Home | History | Annotate | Download | only in Analysis
      1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic AliasAnalysis interface which is used as the
     11 // common interface used by all clients and implementations of alias analysis.
     12 //
     13 // This file also implements the default version of the AliasAnalysis interface
     14 // that is to be used when no other implementation is specified.  This does some
     15 // simple tests that detect obvious cases: two different global pointers cannot
     16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
     17 // etc.
     18 //
     19 // This alias analysis implementation really isn't very good for anything, but
     20 // it is very fast, and makes a nice clean default implementation.  Because it
     21 // handles lots of little corner cases, other, more complex, alias analysis
     22 // implementations may choose to rely on this pass to resolve these simple and
     23 // easy cases.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/BasicAliasAnalysis.h"
     29 #include "llvm/Analysis/CFG.h"
     30 #include "llvm/Analysis/CFLAliasAnalysis.h"
     31 #include "llvm/Analysis/CaptureTracking.h"
     32 #include "llvm/Analysis/GlobalsModRef.h"
     33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
     34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     35 #include "llvm/Analysis/ScopedNoAliasAA.h"
     36 #include "llvm/Analysis/TargetLibraryInfo.h"
     37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
     38 #include "llvm/Analysis/ValueTracking.h"
     39 #include "llvm/IR/BasicBlock.h"
     40 #include "llvm/IR/DataLayout.h"
     41 #include "llvm/IR/Dominators.h"
     42 #include "llvm/IR/Function.h"
     43 #include "llvm/IR/Instructions.h"
     44 #include "llvm/IR/IntrinsicInst.h"
     45 #include "llvm/IR/LLVMContext.h"
     46 #include "llvm/IR/Type.h"
     47 #include "llvm/Pass.h"
     48 using namespace llvm;
     49 
     50 /// Allow disabling BasicAA from the AA results. This is particularly useful
     51 /// when testing to isolate a single AA implementation.
     52 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
     53                                     cl::init(false));
     54 
     55 AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) {
     56   for (auto &AA : AAs)
     57     AA->setAAResults(this);
     58 }
     59 
     60 AAResults &AAResults::operator=(AAResults &&Arg) {
     61   AAs = std::move(Arg.AAs);
     62   for (auto &AA : AAs)
     63     AA->setAAResults(this);
     64   return *this;
     65 }
     66 
     67 AAResults::~AAResults() {
     68 // FIXME; It would be nice to at least clear out the pointers back to this
     69 // aggregation here, but we end up with non-nesting lifetimes in the legacy
     70 // pass manager that prevent this from working. In the legacy pass manager
     71 // we'll end up with dangling references here in some cases.
     72 #if 0
     73   for (auto &AA : AAs)
     74     AA->setAAResults(nullptr);
     75 #endif
     76 }
     77 
     78 //===----------------------------------------------------------------------===//
     79 // Default chaining methods
     80 //===----------------------------------------------------------------------===//
     81 
     82 AliasResult AAResults::alias(const MemoryLocation &LocA,
     83                              const MemoryLocation &LocB) {
     84   for (const auto &AA : AAs) {
     85     auto Result = AA->alias(LocA, LocB);
     86     if (Result != MayAlias)
     87       return Result;
     88   }
     89   return MayAlias;
     90 }
     91 
     92 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
     93                                        bool OrLocal) {
     94   for (const auto &AA : AAs)
     95     if (AA->pointsToConstantMemory(Loc, OrLocal))
     96       return true;
     97 
     98   return false;
     99 }
    100 
    101 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
    102   ModRefInfo Result = MRI_ModRef;
    103 
    104   for (const auto &AA : AAs) {
    105     Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
    106 
    107     // Early-exit the moment we reach the bottom of the lattice.
