Home | History | Annotate | Download | only in CodeGen
      1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Builtin calls as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGObjCRuntime.h"
     17 #include "CodeGenModule.h"
     18 #include "TargetInfo.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/Decl.h"
     21 #include "clang/Basic/TargetBuiltins.h"
     22 #include "clang/Basic/TargetInfo.h"
     23 #include "clang/CodeGen/CGFunctionInfo.h"
     24 #include "llvm/ADT/StringExtras.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include <sstream>
     30 
     31 using namespace clang;
     32 using namespace CodeGen;
     33 using namespace llvm;
     34 
     35 /// getBuiltinLibFunction - Given a builtin id for a function like
     36 /// "__builtin_fabsf", return a Function* for "fabsf".
     37 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
     38                                                   unsigned BuiltinID) {
     39   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
     40 
     41   // Get the name, skip over the __builtin_ prefix (if necessary).
     42   StringRef Name;
     43   GlobalDecl D(FD);
     44 
     45   // If the builtin has been declared explicitly with an assembler label,
     46   // use the mangled name. This differs from the plain label on platforms
     47   // that prefix labels.
     48   if (FD->hasAttr<AsmLabelAttr>())
     49     Name = getMangledName(D);
     50   else
     51     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
     52 
     53   llvm::FunctionType *Ty =
     54     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
     55 
     56   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
     57 }
     58 
     59 /// Emit the conversions required to turn the given value into an
     60 /// integer of the given size.
     61 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
     62                         QualType T, llvm::IntegerType *IntType) {
     63   V = CGF.EmitToMemory(V, T);
     64 
     65   if (V->getType()->isPointerTy())
     66     return CGF.Builder.CreatePtrToInt(V, IntType);
     67 
     68   assert(V->getType() == IntType);
     69   return V;
     70 }
     71 
     72 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
     73                           QualType T, llvm::Type *ResultType) {
     74   V = CGF.EmitFromMemory(V, T);
     75 
     76   if (ResultType->isPointerTy())
     77     return CGF.Builder.CreateIntToPtr(V, ResultType);
     78 
     79   assert(V->getType() == ResultType);
     80   return V;
     81 }
     82 
     83 /// Utility to insert an atomic instruction based on Instrinsic::ID
     84 /// and the expression node.
     85 static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF,
     86                                     llvm::AtomicRMWInst::BinOp Kind,
     87                                     const CallExpr *E) {
     88   QualType T = E->getType();
     89   assert(E->getArg(0)->getType()->isPointerType());
     90   assert(CGF.getContext().hasSameUnqualifiedType(T,
     91                                   E->getArg(0)->getType()->getPointeeType()));
     92   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
     93 
     94   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
     95   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
     96 
     97   llvm::IntegerType *IntType =
     98     llvm::IntegerType::get(CGF.getLLVMContext(),
     99                            CGF.getContext().getTypeSize(T));
    100   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
    101 
    102   llvm::Value *Args[2];
    103   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
    104   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
    105   llvm::Type *ValueType = Args[1]->getType();
    106   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
    107 
    108   llvm::Value *Result =
    109       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
    110                                   llvm::SequentiallyConsistent);
    111   return EmitFromInt(CGF, Result, T, ValueType);
    112 }
    113 
    114 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
    115   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
    116   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
    117 
    118   // Convert the type of the pointer to a pointer to the stored type.
    119   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
    120   Value *BC = CGF.Builder.CreateBitCast(
    121       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
    122   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
    123   LV.setNontemporal(true);
    124   CGF.EmitStoreOfScalar(Val, LV, false);
    125   return nullptr;
    126 }
    127 
    128 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
    129   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
    130 
    131   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
    132   LV.setNontemporal(true);
    133   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
    134 }
    135 
    136 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
    137                                llvm::AtomicRMWInst::BinOp Kind,
    138                                const CallExpr *E) {
    139   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
    140 }
    141 
    142 /// Utility to insert an atomic instruction based Instrinsic::ID and
    143 /// the expression node, where the return value is the result of the
    144 /// operation.
    145 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
    146                                    llvm::AtomicRMWInst::BinOp Kind,
    147                                    const CallExpr *E,
    148                                    Instruction::BinaryOps Op,
    149                                    bool Invert = false) {
    150   QualType T = E->getType();
    151   assert(E->getArg(0)->getType()->isPointerType());
    152   assert(CGF.getContext().hasSameUnqualifiedType(T,
    153                                   E->getArg(0)->getType()->getPointeeType()));
    154   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
    155 
    156   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
    157   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
    158 
    159   llvm::IntegerType *IntType =
    160     llvm::IntegerType::get(CGF.getLLVMContext(),
    161                            CGF.getContext().getTypeSize(T));
    162   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
    163 
    164   llvm::Value *Args[2];
    165   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
    166   llvm::Type *ValueType = Args[1]->getType();
    167   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
    168   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
    169 
    170   llvm::Value *Result =
    171       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
    172                                   llvm::SequentiallyConsistent);
    173   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
    174   if (Invert)
    175     Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
    176                                      llvm::ConstantInt::get(IntType, -1));
    177   Result = EmitFromInt(CGF, Result, T, ValueType);
    178   return RValue::get(Result);
    179 }
    180 
    181 /// @brief Utility to insert an atomic cmpxchg instruction.
    182 ///
    183 /// @param CGF The current codegen function.
    184 /// @param E   Builtin call expression to convert to cmpxchg.
    185 ///            arg0 - address to operate on
    186 ///            arg1 - value to compare with
    187 ///            arg2 - new value
    188 /// @param ReturnBool Specifies whether to return success flag of
    189 ///                   cmpxchg result or the old value.
    190 ///
    191 /// @returns result of cmpxchg, according to ReturnBool
    192 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
    193                                      bool ReturnBool) {
    194   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
    195   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
    196   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
    197 
    198   llvm::IntegerType *IntType = llvm::IntegerType::get(
    199       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
    200   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
    201 
    202   Value *Args[3];
    203   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
    204   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
    205   llvm::Type *ValueType = Args[1]->getType();
    206   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
    207   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
    208 
    209   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
    210                                                 llvm::SequentiallyConsistent,
    211                                                 llvm::SequentiallyConsistent);
    212   if (ReturnBool)
    213     // Extract boolean success flag and zext it to int.
    214     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
    215                                   CGF.ConvertType(E->getType()));
    216   else
    217     // Extract old value and emit it using the same type as compare value.
    218     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
    219                        ValueType);
    220 }
    221 
    222 /// EmitFAbs - Emit a call to @llvm.fabs().
    223 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
    224   Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
    225   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
    226   Call->setDoesNotAccessMemory();
    227   return Call;
    228 }
    229 
    230 /// Emit the computation of the sign bit for a floating point value. Returns
    231 /// the i1 sign bit value.
    232 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
    233   LLVMContext &C = CGF.CGM.getLLVMContext();
    234 
    235   llvm::Type *Ty = V->getType();
    236   int Width = Ty->getPrimitiveSizeInBits();
    237   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
    238   V = CGF.Builder.CreateBitCast(V, IntTy);
    239   if (Ty->isPPC_FP128Ty()) {
    240     // We want the sign bit of the higher-order double. The bitcast we just
    241     // did works as if the double-double was stored to memory and then
    242     // read as an i128. The "store" will put the higher-order double in the
    243     // lower address in both little- and big-Endian modes, but the "load"
    244     // will treat those bits as a different part of the i128: the low bits in
    245     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
    246     // we need to shift the high bits down to the low before truncating.
    247     Width >>= 1;
    248     if (CGF.getTarget().isBigEndian()) {
    249       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
    250       V = CGF.Builder.CreateLShr(V, ShiftCst);
    251     }
    252     // We are truncating value in order to extract the higher-order
    253     // double, which we will be using to extract the sign from.
    254     IntTy = llvm::IntegerType::get(C, Width);
    255     V = CGF.Builder.CreateTrunc(V, IntTy);
    256   }
    257   Value *Zero = llvm::Constant::getNullValue(IntTy);
    258   return CGF.Builder.CreateICmpSLT(V, Zero);
    259 }
    260 
    261 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
    262                               const CallExpr *E, llvm::Value *calleeValue) {
    263   return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E,
    264                       ReturnValueSlot(), Fn);
    265 }
    266 
    267 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
    268 /// depending on IntrinsicID.
    269 ///
    270 /// \arg CGF The current codegen function.
    271 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
    272 /// \arg X The first argument to the llvm.*.with.overflow.*.
    273 /// \arg Y The second argument to the llvm.*.with.overflow.*.
    274 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
    275 /// \returns The result (i.e. sum/product) returned by the intrinsic.
    276 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
    277                                           const llvm::Intrinsic::ID IntrinsicID,
    278                                           llvm::Value *X, llvm::Value *Y,
    279                                           llvm::Value *&Carry) {
    280   // Make sure we have integers of the same width.
    281   assert(X->getType() == Y->getType() &&
    282          "Arguments must be the same type. (Did you forget to make sure both "
    283          "arguments have the same integer width?)");
    284 
    285   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
    286   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
    287   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
    288   return CGF.Builder.CreateExtractValue(Tmp, 0);
    289 }
    290 
    291 namespace {
    292   struct WidthAndSignedness {
    293     unsigned Width;
    294     bool Signed;
    295   };
    296 }
    297 
    298 static WidthAndSignedness
    299 getIntegerWidthAndSignedness(const clang::ASTContext &context,
    300                              const clang::QualType Type) {
    301   assert(Type->isIntegerType() && "Given type is not an integer.");
    302   unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
    303   bool Signed = Type->isSignedIntegerType();
    304   return {Width, Signed};
    305 }
    306 
    307 // Given one or more integer types, this function produces an integer type that
    308 // encompasses them: any value in one of the given types could be expressed in
    309 // the encompassing type.
    310 static struct WidthAndSignedness
    311 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
    312   assert(Types.size() > 0 && "Empty list of types.");
    313 
    314   // If any of the given types is signed, we must return a signed type.
    315   bool Signed = false;
    316   for (const auto &Type : Types) {
    317     Signed |= Type.Signed;
    318   }
    319 
    320   // The encompassing type must have a width greater than or equal to the width
    321   // of the specified types.  Aditionally, if the encompassing type is signed,
    322   // its width must be strictly greater than the width of any unsigned types
    323   // given.
    324   unsigned Width = 0;
    325   for (const auto &Type : Types) {
    326     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
    327     if (Width < MinWidth) {
    328       Width = MinWidth;
    329     }
    330   }
    331 
    332   return {Width, Signed};
    333 }
    334 
    335 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
    336   llvm::Type *DestType = Int8PtrTy;
    337   if (ArgValue->getType() != DestType)
    338     ArgValue =
    339         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
    340 
    341   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
    342   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
    343 }
    344 
    345 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
    346 /// __builtin_object_size(p, @p To) is correct
    347 static bool areBOSTypesCompatible(int From, int To) {
    348   // Note: Our __builtin_object_size implementation currently treats Type=0 and
    349   // Type=2 identically. Encoding this implementation detail here may make
    350   // improving __builtin_object_size difficult in the future, so it's omitted.
    351   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
    352 }
    353 
    354 static llvm::Value *
    355 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
    356   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
    357 }
    358 
    359 llvm::Value *
    360 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
    361                                                  llvm::IntegerType *ResType) {
    362   uint64_t ObjectSize;
    363   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
    364     return emitBuiltinObjectSize(E, Type, ResType);
    365   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
    366 }
    367 
    368 /// Returns a Value corresponding to the size of the given expression.
    369 /// This Value may be either of the following:
    370 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
    371 ///     it)
    372 ///   - A call to the @llvm.objectsize intrinsic
    373 llvm::Value *
    374 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
    375                                        llvm::IntegerType *ResType) {
    376   // We need to reference an argument if the pointer is a parameter with the
    377   // pass_object_size attribute.
    378   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
    379     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
    380     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
    381     if (Param != nullptr && PS != nullptr &&
    382         areBOSTypesCompatible(PS->getType(), Type)) {
    383       auto Iter = SizeArguments.find(Param);
    384       assert(Iter != SizeArguments.end());
    385 
    386       const ImplicitParamDecl *D = Iter->second;
    387       auto DIter = LocalDeclMap.find(D);
    388       assert(DIter != LocalDeclMap.end());
    389 
    390       return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
    391                               getContext().getSizeType(), E->getLocStart());
    392     }
    393   }
    394 
    395   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
    396   // evaluate E for side-effects. In either case, we shouldn't lower to
    397   // @llvm.objectsize.
    398   if (Type == 3 || E->HasSideEffects(getContext()))
    399     return getDefaultBuiltinObjectSizeResult(Type, ResType);
    400 
    401   // LLVM only supports 0 and 2, make sure that we pass along that
    402   // as a boolean.
    403   auto *CI = ConstantInt::get(Builder.getInt1Ty(), (Type & 2) >> 1);
    404   // FIXME: Get right address space.
    405   llvm::Type *Tys[] = {ResType, Builder.getInt8PtrTy(0)};
    406   Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
    407   return Builder.CreateCall(F, {EmitScalarExpr(E), CI});
    408 }
    409 
    410 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
    411                                         unsigned BuiltinID, const CallExpr *E,
    412                                         ReturnValueSlot ReturnValue) {
    413   // See if we can constant fold this builtin.  If so, don't emit it at all.
    414   Expr::EvalResult Result;
    415   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
    416       !Result.hasSideEffects()) {
    417     if (Result.Val.isInt())
    418       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
    419                                                 Result.Val.getInt()));
    420     if (Result.Val.isFloat())
    421       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
    422                                                Result.Val.getFloat()));
    423   }
    424 
    425   switch (BuiltinID) {
    426   default: break;  // Handle intrinsics and libm functions below.
    427   case Builtin::BI__builtin___CFStringMakeConstantString:
    428   case Builtin::BI__builtin___NSStringMakeConstantString:
    429     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), nullptr));
    430   case Builtin::BI__builtin_stdarg_start:
    431   case Builtin::BI__builtin_va_start:
    432   case Builtin::BI__va_start:
    433   case Builtin::BI__builtin_va_end:
    434     return RValue::get(
    435         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
    436                            ? EmitScalarExpr(E->getArg(0))
    437                            : EmitVAListRef(E->getArg(0)).getPointer(),
    438                        BuiltinID != Builtin::BI__builtin_va_end));
    439   case Builtin::BI__builtin_va_copy: {
    440     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
    441     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
    442 
    443     llvm::Type *Type = Int8PtrTy;
    444 
    445     DstPtr = Builder.CreateBitCast(DstPtr, Type);
    446     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
    447     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
    448                                           {DstPtr, SrcPtr}));
    449   }
    450   case Builtin::BI__builtin_abs:
    451   case Builtin::BI__builtin_labs:
    452   case Builtin::BI__builtin_llabs: {
    453     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    454 
    455     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
    456     Value *CmpResult =
    457     Builder.CreateICmpSGE(ArgValue,
    458                           llvm::Constant::getNullValue(ArgValue->getType()),
    459                                                             "abscond");
    460     Value *Result =
    461       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
    462 
    463     return RValue::get(Result);
    464   }
    465   case Builtin::BI__builtin_fabs:
    466   case Builtin::BI__builtin_fabsf:
    467   case Builtin::BI__builtin_fabsl: {
    468     Value *Arg1 = EmitScalarExpr(E->getArg(0));
    469     Value *Result = EmitFAbs(*this, Arg1);
    470     return RValue::get(Result);
    471   }
    472   case Builtin::BI__builtin_fmod:
    473   case Builtin::BI__builtin_fmodf:
    474   case Builtin::BI__builtin_fmodl: {
    475     Value *Arg1 = EmitScalarExpr(E->getArg(0));
    476     Value *Arg2 = EmitScalarExpr(E->getArg(1));
    477     Value *Result = Builder.CreateFRem(Arg1, Arg2, "fmod");
    478     return RValue::get(Result);
    479   }
    480 
    481   case Builtin::BI__builtin_conj:
    482   case Builtin::BI__builtin_conjf:
    483   case Builtin::BI__builtin_conjl: {
    484     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
    485     Value *Real = ComplexVal.first;
    486     Value *Imag = ComplexVal.second;
    487     Value *Zero =
    488       Imag->getType()->isFPOrFPVectorTy()
    489         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
    490         : llvm::Constant::getNullValue(Imag->getType());
    491 
    492     Imag = Builder.CreateFSub(Zero, Imag, "sub");
    493     return RValue::getComplex(std::make_pair(Real, Imag));
    494   }
    495   case Builtin::BI__builtin_creal:
    496   case Builtin::BI__builtin_crealf:
    497   case Builtin::BI__builtin_creall:
    498   case Builtin::BIcreal:
    499   case Builtin::BIcrealf:
    500   case Builtin::BIcreall: {
    501     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
    502     return RValue::get(ComplexVal.first);
    503   }
    504 
    505   case Builtin::BI__builtin_cimag:
    506   case Builtin::BI__builtin_cimagf:
    507   case Builtin::BI__builtin_cimagl:
    508   case Builtin::BIcimag:
    509   case Builtin::BIcimagf:
    510   case Builtin::BIcimagl: {
    511     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
    512     return RValue::get(ComplexVal.second);
    513   }
    514 
    515   case Builtin::BI__builtin_ctzs:
    516   case Builtin::BI__builtin_ctz:
    517   case Builtin::BI__builtin_ctzl:
    518   case Builtin::BI__builtin_ctzll: {
    519     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    520 
    521     llvm::Type *ArgType = ArgValue->getType();
    522     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
    523 
    524     llvm::Type *ResultType = ConvertType(E->getType());
    525     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
    526     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
    527     if (Result->getType() != ResultType)
    528       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    529                                      "cast");
    530     return RValue::get(Result);
    531   }
    532   case Builtin::BI__builtin_clzs:
    533   case Builtin::BI__builtin_clz:
    534   case Builtin::BI__builtin_clzl:
    535   case Builtin::BI__builtin_clzll: {
    536     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    537 
    538     llvm::Type *ArgType = ArgValue->getType();
    539     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
    540 
    541     llvm::Type *ResultType = ConvertType(E->getType());
    542     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
    543     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
    544     if (Result->getType() != ResultType)
    545       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    546                                      "cast");
    547     return RValue::get(Result);
    548   }
    549   case Builtin::BI__builtin_ffs:
    550   case Builtin::BI__builtin_ffsl:
    551   case Builtin::BI__builtin_ffsll: {
    552     // ffs(x) -> x ? cttz(x) + 1 : 0
    553     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    554 
    555     llvm::Type *ArgType = ArgValue->getType();
    556     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
    557 
    558     llvm::Type *ResultType = ConvertType(E->getType());
    559     Value *Tmp =
    560         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
    561                           llvm::ConstantInt::get(ArgType, 1));
    562     Value *Zero = llvm::Constant::getNullValue(ArgType);
    563     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
    564     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
    565     if (Result->getType() != ResultType)
    566       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    567                                      "cast");
    568     return RValue::get(Result);
    569   }
    570   case Builtin::BI__builtin_parity:
    571   case Builtin::BI__builtin_parityl:
    572   case Builtin::BI__builtin_parityll: {
    573     // parity(x) -> ctpop(x) & 1
    574     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    575 
    576     llvm::Type *ArgType = ArgValue->getType();
    577     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
    578 
    579     llvm::Type *ResultType = ConvertType(E->getType());
    580     Value *Tmp = Builder.CreateCall(F, ArgValue);
    581     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
    582     if (Result->getType() != ResultType)
    583       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    584                                      "cast");
    585     return RValue::get(Result);
    586   }
    587   case Builtin::BI__builtin_popcount:
    588   case Builtin::BI__builtin_popcountl:
    589   case Builtin::BI__builtin_popcountll: {
    590     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    591 
    592     llvm::Type *ArgType = ArgValue->getType();
    593     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
    594 
    595     llvm::Type *ResultType = ConvertType(E->getType());
    596     Value *Result = Builder.CreateCall(F, ArgValue);
    597     if (Result->getType() != ResultType)
    598       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    599                                      "cast");
    600     return RValue::get(Result);
    601   }
    602   case Builtin::BI__builtin_unpredictable: {
    603     // Always return the argument of __builtin_unpredictable. LLVM does not
    604     // handle this builtin. Metadata for this builtin should be added directly
    605     // to instructions such as branches or switches that use it.
    606     return RValue::get(EmitScalarExpr(E->getArg(0)));
    607   }
    608   case Builtin::BI__builtin_expect: {
    609     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    610     llvm::Type *ArgType = ArgValue->getType();
    611 
    612     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
    613     // Don't generate llvm.expect on -O0 as the backend won't use it for
    614     // anything.
    615     // Note, we still IRGen ExpectedValue because it could have side-effects.
    616     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
    617       return RValue::get(ArgValue);
    618 
    619     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
    620     Value *Result =
    621         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
    622     return RValue::get(Result);
    623   }
    624   case Builtin::BI__builtin_assume_aligned: {
    625     Value *PtrValue = EmitScalarExpr(E->getArg(0));
    626     Value *OffsetValue =
    627       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
    628 
    629     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
    630     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
    631     unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
    632 
    633     EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
    634     return RValue::get(PtrValue);
    635   }
    636   case Builtin::BI__assume:
    637   case Builtin::BI__builtin_assume: {
    638     if (E->getArg(0)->HasSideEffects(getContext()))
    639       return RValue::get(nullptr);
    640 
    641     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    642     Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
    643     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
    644   }
    645   case Builtin::BI__builtin_bswap16:
    646   case Builtin::BI__builtin_bswap32:
    647   case Builtin::BI__builtin_bswap64: {
    648     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    649     llvm::Type *ArgType = ArgValue->getType();
    650     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
    651     return RValue::get(Builder.CreateCall(F, ArgValue));
    652   }
    653   case Builtin::BI__builtin_object_size: {
    654     unsigned Type =
    655         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
    656     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
    657 
    658     // We pass this builtin onto the optimizer so that it can figure out the
    659     // object size in more complex cases.
    660     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType));
    661   }
    662   case Builtin::BI__builtin_prefetch: {
    663     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
    664     // FIXME: Technically these constants should of type 'int', yes?
