
   1083             binder->linkToDeath(mDeathRecipient);
   1084         }
   1085     }
   1086 }
   1087 
   1088 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
   1089     getPowerManager_l();
   1090     if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
   1091         if (mSystemReady) {
   1092             ALOGE("no wake lock to update, but system ready!");
   1093         } else {
   1094             ALOGW("no wake lock to update, system not ready yet");
   1095         }
   1096         return;
   1097     }
   1098     if (mPowerManager != 0) {
   1099         sp<IBinder> binder = new BBinder();
   1100         status_t status;
   1101         status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
   1102                     true /* FIXME force oneway contrary to .aidl */);
   1103         ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
   1104     }
   1105 }
   1106 
   1107 void AudioFlinger::ThreadBase::clearPowerManager()
   1108 {
   1109     Mutex::Autolock _l(mLock);
   1110     releaseWakeLock_l();
   1111     mPowerManager.clear();
   1112 }
   1113 
   1114 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
   1115 {
   1116     sp<ThreadBase> thread = mThread.promote();
   1117     if (thread != 0) {
   1118         thread->clearPowerManager();
   1119     }
   1120     ALOGW("power manager service died !!!");
   1121 }
   1122 
   1123 void AudioFlinger::ThreadBase::setEffectSuspended(
   1124         const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
   1125 {
   1126     Mutex::Autolock _l(mLock);
   1127     setEffectSuspended_l(type, suspend, sessionId);
   1128 }
   1129 
   1130 void AudioFlinger::ThreadBase::setEffectSuspended_l(
   1131         const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
   1132 {
   1133     sp<EffectChain> chain = getEffectChain_l(sessionId);
   1134     if (chain != 0) {
   1135         if (type != NULL) {
   1136             chain->setEffectSuspended_l(type, suspend);
   1137         } else {
   1138             chain->setEffectSuspendedAll_l(suspend);
   1139         }
   1140     }
   1141 
   1142     updateSuspendedSessions_l(type, suspend, sessionId);
   1143 }
   1144 
   1145 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
   1146 {
   1147     ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
   1148     if (index < 0) {
   1149         return;
   1150     }
   1151 
   1152     const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
   1153             mSuspendedSessions.valueAt(index);
   1154 
   1155     for (size_t i = 0; i < sessionEffects.size(); i++) {
   1156         sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
   1157         for (int j = 0; j < desc->mRefCount; j++) {
   1158             if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
   1159                 chain->setEffectSuspendedAll_l(true);
   1160             } else {
   1161                 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
   1162                     desc->mType.timeLow);
   1163                 chain->setEffectSuspended_l(&desc->mType, true);
   1164             }
   1165         }
   1166     }
   1167 }
   1168 
   1169 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
   1170                                                          bool suspend,
   1171                                                          audio_session_t sessionId)
   1172 {
   1173     ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
   1174 
   1175     KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
   1176 
   1177     if (suspend) {
   1178         if (index >= 0) {
   1179             sessionEffects = mSuspendedSessions.valueAt(index);
   1180         } else {
   1181             mSuspendedSessions.add(sessionId, sessionEffects);
   1182         }
   1183     } else {
   1184         if (index < 0) {
   1185             return;
   1186         }
   1187         sessionEffects = mSuspendedSessions.valueAt(index);
   1188     }
   1189 
   1190 
   1191     int key = EffectChain::kKeyForSuspendAll;
   1192     if (type != NULL) {
   1193         key = type->timeLow;
   1194     }
   1195     index = sessionEffects.indexOfKey(key);
   1196 
   1197     sp<SuspendedSessionDesc> desc;
   1198     if (suspend) {
   1199         if (index >= 0) {
   1200             desc = sessionEffects.valueAt(index);
   1201         } else {
   1202             desc = new SuspendedSessionDesc();
   1203             if (type != NULL) {
   1204                 desc->mType = *type;
   1205             }
   1206             sessionEffects.add(key, desc);
   1207             ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
   1208         }
   1209         desc->mRefCount++;
   1210     } else {
   1211         if (index < 0) {
   1212             return;
   1213         }
   1214         desc = sessionEffects.valueAt(index);
   1215         if (--desc->mRefCount == 0) {
   1216             ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
   1217             sessionEffects.removeItemsAt(index);
   1218             if (sessionEffects.isEmpty()) {
   1219                 ALOGV("updateSuspendedSessions_l() restore removing session %d",
   1220                                  sessionId);
   1221                 mSuspendedSessions.removeItem(sessionId);
   1222             }
   1223         }
   1224     }
   1225     if (!sessionEffects.isEmpty()) {
   1226         mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
   1227     }
   1228 }
   1229 
   1230 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
   1231                                                             bool enabled,
   1232                                                             audio_session_t sessionId)
   1233 {
   1234     Mutex::Autolock _l(mLock);
   1235     checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
   1236 }
   1237 
   1238 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
   1239                                                             bool enabled,
   1240                                                             audio_session_t sessionId)
   1241 {
   1242     if (mType != RECORD) {
   1243         // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
   1244         // another session. This gives the priority to well behaved effect control panels
   1245         // and applications not using global effects.
   1246         // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
   1247         // global effects
   1248         if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
   1249             setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
   1250         }
   1251     }
   1252 
   1253     sp<EffectChain> chain = getEffectChain_l(sessionId);
   1254     if (chain != 0) {
   1255         chain->checkSuspendOnEffectEnabled(effect, enabled);
   1256     }
   1257 }
   1258 
   1259 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
   1260 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
   1261         const sp<AudioFlinger::Client>& client,
   1262         const sp<IEffectClient>& effectClient,
   1263         int32_t priority,
   1264         audio_session_t sessionId,
   1265         effect_descriptor_t *desc,
   1266         int *enabled,
   1267         status_t *status)
   1268 {
   1269     sp<EffectModule> effect;
   1270     sp<EffectHandle> handle;
   1271     status_t lStatus;
   1272     sp<EffectChain> chain;
   1273     bool chainCreated = false;
   1274     bool effectCreated = false;
   1275     bool effectRegistered = false;
   1276 
   1277     lStatus = initCheck();
   1278     if (lStatus != NO_ERROR) {
   1279         ALOGW("createEffect_l() Audio driver not initialized.");
   1280         goto Exit;
   1281     }
   1282 
   1283     // Reject any effect on Direct output threads for now, since the format of
   1284     // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
   1285     if (mType == DIRECT) {
   1286         ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
   1287                 desc->name, mThreadName);
   1288         lStatus = BAD_VALUE;
   1289         goto Exit;
   1290     }
   1291 
   1292     // Reject any effect on mixer or duplicating multichannel sinks.
   1293     // TODO: fix both format and multichannel issues with effects.
   1294     if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
   1295         ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
   1296                 desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
   1297         lStatus = BAD_VALUE;
   1298         goto Exit;
   1299     }
   1300 
   1301     // Allow global effects only on offloaded and mixer threads
   1302     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
   1303         switch (mType) {
   1304         case MIXER:
   1305         case OFFLOAD:
   1306             break;
   1307         case DIRECT:
   1308         case DUPLICATING:
   1309         case RECORD:
   1310         default:
   1311             ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
   1312                     desc->name, mThreadName);
   1313             lStatus = BAD_VALUE;
   1314             goto Exit;
   1315         }
   1316     }
   1317 
   1318     // Only Pre processor effects are allowed on input threads and only on input threads
   1319     if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
   1320         ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
   1321                 desc->name, desc->flags, mType);
   1322         lStatus = BAD_VALUE;
   1323         goto Exit;
   1324     }
   1325 
   1326     ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
   1327 
   1328     { // scope for mLock
   1329         Mutex::Autolock _l(mLock);
   1330 
   1331         // check for existing effect chain with the requested audio session
   1332         chain = getEffectChain_l(sessionId);
   1333         if (chain == 0) {
   1334             // create a new chain for this session
   1335             ALOGV("createEffect_l() new effect chain for session %d", sessionId);
   1336             chain = new EffectChain(this, sessionId);
   1337             addEffectChain_l(chain);
   1338             chain->setStrategy(getStrategyForSession_l(sessionId));
   1339             chainCreated = true;
   1340         } else {
   1341             effect = chain->getEffectFromDesc_l(desc);
   1342         }
   1343 
   1344         ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
   1345 
   1346         if (effect == 0) {
   1347             audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
   1348             // Check CPU and memory usage
   1349             lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
   1350             if (lStatus != NO_ERROR) {
   1351                 goto Exit;
   1352             }
   1353             effectRegistered = true;
   1354             // create a new effect module if none present in the chain
   1355             effect = new EffectModule(this, chain, desc, id, sessionId);
   1356             lStatus = effect->status();
   1357             if (lStatus != NO_ERROR) {
   1358                 goto Exit;
   1359             }
   1360             effect->setOffloaded(mType == OFFLOAD, mId);
   1361 
   1362             lStatus = chain->addEffect_l(effect);
   1363             if (lStatus != NO_ERROR) {
   1364                 goto Exit;
   1365             }
   1366             effectCreated = true;
   1367 
   1368             effect->setDevice(mOutDevice);
   1369             effect->setDevice(mInDevice);
   1370             effect->setMode(mAudioFlinger->getMode());
   1371             effect->setAudioSource(mAudioSource);
   1372         }
   1373         // create effect handle and connect it to effect module
   1374         handle = new EffectHandle(effect, client, effectClient, priority);
   1375         lStatus = handle->initCheck();
   1376         if (lStatus == OK) {
   1377             lStatus = effect->addHandle(handle.get());
   1378         }
   1379         if (enabled != NULL) {
   1380             *enabled = (int)effect->isEnabled();
   1381         }
   1382     }
   1383 
   1384 Exit:
   1385     if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
   1386         Mutex::Autolock _l(mLock);
   1387         if (effectCreated) {
   1388             chain->removeEffect_l(effect);
   1389         }
   1390         if (effectRegistered) {
   1391             AudioSystem::unregisterEffect(effect->id());
   1392         }
   1393         if (chainCreated) {
   1394             removeEffectChain_l(chain);
   1395         }
   1396         handle.clear();
   1397     }
   1398 
   1399     *status = lStatus;
   1400     return handle;
   1401 }
   1402 
   1403 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
   1404         int effectId)
   1405 {
   1406     Mutex::Autolock _l(mLock);
   1407     return getEffect_l(sessionId, effectId);
   1408 }
   1409 
   1410 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
   1411         int effectId)
   1412 {
   1413     sp<EffectChain> chain = getEffectChain_l(sessionId);
   1414     return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
   1415 }
   1416 
   1417 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
   1418 // PlaybackThread::mLock held
   1419 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
   1420 {
   1421     // check for existing effect chain with the requested audio session
   1422     audio_session_t sessionId = effect->sessionId();
   1423     sp<EffectChain> chain = getEffectChain_l(sessionId);
   1424     bool chainCreated = false;
   1425 
   1426     ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
   1427              "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
   1428                     this, effect->desc().name, effect->desc().flags);
   1429 
   1430     if (chain == 0) {
   1431         // create a new chain for this session
   1432         ALOGV("addEffect_l() new effect chain for session %d", sessionId);
   1433         chain = new EffectChain(this, sessionId);
   1434         addEffectChain_l(chain);
   1435         chain->setStrategy(getStrategyForSession_l(sessionId));
   1436         chainCreated = true;
   1437     }
   1438     ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
   1439 
   1440     if (chain->getEffectFromId_l(effect->id()) != 0) {
   1441         ALOGW("addEffect_l() %p effect %s already present in chain %p",
   1442                 this, effect->desc().name, chain.get());
   1443         return BAD_VALUE;
   1444     }
   1445 
   1446     effect->setOffloaded(mType == OFFLOAD, mId);
   1447 
   1448     status_t status = chain->addEffect_l(effect);
   1449     if (status != NO_ERROR) {
   1450         if (chainCreated) {
   1451             removeEffectChain_l(chain);
   1452         }
   1453         return status;
   1454     }
   1455 
   1456     effect->setDevice(mOutDevice);
   1457     effect->setDevice(mInDevice);
   1458     effect->setMode(mAudioFlinger->getMode());
   1459     effect->setAudioSource(mAudioSource);
   1460     return NO_ERROR;
   1461 }
   1462 
   1463 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
   1464 
   1465     ALOGV("removeEffect_l() %p effect %p", this, effect.get());
   1466     effect_descriptor_t desc = effect->desc();
   1467     if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
   1468         detachAuxEffect_l(effect->id());
   1469     }
   1470 
   1471     sp<EffectChain> chain = effect->chain().promote();
   1472     if (chain != 0) {
   1473         // remove effect chain if removing last effect
   1474         if (chain->removeEffect_l(effect) == 0) {
   1475             removeEffectChain_l(chain);
   1476         }
   1477     } else {
   1478         ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
   1479     }
   1480 }
   1481 
   1482 void AudioFlinger::ThreadBase::lockEffectChains_l(
   1483         Vector< sp<AudioFlinger::EffectChain> >& effectChains)
   1484 {
   1485     effectChains = mEffectChains;
   1486     for (size_t i = 0; i < mEffectChains.size(); i++) {
   1487         mEffectChains[i]->lock();
   1488     }
   1489 }
   1490 
   1491 void AudioFlinger::ThreadBase::unlockEffectChains(
   1492         const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
   1493 {
   1494     for (size_t i = 0; i < effectChains.size(); i++) {
   1495         effectChains[i]->unlock();
   1496     }
   1497 }
   1498 
   1499 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
   1500 {
   1501     Mutex::Autolock _l(mLock);
   1502     return getEffectChain_l(sessionId);
   1503 }
   1504 
   1505 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
   1506         const
   1507 {
   1508     size_t size = mEffectChains.size();
   1509     for (size_t i = 0; i < size; i++) {
   1510         if (mEffectChains[i]->sessionId() == sessionId) {
   1511             return mEffectChains[i];
   1512         }
   1513     }
   1514     return 0;
   1515 }
   1516 
   1517 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
   1518 {
   1519     Mutex::Autolock _l(mLock);
   1520     size_t size = mEffectChains.size();
   1521     for (size_t i = 0; i < size; i++) {
   1522         mEffectChains[i]->setMode_l(mode);
   1523     }
   1524 }
   1525 
   1526 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
   1527 {
   1528     config->type = AUDIO_PORT_TYPE_MIX;
   1529     config->ext.mix.handle = mId;
   1530     config->sample_rate = mSampleRate;
   1531     config->format = mFormat;
   1532     config->channel_mask = mChannelMask;
   1533     config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
   1534                             AUDIO_PORT_CONFIG_FORMAT;
   1535 }
   1536 
   1537 void AudioFlinger::ThreadBase::systemReady()
   1538 {
   1539     Mutex::Autolock _l(mLock);
   1540     if (mSystemReady) {
   1541         return;
   1542     }
   1543     mSystemReady = true;
   1544 
   1545     for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
   1546         sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
   1547     }
   1548     mPendingConfigEvents.clear();
   1549 }
   1550 
   1551 
   1552 // ----------------------------------------------------------------------------
   1553 //      Playback
   1554 // ----------------------------------------------------------------------------
   1555 
   1556 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
   1557                                              AudioStreamOut* output,
   1558                                              audio_io_handle_t id,
   1559                                              audio_devices_t device,
   1560                                              type_t type,
   1561                                              bool systemReady)
   1562     :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
   1563         mNormalFrameCount(0), mSinkBuffer(NULL),
   1564         mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
   1565         mMixerBuffer(NULL),
   1566         mMixerBufferSize(0),
   1567         mMixerBufferFormat(AUDIO_FORMAT_INVALID),
   1568         mMixerBufferValid(false),
   1569         mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
   1570         mEffectBuffer(NULL),
   1571         mEffectBufferSize(0),
   1572         mEffectBufferFormat(AUDIO_FORMAT_INVALID),
   1573         mEffectBufferValid(false),
   1574         mSuspended(0), mBytesWritten(0),
   1575         mFramesWritten(0),
   1576         mActiveTracksGeneration(0),
   1577         // mStreamTypes[] initialized in constructor body
   1578         mOutput(output),
   1579         mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
   1580         mMixerStatus(MIXER_IDLE),
   1581         mMixerStatusIgnoringFastTracks(MIXER_IDLE),
   1582         mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
   1583         mBytesRemaining(0),
   1584         mCurrentWriteLength(0),
   1585         mUseAsyncWrite(false),
   1586         mWriteAckSequence(0),
   1587         mDrainSequence(0),
   1588         mSignalPending(false),
   1589         mScreenState(AudioFlinger::mScreenState),
   1590         // index 0 is reserved for normal mixer's submix
   1591         mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
   1592         mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
   1593 {
   1594     snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
   1595     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
   1596 
   1597     // Assumes constructor is called by AudioFlinger with it's mLock held, but
   1598     // it would be safer to explicitly pass initial masterVolume/masterMute as
   1599     // parameter.
   1600     //
   1601     // If the HAL we are using has support for master volume or master mute,
   1602     // then do not attenuate or mute during mixing (just leave the volume at 1.0
   1603     // and the mute set to false).
   1604     mMasterVolume = audioFlinger->masterVolume_l();
   1605     mMasterMute = audioFlinger->masterMute_l();
   1606     if (mOutput && mOutput->audioHwDev) {
   1607         if (mOutput->audioHwDev->canSetMasterVolume()) {
   1608             mMasterVolume = 1.0;
   1609         }
   1610 
   1611         if (mOutput->audioHwDev->canSetMasterMute()) {
   1612             mMasterMute = false;
   1613         }
   1614     }
   1615 
   1616     readOutputParameters_l();
   1617 
   1618     // ++ operator does not compile
   1619     for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
   1620             stream = (audio_stream_type_t) (stream + 1)) {
   1621         mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
   1622         mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
   1623     }
   1624 }
   1625 
   1626 AudioFlinger::PlaybackThread::~PlaybackThread()
   1627 {
   1628     mAudioFlinger->unregisterWriter(mNBLogWriter);
   1629     free(mSinkBuffer);
   1630     free(mMixerBuffer);
   1631     free(mEffectBuffer);
   1632 }
   1633 
   1634 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
   1635 {
   1636     dumpInternals(fd, args);
   1637     dumpTracks(fd, args);
   1638     dumpEffectChains(fd, args);
   1639 }
   1640 
   1641 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
   1642 {
   1643     const size_t SIZE = 256;
   1644     char buffer[SIZE];
   1645     String8 result;
   1646 
   1647     result.appendFormat("  Stream volumes in dB: ");
   1648     for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
   1649         const stream_type_t *st = &mStreamTypes[i];
   1650         if (i > 0) {
   1651             result.appendFormat(", ");
   1652         }
   1653         result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
   1654         if (st->mute) {
   1655             result.append("M");
   1656         }
   1657     }
   1658     result.append("\n");
   1659     write(fd, result.string(), result.length());
   1660     result.clear();
   1661 
   1662     // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
   1663     FastTrackUnderruns underruns = getFastTrackUnderruns(0);
   1664     dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
   1665             underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
   1666 
   1667     size_t numtracks = mTracks.size();
   1668     size_t numactive = mActiveTracks.size();
   1669     dprintf(fd, "  %zu Tracks", numtracks);
   1670     size_t numactiveseen = 0;
   1671     if (numtracks) {
   1672         dprintf(fd, " of which %zu are active\n", numactive);
   1673         Track::appendDumpHeader(result);
   1674         for (size_t i = 0; i < numtracks; ++i) {
   1675             sp<Track> track = mTracks[i];
   1676             if (track != 0) {
   1677                 bool active = mActiveTracks.indexOf(track) >= 0;
   1678                 if (active) {
   1679                     numactiveseen++;
   1680                 }
   1681                 track->dump(buffer, SIZE, active);
   1682                 result.append(buffer);
   1683             }
   1684         }
   1685     } else {
   1686         result.append("\n");
   1687     }
   1688     if (numactiveseen != numactive) {
   1689         // some tracks in the active list were not in the tracks list
   1690         snprintf(buffer, SIZE, "  The following tracks are in the active list but"
   1691                 " not in the track list\n");
   1692         result.append(buffer);
   1693         Track::appendDumpHeader(result);
   1694         for (size_t i = 0; i < numactive; ++i) {
   1695             sp<Track> track = mActiveTracks[i].promote();
   1696             if (track != 0 && mTracks.indexOf(track) < 0) {
   1697                 track->dump(buffer, SIZE, true);
   1698                 result.append(buffer);
   1699             }
   1700         }
   1701     }
   1702 
   1703     write(fd, result.string(), result.size());
   1704 }
   1705 
   1706 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
   1707 {
   1708     dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
   1709 
   1710     dumpBase(fd, args);
   1711 
   1712     dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
   1713     dprintf(fd, "  Last write occurred (msecs): %llu\n",
   1714             (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
   1715     dprintf(fd, "  Total writes: %d\n", mNumWrites);
   1716     dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
   1717     dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
   1718     dprintf(fd, "  Suspend count: %d\n", mSuspended);
   1719     dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
   1720     dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
   1721     dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
   1722     dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
   1723     dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
   1724     AudioStreamOut *output = mOutput;
   1725     audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
   1726     String8 flagsAsString = outputFlagsToString(flags);
   1727     dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
   1728 }
   1729 
   1730 // Thread virtuals
   1731 
   1732 void AudioFlinger::PlaybackThread::onFirstRef()
   1733 {
   1734     run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
   1735 }
   1736 
   1737 // ThreadBase virtuals
   1738 void AudioFlinger::PlaybackThread::preExit()
   1739 {
   1740     ALOGV("  preExit()");
   1741     // FIXME this is using hard-coded strings but in the future, this functionality will be
   1742     //       converted to use audio HAL extensions required to support tunneling
   1743     mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
   1744 }
   1745 
   1746 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
   1747 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
   1748         const sp<AudioFlinger::Client>& client,
   1749         audio_stream_type_t streamType,
   1750         uint32_t sampleRate,
   1751         audio_format_t format,
   1752         audio_channel_mask_t channelMask,
   1753         size_t *pFrameCount,
   1754         const sp<IMemory>& sharedBuffer,
   1755         audio_session_t sessionId,
   1756         IAudioFlinger::track_flags_t *flags,
   1757         pid_t tid,
   1758         int uid,
   1759         status_t *status)
   1760 {
   1761     size_t frameCount = *pFrameCount;
   1762     sp<Track> track;
   1763     status_t lStatus;
   1764 
   1765     // client expresses a preference for FAST, but we get the final say
   1766     if (*flags & IAudioFlinger::TRACK_FAST) {
   1767       if (
   1768             // PCM data
   1769             audio_is_linear_pcm(format) &&
   1770             // TODO: extract as a data library function that checks that a computationally
   1771             // expensive downmixer is not required: isFastOutputChannelConversion()
   1772             (channelMask == mChannelMask ||
   1773                     mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
   1774                     (channelMask == AUDIO_CHANNEL_OUT_MONO
   1775                             /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
   1776             // hardware sample rate
   1777             (sampleRate == mSampleRate) &&
   1778             // normal mixer has an associated fast mixer
   1779             hasFastMixer() &&
   1780             // there are sufficient fast track slots available
   1781             (mFastTrackAvailMask != 0)
   1782             // FIXME test that MixerThread for this fast track has a capable output HAL
   1783             // FIXME add a permission test also?
   1784         ) {
   1785         // static tracks can have any nonzero framecount, streaming tracks check against minimum.
   1786         if (sharedBuffer == 0) {
   1787             // read the fast track multiplier property the first time it is needed
   1788             int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
   1789             if (ok != 0) {
   1790                 ALOGE("%s pthread_once failed: %d", __func__, ok);
   1791             }
   1792             frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
   1793         }
   1794         ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
   1795                 frameCount, mFrameCount);
   1796       } else {
   1797         ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
   1798                 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
   1799                 "sampleRate=%u mSampleRate=%u "
   1800                 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
   1801                 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
   1802                 audio_is_linear_pcm(format),
   1803                 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
   1804         *flags &= ~IAudioFlinger::TRACK_FAST;
   1805       }
   1806     }
   1807     // For normal PCM streaming tracks, update minimum frame count.
   1808     // For compatibility with AudioTrack calculation, buffer depth is forced
   1809     // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
   1810     // This is probably too conservative, but legacy application code may depend on it.
   1811     // If you change this calculation, also review the start threshold which is related.
   1812     if (!(*flags & IAudioFlinger::TRACK_FAST)
   1813             && audio_has_proportional_frames(format) && sharedBuffer == 0) {
   1814         // this must match AudioTrack.cpp calculateMinFrameCount().
   1815         // TODO: Move to a common library
   1816         uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
   1817         uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
   1818         if (minBufCount < 2) {
   1819             minBufCount = 2;
   1820         }
   1821         // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
   1822         // or the client should compute and pass in a larger buffer request.
   1823         size_t minFrameCount =
   1824                 minBufCount * sourceFramesNeededWithTimestretch(
   1825                         sampleRate, mNormalFrameCount,
   1826                         mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
   1827         if (frameCount < minFrameCount) { // including frameCount == 0
   1828             frameCount = minFrameCount;
   1829         }
   1830     }
   1831     *pFrameCount = frameCount;
   1832 
   1833     switch (mType) {
   1834 
   1835     case DIRECT:
   1836         if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
   1837             if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
   1838                 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
   1839                         "for output %p with format %#x",
   1840                         sampleRate, format, channelMask, mOutput, mFormat);
   1841                 lStatus = BAD_VALUE;
   1842                 goto Exit;
   1843             }
   1844         }
   1845         break;
   1846 
   1847     case OFFLOAD:
   1848         if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
   1849             ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
   1850                     "for output %p with format %#x",
   1851                     sampleRate, format, channelMask, mOutput, mFormat);
   1852             lStatus = BAD_VALUE;
   1853             goto Exit;
   1854         }
   1855         break;
   1856 
   1857     default:
   1858         if (!audio_is_linear_pcm(format)) {
   1859                 ALOGE("createTrack_l() Bad parameter: format %#x \""
   1860                         "for output %p with format %#x",
   1861                         format, mOutput, mFormat);
   1862                 lStatus = BAD_VALUE;
   1863                 goto Exit;
   1864         }
   1865         if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
   1866             ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
   1867             lStatus = BAD_VALUE;
   1868             goto Exit;
   1869         }
   1870         break;
   1871 
   1872     }
   1873 
   1874     lStatus = initCheck();
   1875     if (lStatus != NO_ERROR) {
   1876         ALOGE("createTrack_l() audio driver not initialized");
   1877         goto Exit;
   1878     }
   1879 
   1880     { // scope for mLock
   1881         Mutex::Autolock _l(mLock);
   1882 
   1883         // all tracks in same audio session must share the same routing strategy otherwise
   1884         // conflicts will happen when tracks are moved from one output to another by audio policy
   1885         // manager
   1886         uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
   1887         for (size_t i = 0; i < mTracks.size(); ++i) {
   1888             sp<Track> t = mTracks[i];
   1889             if (t != 0 && t->isExternalTrack()) {
   1890                 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
   1891                 if (sessionId == t->sessionId() && strategy != actual) {
   1892                     ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
   1893                             strategy, actual);
   1894                     lStatus = BAD_VALUE;
   1895                     goto Exit;
   1896                 }
   1897             }
   1898         }
   1899 
   1900         track = new Track(this, client, streamType, sampleRate, format,
   1901                           channelMask, frameCount, NULL, sharedBuffer,
   1902                           sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
   1903 
   1904         lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
   1905         if (lStatus != NO_ERROR) {
   1906             ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
   1907             // track must be cleared from the caller as the caller has the AF lock
   1908             goto Exit;
   1909         }
   1910         mTracks.add(track);
   1911 
   1912         sp<EffectChain> chain = getEffectChain_l(sessionId);
   1913         if (chain != 0) {
   1914             ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
   1915             track->setMainBuffer(chain->inBuffer());
   1916             chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
   1917             chain->incTrackCnt();
   1918         }
   1919 
   1920         if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
   1921             pid_t callingPid = IPCThreadState::self()->getCallingPid();
   1922             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
   1923             // so ask activity manager to do this on our behalf
   1924             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
   1925         }
   1926     }
   1927 
   1928     lStatus = NO_ERROR;
   1929 
   1930 Exit:
   1931     *status = lStatus;
   1932     return track;
   1933 }
   1934 
   1935 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
   1936 {
   1937     return latency;
   1938 }
   1939 
   1940 uint32_t AudioFlinger::PlaybackThread::latency() const
   1941 {
   1942     Mutex::Autolock _l(mLock);
   1943     return latency_l();
   1944 }
   1945 uint32_t AudioFlinger::PlaybackThread::latency_l() const
   1946 {
   1947     if (initCheck() == NO_ERROR) {
   1948         return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
   1949     } else {
   1950         return 0;
   1951     }
   1952 }
   1953 
   1954 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
   1955 {
   1956     Mutex::Autolock _l(mLock);
   1957     // Don't apply master volume in SW if our HAL can do it for us.