    108     if (Result == MRI_NoModRef)
    109       return Result;
    110   }
    111 
    112   return Result;
    113 }
    114 
    115 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
    116   // We may have two calls
    117   if (auto CS = ImmutableCallSite(I)) {
    118     // Check if the two calls modify the same memory
    119     return getModRefInfo(Call, CS);
    120   } else {
    121     // Otherwise, check if the call modifies or references the
    122     // location this memory access defines.  The best we can say
    123     // is that if the call references what this instruction
    124     // defines, it must be clobbered by this location.
    125     const MemoryLocation DefLoc = MemoryLocation::get(I);
    126     if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
    127       return MRI_ModRef;
    128   }
    129   return MRI_NoModRef;
    130 }
    131 
    132 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
    133                                     const MemoryLocation &Loc) {
    134   ModRefInfo Result = MRI_ModRef;
    135 
    136   for (const auto &AA : AAs) {
    137     Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
    138 
    139     // Early-exit the moment we reach the bottom of the lattice.
    140     if (Result == MRI_NoModRef)
    141       return Result;
    142   }
    143 
    144   return Result;
    145 }
    146 
    147 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
    148                                     ImmutableCallSite CS2) {
    149   ModRefInfo Result = MRI_ModRef;
    150 
    151   for (const auto &AA : AAs) {
    152     Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
    153 
    154     // Early-exit the moment we reach the bottom of the lattice.
    155     if (Result == MRI_NoModRef)
    156       return Result;
    157   }
    158 
    159   return Result;
    160 }
    161 
    162 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
    163   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
    164 
    165   for (const auto &AA : AAs) {
    166     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
    167 
    168     // Early-exit the moment we reach the bottom of the lattice.
    169     if (Result == FMRB_DoesNotAccessMemory)
    170       return Result;
    171   }
    172 
    173   return Result;
    174 }
    175 
    176 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
    177   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
    178 
    179   for (const auto &AA : AAs) {
    180     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
    181 
    182     // Early-exit the moment we reach the bottom of the lattice.
    183     if (Result == FMRB_DoesNotAccessMemory)
    184       return Result;
    185   }
    186 
    187   return Result;
    188 }
    189 
    190 //===----------------------------------------------------------------------===//
    191 // Helper method implementation
    192 //===----------------------------------------------------------------------===//
    193 
    194 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
    195                                     const MemoryLocation &Loc) {
    196   // Be conservative in the face of volatile/atomic.
    197   if (!L->isUnordered())
    198     return MRI_ModRef;
    199 
    200   // If the load address doesn't alias the given address, it doesn't read
    201   // or write the specified memory.
    202   if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
    203     return MRI_NoModRef;
    204 
    205   // Otherwise, a load just reads.
    206   return MRI_Ref;
    207 }
    208 
    209 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
    210                                     const MemoryLocation &Loc) {
    211   // Be conservative in the face of volatile/atomic.
    212   if (!S->isUnordered())
    213     return MRI_ModRef;
    214 
    215   if (Loc.Ptr) {
    216     // If the store address cannot alias the pointer in question, then the
    217     // specified memory cannot be modified by the store.
    218     if (!alias(MemoryLocation::get(S), Loc))
    219       return MRI_NoModRef;
    220 
    221     // If the pointer is a pointer to constant memory, then it could not have
    222     // been modified by this store.
    223     if (pointsToConstantMemory(Loc))
    224       return MRI_NoModRef;
    225   }
    226 
    227   // Otherwise, a store just writes.
    228   return MRI_Mod;
    229 }
    230 
    231 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
    232                                     const MemoryLocation &Loc) {
    233 
    234   if (Loc.Ptr) {
    235     // If the va_arg address cannot alias the pointer in question, then the
    236     // specified memory cannot be accessed by the va_arg.
    237     if (!alias(MemoryLocation::get(V), Loc))
    238       return MRI_NoModRef;
    239 
    240     // If the pointer is a pointer to constant memory, then it could not have
    241     // been modified by this va_arg.
    242     if (pointsToConstantMemory(Loc))
    243       return MRI_NoModRef;
    244   }
    245 
    246   // Otherwise, a va_arg reads and writes.