    665     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
    666       llvm::ConstantInt::get(Int32Ty, 0);
    667     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
    668       llvm::ConstantInt::get(Int32Ty, 3);
    669     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
    670     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
    671     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
    672   }
    673   case Builtin::BI__builtin_readcyclecounter: {
    674     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
    675     return RValue::get(Builder.CreateCall(F));
    676   }
    677   case Builtin::BI__builtin___clear_cache: {
    678     Value *Begin = EmitScalarExpr(E->getArg(0));
    679     Value *End = EmitScalarExpr(E->getArg(1));
    680     Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
    681     return RValue::get(Builder.CreateCall(F, {Begin, End}));
    682   }
    683   case Builtin::BI__builtin_trap:
    684     return RValue::get(EmitTrapCall(Intrinsic::trap));
    685   case Builtin::BI__debugbreak:
    686     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
    687   case Builtin::BI__builtin_unreachable: {
    688     if (SanOpts.has(SanitizerKind::Unreachable)) {
    689       SanitizerScope SanScope(this);
    690       EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
    691                                SanitizerKind::Unreachable),
    692                 "builtin_unreachable", EmitCheckSourceLocation(E->getExprLoc()),
    693                 None);
    694     } else
    695       Builder.CreateUnreachable();
    696 
    697     // We do need to preserve an insertion point.
    698     EmitBlock(createBasicBlock("unreachable.cont"));
    699 
    700     return RValue::get(nullptr);
    701   }
    702 
    703   case Builtin::BI__builtin_powi:
    704   case Builtin::BI__builtin_powif:
    705   case Builtin::BI__builtin_powil: {
    706     Value *Base = EmitScalarExpr(E->getArg(0));
    707     Value *Exponent = EmitScalarExpr(E->getArg(1));
    708     llvm::Type *ArgType = Base->getType();
    709     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
    710     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
    711   }
    712 
    713   case Builtin::BI__builtin_isgreater:
    714   case Builtin::BI__builtin_isgreaterequal:
    715   case Builtin::BI__builtin_isless:
    716   case Builtin::BI__builtin_islessequal:
    717   case Builtin::BI__builtin_islessgreater:
    718   case Builtin::BI__builtin_isunordered: {
    719     // Ordered comparisons: we know the arguments to these are matching scalar
    720     // floating point values.
    721     Value *LHS = EmitScalarExpr(E->getArg(0));
    722     Value *RHS = EmitScalarExpr(E->getArg(1));
    723 
    724     switch (BuiltinID) {
    725     default: llvm_unreachable("Unknown ordered comparison");
    726     case Builtin::BI__builtin_isgreater:
    727       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
    728       break;
    729     case Builtin::BI__builtin_isgreaterequal:
    730       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
    731       break;
    732     case Builtin::BI__builtin_isless:
    733       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
    734       break;
    735     case Builtin::BI__builtin_islessequal:
    736       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
    737       break;
    738     case Builtin::BI__builtin_islessgreater:
    739       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
    740       break;
    741     case Builtin::BI__builtin_isunordered:
    742       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
    743       break;
    744     }
    745     // ZExt bool to int type.
    746     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
    747   }
    748   case Builtin::BI__builtin_isnan: {
    749     Value *V = EmitScalarExpr(E->getArg(0));
    750     V = Builder.CreateFCmpUNO(V, V, "cmp");
    751     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
    752   }
    753 
    754   case Builtin::BI__builtin_isinf: {
    755     // isinf(x) --> fabs(x) == infinity
    756     Value *V = EmitScalarExpr(E->getArg(0));
    757     V = EmitFAbs(*this, V);
    758 
    759     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
    760     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
    761   }
    762 
    763   case Builtin::BI__builtin_isinf_sign: {
    764     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
    765     Value *Arg = EmitScalarExpr(E->getArg(0));
    766     Value *AbsArg = EmitFAbs(*this, Arg);
    767     Value *IsInf = Builder.CreateFCmpOEQ(
    768         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
    769     Value *IsNeg = EmitSignBit(*this, Arg);
    770 
    771     llvm::Type *IntTy = ConvertType(E->getType());
    772     Value *Zero = Constant::getNullValue(IntTy);
    773     Value *One = ConstantInt::get(IntTy, 1);
    774     Value *NegativeOne = ConstantInt::get(IntTy, -1);
    775     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
    776     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
    777     return RValue::get(Result);
    778   }
    779 
    780   case Builtin::BI__builtin_isnormal: {
    781     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
    782     Value *V = EmitScalarExpr(E->getArg(0));
    783     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
    784 
    785     Value *Abs = EmitFAbs(*this, V);
    786     Value *IsLessThanInf =
    787       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
    788     APFloat Smallest = APFloat::getSmallestNormalized(
    789                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
    790     Value *IsNormal =
    791       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
    792                             "isnormal");
    793     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
    794     V = Builder.CreateAnd(V, IsNormal, "and");
    795     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
    796   }
    797 
    798   case Builtin::BI__builtin_isfinite: {
    799     // isfinite(x) --> x == x && fabs(x) != infinity;
    800     Value *V = EmitScalarExpr(E->getArg(0));
    801     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
    802 
    803     Value *Abs = EmitFAbs(*this, V);
    804     Value *IsNotInf =
    805       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
    806 
    807     V = Builder.CreateAnd(Eq, IsNotInf, "and");
    808     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
    809   }
    810 
    811   case Builtin::BI__builtin_fpclassify: {
    812     Value *V = EmitScalarExpr(E->getArg(5));
    813     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
    814 
    815     // Create Result
    816     BasicBlock *Begin = Builder.GetInsertBlock();
    817     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
    818     Builder.SetInsertPoint(End);
    819     PHINode *Result =
    820       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
    821                         "fpclassify_result");
    822 
    823     // if (V==0) return FP_ZERO
    824     Builder.SetInsertPoint(Begin);
    825     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
    826                                           "iszero");
    827     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
    828     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
    829     Builder.CreateCondBr(IsZero, End, NotZero);
    830     Result->addIncoming(ZeroLiteral, Begin);
    831 
    832     // if (V != V) return FP_NAN
    833     Builder.SetInsertPoint(NotZero);
    834     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
    835     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
    836     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
    837     Builder.CreateCondBr(IsNan, End, NotNan);
    838     Result->addIncoming(NanLiteral, NotZero);
    839 
    840     // if (fabs(V) == infinity) return FP_INFINITY
    841     Builder.SetInsertPoint(NotNan);
    842     Value *VAbs = EmitFAbs(*this, V);
    843     Value *IsInf =
    844       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
    845                             "isinf");
    846     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
    847     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
    848     Builder.CreateCondBr(IsInf, End, NotInf);
    849     Result->addIncoming(InfLiteral, NotNan);
    850 
    851     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
    852     Builder.SetInsertPoint(NotInf);
    853     APFloat Smallest = APFloat::getSmallestNormalized(
    854         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
    855     Value *IsNormal =
    856       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
    857                             "isnormal");
    858     Value *NormalResult =
    859       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
    860                            EmitScalarExpr(E->getArg(3)));
    861     Builder.CreateBr(End);
    862     Result->addIncoming(NormalResult, NotInf);
    863 
    864     // return Result
    865     Builder.SetInsertPoint(End);
    866     return RValue::get(Result);
    867   }
    868 
    869   case Builtin::BIalloca:
    870   case Builtin::BI_alloca:
    871   case Builtin::BI__builtin_alloca: {
    872     Value *Size = EmitScalarExpr(E->getArg(0));
    873     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
    874   }
    875   case Builtin::BIbzero:
    876   case Builtin::BI__builtin_bzero: {
    877     Address Dest = EmitPointerWithAlignment(E->getArg(0));
    878     Value *SizeVal = EmitScalarExpr(E->getArg(1));
    879     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
    880                         E->getArg(0)->getExprLoc(), FD, 0);
    881     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
    882     return RValue::get(Dest.getPointer());
    883   }
    884   case Builtin::BImemcpy:
    885   case Builtin::BI__builtin_memcpy: {
    886     Address Dest = EmitPointerWithAlignment(E->getArg(0));
    887     Address Src = EmitPointerWithAlignment(E->getArg(1));
    888     Value *SizeVal = EmitScalarExpr(E->getArg(2));
    889     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
    890                         E->getArg(0)->getExprLoc(), FD, 0);
    891     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
    892                         E->getArg(1)->getExprLoc(), FD, 1);
    893     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
    894     return RValue::get(Dest.getPointer());
    895   }
    896 
    897   case Builtin::BI__builtin___memcpy_chk: {
    898     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
    899     llvm::APSInt Size, DstSize;
    900     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
    901         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
    902       break;
    903     if (Size.ugt(DstSize))
    904       break;
    905     Address Dest = EmitPointerWithAlignment(E->getArg(0));
    906     Address Src = EmitPointerWithAlignment(E->getArg(1));
    907     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
    908     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
    909     return RValue::get(Dest.getPointer());
    910   }
    911 
    912   case Builtin::BI__builtin_objc_memmove_collectable: {
    913     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
    914     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
    915     Value *SizeVal = EmitScalarExpr(E->getArg(2));
    916     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
    917                                                   DestAddr, SrcAddr, SizeVal);
    918     return RValue::get(DestAddr.getPointer());
    919   }
    920 
    921   case Builtin::BI__builtin___memmove_chk: {
    922     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
    923     llvm::APSInt Size, DstSize;
    924     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
    925         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
    926       break;
    927     if (Size.ugt(DstSize))
    928       break;
    929     Address Dest = EmitPointerWithAlignment(E->getArg(0));
    930     Address Src = EmitPointerWithAlignment(E->getArg(1));
    931     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
    932     Builder.CreateMemMove(Dest, Src, SizeVal, false);
    933     return RValue::get(Dest.getPointer());
    934   }
    935 
    936   case Builtin::BImemmove:
    937   case Builtin::BI__builtin_memmove: {
    938     Address Dest = EmitPointerWithAlignment(E->getArg(0));
    939     Address Src = EmitPointerWithAlignment(E->getArg(1));
    940     Value *SizeVal = EmitScalarExpr(E->getArg(2));
    941     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
    942                         E->getArg(0)->getExprLoc(), FD, 0);
    943     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
    944                         E->getArg(1)->getExprLoc(), FD, 1);
    945     Builder.CreateMemMove(Dest, Src, SizeVal, false);
    946     return RValue::get(Dest.getPointer());
    947   }
    948   case Builtin::BImemset:
    949   case Builtin::BI__builtin_memset: {
    950     Address Dest = EmitPointerWithAlignment(E->getArg(0));
    951     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
    952                                          Builder.getInt8Ty());
    953     Value *SizeVal = EmitScalarExpr(E->getArg(2));
    954     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
    955                         E->getArg(0)->getExprLoc(), FD, 0);
    956     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
    957     return RValue::get(Dest.getPointer());
    958   }
    959   case Builtin::BI__builtin___memset_chk: {
    960     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
    961     llvm::APSInt Size, DstSize;
    962     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
    963         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
    964       break;
    965     if (Size.ugt(DstSize))
    966       break;
    967     Address Dest = EmitPointerWithAlignment(E->getArg(0));
    968     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
    969                                          Builder.getInt8Ty());
    970     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
    971     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
    972     return RValue::get(Dest.getPointer());
    973   }
    974   case Builtin::BI__builtin_dwarf_cfa: {
    975     // The offset in bytes from the first argument to the CFA.
    976     //
    977     // Why on earth is this in the frontend?  Is there any reason at
    978     // all that the backend can't reasonably determine this while
    979     // lowering llvm.eh.dwarf.cfa()?
    980     //
    981     // TODO: If there's a satisfactory reason, add a target hook for
    982     // this instead of hard-coding 0, which is correct for most targets.
    983     int32_t Offset = 0;
    984 
    985     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
    986     return RValue::get(Builder.CreateCall(F,
    987                                       llvm::ConstantInt::get(Int32Ty, Offset)));
    988   }
    989   case Builtin::BI__builtin_return_address: {
    990     Value *Depth =
    991         CGM.EmitConstantExpr(E->getArg(0), getContext().UnsignedIntTy, this);
    992     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
    993     return RValue::get(Builder.CreateCall(F, Depth));
    994   }
    995   case Builtin::BI__builtin_frame_address: {
    996     Value *Depth =
    997         CGM.EmitConstantExpr(E->getArg(0), getContext().UnsignedIntTy, this);
    998     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
    999     return RValue::get(Builder.CreateCall(F, Depth));
   1000   }
   1001   case Builtin::BI__builtin_extract_return_addr: {
   1002     Value *Address = EmitScalarExpr(E->getArg(0));
   1003     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
   1004     return RValue::get(Result);
   1005   }
   1006   case Builtin::BI__builtin_frob_return_addr: {
   1007     Value *Address = EmitScalarExpr(E->getArg(0));
   1008     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
   1009     return RValue::get(Result);
   1010   }
   1011   case Builtin::BI__builtin_dwarf_sp_column: {
   1012     llvm::IntegerType *Ty
   1013       = cast<llvm::IntegerType>(ConvertType(E->getType()));
   1014     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
   1015     if (Column == -1) {
   1016       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
   1017       return RValue::get(llvm::UndefValue::get(Ty));
   1018     }
   1019     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
   1020   }
   1021   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
   1022     Value *Address = EmitScalarExpr(E->getArg(0));
   1023     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
   1024       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
   1025     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
   1026   }
   1027   case Builtin::BI__builtin_eh_return: {
   1028     Value *Int = EmitScalarExpr(E->getArg(0));
   1029     Value *Ptr = EmitScalarExpr(E->getArg(1));
   1030 
   1031     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
   1032     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
   1033            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
   1034     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
   1035                                   ? Intrinsic::eh_return_i32
   1036                                   : Intrinsic::eh_return_i64);
   1037     Builder.CreateCall(F, {Int, Ptr});
   1038     Builder.CreateUnreachable();
   1039 
   1040     // We do need to preserve an insertion point.
   1041     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
   1042 
   1043     return RValue::get(nullptr);
   1044   }
   1045   case Builtin::BI__builtin_unwind_init: {
   1046     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
   1047     return RValue::get(Builder.CreateCall(F));
   1048   }
   1049   case Builtin::BI__builtin_extend_pointer: {
   1050     // Extends a pointer to the size of an _Unwind_Word, which is
   1051     // uint64_t on all platforms.  Generally this gets poked into a
   1052     // register and eventually used as an address, so if the
   1053     // addressing registers are wider than pointers and the platform
   1054     // doesn't implicitly ignore high-order bits when doing
   1055     // addressing, we need to make sure we zext / sext based on
   1056     // the platform's expectations.
   1057     //
   1058     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
   1059 
   1060     // Cast the pointer to intptr_t.
   1061     Value *Ptr = EmitScalarExpr(E->getArg(0));
   1062     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
   1063 
   1064     // If that's 64 bits, we're done.
   1065     if (IntPtrTy->getBitWidth() == 64)
   1066       return RValue::get(Result);
   1067 
   1068     // Otherwise, ask the codegen data what to do.
   1069     if (getTargetHooks().extendPointerWithSExt())
   1070       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
   1071     else
   1072       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
   1073   }
   1074   case Builtin::BI__builtin_setjmp: {
   1075     // Buffer is a void**.
   1076     Address Buf = EmitPointerWithAlignment(E->getArg(0));
   1077 
   1078     // Store the frame pointer to the setjmp buffer.
   1079     Value *FrameAddr =
   1080       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
   1081                          ConstantInt::get(Int32Ty, 0));
   1082     Builder.CreateStore(FrameAddr, Buf);
   1083 
   1084     // Store the stack pointer to the setjmp buffer.
   1085     Value *StackAddr =
   1086         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
   1087     Address StackSaveSlot =
   1088       Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize());
   1089     Builder.CreateStore(StackAddr, StackSaveSlot);
   1090 
   1091     // Call LLVM's EH setjmp, which is lightweight.
   1092     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
   1093     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
   1094     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
   1095   }
   1096   case Builtin::BI__builtin_longjmp: {
   1097     Value *Buf = EmitScalarExpr(E->getArg(0));
   1098     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
   1099 
   1100     // Call LLVM's EH longjmp, which is lightweight.
   1101     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
   1102 
   1103     // longjmp doesn't return; mark this as unreachable.
   1104     Builder.CreateUnreachable();
   1105 
   1106     // We do need to preserve an insertion point.
   1107     EmitBlock(createBasicBlock("longjmp.cont"));
   1108 
   1109     return RValue::get(nullptr);
   1110   }
   1111   case Builtin::BI__sync_fetch_and_add:
   1112   case Builtin::BI__sync_fetch_and_sub:
   1113   case Builtin::BI__sync_fetch_and_or:
   1114   case Builtin::BI__sync_fetch_and_and:
   1115   case Builtin::BI__sync_fetch_and_xor:
   1116   case Builtin::BI__sync_fetch_and_nand:
   1117   case Builtin::BI__sync_add_and_fetch:
   1118   case Builtin::BI__sync_sub_and_fetch:
   1119   case Builtin::BI__sync_and_and_fetch:
   1120   case Builtin::BI__sync_or_and_fetch:
   1121   case Builtin::BI__sync_xor_and_fetch:
   1122   case Builtin::BI__sync_nand_and_fetch:
   1123   case Builtin::BI__sync_val_compare_and_swap:
   1124   case Builtin::BI__sync_bool_compare_and_swap:
   1125   case Builtin::BI__sync_lock_test_and_set:
   1126   case Builtin::BI__sync_lock_release:
   1127   case Builtin::BI__sync_swap:
   1128     llvm_unreachable("Shouldn't make it through sema");
   1129   case Builtin::BI__sync_fetch_and_add_1:
   1130   case Builtin::BI__sync_fetch_and_add_2:
   1131   case Builtin::BI__sync_fetch_and_add_4:
   1132   case Builtin::BI__sync_fetch_and_add_8:
   1133   case Builtin::BI__sync_fetch_and_add_16:
   1134     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
   1135   case Builtin::BI__sync_fetch_and_sub_1:
   1136   case Builtin::BI__sync_fetch_and_sub_2:
   1137   case Builtin::BI__sync_fetch_and_sub_4:
   1138   case Builtin::BI__sync_fetch_and_sub_8:
   1139   case Builtin::BI__sync_fetch_and_sub_16:
   1140     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
   1141   case Builtin::BI__sync_fetch_and_or_1:
   1142   case Builtin::BI__sync_fetch_and_or_2:
   1143   case Builtin::BI__sync_fetch_and_or_4:
   1144   case Builtin::BI__sync_fetch_and_or_8:
   1145   case Builtin::BI__sync_fetch_and_or_16:
   1146     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
   1147   case Builtin::BI__sync_fetch_and_and_1:
   1148   case Builtin::BI__sync_fetch_and_and_2:
   1149   case Builtin::BI__sync_fetch_and_and_4:
   1150   case Builtin::BI__sync_fetch_and_and_8:
   1151   case Builtin::BI__sync_fetch_and_and_16:
   1152     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
   1153   case Builtin::BI__sync_fetch_and_xor_1:
   1154   case Builtin::BI__sync_fetch_and_xor_2:
   1155   case Builtin::BI__sync_fetch_and_xor_4:
   1156   case Builtin::BI__sync_fetch_and_xor_8:
   1157   case Builtin::BI__sync_fetch_and_xor_16:
   1158     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
   1159   case Builtin::BI__sync_fetch_and_nand_1:
   1160   case Builtin::BI__sync_fetch_and_nand_2:
   1161   case Builtin::BI__sync_fetch_and_nand_4:
   1162   case Builtin::BI__sync_fetch_and_nand_8:
   1163   case Builtin::BI__sync_fetch_and_nand_16:
   1164     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
   1165 
   1166   // Clang extensions: not overloaded yet.
