Home | History | Annotate | Download | only in util
      1 /**************************************************************************
      2  *
      3  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 
     29 /**
     30  * Math utilities and approximations for common math functions.
     31  * Reduced precision is usually acceptable in shaders...
     32  *
     33  * "fast" is used in the names of functions which are low-precision,
     34  * or at least lower-precision than the normal C lib functions.
     35  */
     36 
     37 
     38 #ifndef U_MATH_H
     39 #define U_MATH_H
     40 
     41 
     42 #include "pipe/p_compiler.h"
     43 #include "util/u_debug.h"
     44 
     45 
     46 #ifdef __cplusplus
     47 extern "C" {
     48 #endif
     49 
     50 
     51 #include <math.h>
     52 #include <stdarg.h>
     53 
     54 #ifdef PIPE_OS_UNIX
     55 #include <strings.h> /* for ffs */
     56 #endif
     57 
     58 
     59 #ifndef M_SQRT2
     60 #define M_SQRT2 1.41421356237309504880
     61 #endif
     62 
     63 
     64 #if defined(_MSC_VER)
     65 
     66 #if _MSC_VER < 1400 && !defined(__cplusplus)
     67 
     68 static INLINE float cosf( float f )
     69 {
     70    return (float) cos( (double) f );
     71 }
     72 
     73 static INLINE float sinf( float f )
     74 {
     75    return (float) sin( (double) f );
     76 }
     77 
     78 static INLINE float ceilf( float f )
     79 {
     80    return (float) ceil( (double) f );
     81 }
     82 
     83 static INLINE float floorf( float f )
     84 {
     85    return (float) floor( (double) f );
     86 }
     87 
     88 static INLINE float powf( float f, float g )
     89 {
     90    return (float) pow( (double) f, (double) g );
     91 }
     92 
     93 static INLINE float sqrtf( float f )
     94 {
     95    return (float) sqrt( (double) f );
     96 }
     97 
     98 static INLINE float fabsf( float f )
     99 {
    100    return (float) fabs( (double) f );
    101 }
    102 
    103 static INLINE float logf( float f )
    104 {
    105    return (float) log( (double) f );
    106 }
    107 
    108 #else
    109 /* Work-around an extra semi-colon in VS 2005 logf definition */
    110 #ifdef logf
    111 #undef logf
    112 #define logf(x) ((float)log((double)(x)))
    113 #endif /* logf */
    114 
    115 #define isfinite(x) _finite((double)(x))
    116 #define isnan(x) _isnan((double)(x))
    117 #endif /* _MSC_VER < 1400 && !defined(__cplusplus) */
    118 
    119 static INLINE double log2( double x )
    120 {
    121    const double invln2 = 1.442695041;
    122    return log( x ) * invln2;
    123 }
    124 
    125 static INLINE double
    126 round(double x)
    127 {
    128    return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5);
    129 }
    130 
    131 static INLINE float
    132 roundf(float x)
    133 {
    134    return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f);
    135 }
    136 
    137 #endif /* _MSC_VER */
    138 
    139 
    140 #ifdef PIPE_OS_ANDROID
    141 
    142 static INLINE
    143 double log2(double d)
    144 {
    145    return log(d) * (1.0 / M_LN2);
    146 }
    147 
    148 /* workaround a conflict with main/imports.h */
    149 #ifdef log2f
    150 #undef log2f
    151 #endif
    152 
    153 static INLINE
    154 float log2f(float f)
    155 {
    156    return logf(f) * (float) (1.0 / M_LN2);
    157 }
    158 
    159 #endif
    160 
    161 
    162 
    163 
    164 #define POW2_TABLE_SIZE_LOG2 9
    165 #define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
    166 #define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
    167 #define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
    168 extern float pow2_table[POW2_TABLE_SIZE];
    169 
    170 
    171 /**
    172  * Initialize math module.  This should be called before using any
    173  * other functions in this module.