    247   return MRI_ModRef;
    248 }
    249 
    250 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
    251                                     const MemoryLocation &Loc) {
    252   if (Loc.Ptr) {
    253     // If the pointer is a pointer to constant memory,
    254     // then it could not have been modified by this catchpad.
    255     if (pointsToConstantMemory(Loc))
    256       return MRI_NoModRef;
    257   }
    258 
    259   // Otherwise, a catchpad reads and writes.
    260   return MRI_ModRef;
    261 }
    262 
    263 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
    264                                     const MemoryLocation &Loc) {
    265   if (Loc.Ptr) {
    266     // If the pointer is a pointer to constant memory,
    267     // then it could not have been modified by this catchpad.
    268     if (pointsToConstantMemory(Loc))
    269       return MRI_NoModRef;
    270   }
    271 
    272   // Otherwise, a catchret reads and writes.
    273   return MRI_ModRef;
    274 }
    275 
    276 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
    277                                     const MemoryLocation &Loc) {
    278   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
    279   if (CX->getSuccessOrdering() > Monotonic)
    280     return MRI_ModRef;
    281 
    282   // If the cmpxchg address does not alias the location, it does not access it.
    283   if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
    284     return MRI_NoModRef;
    285 
    286   return MRI_ModRef;
    287 }
    288 
    289 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
    290                                     const MemoryLocation &Loc) {
    291   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
    292   if (RMW->getOrdering() > Monotonic)
    293     return MRI_ModRef;
    294 
    295   // If the atomicrmw address does not alias the location, it does not access it.
    296   if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
    297     return MRI_NoModRef;
    298 
    299   return MRI_ModRef;
    300 }
    301 
    302 /// \brief Return information about whether a particular call site modifies
    303 /// or reads the specified memory location \p MemLoc before instruction \p I
    304 /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
    305 /// instruction-ordering queries inside the BasicBlock containing \p I.
    306 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
    307 /// BasicAA isn't willing to spend linear time determining whether an alloca
    308 /// was captured before or after this particular call, while we are. However,
    309 /// with a smarter AA in place, this test is just wasting compile time.
    310 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
    311                                          const MemoryLocation &MemLoc,
    312                                          DominatorTree *DT,
    313                                          OrderedBasicBlock *OBB) {
    314   if (!DT)
    315     return MRI_ModRef;
    316 
    317   const Value *Object =
    318       GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
    319   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
    320       isa<Constant>(Object))
    321     return MRI_ModRef;
    322 
    323   ImmutableCallSite CS(I);
    324   if (!CS.getInstruction() || CS.getInstruction() == Object)
    325     return MRI_ModRef;
    326 
    327   if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
    328                                        /* StoreCaptures */ true, I, DT,
    329                                        /* include Object */ true,
    330                                        /* OrderedBasicBlock */ OBB))
    331     return MRI_ModRef;
    332 
    333   unsigned ArgNo = 0;
    334   ModRefInfo R = MRI_NoModRef;
    335   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    336        CI != CE; ++CI, ++ArgNo) {
    337     // Only look at the no-capture or byval pointer arguments.  If this
    338     // pointer were passed to arguments that were neither of these, then it
    339     // couldn't be no-capture.
    340     if (!(*CI)->getType()->isPointerTy() ||
    341         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    342       continue;
    343 
    344     // If this is a no-capture pointer argument, see if we can tell that it
    345     // is impossible to alias the pointer we're checking.  If not, we have to
    346     // assume that the call could touch the pointer, even though it doesn't
    347     // escape.
    348     if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
    349       continue;
    350     if (CS.doesNotAccessMemory(ArgNo))
    351       continue;
    352     if (CS.onlyReadsMemory(ArgNo)) {
    353       R = MRI_Ref;
    354       continue;
    355     }
    356     return MRI_ModRef;
    357   }
    358   return R;
    359 }
    360 
    361 /// canBasicBlockModify - Return true if it is possible for execution of the
    362 /// specified basic block to modify the location Loc.