   1958     if (mOutput && mOutput->audioHwDev &&
   1959         mOutput->audioHwDev->canSetMasterVolume()) {
   1960         mMasterVolume = 1.0;
   1961     } else {
   1962         mMasterVolume = value;
   1963     }
   1964 }
   1965 
   1966 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
   1967 {
   1968     Mutex::Autolock _l(mLock);
   1969     // Don't apply master mute in SW if our HAL can do it for us.
   1970     if (mOutput && mOutput->audioHwDev &&
   1971         mOutput->audioHwDev->canSetMasterMute()) {
   1972         mMasterMute = false;
   1973     } else {
   1974         mMasterMute = muted;
   1975     }
   1976 }
   1977 
   1978 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
   1979 {
   1980     Mutex::Autolock _l(mLock);
   1981     mStreamTypes[stream].volume = value;
   1982     broadcast_l();
   1983 }
   1984 
   1985 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
   1986 {
   1987     Mutex::Autolock _l(mLock);
   1988     mStreamTypes[stream].mute = muted;
   1989     broadcast_l();
   1990 }
   1991 
   1992 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
   1993 {
   1994     Mutex::Autolock _l(mLock);
   1995     return mStreamTypes[stream].volume;
   1996 }
   1997 
   1998 // addTrack_l() must be called with ThreadBase::mLock held
   1999 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
   2000 {
   2001     status_t status = ALREADY_EXISTS;
   2002 
   2003     if (mActiveTracks.indexOf(track) < 0) {
   2004         // the track is newly added, make sure it fills up all its
   2005         // buffers before playing. This is to ensure the client will
   2006         // effectively get the latency it requested.
   2007         if (track->isExternalTrack()) {
   2008             TrackBase::track_state state = track->mState;
   2009             mLock.unlock();
   2010             status = AudioSystem::startOutput(mId, track->streamType(),
   2011                                               track->sessionId());
   2012             mLock.lock();
   2013             // abort track was stopped/paused while we released the lock
   2014             if (state != track->mState) {
   2015                 if (status == NO_ERROR) {
   2016                     mLock.unlock();
   2017                     AudioSystem::stopOutput(mId, track->streamType(),
   2018                                             track->sessionId());
   2019                     mLock.lock();
   2020                 }
   2021                 return INVALID_OPERATION;
   2022             }
   2023             // abort if start is rejected by audio policy manager
   2024             if (status != NO_ERROR) {
   2025                 return PERMISSION_DENIED;
   2026             }
   2027 #ifdef ADD_BATTERY_DATA
   2028             // to track the speaker usage
   2029             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
   2030 #endif
   2031         }
   2032 
   2033         // set retry count for buffer fill
   2034         if (track->isOffloaded()) {
   2035             if (track->isStopping_1()) {
   2036                 track->mRetryCount = kMaxTrackStopRetriesOffload;
   2037             } else {
   2038                 track->mRetryCount = kMaxTrackStartupRetriesOffload;
   2039             }
   2040             track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
   2041         } else {
   2042             track->mRetryCount = kMaxTrackStartupRetries;
   2043             track->mFillingUpStatus =
   2044                     track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
   2045         }
   2046 
   2047         track->mResetDone = false;
   2048         track->mPresentationCompleteFrames = 0;
   2049         mActiveTracks.add(track);
   2050         mWakeLockUids.add(track->uid());
   2051         mActiveTracksGeneration++;
   2052         mLatestActiveTrack = track;
   2053         sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   2054         if (chain != 0) {
   2055             ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
   2056                     track->sessionId());
   2057             chain->incActiveTrackCnt();
   2058         }
   2059 
   2060         status = NO_ERROR;
   2061     }
   2062 
   2063     onAddNewTrack_l();
   2064     return status;
   2065 }
   2066 
   2067 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
   2068 {
   2069     track->terminate();
   2070     // active tracks are removed by threadLoop()
   2071     bool trackActive = (mActiveTracks.indexOf(track) >= 0);
   2072     track->mState = TrackBase::STOPPED;
   2073     if (!trackActive) {
   2074         removeTrack_l(track);
   2075     } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
   2076         track->mState = TrackBase::STOPPING_1;
   2077     }
   2078 
   2079     return trackActive;
   2080 }
   2081 
   2082 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
   2083 {
   2084     track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
   2085     mTracks.remove(track);
   2086     deleteTrackName_l(track->name());
   2087     // redundant as track is about to be destroyed, for dumpsys only
   2088     track->mName = -1;
   2089     if (track->isFastTrack()) {
   2090         int index = track->mFastIndex;
   2091         ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
   2092         ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
   2093         mFastTrackAvailMask |= 1 << index;
   2094         // redundant as track is about to be destroyed, for dumpsys only
   2095         track->mFastIndex = -1;
   2096     }
   2097     sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   2098     if (chain != 0) {
   2099         chain->decTrackCnt();
   2100     }
   2101 }
   2102 
   2103 void AudioFlinger::PlaybackThread::broadcast_l()
   2104 {
   2105     // Thread could be blocked waiting for async
   2106     // so signal it to handle state changes immediately
   2107     // If threadLoop is currently unlocked a signal of mWaitWorkCV will
   2108     // be lost so we also flag to prevent it blocking on mWaitWorkCV
   2109     mSignalPending = true;
   2110     mWaitWorkCV.broadcast();
   2111 }
   2112 
   2113 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
   2114 {
   2115     Mutex::Autolock _l(mLock);
   2116     if (initCheck() != NO_ERROR) {
   2117         return String8();
   2118     }
   2119 
   2120     char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
   2121     const String8 out_s8(s);
   2122     free(s);
   2123     return out_s8;
   2124 }
   2125 
   2126 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
   2127     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
   2128     ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
   2129 
   2130     desc->mIoHandle = mId;
   2131 
   2132     switch (event) {
   2133     case AUDIO_OUTPUT_OPENED:
   2134     case AUDIO_OUTPUT_CONFIG_CHANGED:
   2135         desc->mPatch = mPatch;
   2136         desc->mChannelMask = mChannelMask;
   2137         desc->mSamplingRate = mSampleRate;
   2138         desc->mFormat = mFormat;
   2139         desc->mFrameCount = mNormalFrameCount; // FIXME see
   2140                                              // AudioFlinger::frameCount(audio_io_handle_t)
   2141         desc->mFrameCountHAL = mFrameCount;
   2142         desc->mLatency = latency_l();
   2143         break;
   2144 
   2145     case AUDIO_OUTPUT_CLOSED:
   2146     default:
   2147         break;
   2148     }
   2149     mAudioFlinger->ioConfigChanged(event, desc, pid);
   2150 }
   2151 
   2152 void AudioFlinger::PlaybackThread::writeCallback()
   2153 {
   2154     ALOG_ASSERT(mCallbackThread != 0);
   2155     mCallbackThread->resetWriteBlocked();
   2156 }
   2157 
   2158 void AudioFlinger::PlaybackThread::drainCallback()
   2159 {
   2160     ALOG_ASSERT(mCallbackThread != 0);
   2161     mCallbackThread->resetDraining();
   2162 }
   2163 
   2164 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
   2165 {
   2166     Mutex::Autolock _l(mLock);
   2167     // reject out of sequence requests
   2168     if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
   2169         mWriteAckSequence &= ~1;
   2170         mWaitWorkCV.signal();
   2171     }
   2172 }
   2173 
   2174 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
   2175 {
   2176     Mutex::Autolock _l(mLock);
   2177     // reject out of sequence requests
   2178     if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
   2179         mDrainSequence &= ~1;
   2180         mWaitWorkCV.signal();
   2181     }
   2182 }
   2183 
   2184 // static
   2185 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
   2186                                                 void *param __unused,
   2187                                                 void *cookie)
   2188 {
   2189     AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
   2190     ALOGV("asyncCallback() event %d", event);
   2191     switch (event) {
   2192     case STREAM_CBK_EVENT_WRITE_READY:
   2193         me->writeCallback();
   2194         break;
   2195     case STREAM_CBK_EVENT_DRAIN_READY:
   2196         me->drainCallback();
   2197         break;
   2198     default:
   2199         ALOGW("asyncCallback() unknown event %d", event);
   2200         break;
   2201     }
   2202     return 0;
   2203 }
   2204 
   2205 void AudioFlinger::PlaybackThread::readOutputParameters_l()
   2206 {
   2207     // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
   2208     mSampleRate = mOutput->getSampleRate();
   2209     mChannelMask = mOutput->getChannelMask();
   2210     if (!audio_is_output_channel(mChannelMask)) {
   2211         LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
   2212     }
   2213     if ((mType == MIXER || mType == DUPLICATING)
   2214             && !isValidPcmSinkChannelMask(mChannelMask)) {
   2215         LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
   2216                 mChannelMask);
   2217     }
   2218     mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
   2219 
   2220     // Get actual HAL format.
   2221     mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
   2222     // Get format from the shim, which will be different than the HAL format
   2223     // if playing compressed audio over HDMI passthrough.
   2224     mFormat = mOutput->getFormat();
   2225     if (!audio_is_valid_format(mFormat)) {
   2226         LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
   2227     }
   2228     if ((mType == MIXER || mType == DUPLICATING)
   2229             && !isValidPcmSinkFormat(mFormat)) {
   2230         LOG_FATAL("HAL format %#x not supported for mixed output",
   2231                 mFormat);
   2232     }
   2233     mFrameSize = mOutput->getFrameSize();
   2234     mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
   2235     mFrameCount = mBufferSize / mFrameSize;
   2236     if (mFrameCount & 15) {
   2237         ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
   2238                 mFrameCount);
   2239     }
   2240 
   2241     if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
   2242             (mOutput->stream->set_callback != NULL)) {
   2243         if (mOutput->stream->set_callback(mOutput->stream,
   2244                                       AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
   2245             mUseAsyncWrite = true;
   2246             mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
   2247         }
   2248     }
   2249 
   2250     mHwSupportsPause = false;
   2251     if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
   2252         if (mOutput->stream->pause != NULL) {
   2253             if (mOutput->stream->resume != NULL) {
   2254                 mHwSupportsPause = true;
   2255             } else {
   2256                 ALOGW("direct output implements pause but not resume");
   2257             }
   2258         } else if (mOutput->stream->resume != NULL) {
   2259             ALOGW("direct output implements resume but not pause");
   2260         }
   2261     }
   2262     if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
   2263         LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
   2264     }
   2265 
   2266     if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
   2267         // For best precision, we use float instead of the associated output
   2268         // device format (typically PCM 16 bit).
   2269 
   2270         mFormat = AUDIO_FORMAT_PCM_FLOAT;
   2271         mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
   2272         mBufferSize = mFrameSize * mFrameCount;
   2273 
   2274         // TODO: We currently use the associated output device channel mask and sample rate.
   2275         // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
   2276         // (if a valid mask) to avoid premature downmix.
   2277         // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
   2278         // instead of the output device sample rate to avoid loss of high frequency information.
   2279         // This may need to be updated as MixerThread/OutputTracks are added and not here.
   2280     }
   2281 
   2282     // Calculate size of normal sink buffer relative to the HAL output buffer size
   2283     double multiplier = 1.0;
   2284     if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
   2285             kUseFastMixer == FastMixer_Dynamic)) {
   2286         size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
   2287         size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
   2288         // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
   2289         minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
   2290         maxNormalFrameCount = maxNormalFrameCount & ~15;
   2291         if (maxNormalFrameCount < minNormalFrameCount) {
   2292             maxNormalFrameCount = minNormalFrameCount;
   2293         }
   2294         multiplier = (double) minNormalFrameCount / (double) mFrameCount;
   2295         if (multiplier <= 1.0) {
   2296             multiplier = 1.0;
   2297         } else if (multiplier <= 2.0) {
   2298             if (2 * mFrameCount <= maxNormalFrameCount) {
   2299                 multiplier = 2.0;
   2300             } else {
   2301                 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
   2302             }
   2303         } else {
   2304             // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
   2305             // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
   2306             // track, but we sometimes have to do this to satisfy the maximum frame count
   2307             // constraint)
   2308             // FIXME this rounding up should not be done if no HAL SRC
   2309             uint32_t truncMult = (uint32_t) multiplier;
   2310             if ((truncMult & 1)) {
   2311                 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
   2312                     ++truncMult;
   2313                 }
   2314             }
   2315             multiplier = (double) truncMult;
   2316         }
   2317     }
   2318     mNormalFrameCount = multiplier * mFrameCount;
   2319     // round up to nearest 16 frames to satisfy AudioMixer
   2320     if (mType == MIXER || mType == DUPLICATING) {
   2321         mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
   2322     }
   2323     ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
   2324             mNormalFrameCount);
   2325 
   2326     // Check if we want to throttle the processing to no more than 2x normal rate
   2327     mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
   2328     mThreadThrottleTimeMs = 0;
   2329     mThreadThrottleEndMs = 0;
   2330     mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
   2331 
   2332     // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
   2333     // Originally this was int16_t[] array, need to remove legacy implications.
   2334     free(mSinkBuffer);
   2335     mSinkBuffer = NULL;
   2336     // For sink buffer size, we use the frame size from the downstream sink to avoid problems
   2337     // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
   2338     const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
   2339     (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
   2340 
   2341     // We resize the mMixerBuffer according to the requirements of the sink buffer which
   2342     // drives the output.
   2343     free(mMixerBuffer);
   2344     mMixerBuffer = NULL;
   2345     if (mMixerBufferEnabled) {
   2346         mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
   2347         mMixerBufferSize = mNormalFrameCount * mChannelCount
   2348                 * audio_bytes_per_sample(mMixerBufferFormat);
   2349         (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
   2350     }
   2351     free(mEffectBuffer);
   2352     mEffectBuffer = NULL;
   2353     if (mEffectBufferEnabled) {
   2354         mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
   2355         mEffectBufferSize = mNormalFrameCount * mChannelCount
   2356                 * audio_bytes_per_sample(mEffectBufferFormat);
   2357         (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
   2358     }
   2359 
   2360     // force reconfiguration of effect chains and engines to take new buffer size and audio
   2361     // parameters into account
   2362     // Note that mLock is not held when readOutputParameters_l() is called from the constructor
   2363     // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
   2364     // matter.
   2365     // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
   2366     Vector< sp<EffectChain> > effectChains = mEffectChains;
   2367     for (size_t i = 0; i < effectChains.size(); i ++) {
   2368         mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
   2369     }
   2370 }
   2371 
   2372 
   2373 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
   2374 {
   2375     if (halFrames == NULL || dspFrames == NULL) {
   2376         return BAD_VALUE;
   2377     }
   2378     Mutex::Autolock _l(mLock);
   2379     if (initCheck() != NO_ERROR) {
   2380         return INVALID_OPERATION;
   2381     }
   2382     int64_t framesWritten = mBytesWritten / mFrameSize;
   2383     *halFrames = framesWritten;
   2384 
   2385     if (isSuspended()) {
   2386         // return an estimation of rendered frames when the output is suspended
   2387         size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
   2388         *dspFrames = (uint32_t)
   2389                 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
   2390         return NO_ERROR;
   2391     } else {
   2392         status_t status;
   2393         uint32_t frames;
   2394         status = mOutput->getRenderPosition(&frames);
   2395         *dspFrames = (size_t)frames;
   2396         return status;
   2397     }
   2398 }
   2399 
   2400 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(audio_session_t sessionId) const
   2401 {
   2402     Mutex::Autolock _l(mLock);
   2403     uint32_t result = 0;
   2404     if (getEffectChain_l(sessionId) != 0) {
   2405         result = EFFECT_SESSION;
   2406     }
   2407 
   2408     for (size_t i = 0; i < mTracks.size(); ++i) {
   2409         sp<Track> track = mTracks[i];
   2410         if (sessionId == track->sessionId() && !track->isInvalid()) {
   2411             result |= TRACK_SESSION;
   2412             break;
   2413         }
   2414     }
   2415 
   2416     return result;
   2417 }
   2418 
   2419 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
   2420 {
   2421     // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
   2422     // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
   2423     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
   2424         return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
   2425     }
   2426     for (size_t i = 0; i < mTracks.size(); i++) {
   2427         sp<Track> track = mTracks[i];
   2428         if (sessionId == track->sessionId() && !track->isInvalid()) {
   2429             return AudioSystem::getStrategyForStream(track->streamType());
   2430         }
   2431     }
   2432     return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
   2433 }
   2434 
   2435 
   2436 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
   2437 {
   2438     Mutex::Autolock _l(mLock);
   2439     return mOutput;
   2440 }
   2441 
   2442 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
   2443 {
   2444     Mutex::Autolock _l(mLock);
   2445     AudioStreamOut *output = mOutput;
   2446     mOutput = NULL;
   2447     // FIXME FastMixer might also have a raw ptr to mOutputSink;
   2448     //       must push a NULL and wait for ack
   2449     mOutputSink.clear();
   2450     mPipeSink.clear();
   2451     mNormalSink.clear();
   2452     return output;
   2453 }
   2454 
   2455 // this method must always be called either with ThreadBase mLock held or inside the thread loop
   2456 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
   2457 {
   2458     if (mOutput == NULL) {
   2459         return NULL;
   2460     }
   2461     return &mOutput->stream->common;
   2462 }
   2463 
   2464 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
   2465 {
   2466     return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
   2467 }
   2468 
   2469 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
   2470 {
   2471     if (!isValidSyncEvent(event)) {
   2472         return BAD_VALUE;
   2473     }
   2474 
   2475     Mutex::Autolock _l(mLock);
   2476 
   2477     for (size_t i = 0; i < mTracks.size(); ++i) {
   2478         sp<Track> track = mTracks[i];
   2479         if (event->triggerSession() == track->sessionId()) {
   2480             (void) track->setSyncEvent(event);
   2481             return NO_ERROR;
   2482         }
   2483     }
   2484 
   2485     return NAME_NOT_FOUND;
   2486 }
   2487 
   2488 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
   2489 {
   2490     return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
   2491 }
   2492 
   2493 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
   2494         const Vector< sp<Track> >& tracksToRemove)
   2495 {
   2496     size_t count = tracksToRemove.size();
   2497     if (count > 0) {
   2498         for (size_t i = 0 ; i < count ; i++) {
   2499             const sp<Track>& track = tracksToRemove.itemAt(i);
   2500             if (track->isExternalTrack()) {
   2501                 AudioSystem::stopOutput(mId, track->streamType(),
   2502                                         track->sessionId());
   2503 #ifdef ADD_BATTERY_DATA
   2504                 // to track the speaker usage
   2505                 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
   2506 #endif
   2507                 if (track->isTerminated()) {
   2508                     AudioSystem::releaseOutput(mId, track->streamType(),
   2509                                                track->sessionId());
   2510                 }
   2511             }
   2512         }
   2513     }
   2514 }
   2515 
   2516 void AudioFlinger::PlaybackThread::checkSilentMode_l()
   2517 {
   2518     if (!mMasterMute) {
   2519         char value[PROPERTY_VALUE_MAX];
   2520         if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
   2521             ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
   2522             return;
   2523         }
   2524         if (property_get("ro.audio.silent", value, "0") > 0) {
   2525             char *endptr;
   2526             unsigned long ul = strtoul(value, &endptr, 0);
   2527             if (*endptr == '\0' && ul != 0) {
   2528                 ALOGD("Silence is golden");
   2529                 // The setprop command will not allow a property to be changed after
   2530                 // the first time it is set, so we don't have to worry about un-muting.
   2531                 setMasterMute_l(true);
   2532             }
   2533         }
   2534     }
   2535 }
   2536 
   2537 // shared by MIXER and DIRECT, overridden by DUPLICATING
   2538 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
   2539 {
   2540     mInWrite = true;
   2541     ssize_t bytesWritten;
   2542     const size_t offset = mCurrentWriteLength - mBytesRemaining;
   2543 
   2544     // If an NBAIO sink is present, use it to write the normal mixer's submix
   2545     if (mNormalSink != 0) {
   2546 
   2547         const size_t count = mBytesRemaining / mFrameSize;
   2548 
   2549         ATRACE_BEGIN("write");
   2550         // update the setpoint when AudioFlinger::mScreenState changes
   2551         uint32_t screenState = AudioFlinger::mScreenState;
   2552         if (screenState != mScreenState) {
   2553             mScreenState = screenState;
   2554             MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
   2555             if (pipe != NULL) {
   2556                 pipe->setAvgFrames((mScreenState & 1) ?
   2557                         (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
   2558             }
   2559         }
   2560         ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
   2561         ATRACE_END();
   2562         if (framesWritten > 0) {
   2563             bytesWritten = framesWritten * mFrameSize;
   2564         } else {
   2565             bytesWritten = framesWritten;
   2566         }
   2567     // otherwise use the HAL / AudioStreamOut directly
   2568     } else {
   2569         // Direct output and offload threads
   2570 
   2571         if (mUseAsyncWrite) {
   2572             ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
   2573             mWriteAckSequence += 2;
   2574             mWriteAckSequence |= 1;
   2575             ALOG_ASSERT(mCallbackThread != 0);
   2576             mCallbackThread->setWriteBlocked(mWriteAckSequence);
   2577         }
   2578         // FIXME We should have an implementation of timestamps for direct output threads.
   2579         // They are used e.g for multichannel PCM playback over HDMI.
   2580         bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
   2581 
   2582         if (mUseAsyncWrite &&
   2583                 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
   2584             // do not wait for async callback in case of error of full write
   2585             mWriteAckSequence &= ~1;
   2586             ALOG_ASSERT(mCallbackThread != 0);
   2587             mCallbackThread->setWriteBlocked(mWriteAckSequence);
   2588         }
   2589     }
   2590 
   2591     mNumWrites++;
   2592     mInWrite = false;
   2593     mStandby = false;
   2594     return bytesWritten;
   2595 }
   2596 
   2597 void AudioFlinger::PlaybackThread::threadLoop_drain()
   2598 {
   2599     if (mOutput->stream->drain) {
   2600         ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
   2601         if (mUseAsyncWrite) {
   2602             ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
   2603             mDrainSequence |= 1;
   2604             ALOG_ASSERT(mCallbackThread != 0);
   2605             mCallbackThread->setDraining(mDrainSequence);
   2606         }
   2607         mOutput->stream->drain(mOutput->stream,
   2608             (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
   2609                                                 : AUDIO_DRAIN_ALL);
   2610     }
   2611 }
   2612 
   2613 void AudioFlinger::PlaybackThread::threadLoop_exit()
   2614 {
   2615     {
   2616         Mutex::Autolock _l(mLock);
   2617         for (size_t i = 0; i < mTracks.size(); i++) {
   2618             sp<Track> track = mTracks[i];
   2619             track->invalidate();
   2620         }
   2621     }
   2622 }
   2623 
   2624 /*
   2625 The derived values that are cached:
   2626  - mSinkBufferSize from frame count * frame size
   2627  - mActiveSleepTimeUs from activeSleepTimeUs()
   2628  - mIdleSleepTimeUs from idleSleepTimeUs()
   2629  - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
   2630    kDefaultStandbyTimeInNsecs when connected to an A2DP device.
   2631  - maxPeriod from frame count and sample rate (MIXER only)
   2632 
   2633 The parameters that affect these derived values are:
   2634  - frame count
   2635  - frame size
   2636  - sample rate
   2637  - device type: A2DP or not
   2638  - device latency
   2639  - format: PCM or not
   2640  - active sleep time
   2641  - idle sleep time
   2642 */
   2643 
   2644 void AudioFlinger::PlaybackThread::cacheParameters_l()
   2645 {
   2646     mSinkBufferSize = mNormalFrameCount * mFrameSize;
   2647     mActiveSleepTimeUs = activeSleepTimeUs();
   2648     mIdleSleepTimeUs = idleSleepTimeUs();
   2649 
   2650     // make sure standby delay is not too short when connected to an A2DP sink to avoid
   2651     // truncating audio when going to standby.
   2652     mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
   2653     if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
   2654         if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
   2655             mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
   2656         }
   2657     }
   2658 }
   2659 
   2660 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
   2661 {
   2662     ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
   2663             this,  streamType, mTracks.size());
   2664     bool trackMatch = false;
   2665     size_t size = mTracks.size();
   2666     for (size_t i = 0; i < size; i++) {
   2667         sp<Track> t = mTracks[i];
   2668         if (t->streamType() == streamType && t->isExternalTrack()) {
   2669             t->invalidate();
   2670             trackMatch = true;
   2671         }
   2672     }
   2673     return trackMatch;
   2674 }
   2675 
   2676 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
   2677 {
   2678     Mutex::Autolock _l(mLock);
   2679     invalidateTracks_l(streamType);
   2680 }
   2681 
   2682 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
   2683 {
   2684     audio_session_t session = chain->sessionId();
   2685     int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
   2686             ? mEffectBuffer : mSinkBuffer);
   2687     bool ownsBuffer = false;
   2688 
   2689     ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
   2690     if (session > AUDIO_SESSION_OUTPUT_MIX) {
   2691         // Only one effect chain can be present in direct output thread and it uses
   2692         // the sink buffer as input
   2693         if (mType != DIRECT) {
   2694             size_t numSamples = mNormalFrameCount * mChannelCount;
   2695             buffer = new int16_t[numSamples];
   2696             memset(buffer, 0, numSamples * sizeof(int16_t));
   2697             ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
   2698             ownsBuffer = true;
   2699         }
   2700 
   2701         // Attach all tracks with same session ID to this chain.
   2702         for (size_t i = 0; i < mTracks.size(); ++i) {
   2703             sp<Track> track = mTracks[i];
   2704             if (session == track->sessionId()) {
   2705                 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
   2706                         buffer);
   2707                 track->setMainBuffer(buffer);
   2708                 chain->incTrackCnt();
   2709             }
   2710         }
   2711 
   2712         // indicate all active tracks in the chain
   2713         for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
   2714             sp<Track> track = mActiveTracks[i].promote();
   2715             if (track == 0) {
   2716                 continue;
   2717             }
   2718             if (session == track->sessionId()) {
   2719                 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
   2720                 chain->incActiveTrackCnt();
   2721             }
   2722         }
   2723     }
   2724     chain->setThread(this);
   2725     chain->setInBuffer(buffer, ownsBuffer);
   2726     chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
   2727             ? mEffectBuffer : mSinkBuffer));
   2728     // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
   2729     // chains list in order to be processed last as it contains output stage effects.
   2730     // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
   2731     // session AUDIO_SESSION_OUTPUT_STAGE to be processed
   2732     // after track specific effects and before output stage.
   2733     // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
   2734     // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
   2735     // Effect chain for other sessions are inserted at beginning of effect
   2736     // chains list to be processed before output mix effects. Relative order between other
   2737     // sessions is not important.