    174  */
    175 extern void
    176 util_init_math(void);
    177 
    178 
    179 union fi {
    180    float f;
    181    int32_t i;
    182    uint32_t ui;
    183 };
    184 
    185 
    186 union di {
    187    double d;
    188    int64_t i;
    189    uint64_t ui;
    190 };
    191 
    192 
    193 /**
    194  * Fast version of 2^x
    195  * Identity: exp2(a + b) = exp2(a) * exp2(b)
    196  * Let ipart = int(x)
    197  * Let fpart = x - ipart;
    198  * So, exp2(x) = exp2(ipart) * exp2(fpart)
    199  * Compute exp2(ipart) with i << ipart
    200  * Compute exp2(fpart) with lookup table.
    201  */
    202 static INLINE float
    203 util_fast_exp2(float x)
    204 {
    205    int32_t ipart;
    206    float fpart, mpart;
    207    union fi epart;
    208 
    209    if(x > 129.00000f)
    210       return 3.402823466e+38f;
    211 
    212    if (x < -126.99999f)
    213       return 0.0f;
    214 
    215    ipart = (int32_t) x;
    216    fpart = x - (float) ipart;
    217 
    218    /* same as
    219     *   epart.f = (float) (1 << ipart)
    220     * but faster and without integer overflow for ipart > 31
    221     */
    222    epart.i = (ipart + 127 ) << 23;
    223 
    224    mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
    225 
    226    return epart.f * mpart;
    227 }
    228 
    229 
    230 /**
    231  * Fast approximation to exp(x).
    232  */
    233 static INLINE float
    234 util_fast_exp(float x)
    235 {
    236    const float k = 1.44269f; /* = log2(e) */
    237    return util_fast_exp2(k * x);
    238 }
    239 
    240 
    241 #define LOG2_TABLE_SIZE_LOG2 16
    242 #define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
    243 #define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
    244 extern float log2_table[LOG2_TABLE_SIZE];
    245 
    246 
    247 /**
    248  * Fast approximation to log2(x).
    249  */
    250 static INLINE float
    251 util_fast_log2(float x)
    252 {
    253    union fi num;
    254    float epart, mpart;
    255    num.f = x;
    256    epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
    257    /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
    258    mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
    259    return epart + mpart;
    260 }
    261 
    262 
    263 /**
    264  * Fast approximation to x^y.
    265  */
    266 static INLINE float
    267 util_fast_pow(float x, float y)
    268 {
    269    return util_fast_exp2(util_fast_log2(x) * y);
    270 }
    271 
    272 /* Note that this counts zero as a power of two.
    273  */
    274 static INLINE boolean
    275 util_is_power_of_two( unsigned v )
    276 {
    277    return (v & (v-1)) == 0;
    278 }
    279 
    280 
    281 /**
    282  * Floor(x), returned as int.
    283  */
    284 static INLINE int
    285 util_ifloor(float f)
    286 {
    287    int ai, bi;
    288    double af, bf;
    289    union fi u;
    290    af = (3 << 22) + 0.5 + (double) f;
    291    bf = (3 << 22) + 0.5 - (double) f;
    292    u.f = (float) af;  ai = u.i;
    293    u.f = (float) bf;  bi = u.i;
    294    return (ai - bi) >> 1;
    295 }
    296 
    297 
    298 /**
    299  * Round float to nearest int.