    363 ///
    364 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
    365                                     const MemoryLocation &Loc) {
    366   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
    367 }
    368 
    369 /// canInstructionRangeModRef - Return true if it is possible for the
    370 /// execution of the specified instructions to mod\ref (according to the
    371 /// mode) the location Loc. The instructions to consider are all
    372 /// of the instructions in the range of [I1,I2] INCLUSIVE.
    373 /// I1 and I2 must be in the same basic block.
    374 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
    375                                           const Instruction &I2,
    376                                           const MemoryLocation &Loc,
    377                                           const ModRefInfo Mode) {
    378   assert(I1.getParent() == I2.getParent() &&
    379          "Instructions not in same basic block!");
    380   BasicBlock::const_iterator I = I1.getIterator();
    381   BasicBlock::const_iterator E = I2.getIterator();
    382   ++E;  // Convert from inclusive to exclusive range.
    383 
    384   for (; I != E; ++I) // Check every instruction in range
    385     if (getModRefInfo(&*I, Loc) & Mode)
    386       return true;
    387   return false;
    388 }
    389 
    390 // Provide a definition for the root virtual destructor.
    391 AAResults::Concept::~Concept() {}
    392 
    393 namespace {
    394 /// A wrapper pass for external alias analyses. This just squirrels away the
    395 /// callback used to run any analyses and register their results.
    396 struct ExternalAAWrapperPass : ImmutablePass {
    397   typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT;
    398 
    399   CallbackT CB;
    400 
    401   static char ID;
    402 
    403   ExternalAAWrapperPass() : ImmutablePass(ID) {
    404     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
    405   }
    406   explicit ExternalAAWrapperPass(CallbackT CB)
    407       : ImmutablePass(ID), CB(std::move(CB)) {
    408     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
    409   }
    410 
    411   void getAnalysisUsage(AnalysisUsage &AU) const override {
    412     AU.setPreservesAll();
    413   }
    414 };
    415 }
    416 
    417 char ExternalAAWrapperPass::ID = 0;
    418 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
    419                 false, true)
    420 
    421 ImmutablePass *
    422 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
    423   return new ExternalAAWrapperPass(std::move(Callback));
    424 }
    425 
    426 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
    427   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
    428 }
    429 
    430 char AAResultsWrapperPass::ID = 0;
    431 
    432 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
    433                       "Function Alias Analysis Results", false, true)
    434 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
    435 INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass)
    436 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
    437 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    438 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
    439 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
    440 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
    441 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
    442 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
    443                     "Function Alias Analysis Results", false, true)
    444 
    445 FunctionPass *llvm::createAAResultsWrapperPass() {
    446   return new AAResultsWrapperPass();
    447 }
    448 
    449 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
    450 ///
    451 /// This is the legacy pass manager's interface to the new-style AA results
    452 /// aggregation object. Because this is somewhat shoe-horned into the legacy
    453 /// pass manager, we hard code all the specific alias analyses available into
    454 /// it. While the particular set enabled is configured via commandline flags,
    455 /// adding a new alias analysis to LLVM will require adding support for it to
    456 /// this list.
    457 bool AAResultsWrapperPass::runOnFunction(Function &F) {
    458   // NB! This *must* be reset before adding new AA results to the new
    459   // AAResults object because in the legacy pass manager, each instance
    460   // of these will refer to the *same* immutable analyses, registering and
    461   // unregistering themselves with them. We need to carefully tear down the
    462   // previous object first, in this case replacing it with an empty one, before
    463   // registering new results.
    464   AAR.reset(new AAResults());
    465 
    466   // BasicAA is always available for function analyses. Also, we add it first
    467   // so that it can trump TBAA results when it proves MustAlias.
    468   // FIXME: TBAA should have an explicit mode to support this and then we
    469   // should reconsider the ordering here.
    470   if (!DisableBasicAA)
    471     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
    472 
    473   // Populate the results with the currently available AAs.