   2738     static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
   2739             AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
   2740             "audio_session_t constants misdefined");
   2741     size_t size = mEffectChains.size();
   2742     size_t i = 0;
   2743     for (i = 0; i < size; i++) {
   2744         if (mEffectChains[i]->sessionId() < session) {
   2745             break;
   2746         }
   2747     }
   2748     mEffectChains.insertAt(chain, i);
   2749     checkSuspendOnAddEffectChain_l(chain);
   2750 
   2751     return NO_ERROR;
   2752 }
   2753 
   2754 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
   2755 {
   2756     audio_session_t session = chain->sessionId();
   2757 
   2758     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
   2759 
   2760     for (size_t i = 0; i < mEffectChains.size(); i++) {
   2761         if (chain == mEffectChains[i]) {
   2762             mEffectChains.removeAt(i);
   2763             // detach all active tracks from the chain
   2764             for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
   2765                 sp<Track> track = mActiveTracks[i].promote();
   2766                 if (track == 0) {
   2767                     continue;
   2768                 }
   2769                 if (session == track->sessionId()) {
   2770                     ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
   2771                             chain.get(), session);
   2772                     chain->decActiveTrackCnt();
   2773                 }
   2774             }
   2775 
   2776             // detach all tracks with same session ID from this chain
   2777             for (size_t i = 0; i < mTracks.size(); ++i) {
   2778                 sp<Track> track = mTracks[i];
   2779                 if (session == track->sessionId()) {
   2780                     track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
   2781                     chain->decTrackCnt();
   2782                 }
   2783             }
   2784             break;
   2785         }
   2786     }
   2787     return mEffectChains.size();
   2788 }
   2789 
   2790 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
   2791         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
   2792 {
   2793     Mutex::Autolock _l(mLock);
   2794     return attachAuxEffect_l(track, EffectId);
   2795 }
   2796 
   2797 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
   2798         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
   2799 {
   2800     status_t status = NO_ERROR;
   2801 
   2802     if (EffectId == 0) {
   2803         track->setAuxBuffer(0, NULL);
   2804     } else {
   2805         // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
   2806         sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
   2807         if (effect != 0) {
   2808             if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
   2809                 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
   2810             } else {
   2811                 status = INVALID_OPERATION;
   2812             }
   2813         } else {
   2814             status = BAD_VALUE;
   2815         }
   2816     }
   2817     return status;
   2818 }
   2819 
   2820 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
   2821 {
   2822     for (size_t i = 0; i < mTracks.size(); ++i) {
   2823         sp<Track> track = mTracks[i];
   2824         if (track->auxEffectId() == effectId) {
   2825             attachAuxEffect_l(track, 0);
   2826         }
   2827     }
   2828 }
   2829 
   2830 bool AudioFlinger::PlaybackThread::threadLoop()
   2831 {
   2832     Vector< sp<Track> > tracksToRemove;
   2833 
   2834     mStandbyTimeNs = systemTime();
   2835     nsecs_t lastWriteFinished = -1; // time last server write completed
   2836     int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
   2837 
   2838     // MIXER
   2839     nsecs_t lastWarning = 0;
   2840 
   2841     // DUPLICATING
   2842     // FIXME could this be made local to while loop?
   2843     writeFrames = 0;
   2844 
   2845     int lastGeneration = 0;
   2846 
   2847     cacheParameters_l();
   2848     mSleepTimeUs = mIdleSleepTimeUs;
   2849 
   2850     if (mType == MIXER) {
   2851         sleepTimeShift = 0;
   2852     }
   2853 
   2854     CpuStats cpuStats;
   2855     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
   2856 
   2857     acquireWakeLock();
   2858 
   2859     // mNBLogWriter->log can only be called while thread mutex mLock is held.
   2860     // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
   2861     // and then that string will be logged at the next convenient opportunity.
   2862     const char *logString = NULL;
   2863 
   2864     checkSilentMode_l();
   2865 
   2866     while (!exitPending())
   2867     {
   2868         cpuStats.sample(myName);
   2869 
   2870         Vector< sp<EffectChain> > effectChains;
   2871 
   2872         { // scope for mLock
   2873 
   2874             Mutex::Autolock _l(mLock);
   2875 
   2876             processConfigEvents_l();
   2877 
   2878             if (logString != NULL) {
   2879                 mNBLogWriter->logTimestamp();
   2880                 mNBLogWriter->log(logString);
   2881                 logString = NULL;
   2882             }
   2883 
   2884             // Gather the framesReleased counters for all active tracks,
   2885             // and associate with the sink frames written out.  We need
   2886             // this to convert the sink timestamp to the track timestamp.
   2887             bool kernelLocationUpdate = false;
   2888             if (mNormalSink != 0) {
   2889                 // Note: The DuplicatingThread may not have a mNormalSink.
   2890                 // We always fetch the timestamp here because often the downstream
   2891                 // sink will block while writing.
   2892                 ExtendedTimestamp timestamp; // use private copy to fetch
   2893                 (void) mNormalSink->getTimestamp(timestamp);
   2894 
   2895                 // We keep track of the last valid kernel position in case we are in underrun
   2896                 // and the normal mixer period is the same as the fast mixer period, or there
   2897                 // is some error from the HAL.
   2898                 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
   2899                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
   2900                             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
   2901                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
   2902                             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
   2903 
   2904                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
   2905                             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
   2906                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
   2907                             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
   2908                 }
   2909 
   2910                 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
   2911                     kernelLocationUpdate = true;
   2912                 } else {
   2913                     ALOGV("getTimestamp error - no valid kernel position");
   2914                 }
   2915 
   2916                 // copy over kernel info
   2917                 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
   2918                         timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
   2919                 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
   2920                         timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
   2921             }
   2922             // mFramesWritten for non-offloaded tracks are contiguous
   2923             // even after standby() is called. This is useful for the track frame
   2924             // to sink frame mapping.
   2925             bool serverLocationUpdate = false;
   2926             if (mFramesWritten != lastFramesWritten) {
   2927                 serverLocationUpdate = true;
   2928                 lastFramesWritten = mFramesWritten;
   2929             }
   2930             // Only update timestamps if there is a meaningful change.
   2931             // Either the kernel timestamp must be valid or we have written something.
   2932             if (kernelLocationUpdate || serverLocationUpdate) {
   2933                 if (serverLocationUpdate) {
   2934                     // use the time before we called the HAL write - it is a bit more accurate
   2935                     // to when the server last read data than the current time here.
   2936                     //
   2937                     // If we haven't written anything, mLastWriteTime will be -1
   2938                     // and we use systemTime().
   2939                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
   2940                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
   2941                             ? systemTime() : mLastWriteTime;
   2942                 }
   2943                 const size_t size = mActiveTracks.size();
   2944                 for (size_t i = 0; i < size; ++i) {
   2945                     sp<Track> t = mActiveTracks[i].promote();
   2946                     if (t != 0 && !t->isFastTrack()) {
   2947                         t->updateTrackFrameInfo(
   2948                                 t->mAudioTrackServerProxy->framesReleased(),
   2949                                 mFramesWritten,
   2950                                 mTimestamp);
   2951                     }
   2952                 }
   2953             }
   2954 
   2955             saveOutputTracks();
   2956             if (mSignalPending) {
   2957                 // A signal was raised while we were unlocked
   2958                 mSignalPending = false;
   2959             } else if (waitingAsyncCallback_l()) {
   2960                 if (exitPending()) {
   2961                     break;
   2962                 }
   2963                 bool released = false;
   2964                 if (!keepWakeLock()) {
   2965                     releaseWakeLock_l();
   2966                     released = true;
   2967                 }
   2968                 mWakeLockUids.clear();
   2969                 mActiveTracksGeneration++;
   2970                 ALOGV("wait async completion");
   2971                 mWaitWorkCV.wait(mLock);
   2972                 ALOGV("async completion/wake");
   2973                 if (released) {
   2974                     acquireWakeLock_l();
   2975                 }
   2976                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   2977                 mSleepTimeUs = 0;
   2978 
   2979                 continue;
   2980             }
   2981             if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
   2982                                    isSuspended()) {
   2983                 // put audio hardware into standby after short delay
   2984                 if (shouldStandby_l()) {
   2985 
   2986                     threadLoop_standby();
   2987 
   2988                     mStandby = true;
   2989                 }
   2990 
   2991                 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
   2992                     // we're about to wait, flush the binder command buffer
   2993                     IPCThreadState::self()->flushCommands();
   2994 
   2995                     clearOutputTracks();
   2996 
   2997                     if (exitPending()) {
   2998                         break;
   2999                     }
   3000 
   3001                     releaseWakeLock_l();
   3002                     mWakeLockUids.clear();
   3003                     mActiveTracksGeneration++;
   3004                     // wait until we have something to do...
   3005                     ALOGV("%s going to sleep", myName.string());
   3006                     mWaitWorkCV.wait(mLock);
   3007                     ALOGV("%s waking up", myName.string());
   3008                     acquireWakeLock_l();
   3009 
   3010                     mMixerStatus = MIXER_IDLE;
   3011                     mMixerStatusIgnoringFastTracks = MIXER_IDLE;
   3012                     mBytesWritten = 0;
   3013                     mBytesRemaining = 0;
   3014                     checkSilentMode_l();
   3015 
   3016                     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   3017                     mSleepTimeUs = mIdleSleepTimeUs;
   3018                     if (mType == MIXER) {
   3019                         sleepTimeShift = 0;
   3020                     }
   3021 
   3022                     continue;
   3023                 }
   3024             }
   3025             // mMixerStatusIgnoringFastTracks is also updated internally
   3026             mMixerStatus = prepareTracks_l(&tracksToRemove);
   3027 
   3028             // compare with previously applied list
   3029             if (lastGeneration != mActiveTracksGeneration) {
   3030                 // update wakelock
   3031                 updateWakeLockUids_l(mWakeLockUids);
   3032                 lastGeneration = mActiveTracksGeneration;
   3033             }
   3034 
   3035             // prevent any changes in effect chain list and in each effect chain
   3036             // during mixing and effect process as the audio buffers could be deleted
   3037             // or modified if an effect is created or deleted
   3038             lockEffectChains_l(effectChains);
   3039         } // mLock scope ends
   3040 
   3041         if (mBytesRemaining == 0) {
   3042             mCurrentWriteLength = 0;
   3043             if (mMixerStatus == MIXER_TRACKS_READY) {
   3044                 // threadLoop_mix() sets mCurrentWriteLength
   3045                 threadLoop_mix();
   3046             } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
   3047                         && (mMixerStatus != MIXER_DRAIN_ALL)) {
   3048                 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
   3049                 // must be written to HAL
   3050                 threadLoop_sleepTime();
   3051                 if (mSleepTimeUs == 0) {
   3052                     mCurrentWriteLength = mSinkBufferSize;
   3053                 }
   3054             }
   3055             // Either threadLoop_mix() or threadLoop_sleepTime() should have set
   3056             // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
   3057             // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
   3058             // or mSinkBuffer (if there are no effects).
   3059             //
   3060             // This is done pre-effects computation; if effects change to
   3061             // support higher precision, this needs to move.
   3062             //
   3063             // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
   3064             // TODO use mSleepTimeUs == 0 as an additional condition.
   3065             if (mMixerBufferValid) {
   3066                 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
   3067                 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
   3068 
   3069                 // mono blend occurs for mixer threads only (not direct or offloaded)
   3070                 // and is handled here if we're going directly to the sink.
   3071                 if (requireMonoBlend() && !mEffectBufferValid) {
   3072                     mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
   3073                                true /*limit*/);
   3074                 }
   3075 
   3076                 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
   3077                         mNormalFrameCount * mChannelCount);
   3078             }
   3079 
   3080             mBytesRemaining = mCurrentWriteLength;
   3081             if (isSuspended()) {
   3082                 mSleepTimeUs = suspendSleepTimeUs();
   3083                 // simulate write to HAL when suspended
   3084                 mBytesWritten += mSinkBufferSize;
   3085                 mFramesWritten += mSinkBufferSize / mFrameSize;
   3086                 mBytesRemaining = 0;
   3087             }
   3088 
   3089             // only process effects if we're going to write
   3090             if (mSleepTimeUs == 0 && mType != OFFLOAD) {
   3091                 for (size_t i = 0; i < effectChains.size(); i ++) {
   3092                     effectChains[i]->process_l();
   3093                 }
   3094             }
   3095         }
   3096         // Process effect chains for offloaded thread even if no audio
   3097         // was read from audio track: process only updates effect state
   3098         // and thus does have to be synchronized with audio writes but may have
   3099         // to be called while waiting for async write callback
   3100         if (mType == OFFLOAD) {
   3101             for (size_t i = 0; i < effectChains.size(); i ++) {
   3102                 effectChains[i]->process_l();
   3103             }
   3104         }
   3105 
   3106         // Only if the Effects buffer is enabled and there is data in the
   3107         // Effects buffer (buffer valid), we need to
   3108         // copy into the sink buffer.
   3109         // TODO use mSleepTimeUs == 0 as an additional condition.
   3110         if (mEffectBufferValid) {
   3111             //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
   3112 
   3113             if (requireMonoBlend()) {
   3114                 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
   3115                            true /*limit*/);
   3116             }
   3117 
   3118             memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
   3119                     mNormalFrameCount * mChannelCount);
   3120         }
   3121 
   3122         // enable changes in effect chain
   3123         unlockEffectChains(effectChains);
   3124 
   3125         if (!waitingAsyncCallback()) {
   3126             // mSleepTimeUs == 0 means we must write to audio hardware
   3127             if (mSleepTimeUs == 0) {
   3128                 ssize_t ret = 0;
   3129                 // We save lastWriteFinished here, as previousLastWriteFinished,
   3130                 // for throttling. On thread start, previousLastWriteFinished will be
   3131                 // set to -1, which properly results in no throttling after the first write.
   3132                 nsecs_t previousLastWriteFinished = lastWriteFinished;
   3133                 nsecs_t delta = 0;
   3134                 if (mBytesRemaining) {
   3135                     // FIXME rewrite to reduce number of system calls
   3136                     mLastWriteTime = systemTime();  // also used for dumpsys
   3137                     ret = threadLoop_write();
   3138                     lastWriteFinished = systemTime();
   3139                     delta = lastWriteFinished - mLastWriteTime;
   3140                     if (ret < 0) {
   3141                         mBytesRemaining = 0;
   3142                     } else {
   3143                         mBytesWritten += ret;
   3144                         mBytesRemaining -= ret;
   3145                         mFramesWritten += ret / mFrameSize;
   3146                     }
   3147                 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
   3148                         (mMixerStatus == MIXER_DRAIN_ALL)) {
   3149                     threadLoop_drain();
   3150                 }
   3151                 if (mType == MIXER && !mStandby) {
   3152                     // write blocked detection
   3153                     if (delta > maxPeriod) {
   3154                         mNumDelayedWrites++;
   3155                         if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
   3156                             ATRACE_NAME("underrun");
   3157                             ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
   3158                                     (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
   3159                             lastWarning = lastWriteFinished;
   3160                         }
   3161                     }
   3162 
   3163                     if (mThreadThrottle
   3164                             && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
   3165                             && ret > 0) {                         // we wrote something
   3166                         // Limit MixerThread data processing to no more than twice the
   3167                         // expected processing rate.
   3168                         //
   3169                         // This helps prevent underruns with NuPlayer and other applications
   3170                         // which may set up buffers that are close to the minimum size, or use
   3171                         // deep buffers, and rely on a double-buffering sleep strategy to fill.
   3172                         //
   3173                         // The throttle smooths out sudden large data drains from the device,
   3174                         // e.g. when it comes out of standby, which often causes problems with
   3175                         // (1) mixer threads without a fast mixer (which has its own warm-up)
   3176                         // (2) minimum buffer sized tracks (even if the track is full,
   3177                         //     the app won't fill fast enough to handle the sudden draw).
   3178 
   3179                         // it's OK if deltaMs is an overestimate.
   3180                         const int32_t deltaMs =
   3181                                 (lastWriteFinished - previousLastWriteFinished) / 1000000;
   3182                         const int32_t throttleMs = mHalfBufferMs - deltaMs;
   3183                         if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
   3184                             usleep(throttleMs * 1000);
   3185                             // notify of throttle start on verbose log
   3186                             ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
   3187                                     "mixer(%p) throttle begin:"
   3188                                     " ret(%zd) deltaMs(%d) requires sleep %d ms",
   3189                                     this, ret, deltaMs, throttleMs);
   3190                             mThreadThrottleTimeMs += throttleMs;
   3191                         } else {
   3192                             uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
   3193                             if (diff > 0) {
   3194                                 // notify of throttle end on debug log
   3195                                 // but prevent spamming for bluetooth
   3196                                 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
   3197                                         "mixer(%p) throttle end: throttle time(%u)", this, diff);
   3198                                 mThreadThrottleEndMs = mThreadThrottleTimeMs;
   3199                             }
   3200                         }
   3201                     }
   3202                 }
   3203 
   3204             } else {
   3205                 ATRACE_BEGIN("sleep");
   3206                 Mutex::Autolock _l(mLock);
   3207                 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
   3208                     mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
   3209                 }
   3210                 ATRACE_END();
   3211             }
   3212         }
   3213 
   3214         // Finally let go of removed track(s), without the lock held
   3215         // since we can't guarantee the destructors won't acquire that
   3216         // same lock.  This will also mutate and push a new fast mixer state.
   3217         threadLoop_removeTracks(tracksToRemove);
   3218         tracksToRemove.clear();
   3219 
   3220         // FIXME I don't understand the need for this here;
   3221         //       it was in the original code but maybe the
   3222         //       assignment in saveOutputTracks() makes this unnecessary?
   3223         clearOutputTracks();
   3224 
   3225         // Effect chains will be actually deleted here if they were removed from
   3226         // mEffectChains list during mixing or effects processing
   3227         effectChains.clear();
   3228 
   3229         // FIXME Note that the above .clear() is no longer necessary since effectChains
   3230         // is now local to this block, but will keep it for now (at least until merge done).
   3231     }
   3232 
   3233     threadLoop_exit();
   3234 
   3235     if (!mStandby) {
   3236         threadLoop_standby();
   3237         mStandby = true;
   3238     }
   3239 
   3240     releaseWakeLock();
   3241     mWakeLockUids.clear();
   3242     mActiveTracksGeneration++;
   3243 
   3244     ALOGV("Thread %p type %d exiting", this, mType);
   3245     return false;
   3246 }
   3247 
   3248 // removeTracks_l() must be called with ThreadBase::mLock held
   3249 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
   3250 {
   3251     size_t count = tracksToRemove.size();
   3252     if (count > 0) {
   3253         for (size_t i=0 ; i<count ; i++) {
   3254             const sp<Track>& track = tracksToRemove.itemAt(i);
   3255             mActiveTracks.remove(track);
   3256             mWakeLockUids.remove(track->uid());
   3257             mActiveTracksGeneration++;
   3258             ALOGV("removeTracks_l removing track on session %d", track->sessionId());
   3259             sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   3260             if (chain != 0) {
   3261                 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
   3262                         track->sessionId());
   3263                 chain->decActiveTrackCnt();
   3264             }
   3265             if (track->isTerminated()) {
   3266                 removeTrack_l(track);
   3267             }
   3268         }
   3269     }
   3270 
   3271 }
   3272 
   3273 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
   3274 {
   3275     if (mNormalSink != 0) {
   3276         ExtendedTimestamp ets;
   3277         status_t status = mNormalSink->getTimestamp(ets);
   3278         if (status == NO_ERROR) {
   3279             status = ets.getBestTimestamp(&timestamp);
   3280         }
   3281         return status;
   3282     }
   3283     if ((mType == OFFLOAD || mType == DIRECT)
   3284             && mOutput != NULL && mOutput->stream->get_presentation_position) {
   3285         uint64_t position64;
   3286         int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
   3287         if (ret == 0) {
   3288             timestamp.mPosition = (uint32_t)position64;
   3289             return NO_ERROR;
   3290         }
   3291     }
   3292     return INVALID_OPERATION;
   3293 }
   3294 
   3295 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
   3296                                                           audio_patch_handle_t *handle)
   3297 {
   3298     AutoPark<FastMixer> park(mFastMixer);
   3299 
   3300     status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
   3301 
   3302     return status;
   3303 }
   3304 
   3305 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
   3306                                                           audio_patch_handle_t *handle)
   3307 {
   3308     status_t status = NO_ERROR;
   3309 
   3310     // store new device and send to effects
   3311     audio_devices_t type = AUDIO_DEVICE_NONE;
   3312     for (unsigned int i = 0; i < patch->num_sinks; i++) {
   3313         type |= patch->sinks[i].ext.device.type;
   3314     }
   3315 
   3316 #ifdef ADD_BATTERY_DATA
   3317     // when changing the audio output device, call addBatteryData to notify
   3318     // the change
   3319     if (mOutDevice != type) {
   3320         uint32_t params = 0;
   3321         // check whether speaker is on
   3322         if (type & AUDIO_DEVICE_OUT_SPEAKER) {
   3323             params |= IMediaPlayerService::kBatteryDataSpeakerOn;
   3324         }
   3325 
   3326         audio_devices_t deviceWithoutSpeaker
   3327             = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
   3328         // check if any other device (except speaker) is on
   3329         if (type & deviceWithoutSpeaker) {
   3330             params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
   3331         }
   3332 
   3333         if (params != 0) {
   3334             addBatteryData(params);
   3335         }
   3336     }
   3337 #endif
   3338 
   3339     for (size_t i = 0; i < mEffectChains.size(); i++) {
   3340         mEffectChains[i]->setDevice_l(type);
   3341     }
   3342 
   3343     // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
   3344     // the thread is created so that the first patch creation triggers an ioConfigChanged callback
   3345     bool configChanged = mPrevOutDevice != type;
   3346     mOutDevice = type;
   3347     mPatch = *patch;
   3348 
   3349     if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
   3350         audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
   3351         status = hwDevice->create_audio_patch(hwDevice,
   3352                                                patch->num_sources,
   3353                                                patch->sources,
   3354                                                patch->num_sinks,
   3355                                                patch->sinks,
   3356                                                handle);
   3357     } else {
   3358         char *address;
   3359         if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
   3360             //FIXME: we only support address on first sink with HAL version < 3.0
   3361             address = audio_device_address_to_parameter(
   3362                                                         patch->sinks[0].ext.device.type,
   3363                                                         patch->sinks[0].ext.device.address);
   3364         } else {
   3365             address = (char *)calloc(1, 1);
   3366         }
   3367         AudioParameter param = AudioParameter(String8(address));
   3368         free(address);
   3369         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
   3370         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3371                 param.toString().string());
   3372         *handle = AUDIO_PATCH_HANDLE_NONE;
   3373     }
   3374     if (configChanged) {
   3375         mPrevOutDevice = type;
   3376         sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
   3377     }
   3378     return status;
   3379 }
   3380 
   3381 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
   3382 {
   3383     AutoPark<FastMixer> park(mFastMixer);
   3384 
   3385     status_t status = PlaybackThread::releaseAudioPatch_l(handle);
   3386 
   3387     return status;
   3388 }
   3389 
   3390 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
   3391 {
   3392     status_t status = NO_ERROR;
   3393 
   3394     mOutDevice = AUDIO_DEVICE_NONE;
   3395 
   3396     if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
   3397         audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
   3398         status = hwDevice->release_audio_patch(hwDevice, handle);
   3399     } else {
   3400         AudioParameter param;
   3401         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
   3402         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3403                 param.toString().string());
   3404     }
   3405     return status;
   3406 }
   3407 
   3408 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
   3409 {
   3410     Mutex::Autolock _l(mLock);
   3411     mTracks.add(track);
   3412 }
   3413 
   3414 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
   3415 {
   3416     Mutex::Autolock _l(mLock);
   3417     destroyTrack_l(track);
   3418 }
   3419 
   3420 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
   3421 {
   3422     ThreadBase::getAudioPortConfig(config);
   3423     config->role = AUDIO_PORT_ROLE_SOURCE;
   3424     config->ext.mix.hw_module = mOutput->audioHwDev->handle();
   3425     config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
   3426 }
   3427 
   3428 // ----------------------------------------------------------------------------
   3429 
   3430 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
   3431         audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
   3432     :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
   3433         // mAudioMixer below
   3434         // mFastMixer below
   3435         mFastMixerFutex(0),
   3436         mMasterMono(false)
   3437         // mOutputSink below
   3438         // mPipeSink below
   3439         // mNormalSink below
   3440 {
   3441     ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
   3442     ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
   3443             "mFrameCount=%zu, mNormalFrameCount=%zu",
   3444             mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
   3445             mNormalFrameCount);
   3446     mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
   3447 
   3448     if (type == DUPLICATING) {
   3449         // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
   3450         // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
   3451         // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
   3452         return;
   3453     }
   3454     // create an NBAIO sink for the HAL output stream, and negotiate
   3455     mOutputSink = new AudioStreamOutSink(output->stream);
   3456     size_t numCounterOffers = 0;
   3457     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
   3458 #if !LOG_NDEBUG
   3459     ssize_t index =
   3460 #else
   3461     (void)
   3462 #endif
   3463             mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
   3464     ALOG_ASSERT(index == 0);
   3465 
   3466     // initialize fast mixer depending on configuration
   3467     bool initFastMixer;
   3468     switch (kUseFastMixer) {
   3469     case FastMixer_Never:
   3470         initFastMixer = false;
   3471         break;
   3472     case FastMixer_Always:
   3473         initFastMixer = true;
   3474         break;
   3475     case FastMixer_Static:
   3476     case FastMixer_Dynamic:
   3477         initFastMixer = mFrameCount < mNormalFrameCount;
   3478         break;
   3479     }
   3480     if (initFastMixer) {
   3481         audio_format_t fastMixerFormat;
   3482         if (mMixerBufferEnabled && mEffectBufferEnabled) {
   3483             fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
   3484         } else {
   3485             fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
   3486         }
   3487         if (mFormat != fastMixerFormat) {
   3488             // change our Sink format to accept our intermediate precision
   3489             mFormat = fastMixerFormat;
   3490             free(mSinkBuffer);
   3491             mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
   3492             const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
   3493             (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
   3494         }
   3495 
   3496         // create a MonoPipe to connect our submix to FastMixer
   3497         NBAIO_Format format = mOutputSink->format();
   3498 #ifdef TEE_SINK
   3499         NBAIO_Format origformat = format;
   3500 #endif
   3501         // adjust format to match that of the Fast Mixer
   3502         ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
   3503         format.mFormat = fastMixerFormat;
   3504         format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
   3505 
   3506         // This pipe depth compensates for scheduling latency of the normal mixer thread.
   3507         // When it wakes up after a maximum latency, it runs a few cycles quickly before
   3508         // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
   3509         MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
   3510         const NBAIO_Format offers[1] = {format};
   3511         size_t numCounterOffers = 0;
   3512 #if !LOG_NDEBUG || defined(TEE_SINK)
   3513         ssize_t index =
   3514 #else
   3515         (void)
   3516 #endif
   3517                 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
   3518         ALOG_ASSERT(index == 0);
   3519         monoPipe->setAvgFrames((mScreenState & 1) ?