   1167   case Builtin::BI__sync_fetch_and_min:
   1168     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
   1169   case Builtin::BI__sync_fetch_and_max:
   1170     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
   1171   case Builtin::BI__sync_fetch_and_umin:
   1172     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
   1173   case Builtin::BI__sync_fetch_and_umax:
   1174     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
   1175 
   1176   case Builtin::BI__sync_add_and_fetch_1:
   1177   case Builtin::BI__sync_add_and_fetch_2:
   1178   case Builtin::BI__sync_add_and_fetch_4:
   1179   case Builtin::BI__sync_add_and_fetch_8:
   1180   case Builtin::BI__sync_add_and_fetch_16:
   1181     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
   1182                                 llvm::Instruction::Add);
   1183   case Builtin::BI__sync_sub_and_fetch_1:
   1184   case Builtin::BI__sync_sub_and_fetch_2:
   1185   case Builtin::BI__sync_sub_and_fetch_4:
   1186   case Builtin::BI__sync_sub_and_fetch_8:
   1187   case Builtin::BI__sync_sub_and_fetch_16:
   1188     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
   1189                                 llvm::Instruction::Sub);
   1190   case Builtin::BI__sync_and_and_fetch_1:
   1191   case Builtin::BI__sync_and_and_fetch_2:
   1192   case Builtin::BI__sync_and_and_fetch_4:
   1193   case Builtin::BI__sync_and_and_fetch_8:
   1194   case Builtin::BI__sync_and_and_fetch_16:
   1195     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
   1196                                 llvm::Instruction::And);
   1197   case Builtin::BI__sync_or_and_fetch_1:
   1198   case Builtin::BI__sync_or_and_fetch_2:
   1199   case Builtin::BI__sync_or_and_fetch_4:
   1200   case Builtin::BI__sync_or_and_fetch_8:
   1201   case Builtin::BI__sync_or_and_fetch_16:
   1202     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
   1203                                 llvm::Instruction::Or);
   1204   case Builtin::BI__sync_xor_and_fetch_1:
   1205   case Builtin::BI__sync_xor_and_fetch_2:
   1206   case Builtin::BI__sync_xor_and_fetch_4:
   1207   case Builtin::BI__sync_xor_and_fetch_8:
   1208   case Builtin::BI__sync_xor_and_fetch_16:
   1209     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
   1210                                 llvm::Instruction::Xor);
   1211   case Builtin::BI__sync_nand_and_fetch_1:
   1212   case Builtin::BI__sync_nand_and_fetch_2:
   1213   case Builtin::BI__sync_nand_and_fetch_4:
   1214   case Builtin::BI__sync_nand_and_fetch_8:
   1215   case Builtin::BI__sync_nand_and_fetch_16:
   1216     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
   1217                                 llvm::Instruction::And, true);
   1218 
   1219   case Builtin::BI__sync_val_compare_and_swap_1:
   1220   case Builtin::BI__sync_val_compare_and_swap_2:
   1221   case Builtin::BI__sync_val_compare_and_swap_4:
   1222   case Builtin::BI__sync_val_compare_and_swap_8:
   1223   case Builtin::BI__sync_val_compare_and_swap_16:
   1224     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
   1225 
   1226   case Builtin::BI__sync_bool_compare_and_swap_1:
   1227   case Builtin::BI__sync_bool_compare_and_swap_2:
   1228   case Builtin::BI__sync_bool_compare_and_swap_4:
   1229   case Builtin::BI__sync_bool_compare_and_swap_8:
   1230   case Builtin::BI__sync_bool_compare_and_swap_16:
   1231     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
   1232 
   1233   case Builtin::BI__sync_swap_1:
   1234   case Builtin::BI__sync_swap_2:
   1235   case Builtin::BI__sync_swap_4:
   1236   case Builtin::BI__sync_swap_8:
   1237   case Builtin::BI__sync_swap_16:
   1238     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
   1239 
   1240   case Builtin::BI__sync_lock_test_and_set_1:
   1241   case Builtin::BI__sync_lock_test_and_set_2:
   1242   case Builtin::BI__sync_lock_test_and_set_4:
   1243   case Builtin::BI__sync_lock_test_and_set_8:
   1244   case Builtin::BI__sync_lock_test_and_set_16:
   1245     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
   1246 
   1247   case Builtin::BI__sync_lock_release_1:
   1248   case Builtin::BI__sync_lock_release_2:
   1249   case Builtin::BI__sync_lock_release_4:
   1250   case Builtin::BI__sync_lock_release_8:
   1251   case Builtin::BI__sync_lock_release_16: {
   1252     Value *Ptr = EmitScalarExpr(E->getArg(0));
   1253     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
   1254     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
   1255     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
   1256                                              StoreSize.getQuantity() * 8);
   1257     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
   1258     llvm::StoreInst *Store =
   1259       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
   1260                                  StoreSize);
   1261     Store->setAtomic(llvm::Release);
   1262     return RValue::get(nullptr);
   1263   }
   1264 
   1265   case Builtin::BI__sync_synchronize: {
   1266     // We assume this is supposed to correspond to a C++0x-style
   1267     // sequentially-consistent fence (i.e. this is only usable for
   1268     // synchonization, not device I/O or anything like that). This intrinsic
   1269     // is really badly designed in the sense that in theory, there isn't
   1270     // any way to safely use it... but in practice, it mostly works
   1271     // to use it with non-atomic loads and stores to get acquire/release
   1272     // semantics.
   1273     Builder.CreateFence(llvm::SequentiallyConsistent);
   1274     return RValue::get(nullptr);
   1275   }
   1276 
   1277   case Builtin::BI__builtin_nontemporal_load:
   1278     return RValue::get(EmitNontemporalLoad(*this, E));
   1279   case Builtin::BI__builtin_nontemporal_store:
   1280     return RValue::get(EmitNontemporalStore(*this, E));
   1281   case Builtin::BI__c11_atomic_is_lock_free:
   1282   case Builtin::BI__atomic_is_lock_free: {
   1283     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
   1284     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
   1285     // _Atomic(T) is always properly-aligned.
   1286     const char *LibCallName = "__atomic_is_lock_free";
   1287     CallArgList Args;
   1288     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
   1289              getContext().getSizeType());
   1290     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
   1291       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
   1292                getContext().VoidPtrTy);
   1293     else
   1294       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
   1295                getContext().VoidPtrTy);
   1296     const CGFunctionInfo &FuncInfo =
   1297         CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
   1298                                                FunctionType::ExtInfo(),
   1299                                                RequiredArgs::All);
   1300     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
   1301     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
   1302     return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
   1303   }
   1304 
   1305   case Builtin::BI__atomic_test_and_set: {
   1306     // Look at the argument type to determine whether this is a volatile
   1307     // operation. The parameter type is always volatile.
   1308     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
   1309     bool Volatile =
   1310         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
   1311 
   1312     Value *Ptr = EmitScalarExpr(E->getArg(0));
   1313     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
   1314     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
   1315     Value *NewVal = Builder.getInt8(1);
   1316     Value *Order = EmitScalarExpr(E->getArg(1));
   1317     if (isa<llvm::ConstantInt>(Order)) {
   1318       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
   1319       AtomicRMWInst *Result = nullptr;
   1320       switch (ord) {
   1321       case 0:  // memory_order_relaxed
   1322       default: // invalid order
   1323         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1324                                          Ptr, NewVal,
   1325                                          llvm::Monotonic);
   1326         break;
   1327       case 1:  // memory_order_consume
   1328       case 2:  // memory_order_acquire
   1329         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1330                                          Ptr, NewVal,
   1331                                          llvm::Acquire);
   1332         break;
   1333       case 3:  // memory_order_release
   1334         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1335                                          Ptr, NewVal,
   1336                                          llvm::Release);
   1337         break;
   1338       case 4:  // memory_order_acq_rel
   1339         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1340                                          Ptr, NewVal,
   1341                                          llvm::AcquireRelease);
   1342         break;
   1343       case 5:  // memory_order_seq_cst
   1344         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1345                                          Ptr, NewVal,
   1346                                          llvm::SequentiallyConsistent);
   1347         break;
   1348       }
   1349       Result->setVolatile(Volatile);
   1350       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
   1351     }
   1352 
   1353     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
   1354 
   1355     llvm::BasicBlock *BBs[5] = {
   1356       createBasicBlock("monotonic", CurFn),
   1357       createBasicBlock("acquire", CurFn),
   1358       createBasicBlock("release", CurFn),
   1359       createBasicBlock("acqrel", CurFn),
   1360       createBasicBlock("seqcst", CurFn)
   1361     };
   1362     llvm::AtomicOrdering Orders[5] = {
   1363       llvm::Monotonic, llvm::Acquire, llvm::Release,
   1364       llvm::AcquireRelease, llvm::SequentiallyConsistent
   1365     };
   1366 
   1367     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
   1368     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
   1369 
   1370     Builder.SetInsertPoint(ContBB);
   1371     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
   1372 
   1373     for (unsigned i = 0; i < 5; ++i) {
   1374       Builder.SetInsertPoint(BBs[i]);
   1375       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1376                                                    Ptr, NewVal, Orders[i]);
   1377       RMW->setVolatile(Volatile);
   1378       Result->addIncoming(RMW, BBs[i]);
   1379       Builder.CreateBr(ContBB);
   1380     }
   1381 
   1382     SI->addCase(Builder.getInt32(0), BBs[0]);
   1383     SI->addCase(Builder.getInt32(1), BBs[1]);
   1384     SI->addCase(Builder.getInt32(2), BBs[1]);
   1385     SI->addCase(Builder.getInt32(3), BBs[2]);
   1386     SI->addCase(Builder.getInt32(4), BBs[3]);
   1387     SI->addCase(Builder.getInt32(5), BBs[4]);
   1388 
   1389     Builder.SetInsertPoint(ContBB);
   1390     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
   1391   }
   1392 
   1393   case Builtin::BI__atomic_clear: {
   1394     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
   1395     bool Volatile =
   1396         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
   1397 
   1398     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
   1399     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
   1400     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
   1401     Value *NewVal = Builder.getInt8(0);
   1402     Value *Order = EmitScalarExpr(E->getArg(1));
   1403     if (isa<llvm::ConstantInt>(Order)) {
   1404       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
   1405       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
   1406       switch (ord) {
   1407       case 0:  // memory_order_relaxed
   1408       default: // invalid order
   1409         Store->setOrdering(llvm::Monotonic);
   1410         break;
   1411       case 3:  // memory_order_release
   1412         Store->setOrdering(llvm::Release);
   1413         break;
   1414       case 5:  // memory_order_seq_cst
   1415         Store->setOrdering(llvm::SequentiallyConsistent);
   1416         break;
   1417       }
   1418       return RValue::get(nullptr);
   1419     }
   1420 
   1421     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
   1422 
   1423     llvm::BasicBlock *BBs[3] = {
   1424       createBasicBlock("monotonic", CurFn),
   1425       createBasicBlock("release", CurFn),
   1426       createBasicBlock("seqcst", CurFn)
   1427     };
   1428     llvm::AtomicOrdering Orders[3] = {
   1429       llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
   1430     };
   1431 
   1432     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
   1433     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
   1434 
   1435     for (unsigned i = 0; i < 3; ++i) {
   1436       Builder.SetInsertPoint(BBs[i]);
   1437       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
   1438       Store->setOrdering(Orders[i]);
   1439       Builder.CreateBr(ContBB);
   1440     }
   1441 
   1442     SI->addCase(Builder.getInt32(0), BBs[0]);
   1443     SI->addCase(Builder.getInt32(3), BBs[1]);
   1444     SI->addCase(Builder.getInt32(5), BBs[2]);
   1445 
   1446     Builder.SetInsertPoint(ContBB);
   1447     return RValue::get(nullptr);
   1448   }
   1449 
   1450   case Builtin::BI__atomic_thread_fence:
   1451   case Builtin::BI__atomic_signal_fence:
   1452   case Builtin::BI__c11_atomic_thread_fence:
   1453   case Builtin::BI__c11_atomic_signal_fence: {
   1454     llvm::SynchronizationScope Scope;
   1455     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
   1456         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
   1457       Scope = llvm::SingleThread;
   1458     else
   1459       Scope = llvm::CrossThread;
   1460     Value *Order = EmitScalarExpr(E->getArg(0));
   1461     if (isa<llvm::ConstantInt>(Order)) {
   1462       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
   1463       switch (ord) {
   1464       case 0:  // memory_order_relaxed
   1465       default: // invalid order
   1466         break;
   1467       case 1:  // memory_order_consume
   1468       case 2:  // memory_order_acquire
   1469         Builder.CreateFence(llvm::Acquire, Scope);
   1470         break;
   1471       case 3:  // memory_order_release
   1472         Builder.CreateFence(llvm::Release, Scope);
   1473         break;
   1474       case 4:  // memory_order_acq_rel
   1475         Builder.CreateFence(llvm::AcquireRelease, Scope);
   1476         break;
   1477       case 5:  // memory_order_seq_cst
   1478         Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
   1479         break;
   1480       }
   1481       return RValue::get(nullptr);
   1482     }
   1483 
   1484     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
   1485     AcquireBB = createBasicBlock("acquire", CurFn);
   1486     ReleaseBB = createBasicBlock("release", CurFn);
   1487     AcqRelBB = createBasicBlock("acqrel", CurFn);
   1488     SeqCstBB = createBasicBlock("seqcst", CurFn);
   1489     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
   1490 
   1491     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
   1492     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
   1493 
   1494     Builder.SetInsertPoint(AcquireBB);
   1495     Builder.CreateFence(llvm::Acquire, Scope);
   1496     Builder.CreateBr(ContBB);
   1497     SI->addCase(Builder.getInt32(1), AcquireBB);
   1498     SI->addCase(Builder.getInt32(2), AcquireBB);
   1499 
   1500     Builder.SetInsertPoint(ReleaseBB);
   1501     Builder.CreateFence(llvm::Release, Scope);
   1502     Builder.CreateBr(ContBB);
   1503     SI->addCase(Builder.getInt32(3), ReleaseBB);
   1504 
   1505     Builder.SetInsertPoint(AcqRelBB);
   1506     Builder.CreateFence(llvm::AcquireRelease, Scope);
   1507     Builder.CreateBr(ContBB);
   1508     SI->addCase(Builder.getInt32(4), AcqRelBB);
   1509 
   1510     Builder.SetInsertPoint(SeqCstBB);
   1511     Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
   1512     Builder.CreateBr(ContBB);
   1513     SI->addCase(Builder.getInt32(5), SeqCstBB);
   1514 
   1515     Builder.SetInsertPoint(ContBB);
   1516     return RValue::get(nullptr);
   1517   }
   1518 
   1519     // Library functions with special handling.
   1520   case Builtin::BIsqrt:
   1521   case Builtin::BIsqrtf:
   1522   case Builtin::BIsqrtl: {
   1523     // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
   1524     // in finite- or unsafe-math mode (the intrinsic has different semantics
   1525     // for handling negative numbers compared to the library function, so
   1526     // -fmath-errno=0 is not enough).
   1527     if (!FD->hasAttr<ConstAttr>())
   1528       break;
   1529     if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
   1530           CGM.getCodeGenOpts().NoNaNsFPMath))
   1531       break;
   1532     Value *Arg0 = EmitScalarExpr(E->getArg(0));
   1533     llvm::Type *ArgType = Arg0->getType();
   1534     Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
   1535     return RValue::get(Builder.CreateCall(F, Arg0));
   1536   }
   1537 
   1538   case Builtin::BI__builtin_pow:
   1539   case Builtin::BI__builtin_powf:
   1540   case Builtin::BI__builtin_powl:
   1541   case Builtin::BIpow:
   1542   case Builtin::BIpowf:
   1543   case Builtin::BIpowl: {
   1544     // Transform a call to pow* into a @llvm.pow.* intrinsic call.
   1545     if (!FD->hasAttr<ConstAttr>())
   1546       break;
   1547     Value *Base = EmitScalarExpr(E->getArg(0));
   1548     Value *Exponent = EmitScalarExpr(E->getArg(1));
   1549     llvm::Type *ArgType = Base->getType();
   1550     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
   1551     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
   1552   }
   1553 
   1554   case Builtin::BIfma:
   1555   case Builtin::BIfmaf:
   1556   case Builtin::BIfmal:
   1557   case Builtin::BI__builtin_fma:
   1558   case Builtin::BI__builtin_fmaf:
   1559   case Builtin::BI__builtin_fmal: {
   1560     // Rewrite fma to intrinsic.
   1561     Value *FirstArg = EmitScalarExpr(E->getArg(0));
   1562     llvm::Type *ArgType = FirstArg->getType();
   1563     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
   1564     return RValue::get(
   1565         Builder.CreateCall(F, {FirstArg, EmitScalarExpr(E->getArg(1)),
   1566                                EmitScalarExpr(E->getArg(2))}));
   1567   }
   1568 
   1569   case Builtin::BI__builtin_signbit:
   1570   case Builtin::BI__builtin_signbitf:
   1571   case Builtin::BI__builtin_signbitl: {
   1572     return RValue::get(
   1573         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
   1574                            ConvertType(E->getType())));
   1575   }
   1576   case Builtin::BI__builtin_annotation: {
   1577     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
   1578     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
   1579                                       AnnVal->getType());
   1580 
   1581     // Get the annotation string, go through casts. Sema requires this to be a
   1582     // non-wide string literal, potentially casted, so the cast<> is safe.
   1583     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
   1584     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
   1585     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
   1586   }
   1587   case Builtin::BI__builtin_addcb:
   1588   case Builtin::BI__builtin_addcs:
   1589   case Builtin::BI__builtin_addc:
   1590   case Builtin::BI__builtin_addcl:
   1591   case Builtin::BI__builtin_addcll:
   1592   case Builtin::BI__builtin_subcb:
   1593   case Builtin::BI__builtin_subcs:
   1594   case Builtin::BI__builtin_subc:
   1595   case Builtin::BI__builtin_subcl:
   1596   case Builtin::BI__builtin_subcll: {
   1597 
   1598     // We translate all of these builtins from expressions of the form:
   1599     //   int x = ..., y = ..., carryin = ..., carryout, result;
   1600     //   result = __builtin_addc(x, y, carryin, &carryout);
   1601     //
   1602     // to LLVM IR of the form:
   1603     //
   1604     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
   1605     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
   1606     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
   1607     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
   1608     //                                                       i32 %carryin)
   1609     //   %result = extractvalue {i32, i1} %tmp2, 0
   1610     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
   1611     //   %tmp3 = or i1 %carry1, %carry2
   1612     //   %tmp4 = zext i1 %tmp3 to i32
   1613     //   store i32 %tmp4, i32* %carryout
   1614 
   1615     // Scalarize our inputs.
   1616     llvm::Value *X = EmitScalarExpr(E->getArg(0));
   1617     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
   1618     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
   1619     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
   1620 
   1621     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
   1622     llvm::Intrinsic::ID IntrinsicId;
   1623     switch (BuiltinID) {
   1624     default: llvm_unreachable("Unknown multiprecision builtin id.");
   1625     case Builtin::BI__builtin_addcb:
   1626     case Builtin::BI__builtin_addcs:
   1627     case Builtin::BI__builtin_addc:
   1628     case Builtin::BI__builtin_addcl:
   1629     case Builtin::BI__builtin_addcll:
   1630       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
   1631       break;
   1632     case Builtin::BI__builtin_subcb:
   1633     case Builtin::BI__builtin_subcs:
   1634     case Builtin::BI__builtin_subc:
   1635     case Builtin::BI__builtin_subcl:
   1636     case Builtin::BI__builtin_subcll:
   1637       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
   1638       break;
   1639     }
   1640 
   1641     // Construct our resulting LLVM IR expression.
   1642     llvm::Value *Carry1;
   1643     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
   1644                                               X, Y, Carry1);
   1645     llvm::Value *Carry2;
   1646     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
   1647                                               Sum1, Carryin, Carry2);
   1648     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
   1649                                                X->getType());
   1650     Builder.CreateStore(CarryOut, CarryOutPtr);
   1651     return RValue::get(Sum2);
   1652   }
   1653 
   1654   case Builtin::BI__builtin_add_overflow:
   1655   case Builtin::BI__builtin_sub_overflow:
   1656   case Builtin::BI__builtin_mul_overflow: {
   1657     const clang::Expr *LeftArg = E->getArg(0);
   1658     const clang::Expr *RightArg = E->getArg(1);
   1659     const clang::Expr *ResultArg = E->getArg(2);
   1660 
   1661     clang::QualType ResultQTy =
   1662         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
   1663 
   1664     WidthAndSignedness LeftInfo =
   1665         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
   1666     WidthAndSignedness RightInfo =
   1667         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
   1668     WidthAndSignedness ResultInfo =
   1669         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
   1670     WidthAndSignedness EncompassingInfo =
   1671         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
   1672 
   1673     llvm::Type *EncompassingLLVMTy =
   1674         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
   1675 
   1676     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
   1677 
   1678     llvm::Intrinsic::ID IntrinsicId;
   1679     switch (BuiltinID) {
   1680     default:
   1681       llvm_unreachable("Unknown overflow builtin id.");
   1682     case Builtin::BI__builtin_add_overflow:
   1683       IntrinsicId = EncompassingInfo.Signed
   1684                         ? llvm::Intrinsic::sadd_with_overflow
   1685                         : llvm::Intrinsic::uadd_with_overflow;
   1686       break;
   1687     case Builtin::BI__builtin_sub_overflow:
   1688       IntrinsicId = EncompassingInfo.Signed
   1689                         ? llvm::Intrinsic::ssub_with_overflow
   1690                         : llvm::Intrinsic::usub_with_overflow;
   1691       break;
   1692     case Builtin::BI__builtin_mul_overflow:
   1693       IntrinsicId = EncompassingInfo.Signed
   1694                         ? llvm::Intrinsic::smul_with_overflow
   1695                         : llvm::Intrinsic::umul_with_overflow;
   1696       break;
   1697     }
   1698 
   1699     llvm::Value *Left = EmitScalarExpr(LeftArg);
   1700     llvm::Value *Right = EmitScalarExpr(RightArg);
   1701     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
   1702 
   1703     // Extend each operand to the encompassing type.
   1704     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
   1705     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
   1706 
   1707     // Perform the operation on the extended values.
   1708     llvm::Value *Overflow, *Result;
   1709     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
   1710 
   1711     if (EncompassingInfo.Width > ResultInfo.Width) {
   1712       // The encompassing type is wider than the result type, so we need to
   1713       // truncate it.
   1714       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
   1715 
   1716       // To see if the truncation caused an overflow, we will extend
   1717       // the result and then compare it to the original result.
   1718       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
   1719           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
   1720       llvm::Value *TruncationOverflow =
   1721           Builder.CreateICmpNE(Result, ResultTruncExt);
   1722 
   1723       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
   1724       Result = ResultTrunc;
   1725     }
   1726 
   1727     // Finally, store the result using the pointer.
   1728     bool isVolatile =
   1729       ResultArg->getType()->getPointeeType().isVolatileQualified();
   1730     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
   1731 
   1732     return RValue::get(Overflow);
   1733   }
   1734 
   1735   case Builtin::BI__builtin_uadd_overflow:
   1736   case Builtin::BI__builtin_uaddl_overflow:
   1737   case Builtin::BI__builtin_uaddll_overflow:
   1738   case Builtin::BI__builtin_usub_overflow:
   1739   case Builtin::BI__builtin_usubl_overflow:
   1740   case Builtin::BI__builtin_usubll_overflow:
   1741   case Builtin::BI__builtin_umul_overflow:
   1742   case Builtin::BI__builtin_umull_overflow:
   1743   case Builtin::BI__builtin_umulll_overflow:
   1744   case Builtin::BI__builtin_sadd_overflow:
   1745   case Builtin::BI__builtin_saddl_overflow:
   1746   case Builtin::BI__builtin_saddll_overflow:
   1747   case Builtin::BI__builtin_ssub_overflow:
   1748   case Builtin::BI__builtin_ssubl_overflow:
   1749   case Builtin::BI__builtin_ssubll_overflow:
   1750   case Builtin::BI__builtin_smul_overflow:
   1751   case Builtin::BI__builtin_smull_overflow:
   1752   case Builtin::BI__builtin_smulll_overflow: {
   1753 
   1754     // We translate all of these builtins directly to the relevant llvm IR node.