    474   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
    475     AAR->addAAResult(WrapperPass->getResult());
    476   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
    477     AAR->addAAResult(WrapperPass->getResult());
    478   if (auto *WrapperPass =
    479           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
    480     AAR->addAAResult(WrapperPass->getResult());
    481   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
    482     AAR->addAAResult(WrapperPass->getResult());
    483   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
    484     AAR->addAAResult(WrapperPass->getResult());
    485   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>())
    486     AAR->addAAResult(WrapperPass->getResult());
    487 
    488   // If available, run an external AA providing callback over the results as
    489   // well.
    490   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
    491     if (WrapperPass->CB)
    492       WrapperPass->CB(*this, F, *AAR);
    493 
    494   // Analyses don't mutate the IR, so return false.
    495   return false;
    496 }
    497 
    498 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    499   AU.setPreservesAll();
    500   AU.addRequired<BasicAAWrapperPass>();
    501 
    502   // We also need to mark all the alias analysis passes we will potentially
    503   // probe in runOnFunction as used here to ensure the legacy pass manager
    504   // preserves them. This hard coding of lists of alias analyses is specific to
    505   // the legacy pass manager.
    506   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
    507   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
    508   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
    509   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
    510   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
    511   AU.addUsedIfAvailable<CFLAAWrapperPass>();
    512 }
    513 
    514 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
    515                                         BasicAAResult &BAR) {
    516   AAResults AAR;
    517 
    518   // Add in our explicitly constructed BasicAA results.
    519   if (!DisableBasicAA)
    520     AAR.addAAResult(BAR);
    521 
    522   // Populate the results with the other currently available AAs.
    523   if (auto *WrapperPass =
    524           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
    525     AAR.addAAResult(WrapperPass->getResult());
    526   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
    527     AAR.addAAResult(WrapperPass->getResult());
    528   if (auto *WrapperPass =
    529           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
    530     AAR.addAAResult(WrapperPass->getResult());
    531   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
    532     AAR.addAAResult(WrapperPass->getResult());
    533   if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>())
    534     AAR.addAAResult(WrapperPass->getResult());
    535   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>())
    536     AAR.addAAResult(WrapperPass->getResult());
    537 
    538   return AAR;
    539 }
    540 
    541 /// isNoAliasCall - Return true if this pointer is returned by a noalias
    542 /// function.
    543 bool llvm::isNoAliasCall(const Value *V) {
    544   if (auto CS = ImmutableCallSite(V))
    545     return CS.paramHasAttr(0, Attribute::NoAlias);
    546   return false;
    547 }
    548 
    549 /// isNoAliasArgument - Return true if this is an argument with the noalias
    550 /// attribute.
    551 bool llvm::isNoAliasArgument(const Value *V)
    552 {
    553   if (const Argument *A = dyn_cast<Argument>(V))
    554     return A->hasNoAliasAttr();
    555   return false;
    556 }
    557 
    558 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
    559 /// identifiable object.  This returns true for:
    560 ///    Global Variables and Functions (but not Global Aliases)
    561 ///    Allocas and Mallocs
    562 ///    ByVal and NoAlias Arguments
    563 ///    NoAlias returns
    564 ///
    565 bool llvm::isIdentifiedObject(const Value *V) {
    566   if (isa<AllocaInst>(V))
    567     return true;
    568   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    569     return true;
    570   if (isNoAliasCall(V))
    571     return true;
    572   if (const Argument *A = dyn_cast<Argument>(V))
    573     return A->hasNoAliasAttr() || A->hasByValAttr();
    574   return false;
    575 }
    576 
    577 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
    578 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
    579 /// Further, an IdentifiedFunctionLocal can not alias with any function
    580 /// arguments other than itself, which is not necessarily true for
    581 /// IdentifiedObjects.
    582 bool llvm::isIdentifiedFunctionLocal(const Value *V)
    583 {
    584   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
    585 }
    586