   3520                 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
   3521         mPipeSink = monoPipe;
   3522 
   3523 #ifdef TEE_SINK
   3524         if (mTeeSinkOutputEnabled) {
   3525             // create a Pipe to archive a copy of FastMixer's output for dumpsys
   3526             Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
   3527             const NBAIO_Format offers2[1] = {origformat};
   3528             numCounterOffers = 0;
   3529             index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
   3530             ALOG_ASSERT(index == 0);
   3531             mTeeSink = teeSink;
   3532             PipeReader *teeSource = new PipeReader(*teeSink);
   3533             numCounterOffers = 0;
   3534             index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
   3535             ALOG_ASSERT(index == 0);
   3536             mTeeSource = teeSource;
   3537         }
   3538 #endif
   3539 
   3540         // create fast mixer and configure it initially with just one fast track for our submix
   3541         mFastMixer = new FastMixer();
   3542         FastMixerStateQueue *sq = mFastMixer->sq();
   3543 #ifdef STATE_QUEUE_DUMP
   3544         sq->setObserverDump(&mStateQueueObserverDump);
   3545         sq->setMutatorDump(&mStateQueueMutatorDump);
   3546 #endif
   3547         FastMixerState *state = sq->begin();
   3548         FastTrack *fastTrack = &state->mFastTracks[0];
   3549         // wrap the source side of the MonoPipe to make it an AudioBufferProvider
   3550         fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
   3551         fastTrack->mVolumeProvider = NULL;
   3552         fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
   3553         fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
   3554         fastTrack->mGeneration++;
   3555         state->mFastTracksGen++;
   3556         state->mTrackMask = 1;
   3557         // fast mixer will use the HAL output sink
   3558         state->mOutputSink = mOutputSink.get();
   3559         state->mOutputSinkGen++;
   3560         state->mFrameCount = mFrameCount;
   3561         state->mCommand = FastMixerState::COLD_IDLE;
   3562         // already done in constructor initialization list
   3563         //mFastMixerFutex = 0;
   3564         state->mColdFutexAddr = &mFastMixerFutex;
   3565         state->mColdGen++;
   3566         state->mDumpState = &mFastMixerDumpState;
   3567 #ifdef TEE_SINK
   3568         state->mTeeSink = mTeeSink.get();
   3569 #endif
   3570         mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
   3571         state->mNBLogWriter = mFastMixerNBLogWriter.get();
   3572         sq->end();
   3573         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   3574 
   3575         // start the fast mixer
   3576         mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
   3577         pid_t tid = mFastMixer->getTid();
   3578         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
   3579 
   3580 #ifdef AUDIO_WATCHDOG
   3581         // create and start the watchdog
   3582         mAudioWatchdog = new AudioWatchdog();
   3583         mAudioWatchdog->setDump(&mAudioWatchdogDump);
   3584         mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
   3585         tid = mAudioWatchdog->getTid();
   3586         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
   3587 #endif
   3588 
   3589     }
   3590 
   3591     switch (kUseFastMixer) {
   3592     case FastMixer_Never:
   3593     case FastMixer_Dynamic:
   3594         mNormalSink = mOutputSink;
   3595         break;
   3596     case FastMixer_Always:
   3597         mNormalSink = mPipeSink;
   3598         break;
   3599     case FastMixer_Static:
   3600         mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
   3601         break;
   3602     }
   3603 }
   3604 
   3605 AudioFlinger::MixerThread::~MixerThread()
   3606 {
   3607     if (mFastMixer != 0) {
   3608         FastMixerStateQueue *sq = mFastMixer->sq();
   3609         FastMixerState *state = sq->begin();
   3610         if (state->mCommand == FastMixerState::COLD_IDLE) {
   3611             int32_t old = android_atomic_inc(&mFastMixerFutex);
   3612             if (old == -1) {
   3613                 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
   3614             }
   3615         }
   3616         state->mCommand = FastMixerState::EXIT;
   3617         sq->end();
   3618         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   3619         mFastMixer->join();
   3620         // Though the fast mixer thread has exited, it's state queue is still valid.
   3621         // We'll use that extract the final state which contains one remaining fast track
   3622         // corresponding to our sub-mix.
   3623         state = sq->begin();
   3624         ALOG_ASSERT(state->mTrackMask == 1);
   3625         FastTrack *fastTrack = &state->mFastTracks[0];
   3626         ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
   3627         delete fastTrack->mBufferProvider;
   3628         sq->end(false /*didModify*/);
   3629         mFastMixer.clear();
   3630 #ifdef AUDIO_WATCHDOG
   3631         if (mAudioWatchdog != 0) {
   3632             mAudioWatchdog->requestExit();
   3633             mAudioWatchdog->requestExitAndWait();
   3634             mAudioWatchdog.clear();
   3635         }
   3636 #endif
   3637     }
   3638     mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
   3639     delete mAudioMixer;
   3640 }
   3641 
   3642 
   3643 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
   3644 {
   3645     if (mFastMixer != 0) {
   3646         MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
   3647         latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
   3648     }
   3649     return latency;
   3650 }
   3651 
   3652 
   3653 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
   3654 {
   3655     PlaybackThread::threadLoop_removeTracks(tracksToRemove);
   3656 }
   3657 
   3658 ssize_t AudioFlinger::MixerThread::threadLoop_write()
   3659 {
   3660     // FIXME we should only do one push per cycle; confirm this is true
   3661     // Start the fast mixer if it's not already running
   3662     if (mFastMixer != 0) {
   3663         FastMixerStateQueue *sq = mFastMixer->sq();
   3664         FastMixerState *state = sq->begin();
   3665         if (state->mCommand != FastMixerState::MIX_WRITE &&
   3666                 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
   3667             if (state->mCommand == FastMixerState::COLD_IDLE) {
   3668 
   3669                 // FIXME workaround for first HAL write being CPU bound on some devices
   3670                 ATRACE_BEGIN("write");
   3671                 mOutput->write((char *)mSinkBuffer, 0);
   3672                 ATRACE_END();
   3673 
   3674                 int32_t old = android_atomic_inc(&mFastMixerFutex);
   3675                 if (old == -1) {
   3676                     (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
   3677                 }
   3678 #ifdef AUDIO_WATCHDOG
   3679                 if (mAudioWatchdog != 0) {
   3680                     mAudioWatchdog->resume();
   3681                 }
   3682 #endif
   3683             }
   3684             state->mCommand = FastMixerState::MIX_WRITE;
   3685 #ifdef FAST_THREAD_STATISTICS
   3686             mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
   3687                 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
   3688 #endif
   3689             sq->end();
   3690             sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   3691             if (kUseFastMixer == FastMixer_Dynamic) {
   3692                 mNormalSink = mPipeSink;
   3693             }
   3694         } else {
   3695             sq->end(false /*didModify*/);
   3696         }
   3697     }
   3698     return PlaybackThread::threadLoop_write();
   3699 }
   3700 
   3701 void AudioFlinger::MixerThread::threadLoop_standby()
   3702 {
   3703     // Idle the fast mixer if it's currently running
   3704     if (mFastMixer != 0) {
   3705         FastMixerStateQueue *sq = mFastMixer->sq();
   3706         FastMixerState *state = sq->begin();
   3707         if (!(state->mCommand & FastMixerState::IDLE)) {
   3708             state->mCommand = FastMixerState::COLD_IDLE;
   3709             state->mColdFutexAddr = &mFastMixerFutex;
   3710             state->mColdGen++;
   3711             mFastMixerFutex = 0;
   3712             sq->end();
   3713             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
   3714             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
   3715             if (kUseFastMixer == FastMixer_Dynamic) {
   3716                 mNormalSink = mOutputSink;
   3717             }
   3718 #ifdef AUDIO_WATCHDOG
   3719             if (mAudioWatchdog != 0) {
   3720                 mAudioWatchdog->pause();
   3721             }
   3722 #endif
   3723         } else {
   3724             sq->end(false /*didModify*/);
   3725         }
   3726     }
   3727     PlaybackThread::threadLoop_standby();
   3728 }
   3729 
   3730 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
   3731 {
   3732     return false;
   3733 }
   3734 
   3735 bool AudioFlinger::PlaybackThread::shouldStandby_l()
   3736 {
   3737     return !mStandby;
   3738 }
   3739 
   3740 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
   3741 {
   3742     Mutex::Autolock _l(mLock);
   3743     return waitingAsyncCallback_l();
   3744 }
   3745 
   3746 // shared by MIXER and DIRECT, overridden by DUPLICATING
   3747 void AudioFlinger::PlaybackThread::threadLoop_standby()
   3748 {
   3749     ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
   3750     mOutput->standby();
   3751     if (mUseAsyncWrite != 0) {
   3752         // discard any pending drain or write ack by incrementing sequence
   3753         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
   3754         mDrainSequence = (mDrainSequence + 2) & ~1;
   3755         ALOG_ASSERT(mCallbackThread != 0);
   3756         mCallbackThread->setWriteBlocked(mWriteAckSequence);
   3757         mCallbackThread->setDraining(mDrainSequence);
   3758     }
   3759     mHwPaused = false;
   3760 }
   3761 
   3762 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
   3763 {
   3764     ALOGV("signal playback thread");
   3765     broadcast_l();
   3766 }
   3767 
   3768 void AudioFlinger::MixerThread::threadLoop_mix()
   3769 {
   3770     // mix buffers...
   3771     mAudioMixer->process();
   3772     mCurrentWriteLength = mSinkBufferSize;
   3773     // increase sleep time progressively when application underrun condition clears.
   3774     // Only increase sleep time if the mixer is ready for two consecutive times to avoid
   3775     // that a steady state of alternating ready/not ready conditions keeps the sleep time
   3776     // such that we would underrun the audio HAL.
   3777     if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
   3778         sleepTimeShift--;
   3779     }
   3780     mSleepTimeUs = 0;
   3781     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   3782     //TODO: delay standby when effects have a tail
   3783 
   3784 }
   3785 
   3786 void AudioFlinger::MixerThread::threadLoop_sleepTime()
   3787 {
   3788     // If no tracks are ready, sleep once for the duration of an output
   3789     // buffer size, then write 0s to the output
   3790     if (mSleepTimeUs == 0) {
   3791         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   3792             mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
   3793             if (mSleepTimeUs < kMinThreadSleepTimeUs) {
   3794                 mSleepTimeUs = kMinThreadSleepTimeUs;
   3795             }
   3796             // reduce sleep time in case of consecutive application underruns to avoid
   3797             // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
   3798             // duration we would end up writing less data than needed by the audio HAL if
   3799             // the condition persists.
   3800             if (sleepTimeShift < kMaxThreadSleepTimeShift) {
   3801                 sleepTimeShift++;
   3802             }
   3803         } else {
   3804             mSleepTimeUs = mIdleSleepTimeUs;
   3805         }
   3806     } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
   3807         // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
   3808         // before effects processing or output.
   3809         if (mMixerBufferValid) {
   3810             memset(mMixerBuffer, 0, mMixerBufferSize);
   3811         } else {
   3812             memset(mSinkBuffer, 0, mSinkBufferSize);
   3813         }
   3814         mSleepTimeUs = 0;
   3815         ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
   3816                 "anticipated start");
   3817     }
   3818     // TODO add standby time extension fct of effect tail
   3819 }
   3820 
   3821 // prepareTracks_l() must be called with ThreadBase::mLock held
   3822 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
   3823         Vector< sp<Track> > *tracksToRemove)
   3824 {
   3825 
   3826     mixer_state mixerStatus = MIXER_IDLE;
   3827     // find out which tracks need to be processed
   3828     size_t count = mActiveTracks.size();
   3829     size_t mixedTracks = 0;
   3830     size_t tracksWithEffect = 0;
   3831     // counts only _active_ fast tracks
   3832     size_t fastTracks = 0;
   3833     uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
   3834 
   3835     float masterVolume = mMasterVolume;
   3836     bool masterMute = mMasterMute;
   3837 
   3838     if (masterMute) {
   3839         masterVolume = 0;
   3840     }
   3841     // Delegate master volume control to effect in output mix effect chain if needed
   3842     sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
   3843     if (chain != 0) {
   3844         uint32_t v = (uint32_t)(masterVolume * (1 << 24));
   3845         chain->setVolume_l(&v, &v);
   3846         masterVolume = (float)((v + (1 << 23)) >> 24);
   3847         chain.clear();
   3848     }
   3849 
   3850     // prepare a new state to push
   3851     FastMixerStateQueue *sq = NULL;
   3852     FastMixerState *state = NULL;
   3853     bool didModify = false;
   3854     FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
   3855     if (mFastMixer != 0) {
   3856         sq = mFastMixer->sq();
   3857         state = sq->begin();
   3858     }
   3859 
   3860     mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
   3861     mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
   3862 
   3863     for (size_t i=0 ; i<count ; i++) {
   3864         const sp<Track> t = mActiveTracks[i].promote();
   3865         if (t == 0) {
   3866             continue;
   3867         }
   3868 
   3869         // this const just means the local variable doesn't change
   3870         Track* const track = t.get();
   3871 
   3872         // process fast tracks
   3873         if (track->isFastTrack()) {
   3874 
   3875             // It's theoretically possible (though unlikely) for a fast track to be created
   3876             // and then removed within the same normal mix cycle.  This is not a problem, as
   3877             // the track never becomes active so it's fast mixer slot is never touched.
   3878             // The converse, of removing an (active) track and then creating a new track
   3879             // at the identical fast mixer slot within the same normal mix cycle,
   3880             // is impossible because the slot isn't marked available until the end of each cycle.
   3881             int j = track->mFastIndex;
   3882             ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
   3883             ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
   3884             FastTrack *fastTrack = &state->mFastTracks[j];
   3885 
   3886             // Determine whether the track is currently in underrun condition,
   3887             // and whether it had a recent underrun.
   3888             FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
   3889             FastTrackUnderruns underruns = ftDump->mUnderruns;
   3890             uint32_t recentFull = (underruns.mBitFields.mFull -
   3891                     track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
   3892             uint32_t recentPartial = (underruns.mBitFields.mPartial -
   3893                     track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
   3894             uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
   3895                     track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
   3896             uint32_t recentUnderruns = recentPartial + recentEmpty;
   3897             track->mObservedUnderruns = underruns;
   3898             // don't count underruns that occur while stopping or pausing
   3899             // or stopped which can occur when flush() is called while active
   3900             if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
   3901                     recentUnderruns > 0) {
   3902                 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
   3903                 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
   3904             } else {
   3905                 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
   3906             }
   3907 
   3908             // This is similar to the state machine for normal tracks,
   3909             // with a few modifications for fast tracks.
   3910             bool isActive = true;
   3911             switch (track->mState) {
   3912             case TrackBase::STOPPING_1:
   3913                 // track stays active in STOPPING_1 state until first underrun
   3914                 if (recentUnderruns > 0 || track->isTerminated()) {
   3915                     track->mState = TrackBase::STOPPING_2;
   3916                 }
   3917                 break;
   3918             case TrackBase::PAUSING:
   3919                 // ramp down is not yet implemented
   3920                 track->setPaused();
   3921                 break;
   3922             case TrackBase::RESUMING:
   3923                 // ramp up is not yet implemented
   3924                 track->mState = TrackBase::ACTIVE;
   3925                 break;
   3926             case TrackBase::ACTIVE:
   3927                 if (recentFull > 0 || recentPartial > 0) {
   3928                     // track has provided at least some frames recently: reset retry count
   3929                     track->mRetryCount = kMaxTrackRetries;
   3930                 }
   3931                 if (recentUnderruns == 0) {
   3932                     // no recent underruns: stay active
   3933                     break;
   3934                 }
   3935                 // there has recently been an underrun of some kind
   3936                 if (track->sharedBuffer() == 0) {
   3937                     // were any of the recent underruns "empty" (no frames available)?
   3938                     if (recentEmpty == 0) {
   3939                         // no, then ignore the partial underruns as they are allowed indefinitely
   3940                         break;
   3941                     }
   3942                     // there has recently been an "empty" underrun: decrement the retry counter
   3943                     if (--(track->mRetryCount) > 0) {
   3944                         break;
   3945                     }
   3946                     // indicate to client process that the track was disabled because of underrun;
   3947                     // it will then automatically call start() when data is available
   3948                     track->disable();
   3949                     // remove from active list, but state remains ACTIVE [confusing but true]
   3950                     isActive = false;
   3951                     break;
   3952                 }
   3953                 // fall through
   3954             case TrackBase::STOPPING_2:
   3955             case TrackBase::PAUSED:
   3956             case TrackBase::STOPPED:
   3957             case TrackBase::FLUSHED:   // flush() while active
   3958                 // Check for presentation complete if track is inactive
   3959                 // We have consumed all the buffers of this track.
   3960                 // This would be incomplete if we auto-paused on underrun
   3961                 {
   3962                     size_t audioHALFrames =
   3963                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
   3964                     int64_t framesWritten = mBytesWritten / mFrameSize;
   3965                     if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
   3966                         // track stays in active list until presentation is complete
   3967                         break;
   3968                     }
   3969                 }
   3970                 if (track->isStopping_2()) {
   3971                     track->mState = TrackBase::STOPPED;
   3972                 }
   3973                 if (track->isStopped()) {
   3974                     // Can't reset directly, as fast mixer is still polling this track
   3975                     //   track->reset();
   3976                     // So instead mark this track as needing to be reset after push with ack
   3977                     resetMask |= 1 << i;
   3978                 }
   3979                 isActive = false;
   3980                 break;
   3981             case TrackBase::IDLE:
   3982             default:
   3983                 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
   3984             }
   3985 
   3986             if (isActive) {
   3987                 // was it previously inactive?
   3988                 if (!(state->mTrackMask & (1 << j))) {
   3989                     ExtendedAudioBufferProvider *eabp = track;
   3990                     VolumeProvider *vp = track;
   3991                     fastTrack->mBufferProvider = eabp;
   3992                     fastTrack->mVolumeProvider = vp;
   3993                     fastTrack->mChannelMask = track->mChannelMask;
   3994                     fastTrack->mFormat = track->mFormat;
   3995                     fastTrack->mGeneration++;
   3996                     state->mTrackMask |= 1 << j;
   3997                     didModify = true;
   3998                     // no acknowledgement required for newly active tracks
   3999                 }
   4000                 // cache the combined master volume and stream type volume for fast mixer; this
   4001                 // lacks any synchronization or barrier so VolumeProvider may read a stale value
   4002                 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
   4003                 ++fastTracks;
   4004             } else {
   4005                 // was it previously active?
   4006                 if (state->mTrackMask & (1 << j)) {
   4007                     fastTrack->mBufferProvider = NULL;
   4008                     fastTrack->mGeneration++;
   4009                     state->mTrackMask &= ~(1 << j);
   4010                     didModify = true;
   4011                     // If any fast tracks were removed, we must wait for acknowledgement
   4012                     // because we're about to decrement the last sp<> on those tracks.
   4013                     block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
   4014                 } else {
   4015                     LOG_ALWAYS_FATAL("fast track %d should have been active; "
   4016                             "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
   4017                             j, track->mState, state->mTrackMask, recentUnderruns,
   4018                             track->sharedBuffer() != 0);
   4019                 }
   4020                 tracksToRemove->add(track);
   4021                 // Avoids a misleading display in dumpsys
   4022                 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
   4023             }
   4024             continue;
   4025         }
   4026 
   4027         {   // local variable scope to avoid goto warning
   4028 
   4029         audio_track_cblk_t* cblk = track->cblk();
   4030 
   4031         // The first time a track is added we wait
   4032         // for all its buffers to be filled before processing it
   4033         int name = track->name();
   4034         // make sure that we have enough frames to mix one full buffer.
   4035         // enforce this condition only once to enable draining the buffer in case the client
   4036         // app does not call stop() and relies on underrun to stop:
   4037         // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
   4038         // during last round
   4039         size_t desiredFrames;
   4040         const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
   4041         AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
   4042 
   4043         desiredFrames = sourceFramesNeededWithTimestretch(
   4044                 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
   4045         // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
   4046         // add frames already consumed but not yet released by the resampler
   4047         // because mAudioTrackServerProxy->framesReady() will include these frames
   4048         desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
   4049 
   4050         uint32_t minFrames = 1;
   4051         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
   4052                 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
   4053             minFrames = desiredFrames;
   4054         }
   4055 
   4056         size_t framesReady = track->framesReady();
   4057         if (ATRACE_ENABLED()) {
   4058             // I wish we had formatted trace names
   4059             char traceName[16];
   4060             strcpy(traceName, "nRdy");
   4061             int name = track->name();
   4062             if (AudioMixer::TRACK0 <= name &&
   4063                     name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
   4064                 name -= AudioMixer::TRACK0;
   4065                 traceName[4] = (name / 10) + '0';
   4066                 traceName[5] = (name % 10) + '0';
   4067             } else {
   4068                 traceName[4] = '?';
   4069                 traceName[5] = '?';
   4070             }
   4071             traceName[6] = '\0';
   4072             ATRACE_INT(traceName, framesReady);
   4073         }
   4074         if ((framesReady >= minFrames) && track->isReady() &&
   4075                 !track->isPaused() && !track->isTerminated())
   4076         {
   4077             ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
   4078 
   4079             mixedTracks++;
   4080 
   4081             // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
   4082             // there is an effect chain connected to the track
   4083             chain.clear();
   4084             if (track->mainBuffer() != mSinkBuffer &&
   4085                     track->mainBuffer() != mMixerBuffer) {
   4086                 if (mEffectBufferEnabled) {
   4087                     mEffectBufferValid = true; // Later can set directly.
   4088                 }
   4089                 chain = getEffectChain_l(track->sessionId());
   4090                 // Delegate volume control to effect in track effect chain if needed
   4091                 if (chain != 0) {
   4092                     tracksWithEffect++;
   4093                 } else {
   4094                     ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
   4095                             "session %d",
   4096                             name, track->sessionId());
   4097                 }
   4098             }
   4099 
   4100 
   4101             int param = AudioMixer::VOLUME;
   4102             if (track->mFillingUpStatus == Track::FS_FILLED) {
   4103                 // no ramp for the first volume setting
   4104                 track->mFillingUpStatus = Track::FS_ACTIVE;
   4105                 if (track->mState == TrackBase::RESUMING) {
   4106                     track->mState = TrackBase::ACTIVE;
   4107                     param = AudioMixer::RAMP_VOLUME;
   4108                 }
   4109                 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
   4110             // FIXME should not make a decision based on mServer
   4111             } else if (cblk->mServer != 0) {
   4112                 // If the track is stopped before the first frame was mixed,
   4113                 // do not apply ramp
   4114                 param = AudioMixer::RAMP_VOLUME;
   4115             }
   4116 
   4117             // compute volume for this track
   4118             uint32_t vl, vr;       // in U8.24 integer format
   4119             float vlf, vrf, vaf;   // in [0.0, 1.0] float format
   4120             if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
   4121                 vl = vr = 0;
   4122                 vlf = vrf = vaf = 0.;
   4123                 if (track->isPausing()) {
   4124                     track->setPaused();
   4125                 }
   4126             } else {
   4127 
   4128                 // read original volumes with volume control
   4129                 float typeVolume = mStreamTypes[track->streamType()].volume;
   4130                 float v = masterVolume * typeVolume;
   4131                 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
   4132                 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
   4133                 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
   4134                 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
   4135                 // track volumes come from shared memory, so can't be trusted and must be clamped
   4136                 if (vlf > GAIN_FLOAT_UNITY) {
   4137                     ALOGV("Track left volume out of range: %.3g", vlf);
   4138                     vlf = GAIN_FLOAT_UNITY;
   4139                 }
   4140                 if (vrf > GAIN_FLOAT_UNITY) {
   4141                     ALOGV("Track right volume out of range: %.3g", vrf);
   4142                     vrf = GAIN_FLOAT_UNITY;
   4143                 }
   4144                 // now apply the master volume and stream type volume
   4145                 vlf *= v;
   4146                 vrf *= v;
   4147                 // assuming master volume and stream type volume each go up to 1.0,
   4148                 // then derive vl and vr as U8.24 versions for the effect chain
   4149                 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
   4150                 vl = (uint32_t) (scaleto8_24 * vlf);
   4151                 vr = (uint32_t) (scaleto8_24 * vrf);
   4152                 // vl and vr are now in U8.24 format
   4153                 uint16_t sendLevel = proxy->getSendLevel_U4_12();
   4154                 // send level comes from shared memory and so may be corrupt
   4155                 if (sendLevel > MAX_GAIN_INT) {
   4156                     ALOGV("Track send level out of range: %04X", sendLevel);
   4157                     sendLevel = MAX_GAIN_INT;
   4158                 }
   4159                 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
   4160                 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
   4161             }
   4162 
   4163             // Delegate volume control to effect in track effect chain if needed
   4164             if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
   4165                 // Do not ramp volume if volume is controlled by effect
   4166                 param = AudioMixer::VOLUME;
   4167                 // Update remaining floating point volume levels
   4168                 vlf = (float)vl / (1 << 24);
   4169                 vrf = (float)vr / (1 << 24);
   4170                 track->mHasVolumeController = true;
   4171             } else {
   4172                 // force no volume ramp when volume controller was just disabled or removed
   4173                 // from effect chain to avoid volume spike
   4174                 if (track->mHasVolumeController) {
   4175                     param = AudioMixer::VOLUME;
   4176                 }
   4177                 track->mHasVolumeController = false;
   4178             }
   4179 
   4180             // XXX: these things DON'T need to be done each time
   4181             mAudioMixer->setBufferProvider(name, track);
   4182             mAudioMixer->enable(name);
   4183 
   4184             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
   4185             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
   4186             mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
   4187             mAudioMixer->setParameter(
   4188                 name,
   4189                 AudioMixer::TRACK,
   4190                 AudioMixer::FORMAT, (void *)track->format());
   4191             mAudioMixer->setParameter(
   4192                 name,
   4193                 AudioMixer::TRACK,
   4194                 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
   4195             mAudioMixer->setParameter(
   4196                 name,
   4197                 AudioMixer::TRACK,
   4198                 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
   4199             // limit track sample rate to 2 x output sample rate, which changes at re-configuration
   4200             uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
   4201             uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
   4202             if (reqSampleRate == 0) {
   4203                 reqSampleRate = mSampleRate;
   4204             } else if (reqSampleRate > maxSampleRate) {
   4205                 reqSampleRate = maxSampleRate;
   4206             }
   4207             mAudioMixer->setParameter(
   4208                 name,
   4209                 AudioMixer::RESAMPLE,
   4210                 AudioMixer::SAMPLE_RATE,
   4211                 (void *)(uintptr_t)reqSampleRate);
   4212 
   4213             AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
   4214             mAudioMixer->setParameter(
   4215                 name,
   4216                 AudioMixer::TIMESTRETCH,
   4217                 AudioMixer::PLAYBACK_RATE,
   4218                 &playbackRate);
   4219 
   4220             /*
   4221              * Select the appropriate output buffer for the track.
   4222              *
   4223              * Tracks with effects go into their own effects chain buffer
   4224              * and from there into either mEffectBuffer or mSinkBuffer.
   4225              *
   4226              * Other tracks can use mMixerBuffer for higher precision
   4227              * channel accumulation.  If this buffer is enabled
   4228              * (mMixerBufferEnabled true), then selected tracks will accumulate
   4229              * into it.
   4230              *
   4231              */
   4232             if (mMixerBufferEnabled
   4233                     && (track->mainBuffer() == mSinkBuffer
   4234                             || track->mainBuffer() == mMixerBuffer)) {
   4235                 mAudioMixer->setParameter(
   4236                         name,
   4237                         AudioMixer::TRACK,
   4238                         AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
   4239                 mAudioMixer->setParameter(
   4240                         name,
   4241                         AudioMixer::TRACK,
   4242                         AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
   4243                 // TODO: override track->mainBuffer()?