   1755 
   1756     // Scalarize our inputs.
   1757     llvm::Value *X = EmitScalarExpr(E->getArg(0));
   1758     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
   1759     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
   1760 
   1761     // Decide which of the overflow intrinsics we are lowering to:
   1762     llvm::Intrinsic::ID IntrinsicId;
   1763     switch (BuiltinID) {
   1764     default: llvm_unreachable("Unknown overflow builtin id.");
   1765     case Builtin::BI__builtin_uadd_overflow:
   1766     case Builtin::BI__builtin_uaddl_overflow:
   1767     case Builtin::BI__builtin_uaddll_overflow:
   1768       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
   1769       break;
   1770     case Builtin::BI__builtin_usub_overflow:
   1771     case Builtin::BI__builtin_usubl_overflow:
   1772     case Builtin::BI__builtin_usubll_overflow:
   1773       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
   1774       break;
   1775     case Builtin::BI__builtin_umul_overflow:
   1776     case Builtin::BI__builtin_umull_overflow:
   1777     case Builtin::BI__builtin_umulll_overflow:
   1778       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
   1779       break;
   1780     case Builtin::BI__builtin_sadd_overflow:
   1781     case Builtin::BI__builtin_saddl_overflow:
   1782     case Builtin::BI__builtin_saddll_overflow:
   1783       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
   1784       break;
   1785     case Builtin::BI__builtin_ssub_overflow:
   1786     case Builtin::BI__builtin_ssubl_overflow:
   1787     case Builtin::BI__builtin_ssubll_overflow:
   1788       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
   1789       break;
   1790     case Builtin::BI__builtin_smul_overflow:
   1791     case Builtin::BI__builtin_smull_overflow:
   1792     case Builtin::BI__builtin_smulll_overflow:
   1793       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
   1794       break;
   1795     }
   1796 
   1797 
   1798     llvm::Value *Carry;
   1799     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
   1800     Builder.CreateStore(Sum, SumOutPtr);
   1801 
   1802     return RValue::get(Carry);
   1803   }
   1804   case Builtin::BI__builtin_addressof:
   1805     return RValue::get(EmitLValue(E->getArg(0)).getPointer());
   1806   case Builtin::BI__builtin_operator_new:
   1807     return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
   1808                                     E->getArg(0), false);
   1809   case Builtin::BI__builtin_operator_delete:
   1810     return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
   1811                                     E->getArg(0), true);
   1812   case Builtin::BI__noop:
   1813     // __noop always evaluates to an integer literal zero.
   1814     return RValue::get(ConstantInt::get(IntTy, 0));
   1815   case Builtin::BI__builtin_call_with_static_chain: {
   1816     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
   1817     const Expr *Chain = E->getArg(1);
   1818     return EmitCall(Call->getCallee()->getType(),
   1819                     EmitScalarExpr(Call->getCallee()), Call, ReturnValue,
   1820                     Call->getCalleeDecl(), EmitScalarExpr(Chain));
   1821   }
   1822   case Builtin::BI_InterlockedExchange:
   1823   case Builtin::BI_InterlockedExchangePointer:
   1824     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
   1825   case Builtin::BI_InterlockedCompareExchangePointer: {
   1826     llvm::Type *RTy;
   1827     llvm::IntegerType *IntType =
   1828       IntegerType::get(getLLVMContext(),
   1829                        getContext().getTypeSize(E->getType()));
   1830     llvm::Type *IntPtrType = IntType->getPointerTo();
   1831 
   1832     llvm::Value *Destination =
   1833       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
   1834 
   1835     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
   1836     RTy = Exchange->getType();
   1837     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
   1838 
   1839     llvm::Value *Comparand =
   1840       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
   1841 
   1842     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
   1843                                               SequentiallyConsistent,
   1844                                               SequentiallyConsistent);
   1845     Result->setVolatile(true);
   1846 
   1847     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
   1848                                                                          0),
   1849                                               RTy));
   1850   }
   1851   case Builtin::BI_InterlockedCompareExchange: {
   1852     AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
   1853         EmitScalarExpr(E->getArg(0)),
   1854         EmitScalarExpr(E->getArg(2)),
   1855         EmitScalarExpr(E->getArg(1)),
   1856         SequentiallyConsistent,
   1857         SequentiallyConsistent);
   1858       CXI->setVolatile(true);
   1859       return RValue::get(Builder.CreateExtractValue(CXI, 0));
   1860   }
   1861   case Builtin::BI_InterlockedIncrement: {
   1862     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
   1863       AtomicRMWInst::Add,
   1864       EmitScalarExpr(E->getArg(0)),
   1865       ConstantInt::get(Int32Ty, 1),
   1866       llvm::SequentiallyConsistent);
   1867     RMWI->setVolatile(true);
   1868     return RValue::get(Builder.CreateAdd(RMWI, ConstantInt::get(Int32Ty, 1)));
   1869   }
   1870   case Builtin::BI_InterlockedDecrement: {
   1871     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
   1872       AtomicRMWInst::Sub,
   1873       EmitScalarExpr(E->getArg(0)),
   1874       ConstantInt::get(Int32Ty, 1),
   1875       llvm::SequentiallyConsistent);
   1876     RMWI->setVolatile(true);
   1877     return RValue::get(Builder.CreateSub(RMWI, ConstantInt::get(Int32Ty, 1)));
   1878   }
   1879   case Builtin::BI_InterlockedExchangeAdd: {
   1880     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
   1881       AtomicRMWInst::Add,
   1882       EmitScalarExpr(E->getArg(0)),
   1883       EmitScalarExpr(E->getArg(1)),
   1884       llvm::SequentiallyConsistent);
   1885     RMWI->setVolatile(true);
   1886     return RValue::get(RMWI);
   1887   }
   1888   case Builtin::BI__readfsdword: {
   1889     Value *IntToPtr =
   1890       Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
   1891                              llvm::PointerType::get(CGM.Int32Ty, 257));
   1892     LoadInst *Load =
   1893         Builder.CreateAlignedLoad(IntToPtr, /*Align=*/4, /*isVolatile=*/true);
   1894     return RValue::get(Load);
   1895   }
   1896 
   1897   case Builtin::BI__exception_code:
   1898   case Builtin::BI_exception_code:
   1899     return RValue::get(EmitSEHExceptionCode());
   1900   case Builtin::BI__exception_info:
   1901   case Builtin::BI_exception_info:
   1902     return RValue::get(EmitSEHExceptionInfo());
   1903   case Builtin::BI__abnormal_termination:
   1904   case Builtin::BI_abnormal_termination:
   1905     return RValue::get(EmitSEHAbnormalTermination());
   1906   case Builtin::BI_setjmpex: {
   1907     if (getTarget().getTriple().isOSMSVCRT()) {
   1908       llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
   1909       llvm::AttributeSet ReturnsTwiceAttr =
   1910           AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
   1911                             llvm::Attribute::ReturnsTwice);
   1912       llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction(
   1913           llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
   1914           "_setjmpex", ReturnsTwiceAttr);
   1915       llvm::Value *Buf = Builder.CreateBitOrPointerCast(
   1916           EmitScalarExpr(E->getArg(0)), Int8PtrTy);
   1917       llvm::Value *FrameAddr =
   1918           Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
   1919                              ConstantInt::get(Int32Ty, 0));
   1920       llvm::Value *Args[] = {Buf, FrameAddr};
   1921       llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args);
   1922       CS.setAttributes(ReturnsTwiceAttr);
   1923       return RValue::get(CS.getInstruction());
   1924     }
   1925     break;
   1926   }
   1927   case Builtin::BI_setjmp: {
   1928     if (getTarget().getTriple().isOSMSVCRT()) {
   1929       llvm::AttributeSet ReturnsTwiceAttr =
   1930           AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
   1931                             llvm::Attribute::ReturnsTwice);
   1932       llvm::Value *Buf = Builder.CreateBitOrPointerCast(
   1933           EmitScalarExpr(E->getArg(0)), Int8PtrTy);
   1934       llvm::CallSite CS;
   1935       if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
   1936         llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy};
   1937         llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction(
   1938             llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true),
   1939             "_setjmp3", ReturnsTwiceAttr);
   1940         llvm::Value *Count = ConstantInt::get(IntTy, 0);
   1941         llvm::Value *Args[] = {Buf, Count};
   1942         CS = EmitRuntimeCallOrInvoke(SetJmp3, Args);
   1943       } else {
   1944         llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
   1945         llvm::Constant *SetJmp = CGM.CreateRuntimeFunction(
   1946             llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
   1947             "_setjmp", ReturnsTwiceAttr);
   1948         llvm::Value *FrameAddr =
   1949             Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
   1950                                ConstantInt::get(Int32Ty, 0));
   1951         llvm::Value *Args[] = {Buf, FrameAddr};
   1952         CS = EmitRuntimeCallOrInvoke(SetJmp, Args);
   1953       }
   1954       CS.setAttributes(ReturnsTwiceAttr);
   1955       return RValue::get(CS.getInstruction());
   1956     }
   1957     break;
   1958   }
   1959 
   1960   case Builtin::BI__GetExceptionInfo: {
   1961     if (llvm::GlobalVariable *GV =
   1962             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
   1963       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
   1964     break;
   1965   }
   1966   }
   1967 
   1968   // If this is an alias for a lib function (e.g. __builtin_sin), emit
   1969   // the call using the normal call path, but using the unmangled
   1970   // version of the function name.
   1971   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
   1972     return emitLibraryCall(*this, FD, E,
   1973                            CGM.getBuiltinLibFunction(FD, BuiltinID));
   1974 
   1975   // If this is a predefined lib function (e.g. malloc), emit the call
   1976   // using exactly the normal call path.
   1977   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
   1978     return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
   1979 
   1980   // Check that a call to a target specific builtin has the correct target
   1981   // features.
   1982   // This is down here to avoid non-target specific builtins, however, if
   1983   // generic builtins start to require generic target features then we
   1984   // can move this up to the beginning of the function.
   1985   checkTargetFeatures(E, FD);
   1986 
   1987   // See if we have a target specific intrinsic.
   1988   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
   1989   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
   1990   if (const char *Prefix =
   1991           llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch())) {
   1992     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
   1993     // NOTE we dont need to perform a compatibility flag check here since the
   1994     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
   1995     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
   1996     if (IntrinsicID == Intrinsic::not_intrinsic)
   1997       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix, Name);
   1998   }
   1999 
   2000   if (IntrinsicID != Intrinsic::not_intrinsic) {
   2001     SmallVector<Value*, 16> Args;
   2002 
   2003     // Find out if any arguments are required to be integer constant
   2004     // expressions.
   2005     unsigned ICEArguments = 0;
   2006     ASTContext::GetBuiltinTypeError Error;
   2007     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
   2008     assert(Error == ASTContext::GE_None && "Should not codegen an error");
   2009 
   2010     Function *F = CGM.getIntrinsic(IntrinsicID);
   2011     llvm::FunctionType *FTy = F->getFunctionType();
   2012 
   2013     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
   2014       Value *ArgValue;
   2015       // If this is a normal argument, just emit it as a scalar.
   2016       if ((ICEArguments & (1 << i)) == 0) {
   2017         ArgValue = EmitScalarExpr(E->getArg(i));
   2018       } else {
   2019         // If this is required to be a constant, constant fold it so that we
   2020         // know that the generated intrinsic gets a ConstantInt.
   2021         llvm::APSInt Result;
   2022         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
   2023         assert(IsConst && "Constant arg isn't actually constant?");
   2024         (void)IsConst;
   2025         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
   2026       }
   2027 
   2028       // If the intrinsic arg type is different from the builtin arg type
   2029       // we need to do a bit cast.
   2030       llvm::Type *PTy = FTy->getParamType(i);
   2031       if (PTy != ArgValue->getType()) {
   2032         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
   2033                "Must be able to losslessly bit cast to param");
   2034         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
   2035       }
   2036 
   2037       Args.push_back(ArgValue);
   2038     }
   2039 
   2040     Value *V = Builder.CreateCall(F, Args);
   2041     QualType BuiltinRetType = E->getType();
   2042 
   2043     llvm::Type *RetTy = VoidTy;
   2044     if (!BuiltinRetType->isVoidType())
   2045       RetTy = ConvertType(BuiltinRetType);
   2046 
   2047     if (RetTy != V->getType()) {
   2048       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
   2049              "Must be able to losslessly bit cast result type");
   2050       V = Builder.CreateBitCast(V, RetTy);
   2051     }
   2052 
   2053     return RValue::get(V);
   2054   }
   2055 
   2056   // See if we have a target specific builtin that needs to be lowered.
   2057   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
   2058     return RValue::get(V);
   2059 
   2060   ErrorUnsupported(E, "builtin function");
   2061 
   2062   // Unknown builtin, for now just dump it out and return undef.
   2063   return GetUndefRValue(E->getType());
   2064 }
   2065 
   2066 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
   2067                                         unsigned BuiltinID, const CallExpr *E,
   2068                                         llvm::Triple::ArchType Arch) {
   2069   switch (Arch) {
   2070   case llvm::Triple::arm:
   2071   case llvm::Triple::armeb:
   2072   case llvm::Triple::thumb:
   2073   case llvm::Triple::thumbeb:
   2074     return CGF->EmitARMBuiltinExpr(BuiltinID, E);
   2075   case llvm::Triple::aarch64:
   2076   case llvm::Triple::aarch64_be:
   2077     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E);
   2078   case llvm::Triple::x86:
   2079   case llvm::Triple::x86_64:
   2080     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
   2081   case llvm::Triple::ppc:
   2082   case llvm::Triple::ppc64:
   2083   case llvm::Triple::ppc64le:
   2084     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
   2085   case llvm::Triple::r600:
   2086   case llvm::Triple::amdgcn:
   2087     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
   2088   case llvm::Triple::systemz:
   2089     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
   2090   case llvm::Triple::nvptx:
   2091   case llvm::Triple::nvptx64:
   2092     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
   2093   case llvm::Triple::wasm32:
   2094   case llvm::Triple::wasm64:
   2095     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
   2096   default:
   2097     return nullptr;
   2098   }
   2099 }
   2100 
   2101 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
   2102                                               const CallExpr *E) {
   2103   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
   2104     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
   2105     return EmitTargetArchBuiltinExpr(
   2106         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
   2107         getContext().getAuxTargetInfo()->getTriple().getArch());
   2108   }
   2109 
   2110   return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
   2111                                    getTarget().getTriple().getArch());
   2112 }
   2113 
   2114 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
   2115                                      NeonTypeFlags TypeFlags,
   2116                                      bool V1Ty=false) {
   2117   int IsQuad = TypeFlags.isQuad();
   2118   switch (TypeFlags.getEltType()) {
   2119   case NeonTypeFlags::Int8:
   2120   case NeonTypeFlags::Poly8:
   2121     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
   2122   case NeonTypeFlags::Int16:
   2123   case NeonTypeFlags::Poly16:
   2124   case NeonTypeFlags::Float16:
   2125     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
   2126   case NeonTypeFlags::Int32:
   2127     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
   2128   case NeonTypeFlags::Int64:
   2129   case NeonTypeFlags::Poly64:
   2130     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
   2131   case NeonTypeFlags::Poly128:
   2132     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
   2133     // There is a lot of i128 and f128 API missing.
   2134     // so we use v16i8 to represent poly128 and get pattern matched.
   2135     return llvm::VectorType::get(CGF->Int8Ty, 16);
   2136   case NeonTypeFlags::Float32:
   2137     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
   2138   case NeonTypeFlags::Float64:
   2139     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
   2140   }
   2141   llvm_unreachable("Unknown vector element type!");
   2142 }
   2143 
   2144 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
   2145                                           NeonTypeFlags IntTypeFlags) {
   2146   int IsQuad = IntTypeFlags.isQuad();
   2147   switch (IntTypeFlags.getEltType()) {
   2148   case NeonTypeFlags::Int32:
   2149     return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
   2150   case NeonTypeFlags::Int64:
   2151     return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
   2152   default:
   2153     llvm_unreachable("Type can't be converted to floating-point!");
   2154   }
   2155 }
   2156 
   2157 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
   2158   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
   2159   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
   2160   return Builder.CreateShuffleVector(V, V, SV, "lane");
   2161 }
   2162 
   2163 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
   2164                                      const char *name,
   2165                                      unsigned shift, bool rightshift) {
   2166   unsigned j = 0;
   2167   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
   2168        ai != ae; ++ai, ++j)
   2169     if (shift > 0 && shift == j)
   2170       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
   2171     else
   2172       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
   2173 
   2174   return Builder.CreateCall(F, Ops, name);
   2175 }
   2176 
   2177 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
   2178                                             bool neg) {
   2179   int SV = cast<ConstantInt>(V)->getSExtValue();
   2180   return ConstantInt::get(Ty, neg ? -SV : SV);
   2181 }
   2182 
   2183 // \brief Right-shift a vector by a constant.
   2184 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
   2185                                           llvm::Type *Ty, bool usgn,
   2186                                           const char *name) {
   2187   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
   2188 
   2189   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
   2190   int EltSize = VTy->getScalarSizeInBits();
   2191 
   2192   Vec = Builder.CreateBitCast(Vec, Ty);
   2193 
   2194   // lshr/ashr are undefined when the shift amount is equal to the vector
   2195   // element size.
   2196   if (ShiftAmt == EltSize) {
   2197     if (usgn) {
   2198       // Right-shifting an unsigned value by its size yields 0.
   2199       return llvm::ConstantAggregateZero::get(VTy);
   2200     } else {
   2201       // Right-shifting a signed value by its size is equivalent
   2202       // to a shift of size-1.