    300  */
    301 static INLINE int
    302 util_iround(float f)
    303 {
    304 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
    305    int r;
    306    __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
    307    return r;
    308 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
    309    int r;
    310    _asm {
    311       fld f
    312       fistp r
    313    }
    314    return r;
    315 #else
    316    if (f >= 0.0f)
    317       return (int) (f + 0.5f);
    318    else
    319       return (int) (f - 0.5f);
    320 #endif
    321 }
    322 
    323 
    324 /**
    325  * Approximate floating point comparison
    326  */
    327 static INLINE boolean
    328 util_is_approx(float a, float b, float tol)
    329 {
    330    return fabs(b - a) <= tol;
    331 }
    332 
    333 
    334 /**
    335  * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
    336  * util_is_X_nan        = test if x is NaN
    337  * util_X_inf_sign      = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
    338  *
    339  * NaN can be checked with x != x, however this fails with the fast math flag
    340  **/
    341 
    342 
    343 /**
    344  * Single-float
    345  */
    346 static INLINE boolean
    347 util_is_inf_or_nan(float x)
    348 {
    349    union fi tmp;
    350    tmp.f = x;
    351    return (tmp.ui & 0x7f800000) == 0x7f800000;
    352 }
    353 
    354 
    355 static INLINE boolean
    356 util_is_nan(float x)
    357 {
    358    union fi tmp;
    359    tmp.f = x;
    360    return (tmp.ui & 0x7fffffff) > 0x7f800000;
    361 }
    362 
    363 
    364 static INLINE int
    365 util_inf_sign(float x)
    366 {
    367    union fi tmp;
    368    tmp.f = x;
    369    if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
    370       return 0;
    371    }
    372 
    373    return (x < 0) ? -1 : 1;
    374 }
    375 
    376 
    377 /**
    378  * Double-float
    379  */
    380 static INLINE boolean
    381 util_is_double_inf_or_nan(double x)
    382 {
    383    union di tmp;
    384    tmp.d = x;
    385    return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
    386 }
    387 
    388 
    389 static INLINE boolean
    390 util_is_double_nan(double x)
    391 {
    392    union di tmp;
    393    tmp.d = x;
    394    return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
    395 }
    396 
    397 
    398 static INLINE int
    399 util_double_inf_sign(double x)
    400 {
    401    union di tmp;
    402    tmp.d = x;
    403    if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
    404       return 0;
    405    }
    406 
    407    return (x < 0) ? -1 : 1;
    408 }
    409 
    410 
    411 /**
    412  * Half-float
    413  */
    414 static INLINE boolean
    415 util_is_half_inf_or_nan(int16_t x)
    416 {
    417    return (x & 0x7c00) == 0x7c00;
    418 }
    419 
    420 
    421 static INLINE boolean
    422 util_is_half_nan(int16_t x)
    423 {
    424    return (x & 0x7fff) > 0x7c00;
    425 }
    426 
    427 
    428 static INLINE int
    429 util_half_inf_sign(int16_t x)
    430 {
    431    if ((x & 0x7fff) != 0x7c00) {
    432       return 0;
    433    }
    434 
    435    return (x < 0) ? -1 : 1;
    436 }
    437 
    438 
    439 /**
    440  * Find first bit set in word.  Least significant bit is 1.
    441  * Return 0 if no bits set.
    442  */
    443 #ifndef FFS_DEFINED
    444 #define FFS_DEFINED 1
    445 
    446 #if defined(_MSC_VER) && _MSC_VER >= 1300 && (_M_IX86 || _M_AMD64 || _M_IA64)
    447 unsigned char _BitScanForward(unsigned long* Index, unsigned long Mask);
    448 #pragma intrinsic(_BitScanForward)
    449 static INLINE
    450 unsigned long ffs( unsigned long u )
    451 {
    452    unsigned long i;
    453    if (_BitScanForward(&i, u))
    454       return i + 1;
    455    else
    456       return 0;
    457 }
    458 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
    459 static INLINE
    460 unsigned ffs( unsigned u )
    461 {
    462    unsigned i;
    463 
    464    if (u == 0) {
    465       return 0;
    466    }
    467 
    468    __asm bsf eax, [u]
    469    __asm inc eax
    470    __asm mov [i], eax
    471 
    472    return i;
    473 }
    474 #elif defined(__MINGW32__) || defined(PIPE_OS_ANDROID)
    475 #define ffs __builtin_ffs
    476 #endif
    477 
    478 #endif /* FFS_DEFINED */
    479 
    480 /**
    481  * Find last bit set in a word.  The least significant bit is 1.