   4244                 mMixerBufferValid = true;
   4245             } else {
   4246                 mAudioMixer->setParameter(
   4247                         name,
   4248                         AudioMixer::TRACK,
   4249                         AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
   4250                 mAudioMixer->setParameter(
   4251                         name,
   4252                         AudioMixer::TRACK,
   4253                         AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
   4254             }
   4255             mAudioMixer->setParameter(
   4256                 name,
   4257                 AudioMixer::TRACK,
   4258                 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
   4259 
   4260             // reset retry count
   4261             track->mRetryCount = kMaxTrackRetries;
   4262 
   4263             // If one track is ready, set the mixer ready if:
   4264             //  - the mixer was not ready during previous round OR
   4265             //  - no other track is not ready
   4266             if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
   4267                     mixerStatus != MIXER_TRACKS_ENABLED) {
   4268                 mixerStatus = MIXER_TRACKS_READY;
   4269             }
   4270         } else {
   4271             if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
   4272                 ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
   4273                         track, framesReady, desiredFrames);
   4274                 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
   4275             } else {
   4276                 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
   4277             }
   4278 
   4279             // clear effect chain input buffer if an active track underruns to avoid sending
   4280             // previous audio buffer again to effects
   4281             chain = getEffectChain_l(track->sessionId());
   4282             if (chain != 0) {
   4283                 chain->clearInputBuffer();
   4284             }
   4285 
   4286             ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
   4287             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
   4288                     track->isStopped() || track->isPaused()) {
   4289                 // We have consumed all the buffers of this track.
   4290                 // Remove it from the list of active tracks.
   4291                 // TODO: use actual buffer filling status instead of latency when available from
   4292                 // audio HAL
   4293                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
   4294                 int64_t framesWritten = mBytesWritten / mFrameSize;
   4295                 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
   4296                     if (track->isStopped()) {
   4297                         track->reset();
   4298                     }
   4299                     tracksToRemove->add(track);
   4300                 }
   4301             } else {
   4302                 // No buffers for this track. Give it a few chances to
   4303                 // fill a buffer, then remove it from active list.
   4304                 if (--(track->mRetryCount) <= 0) {
   4305                     ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
   4306                     tracksToRemove->add(track);
   4307                     // indicate to client process that the track was disabled because of underrun;
   4308                     // it will then automatically call start() when data is available
   4309                     track->disable();
   4310                 // If one track is not ready, mark the mixer also not ready if:
   4311                 //  - the mixer was ready during previous round OR
   4312                 //  - no other track is ready
   4313                 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
   4314                                 mixerStatus != MIXER_TRACKS_READY) {
   4315                     mixerStatus = MIXER_TRACKS_ENABLED;
   4316                 }
   4317             }
   4318             mAudioMixer->disable(name);
   4319         }
   4320 
   4321         }   // local variable scope to avoid goto warning
   4322 
   4323     }
   4324 
   4325     // Push the new FastMixer state if necessary
   4326     bool pauseAudioWatchdog = false;
   4327     if (didModify) {
   4328         state->mFastTracksGen++;
   4329         // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
   4330         if (kUseFastMixer == FastMixer_Dynamic &&
   4331                 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
   4332             state->mCommand = FastMixerState::COLD_IDLE;
   4333             state->mColdFutexAddr = &mFastMixerFutex;
   4334             state->mColdGen++;
   4335             mFastMixerFutex = 0;
   4336             if (kUseFastMixer == FastMixer_Dynamic) {
   4337                 mNormalSink = mOutputSink;
   4338             }
   4339             // If we go into cold idle, need to wait for acknowledgement
   4340             // so that fast mixer stops doing I/O.
   4341             block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
   4342             pauseAudioWatchdog = true;
   4343         }
   4344     }
   4345     if (sq != NULL) {
   4346         sq->end(didModify);
   4347         sq->push(block);
   4348     }
   4349 #ifdef AUDIO_WATCHDOG
   4350     if (pauseAudioWatchdog && mAudioWatchdog != 0) {
   4351         mAudioWatchdog->pause();
   4352     }
   4353 #endif
   4354 
   4355     // Now perform the deferred reset on fast tracks that have stopped
   4356     while (resetMask != 0) {
   4357         size_t i = __builtin_ctz(resetMask);
   4358         ALOG_ASSERT(i < count);
   4359         resetMask &= ~(1 << i);
   4360         sp<Track> t = mActiveTracks[i].promote();
   4361         if (t == 0) {
   4362             continue;
   4363         }
   4364         Track* track = t.get();
   4365         ALOG_ASSERT(track->isFastTrack() && track->isStopped());
   4366         track->reset();
   4367     }
   4368 
   4369     // remove all the tracks that need to be...
   4370     removeTracks_l(*tracksToRemove);
   4371 
   4372     if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
   4373         mEffectBufferValid = true;
   4374     }
   4375 
   4376     if (mEffectBufferValid) {
   4377         // as long as there are effects we should clear the effects buffer, to avoid
   4378         // passing a non-clean buffer to the effect chain
   4379         memset(mEffectBuffer, 0, mEffectBufferSize);
   4380     }
   4381     // sink or mix buffer must be cleared if all tracks are connected to an
   4382     // effect chain as in this case the mixer will not write to the sink or mix buffer
   4383     // and track effects will accumulate into it
   4384     if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
   4385             (mixedTracks == 0 && fastTracks > 0))) {
   4386         // FIXME as a performance optimization, should remember previous zero status
   4387         if (mMixerBufferValid) {
   4388             memset(mMixerBuffer, 0, mMixerBufferSize);
   4389             // TODO: In testing, mSinkBuffer below need not be cleared because
   4390             // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
   4391             // after mixing.
   4392             //
   4393             // To enforce this guarantee:
   4394             // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
   4395             // (mixedTracks == 0 && fastTracks > 0))
   4396             // must imply MIXER_TRACKS_READY.
   4397             // Later, we may clear buffers regardless, and skip much of this logic.
   4398         }
   4399         // FIXME as a performance optimization, should remember previous zero status
   4400         memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
   4401     }
   4402 
   4403     // if any fast tracks, then status is ready
   4404     mMixerStatusIgnoringFastTracks = mixerStatus;
   4405     if (fastTracks > 0) {
   4406         mixerStatus = MIXER_TRACKS_READY;
   4407     }
   4408     return mixerStatus;
   4409 }
   4410 
   4411 // getTrackName_l() must be called with ThreadBase::mLock held
   4412 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
   4413         audio_format_t format, audio_session_t sessionId)
   4414 {
   4415     return mAudioMixer->getTrackName(channelMask, format, sessionId);
   4416 }
   4417 
   4418 // deleteTrackName_l() must be called with ThreadBase::mLock held
   4419 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
   4420 {
   4421     ALOGV("remove track (%d) and delete from mixer", name);
   4422     mAudioMixer->deleteTrackName(name);
   4423 }
   4424 
   4425 // checkForNewParameter_l() must be called with ThreadBase::mLock held
   4426 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
   4427                                                        status_t& status)
   4428 {
   4429     bool reconfig = false;
   4430     bool a2dpDeviceChanged = false;
   4431 
   4432     status = NO_ERROR;
   4433 
   4434     AutoPark<FastMixer> park(mFastMixer);
   4435 
   4436     AudioParameter param = AudioParameter(keyValuePair);
   4437     int value;
   4438     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
   4439         reconfig = true;
   4440     }
   4441     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
   4442         if (!isValidPcmSinkFormat((audio_format_t) value)) {
   4443             status = BAD_VALUE;
   4444         } else {
   4445             // no need to save value, since it's constant
   4446             reconfig = true;
   4447         }
   4448     }
   4449     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
   4450         if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
   4451             status = BAD_VALUE;
   4452         } else {
   4453             // no need to save value, since it's constant
   4454             reconfig = true;
   4455         }
   4456     }
   4457     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   4458         // do not accept frame count changes if tracks are open as the track buffer
   4459         // size depends on frame count and correct behavior would not be guaranteed
   4460         // if frame count is changed after track creation
   4461         if (!mTracks.isEmpty()) {
   4462             status = INVALID_OPERATION;
   4463         } else {
   4464             reconfig = true;
   4465         }
   4466     }
   4467     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   4468 #ifdef ADD_BATTERY_DATA
   4469         // when changing the audio output device, call addBatteryData to notify
   4470         // the change
   4471         if (mOutDevice != value) {
   4472             uint32_t params = 0;
   4473             // check whether speaker is on
   4474             if (value & AUDIO_DEVICE_OUT_SPEAKER) {
   4475                 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
   4476             }
   4477 
   4478             audio_devices_t deviceWithoutSpeaker
   4479                 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
   4480             // check if any other device (except speaker) is on
   4481             if (value & deviceWithoutSpeaker) {
   4482                 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
   4483             }
   4484 
   4485             if (params != 0) {
   4486                 addBatteryData(params);
   4487             }
   4488         }
   4489 #endif
   4490 
   4491         // forward device change to effects that have requested to be
   4492         // aware of attached audio device.
   4493         if (value != AUDIO_DEVICE_NONE) {
   4494             a2dpDeviceChanged =
   4495                     (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
   4496             mOutDevice = value;
   4497             for (size_t i = 0; i < mEffectChains.size(); i++) {
   4498                 mEffectChains[i]->setDevice_l(mOutDevice);
   4499             }
   4500         }
   4501     }
   4502 
   4503     if (status == NO_ERROR) {
   4504         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   4505                                                 keyValuePair.string());
   4506         if (!mStandby && status == INVALID_OPERATION) {
   4507             mOutput->standby();
   4508             mStandby = true;
   4509             mBytesWritten = 0;
   4510             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   4511                                                    keyValuePair.string());
   4512         }
   4513         if (status == NO_ERROR && reconfig) {
   4514             readOutputParameters_l();
   4515             delete mAudioMixer;
   4516             mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
   4517             for (size_t i = 0; i < mTracks.size() ; i++) {
   4518                 int name = getTrackName_l(mTracks[i]->mChannelMask,
   4519                         mTracks[i]->mFormat, mTracks[i]->mSessionId);
   4520                 if (name < 0) {
   4521                     break;
   4522                 }
   4523                 mTracks[i]->mName = name;
   4524             }
   4525             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
   4526         }
   4527     }
   4528 
   4529     return reconfig || a2dpDeviceChanged;
   4530 }
   4531 
   4532 
   4533 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
   4534 {
   4535     PlaybackThread::dumpInternals(fd, args);
   4536     dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
   4537     dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
   4538     dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
   4539 
   4540     // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
   4541     // while we are dumping it.  It may be inconsistent, but it won't mutate!
   4542     // This is a large object so we place it on the heap.
   4543     // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
   4544     const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
   4545     copy->dump(fd);
   4546     delete copy;
   4547 
   4548 #ifdef STATE_QUEUE_DUMP
   4549     // Similar for state queue
   4550     StateQueueObserverDump observerCopy = mStateQueueObserverDump;
   4551     observerCopy.dump(fd);
   4552     StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
   4553     mutatorCopy.dump(fd);
   4554 #endif
   4555 
   4556 #ifdef TEE_SINK
   4557     // Write the tee output to a .wav file
   4558     dumpTee(fd, mTeeSource, mId);
   4559 #endif
   4560 
   4561 #ifdef AUDIO_WATCHDOG
   4562     if (mAudioWatchdog != 0) {
   4563         // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
   4564         AudioWatchdogDump wdCopy = mAudioWatchdogDump;
   4565         wdCopy.dump(fd);
   4566     }
   4567 #endif
   4568 }
   4569 
   4570 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
   4571 {
   4572     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
   4573 }
   4574 
   4575 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
   4576 {
   4577     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
   4578 }
   4579 
   4580 void AudioFlinger::MixerThread::cacheParameters_l()
   4581 {
   4582     PlaybackThread::cacheParameters_l();
   4583 
   4584     // FIXME: Relaxed timing because of a certain device that can't meet latency
   4585     // Should be reduced to 2x after the vendor fixes the driver issue
   4586     // increase threshold again due to low power audio mode. The way this warning
   4587     // threshold is calculated and its usefulness should be reconsidered anyway.
   4588     maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
   4589 }
   4590 
   4591 // ----------------------------------------------------------------------------
   4592 
   4593 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
   4594         AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
   4595     :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
   4596         // mLeftVolFloat, mRightVolFloat
   4597 {
   4598 }
   4599 
   4600 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
   4601         AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
   4602         ThreadBase::type_t type, bool systemReady)
   4603     :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
   4604         // mLeftVolFloat, mRightVolFloat
   4605 {
   4606 }
   4607 
   4608 AudioFlinger::DirectOutputThread::~DirectOutputThread()
   4609 {
   4610 }
   4611 
   4612 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
   4613 {
   4614     float left, right;
   4615 
   4616     if (mMasterMute || mStreamTypes[track->streamType()].mute) {
   4617         left = right = 0;
   4618     } else {
   4619         float typeVolume = mStreamTypes[track->streamType()].volume;
   4620         float v = mMasterVolume * typeVolume;
   4621         AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
   4622         gain_minifloat_packed_t vlr = proxy->getVolumeLR();
   4623         left = float_from_gain(gain_minifloat_unpack_left(vlr));
   4624         if (left > GAIN_FLOAT_UNITY) {
   4625             left = GAIN_FLOAT_UNITY;
   4626         }
   4627         left *= v;
   4628         right = float_from_gain(gain_minifloat_unpack_right(vlr));
   4629         if (right > GAIN_FLOAT_UNITY) {
   4630             right = GAIN_FLOAT_UNITY;
   4631         }
   4632         right *= v;
   4633     }
   4634 
   4635     if (lastTrack) {
   4636         if (left != mLeftVolFloat || right != mRightVolFloat) {
   4637             mLeftVolFloat = left;
   4638             mRightVolFloat = right;
   4639 
   4640             // Convert volumes from float to 8.24
   4641             uint32_t vl = (uint32_t)(left * (1 << 24));
   4642             uint32_t vr = (uint32_t)(right * (1 << 24));
   4643 
   4644             // Delegate volume control to effect in track effect chain if needed
   4645             // only one effect chain can be present on DirectOutputThread, so if
   4646             // there is one, the track is connected to it
   4647             if (!mEffectChains.isEmpty()) {
   4648                 mEffectChains[0]->setVolume_l(&vl, &vr);
   4649                 left = (float)vl / (1 << 24);
   4650                 right = (float)vr / (1 << 24);
   4651             }
   4652             if (mOutput->stream->set_volume) {
   4653                 mOutput->stream->set_volume(mOutput->stream, left, right);
   4654             }
   4655         }
   4656     }
   4657 }
   4658 
   4659 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
   4660 {
   4661     sp<Track> previousTrack = mPreviousTrack.promote();
   4662     sp<Track> latestTrack = mLatestActiveTrack.promote();
   4663 
   4664     if (previousTrack != 0 && latestTrack != 0) {
   4665         if (mType == DIRECT) {
   4666             if (previousTrack.get() != latestTrack.get()) {
   4667                 mFlushPending = true;
   4668             }
   4669         } else /* mType == OFFLOAD */ {
   4670             if (previousTrack->sessionId() != latestTrack->sessionId()) {
   4671                 mFlushPending = true;
   4672             }
   4673         }
   4674     }
   4675     PlaybackThread::onAddNewTrack_l();
   4676 }
   4677 
   4678 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
   4679     Vector< sp<Track> > *tracksToRemove
   4680 )
   4681 {
   4682     size_t count = mActiveTracks.size();
   4683     mixer_state mixerStatus = MIXER_IDLE;
   4684     bool doHwPause = false;
   4685     bool doHwResume = false;
   4686 
   4687     // find out which tracks need to be processed
   4688     for (size_t i = 0; i < count; i++) {
   4689         sp<Track> t = mActiveTracks[i].promote();
   4690         // The track died recently
   4691         if (t == 0) {
   4692             continue;
   4693         }
   4694 
   4695         if (t->isInvalid()) {
   4696             ALOGW("An invalidated track shouldn't be in active list");
   4697             tracksToRemove->add(t);
   4698             continue;
   4699         }
   4700 
   4701         Track* const track = t.get();
   4702 #ifdef VERY_VERY_VERBOSE_LOGGING
   4703         audio_track_cblk_t* cblk = track->cblk();
   4704 #endif
   4705         // Only consider last track started for volume and mixer state control.
   4706         // In theory an older track could underrun and restart after the new one starts
   4707         // but as we only care about the transition phase between two tracks on a
   4708         // direct output, it is not a problem to ignore the underrun case.
   4709         sp<Track> l = mLatestActiveTrack.promote();
   4710         bool last = l.get() == track;
   4711 
   4712         if (track->isPausing()) {
   4713             track->setPaused();
   4714             if (mHwSupportsPause && last && !mHwPaused) {
   4715                 doHwPause = true;
   4716                 mHwPaused = true;
   4717             }
   4718             tracksToRemove->add(track);
   4719         } else if (track->isFlushPending()) {
   4720             track->flushAck();
   4721             if (last) {
   4722                 mFlushPending = true;
   4723             }
   4724         } else if (track->isResumePending()) {
   4725             track->resumeAck();
   4726             if (last && mHwPaused) {
   4727                 doHwResume = true;
   4728                 mHwPaused = false;
   4729             }
   4730         }
   4731 
   4732         // The first time a track is added we wait
   4733         // for all its buffers to be filled before processing it.
   4734         // Allow draining the buffer in case the client
   4735         // app does not call stop() and relies on underrun to stop:
   4736         // hence the test on (track->mRetryCount > 1).
   4737         // If retryCount<=1 then track is about to underrun and be removed.
   4738         // Do not use a high threshold for compressed audio.
   4739         uint32_t minFrames;
   4740         if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
   4741             && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
   4742             minFrames = mNormalFrameCount;
   4743         } else {
   4744             minFrames = 1;
   4745         }
   4746 
   4747         if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
   4748                 !track->isStopping_2() && !track->isStopped())
   4749         {
   4750             ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
   4751 
   4752             if (track->mFillingUpStatus == Track::FS_FILLED) {
   4753                 track->mFillingUpStatus = Track::FS_ACTIVE;
   4754                 // make sure processVolume_l() will apply new volume even if 0
   4755                 mLeftVolFloat = mRightVolFloat = -1.0;
   4756                 if (!mHwSupportsPause) {
   4757                     track->resumeAck();
   4758                 }
   4759             }
   4760 
   4761             // compute volume for this track
   4762             processVolume_l(track, last);
   4763             if (last) {
   4764                 sp<Track> previousTrack = mPreviousTrack.promote();
   4765                 if (previousTrack != 0) {
   4766                     if (track != previousTrack.get()) {
   4767                         // Flush any data still being written from last track
   4768                         mBytesRemaining = 0;
   4769                         // Invalidate previous track to force a seek when resuming.
   4770                         previousTrack->invalidate();
   4771                     }
   4772                 }
   4773                 mPreviousTrack = track;
   4774 
   4775                 // reset retry count
   4776                 track->mRetryCount = kMaxTrackRetriesDirect;
   4777                 mActiveTrack = t;
   4778                 mixerStatus = MIXER_TRACKS_READY;
   4779                 if (mHwPaused) {
   4780                     doHwResume = true;
   4781                     mHwPaused = false;
   4782                 }
   4783             }
   4784         } else {
   4785             // clear effect chain input buffer if the last active track started underruns
   4786             // to avoid sending previous audio buffer again to effects
   4787             if (!mEffectChains.isEmpty() && last) {
   4788                 mEffectChains[0]->clearInputBuffer();
   4789             }
   4790             if (track->isStopping_1()) {
   4791                 track->mState = TrackBase::STOPPING_2;
   4792                 if (last && mHwPaused) {
   4793                      doHwResume = true;
   4794                      mHwPaused = false;
   4795                  }
   4796             }
   4797             if ((track->sharedBuffer() != 0) || track->isStopped() ||
   4798                     track->isStopping_2() || track->isPaused()) {
   4799                 // We have consumed all the buffers of this track.
   4800                 // Remove it from the list of active tracks.
   4801                 size_t audioHALFrames;
   4802                 if (audio_has_proportional_frames(mFormat)) {
   4803                     audioHALFrames = (latency_l() * mSampleRate) / 1000;
   4804                 } else {
   4805                     audioHALFrames = 0;
   4806                 }
   4807 
   4808                 int64_t framesWritten = mBytesWritten / mFrameSize;
   4809                 if (mStandby || !last ||
   4810                         track->presentationComplete(framesWritten, audioHALFrames)) {
   4811                     if (track->isStopping_2()) {
   4812                         track->mState = TrackBase::STOPPED;
   4813                     }
   4814                     if (track->isStopped()) {
   4815                         track->reset();
   4816                     }
   4817                     tracksToRemove->add(track);
   4818                 }
   4819             } else {
   4820                 // No buffers for this track. Give it a few chances to
   4821                 // fill a buffer, then remove it from active list.
   4822                 // Only consider last track started for mixer state control
   4823                 if (--(track->mRetryCount) <= 0) {
   4824                     ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
   4825                     tracksToRemove->add(track);
   4826                     // indicate to client process that the track was disabled because of underrun;
   4827                     // it will then automatically call start() when data is available
   4828                     track->disable();
   4829                 } else if (last) {
   4830                     ALOGW("pause because of UNDERRUN, framesReady = %zu,"
   4831                             "minFrames = %u, mFormat = %#x",
   4832                             track->framesReady(), minFrames, mFormat);
   4833                     mixerStatus = MIXER_TRACKS_ENABLED;
   4834                     if (mHwSupportsPause && !mHwPaused && !mStandby) {
   4835                         doHwPause = true;
   4836                         mHwPaused = true;
   4837                     }
   4838                 }
   4839             }
   4840         }
   4841     }
   4842 
   4843     // if an active track did not command a flush, check for pending flush on stopped tracks
   4844     if (!mFlushPending) {
   4845         for (size_t i = 0; i < mTracks.size(); i++) {
   4846             if (mTracks[i]->isFlushPending()) {
   4847                 mTracks[i]->flushAck();
   4848                 mFlushPending = true;
   4849             }
   4850         }
   4851     }
   4852 
   4853     // make sure the pause/flush/resume sequence is executed in the right order.
   4854     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
   4855     // before flush and then resume HW. This can happen in case of pause/flush/resume
   4856     // if resume is received before pause is executed.
   4857     if (mHwSupportsPause && !mStandby &&
   4858             (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
   4859         mOutput->stream->pause(mOutput->stream);
   4860     }
   4861     if (mFlushPending) {
   4862         flushHw_l();
   4863     }
   4864     if (mHwSupportsPause && !mStandby && doHwResume) {
   4865         mOutput->stream->resume(mOutput->stream);
   4866     }
   4867     // remove all the tracks that need to be...
   4868     removeTracks_l(*tracksToRemove);
   4869 
   4870     return mixerStatus;
   4871 }
   4872 
   4873 void AudioFlinger::DirectOutputThread::threadLoop_mix()
   4874 {
   4875     size_t frameCount = mFrameCount;
   4876     int8_t *curBuf = (int8_t *)mSinkBuffer;
   4877     // output audio to hardware
   4878     while (frameCount) {
   4879         AudioBufferProvider::Buffer buffer;
   4880         buffer.frameCount = frameCount;
   4881         status_t status = mActiveTrack->getNextBuffer(&buffer);
   4882         if (status != NO_ERROR || buffer.raw == NULL) {
   4883             // no need to pad with 0 for compressed audio
   4884             if (audio_has_proportional_frames(mFormat)) {
   4885                 memset(curBuf, 0, frameCount * mFrameSize);
   4886             }
   4887             break;
   4888         }
   4889         memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
   4890         frameCount -= buffer.frameCount;
   4891         curBuf += buffer.frameCount * mFrameSize;
   4892         mActiveTrack->releaseBuffer(&buffer);
   4893     }
   4894     mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
   4895     mSleepTimeUs = 0;
   4896     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   4897     mActiveTrack.clear();
   4898 }
   4899 
   4900 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
   4901 {
   4902     // do not write to HAL when paused
   4903     if (mHwPaused || (usesHwAvSync() && mStandby)) {
   4904         mSleepTimeUs = mIdleSleepTimeUs;
   4905         return;
   4906     }
   4907     if (mSleepTimeUs == 0) {
   4908         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   4909             mSleepTimeUs = mActiveSleepTimeUs;
   4910         } else {
   4911             mSleepTimeUs = mIdleSleepTimeUs;
   4912         }
   4913     } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
   4914         memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
   4915         mSleepTimeUs = 0;
   4916     }
   4917 }
   4918 
   4919 void AudioFlinger::DirectOutputThread::threadLoop_exit()
   4920 {
   4921     {
   4922         Mutex::Autolock _l(mLock);
   4923         for (size_t i = 0; i < mTracks.size(); i++) {
   4924             if (mTracks[i]->isFlushPending()) {
   4925                 mTracks[i]->flushAck();
   4926                 mFlushPending = true;
   4927             }
   4928         }
   4929         if (mFlushPending) {
   4930             flushHw_l();
   4931         }
   4932     }
   4933     PlaybackThread::threadLoop_exit();
   4934 }
   4935 
   4936 // must be called with thread mutex locked
   4937 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
   4938 {
   4939     bool trackPaused = false;
   4940     bool trackStopped = false;
   4941 
   4942     if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
   4943         return !mStandby;
   4944     }
   4945 
   4946     // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
   4947     // after a timeout and we will enter standby then.
   4948     if (mTracks.size() > 0) {
   4949         trackPaused = mTracks[mTracks.size() - 1]->isPaused();
   4950         trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
   4951                            mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
   4952     }
   4953 
   4954     return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
   4955 }
   4956 
   4957 // getTrackName_l() must be called with ThreadBase::mLock held
   4958 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
   4959         audio_format_t format __unused, audio_session_t sessionId __unused)
   4960 {
   4961     return 0;
   4962 }
   4963 
   4964 // deleteTrackName_l() must be called with ThreadBase::mLock held
   4965 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
   4966 {
   4967 }
   4968 
   4969 // checkForNewParameter_l() must be called with ThreadBase::mLock held
   4970 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
   4971                                                               status_t& status)
   4972 {
   4973     bool reconfig = false;
   4974     bool a2dpDeviceChanged = false;
   4975 
   4976     status = NO_ERROR;
   4977 
   4978     AudioParameter param = AudioParameter(keyValuePair);
   4979     int value;
   4980     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   4981         // forward device change to effects that have requested to be
   4982         // aware of attached audio device.