   2203       --ShiftAmt;
   2204       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
   2205     }
   2206   }
   2207 
   2208   Shift = EmitNeonShiftVector(Shift, Ty, false);
   2209   if (usgn)
   2210     return Builder.CreateLShr(Vec, Shift, name);
   2211   else
   2212     return Builder.CreateAShr(Vec, Shift, name);
   2213 }
   2214 
   2215 enum {
   2216   AddRetType = (1 << 0),
   2217   Add1ArgType = (1 << 1),
   2218   Add2ArgTypes = (1 << 2),
   2219 
   2220   VectorizeRetType = (1 << 3),
   2221   VectorizeArgTypes = (1 << 4),
   2222 
   2223   InventFloatType = (1 << 5),
   2224   UnsignedAlts = (1 << 6),
   2225 
   2226   Use64BitVectors = (1 << 7),
   2227   Use128BitVectors = (1 << 8),
   2228 
   2229   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
   2230   VectorRet = AddRetType | VectorizeRetType,
   2231   VectorRetGetArgs01 =
   2232       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
   2233   FpCmpzModifiers =
   2234       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
   2235 };
   2236 
   2237 namespace {
   2238 struct NeonIntrinsicInfo {
   2239   const char *NameHint;
   2240   unsigned BuiltinID;
   2241   unsigned LLVMIntrinsic;
   2242   unsigned AltLLVMIntrinsic;
   2243   unsigned TypeModifier;
   2244 
   2245   bool operator<(unsigned RHSBuiltinID) const {
   2246     return BuiltinID < RHSBuiltinID;
   2247   }
   2248   bool operator<(const NeonIntrinsicInfo &TE) const {
   2249     return BuiltinID < TE.BuiltinID;
   2250   }
   2251 };
   2252 } // end anonymous namespace
   2253 
   2254 #define NEONMAP0(NameBase) \
   2255   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
   2256 
   2257 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
   2258   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
   2259       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
   2260 
   2261 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
   2262   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
   2263       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
   2264       TypeModifier }
   2265 
   2266 static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
   2267   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
   2268   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
   2269   NEONMAP1(vabs_v, arm_neon_vabs, 0),
   2270   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
   2271   NEONMAP0(vaddhn_v),
   2272   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
   2273   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
   2274   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
   2275   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
   2276   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
   2277   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
   2278   NEONMAP1(vcage_v, arm_neon_vacge, 0),
   2279   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
   2280   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
   2281   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
   2282   NEONMAP1(vcale_v, arm_neon_vacge, 0),
   2283   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
   2284   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
   2285   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
   2286   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
   2287   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
   2288   NEONMAP1(vclz_v, ctlz, Add1ArgType),
   2289   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
   2290   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
   2291   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
   2292   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
   2293   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
   2294   NEONMAP0(vcvt_f32_v),
   2295   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
   2296   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
   2297   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
   2298   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
   2299   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
   2300   NEONMAP0(vcvt_s32_v),
   2301   NEONMAP0(vcvt_s64_v),
   2302   NEONMAP0(vcvt_u32_v),
   2303   NEONMAP0(vcvt_u64_v),
   2304   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
   2305   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
   2306   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
   2307   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
   2308   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
   2309   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
   2310   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
   2311   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
   2312   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
   2313   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
   2314   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
   2315   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
   2316   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
   2317   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
   2318   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
   2319   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
   2320   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
   2321   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
   2322   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
   2323   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
   2324   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
   2325   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
   2326   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
   2327   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
   2328   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
   2329   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
   2330   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
   2331   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
   2332   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
   2333   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
   2334   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
   2335   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
   2336   NEONMAP0(vcvtq_f32_v),
   2337   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
   2338   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
   2339   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
   2340   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
   2341   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
   2342   NEONMAP0(vcvtq_s32_v),
   2343   NEONMAP0(vcvtq_s64_v),
   2344   NEONMAP0(vcvtq_u32_v),
   2345   NEONMAP0(vcvtq_u64_v),
   2346   NEONMAP0(vext_v),
   2347   NEONMAP0(vextq_v),
   2348   NEONMAP0(vfma_v),
   2349   NEONMAP0(vfmaq_v),
   2350   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
   2351   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
   2352   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
   2353   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
   2354   NEONMAP0(vld1_dup_v),
   2355   NEONMAP1(vld1_v, arm_neon_vld1, 0),
   2356   NEONMAP0(vld1q_dup_v),
   2357   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
   2358   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
   2359   NEONMAP1(vld2_v, arm_neon_vld2, 0),
   2360   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
   2361   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
   2362   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
   2363   NEONMAP1(vld3_v, arm_neon_vld3, 0),
   2364   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
   2365   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
   2366   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
   2367   NEONMAP1(vld4_v, arm_neon_vld4, 0),
   2368   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
   2369   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
   2370   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
   2371   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
   2372   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
   2373   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
   2374   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
   2375   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
   2376   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
   2377   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
   2378   NEONMAP0(vmovl_v),
   2379   NEONMAP0(vmovn_v),
   2380   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
   2381   NEONMAP0(vmull_v),
   2382   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
   2383   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
   2384   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
   2385   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
   2386   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
   2387   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
   2388   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
   2389   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
   2390   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
   2391   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
   2392   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
   2393   NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
   2394   NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
   2395   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
   2396   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
   2397   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
   2398   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
   2399   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
   2400   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
   2401   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
   2402   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
   2403   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
   2404   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
   2405   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
   2406   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
   2407   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
   2408   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
   2409   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
   2410   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
   2411   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
   2412   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
   2413   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
   2414   NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
   2415   NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
   2416   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
   2417   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
   2418   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
   2419   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
   2420   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
   2421   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
   2422   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
   2423   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
   2424   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
   2425   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
   2426   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
   2427   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
   2428   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
   2429   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
   2430   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
   2431   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
   2432   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
   2433   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
   2434   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
   2435   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
   2436   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
   2437   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
   2438   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
   2439   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
   2440   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
   2441   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
   2442   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
   2443   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
   2444   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
   2445   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
   2446   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
   2447   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
   2448   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
   2449   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
   2450   NEONMAP0(vshl_n_v),
   2451   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
   2452   NEONMAP0(vshll_n_v),
   2453   NEONMAP0(vshlq_n_v),
   2454   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
   2455   NEONMAP0(vshr_n_v),
   2456   NEONMAP0(vshrn_n_v),
   2457   NEONMAP0(vshrq_n_v),
   2458   NEONMAP1(vst1_v, arm_neon_vst1, 0),
   2459   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
   2460   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
   2461   NEONMAP1(vst2_v, arm_neon_vst2, 0),
   2462   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
   2463   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
   2464   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
   2465   NEONMAP1(vst3_v, arm_neon_vst3, 0),
   2466   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
   2467   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
   2468   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
   2469   NEONMAP1(vst4_v, arm_neon_vst4, 0),
   2470   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
   2471   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
   2472   NEONMAP0(vsubhn_v),
   2473   NEONMAP0(vtrn_v),
   2474   NEONMAP0(vtrnq_v),
   2475   NEONMAP0(vtst_v),
   2476   NEONMAP0(vtstq_v),
   2477   NEONMAP0(vuzp_v),
   2478   NEONMAP0(vuzpq_v),
   2479   NEONMAP0(vzip_v),
   2480   NEONMAP0(vzipq_v)
   2481 };
   2482 
   2483 static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
   2484   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
   2485   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
   2486   NEONMAP0(vaddhn_v),
   2487   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
   2488   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
   2489   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
   2490   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
   2491   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
   2492   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
   2493   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
   2494   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
   2495   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
   2496   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
   2497   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
   2498   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
   2499   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
   2500   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
   2501   NEONMAP1(vclz_v, ctlz, Add1ArgType),
   2502   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
   2503   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
   2504   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
   2505   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
   2506   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
   2507   NEONMAP0(vcvt_f32_v),
   2508   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
   2509   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
   2510   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
   2511   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
   2512   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
   2513   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
   2514   NEONMAP0(vcvtq_f32_v),
   2515   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
   2516   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
   2517   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
   2518   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
   2519   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
   2520   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
   2521   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
   2522   NEONMAP0(vext_v),
   2523   NEONMAP0(vextq_v),
   2524   NEONMAP0(vfma_v),
   2525   NEONMAP0(vfmaq_v),
   2526   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
   2527   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
   2528   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
   2529   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
   2530   NEONMAP0(vmovl_v),
   2531   NEONMAP0(vmovn_v),
   2532   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
   2533   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
   2534   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
   2535   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
   2536   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
   2537   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
   2538   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
   2539   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
   2540   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
   2541   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
   2542   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
   2543   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
   2544   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
   2545   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
   2546   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
   2547   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
   2548   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
   2549   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
   2550   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
   2551   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
   2552   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
   2553   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
   2554   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
   2555   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
   2556   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
   2557   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
   2558   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
   2559   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
   2560   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
   2561   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
   2562   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
   2563   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
   2564   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
   2565   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
   2566   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
   2567   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
   2568   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
   2569   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
   2570   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
   2571   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
   2572   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
   2573   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
   2574   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
   2575   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
   2576   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
   2577   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
   2578   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
   2579   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
   2580   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
   2581   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
   2582   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
   2583   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
   2584   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
   2585   NEONMAP0(vshl_n_v),
   2586   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
   2587   NEONMAP0(vshll_n_v),
   2588   NEONMAP0(vshlq_n_v),
   2589   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
   2590   NEONMAP0(vshr_n_v),
   2591   NEONMAP0(vshrn_n_v),
   2592   NEONMAP0(vshrq_n_v),
   2593   NEONMAP0(vsubhn_v),
   2594   NEONMAP0(vtst_v),
   2595   NEONMAP0(vtstq_v),
   2596 };
   2597 
   2598 static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
   2599   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
   2600   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
   2601   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
   2602   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
   2603   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
   2604   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
   2605   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
   2606   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
   2607   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
   2608   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
   2609   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
   2610   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
   2611   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
   2612   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
   2613   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
   2614   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
   2615   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
   2616   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
   2617   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
   2618   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
   2619   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
   2620   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
   2621   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
   2622   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
   2623   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
   2624   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
   2625   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
   2626   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
   2627   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
   2628   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
   2629   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
   2630   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
   2631   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
   2632   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
   2633   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
   2634   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
   2635   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
   2636   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
   2637   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
   2638   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
   2639   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
   2640   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
   2641   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
   2642   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
   2643   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
   2644   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
   2645   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
   2646   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
   2647   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
   2648   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
   2649   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
   2650   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
   2651   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
   2652   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
   2653   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
   2654   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
   2655   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
   2656   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
   2657   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
   2658   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
   2659   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
   2660   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
   2661   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
   2662   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
   2663   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
   2664   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
   2665   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
   2666   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
   2667   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
   2668   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
   2669   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
   2670   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
   2671   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
   2672   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
   2673   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
   2674   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
   2675   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
   2676   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
   2677   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
   2678   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
   2679   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
   2680   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
   2681   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
   2682   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
   2683   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
   2684   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
   2685   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
   2686   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
   2687   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
   2688   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
   2689   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
   2690   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
   2691   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
   2692   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
   2693   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
   2694   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
   2695   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
   2696   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
   2697   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
   2698   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
   2699   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
   2700   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
   2701   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
   2702   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
   2703   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
   2704   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
   2705   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
   2706   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
   2707   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
   2708   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
   2709   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
   2710   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
   2711   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
   2712   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
   2713   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
   2714   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
   2715   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
   2716   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
   2717   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
   2718   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
   2719   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
   2720   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
   2721   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
   2722   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
   2723   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
   2724   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
   2725   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
   2726   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
   2727   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
   2728   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
   2729   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
   2730   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
   2731   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
   2732   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
   2733   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
   2734   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
   2735   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
   2736   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
   2737   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
   2738   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
   2739   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
   2740   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
   2741   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
   2742   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
   2743   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
   2744   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
   2745   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
   2746   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
   2747   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
   2748   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
   2749   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
   2750   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
   2751   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
   2752   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
   2753   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
   2754   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
   2755   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
   2756   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
   2757   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
   2758   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
   2759   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
   2760   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
   2761   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
   2762   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
   2763   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
   2764   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
   2765   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
   2766   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
   2767   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
   2768   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
   2769   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
   2770   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
   2771   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
   2772   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
   2773   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
   2774   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
   2775   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
   2776   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
   2777   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
   2778   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
   2779   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
   2780   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
   2781   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
   2782   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
   2783   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
   2784   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
   2785   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
   2786   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
   2787   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
   2788   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
   2789   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
   2790   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
   2791 };
   2792 
   2793 #undef NEONMAP0
   2794 #undef NEONMAP1
   2795 #undef NEONMAP2
   2796 
   2797 static bool NEONSIMDIntrinsicsProvenSorted = false;
   2798 
   2799 static bool AArch64SIMDIntrinsicsProvenSorted = false;
   2800 static bool AArch64SISDIntrinsicsProvenSorted = false;
   2801 
   2802 
   2803 static const NeonIntrinsicInfo *
   2804 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
   2805                        unsigned BuiltinID, bool &MapProvenSorted) {
   2806 
   2807 #ifndef NDEBUG
   2808   if (!MapProvenSorted) {
   2809     assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
   2810     MapProvenSorted = true;
   2811   }
   2812 #endif
   2813 
   2814   const NeonIntrinsicInfo *Builtin =
   2815       std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
   2816 
   2817   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
   2818     return Builtin;
   2819 
   2820   return nullptr;
   2821 }
   2822 
   2823 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
   2824                                                    unsigned Modifier,
   2825                                                    llvm::Type *ArgType,
   2826                                                    const CallExpr *E) {
   2827   int VectorSize = 0;
   2828   if (Modifier & Use64BitVectors)
   2829     VectorSize = 64;
   2830   else if (Modifier & Use128BitVectors)
   2831     VectorSize = 128;
   2832 
   2833   // Return type.
   2834   SmallVector<llvm::Type *, 3> Tys;
   2835   if (Modifier & AddRetType) {
   2836     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
   2837     if (Modifier & VectorizeRetType)
   2838       Ty = llvm::VectorType::get(
   2839           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
   2840 
   2841     Tys.push_back(Ty);
   2842   }
   2843 
   2844   // Arguments.
   2845   if (Modifier & VectorizeArgTypes) {
   2846     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
   2847     ArgType = llvm::VectorType::get(ArgType, Elts);
   2848   }
   2849 
   2850   if (Modifier & (Add1ArgType | Add2ArgTypes))
   2851     Tys.push_back(ArgType);
   2852 
   2853   if (Modifier & Add2ArgTypes)
   2854     Tys.push_back(ArgType);
   2855 
   2856   if (Modifier & InventFloatType)
   2857     Tys.push_back(FloatTy);
   2858 
   2859   return CGM.getIntrinsic(IntrinsicID, Tys);
   2860 }
   2861 
   2862 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
   2863                                             const NeonIntrinsicInfo &SISDInfo,
   2864                                             SmallVectorImpl<Value *> &Ops,
   2865                                             const CallExpr *E) {
   2866   unsigned BuiltinID = SISDInfo.BuiltinID;
   2867   unsigned int Int = SISDInfo.LLVMIntrinsic;
   2868   unsigned Modifier = SISDInfo.TypeModifier;
   2869   const char *s = SISDInfo.NameHint;
   2870 
   2871   switch (BuiltinID) {
   2872   case NEON::BI__builtin_neon_vcled_s64:
   2873   case NEON::BI__builtin_neon_vcled_u64:
   2874   case NEON::BI__builtin_neon_vcles_f32:
   2875   case NEON::BI__builtin_neon_vcled_f64:
   2876   case NEON::BI__builtin_neon_vcltd_s64:
   2877   case NEON::BI__builtin_neon_vcltd_u64:
   2878   case NEON::BI__builtin_neon_vclts_f32:
   2879   case NEON::BI__builtin_neon_vcltd_f64:
   2880   case NEON::BI__builtin_neon_vcales_f32:
   2881   case NEON::BI__builtin_neon_vcaled_f64:
   2882   case NEON::BI__builtin_neon_vcalts_f32:
   2883   case NEON::BI__builtin_neon_vcaltd_f64:
   2884     // Only one direction of comparisons actually exist, cmle is actually a cmge
   2885     // with swapped operands. The table gives us the right intrinsic but we
   2886     // still need to do the swap.
   2887     std::swap(Ops[0], Ops[1]);
   2888     break;
   2889   }
   2890 
   2891   assert(Int && "Generic code assumes a valid intrinsic");
   2892 
   2893   // Determine the type(s) of this overloaded AArch64 intrinsic.
   2894   const Expr *Arg = E->getArg(0);
   2895   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
   2896   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
   2897 
   2898   int j = 0;
   2899   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
   2900   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
   2901        ai != ae; ++ai, ++j) {
   2902     llvm::Type *ArgTy = ai->getType();
   2903     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
   2904              ArgTy->getPrimitiveSizeInBits())
   2905       continue;
   2906 
   2907     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
   2908     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
   2909     // it before inserting.
   2910     Ops[j] =
   2911         CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
   2912     Ops[j] =
   2913         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
   2914   }
   2915 
   2916   Value *Result = CGF.EmitNeonCall(F, Ops, s);
   2917   llvm::Type *ResultType = CGF.ConvertType(E->getType());
   2918   if (ResultType->getPrimitiveSizeInBits() <
   2919       Result->getType()->getPrimitiveSizeInBits())
   2920     return CGF.Builder.CreateExtractElement(Result, C0);
   2921 
   2922   return CGF.Builder.CreateBitCast(Result, ResultType, s);
   2923 }
   2924 
   2925 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
   2926     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
   2927     const char *NameHint, unsigned Modifier, const CallExpr *E,
   2928     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1) {
   2929   // Get the last argument, which specifies the vector type.
   2930   llvm::APSInt NeonTypeConst;
   2931   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
   2932   if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
   2933     return nullptr;
   2934 
   2935   // Determine the type of this overloaded NEON intrinsic.
   2936   NeonTypeFlags Type(NeonTypeConst.getZExtValue());
   2937   bool Usgn = Type.isUnsigned();
   2938   bool Quad = Type.isQuad();
   2939 
   2940   llvm::VectorType *VTy = GetNeonType(this, Type);
   2941   llvm::Type *Ty = VTy;
   2942   if (!Ty)
   2943     return nullptr;
   2944 
   2945   auto getAlignmentValue32 = [&](Address addr) -> Value* {
   2946     return Builder.getInt32(addr.getAlignment().getQuantity());
   2947   };
   2948 
   2949   unsigned Int = LLVMIntrinsic;
   2950   if ((Modifier & UnsignedAlts) && !Usgn)
   2951     Int = AltLLVMIntrinsic;
   2952 
   2953   switch (BuiltinID) {
   2954   default: break;
   2955   case NEON::BI__builtin_neon_vabs_v:
   2956   case NEON::BI__builtin_neon_vabsq_v:
   2957     if (VTy->getElementType()->isFloatingPointTy())
   2958       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
   2959     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
   2960   case NEON::BI__builtin_neon_vaddhn_v: {
   2961     llvm::VectorType *SrcTy =
   2962         llvm::VectorType::getExtendedElementVectorType(VTy);
   2963 
   2964     // %sum = add <4 x i32> %lhs, %rhs
   2965     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
   2966     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
   2967     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
   2968 
   2969     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
   2970     Constant *ShiftAmt =
   2971         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
   2972     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
   2973 
   2974     // %res = trunc <4 x i32> %high to <4 x i16>
   2975     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
   2976   }
   2977   case NEON::BI__builtin_neon_vcale_v:
   2978   case NEON::BI__builtin_neon_vcaleq_v:
   2979   case NEON::BI__builtin_neon_vcalt_v:
   2980   case NEON::BI__builtin_neon_vcaltq_v:
   2981     std::swap(Ops[0], Ops[1]);
   2982   case NEON::BI__builtin_neon_vcage_v:
   2983   case NEON::BI__builtin_neon_vcageq_v:
   2984   case NEON::BI__builtin_neon_vcagt_v:
   2985   case NEON::BI__builtin_neon_vcagtq_v: {
   2986     llvm::Type *VecFlt = llvm::VectorType::get(
   2987         VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy,
   2988         VTy->getNumElements());
   2989     llvm::Type *Tys[] = { VTy, VecFlt };
   2990     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
   2991     return EmitNeonCall(F, Ops, NameHint);
   2992   }
   2993   case NEON::BI__builtin_neon_vclz_v:
   2994   case NEON::BI__builtin_neon_vclzq_v:
   2995     // We generate target-independent intrinsic, which needs a second argument
   2996     // for whether or not clz of zero is undefined; on ARM it isn't.
   2997     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
   2998     break;
   2999   case NEON::BI__builtin_neon_vcvt_f32_v:
   3000   case NEON::BI__builtin_neon_vcvtq_f32_v:
   3001     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   3002     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad));
   3003     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
   3004                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
   3005   case NEON::BI__builtin_neon_vcvt_n_f32_v:
   3006   case NEON::BI__builtin_neon_vcvt_n_f64_v:
   3007   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
   3008   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
   3009     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
   3010     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
   3011     Function *F = CGM.getIntrinsic(Int, Tys);
   3012     return EmitNeonCall(F, Ops, "vcvt_n");
   3013   }
   3014   case NEON::BI__builtin_neon_vcvt_n_s32_v:
   3015   case NEON::BI__builtin_neon_vcvt_n_u32_v:
   3016   case NEON::BI__builtin_neon_vcvt_n_s64_v:
   3017   case NEON::BI__builtin_neon_vcvt_n_u64_v:
   3018   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
   3019   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
   3020   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
   3021   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
   3022     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
   3023     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
   3024     return EmitNeonCall(F, Ops, "vcvt_n");
   3025   }
   3026   case NEON::BI__builtin_neon_vcvt_s32_v:
   3027   case NEON::BI__builtin_neon_vcvt_u32_v:
   3028   case NEON::BI__builtin_neon_vcvt_s64_v:
   3029   case NEON::BI__builtin_neon_vcvt_u64_v:
   3030   case NEON::BI__builtin_neon_vcvtq_s32_v:
   3031   case NEON::BI__builtin_neon_vcvtq_u32_v:
   3032   case NEON::BI__builtin_neon_vcvtq_s64_v:
   3033   case NEON::BI__builtin_neon_vcvtq_u64_v: {
   3034     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
   3035     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
   3036                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
   3037   }
   3038   case NEON::BI__builtin_neon_vcvta_s32_v:
   3039   case NEON::BI__builtin_neon_vcvta_s64_v:
   3040   case NEON::BI__builtin_neon_vcvta_u32_v:
   3041   case NEON::BI__builtin_neon_vcvta_u64_v:
   3042   case NEON::BI__builtin_neon_vcvtaq_s32_v:
   3043   case NEON::BI__builtin_neon_vcvtaq_s64_v:
   3044   case NEON::BI__builtin_neon_vcvtaq_u32_v:
   3045   case NEON::BI__builtin_neon_vcvtaq_u64_v:
   3046   case NEON::BI__builtin_neon_vcvtn_s32_v:
   3047   case NEON::BI__builtin_neon_vcvtn_s64_v:
   3048   case NEON::BI__builtin_neon_vcvtn_u32_v:
   3049   case NEON::BI__builtin_neon_vcvtn_u64_v:
   3050   case NEON::BI__builtin_neon_vcvtnq_s32_v:
   3051   case NEON::BI__builtin_neon_vcvtnq_s64_v:
   3052   case NEON::BI__builtin_neon_vcvtnq_u32_v:
   3053   case NEON::BI__builtin_neon_vcvtnq_u64_v:
   3054   case NEON::BI__builtin_neon_vcvtp_s32_v:
   3055   case NEON::BI__builtin_neon_vcvtp_s64_v:
   3056   case NEON::BI__builtin_neon_vcvtp_u32_v:
   3057   case NEON::BI__builtin_neon_vcvtp_u64_v:
   3058   case NEON::BI__builtin_neon_vcvtpq_s32_v:
   3059   case NEON::BI__builtin_neon_vcvtpq_s64_v:
   3060   case NEON::BI__builtin_neon_vcvtpq_u32_v:
   3061   case NEON::BI__builtin_neon_vcvtpq_u64_v:
   3062   case NEON::BI__builtin_neon_vcvtm_s32_v:
   3063   case NEON::BI__builtin_neon_vcvtm_s64_v:
   3064   case NEON::BI__builtin_neon_vcvtm_u32_v:
   3065   case NEON::BI__builtin_neon_vcvtm_u64_v:
   3066   case NEON::BI__builtin_neon_vcvtmq_s32_v:
   3067   case NEON::BI__builtin_neon_vcvtmq_s64_v:
   3068   case NEON::BI__builtin_neon_vcvtmq_u32_v:
   3069   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
   3070     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
   3071     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
   3072   }
   3073   case NEON::BI__builtin_neon_vext_v:
   3074   case NEON::BI__builtin_neon_vextq_v: {
   3075     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
   3076     SmallVector<Constant*, 16> Indices;
   3077     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
   3078       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
   3079 
   3080     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   3081     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   3082     Value *SV = llvm::ConstantVector::get(Indices);
   3083     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
   3084   }
   3085   case NEON::BI__builtin_neon_vfma_v:
   3086   case NEON::BI__builtin_neon_vfmaq_v: {
   3087     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
   3088     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   3089     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   3090     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   3091 
   3092     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
   3093     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
   3094   }
   3095   case NEON::BI__builtin_neon_vld1_v:
   3096   case NEON::BI__builtin_neon_vld1q_v: {
   3097     llvm::Type *Tys[] = {Ty, Int8PtrTy};
   3098     Ops.push_back(getAlignmentValue32(PtrOp0));
   3099     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
   3100   }
   3101   case NEON::BI__builtin_neon_vld2_v:
   3102   case NEON::BI__builtin_neon_vld2q_v:
   3103   case NEON::BI__builtin_neon_vld3_v:
   3104   case NEON::BI__builtin_neon_vld3q_v:
   3105   case NEON::BI__builtin_neon_vld4_v:
   3106   case NEON::BI__builtin_neon_vld4q_v: {
   3107     llvm::Type *Tys[] = {Ty, Int8PtrTy};
   3108     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
   3109     Value *Align = getAlignmentValue32(PtrOp1);
   3110     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
   3111     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   3112     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   3113     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   3114   }
   3115   case NEON::BI__builtin_neon_vld1_dup_v:
   3116   case NEON::BI__builtin_neon_vld1q_dup_v: {
   3117     Value *V = UndefValue::get(Ty);
   3118     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
   3119     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
   3120     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
   3121     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
   3122     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
   3123     return EmitNeonSplat(Ops[0], CI);
   3124   }
   3125   case NEON::BI__builtin_neon_vld2_lane_v:
   3126   case NEON::BI__builtin_neon_vld2q_lane_v:
   3127   case NEON::BI__builtin_neon_vld3_lane_v:
   3128   case NEON::BI__builtin_neon_vld3q_lane_v:
   3129   case NEON::BI__builtin_neon_vld4_lane_v:
   3130   case NEON::BI__builtin_neon_vld4q_lane_v: {
   3131     llvm::Type *Tys[] = {Ty, Int8PtrTy};
   3132     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
   3133     for (unsigned I = 2; I < Ops.size() - 1; ++I)
   3134       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
   3135     Ops.push_back(getAlignmentValue32(PtrOp1));
   3136     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
   3137     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   3138     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   3139     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   3140   }
   3141   case NEON::BI__builtin_neon_vmovl_v: {
   3142     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
   3143     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
   3144     if (Usgn)
   3145       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
   3146     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
   3147   }
   3148   case NEON::BI__builtin_neon_vmovn_v: {
   3149     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
   3150     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
   3151     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
   3152   }
   3153   case NEON::BI__builtin_neon_vmull_v:
   3154     // FIXME: the integer vmull operations could be emitted in terms of pure
   3155     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
   3156     // hoisting the exts outside loops. Until global ISel comes along that can
   3157     // see through such movement this leads to bad CodeGen. So we need an
   3158     // intrinsic for now.