    482  * Return 0 if no bits are set.
    483  */
    484 static INLINE unsigned util_last_bit(unsigned u)
    485 {
    486    unsigned r = 0;
    487    while (u) {
    488        r++;
    489        u >>= 1;
    490    }
    491    return r;
    492 }
    493 
    494 
    495 /* Destructively loop over all of the bits in a mask as in:
    496  *
    497  * while (mymask) {
    498  *   int i = u_bit_scan(&mymask);
    499  *   ... process element i
    500  * }
    501  *
    502  */
    503 static INLINE int u_bit_scan(unsigned *mask)
    504 {
    505    int i = ffs(*mask) - 1;
    506    *mask &= ~(1 << i);
    507    return i;
    508 }
    509 
    510 
    511 /**
    512  * Return float bits.
    513  */
    514 static INLINE unsigned
    515 fui( float f )
    516 {
    517    union fi fi;
    518    fi.f = f;
    519    return fi.ui;
    520 }
    521 
    522 
    523 /**
    524  * Convert ubyte to float in [0, 1].
    525  * XXX a 256-entry lookup table would be slightly faster.
    526  */
    527 static INLINE float
    528 ubyte_to_float(ubyte ub)
    529 {
    530    return (float) ub * (1.0f / 255.0f);
    531 }
    532 
    533 
    534 /**
    535  * Convert float in [0,1] to ubyte in [0,255] with clamping.
    536  */
    537 static INLINE ubyte
    538 float_to_ubyte(float f)
    539 {
    540    const int ieee_0996 = 0x3f7f0000;   /* 0.996 or so */
    541    union fi tmp;
    542 
    543    tmp.f = f;
    544    if (tmp.i < 0) {
    545       return (ubyte) 0;
    546    }
    547    else if (tmp.i >= ieee_0996) {
    548       return (ubyte) 255;
    549    }
    550    else {
    551       tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
    552       return (ubyte) tmp.i;
    553    }
    554 }
    555 
    556 static INLINE float
    557 byte_to_float_tex(int8_t b)
    558 {
    559    return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
    560 }
    561 
    562 static INLINE int8_t
    563 float_to_byte_tex(float f)
    564 {
    565    return (int8_t) (127.0F * f);
    566 }
    567 
    568 /**
    569  * Calc log base 2
    570  */
    571 static INLINE unsigned
    572 util_logbase2(unsigned n)
    573 {
    574 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
    575    return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
    576 #else
    577    unsigned pos = 0;
    578    if (n >= 1<<16) { n >>= 16; pos += 16; }
    579    if (n >= 1<< 8) { n >>=  8; pos +=  8; }
    580    if (n >= 1<< 4) { n >>=  4; pos +=  4; }
    581    if (n >= 1<< 2) { n >>=  2; pos +=  2; }
    582    if (n >= 1<< 1) {           pos +=  1; }
    583    return pos;
    584 #endif
    585 }
    586 
    587 
    588 /**
    589  * Returns the smallest power of two >= x
    590  */
    591 static INLINE unsigned
    592 util_next_power_of_two(unsigned x)
    593 {
    594 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
    595    if (x <= 1)
    596        return 1;
    597 
    598    return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
    599 #else
    600    unsigned val = x;
    601 
    602    if (x <= 1)
    603       return 1;
    604 
    605    if (util_is_power_of_two(x))
    606       return x;
    607 
    608    val--;
    609    val = (val >> 1) | val;
    610    val = (val >> 2) | val;
    611    val = (val >> 4) | val;
    612    val = (val >> 8) | val;
    613    val = (val >> 16) | val;
    614    val++;
    615    return val;
    616 #endif
    617 }
    618 
    619 
    620 /**
    621  * Return number of bits set in n.
    622  */
    623 static INLINE unsigned
    624 util_bitcount(unsigned n)
    625 {
    626 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
    627    return __builtin_popcount(n);
    628 #else
    629    /* K&R classic bitcount.