   4983         if (value != AUDIO_DEVICE_NONE) {
   4984             a2dpDeviceChanged =
   4985                     (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
   4986             mOutDevice = value;
   4987             for (size_t i = 0; i < mEffectChains.size(); i++) {
   4988                 mEffectChains[i]->setDevice_l(mOutDevice);
   4989             }
   4990         }
   4991     }
   4992     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   4993         // do not accept frame count changes if tracks are open as the track buffer
   4994         // size depends on frame count and correct behavior would not be garantied
   4995         // if frame count is changed after track creation
   4996         if (!mTracks.isEmpty()) {
   4997             status = INVALID_OPERATION;
   4998         } else {
   4999             reconfig = true;
   5000         }
   5001     }
   5002     if (status == NO_ERROR) {
   5003         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   5004                                                 keyValuePair.string());
   5005         if (!mStandby && status == INVALID_OPERATION) {
   5006             mOutput->standby();
   5007             mStandby = true;
   5008             mBytesWritten = 0;
   5009             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   5010                                                    keyValuePair.string());
   5011         }
   5012         if (status == NO_ERROR && reconfig) {
   5013             readOutputParameters_l();
   5014             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
   5015         }
   5016     }
   5017 
   5018     return reconfig || a2dpDeviceChanged;
   5019 }
   5020 
   5021 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
   5022 {
   5023     uint32_t time;
   5024     if (audio_has_proportional_frames(mFormat)) {
   5025         time = PlaybackThread::activeSleepTimeUs();
   5026     } else {
   5027         time = kDirectMinSleepTimeUs;
   5028     }
   5029     return time;
   5030 }
   5031 
   5032 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
   5033 {
   5034     uint32_t time;
   5035     if (audio_has_proportional_frames(mFormat)) {
   5036         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
   5037     } else {
   5038         time = kDirectMinSleepTimeUs;
   5039     }
   5040     return time;
   5041 }
   5042 
   5043 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
   5044 {
   5045     uint32_t time;
   5046     if (audio_has_proportional_frames(mFormat)) {
   5047         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
   5048     } else {
   5049         time = kDirectMinSleepTimeUs;
   5050     }
   5051     return time;
   5052 }
   5053 
   5054 void AudioFlinger::DirectOutputThread::cacheParameters_l()
   5055 {
   5056     PlaybackThread::cacheParameters_l();
   5057 
   5058     // use shorter standby delay as on normal output to release
   5059     // hardware resources as soon as possible
   5060     // no delay on outputs with HW A/V sync
   5061     if (usesHwAvSync()) {
   5062         mStandbyDelayNs = 0;
   5063     } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
   5064         mStandbyDelayNs = kOffloadStandbyDelayNs;
   5065     } else {
   5066         mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
   5067     }
   5068 }
   5069 
   5070 void AudioFlinger::DirectOutputThread::flushHw_l()
   5071 {
   5072     mOutput->flush();
   5073     mHwPaused = false;
   5074     mFlushPending = false;
   5075 }
   5076 
   5077 // ----------------------------------------------------------------------------
   5078 
   5079 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
   5080         const wp<AudioFlinger::PlaybackThread>& playbackThread)
   5081     :   Thread(false /*canCallJava*/),
   5082         mPlaybackThread(playbackThread),
   5083         mWriteAckSequence(0),
   5084         mDrainSequence(0)
   5085 {
   5086 }
   5087 
   5088 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
   5089 {
   5090 }
   5091 
   5092 void AudioFlinger::AsyncCallbackThread::onFirstRef()
   5093 {
   5094     run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
   5095 }
   5096 
   5097 bool AudioFlinger::AsyncCallbackThread::threadLoop()
   5098 {
   5099     while (!exitPending()) {
   5100         uint32_t writeAckSequence;
   5101         uint32_t drainSequence;
   5102 
   5103         {
   5104             Mutex::Autolock _l(mLock);
   5105             while (!((mWriteAckSequence & 1) ||
   5106                      (mDrainSequence & 1) ||
   5107                      exitPending())) {
   5108                 mWaitWorkCV.wait(mLock);
   5109             }
   5110 
   5111             if (exitPending()) {
   5112                 break;
   5113             }
   5114             ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
   5115                   mWriteAckSequence, mDrainSequence);
   5116             writeAckSequence = mWriteAckSequence;
   5117             mWriteAckSequence &= ~1;
   5118             drainSequence = mDrainSequence;
   5119             mDrainSequence &= ~1;
   5120         }
   5121         {
   5122             sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
   5123             if (playbackThread != 0) {
   5124                 if (writeAckSequence & 1) {
   5125                     playbackThread->resetWriteBlocked(writeAckSequence >> 1);
   5126                 }
   5127                 if (drainSequence & 1) {
   5128                     playbackThread->resetDraining(drainSequence >> 1);
   5129                 }
   5130             }
   5131         }
   5132     }
   5133     return false;
   5134 }
   5135 
   5136 void AudioFlinger::AsyncCallbackThread::exit()
   5137 {
   5138     ALOGV("AsyncCallbackThread::exit");
   5139     Mutex::Autolock _l(mLock);
   5140     requestExit();
   5141     mWaitWorkCV.broadcast();
   5142 }
   5143 
   5144 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
   5145 {
   5146     Mutex::Autolock _l(mLock);
   5147     // bit 0 is cleared
   5148     mWriteAckSequence = sequence << 1;
   5149 }
   5150 
   5151 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
   5152 {
   5153     Mutex::Autolock _l(mLock);
   5154     // ignore unexpected callbacks
   5155     if (mWriteAckSequence & 2) {
   5156         mWriteAckSequence |= 1;
   5157         mWaitWorkCV.signal();
   5158     }
   5159 }
   5160 
   5161 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
   5162 {
   5163     Mutex::Autolock _l(mLock);
   5164     // bit 0 is cleared
   5165     mDrainSequence = sequence << 1;
   5166 }
   5167 
   5168 void AudioFlinger::AsyncCallbackThread::resetDraining()
   5169 {
   5170     Mutex::Autolock _l(mLock);
   5171     // ignore unexpected callbacks
   5172     if (mDrainSequence & 2) {
   5173         mDrainSequence |= 1;
   5174         mWaitWorkCV.signal();
   5175     }
   5176 }
   5177 
   5178 
   5179 // ----------------------------------------------------------------------------
   5180 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
   5181         AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
   5182     :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
   5183         mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true)
   5184 {
   5185     //FIXME: mStandby should be set to true by ThreadBase constructor
   5186     mStandby = true;
   5187     mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
   5188 }
   5189 
   5190 void AudioFlinger::OffloadThread::threadLoop_exit()
   5191 {
   5192     if (mFlushPending || mHwPaused) {
   5193         // If a flush is pending or track was paused, just discard buffered data
   5194         flushHw_l();
   5195     } else {
   5196         mMixerStatus = MIXER_DRAIN_ALL;
   5197         threadLoop_drain();
   5198     }
   5199     if (mUseAsyncWrite) {
   5200         ALOG_ASSERT(mCallbackThread != 0);
   5201         mCallbackThread->exit();
   5202     }
   5203     PlaybackThread::threadLoop_exit();
   5204 }
   5205 
   5206 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
   5207     Vector< sp<Track> > *tracksToRemove
   5208 )
   5209 {
   5210     size_t count = mActiveTracks.size();
   5211 
   5212     mixer_state mixerStatus = MIXER_IDLE;
   5213     bool doHwPause = false;
   5214     bool doHwResume = false;
   5215 
   5216     ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
   5217 
   5218     // find out which tracks need to be processed
   5219     for (size_t i = 0; i < count; i++) {
   5220         sp<Track> t = mActiveTracks[i].promote();
   5221         // The track died recently
   5222         if (t == 0) {
   5223             continue;
   5224         }
   5225         Track* const track = t.get();
   5226 #ifdef VERY_VERY_VERBOSE_LOGGING
   5227         audio_track_cblk_t* cblk = track->cblk();
   5228 #endif
   5229         // Only consider last track started for volume and mixer state control.
   5230         // In theory an older track could underrun and restart after the new one starts
   5231         // but as we only care about the transition phase between two tracks on a
   5232         // direct output, it is not a problem to ignore the underrun case.
   5233         sp<Track> l = mLatestActiveTrack.promote();
   5234         bool last = l.get() == track;
   5235 
   5236         if (track->isInvalid()) {
   5237             ALOGW("An invalidated track shouldn't be in active list");
   5238             tracksToRemove->add(track);
   5239             continue;
   5240         }
   5241 
   5242         if (track->mState == TrackBase::IDLE) {
   5243             ALOGW("An idle track shouldn't be in active list");
   5244             continue;
   5245         }
   5246 
   5247         if (track->isPausing()) {
   5248             track->setPaused();
   5249             if (last) {
   5250                 if (mHwSupportsPause && !mHwPaused) {
   5251                     doHwPause = true;
   5252                     mHwPaused = true;
   5253                 }
   5254                 // If we were part way through writing the mixbuffer to
   5255                 // the HAL we must save this until we resume
   5256                 // BUG - this will be wrong if a different track is made active,
   5257                 // in that case we want to discard the pending data in the
   5258                 // mixbuffer and tell the client to present it again when the
   5259                 // track is resumed
   5260                 mPausedWriteLength = mCurrentWriteLength;
   5261                 mPausedBytesRemaining = mBytesRemaining;
   5262                 mBytesRemaining = 0;    // stop writing
   5263             }
   5264             tracksToRemove->add(track);
   5265         } else if (track->isFlushPending()) {
   5266             if (track->isStopping_1()) {
   5267                 track->mRetryCount = kMaxTrackStopRetriesOffload;
   5268             } else {
   5269                 track->mRetryCount = kMaxTrackRetriesOffload;
   5270             }
   5271             track->flushAck();
   5272             if (last) {
   5273                 mFlushPending = true;
   5274             }
   5275         } else if (track->isResumePending()){
   5276             track->resumeAck();
   5277             if (last) {
   5278                 if (mPausedBytesRemaining) {
   5279                     // Need to continue write that was interrupted
   5280                     mCurrentWriteLength = mPausedWriteLength;
   5281                     mBytesRemaining = mPausedBytesRemaining;
   5282                     mPausedBytesRemaining = 0;
   5283                 }
   5284                 if (mHwPaused) {
   5285                     doHwResume = true;
   5286                     mHwPaused = false;
   5287                     // threadLoop_mix() will handle the case that we need to
   5288                     // resume an interrupted write
   5289                 }
   5290                 // enable write to audio HAL
   5291                 mSleepTimeUs = 0;
   5292 
   5293                 // Do not handle new data in this iteration even if track->framesReady()
   5294                 mixerStatus = MIXER_TRACKS_ENABLED;
   5295             }
   5296         }  else if (track->framesReady() && track->isReady() &&
   5297                 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
   5298             ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
   5299             if (track->mFillingUpStatus == Track::FS_FILLED) {
   5300                 track->mFillingUpStatus = Track::FS_ACTIVE;
   5301                 // make sure processVolume_l() will apply new volume even if 0
   5302                 mLeftVolFloat = mRightVolFloat = -1.0;
   5303             }
   5304 
   5305             if (last) {
   5306                 sp<Track> previousTrack = mPreviousTrack.promote();
   5307                 if (previousTrack != 0) {
   5308                     if (track != previousTrack.get()) {
   5309                         // Flush any data still being written from last track
   5310                         mBytesRemaining = 0;
   5311                         if (mPausedBytesRemaining) {
   5312                             // Last track was paused so we also need to flush saved
   5313                             // mixbuffer state and invalidate track so that it will
   5314                             // re-submit that unwritten data when it is next resumed
   5315                             mPausedBytesRemaining = 0;
   5316                             // Invalidate is a bit drastic - would be more efficient
   5317                             // to have a flag to tell client that some of the
   5318                             // previously written data was lost
   5319                             previousTrack->invalidate();
   5320                         }
   5321                         // flush data already sent to the DSP if changing audio session as audio
   5322                         // comes from a different source. Also invalidate previous track to force a
   5323                         // seek when resuming.
   5324                         if (previousTrack->sessionId() != track->sessionId()) {
   5325                             previousTrack->invalidate();
   5326                         }
   5327                     }
   5328                 }
   5329                 mPreviousTrack = track;
   5330                 // reset retry count
   5331                 if (track->isStopping_1()) {
   5332                     track->mRetryCount = kMaxTrackStopRetriesOffload;
   5333                 } else {
   5334                     track->mRetryCount = kMaxTrackRetriesOffload;
   5335                 }
   5336                 mActiveTrack = t;
   5337                 mixerStatus = MIXER_TRACKS_READY;
   5338             }
   5339         } else {
   5340             ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
   5341             if (track->isStopping_1()) {
   5342                 if (--(track->mRetryCount) <= 0) {
   5343                     // Hardware buffer can hold a large amount of audio so we must
   5344                     // wait for all current track's data to drain before we say
   5345                     // that the track is stopped.
   5346                     if (mBytesRemaining == 0) {
   5347                         // Only start draining when all data in mixbuffer
   5348                         // has been written
   5349                         ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
   5350                         track->mState = TrackBase::STOPPING_2; // so presentation completes after
   5351                         // drain do not drain if no data was ever sent to HAL (mStandby == true)
   5352                         if (last && !mStandby) {
   5353                             // do not modify drain sequence if we are already draining. This happens
   5354                             // when resuming from pause after drain.
   5355                             if ((mDrainSequence & 1) == 0) {
   5356                                 mSleepTimeUs = 0;
   5357                                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   5358                                 mixerStatus = MIXER_DRAIN_TRACK;
   5359                                 mDrainSequence += 2;
   5360                             }
   5361                             if (mHwPaused) {
   5362                                 // It is possible to move from PAUSED to STOPPING_1 without
   5363                                 // a resume so we must ensure hardware is running
   5364                                 doHwResume = true;
   5365                                 mHwPaused = false;
   5366                             }
   5367                         }
   5368                     }
   5369                 } else if (last) {
   5370                     ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
   5371                     mixerStatus = MIXER_TRACKS_ENABLED;
   5372                 }
   5373             } else if (track->isStopping_2()) {
   5374                 // Drain has completed or we are in standby, signal presentation complete
   5375                 if (!(mDrainSequence & 1) || !last || mStandby) {
   5376                     track->mState = TrackBase::STOPPED;
   5377                     size_t audioHALFrames =
   5378                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
   5379                     int64_t framesWritten =
   5380                             mBytesWritten / mOutput->getFrameSize();
   5381                     track->presentationComplete(framesWritten, audioHALFrames);
   5382                     track->reset();
   5383                     tracksToRemove->add(track);
   5384                 }
   5385             } else {
   5386                 // No buffers for this track. Give it a few chances to
   5387                 // fill a buffer, then remove it from active list.
   5388                 if (--(track->mRetryCount) <= 0) {
   5389                     ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
   5390                           track->name());
   5391                     tracksToRemove->add(track);
   5392                     // indicate to client process that the track was disabled because of underrun;
   5393                     // it will then automatically call start() when data is available
   5394                     track->disable();
   5395                 } else if (last){
   5396                     mixerStatus = MIXER_TRACKS_ENABLED;
   5397                 }
   5398             }
   5399         }
   5400         // compute volume for this track
   5401         processVolume_l(track, last);
   5402     }
   5403 
   5404     // make sure the pause/flush/resume sequence is executed in the right order.
   5405     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
   5406     // before flush and then resume HW. This can happen in case of pause/flush/resume
   5407     // if resume is received before pause is executed.
   5408     if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
   5409         mOutput->stream->pause(mOutput->stream);
   5410     }
   5411     if (mFlushPending) {
   5412         flushHw_l();
   5413     }
   5414     if (!mStandby && doHwResume) {
   5415         mOutput->stream->resume(mOutput->stream);
   5416     }
   5417 
   5418     // remove all the tracks that need to be...
   5419     removeTracks_l(*tracksToRemove);
   5420 
   5421     return mixerStatus;
   5422 }
   5423 
   5424 // must be called with thread mutex locked
   5425 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
   5426 {
   5427     ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
   5428           mWriteAckSequence, mDrainSequence);
   5429     if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
   5430         return true;
   5431     }
   5432     return false;
   5433 }
   5434 
   5435 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
   5436 {
   5437     Mutex::Autolock _l(mLock);
   5438     return waitingAsyncCallback_l();
   5439 }
   5440 
   5441 void AudioFlinger::OffloadThread::flushHw_l()
   5442 {
   5443     DirectOutputThread::flushHw_l();
   5444     // Flush anything still waiting in the mixbuffer
   5445     mCurrentWriteLength = 0;
   5446     mBytesRemaining = 0;
   5447     mPausedWriteLength = 0;
   5448     mPausedBytesRemaining = 0;
   5449     // reset bytes written count to reflect that DSP buffers are empty after flush.
   5450     mBytesWritten = 0;
   5451 
   5452     if (mUseAsyncWrite) {
   5453         // discard any pending drain or write ack by incrementing sequence
   5454         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
   5455         mDrainSequence = (mDrainSequence + 2) & ~1;
   5456         ALOG_ASSERT(mCallbackThread != 0);
   5457         mCallbackThread->setWriteBlocked(mWriteAckSequence);
   5458         mCallbackThread->setDraining(mDrainSequence);
   5459     }
   5460 }
   5461 
   5462 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
   5463 {
   5464     Mutex::Autolock _l(mLock);
   5465     if (PlaybackThread::invalidateTracks_l(streamType)) {
   5466         mFlushPending = true;
   5467     }
   5468 }
   5469 
   5470 // ----------------------------------------------------------------------------
   5471 
   5472 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
   5473         AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
   5474     :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
   5475                     systemReady, DUPLICATING),
   5476         mWaitTimeMs(UINT_MAX)
   5477 {
   5478     addOutputTrack(mainThread);
   5479 }
   5480 
   5481 AudioFlinger::DuplicatingThread::~DuplicatingThread()
   5482 {
   5483     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   5484         mOutputTracks[i]->destroy();
   5485     }
   5486 }
   5487 
   5488 void AudioFlinger::DuplicatingThread::threadLoop_mix()
   5489 {
   5490     // mix buffers...
   5491     if (outputsReady(outputTracks)) {
   5492         mAudioMixer->process();
   5493     } else {
   5494         if (mMixerBufferValid) {
   5495             memset(mMixerBuffer, 0, mMixerBufferSize);
   5496         } else {
   5497             memset(mSinkBuffer, 0, mSinkBufferSize);
   5498         }
   5499     }
   5500     mSleepTimeUs = 0;
   5501     writeFrames = mNormalFrameCount;
   5502     mCurrentWriteLength = mSinkBufferSize;
   5503     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   5504 }
   5505 
   5506 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
   5507 {
   5508     if (mSleepTimeUs == 0) {
   5509         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   5510             mSleepTimeUs = mActiveSleepTimeUs;
   5511         } else {
   5512             mSleepTimeUs = mIdleSleepTimeUs;
   5513         }
   5514     } else if (mBytesWritten != 0) {
   5515         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   5516             writeFrames = mNormalFrameCount;
   5517             memset(mSinkBuffer, 0, mSinkBufferSize);
   5518         } else {
   5519             // flush remaining overflow buffers in output tracks
   5520             writeFrames = 0;
   5521         }
   5522         mSleepTimeUs = 0;
   5523     }
   5524 }
   5525 
   5526 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
   5527 {
   5528     for (size_t i = 0; i < outputTracks.size(); i++) {
   5529         outputTracks[i]->write(mSinkBuffer, writeFrames);
   5530     }
   5531     mStandby = false;
   5532     return (ssize_t)mSinkBufferSize;
   5533 }
   5534 
   5535 void AudioFlinger::DuplicatingThread::threadLoop_standby()
   5536 {
   5537     // DuplicatingThread implements standby by stopping all tracks
   5538     for (size_t i = 0; i < outputTracks.size(); i++) {
   5539         outputTracks[i]->stop();
   5540     }
   5541 }
   5542 
   5543 void AudioFlinger::DuplicatingThread::saveOutputTracks()
   5544 {
   5545     outputTracks = mOutputTracks;
   5546 }
   5547 
   5548 void AudioFlinger::DuplicatingThread::clearOutputTracks()
   5549 {
   5550     outputTracks.clear();
   5551 }
   5552 
   5553 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
   5554 {
   5555     Mutex::Autolock _l(mLock);
   5556     // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
   5557     // Adjust for thread->sampleRate() to determine minimum buffer frame count.
   5558     // Then triple buffer because Threads do not run synchronously and may not be clock locked.
   5559     const size_t frameCount =
   5560             3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
   5561     // TODO: Consider asynchronous sample rate conversion to handle clock disparity
   5562     // from different OutputTracks and their associated MixerThreads (e.g. one may
   5563     // nearly empty and the other may be dropping data).
   5564 
   5565     sp<OutputTrack> outputTrack = new OutputTrack(thread,
   5566                                             this,
   5567                                             mSampleRate,
   5568                                             mFormat,
   5569                                             mChannelMask,
   5570                                             frameCount,
   5571                                             IPCThreadState::self()->getCallingUid());
   5572     if (outputTrack->cblk() != NULL) {
   5573         thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
   5574         mOutputTracks.add(outputTrack);
   5575         ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
   5576         updateWaitTime_l();
   5577     }
   5578 }
   5579 
   5580 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
   5581 {
   5582     Mutex::Autolock _l(mLock);
   5583     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   5584         if (mOutputTracks[i]->thread() == thread) {
   5585             mOutputTracks[i]->destroy();
   5586             mOutputTracks.removeAt(i);
   5587             updateWaitTime_l();
   5588             if (thread->getOutput() == mOutput) {
   5589                 mOutput = NULL;
   5590             }
   5591             return;
   5592         }
   5593     }
   5594     ALOGV("removeOutputTrack(): unknown thread: %p", thread);
   5595 }
   5596 
   5597 // caller must hold mLock
   5598 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
   5599 {
   5600     mWaitTimeMs = UINT_MAX;
   5601     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   5602         sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
   5603         if (strong != 0) {
   5604             uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
   5605             if (waitTimeMs < mWaitTimeMs) {
   5606                 mWaitTimeMs = waitTimeMs;
   5607             }
   5608         }
   5609     }
   5610 }
   5611 
   5612 
   5613 bool AudioFlinger::DuplicatingThread::outputsReady(
   5614         const SortedVector< sp<OutputTrack> > &outputTracks)
   5615 {
   5616     for (size_t i = 0; i < outputTracks.size(); i++) {
   5617         sp<ThreadBase> thread = outputTracks[i]->thread().promote();
   5618         if (thread == 0) {
   5619             ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
   5620                     outputTracks[i].get());
   5621             return false;
   5622         }
   5623         PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
   5624         // see note at standby() declaration
   5625         if (playbackThread->standby() && !playbackThread->isSuspended()) {
   5626             ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
   5627                     thread.get());
   5628             return false;
   5629         }
   5630     }
   5631     return true;
   5632 }
   5633 
   5634 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
   5635 {
   5636     return (mWaitTimeMs * 1000) / 2;
   5637 }
   5638 
   5639 void AudioFlinger::DuplicatingThread::cacheParameters_l()
   5640 {
   5641     // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
   5642     updateWaitTime_l();
   5643 
   5644     MixerThread::cacheParameters_l();
   5645 }
   5646 
   5647 // ----------------------------------------------------------------------------
   5648 //      Record
   5649 // ----------------------------------------------------------------------------
   5650 
   5651 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
   5652                                          AudioStreamIn *input,
   5653                                          audio_io_handle_t id,
   5654                                          audio_devices_t outDevice,
   5655                                          audio_devices_t inDevice,
   5656                                          bool systemReady
   5657 #ifdef TEE_SINK
   5658                                          , const sp<NBAIO_Sink>& teeSink
   5659 #endif
   5660                                          ) :
   5661     ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
   5662     mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
   5663     // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
   5664     mRsmpInRear(0)
   5665 #ifdef TEE_SINK
   5666     , mTeeSink(teeSink)
   5667 #endif
   5668     , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
   5669             "RecordThreadRO", MemoryHeapBase::READ_ONLY))
   5670     // mFastCapture below
   5671     , mFastCaptureFutex(0)
   5672     // mInputSource
   5673     // mPipeSink
   5674     // mPipeSource
   5675     , mPipeFramesP2(0)
   5676     // mPipeMemory
   5677     // mFastCaptureNBLogWriter
   5678     , mFastTrackAvail(false)
   5679 {
   5680     snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
   5681     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
   5682 
   5683     readInputParameters_l();
   5684 
   5685     // create an NBAIO source for the HAL input stream, and negotiate
   5686     mInputSource = new AudioStreamInSource(input->stream);
   5687     size_t numCounterOffers = 0;
   5688     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
   5689 #if !LOG_NDEBUG
   5690     ssize_t index =
   5691 #else
   5692     (void)
   5693 #endif
   5694             mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
   5695     ALOG_ASSERT(index == 0);
   5696 
   5697     // initialize fast capture depending on configuration
   5698     bool initFastCapture;
   5699     switch (kUseFastCapture) {
   5700     case FastCapture_Never:
   5701         initFastCapture = false;
   5702         break;
   5703     case FastCapture_Always:
   5704         initFastCapture = true;
   5705         break;
   5706     case FastCapture_Static:
   5707         initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
   5708         break;
   5709     // case FastCapture_Dynamic:
   5710     }
   5711 
   5712     if (initFastCapture) {
   5713         // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
   5714         NBAIO_Format format = mInputSource->format();
   5715         size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
   5716         size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
   5717         void *pipeBuffer;
   5718         const sp<MemoryDealer> roHeap(readOnlyHeap());
   5719         sp<IMemory> pipeMemory;
   5720         if ((roHeap == 0) ||
   5721                 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
   5722                 (pipeBuffer = pipeMemory->pointer()) == NULL) {
   5723             ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
   5724             goto failed;
   5725         }
   5726         // pipe will be shared directly with fast clients, so clear to avoid leaking old information
   5727         memset(pipeBuffer, 0, pipeSize);
   5728         Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
   5729         const NBAIO_Format offers[1] = {format};
   5730         size_t numCounterOffers = 0;
   5731         ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
   5732         ALOG_ASSERT(index == 0);
   5733         mPipeSink = pipe;
   5734         PipeReader *pipeReader = new PipeReader(*pipe);
   5735         numCounterOffers = 0;
   5736         index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
   5737         ALOG_ASSERT(index == 0);
   5738         mPipeSource = pipeReader;
   5739         mPipeFramesP2 = pipeFramesP2;
   5740         mPipeMemory = pipeMemory;
   5741 
   5742         // create fast capture
   5743         mFastCapture = new FastCapture();
   5744         FastCaptureStateQueue *sq = mFastCapture->sq();
   5745 #ifdef STATE_QUEUE_DUMP
   5746         // FIXME
   5747 #endif
   5748         FastCaptureState *state = sq->begin();
   5749         state->mCblk = NULL;
   5750         state->mInputSource = mInputSource.get();
   5751         state->mInputSourceGen++;
   5752         state->mPipeSink = pipe;
   5753         state->mPipeSinkGen++;
   5754         state->mFrameCount = mFrameCount;
   5755         state->mCommand = FastCaptureState::COLD_IDLE;
   5756         // already done in constructor initialization list
   5757         //mFastCaptureFutex = 0;
   5758         state->mColdFutexAddr = &mFastCaptureFutex;
   5759         state->mColdGen++;
   5760         state->mDumpState = &mFastCaptureDumpState;
   5761 #ifdef TEE_SINK
   5762         // FIXME
   5763 #endif
   5764         mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
   5765         state->mNBLogWriter = mFastCaptureNBLogWriter.get();
   5766         sq->end();
   5767         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
   5768 
   5769         // start the fast capture
   5770         mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
   5771         pid_t tid = mFastCapture->getTid();
   5772         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
   5773 #ifdef AUDIO_WATCHDOG
   5774         // FIXME
   5775 #endif
   5776 
   5777         mFastTrackAvail = true;
   5778     }
   5779 failed: ;
   5780 
   5781     // FIXME mNormalSource
   5782 }
   5783 
   5784 AudioFlinger::RecordThread::~RecordThread()
   5785 {
   5786     if (mFastCapture != 0) {
   5787         FastCaptureStateQueue *sq = mFastCapture->sq();
   5788         FastCaptureState *state = sq->begin();
   5789         if (state->mCommand == FastCaptureState::COLD_IDLE) {
   5790             int32_t old = android_atomic_inc(&mFastCaptureFutex);
   5791             if (old == -1) {
   5792                 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
   5793             }
   5794         }
   5795         state->mCommand = FastCaptureState::EXIT;
   5796         sq->end();
   5797         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
   5798         mFastCapture->join();
   5799         mFastCapture.clear();
   5800     }
   5801     mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
   5802     mAudioFlinger->unregisterWriter(mNBLogWriter);
   5803     free(mRsmpInBuffer);
   5804 }
   5805 
   5806 void AudioFlinger::RecordThread::onFirstRef()
   5807 {
   5808     run(mThreadName, PRIORITY_URGENT_AUDIO);
   5809 }
   5810 
   5811 bool AudioFlinger::RecordThread::threadLoop()
   5812 {
   5813     nsecs_t lastWarning = 0;
   5814 
   5815     inputStandBy();
   5816 
   5817 reacquire_wakelock:
   5818     sp<RecordTrack> activeTrack;
   5819     int activeTracksGen;
   5820     {
   5821         Mutex::Autolock _l(mLock);
   5822         size_t size = mActiveTracks.size();
   5823         activeTracksGen = mActiveTracksGen;
   5824         if (size > 0) {
   5825             // FIXME an arbitrary choice
   5826             activeTrack = mActiveTracks[0];
   5827             acquireWakeLock_l(activeTrack->uid());
   5828             if (size > 1) {
   5829                 SortedVector<int> tmp;
   5830                 for (size_t i = 0; i < size; i++) {
   5831                     tmp.add(mActiveTracks[i]->uid());
   5832                 }
   5833                 updateWakeLockUids_l(tmp);
   5834             }
   5835         } else {
   5836             acquireWakeLock_l(-1);
   5837         }
   5838     }
   5839 
   5840     // used to request a deferred sleep, to be executed later while mutex is unlocked
   5841     uint32_t sleepUs = 0;
   5842 
   5843     // loop while there is work to do
   5844     for (;;) {
   5845         Vector< sp<EffectChain> > effectChains;
   5846 
   5847         // sleep with mutex unlocked
   5848         if (sleepUs > 0) {
   5849             ATRACE_BEGIN("sleep");
   5850             usleep(sleepUs);
   5851             ATRACE_END();
   5852             sleepUs = 0;
   5853         }
   5854 
   5855         // activeTracks accumulates a copy of a subset of mActiveTracks
   5856         Vector< sp<RecordTrack> > activeTracks;
   5857 
   5858         // reference to the (first and only) active fast track
   5859         sp<RecordTrack> fastTrack;
   5860 
   5861         // reference to a fast track which is about to be removed
   5862         sp<RecordTrack> fastTrackToRemove;
   5863 
   5864         { // scope for mLock
   5865             Mutex::Autolock _l(mLock);
   5866 
   5867             processConfigEvents_l();
   5868 
   5869             // check exitPending here because checkForNewParameters_l() and
   5870             // checkForNewParameters_l() can temporarily release mLock
   5871             if (exitPending()) {
   5872                 break;
   5873             }
   5874 
   5875             // if no active track(s), then standby and release wakelock
   5876             size_t size = mActiveTracks.size();
   5877             if (size == 0) {
   5878                 standbyIfNotAlreadyInStandby();
   5879                 // exitPending() can't become true here
   5880                 releaseWakeLock_l();
   5881                 ALOGV("RecordThread: loop stopping");
   5882                 // go to sleep
   5883                 mWaitWorkCV.wait(mLock);
   5884                 ALOGV("RecordThread: loop starting");
   5885                 goto reacquire_wakelock;
   5886             }
   5887 
   5888             if (mActiveTracksGen != activeTracksGen) {
   5889                 activeTracksGen = mActiveTracksGen;
   5890                 SortedVector<int> tmp;
   5891                 for (size_t i = 0; i < size; i++) {
   5892                     tmp.add(mActiveTracks[i]->uid());
   5893                 }
   5894                 updateWakeLockUids_l(tmp);
   5895             }
   5896 
   5897             bool doBroadcast = false;
   5898             for (size_t i = 0; i < size; ) {
   5899 
   5900                 activeTrack = mActiveTracks[i];
   5901                 if (activeTrack->isTerminated()) {
   5902                     if (activeTrack->isFastTrack()) {
   5903                         ALOG_ASSERT(fastTrackToRemove == 0);
   5904                         fastTrackToRemove = activeTrack;
   5905                     }
   5906                     removeTrack_l(activeTrack);
   5907                     mActiveTracks.remove(activeTrack);
   5908                     mActiveTracksGen++;
   5909                     size--;
   5910                     continue;
   5911                 }
   5912 
   5913                 TrackBase::track_state activeTrackState = activeTrack->mState;
   5914                 switch (activeTrackState) {
   5915 
   5916                 case TrackBase::PAUSING:
   5917                     mActiveTracks.remove(activeTrack);
   5918                     mActiveTracksGen++;
   5919                     doBroadcast = true;
   5920                     size--;
   5921                     continue;
   5922 
   5923                 case TrackBase::STARTING_1:
   5924                     sleepUs = 10000;
   5925                     i++;
   5926                     continue;
   5927 
   5928                 case TrackBase::STARTING_2:
   5929                     doBroadcast = true;
   5930                     mStandby = false;
   5931                     activeTrack->mState = TrackBase::ACTIVE;
   5932                     break;
   5933 
   5934                 case TrackBase::ACTIVE:
   5935                     break;
   5936 
   5937                 case TrackBase::IDLE:
   5938                     i++;
   5939                     continue;
   5940 
   5941                 default:
   5942                     LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
   5943                 }
   5944 
   5945                 activeTracks.add(activeTrack);
   5946                 i++;
   5947 
   5948                 if (activeTrack->isFastTrack()) {
   5949                     ALOG_ASSERT(!mFastTrackAvail);
   5950                     ALOG_ASSERT(fastTrack == 0);
   5951                     fastTrack = activeTrack;
   5952                 }
   5953             }
   5954             if (doBroadcast) {
   5955                 mStartStopCond.broadcast();
   5956             }
   5957 
   5958             // sleep if there are no active tracks to process
   5959             if (activeTracks.size() == 0) {
   5960                 if (sleepUs == 0) {
   5961                     sleepUs = kRecordThreadSleepUs;
   5962                 }
   5963                 continue;
   5964             }
   5965             sleepUs = 0;
   5966 
   5967             lockEffectChains_l(effectChains);
   5968         }
   5969 
   5970         // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
   5971 
   5972         size_t size = effectChains.size();
   5973         for (size_t i = 0; i < size; i++) {
   5974             // thread mutex is not locked, but effect chain is locked
   5975             effectChains[i]->process_l();
   5976         }
   5977 
   5978         // Push a new fast capture state if fast capture is not already running, or cblk change
   5979         if (mFastCapture != 0) {
   5980             FastCaptureStateQueue *sq = mFastCapture->sq();
   5981             FastCaptureState *state = sq->begin();
   5982             bool didModify = false;
   5983             FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
   5984             if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
   5985                     (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
   5986                 if (state->mCommand == FastCaptureState::COLD_IDLE) {
   5987                     int32_t old = android_atomic_inc(&mFastCaptureFutex);
   5988                     if (old == -1) {
   5989                         (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
   5990                     }
   5991                 }
   5992                 state->mCommand = FastCaptureState::READ_WRITE;
   5993 #if 0   // FIXME
   5994                 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
   5995                         FastThreadDumpState::kSamplingNforLowRamDevice :
   5996                         FastThreadDumpState::kSamplingN);
   5997 #endif
   5998                 didModify = true;
   5999             }
   6000             audio_track_cblk_t *cblkOld = state->mCblk;
   6001             audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
   6002             if (cblkNew != cblkOld) {
   6003                 state->mCblk = cblkNew;
   6004                 // block until acked if removing a fast track
   6005                 if (cblkOld != NULL) {
   6006                     block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
   6007                 }
   6008                 didModify = true;
   6009             }
   6010             sq->end(didModify);
   6011             if (didModify) {
   6012                 sq->push(block);
   6013 #if 0
   6014                 if (kUseFastCapture == FastCapture_Dynamic) {
   6015                     mNormalSource = mPipeSource;
   6016                 }
   6017 #endif
   6018             }
   6019         }
   6020 
   6021         // now run the fast track destructor with thread mutex unlocked
   6022         fastTrackToRemove.clear();
   6023 
   6024         // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
   6025         // Only the client(s) that are too slow will overrun. But if even the fastest client is too
   6026         // slow, then this RecordThread will overrun by not calling HAL read often enough.