   3159     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
   3160     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
   3161     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
   3162   case NEON::BI__builtin_neon_vpadal_v:
   3163   case NEON::BI__builtin_neon_vpadalq_v: {
   3164     // The source operand type has twice as many elements of half the size.
   3165     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
   3166     llvm::Type *EltTy =
   3167       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
   3168     llvm::Type *NarrowTy =
   3169       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
   3170     llvm::Type *Tys[2] = { Ty, NarrowTy };
   3171     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
   3172   }
   3173   case NEON::BI__builtin_neon_vpaddl_v:
   3174   case NEON::BI__builtin_neon_vpaddlq_v: {
   3175     // The source operand type has twice as many elements of half the size.
   3176     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
   3177     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
   3178     llvm::Type *NarrowTy =
   3179       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
   3180     llvm::Type *Tys[2] = { Ty, NarrowTy };
   3181     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
   3182   }
   3183   case NEON::BI__builtin_neon_vqdmlal_v:
   3184   case NEON::BI__builtin_neon_vqdmlsl_v: {
   3185     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
   3186     Ops[1] =
   3187         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
   3188     Ops.resize(2);
   3189     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
   3190   }
   3191   case NEON::BI__builtin_neon_vqshl_n_v:
   3192   case NEON::BI__builtin_neon_vqshlq_n_v:
   3193     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
   3194                         1, false);
   3195   case NEON::BI__builtin_neon_vqshlu_n_v:
   3196   case NEON::BI__builtin_neon_vqshluq_n_v:
   3197     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
   3198                         1, false);
   3199   case NEON::BI__builtin_neon_vrecpe_v:
   3200   case NEON::BI__builtin_neon_vrecpeq_v:
   3201   case NEON::BI__builtin_neon_vrsqrte_v:
   3202   case NEON::BI__builtin_neon_vrsqrteq_v:
   3203     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
   3204     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
   3205 
   3206   case NEON::BI__builtin_neon_vrshr_n_v:
   3207   case NEON::BI__builtin_neon_vrshrq_n_v:
   3208     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
   3209                         1, true);
   3210   case NEON::BI__builtin_neon_vshl_n_v:
   3211   case NEON::BI__builtin_neon_vshlq_n_v:
   3212     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
   3213     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
   3214                              "vshl_n");
   3215   case NEON::BI__builtin_neon_vshll_n_v: {
   3216     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
   3217     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
   3218     if (Usgn)
   3219       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
   3220     else
   3221       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
   3222     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
   3223     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
   3224   }
   3225   case NEON::BI__builtin_neon_vshrn_n_v: {
   3226     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
   3227     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
   3228     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
   3229     if (Usgn)
   3230       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
   3231     else
   3232       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
   3233     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
   3234   }
   3235   case NEON::BI__builtin_neon_vshr_n_v:
   3236   case NEON::BI__builtin_neon_vshrq_n_v:
   3237     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
   3238   case NEON::BI__builtin_neon_vst1_v:
   3239   case NEON::BI__builtin_neon_vst1q_v:
   3240   case NEON::BI__builtin_neon_vst2_v:
   3241   case NEON::BI__builtin_neon_vst2q_v:
   3242   case NEON::BI__builtin_neon_vst3_v:
   3243   case NEON::BI__builtin_neon_vst3q_v:
   3244   case NEON::BI__builtin_neon_vst4_v:
   3245   case NEON::BI__builtin_neon_vst4q_v:
   3246   case NEON::BI__builtin_neon_vst2_lane_v:
   3247   case NEON::BI__builtin_neon_vst2q_lane_v:
   3248   case NEON::BI__builtin_neon_vst3_lane_v:
   3249   case NEON::BI__builtin_neon_vst3q_lane_v:
   3250   case NEON::BI__builtin_neon_vst4_lane_v:
   3251   case NEON::BI__builtin_neon_vst4q_lane_v: {
   3252     llvm::Type *Tys[] = {Int8PtrTy, Ty};
   3253     Ops.push_back(getAlignmentValue32(PtrOp0));
   3254     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
   3255   }
   3256   case NEON::BI__builtin_neon_vsubhn_v: {
   3257     llvm::VectorType *SrcTy =
   3258         llvm::VectorType::getExtendedElementVectorType(VTy);
   3259 
   3260     // %sum = add <4 x i32> %lhs, %rhs
   3261     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
   3262     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
   3263     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
   3264 
   3265     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
   3266     Constant *ShiftAmt =
   3267         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
   3268     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
   3269 
   3270     // %res = trunc <4 x i32> %high to <4 x i16>
   3271     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
   3272   }
   3273   case NEON::BI__builtin_neon_vtrn_v:
   3274   case NEON::BI__builtin_neon_vtrnq_v: {
   3275     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   3276     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   3277     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   3278     Value *SV = nullptr;
   3279 
   3280     for (unsigned vi = 0; vi != 2; ++vi) {
   3281       SmallVector<Constant*, 16> Indices;
   3282       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
   3283         Indices.push_back(Builder.getInt32(i+vi));
   3284         Indices.push_back(Builder.getInt32(i+e+vi));
   3285       }
   3286       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
   3287       SV = llvm::ConstantVector::get(Indices);
   3288       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
   3289       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
   3290     }
   3291     return SV;
   3292   }
   3293   case NEON::BI__builtin_neon_vtst_v:
   3294   case NEON::BI__builtin_neon_vtstq_v: {
   3295     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   3296     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   3297     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
   3298     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
   3299                                 ConstantAggregateZero::get(Ty));
   3300     return Builder.CreateSExt(Ops[0], Ty, "vtst");
   3301   }
   3302   case NEON::BI__builtin_neon_vuzp_v:
   3303   case NEON::BI__builtin_neon_vuzpq_v: {
   3304     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   3305     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   3306     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   3307     Value *SV = nullptr;
   3308 
   3309     for (unsigned vi = 0; vi != 2; ++vi) {
   3310       SmallVector<Constant*, 16> Indices;
   3311       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
   3312         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
   3313 
   3314       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
   3315       SV = llvm::ConstantVector::get(Indices);
   3316       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
   3317       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
   3318     }
   3319     return SV;
   3320   }
   3321   case NEON::BI__builtin_neon_vzip_v:
   3322   case NEON::BI__builtin_neon_vzipq_v: {
   3323     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   3324     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   3325     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   3326     Value *SV = nullptr;
   3327 
   3328     for (unsigned vi = 0; vi != 2; ++vi) {
   3329       SmallVector<Constant*, 16> Indices;
   3330       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
   3331         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
   3332         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
   3333       }
   3334       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
   3335       SV = llvm::ConstantVector::get(Indices);
   3336       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
   3337       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
   3338     }
   3339     return SV;
   3340   }
   3341   }
   3342 
   3343   assert(Int && "Expected valid intrinsic number");
   3344 
   3345   // Determine the type(s) of this overloaded AArch64 intrinsic.
   3346   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
   3347 
   3348   Value *Result = EmitNeonCall(F, Ops, NameHint);
   3349   llvm::Type *ResultType = ConvertType(E->getType());
   3350   // AArch64 intrinsic one-element vector type cast to
   3351   // scalar type expected by the builtin
   3352   return Builder.CreateBitCast(Result, ResultType, NameHint);
   3353 }
   3354 
   3355 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
   3356     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
   3357     const CmpInst::Predicate Ip, const Twine &Name) {
   3358   llvm::Type *OTy = Op->getType();
   3359 
   3360   // FIXME: this is utterly horrific. We should not be looking at previous
   3361   // codegen context to find out what needs doing. Unfortunately TableGen
   3362   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
   3363   // (etc).
   3364   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
   3365     OTy = BI->getOperand(0)->getType();
   3366 
   3367   Op = Builder.CreateBitCast(Op, OTy);
   3368   if (OTy->getScalarType()->isFloatingPointTy()) {
   3369     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
   3370   } else {
   3371     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
   3372   }
   3373   return Builder.CreateSExt(Op, Ty, Name);
   3374 }
   3375 
   3376 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
   3377                                  Value *ExtOp, Value *IndexOp,
   3378                                  llvm::Type *ResTy, unsigned IntID,
   3379                                  const char *Name) {
   3380   SmallVector<Value *, 2> TblOps;
   3381   if (ExtOp)
   3382     TblOps.push_back(ExtOp);
   3383 
   3384   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
   3385   SmallVector<Constant*, 16> Indices;
   3386   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
   3387   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
   3388     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
   3389     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
   3390   }
   3391   Value *SV = llvm::ConstantVector::get(Indices);
   3392 
   3393   int PairPos = 0, End = Ops.size() - 1;
   3394   while (PairPos < End) {
   3395     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
   3396                                                      Ops[PairPos+1], SV, Name));
   3397     PairPos += 2;
   3398   }
   3399 
   3400   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
   3401   // of the 128-bit lookup table with zero.
   3402   if (PairPos == End) {
   3403     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
   3404     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
   3405                                                      ZeroTbl, SV, Name));
   3406   }
   3407 
   3408   Function *TblF;
   3409   TblOps.push_back(IndexOp);
   3410   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
   3411 
   3412   return CGF.EmitNeonCall(TblF, TblOps, Name);
   3413 }
   3414 
   3415 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
   3416   unsigned Value;
   3417   switch (BuiltinID) {
   3418   default:
   3419     return nullptr;
   3420   case ARM::BI__builtin_arm_nop:
   3421     Value = 0;
   3422     break;
   3423   case ARM::BI__builtin_arm_yield:
   3424   case ARM::BI__yield:
   3425     Value = 1;
   3426     break;
   3427   case ARM::BI__builtin_arm_wfe:
   3428   case ARM::BI__wfe:
   3429     Value = 2;
   3430     break;
   3431   case ARM::BI__builtin_arm_wfi:
   3432   case ARM::BI__wfi:
   3433     Value = 3;
   3434     break;
   3435   case ARM::BI__builtin_arm_sev:
   3436   case ARM::BI__sev:
   3437     Value = 4;
   3438     break;
   3439   case ARM::BI__builtin_arm_sevl:
   3440   case ARM::BI__sevl:
   3441     Value = 5;
   3442     break;
   3443   }
   3444 
   3445   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
   3446                             llvm::ConstantInt::get(Int32Ty, Value));
   3447 }
   3448 
   3449 // Generates the IR for the read/write special register builtin,
   3450 // ValueType is the type of the value that is to be written or read,
   3451 // RegisterType is the type of the register being written to or read from.
   3452 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
   3453                                          const CallExpr *E,
   3454                                          llvm::Type *RegisterType,
   3455                                          llvm::Type *ValueType, bool IsRead) {
   3456   // write and register intrinsics only support 32 and 64 bit operations.
   3457   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
   3458           && "Unsupported size for register.");
   3459 
   3460   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   3461   CodeGen::CodeGenModule &CGM = CGF.CGM;
   3462   LLVMContext &Context = CGM.getLLVMContext();
   3463 
   3464   const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
   3465   StringRef SysReg = cast<StringLiteral>(SysRegStrExpr)->getString();
   3466 
   3467   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
   3468   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
   3469   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
   3470 
   3471   llvm::Type *Types[] = { RegisterType };
   3472 
   3473   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
   3474   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
   3475             && "Can't fit 64-bit value in 32-bit register");
   3476 
   3477   if (IsRead) {
   3478     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
   3479     llvm::Value *Call = Builder.CreateCall(F, Metadata);
   3480 
   3481     if (MixedTypes)
   3482       // Read into 64 bit register and then truncate result to 32 bit.
   3483       return Builder.CreateTrunc(Call, ValueType);
   3484 
   3485     if (ValueType->isPointerTy())
   3486       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
   3487       return Builder.CreateIntToPtr(Call, ValueType);
   3488 
   3489     return Call;
   3490   }
   3491 
   3492   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
   3493   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
   3494   if (MixedTypes) {
   3495     // Extend 32 bit write value to 64 bit to pass to write.
   3496     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
   3497     return Builder.CreateCall(F, { Metadata, ArgValue });
   3498   }
   3499 
   3500   if (ValueType->isPointerTy()) {
   3501     // Have VoidPtrTy ArgValue but want to return an i32/i64.
   3502     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
   3503     return Builder.CreateCall(F, { Metadata, ArgValue });
   3504   }
   3505 
   3506   return Builder.CreateCall(F, { Metadata, ArgValue });
   3507 }
   3508 
   3509 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
   3510 /// argument that specifies the vector type.
   3511 static bool HasExtraNeonArgument(unsigned BuiltinID) {
   3512   switch (BuiltinID) {
   3513   default: break;
   3514   case NEON::BI__builtin_neon_vget_lane_i8:
   3515   case NEON::BI__builtin_neon_vget_lane_i16:
   3516   case NEON::BI__builtin_neon_vget_lane_i32:
   3517   case NEON::BI__builtin_neon_vget_lane_i64:
   3518   case NEON::BI__builtin_neon_vget_lane_f32:
   3519   case NEON::BI__builtin_neon_vgetq_lane_i8:
   3520   case NEON::BI__builtin_neon_vgetq_lane_i16:
   3521   case NEON::BI__builtin_neon_vgetq_lane_i32:
   3522   case NEON::BI__builtin_neon_vgetq_lane_i64:
   3523   case NEON::BI__builtin_neon_vgetq_lane_f32:
   3524   case NEON::BI__builtin_neon_vset_lane_i8:
   3525   case NEON::BI__builtin_neon_vset_lane_i16:
   3526   case NEON::BI__builtin_neon_vset_lane_i32:
   3527   case NEON::BI__builtin_neon_vset_lane_i64:
   3528   case NEON::BI__builtin_neon_vset_lane_f32:
   3529   case NEON::BI__builtin_neon_vsetq_lane_i8:
   3530   case NEON::BI__builtin_neon_vsetq_lane_i16:
   3531   case NEON::BI__builtin_neon_vsetq_lane_i32:
   3532   case NEON::BI__builtin_neon_vsetq_lane_i64:
   3533   case NEON::BI__builtin_neon_vsetq_lane_f32:
   3534   case NEON::BI__builtin_neon_vsha1h_u32:
   3535   case NEON::BI__builtin_neon_vsha1cq_u32:
   3536   case NEON::BI__builtin_neon_vsha1pq_u32:
   3537   case NEON::BI__builtin_neon_vsha1mq_u32:
   3538   case ARM::BI_MoveToCoprocessor:
   3539   case ARM::BI_MoveToCoprocessor2:
   3540     return false;
   3541   }
   3542   return true;
   3543 }
   3544 
   3545 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
   3546                                            const CallExpr *E) {
   3547   if (auto Hint = GetValueForARMHint(BuiltinID))
   3548     return Hint;
   3549 
   3550   if (BuiltinID == ARM::BI__emit) {
   3551     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
   3552     llvm::FunctionType *FTy =
   3553         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
   3554 
   3555     APSInt Value;
   3556     if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
   3557       llvm_unreachable("Sema will ensure that the parameter is constant");
   3558 
   3559     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
   3560 
   3561     llvm::InlineAsm *Emit =
   3562         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
   3563                                  /*SideEffects=*/true)
   3564                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
   3565                                  /*SideEffects=*/true);
   3566 
   3567     return Builder.CreateCall(Emit);
   3568   }
   3569 
   3570   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
   3571     Value *Option = EmitScalarExpr(E->getArg(0));
   3572     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
   3573   }
   3574 
   3575   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
   3576     Value *Address = EmitScalarExpr(E->getArg(0));
   3577     Value *RW      = EmitScalarExpr(E->getArg(1));
   3578     Value *IsData  = EmitScalarExpr(E->getArg(2));
   3579 
   3580     // Locality is not supported on ARM target
   3581     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
   3582 
   3583     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
   3584     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
   3585   }
   3586 
   3587   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
   3588     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_rbit),
   3589                                                EmitScalarExpr(E->getArg(0)),
   3590                               "rbit");
   3591   }
   3592 
   3593   if (BuiltinID == ARM::BI__clear_cache) {
   3594     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
   3595     const FunctionDecl *FD = E->getDirectCallee();
   3596     Value *Ops[2];
   3597     for (unsigned i = 0; i < 2; i++)
   3598       Ops[i] = EmitScalarExpr(E->getArg(i));
   3599     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
   3600     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
   3601     StringRef Name = FD->getName();
   3602     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
   3603   }
   3604 
   3605   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
   3606       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
   3607         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
   3608        getContext().getTypeSize(E->getType()) == 64) ||
   3609       BuiltinID == ARM::BI__ldrexd) {
   3610     Function *F;
   3611 
   3612     switch (BuiltinID) {
   3613     default: llvm_unreachable("unexpected builtin");
   3614     case ARM::BI__builtin_arm_ldaex:
   3615       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
   3616       break;
   3617     case ARM::BI__builtin_arm_ldrexd:
   3618     case ARM::BI__builtin_arm_ldrex:
   3619     case ARM::BI__ldrexd:
   3620       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
   3621       break;
   3622     }
   3623 
   3624     Value *LdPtr = EmitScalarExpr(E->getArg(0));
   3625     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
   3626                                     "ldrexd");
   3627 
   3628     Value *Val0 = Builder.CreateExtractValue(Val, 1);
   3629     Value *Val1 = Builder.CreateExtractValue(Val, 0);
   3630     Val0 = Builder.CreateZExt(Val0, Int64Ty);
   3631     Val1 = Builder.CreateZExt(Val1, Int64Ty);
   3632 
   3633     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
   3634     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
   3635     Val = Builder.CreateOr(Val, Val1);
   3636     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
   3637   }
   3638 
   3639   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
   3640       BuiltinID == ARM::BI__builtin_arm_ldaex) {
   3641     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
   3642 
   3643     QualType Ty = E->getType();
   3644     llvm::Type *RealResTy = ConvertType(Ty);
   3645     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
   3646                                                   getContext().getTypeSize(Ty));
   3647     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
   3648 
   3649     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
   3650                                        ? Intrinsic::arm_ldaex
   3651                                        : Intrinsic::arm_ldrex,
   3652                                    LoadAddr->getType());
   3653     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
   3654 
   3655     if (RealResTy->isPointerTy())
   3656       return Builder.CreateIntToPtr(Val, RealResTy);
   3657     else {
   3658       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
   3659       return Builder.CreateBitCast(Val, RealResTy);
   3660     }
   3661   }
   3662 
   3663   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
   3664       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
   3665         BuiltinID == ARM::BI__builtin_arm_strex) &&
   3666        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
   3667     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
   3668                                        ? Intrinsic::arm_stlexd
   3669                                        : Intrinsic::arm_strexd);
   3670     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, nullptr);
   3671 
   3672     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
   3673     Value *Val = EmitScalarExpr(E->getArg(0));
   3674     Builder.CreateStore(Val, Tmp);
   3675 
   3676     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
   3677     Val = Builder.CreateLoad(LdPtr);
   3678 
   3679     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
   3680     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
   3681     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
   3682     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
   3683   }
   3684 
   3685   if (BuiltinID == ARM::BI__builtin_arm_strex ||
   3686       BuiltinID == ARM::BI__builtin_arm_stlex) {
   3687     Value *StoreVal = EmitScalarExpr(E->getArg(0));
   3688     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
   3689 
   3690     QualType Ty = E->getArg(0)->getType();
   3691     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
   3692                                                  getContext().getTypeSize(Ty));
   3693     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
   3694 
   3695     if (StoreVal->getType()->isPointerTy())
   3696       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
   3697     else {
   3698       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
   3699       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
   3700     }
   3701 
   3702     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
   3703                                        ? Intrinsic::arm_stlex
   3704                                        : Intrinsic::arm_strex,
   3705                                    StoreAddr->getType());
   3706     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
   3707   }
   3708 
   3709   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
   3710     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
   3711     return Builder.CreateCall(F);
   3712   }
   3713 
   3714   // CRC32
   3715   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
   3716   switch (BuiltinID) {
   3717   case ARM::BI__builtin_arm_crc32b:
   3718     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
   3719   case ARM::BI__builtin_arm_crc32cb:
   3720     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
   3721   case ARM::BI__builtin_arm_crc32h:
   3722     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
   3723   case ARM::BI__builtin_arm_crc32ch:
   3724     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
   3725   case ARM::BI__builtin_arm_crc32w:
   3726   case ARM::BI__builtin_arm_crc32d:
   3727     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
   3728   case ARM::BI__builtin_arm_crc32cw:
   3729   case ARM::BI__builtin_arm_crc32cd:
   3730     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
   3731   }
   3732 
   3733   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
   3734     Value *Arg0 = EmitScalarExpr(E->getArg(0));
   3735     Value *Arg1 = EmitScalarExpr(E->getArg(1));
   3736 
   3737     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
   3738     // intrinsics, hence we need different codegen for these cases.