    630     *
    631     * For each iteration, clear the LSB from the bitfield.
    632     * Requires only one iteration per set bit, instead of
    633     * one iteration per bit less than highest set bit.
    634     */
    635    unsigned bits = 0;
    636    for (bits; n; bits++) {
    637       n &= n - 1;
    638    }
    639    return bits;
    640 #endif
    641 }
    642 
    643 
    644 /**
    645  * Convert from little endian to CPU byte order.
    646  */
    647 
    648 #ifdef PIPE_ARCH_BIG_ENDIAN
    649 #define util_le32_to_cpu(x) util_bswap32(x)
    650 #define util_le16_to_cpu(x) util_bswap16(x)
    651 #else
    652 #define util_le32_to_cpu(x) (x)
    653 #define util_le16_to_cpu(x) (x)
    654 #endif
    655 
    656 
    657 /**
    658  * Reverse byte order of a 32 bit word.
    659  */
    660 static INLINE uint32_t
    661 util_bswap32(uint32_t n)
    662 {
    663 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 403)
    664    return __builtin_bswap32(n);
    665 #else
    666    return (n >> 24) |
    667           ((n >> 8) & 0x0000ff00) |
    668           ((n << 8) & 0x00ff0000) |
    669           (n << 24);
    670 #endif
    671 }
    672 
    673 
    674 /**
    675  * Reverse byte order of a 16 bit word.
    676  */
    677 static INLINE uint16_t
    678 util_bswap16(uint16_t n)
    679 {
    680    return (n >> 8) |
    681           (n << 8);
    682 }
    683 
    684 
    685 /**
    686  * Clamp X to [MIN, MAX].
    687  * This is a macro to allow float, int, uint, etc. types.
    688  */
    689 #define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
    690 
    691 #define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
    692 #define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
    693 
    694 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
    695 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
    696 
    697 #define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
    698 #define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
    699 
    700 
    701 /**
    702  * Align a value, only works pot alignemnts.
    703  */
    704 static INLINE int
    705 align(int value, int alignment)
    706 {
    707    return (value + alignment - 1) & ~(alignment - 1);
    708 }
    709 
    710 /**
    711  * Works like align but on npot alignments.
    712  */
    713 static INLINE size_t
    714 util_align_npot(size_t value, size_t alignment)
    715 {
    716    if (value % alignment)
    717       return value + (alignment - (value % alignment));
    718    return value;
    719 }
    720 
    721 static INLINE unsigned
    722 u_minify(unsigned value, unsigned levels)
    723 {
    724     return MAX2(1, value >> levels);
    725 }
    726 
    727 #ifndef COPY_4V
    728 #define COPY_4V( DST, SRC )         \
    729 do {                                \
    730    (DST)[0] = (SRC)[0];             \
    731    (DST)[1] = (SRC)[1];             \
    732    (DST)[2] = (SRC)[2];             \
    733    (DST)[3] = (SRC)[3];             \
    734 } while (0)
    735 #endif
    736 
    737 
    738 #ifndef COPY_4FV
    739 #define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
    740 #endif
    741 
    742 
    743 #ifndef ASSIGN_4V
    744 #define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
    745 do {                                     \
    746    (DST)[0] = (V0);                      \
    747    (DST)[1] = (V1);                      \
    748    (DST)[2] = (V2);                      \
    749    (DST)[3] = (V3);                      \
    750 } while (0)
    751 #endif
    752 
    753 
    754 static INLINE uint32_t util_unsigned_fixed(float value, unsigned frac_bits)
    755 {
    756    return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
    757 }
    758 
    759 static INLINE int32_t util_signed_fixed(float value, unsigned frac_bits)
    760 {
    761    return (int32_t)(value * (1<<frac_bits));
    762 }
    763 
    764 
    765 
    766 #ifdef __cplusplus
    767 }
    768 #endif
    769 
    770 #endif /* U_MATH_H */
    771