   6027         // If destination is non-contiguous, first read past the nominal end of buffer, then
   6028         // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
   6029 
   6030         int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
   6031         ssize_t framesRead;
   6032 
   6033         // If an NBAIO source is present, use it to read the normal capture's data
   6034         if (mPipeSource != 0) {
   6035             size_t framesToRead = mBufferSize / mFrameSize;
   6036             framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
   6037                     framesToRead);
   6038             if (framesRead == 0) {
   6039                 // since pipe is non-blocking, simulate blocking input
   6040                 sleepUs = (framesToRead * 1000000LL) / mSampleRate;
   6041             }
   6042         // otherwise use the HAL / AudioStreamIn directly
   6043         } else {
   6044             ATRACE_BEGIN("read");
   6045             ssize_t bytesRead = mInput->stream->read(mInput->stream,
   6046                     (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
   6047             ATRACE_END();
   6048             if (bytesRead < 0) {
   6049                 framesRead = bytesRead;
   6050             } else {
   6051                 framesRead = bytesRead / mFrameSize;
   6052             }
   6053         }
   6054 
   6055         // Update server timestamp with server stats
   6056         // systemTime() is optional if the hardware supports timestamps.
   6057         mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
   6058         mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
   6059 
   6060         // Update server timestamp with kernel stats
   6061         if (mInput->stream->get_capture_position != nullptr) {
   6062             int64_t position, time;
   6063             int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
   6064             if (ret == NO_ERROR) {
   6065                 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
   6066                 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
   6067                 // Note: In general record buffers should tend to be empty in
   6068                 // a properly running pipeline.
   6069                 //
   6070                 // Also, it is not advantageous to call get_presentation_position during the read
   6071                 // as the read obtains a lock, preventing the timestamp call from executing.
   6072             }
   6073         }
   6074         // Use this to track timestamp information
   6075         // ALOGD("%s", mTimestamp.toString().c_str());
   6076 
   6077         if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
   6078             ALOGE("read failed: framesRead=%zd", framesRead);
   6079             // Force input into standby so that it tries to recover at next read attempt
   6080             inputStandBy();
   6081             sleepUs = kRecordThreadSleepUs;
   6082         }
   6083         if (framesRead <= 0) {
   6084             goto unlock;
   6085         }
   6086         ALOG_ASSERT(framesRead > 0);
   6087 
   6088         if (mTeeSink != 0) {
   6089             (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
   6090         }
   6091         // If destination is non-contiguous, we now correct for reading past end of buffer.
   6092         {
   6093             size_t part1 = mRsmpInFramesP2 - rear;
   6094             if ((size_t) framesRead > part1) {
   6095                 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
   6096                         (framesRead - part1) * mFrameSize);
   6097             }
   6098         }
   6099         rear = mRsmpInRear += framesRead;
   6100 
   6101         size = activeTracks.size();
   6102         // loop over each active track
   6103         for (size_t i = 0; i < size; i++) {
   6104             activeTrack = activeTracks[i];
   6105 
   6106             // skip fast tracks, as those are handled directly by FastCapture
   6107             if (activeTrack->isFastTrack()) {
   6108                 continue;
   6109             }
   6110 
   6111             // TODO: This code probably should be moved to RecordTrack.
   6112             // TODO: Update the activeTrack buffer converter in case of reconfigure.
   6113 
   6114             enum {
   6115                 OVERRUN_UNKNOWN,
   6116                 OVERRUN_TRUE,
   6117                 OVERRUN_FALSE
   6118             } overrun = OVERRUN_UNKNOWN;
   6119 
   6120             // loop over getNextBuffer to handle circular sink
   6121             for (;;) {
   6122 
   6123                 activeTrack->mSink.frameCount = ~0;
   6124                 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
   6125                 size_t framesOut = activeTrack->mSink.frameCount;
   6126                 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
   6127 
   6128                 // check available frames and handle overrun conditions
   6129                 // if the record track isn't draining fast enough.
   6130                 bool hasOverrun;
   6131                 size_t framesIn;
   6132                 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
   6133                 if (hasOverrun) {
   6134                     overrun = OVERRUN_TRUE;
   6135                 }
   6136                 if (framesOut == 0 || framesIn == 0) {
   6137                     break;
   6138                 }
   6139 
   6140                 // Don't allow framesOut to be larger than what is possible with resampling
   6141                 // from framesIn.
   6142                 // This isn't strictly necessary but helps limit buffer resizing in
   6143                 // RecordBufferConverter.  TODO: remove when no longer needed.
   6144                 framesOut = min(framesOut,
   6145                         destinationFramesPossible(
   6146                                 framesIn, mSampleRate, activeTrack->mSampleRate));
   6147                 // process frames from the RecordThread buffer provider to the RecordTrack buffer
   6148                 framesOut = activeTrack->mRecordBufferConverter->convert(
   6149                         activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
   6150 
   6151                 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
   6152                     overrun = OVERRUN_FALSE;
   6153                 }
   6154 
   6155                 if (activeTrack->mFramesToDrop == 0) {
   6156                     if (framesOut > 0) {
   6157                         activeTrack->mSink.frameCount = framesOut;
   6158                         activeTrack->releaseBuffer(&activeTrack->mSink);
   6159                     }
   6160                 } else {
   6161                     // FIXME could do a partial drop of framesOut
   6162                     if (activeTrack->mFramesToDrop > 0) {
   6163                         activeTrack->mFramesToDrop -= framesOut;
   6164                         if (activeTrack->mFramesToDrop <= 0) {
   6165                             activeTrack->clearSyncStartEvent();
   6166                         }
   6167                     } else {
   6168                         activeTrack->mFramesToDrop += framesOut;
   6169                         if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
   6170                                 activeTrack->mSyncStartEvent->isCancelled()) {
   6171                             ALOGW("Synced record %s, session %d, trigger session %d",
   6172                                   (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
   6173                                   activeTrack->sessionId(),
   6174                                   (activeTrack->mSyncStartEvent != 0) ?
   6175                                           activeTrack->mSyncStartEvent->triggerSession() :
   6176                                           AUDIO_SESSION_NONE);
   6177                             activeTrack->clearSyncStartEvent();
   6178                         }
   6179                     }
   6180                 }
   6181 
   6182                 if (framesOut == 0) {
   6183                     break;
   6184                 }
   6185             }
   6186 
   6187             switch (overrun) {
   6188             case OVERRUN_TRUE:
   6189                 // client isn't retrieving buffers fast enough
   6190                 if (!activeTrack->setOverflow()) {
   6191                     nsecs_t now = systemTime();
   6192                     // FIXME should lastWarning per track?
   6193                     if ((now - lastWarning) > kWarningThrottleNs) {
   6194                         ALOGW("RecordThread: buffer overflow");
   6195                         lastWarning = now;
   6196                     }
   6197                 }
   6198                 break;
   6199             case OVERRUN_FALSE:
   6200                 activeTrack->clearOverflow();
   6201                 break;
   6202             case OVERRUN_UNKNOWN:
   6203                 break;
   6204             }
   6205 
   6206             // update frame information and push timestamp out
   6207             activeTrack->updateTrackFrameInfo(
   6208                     activeTrack->mServerProxy->framesReleased(),
   6209                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
   6210                     mSampleRate, mTimestamp);
   6211         }
   6212 
   6213 unlock:
   6214         // enable changes in effect chain
   6215         unlockEffectChains(effectChains);
   6216         // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
   6217     }
   6218 
   6219     standbyIfNotAlreadyInStandby();
   6220 
   6221     {
   6222         Mutex::Autolock _l(mLock);
   6223         for (size_t i = 0; i < mTracks.size(); i++) {
   6224             sp<RecordTrack> track = mTracks[i];
   6225             track->invalidate();
   6226         }
   6227         mActiveTracks.clear();
   6228         mActiveTracksGen++;
   6229         mStartStopCond.broadcast();
   6230     }
   6231 
   6232     releaseWakeLock();
   6233 
   6234     ALOGV("RecordThread %p exiting", this);
   6235     return false;
   6236 }
   6237 
   6238 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
   6239 {
   6240     if (!mStandby) {
   6241         inputStandBy();
   6242         mStandby = true;
   6243     }
   6244 }
   6245 
   6246 void AudioFlinger::RecordThread::inputStandBy()
   6247 {
   6248     // Idle the fast capture if it's currently running
   6249     if (mFastCapture != 0) {
   6250         FastCaptureStateQueue *sq = mFastCapture->sq();
   6251         FastCaptureState *state = sq->begin();
   6252         if (!(state->mCommand & FastCaptureState::IDLE)) {
   6253             state->mCommand = FastCaptureState::COLD_IDLE;
   6254             state->mColdFutexAddr = &mFastCaptureFutex;
   6255             state->mColdGen++;
   6256             mFastCaptureFutex = 0;
   6257             sq->end();
   6258             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
   6259             sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
   6260 #if 0
   6261             if (kUseFastCapture == FastCapture_Dynamic) {
   6262                 // FIXME
   6263             }
   6264 #endif
   6265 #ifdef AUDIO_WATCHDOG
   6266             // FIXME
   6267 #endif
   6268         } else {
   6269             sq->end(false /*didModify*/);
   6270         }
   6271     }
   6272     mInput->stream->common.standby(&mInput->stream->common);
   6273 }
   6274 
   6275 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
   6276 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
   6277         const sp<AudioFlinger::Client>& client,
   6278         uint32_t sampleRate,
   6279         audio_format_t format,
   6280         audio_channel_mask_t channelMask,
   6281         size_t *pFrameCount,
   6282         audio_session_t sessionId,
   6283         size_t *notificationFrames,
   6284         int uid,
   6285         IAudioFlinger::track_flags_t *flags,
   6286         pid_t tid,
   6287         status_t *status)
   6288 {
   6289     size_t frameCount = *pFrameCount;
   6290     sp<RecordTrack> track;
   6291     status_t lStatus;
   6292 
   6293     // client expresses a preference for FAST, but we get the final say
   6294     if (*flags & IAudioFlinger::TRACK_FAST) {
   6295       if (
   6296             // we formerly checked for a callback handler (non-0 tid),
   6297             // but that is no longer required for TRANSFER_OBTAIN mode
   6298             //
   6299             // frame count is not specified, or is exactly the pipe depth
   6300             ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
   6301             // PCM data
   6302             audio_is_linear_pcm(format) &&
   6303             // hardware format
   6304             (format == mFormat) &&
   6305             // hardware channel mask
   6306             (channelMask == mChannelMask) &&
   6307             // hardware sample rate
   6308             (sampleRate == mSampleRate) &&
   6309             // record thread has an associated fast capture
   6310             hasFastCapture() &&
   6311             // there are sufficient fast track slots available
   6312             mFastTrackAvail
   6313         ) {
   6314         ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
   6315                 frameCount, mFrameCount);
   6316       } else {
   6317         ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
   6318                 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
   6319                 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
   6320                 frameCount, mFrameCount, mPipeFramesP2,
   6321                 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
   6322                 hasFastCapture(), tid, mFastTrackAvail);
   6323         *flags &= ~IAudioFlinger::TRACK_FAST;
   6324       }
   6325     }
   6326 
   6327     // compute track buffer size in frames, and suggest the notification frame count
   6328     if (*flags & IAudioFlinger::TRACK_FAST) {
   6329         // fast track: frame count is exactly the pipe depth
   6330         frameCount = mPipeFramesP2;
   6331         // ignore requested notificationFrames, and always notify exactly once every HAL buffer
   6332         *notificationFrames = mFrameCount;
   6333     } else {
   6334         // not fast track: max notification period is resampled equivalent of one HAL buffer time
   6335         //                 or 20 ms if there is a fast capture
   6336         // TODO This could be a roundupRatio inline, and const
   6337         size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
   6338                 * sampleRate + mSampleRate - 1) / mSampleRate;
   6339         // minimum number of notification periods is at least kMinNotifications,
   6340         // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
   6341         static const size_t kMinNotifications = 3;
   6342         static const uint32_t kMinMs = 30;
   6343         // TODO This could be a roundupRatio inline
   6344         const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
   6345         // TODO This could be a roundupRatio inline
   6346         const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
   6347                 maxNotificationFrames;
   6348         const size_t minFrameCount = maxNotificationFrames *
   6349                 max(kMinNotifications, minNotificationsByMs);
   6350         frameCount = max(frameCount, minFrameCount);
   6351         if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
   6352             *notificationFrames = maxNotificationFrames;
   6353         }
   6354     }
   6355     *pFrameCount = frameCount;
   6356 
   6357     lStatus = initCheck();
   6358     if (lStatus != NO_ERROR) {
   6359         ALOGE("createRecordTrack_l() audio driver not initialized");
   6360         goto Exit;
   6361     }
   6362 
   6363     { // scope for mLock
   6364         Mutex::Autolock _l(mLock);
   6365 
   6366         track = new RecordTrack(this, client, sampleRate,
   6367                       format, channelMask, frameCount, NULL, sessionId, uid,
   6368                       *flags, TrackBase::TYPE_DEFAULT);
   6369 
   6370         lStatus = track->initCheck();
   6371         if (lStatus != NO_ERROR) {
   6372             ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
   6373             // track must be cleared from the caller as the caller has the AF lock
   6374             goto Exit;
   6375         }
   6376         mTracks.add(track);
   6377 
   6378         // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
   6379         bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   6380                         mAudioFlinger->btNrecIsOff();
   6381         setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
   6382         setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
   6383 
   6384         if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
   6385             pid_t callingPid = IPCThreadState::self()->getCallingPid();
   6386             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
   6387             // so ask activity manager to do this on our behalf
   6388             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
   6389         }
   6390     }
   6391 
   6392     lStatus = NO_ERROR;
   6393 
   6394 Exit:
   6395     *status = lStatus;
   6396     return track;
   6397 }
   6398 
   6399 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
   6400                                            AudioSystem::sync_event_t event,
   6401                                            audio_session_t triggerSession)
   6402 {
   6403     ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
   6404     sp<ThreadBase> strongMe = this;
   6405     status_t status = NO_ERROR;
   6406 
   6407     if (event == AudioSystem::SYNC_EVENT_NONE) {
   6408         recordTrack->clearSyncStartEvent();
   6409     } else if (event != AudioSystem::SYNC_EVENT_SAME) {
   6410         recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
   6411                                        triggerSession,
   6412                                        recordTrack->sessionId(),
   6413                                        syncStartEventCallback,
   6414                                        recordTrack);
   6415         // Sync event can be cancelled by the trigger session if the track is not in a
   6416         // compatible state in which case we start record immediately
   6417         if (recordTrack->mSyncStartEvent->isCancelled()) {
   6418             recordTrack->clearSyncStartEvent();
   6419         } else {
   6420             // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
   6421             recordTrack->mFramesToDrop = -
   6422                     ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
   6423         }
   6424     }
   6425 
   6426     {
   6427         // This section is a rendezvous between binder thread executing start() and RecordThread
   6428         AutoMutex lock(mLock);
   6429         if (mActiveTracks.indexOf(recordTrack) >= 0) {
   6430             if (recordTrack->mState == TrackBase::PAUSING) {
   6431                 ALOGV("active record track PAUSING -> ACTIVE");
   6432                 recordTrack->mState = TrackBase::ACTIVE;
   6433             } else {
   6434                 ALOGV("active record track state %d", recordTrack->mState);
   6435             }
   6436             return status;
   6437         }
   6438 
   6439         // TODO consider other ways of handling this, such as changing the state to :STARTING and
   6440         //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
   6441         //      or using a separate command thread
   6442         recordTrack->mState = TrackBase::STARTING_1;
   6443         mActiveTracks.add(recordTrack);
   6444         mActiveTracksGen++;
   6445         status_t status = NO_ERROR;
   6446         if (recordTrack->isExternalTrack()) {
   6447             mLock.unlock();
   6448             status = AudioSystem::startInput(mId, recordTrack->sessionId());
   6449             mLock.lock();
   6450             // FIXME should verify that recordTrack is still in mActiveTracks
   6451             if (status != NO_ERROR) {
   6452                 mActiveTracks.remove(recordTrack);
   6453                 mActiveTracksGen++;
   6454                 recordTrack->clearSyncStartEvent();
   6455                 ALOGV("RecordThread::start error %d", status);
   6456                 return status;
   6457             }
   6458         }
   6459         // Catch up with current buffer indices if thread is already running.
   6460         // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
   6461         // was initialized to some value closer to the thread's mRsmpInFront, then the track could
   6462         // see previously buffered data before it called start(), but with greater risk of overrun.
   6463 
   6464         recordTrack->mResamplerBufferProvider->reset();
   6465         // clear any converter state as new data will be discontinuous
   6466         recordTrack->mRecordBufferConverter->reset();
   6467         recordTrack->mState = TrackBase::STARTING_2;
   6468         // signal thread to start
   6469         mWaitWorkCV.broadcast();
   6470         if (mActiveTracks.indexOf(recordTrack) < 0) {
   6471             ALOGV("Record failed to start");
   6472             status = BAD_VALUE;
   6473             goto startError;
   6474         }
   6475         return status;
   6476     }
   6477 
   6478 startError:
   6479     if (recordTrack->isExternalTrack()) {
   6480         AudioSystem::stopInput(mId, recordTrack->sessionId());
   6481     }
   6482     recordTrack->clearSyncStartEvent();
   6483     // FIXME I wonder why we do not reset the state here?
   6484     return status;
   6485 }
   6486 
   6487 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
   6488 {
   6489     sp<SyncEvent> strongEvent = event.promote();
   6490 
   6491     if (strongEvent != 0) {
   6492         sp<RefBase> ptr = strongEvent->cookie().promote();
   6493         if (ptr != 0) {
   6494             RecordTrack *recordTrack = (RecordTrack *)ptr.get();
   6495             recordTrack->handleSyncStartEvent(strongEvent);
   6496         }
   6497     }
   6498 }
   6499 
   6500 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
   6501     ALOGV("RecordThread::stop");
   6502     AutoMutex _l(mLock);
   6503     if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
   6504         return false;
   6505     }
   6506     // note that threadLoop may still be processing the track at this point [without lock]
   6507     recordTrack->mState = TrackBase::PAUSING;
   6508     // do not wait for mStartStopCond if exiting
   6509     if (exitPending()) {
   6510         return true;
   6511     }
   6512     // FIXME incorrect usage of wait: no explicit predicate or loop
   6513     mStartStopCond.wait(mLock);
   6514     // if we have been restarted, recordTrack is in mActiveTracks here
   6515     if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
   6516         ALOGV("Record stopped OK");
   6517         return true;
   6518     }
   6519     return false;
   6520 }
   6521 
   6522 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
   6523 {
   6524     return false;
   6525 }
   6526 
   6527 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
   6528 {
   6529 #if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
   6530     if (!isValidSyncEvent(event)) {
   6531         return BAD_VALUE;
   6532     }
   6533 
   6534     audio_session_t eventSession = event->triggerSession();
   6535     status_t ret = NAME_NOT_FOUND;
   6536 
   6537     Mutex::Autolock _l(mLock);
   6538 
   6539     for (size_t i = 0; i < mTracks.size(); i++) {
   6540         sp<RecordTrack> track = mTracks[i];
   6541         if (eventSession == track->sessionId()) {
   6542             (void) track->setSyncEvent(event);
   6543             ret = NO_ERROR;
   6544         }
   6545     }
   6546     return ret;
   6547 #else
   6548     return BAD_VALUE;
   6549 #endif
   6550 }
   6551 
   6552 // destroyTrack_l() must be called with ThreadBase::mLock held
   6553 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
   6554 {
   6555     track->terminate();
   6556     track->mState = TrackBase::STOPPED;
   6557     // active tracks are removed by threadLoop()
   6558     if (mActiveTracks.indexOf(track) < 0) {
   6559         removeTrack_l(track);
   6560     }
   6561 }
   6562 
   6563 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
   6564 {
   6565     mTracks.remove(track);
   6566     // need anything related to effects here?
   6567     if (track->isFastTrack()) {
   6568         ALOG_ASSERT(!mFastTrackAvail);
   6569         mFastTrackAvail = true;
   6570     }
   6571 }
   6572 
   6573 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
   6574 {
   6575     dumpInternals(fd, args);
   6576     dumpTracks(fd, args);
   6577     dumpEffectChains(fd, args);
   6578 }
   6579 
   6580 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
   6581 {
   6582     dprintf(fd, "\nInput thread %p:\n", this);
   6583 
   6584     dumpBase(fd, args);
   6585 
   6586     if (mActiveTracks.size() == 0) {
   6587         dprintf(fd, "  No active record clients\n");
   6588     }
   6589     dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
   6590     dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
   6591 
   6592     // Make a non-atomic copy of fast capture dump state so it won't change underneath us
   6593     // while we are dumping it.  It may be inconsistent, but it won't mutate!
   6594     // This is a large object so we place it on the heap.