   3739     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
   3740         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
   3741       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
   3742       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
   3743       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
   3744       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
   3745 
   3746       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
   3747       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
   3748       return Builder.CreateCall(F, {Res, Arg1b});
   3749     } else {
   3750       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
   3751 
   3752       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
   3753       return Builder.CreateCall(F, {Arg0, Arg1});
   3754     }
   3755   }
   3756 
   3757   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
   3758       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
   3759       BuiltinID == ARM::BI__builtin_arm_rsrp ||
   3760       BuiltinID == ARM::BI__builtin_arm_wsr ||
   3761       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
   3762       BuiltinID == ARM::BI__builtin_arm_wsrp) {
   3763 
   3764     bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
   3765                   BuiltinID == ARM::BI__builtin_arm_rsr64 ||
   3766                   BuiltinID == ARM::BI__builtin_arm_rsrp;
   3767 
   3768     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
   3769                             BuiltinID == ARM::BI__builtin_arm_wsrp;
   3770 
   3771     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
   3772                    BuiltinID == ARM::BI__builtin_arm_wsr64;
   3773 
   3774     llvm::Type *ValueType;
   3775     llvm::Type *RegisterType;
   3776     if (IsPointerBuiltin) {
   3777       ValueType = VoidPtrTy;
   3778       RegisterType = Int32Ty;
   3779     } else if (Is64Bit) {
   3780       ValueType = RegisterType = Int64Ty;
   3781     } else {
   3782       ValueType = RegisterType = Int32Ty;
   3783     }
   3784 
   3785     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
   3786   }
   3787 
   3788   // Find out if any arguments are required to be integer constant
   3789   // expressions.
   3790   unsigned ICEArguments = 0;
   3791   ASTContext::GetBuiltinTypeError Error;
   3792   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
   3793   assert(Error == ASTContext::GE_None && "Should not codegen an error");
   3794 
   3795   auto getAlignmentValue32 = [&](Address addr) -> Value* {
   3796     return Builder.getInt32(addr.getAlignment().getQuantity());
   3797   };
   3798 
   3799   Address PtrOp0 = Address::invalid();
   3800   Address PtrOp1 = Address::invalid();
   3801   SmallVector<Value*, 4> Ops;
   3802   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
   3803   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
   3804   for (unsigned i = 0, e = NumArgs; i != e; i++) {
   3805     if (i == 0) {
   3806       switch (BuiltinID) {
   3807       case NEON::BI__builtin_neon_vld1_v:
   3808       case NEON::BI__builtin_neon_vld1q_v:
   3809       case NEON::BI__builtin_neon_vld1q_lane_v:
   3810       case NEON::BI__builtin_neon_vld1_lane_v:
   3811       case NEON::BI__builtin_neon_vld1_dup_v:
   3812       case NEON::BI__builtin_neon_vld1q_dup_v:
   3813       case NEON::BI__builtin_neon_vst1_v:
   3814       case NEON::BI__builtin_neon_vst1q_v:
   3815       case NEON::BI__builtin_neon_vst1q_lane_v:
   3816       case NEON::BI__builtin_neon_vst1_lane_v:
   3817       case NEON::BI__builtin_neon_vst2_v:
   3818       case NEON::BI__builtin_neon_vst2q_v:
   3819       case NEON::BI__builtin_neon_vst2_lane_v:
   3820       case NEON::BI__builtin_neon_vst2q_lane_v:
   3821       case NEON::BI__builtin_neon_vst3_v:
   3822       case NEON::BI__builtin_neon_vst3q_v:
   3823       case NEON::BI__builtin_neon_vst3_lane_v:
   3824       case NEON::BI__builtin_neon_vst3q_lane_v:
   3825       case NEON::BI__builtin_neon_vst4_v:
   3826       case NEON::BI__builtin_neon_vst4q_v:
   3827       case NEON::BI__builtin_neon_vst4_lane_v:
   3828       case NEON::BI__builtin_neon_vst4q_lane_v:
   3829         // Get the alignment for the argument in addition to the value;
   3830         // we'll use it later.
   3831         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
   3832         Ops.push_back(PtrOp0.getPointer());
   3833         continue;
   3834       }
   3835     }
   3836     if (i == 1) {
   3837       switch (BuiltinID) {
   3838       case NEON::BI__builtin_neon_vld2_v:
   3839       case NEON::BI__builtin_neon_vld2q_v:
   3840       case NEON::BI__builtin_neon_vld3_v:
   3841       case NEON::BI__builtin_neon_vld3q_v:
   3842       case NEON::BI__builtin_neon_vld4_v:
   3843       case NEON::BI__builtin_neon_vld4q_v:
   3844       case NEON::BI__builtin_neon_vld2_lane_v:
   3845       case NEON::BI__builtin_neon_vld2q_lane_v:
   3846       case NEON::BI__builtin_neon_vld3_lane_v:
   3847       case NEON::BI__builtin_neon_vld3q_lane_v:
   3848       case NEON::BI__builtin_neon_vld4_lane_v:
   3849       case NEON::BI__builtin_neon_vld4q_lane_v:
   3850       case NEON::BI__builtin_neon_vld2_dup_v:
   3851       case NEON::BI__builtin_neon_vld3_dup_v:
   3852       case NEON::BI__builtin_neon_vld4_dup_v:
   3853         // Get the alignment for the argument in addition to the value;
   3854         // we'll use it later.
   3855         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
   3856         Ops.push_back(PtrOp1.getPointer());
   3857         continue;
   3858       }
   3859     }
   3860 
   3861     if ((ICEArguments & (1 << i)) == 0) {
   3862       Ops.push_back(EmitScalarExpr(E->getArg(i)));
   3863     } else {
   3864       // If this is required to be a constant, constant fold it so that we know
   3865       // that the generated intrinsic gets a ConstantInt.
   3866       llvm::APSInt Result;
   3867       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
   3868       assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
   3869       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
   3870     }
   3871   }
   3872 
   3873   switch (BuiltinID) {
   3874   default: break;
   3875 
   3876   case NEON::BI__builtin_neon_vget_lane_i8:
   3877   case NEON::BI__builtin_neon_vget_lane_i16:
   3878   case NEON::BI__builtin_neon_vget_lane_i32:
   3879   case NEON::BI__builtin_neon_vget_lane_i64:
   3880   case NEON::BI__builtin_neon_vget_lane_f32:
   3881   case NEON::BI__builtin_neon_vgetq_lane_i8:
   3882   case NEON::BI__builtin_neon_vgetq_lane_i16:
   3883   case NEON::BI__builtin_neon_vgetq_lane_i32:
   3884   case NEON::BI__builtin_neon_vgetq_lane_i64:
   3885   case NEON::BI__builtin_neon_vgetq_lane_f32:
   3886     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
   3887 
   3888   case NEON::BI__builtin_neon_vset_lane_i8:
   3889   case NEON::BI__builtin_neon_vset_lane_i16:
   3890   case NEON::BI__builtin_neon_vset_lane_i32:
   3891   case NEON::BI__builtin_neon_vset_lane_i64:
   3892   case NEON::BI__builtin_neon_vset_lane_f32:
   3893   case NEON::BI__builtin_neon_vsetq_lane_i8:
   3894   case NEON::BI__builtin_neon_vsetq_lane_i16:
   3895   case NEON::BI__builtin_neon_vsetq_lane_i32:
   3896   case NEON::BI__builtin_neon_vsetq_lane_i64:
   3897   case NEON::BI__builtin_neon_vsetq_lane_f32:
   3898     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
   3899 
   3900   case NEON::BI__builtin_neon_vsha1h_u32:
   3901     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
   3902                         "vsha1h");
   3903   case NEON::BI__builtin_neon_vsha1cq_u32:
   3904     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
   3905                         "vsha1h");
   3906   case NEON::BI__builtin_neon_vsha1pq_u32:
   3907     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
   3908                         "vsha1h");
   3909   case NEON::BI__builtin_neon_vsha1mq_u32:
   3910     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
   3911                         "vsha1h");
   3912 
   3913   // The ARM _MoveToCoprocessor builtins put the input register value as
   3914   // the first argument, but the LLVM intrinsic expects it as the third one.
   3915   case ARM::BI_MoveToCoprocessor:
   3916   case ARM::BI_MoveToCoprocessor2: {
   3917     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
   3918                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
   3919     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
   3920                                   Ops[3], Ops[4], Ops[5]});
   3921   }
   3922   }
   3923 
   3924   // Get the last argument, which specifies the vector type.
   3925   assert(HasExtraArg);
   3926   llvm::APSInt Result;
   3927   const Expr *Arg = E->getArg(E->getNumArgs()-1);
   3928   if (!Arg->isIntegerConstantExpr(Result, getContext()))
   3929     return nullptr;
   3930 
   3931   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
   3932       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
   3933     // Determine the overloaded type of this builtin.
   3934     llvm::Type *Ty;
   3935     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
   3936       Ty = FloatTy;
   3937     else
   3938       Ty = DoubleTy;
   3939 
   3940     // Determine whether this is an unsigned conversion or not.
   3941     bool usgn = Result.getZExtValue() == 1;
   3942     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
   3943 
   3944     // Call the appropriate intrinsic.
   3945     Function *F = CGM.getIntrinsic(Int, Ty);
   3946     return Builder.CreateCall(F, Ops, "vcvtr");
   3947   }
   3948 
   3949   // Determine the type of this overloaded NEON intrinsic.
   3950   NeonTypeFlags Type(Result.getZExtValue());
   3951   bool usgn = Type.isUnsigned();
   3952   bool rightShift = false;
   3953 
   3954   llvm::VectorType *VTy = GetNeonType(this, Type);
   3955   llvm::Type *Ty = VTy;
   3956   if (!Ty)
   3957     return nullptr;
   3958 
   3959   // Many NEON builtins have identical semantics and uses in ARM and
   3960   // AArch64. Emit these in a single function.
   3961   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
   3962   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
   3963       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
   3964   if (Builtin)
   3965     return EmitCommonNeonBuiltinExpr(
   3966         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
   3967         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1);
   3968 
   3969   unsigned Int;
   3970   switch (BuiltinID) {
   3971   default: return nullptr;
   3972   case NEON::BI__builtin_neon_vld1q_lane_v:
   3973     // Handle 64-bit integer elements as a special case.  Use shuffles of
   3974     // one-element vectors to avoid poor code for i64 in the backend.
   3975     if (VTy->getElementType()->isIntegerTy(64)) {
   3976       // Extract the other lane.
   3977       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   3978       uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
   3979       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
   3980       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
   3981       // Load the value as a one-element vector.
   3982       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
   3983       llvm::Type *Tys[] = {Ty, Int8PtrTy};
   3984       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
   3985       Value *Align = getAlignmentValue32(PtrOp0);
   3986       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
   3987       // Combine them.
   3988       uint32_t Indices[] = {1 - Lane, Lane};
   3989       SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
   3990       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
   3991     }
   3992     // fall through
   3993   case NEON::BI__builtin_neon_vld1_lane_v: {
   3994     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   3995     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
   3996     Value *Ld = Builder.CreateLoad(PtrOp0);
   3997     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
   3998   }
   3999   case NEON::BI__builtin_neon_vld2_dup_v:
   4000   case NEON::BI__builtin_neon_vld3_dup_v:
   4001   case NEON::BI__builtin_neon_vld4_dup_v: {
   4002     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
   4003     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
   4004       switch (BuiltinID) {
   4005       case NEON::BI__builtin_neon_vld2_dup_v:
   4006         Int = Intrinsic::arm_neon_vld2;
   4007         break;
   4008       case NEON::BI__builtin_neon_vld3_dup_v:
   4009         Int = Intrinsic::arm_neon_vld3;
   4010         break;
   4011       case NEON::BI__builtin_neon_vld4_dup_v:
   4012         Int = Intrinsic::arm_neon_vld4;
   4013         break;
   4014       default: llvm_unreachable("unknown vld_dup intrinsic?");
   4015       }
   4016       llvm::Type *Tys[] = {Ty, Int8PtrTy};
   4017       Function *F = CGM.getIntrinsic(Int, Tys);
   4018       llvm::Value *Align = getAlignmentValue32(PtrOp1);
   4019       Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup");
   4020       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   4021       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   4022       return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   4023     }
   4024     switch (BuiltinID) {
   4025     case NEON::BI__builtin_neon_vld2_dup_v:
   4026       Int = Intrinsic::arm_neon_vld2lane;
   4027       break;
   4028     case NEON::BI__builtin_neon_vld3_dup_v:
   4029       Int = Intrinsic::arm_neon_vld3lane;
   4030       break;
   4031     case NEON::BI__builtin_neon_vld4_dup_v:
   4032       Int = Intrinsic::arm_neon_vld4lane;
   4033       break;
   4034     default: llvm_unreachable("unknown vld_dup intrinsic?");
   4035     }
   4036     llvm::Type *Tys[] = {Ty, Int8PtrTy};
   4037     Function *F = CGM.getIntrinsic(Int, Tys);
   4038     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
   4039 
   4040     SmallVector<Value*, 6> Args;
   4041     Args.push_back(Ops[1]);
   4042     Args.append(STy->getNumElements(), UndefValue::get(Ty));
   4043 
   4044     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
   4045     Args.push_back(CI);
   4046     Args.push_back(getAlignmentValue32(PtrOp1));
   4047 
   4048     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
   4049     // splat lane 0 to all elts in each vector of the result.
   4050     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   4051       Value *Val = Builder.CreateExtractValue(Ops[1], i);
   4052       Value *Elt = Builder.CreateBitCast(Val, Ty);
   4053       Elt = EmitNeonSplat(Elt, CI);
   4054       Elt = Builder.CreateBitCast(Elt, Val->getType());
   4055       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
   4056     }
   4057     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   4058     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   4059     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   4060   }
   4061   case NEON::BI__builtin_neon_vqrshrn_n_v:
   4062     Int =
   4063       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
   4064     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
   4065                         1, true);
   4066   case NEON::BI__builtin_neon_vqrshrun_n_v:
   4067     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
   4068                         Ops, "vqrshrun_n", 1, true);
   4069   case NEON::BI__builtin_neon_vqshrn_n_v:
   4070     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
   4071     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
   4072                         1, true);
   4073   case NEON::BI__builtin_neon_vqshrun_n_v:
   4074     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
   4075                         Ops, "vqshrun_n", 1, true);
   4076   case NEON::BI__builtin_neon_vrecpe_v:
   4077   case NEON::BI__builtin_neon_vrecpeq_v:
   4078     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
   4079                         Ops, "vrecpe");
   4080   case NEON::BI__builtin_neon_vrshrn_n_v:
   4081     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
   4082                         Ops, "vrshrn_n", 1, true);
   4083   case NEON::BI__builtin_neon_vrsra_n_v:
   4084   case NEON::BI__builtin_neon_vrsraq_n_v:
   4085     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   4086     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   4087     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
   4088     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
   4089     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
   4090     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
   4091   case NEON::BI__builtin_neon_vsri_n_v:
   4092   case NEON::BI__builtin_neon_vsriq_n_v:
   4093     rightShift = true;
   4094   case NEON::BI__builtin_neon_vsli_n_v:
   4095   case NEON::BI__builtin_neon_vsliq_n_v:
   4096     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
   4097     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
   4098                         Ops, "vsli_n");
   4099   case NEON::BI__builtin_neon_vsra_n_v:
   4100   case NEON::BI__builtin_neon_vsraq_n_v:
   4101     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   4102     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
   4103     return Builder.CreateAdd(Ops[0], Ops[1]);
   4104   case NEON::BI__builtin_neon_vst1q_lane_v:
   4105     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
   4106     // a one-element vector and avoid poor code for i64 in the backend.
   4107     if (VTy->getElementType()->isIntegerTy(64)) {
   4108       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   4109       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
   4110       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
   4111       Ops[2] = getAlignmentValue32(PtrOp0);
   4112       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
   4113       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
   4114                                                  Tys), Ops);
   4115     }
   4116     // fall through
   4117   case NEON::BI__builtin_neon_vst1_lane_v: {
   4118     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   4119     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
   4120     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   4121     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
   4122     return St;
   4123   }
   4124   case NEON::BI__builtin_neon_vtbl1_v:
   4125     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
   4126                         Ops, "vtbl1");
   4127   case NEON::BI__builtin_neon_vtbl2_v:
   4128     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
   4129                         Ops, "vtbl2");
   4130   case NEON::BI__builtin_neon_vtbl3_v:
   4131     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
   4132                         Ops, "vtbl3");
   4133   case NEON::BI__builtin_neon_vtbl4_v:
   4134     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
   4135                         Ops, "vtbl4");
   4136   case NEON::BI__builtin_neon_vtbx1_v:
   4137     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
   4138                         Ops, "vtbx1");
   4139   case NEON::BI__builtin_neon_vtbx2_v:
   4140     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
   4141                         Ops, "vtbx2");
   4142   case NEON::BI__builtin_neon_vtbx3_v:
   4143     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
   4144                         Ops, "vtbx3");
   4145   case NEON::BI__builtin_neon_vtbx4_v:
   4146     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
   4147                         Ops, "vtbx4");
   4148   }
   4149 }
   4150 
   4151 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
   4152                                       const CallExpr *E,
   4153                                       SmallVectorImpl<Value *> &Ops) {
   4154   unsigned int Int = 0;
   4155   const char *s = nullptr;
   4156 
   4157   switch (BuiltinID) {
   4158   default:
   4159     return nullptr;
   4160   case NEON::BI__builtin_neon_vtbl1_v:
   4161   case NEON::BI__builtin_neon_vqtbl1_v:
   4162   case NEON::BI__builtin_neon_vqtbl1q_v:
   4163   case NEON::BI__builtin_neon_vtbl2_v:
   4164   case NEON::BI__builtin_neon_vqtbl2_v:
   4165   case NEON::BI__builtin_neon_vqtbl2q_v:
   4166   case NEON::BI__builtin_neon_vtbl3_v:
   4167   case NEON::BI__builtin_neon_vqtbl3_v:
   4168   case NEON::BI__builtin_neon_vqtbl3q_v:
   4169   case NEON::BI__builtin_neon_vtbl4_v:
   4170   case NEON::BI__builtin_neon_vqtbl4_v:
   4171   case NEON::BI__builtin_neon_vqtbl4q_v:
   4172     break;
   4173   case NEON::BI__builtin_neon_vtbx1_v:
   4174   case NEON::BI__builtin_neon_vqtbx1_v:
   4175   case NEON::BI__builtin_neon_vqtbx1q_v:
   4176   case NEON::BI__builtin_neon_vtbx2_v:
   4177   case NEON::BI__builtin_neon_vqtbx2_v:
   4178   case NEON::BI__builtin_neon_vqtbx2q_v:
   4179   case NEON::BI__builtin_neon_vtbx3_v:
   4180   case NEON::BI__builtin_neon_vqtbx3_v:
   4181   case NEON::BI__builtin_neon_vqtbx3q_v:
   4182   case NEON::BI__builtin_neon_vtbx4_v:
   4183   case NEON::BI__builtin_neon_vqtbx4_v:
   4184   case NEON::BI__builtin_neon_vqtbx4q_v:
   4185     break;
   4186   }
   4187 
   4188   assert(E->getNumArgs() >= 3);
   4189 
   4190   // Get the last argument, which specifies the vector type.
   4191   llvm::APSInt Result;
   4192   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
   4193   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
   4194     return nullptr;
   4195 
   4196   // Determine the type of this overloaded NEON intrinsic.
   4197   NeonTypeFlags Type(Result.getZExtValue());
   4198   llvm::VectorType *Ty = GetNeonType(&CGF, Type);
   4199   if (!Ty)
   4200     return nullptr;
   4201 
   4202   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   4203 
   4204   // AArch64 scalar builtins are not overloaded, they do not have an extra
   4205   // argument that specifies the vector type, need to handle each case.