   6595     // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
   6596     const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
   6597     copy->dump(fd);
   6598     delete copy;
   6599 }
   6600 
   6601 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
   6602 {
   6603     const size_t SIZE = 256;
   6604     char buffer[SIZE];
   6605     String8 result;
   6606 
   6607     size_t numtracks = mTracks.size();
   6608     size_t numactive = mActiveTracks.size();
   6609     size_t numactiveseen = 0;
   6610     dprintf(fd, "  %zu Tracks", numtracks);
   6611     if (numtracks) {
   6612         dprintf(fd, " of which %zu are active\n", numactive);
   6613         RecordTrack::appendDumpHeader(result);
   6614         for (size_t i = 0; i < numtracks ; ++i) {
   6615             sp<RecordTrack> track = mTracks[i];
   6616             if (track != 0) {
   6617                 bool active = mActiveTracks.indexOf(track) >= 0;
   6618                 if (active) {
   6619                     numactiveseen++;
   6620                 }
   6621                 track->dump(buffer, SIZE, active);
   6622                 result.append(buffer);
   6623             }
   6624         }
   6625     } else {
   6626         dprintf(fd, "\n");
   6627     }
   6628 
   6629     if (numactiveseen != numactive) {
   6630         snprintf(buffer, SIZE, "  The following tracks are in the active list but"
   6631                 " not in the track list\n");
   6632         result.append(buffer);
   6633         RecordTrack::appendDumpHeader(result);
   6634         for (size_t i = 0; i < numactive; ++i) {
   6635             sp<RecordTrack> track = mActiveTracks[i];
   6636             if (mTracks.indexOf(track) < 0) {
   6637                 track->dump(buffer, SIZE, true);
   6638                 result.append(buffer);
   6639             }
   6640         }
   6641 
   6642     }
   6643     write(fd, result.string(), result.size());
   6644 }
   6645 
   6646 
   6647 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
   6648 {
   6649     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
   6650     RecordThread *recordThread = (RecordThread *) threadBase.get();
   6651     mRsmpInFront = recordThread->mRsmpInRear;
   6652     mRsmpInUnrel = 0;
   6653 }
   6654 
   6655 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
   6656         size_t *framesAvailable, bool *hasOverrun)
   6657 {
   6658     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
   6659     RecordThread *recordThread = (RecordThread *) threadBase.get();
   6660     const int32_t rear = recordThread->mRsmpInRear;
   6661     const int32_t front = mRsmpInFront;
   6662     const ssize_t filled = rear - front;
   6663 
   6664     size_t framesIn;
   6665     bool overrun = false;
   6666     if (filled < 0) {
   6667         // should not happen, but treat like a massive overrun and re-sync
   6668         framesIn = 0;
   6669         mRsmpInFront = rear;
   6670         overrun = true;
   6671     } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
   6672         framesIn = (size_t) filled;
   6673     } else {
   6674         // client is not keeping up with server, but give it latest data
   6675         framesIn = recordThread->mRsmpInFrames;
   6676         mRsmpInFront = /* front = */ rear - framesIn;
   6677         overrun = true;
   6678     }
   6679     if (framesAvailable != NULL) {
   6680         *framesAvailable = framesIn;
   6681     }
   6682     if (hasOverrun != NULL) {
   6683         *hasOverrun = overrun;
   6684     }
   6685 }
   6686 
   6687 // AudioBufferProvider interface
   6688 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
   6689         AudioBufferProvider::Buffer* buffer)
   6690 {
   6691     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
   6692     if (threadBase == 0) {
   6693         buffer->frameCount = 0;
   6694         buffer->raw = NULL;
   6695         return NOT_ENOUGH_DATA;
   6696     }
   6697     RecordThread *recordThread = (RecordThread *) threadBase.get();
   6698     int32_t rear = recordThread->mRsmpInRear;
   6699     int32_t front = mRsmpInFront;
   6700     ssize_t filled = rear - front;
   6701     // FIXME should not be P2 (don't want to increase latency)
   6702     // FIXME if client not keeping up, discard
   6703     LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
   6704     // 'filled' may be non-contiguous, so return only the first contiguous chunk
   6705     front &= recordThread->mRsmpInFramesP2 - 1;
   6706     size_t part1 = recordThread->mRsmpInFramesP2 - front;
   6707     if (part1 > (size_t) filled) {
   6708         part1 = filled;
   6709     }
   6710     size_t ask = buffer->frameCount;
   6711     ALOG_ASSERT(ask > 0);
   6712     if (part1 > ask) {
   6713         part1 = ask;
   6714     }
   6715     if (part1 == 0) {
   6716         // out of data is fine since the resampler will return a short-count.
   6717         buffer->raw = NULL;
   6718         buffer->frameCount = 0;
   6719         mRsmpInUnrel = 0;
   6720         return NOT_ENOUGH_DATA;
   6721     }
   6722 
   6723     buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
   6724     buffer->frameCount = part1;
   6725     mRsmpInUnrel = part1;
   6726     return NO_ERROR;
   6727 }
   6728 
   6729 // AudioBufferProvider interface
   6730 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
   6731         AudioBufferProvider::Buffer* buffer)
   6732 {
   6733     size_t stepCount = buffer->frameCount;
   6734     if (stepCount == 0) {
   6735         return;
   6736     }
   6737     ALOG_ASSERT(stepCount <= mRsmpInUnrel);
   6738     mRsmpInUnrel -= stepCount;
   6739     mRsmpInFront += stepCount;
   6740     buffer->raw = NULL;
   6741     buffer->frameCount = 0;
   6742 }
   6743 
   6744 AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
   6745         audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
   6746         uint32_t srcSampleRate,
   6747         audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
   6748         uint32_t dstSampleRate) :
   6749             mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
   6750             // mSrcFormat
   6751             // mSrcSampleRate
   6752             // mDstChannelMask
   6753             // mDstFormat
   6754             // mDstSampleRate
   6755             // mSrcChannelCount
   6756             // mDstChannelCount
   6757             // mDstFrameSize
   6758             mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
   6759             mResampler(NULL),
   6760             mIsLegacyDownmix(false),
   6761             mIsLegacyUpmix(false),
   6762             mRequiresFloat(false),
   6763             mInputConverterProvider(NULL)
   6764 {
   6765     (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
   6766             dstChannelMask, dstFormat, dstSampleRate);
   6767 }
   6768 
   6769 AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
   6770     free(mBuf);
   6771     delete mResampler;
   6772     delete mInputConverterProvider;
   6773 }
   6774 
   6775 size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
   6776         AudioBufferProvider *provider, size_t frames)
   6777 {
   6778     if (mInputConverterProvider != NULL) {
   6779         mInputConverterProvider->setBufferProvider(provider);
   6780         provider = mInputConverterProvider;
   6781     }
   6782 
   6783     if (mResampler == NULL) {
   6784         ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
   6785                 mSrcSampleRate, mSrcFormat, mDstFormat);
   6786 
   6787         AudioBufferProvider::Buffer buffer;
   6788         for (size_t i = frames; i > 0; ) {
   6789             buffer.frameCount = i;
   6790             status_t status = provider->getNextBuffer(&buffer);
   6791             if (status != OK || buffer.frameCount == 0) {
   6792                 frames -= i; // cannot fill request.
   6793                 break;
   6794             }
   6795             // format convert to destination buffer
   6796             convertNoResampler(dst, buffer.raw, buffer.frameCount);
   6797 
   6798             dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
   6799             i -= buffer.frameCount;
   6800             provider->releaseBuffer(&buffer);
   6801         }
   6802     } else {
   6803          ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
   6804                  mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
   6805 
   6806          // reallocate buffer if needed
   6807          if (mBufFrameSize != 0 && mBufFrames < frames) {
   6808              free(mBuf);
   6809              mBufFrames = frames;
   6810              (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
   6811          }
   6812         // resampler accumulates, but we only have one source track
   6813         memset(mBuf, 0, frames * mBufFrameSize);
   6814         frames = mResampler->resample((int32_t*)mBuf, frames, provider);
   6815         // format convert to destination buffer
   6816         convertResampler(dst, mBuf, frames);
   6817     }
   6818     return frames;
   6819 }
   6820 
   6821 status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
   6822         audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
   6823         uint32_t srcSampleRate,
   6824         audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
   6825         uint32_t dstSampleRate)
   6826 {
   6827     // quick evaluation if there is any change.
   6828     if (mSrcFormat == srcFormat
   6829             && mSrcChannelMask == srcChannelMask
   6830             && mSrcSampleRate == srcSampleRate
   6831             && mDstFormat == dstFormat
   6832             && mDstChannelMask == dstChannelMask
   6833             && mDstSampleRate == dstSampleRate) {
   6834         return NO_ERROR;
   6835     }
   6836 
   6837     ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
   6838             "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
   6839             srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
   6840     const bool valid =
   6841             audio_is_input_channel(srcChannelMask)
   6842             && audio_is_input_channel(dstChannelMask)
   6843             && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
   6844             && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
   6845             && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
   6846             ; // no upsampling checks for now
   6847     if (!valid) {
   6848         return BAD_VALUE;
   6849     }
   6850 
   6851     mSrcFormat = srcFormat;
   6852     mSrcChannelMask = srcChannelMask;
   6853     mSrcSampleRate = srcSampleRate;
   6854     mDstFormat = dstFormat;
   6855     mDstChannelMask = dstChannelMask;
   6856     mDstSampleRate = dstSampleRate;
   6857 
   6858     // compute derived parameters
   6859     mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
   6860     mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
   6861     mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
   6862 
   6863     // do we need to resample?
   6864     delete mResampler;
   6865     mResampler = NULL;
   6866     if (mSrcSampleRate != mDstSampleRate) {
   6867         mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
   6868                 mSrcChannelCount, mDstSampleRate);
   6869         mResampler->setSampleRate(mSrcSampleRate);
   6870         mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
   6871     }
   6872 
   6873     // are we running legacy channel conversion modes?
   6874     mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
   6875                             || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
   6876                    && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
   6877     mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
   6878                    && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
   6879                             || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
   6880 
   6881     // do we need to process in float?
   6882     mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
   6883 
   6884     // do we need a staging buffer to convert for destination (we can still optimize this)?
   6885     // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
   6886     if (mResampler != NULL) {
   6887         mBufFrameSize = max(mSrcChannelCount, FCC_2)
   6888                 * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
   6889     } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
   6890         mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
   6891     } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
   6892         mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
   6893     } else {
   6894         mBufFrameSize = 0;
   6895     }
   6896     mBufFrames = 0; // force the buffer to be resized.
   6897 
   6898     // do we need an input converter buffer provider to give us float?
   6899     delete mInputConverterProvider;
   6900     mInputConverterProvider = NULL;
   6901     if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
   6902         mInputConverterProvider = new ReformatBufferProvider(
   6903                 audio_channel_count_from_in_mask(mSrcChannelMask),
   6904                 mSrcFormat,
   6905                 AUDIO_FORMAT_PCM_FLOAT,
   6906                 256 /* provider buffer frame count */);
   6907     }
   6908 
   6909     // do we need a remixer to do channel mask conversion
   6910     if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
   6911         (void) memcpy_by_index_array_initialization_from_channel_mask(
   6912                 mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
   6913     }
   6914     return NO_ERROR;
   6915 }
   6916 
   6917 void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
   6918         void *dst, const void *src, size_t frames)
   6919 {
   6920     // src is native type unless there is legacy upmix or downmix, whereupon it is float.
   6921     if (mBufFrameSize != 0 && mBufFrames < frames) {
   6922         free(mBuf);
   6923         mBufFrames = frames;
   6924         (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
   6925     }
   6926     // do we need to do legacy upmix and downmix?
   6927     if (mIsLegacyUpmix || mIsLegacyDownmix) {
   6928         void *dstBuf = mBuf != NULL ? mBuf : dst;
   6929         if (mIsLegacyUpmix) {
   6930             upmix_to_stereo_float_from_mono_float((float *)dstBuf,
   6931                     (const float *)src, frames);
   6932         } else /*mIsLegacyDownmix */ {
   6933             downmix_to_mono_float_from_stereo_float((float *)dstBuf,
   6934                     (const float *)src, frames);
   6935         }
   6936         if (mBuf != NULL) {
   6937             memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
   6938                     frames * mDstChannelCount);
   6939         }
   6940         return;
   6941     }
   6942     // do we need to do channel mask conversion?
   6943     if (mSrcChannelMask != mDstChannelMask) {
   6944         void *dstBuf = mBuf != NULL ? mBuf : dst;
   6945         memcpy_by_index_array(dstBuf, mDstChannelCount,
   6946                 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
   6947         if (dstBuf == dst) {
   6948             return; // format is the same
   6949         }
   6950     }
   6951     // convert to destination buffer
   6952     const void *convertBuf = mBuf != NULL ? mBuf : src;
   6953     memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
   6954             frames * mDstChannelCount);
   6955 }
   6956 
   6957 void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
   6958         void *dst, /*not-a-const*/ void *src, size_t frames)
   6959 {
   6960     // src buffer format is ALWAYS float when entering this routine
   6961     if (mIsLegacyUpmix) {
   6962         ; // mono to stereo already handled by resampler
   6963     } else if (mIsLegacyDownmix
   6964             || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
   6965         // the resampler outputs stereo for mono input channel (a feature?)
   6966         // must convert to mono
   6967         downmix_to_mono_float_from_stereo_float((float *)src,
   6968                 (const float *)src, frames);
   6969     } else if (mSrcChannelMask != mDstChannelMask) {
   6970         // convert to mono channel again for channel mask conversion (could be skipped
   6971         // with further optimization).
   6972         if (mSrcChannelCount == 1) {
   6973             downmix_to_mono_float_from_stereo_float((float *)src,
   6974                 (const float *)src, frames);
   6975         }
   6976         // convert to destination format (in place, OK as float is larger than other types)
   6977         if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
   6978             memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
   6979                     frames * mSrcChannelCount);
   6980         }
   6981         // channel convert and save to dst
   6982         memcpy_by_index_array(dst, mDstChannelCount,
   6983                 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
   6984         return;
   6985     }
   6986     // convert to destination format and save to dst
   6987     memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
   6988             frames * mDstChannelCount);
   6989 }
   6990 
   6991 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
   6992                                                         status_t& status)
   6993 {
   6994     bool reconfig = false;
   6995 
   6996     status = NO_ERROR;
   6997 
   6998     audio_format_t reqFormat = mFormat;
   6999     uint32_t samplingRate = mSampleRate;
   7000     // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
   7001     audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
   7002 
   7003     AudioParameter param = AudioParameter(keyValuePair);
   7004     int value;
   7005 
   7006     // scope for AutoPark extends to end of method
   7007     AutoPark<FastCapture> park(mFastCapture);
   7008 
   7009     // TODO Investigate when this code runs. Check with audio policy when a sample rate and
   7010     //      channel count change can be requested. Do we mandate the first client defines the
   7011     //      HAL sampling rate and channel count or do we allow changes on the fly?
   7012     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
   7013         samplingRate = value;
   7014         reconfig = true;
   7015     }
   7016     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
   7017         if (!audio_is_linear_pcm((audio_format_t) value)) {
   7018             status = BAD_VALUE;
   7019         } else {
   7020             reqFormat = (audio_format_t) value;
   7021             reconfig = true;
   7022         }
   7023     }
   7024     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
   7025         audio_channel_mask_t mask = (audio_channel_mask_t) value;
   7026         if (!audio_is_input_channel(mask) ||
   7027                 audio_channel_count_from_in_mask(mask) > FCC_8) {
   7028             status = BAD_VALUE;
   7029         } else {
   7030             channelMask = mask;
   7031             reconfig = true;
   7032         }
   7033     }
   7034     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   7035         // do not accept frame count changes if tracks are open as the track buffer
   7036         // size depends on frame count and correct behavior would not be guaranteed
   7037         // if frame count is changed after track creation
   7038         if (mActiveTracks.size() > 0) {
   7039             status = INVALID_OPERATION;
   7040         } else {
   7041             reconfig = true;
   7042         }
   7043     }
   7044     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   7045         // forward device change to effects that have requested to be
   7046         // aware of attached audio device.
   7047         for (size_t i = 0; i < mEffectChains.size(); i++) {
   7048             mEffectChains[i]->setDevice_l(value);
   7049         }
   7050 
   7051         // store input device and output device but do not forward output device to audio HAL.
   7052         // Note that status is ignored by the caller for output device
   7053         // (see AudioFlinger::setParameters()
   7054         if (audio_is_output_devices(value)) {
   7055             mOutDevice = value;
   7056             status = BAD_VALUE;
   7057         } else {
   7058             mInDevice = value;
   7059             if (value != AUDIO_DEVICE_NONE) {
   7060                 mPrevInDevice = value;
   7061             }
   7062             // disable AEC and NS if the device is a BT SCO headset supporting those
   7063             // pre processings
   7064             if (mTracks.size() > 0) {
   7065                 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   7066                                     mAudioFlinger->btNrecIsOff();
   7067                 for (size_t i = 0; i < mTracks.size(); i++) {
   7068                     sp<RecordTrack> track = mTracks[i];
   7069                     setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
   7070                     setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
   7071                 }
   7072             }
   7073         }
   7074     }
   7075     if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
   7076             mAudioSource != (audio_source_t)value) {
   7077         // forward device change to effects that have requested to be
   7078         // aware of attached audio device.
   7079         for (size_t i = 0; i < mEffectChains.size(); i++) {
   7080             mEffectChains[i]->setAudioSource_l((audio_source_t)value);
   7081         }
   7082         mAudioSource = (audio_source_t)value;
   7083     }
   7084 
   7085     if (status == NO_ERROR) {
   7086         status = mInput->stream->common.set_parameters(&mInput->stream->common,
   7087                 keyValuePair.string());
   7088         if (status == INVALID_OPERATION) {
   7089             inputStandBy();
   7090             status = mInput->stream->common.set_parameters(&mInput->stream->common,
   7091                     keyValuePair.string());
   7092         }
   7093         if (reconfig) {
   7094             if (status == BAD_VALUE &&
   7095                 audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
   7096                 audio_is_linear_pcm(reqFormat) &&
   7097                 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
   7098                         <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
   7099                 audio_channel_count_from_in_mask(
   7100                         mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
   7101                 status = NO_ERROR;
   7102             }
   7103             if (status == NO_ERROR) {
   7104                 readInputParameters_l();
   7105                 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
   7106             }
   7107         }
   7108     }
   7109 
   7110     return reconfig;
   7111 }
   7112 
   7113 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
   7114 {
   7115     Mutex::Autolock _l(mLock);
   7116     if (initCheck() != NO_ERROR) {
   7117         return String8();
   7118     }
   7119 
   7120     char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
   7121     const String8 out_s8(s);
   7122     free(s);
   7123     return out_s8;
   7124 }
   7125 
   7126 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
   7127     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
   7128 
   7129     desc->mIoHandle = mId;
   7130 
   7131     switch (event) {
   7132     case AUDIO_INPUT_OPENED:
   7133     case AUDIO_INPUT_CONFIG_CHANGED:
   7134         desc->mPatch = mPatch;
   7135         desc->mChannelMask = mChannelMask;
   7136         desc->mSamplingRate = mSampleRate;
   7137         desc->mFormat = mFormat;
   7138         desc->mFrameCount = mFrameCount;
   7139         desc->mFrameCountHAL = mFrameCount;
   7140         desc->mLatency = 0;
   7141         break;
   7142 
   7143     case AUDIO_INPUT_CLOSED:
   7144     default:
   7145         break;
   7146     }
   7147     mAudioFlinger->ioConfigChanged(event, desc, pid);
   7148 }
   7149 
   7150 void AudioFlinger::RecordThread::readInputParameters_l()
   7151 {
   7152     mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
   7153     mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
   7154     mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
   7155     if (mChannelCount > FCC_8) {
   7156         ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
   7157     }
   7158     mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
   7159     mFormat = mHALFormat;
   7160     if (!audio_is_linear_pcm(mFormat)) {
   7161         ALOGE("HAL format %#x is not linear pcm", mFormat);
   7162     }
   7163     mFrameSize = audio_stream_in_frame_size(mInput->stream);
   7164     mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
   7165     mFrameCount = mBufferSize / mFrameSize;
   7166     // This is the formula for calculating the temporary buffer size.
   7167     // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
   7168     // 1 full output buffer, regardless of the alignment of the available input.
   7169     // The value is somewhat arbitrary, and could probably be even larger.
   7170     // A larger value should allow more old data to be read after a track calls start(),
   7171     // without increasing latency.
   7172     //
   7173     // Note this is independent of the maximum downsampling ratio permitted for capture.
   7174     mRsmpInFrames = mFrameCount * 7;
   7175     mRsmpInFramesP2 = roundup(mRsmpInFrames);
   7176     free(mRsmpInBuffer);
   7177     mRsmpInBuffer = NULL;
   7178 
   7179     // TODO optimize audio capture buffer sizes ...
   7180     // Here we calculate the size of the sliding buffer used as a source
   7181     // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
   7182     // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
   7183     // be better to have it derived from the pipe depth in the long term.
   7184     // The current value is higher than necessary.  However it should not add to latency.
   7185 
   7186     // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
   7187     size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
   7188     (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
   7189     memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
   7190 
   7191     // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
   7192     // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
   7193 }
   7194 
   7195 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
   7196 {
   7197     Mutex::Autolock _l(mLock);
   7198     if (initCheck() != NO_ERROR) {
   7199         return 0;
   7200     }
   7201 
   7202     return mInput->stream->get_input_frames_lost(mInput->stream);
   7203 }
   7204 
   7205 uint32_t AudioFlinger::RecordThread::hasAudioSession(audio_session_t sessionId) const
   7206 {
   7207     Mutex::Autolock _l(mLock);
   7208     uint32_t result = 0;
   7209     if (getEffectChain_l(sessionId) != 0) {
   7210         result = EFFECT_SESSION;
   7211     }
   7212 
   7213     for (size_t i = 0; i < mTracks.size(); ++i) {
   7214         if (sessionId == mTracks[i]->sessionId()) {
   7215             result |= TRACK_SESSION;
   7216             break;
   7217         }
   7218     }
   7219 
   7220     return result;
   7221 }
   7222 
   7223 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
   7224 {
   7225     KeyedVector<audio_session_t, bool> ids;
   7226     Mutex::Autolock _l(mLock);
   7227     for (size_t j = 0; j < mTracks.size(); ++j) {
   7228         sp<RecordThread::RecordTrack> track = mTracks[j];
   7229         audio_session_t sessionId = track->sessionId();
   7230         if (ids.indexOfKey(sessionId) < 0) {
   7231             ids.add(sessionId, true);
   7232         }
   7233     }
   7234     return ids;
   7235 }
   7236 
   7237 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
   7238 {
   7239     Mutex::Autolock _l(mLock);
   7240     AudioStreamIn *input = mInput;
   7241     mInput = NULL;
   7242     return input;
   7243 }
   7244 
   7245 // this method must always be called either with ThreadBase mLock held or inside the thread loop
   7246 audio_stream_t* AudioFlinger::RecordThread::stream() const
   7247 {
   7248     if (mInput == NULL) {
   7249         return NULL;
   7250     }
   7251     return &mInput->stream->common;
   7252 }
   7253 
   7254 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
   7255 {
   7256     // only one chain per input thread
   7257     if (mEffectChains.size() != 0) {
   7258         ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
   7259         return INVALID_OPERATION;
   7260     }
   7261     ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
   7262     chain->setThread(this);
   7263     chain->setInBuffer(NULL);
   7264     chain->setOutBuffer(NULL);
   7265 
   7266     checkSuspendOnAddEffectChain_l(chain);
   7267 
   7268     // make sure enabled pre processing effects state is communicated to the HAL as we
   7269     // just moved them to a new input stream.
   7270     chain->syncHalEffectsState();
   7271 
   7272     mEffectChains.add(chain);
   7273 
   7274     return NO_ERROR;
   7275 }
   7276 
   7277 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
   7278 {
   7279     ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
   7280     ALOGW_IF(mEffectChains.size() != 1,
   7281             "removeEffectChain_l() %p invalid chain size %zu on thread %p",
   7282             chain.get(), mEffectChains.size(), this);
   7283     if (mEffectChains.size() == 1) {
   7284         mEffectChains.removeAt(0);
   7285     }
   7286     return 0;
   7287 }
   7288 
   7289 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
   7290                                                           audio_patch_handle_t *handle)
   7291 {
   7292     status_t status = NO_ERROR;
   7293 
   7294     // store new device and send to effects
   7295     mInDevice = patch->sources[0].ext.device.type;
   7296     mPatch = *patch;
   7297     for (size_t i = 0; i < mEffectChains.size(); i++) {
   7298         mEffectChains[i]->setDevice_l(mInDevice);
   7299     }
   7300 
   7301     // disable AEC and NS if the device is a BT SCO headset supporting those
   7302     // pre processings
   7303     if (mTracks.size() > 0) {
   7304         bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   7305                             mAudioFlinger->btNrecIsOff();
   7306         for (size_t i = 0; i < mTracks.size(); i++) {
   7307             sp<RecordTrack> track = mTracks[i];
   7308             setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
   7309             setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
   7310         }
   7311     }
   7312 
   7313     // store new source and send to effects
   7314     if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
   7315         mAudioSource = patch->sinks[0].ext.mix.usecase.source;
   7316         for (size_t i = 0; i < mEffectChains.size(); i++) {
   7317             mEffectChains[i]->setAudioSource_l(mAudioSource);
   7318         }
   7319     }
   7320 
   7321     if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
   7322         audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
   7323         status = hwDevice->create_audio_patch(hwDevice,
   7324                                                patch->num_sources,
   7325                                                patch->sources,
   7326                                                patch->num_sinks,
   7327                                                patch->sinks,
   7328                                                handle);
   7329     } else {
   7330         char *address;
   7331         if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
   7332             address = audio_device_address_to_parameter(
   7333                                                 patch->sources[0].ext.device.type,
   7334                                                 patch->sources[0].ext.device.address);
   7335         } else {
   7336             address = (char *)calloc(1, 1);
   7337         }
   7338         AudioParameter param = AudioParameter(String8(address));
   7339         free(address);
   7340         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
   7341                      (int)patch->sources[0].ext.device.type);
   7342         param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
   7343                                          (int)patch->sinks[0].ext.mix.usecase.source);
   7344         status = mInput->stream->common.set_parameters(&mInput->stream->common,
   7345                 param.toString().string());
   7346         *handle = AUDIO_PATCH_HANDLE_NONE;
   7347     }
   7348 
   7349     if (mInDevice != mPrevInDevice) {
   7350         sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
   7351         mPrevInDevice = mInDevice;
   7352     }
   7353 
   7354     return status;
   7355 }
   7356 
   7357 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
   7358 {
   7359     status_t status = NO_ERROR;
   7360 
   7361     mInDevice = AUDIO_DEVICE_NONE;
   7362 
   7363     if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
   7364         audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
   7365         status = hwDevice->release_audio_patch(hwDevice, handle);
   7366     } else {
   7367         AudioParameter param;
   7368         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
   7369         status = mInput->stream->common.set_parameters(&mInput->stream->common,
   7370                 param.toString().string());
   7371     }
   7372     return status;
   7373 }
   7374 
   7375 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
   7376 {
   7377     Mutex::Autolock _l(mLock);
   7378     mTracks.add(record);
   7379 }
   7380 
   7381 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
   7382 {
   7383     Mutex::Autolock _l(mLock);
   7384     destroyTrack_l(record);
   7385 }
   7386 
   7387 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
   7388 {
   7389     ThreadBase::getAudioPortConfig(config);
   7390     config->role = AUDIO_PORT_ROLE_SINK;
   7391     config->ext.mix.hw_module = mInput->audioHwDev->handle();
   7392     config->ext.mix.usecase.source = mAudioSource;
   7393 }
   7394 
   7395 } // namespace android
   7396