   4206   switch (BuiltinID) {
   4207   case NEON::BI__builtin_neon_vtbl1_v: {
   4208     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
   4209                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
   4210                               "vtbl1");
   4211   }
   4212   case NEON::BI__builtin_neon_vtbl2_v: {
   4213     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
   4214                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
   4215                               "vtbl1");
   4216   }
   4217   case NEON::BI__builtin_neon_vtbl3_v: {
   4218     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
   4219                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
   4220                               "vtbl2");
   4221   }
   4222   case NEON::BI__builtin_neon_vtbl4_v: {
   4223     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
   4224                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
   4225                               "vtbl2");
   4226   }
   4227   case NEON::BI__builtin_neon_vtbx1_v: {
   4228     Value *TblRes =
   4229         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
   4230                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
   4231 
   4232     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
   4233     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
   4234     CmpRes = Builder.CreateSExt(CmpRes, Ty);
   4235 
   4236     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
   4237     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
   4238     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
   4239   }
   4240   case NEON::BI__builtin_neon_vtbx2_v: {
   4241     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
   4242                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
   4243                               "vtbx1");
   4244   }
   4245   case NEON::BI__builtin_neon_vtbx3_v: {
   4246     Value *TblRes =
   4247         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
   4248                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
   4249 
   4250     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
   4251     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
   4252                                            TwentyFourV);
   4253     CmpRes = Builder.CreateSExt(CmpRes, Ty);
   4254 
   4255     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
   4256     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
   4257     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
   4258   }
   4259   case NEON::BI__builtin_neon_vtbx4_v: {
   4260     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
   4261                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
   4262                               "vtbx2");
   4263   }
   4264   case NEON::BI__builtin_neon_vqtbl1_v:
   4265   case NEON::BI__builtin_neon_vqtbl1q_v:
   4266     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
   4267   case NEON::BI__builtin_neon_vqtbl2_v:
   4268   case NEON::BI__builtin_neon_vqtbl2q_v: {
   4269     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
   4270   case NEON::BI__builtin_neon_vqtbl3_v:
   4271   case NEON::BI__builtin_neon_vqtbl3q_v:
   4272     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
   4273   case NEON::BI__builtin_neon_vqtbl4_v:
   4274   case NEON::BI__builtin_neon_vqtbl4q_v:
   4275     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
   4276   case NEON::BI__builtin_neon_vqtbx1_v:
   4277   case NEON::BI__builtin_neon_vqtbx1q_v:
   4278     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
   4279   case NEON::BI__builtin_neon_vqtbx2_v:
   4280   case NEON::BI__builtin_neon_vqtbx2q_v:
   4281     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
   4282   case NEON::BI__builtin_neon_vqtbx3_v:
   4283   case NEON::BI__builtin_neon_vqtbx3q_v:
   4284     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
   4285   case NEON::BI__builtin_neon_vqtbx4_v:
   4286   case NEON::BI__builtin_neon_vqtbx4q_v:
   4287     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
   4288   }
   4289   }
   4290 
   4291   if (!Int)
   4292     return nullptr;
   4293 
   4294   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
   4295   return CGF.EmitNeonCall(F, Ops, s);
   4296 }
   4297 
   4298 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
   4299   llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
   4300   Op = Builder.CreateBitCast(Op, Int16Ty);
   4301   Value *V = UndefValue::get(VTy);
   4302   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
   4303   Op = Builder.CreateInsertElement(V, Op, CI);
   4304   return Op;
   4305 }
   4306 
   4307 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
   4308                                                const CallExpr *E) {
   4309   unsigned HintID = static_cast<unsigned>(-1);
   4310   switch (BuiltinID) {
   4311   default: break;
   4312   case AArch64::BI__builtin_arm_nop:
   4313     HintID = 0;
   4314     break;
   4315   case AArch64::BI__builtin_arm_yield:
   4316     HintID = 1;
   4317     break;
   4318   case AArch64::BI__builtin_arm_wfe:
   4319     HintID = 2;
   4320     break;
   4321   case AArch64::BI__builtin_arm_wfi:
   4322     HintID = 3;
   4323     break;
   4324   case AArch64::BI__builtin_arm_sev:
   4325     HintID = 4;
   4326     break;
   4327   case AArch64::BI__builtin_arm_sevl:
   4328     HintID = 5;
   4329     break;
   4330   }
   4331 
   4332   if (HintID != static_cast<unsigned>(-1)) {
   4333     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
   4334     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
   4335   }
   4336 
   4337   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
   4338     Value *Address         = EmitScalarExpr(E->getArg(0));
   4339     Value *RW              = EmitScalarExpr(E->getArg(1));
   4340     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
   4341     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
   4342     Value *IsData          = EmitScalarExpr(E->getArg(4));
   4343 
   4344     Value *Locality = nullptr;
   4345     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
   4346       // Temporal fetch, needs to convert cache level to locality.
   4347       Locality = llvm::ConstantInt::get(Int32Ty,
   4348         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
   4349     } else {
   4350       // Streaming fetch.
   4351       Locality = llvm::ConstantInt::get(Int32Ty, 0);
   4352     }
   4353 
   4354     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
   4355     // PLDL3STRM or PLDL2STRM.
   4356     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
   4357     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
   4358   }
   4359 
   4360   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
   4361     assert((getContext().getTypeSize(E->getType()) == 32) &&
   4362            "rbit of unusual size!");
   4363     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
   4364     return Builder.CreateCall(
   4365         CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
   4366   }
   4367   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
   4368     assert((getContext().getTypeSize(E->getType()) == 64) &&
   4369            "rbit of unusual size!");
   4370     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
   4371     return Builder.CreateCall(
   4372         CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
   4373   }
   4374 
   4375   if (BuiltinID == AArch64::BI__clear_cache) {
   4376     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
   4377     const FunctionDecl *FD = E->getDirectCallee();
   4378     Value *Ops[2];
   4379     for (unsigned i = 0; i < 2; i++)
   4380       Ops[i] = EmitScalarExpr(E->getArg(i));
   4381     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
   4382     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
   4383     StringRef Name = FD->getName();
   4384     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
   4385   }
   4386 
   4387   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
   4388       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
   4389       getContext().getTypeSize(E->getType()) == 128) {
   4390     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
   4391                                        ? Intrinsic::aarch64_ldaxp
   4392                                        : Intrinsic::aarch64_ldxp);
   4393 
   4394     Value *LdPtr = EmitScalarExpr(E->getArg(0));
   4395     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
   4396                                     "ldxp");
   4397 
   4398     Value *Val0 = Builder.CreateExtractValue(Val, 1);
   4399     Value *Val1 = Builder.CreateExtractValue(Val, 0);
   4400     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
   4401     Val0 = Builder.CreateZExt(Val0, Int128Ty);
   4402     Val1 = Builder.CreateZExt(Val1, Int128Ty);
   4403 
   4404     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
   4405     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
   4406     Val = Builder.CreateOr(Val, Val1);
   4407     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
   4408   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
   4409              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
   4410     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
   4411 
   4412     QualType Ty = E->getType();
   4413     llvm::Type *RealResTy = ConvertType(Ty);
   4414     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
   4415                                                   getContext().getTypeSize(Ty));
   4416     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
   4417 
   4418     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
   4419                                        ? Intrinsic::aarch64_ldaxr
   4420                                        : Intrinsic::aarch64_ldxr,
   4421                                    LoadAddr->getType());
   4422     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
   4423 
   4424     if (RealResTy->isPointerTy())
   4425       return Builder.CreateIntToPtr(Val, RealResTy);
   4426 
   4427     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
   4428     return Builder.CreateBitCast(Val, RealResTy);
   4429   }
   4430 
   4431   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
   4432        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
   4433       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
   4434     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
   4435                                        ? Intrinsic::aarch64_stlxp
   4436                                        : Intrinsic::aarch64_stxp);
   4437     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty, nullptr);
   4438 
   4439     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
   4440     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
   4441 
   4442     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
   4443     llvm::Value *Val = Builder.CreateLoad(Tmp);
   4444 
   4445     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
   4446     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
   4447     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
   4448                                          Int8PtrTy);
   4449     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
   4450   }
   4451 
   4452   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
   4453       BuiltinID == AArch64::BI__builtin_arm_stlex) {
   4454     Value *StoreVal = EmitScalarExpr(E->getArg(0));
   4455     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
   4456 
   4457     QualType Ty = E->getArg(0)->getType();
   4458     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
   4459                                                  getContext().getTypeSize(Ty));
   4460     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
   4461 
   4462     if (StoreVal->getType()->isPointerTy())
   4463       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
   4464     else {
   4465       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
   4466       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
   4467     }
   4468 
   4469     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
   4470                                        ? Intrinsic::aarch64_stlxr
   4471                                        : Intrinsic::aarch64_stxr,
   4472                                    StoreAddr->getType());
   4473     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
   4474   }
   4475 
   4476   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
   4477     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
   4478     return Builder.CreateCall(F);
   4479   }
   4480 
   4481   if (BuiltinID == AArch64::BI__builtin_thread_pointer) {
   4482     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_thread_pointer);
   4483     return Builder.CreateCall(F);
   4484   }
   4485 
   4486   // CRC32
   4487   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
   4488   switch (BuiltinID) {
   4489   case AArch64::BI__builtin_arm_crc32b:
   4490     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
   4491   case AArch64::BI__builtin_arm_crc32cb:
   4492     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
   4493   case AArch64::BI__builtin_arm_crc32h:
   4494     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
   4495   case AArch64::BI__builtin_arm_crc32ch:
   4496     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
   4497   case AArch64::BI__builtin_arm_crc32w:
   4498     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
   4499   case AArch64::BI__builtin_arm_crc32cw:
   4500     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
   4501   case AArch64::BI__builtin_arm_crc32d:
   4502     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
   4503   case AArch64::BI__builtin_arm_crc32cd:
   4504     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
   4505   }
   4506 
   4507   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
   4508     Value *Arg0 = EmitScalarExpr(E->getArg(0));
   4509     Value *Arg1 = EmitScalarExpr(E->getArg(1));
   4510     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
   4511 
   4512     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
   4513     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
   4514 
   4515     return Builder.CreateCall(F, {Arg0, Arg1});
   4516   }
   4517 
   4518   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
   4519       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
   4520       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
   4521       BuiltinID == AArch64::BI__builtin_arm_wsr ||
   4522       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
   4523       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
   4524 
   4525     bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
   4526                   BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
   4527                   BuiltinID == AArch64::BI__builtin_arm_rsrp;
   4528 
   4529     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
   4530                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
   4531 
   4532     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
   4533                    BuiltinID != AArch64::BI__builtin_arm_wsr;
   4534 
   4535     llvm::Type *ValueType;
   4536     llvm::Type *RegisterType = Int64Ty;
   4537     if (IsPointerBuiltin) {
   4538       ValueType = VoidPtrTy;
   4539     } else if (Is64Bit) {
   4540       ValueType = Int64Ty;
   4541     } else {
   4542       ValueType = Int32Ty;
   4543     }
   4544 
   4545     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
   4546   }
   4547 
   4548   // Find out if any arguments are required to be integer constant
   4549   // expressions.
   4550   unsigned ICEArguments = 0;
   4551   ASTContext::GetBuiltinTypeError Error;
   4552   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
   4553   assert(Error == ASTContext::GE_None && "Should not codegen an error");
   4554 
   4555   llvm::SmallVector<Value*, 4> Ops;
   4556   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
   4557     if ((ICEArguments & (1 << i)) == 0) {
   4558       Ops.push_back(EmitScalarExpr(E->getArg(i)));
   4559     } else {
   4560       // If this is required to be a constant, constant fold it so that we know
   4561       // that the generated intrinsic gets a ConstantInt.
   4562       llvm::APSInt Result;
   4563       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
   4564       assert(IsConst && "Constant arg isn't actually constant?");
   4565       (void)IsConst;
   4566       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
   4567     }
   4568   }
   4569 
   4570   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
   4571   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
   4572       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
   4573 
   4574   if (Builtin) {
   4575     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
   4576     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
   4577     assert(Result && "SISD intrinsic should have been handled");
   4578     return Result;
   4579   }
   4580 
   4581   llvm::APSInt Result;
   4582   const Expr *Arg = E->getArg(E->getNumArgs()-1);
   4583   NeonTypeFlags Type(0);
   4584   if (Arg->isIntegerConstantExpr(Result, getContext()))
   4585     // Determine the type of this overloaded NEON intrinsic.
   4586     Type = NeonTypeFlags(Result.getZExtValue());
   4587 
   4588   bool usgn = Type.isUnsigned();
   4589   bool quad = Type.isQuad();
   4590 
   4591   // Handle non-overloaded intrinsics first.
   4592   switch (BuiltinID) {
   4593   default: break;
   4594   case NEON::BI__builtin_neon_vldrq_p128: {
   4595     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
   4596     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
   4597     return Builder.CreateDefaultAlignedLoad(Ptr);
   4598   }
   4599   case NEON::BI__builtin_neon_vstrq_p128: {
   4600     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
   4601     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
   4602     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
   4603   }
   4604   case NEON::BI__builtin_neon_vcvts_u32_f32:
   4605   case NEON::BI__builtin_neon_vcvtd_u64_f64:
   4606     usgn = true;
   4607     // FALL THROUGH
   4608   case NEON::BI__builtin_neon_vcvts_s32_f32:
   4609   case NEON::BI__builtin_neon_vcvtd_s64_f64: {
   4610     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   4611     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
   4612     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
   4613     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
   4614     Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
   4615     if (usgn)
   4616       return Builder.CreateFPToUI(Ops[0], InTy);
   4617     return Builder.CreateFPToSI(Ops[0], InTy);
   4618   }
   4619   case NEON::BI__builtin_neon_vcvts_f32_u32:
   4620   case NEON::BI__builtin_neon_vcvtd_f64_u64:
   4621     usgn = true;
   4622     // FALL THROUGH
   4623   case NEON::BI__builtin_neon_vcvts_f32_s32:
   4624   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
   4625     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   4626     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
   4627     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
   4628     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
   4629     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
   4630     if (usgn)
   4631       return Builder.CreateUIToFP(Ops[0], FTy);
   4632     return Builder.CreateSIToFP(Ops[0], FTy);
   4633   }
   4634   case NEON::BI__builtin_neon_vpaddd_s64: {
   4635     llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
   4636     Value *Vec = EmitScalarExpr(E->getArg(0));
   4637     // The vector is v2f64, so make sure it's bitcast to that.
   4638     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
   4639     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
   4640     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
   4641     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
   4642     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
   4643     // Pairwise addition of a v2f64 into a scalar f64.
   4644     return Builder.CreateAdd(Op0, Op1, "vpaddd");
   4645   }
   4646   case NEON::BI__builtin_neon_vpaddd_f64: {
   4647     llvm::Type *Ty =
   4648       llvm::VectorType::get(DoubleTy, 2);
   4649     Value *Vec = EmitScalarExpr(E->getArg(0));
   4650     // The vector is v2f64, so make sure it's bitcast to that.
   4651     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
   4652     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
   4653     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
   4654     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
   4655     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
   4656     // Pairwise addition of a v2f64 into a scalar f64.
   4657     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
   4658   }
   4659   case NEON::BI__builtin_neon_vpadds_f32: {
   4660     llvm::Type *Ty =
   4661       llvm::VectorType::get(FloatTy, 2);
   4662     Value *Vec = EmitScalarExpr(E->getArg(0));
   4663     // The vector is v2f32, so make sure it's bitcast to that.
   4664     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
   4665     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
   4666     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
   4667     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
   4668     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
   4669     // Pairwise addition of a v2f32 into a scalar f32.
   4670     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
   4671   }
   4672   case NEON::BI__builtin_neon_vceqzd_s64:
   4673   case NEON::BI__builtin_neon_vceqzd_f64:
   4674   case NEON::BI__builtin_neon_vceqzs_f32:
   4675     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   4676     return EmitAArch64CompareBuiltinExpr(
   4677         Ops[0], ConvertType(E->getCallReturnType(getContext())),
   4678         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
   4679   case NEON::BI__builtin_neon_vcgezd_s64:
   4680   case NEON::BI__builtin_neon_vcgezd_f64:
   4681   case NEON::BI__builtin_neon_vcgezs_f32:
   4682     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   4683     return EmitAArch64CompareBuiltinExpr(
   4684         Ops[0], ConvertType(E->getCallReturnType(getContext())),
   4685         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
   4686   case NEON::BI__builtin_neon_vclezd_s64:
   4687   case NEON::BI__builtin_neon_vclezd_f64:
   4688   case NEON::BI__builtin_neon_vclezs_f32:
   4689     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   4690     return EmitAArch64CompareBuiltinExpr(
   4691         Ops[0], ConvertType(E->getCallReturnType(getContext())),
   4692         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
   4693   case NEON::BI__builtin_neon_vcgtzd_s64:
   4694   case NEON::BI__builtin_neon_vcgtzd_f64:
   4695   case NEON::BI__builtin_neon_vcgtzs_f32:
   4696     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   4697     return EmitAArch64CompareBuiltinExpr(
   4698         Ops[0], ConvertType(E->getCallReturnType(getContext())),
   4699         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
   4700   case NEON::BI__builtin_neon_vcltzd_s64:
   4701   case NEON::BI__builtin_neon_vcltzd_f64:
   4702   case NEON::BI__builtin_neon_vcltzs_f32:
   4703     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   4704     return EmitAArch64CompareBuiltinExpr(
   4705         Ops[0], ConvertType(E->getCallReturnType(getContext())),
   4706         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
   4707 
   4708   case NEON::BI__builtin_neon_vceqzd_u64: {
   4709     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   4710     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
   4711     Ops[0] =
   4712         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
   4713     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
   4714   }
   4715   case NEON::BI__builtin_neon_vceqd_f64:
   4716   case NEON::BI__builtin_neon_vcled_f64:
   4717   case NEON::BI__builtin_neon_vcltd_f64:
   4718   case NEON::BI__builtin_neon_vcged_f64:
   4719   case NEON::BI__builtin_neon_vcgtd_f64: {
   4720     llvm::CmpInst::Predicate P;
   4721     switch (BuiltinID) {
   4722     default: llvm_unreachable("missing builtin ID in switch!");
   4723     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
   4724     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
   4725     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
   4726     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
   4727     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
   4728     }
   4729     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   4730     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
   4731     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
   4732     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
   4733     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
   4734   }
   4735   case NEON::BI__builtin_neon_vceqs_f32:
   4736   case NEON::BI__builtin_neon_vcles_f32:
   4737   case NEON::BI__builtin_neon_vclts_f32:
   4738   case NEON::BI__builtin_neon_vcges_f32:
   4739   case NEON::BI__builtin_neon_vcgts_f32: {
   4740     llvm::CmpInst::Predicate P;
   4741     switch (BuiltinID) {
   4742     default: llvm_unreachable("missing builtin ID in switch!");
   4743     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
   4744     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
   4745     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
   4746     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
   4747     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
   4748     }
   4749     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   4750     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
   4751     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
   4752     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
   4753     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
   4754   }
   4755   case NEON::BI__builtin_neon_vceqd_s64:
   4756   case NEON::BI__builtin_neon_vceqd_u64:
   4757   case NEON::BI__builtin_neon_vcgtd_s64:
   4758   case NEON::BI__builtin_neon_vcgtd_u64:
   4759   case NEON::BI__builtin_neon_vcltd_s64:
   4760   case NEON::BI__builtin_neon_vcltd_u64:
   4761   case NEON::BI__builtin_neon_vcged_u64:
   4762   case NEON::BI__builtin_neon_vcged_s64:
   4763   case NEON::BI__builtin_neon_vcled_u64:
   4764   case NEON::BI__builtin_neon_vcled_s64: {
   4765     llvm::CmpInst::Predicate P;
   4766     switch (BuiltinID) {
   4767     default: llvm_unreachable("missing builtin ID in switch!");
   4768     case NEON::BI__builtin_neon_vceqd_s64:
   4769     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
   4770     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
   4771     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
   4772     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
   4773     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
   4774     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
   4775     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
   4776     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
   4777     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
   4778     }
   4779     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   4780     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
   4781     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
   4782     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
   4783     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
   4784   }
   4785   case NEON::BI__builtin_neon_vtstd_s64:
   4786   case NEON::BI__builtin_neon_vtstd_u64: {
   4787     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   4788     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
   4789     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
   4790     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
   4791     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
   4792                                 llvm::Constant::getNullValue(Int64Ty));
   4793     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
   4794   }
   4795   case NEON::BI__builtin_neon_vset_lane_i8:
   4796   case NEON::BI__builtin_neon_vset_lane_i16:
   4797   case NEON::BI__builtin_neon_vset_lane_i32:
   4798   case NEON::BI__builtin_neon_vset_lane_i64:
   4799   case NEON::BI__builtin_neon_vset_lane_f32:
   4800   case NEON::BI__builtin_neon_vsetq_lane_i8:
   4801   case NEON::BI__builtin_neon_vsetq_lane_i16:
   4802   case NEON::BI__builtin_neon_vsetq_lane_i32:
   4803   case NEON::BI__builtin_neon_vsetq_lane_i64:
   4804   case NEON::BI__builtin_neon_vsetq_lane_f32:
   4805     Ops.push_back(EmitScalarExpr(E->getArg(2)));
   4806     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
   4807   case NEON::BI__builtin_neon_vset_lane_f64:
   4808     // The vector type needs a cast for the v1f64 variant.
   4809     Ops[1] = Builder.CreateBitCast(Ops[1],
   4810                                    llvm::VectorType::get(DoubleTy, 1));
   4811     Ops.push_back(EmitScalarExpr(E->getArg(2)));
   4812     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
   4813   case NEON::BI__builtin_neon_vsetq_lane_f64:
   4814     // The vector type needs a cast for the v2f64 variant.
   4815     Ops[1] = Builder.CreateBitCast(Ops[1],
   4816         llvm::VectorType::get(DoubleTy, 2));
   4817     Ops.push_back(EmitScalarExpr(E->getArg(2)));
   4818     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
   4819 
   4820   case NEON::BI__builtin_neon_vget_lane_i8:
   4821   case NEON::BI__builtin_neon_vdupb_lane_i8:
   4822     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
   4823     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4824                                         "vget_lane");
   4825   case NEON::BI__builtin_neon_vgetq_lane_i8:
   4826   case NEON::BI__builtin_neon_vdupb_laneq_i8:
   4827     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
   4828     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4829                                         "vgetq_lane");
   4830   case NEON::BI__builtin_neon_vget_lane_i16:
   4831   case NEON::BI__builtin_neon_vduph_lane_i16:
   4832     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
   4833     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4834                                         "vget_lane");
   4835   case NEON::BI__builtin_neon_vgetq_lane_i16:
   4836   case NEON::BI__builtin_neon_vduph_laneq_i16:
   4837     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
   4838     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4839                                         "vgetq_lane");
   4840   case NEON::BI__builtin_neon_vget_lane_i32:
   4841   case NEON::BI__builtin_neon_vdups_lane_i32:
   4842     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
   4843     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4844                                         "vget_lane");
   4845   case NEON::BI__builtin_neon_vdups_lane_f32:
   4846     Ops[0] = Builder.CreateBitCast(Ops[0],
   4847         llvm::VectorType::get(FloatTy, 2));
   4848     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4849                                         "vdups_lane");
   4850   case NEON::BI__builtin_neon_vgetq_lane_i32:
   4851   case NEON::BI__builtin_neon_vdups_laneq_i32:
   4852     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
   4853     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4854                                         "vgetq_lane");
   4855   case NEON::BI__builtin_neon_vget_lane_i64:
   4856   case NEON::BI__builtin_neon_vdupd_lane_i64:
   4857     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
   4858     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4859                                         "vget_lane");
   4860   case NEON::BI__builtin_neon_vdupd_lane_f64:
   4861     Ops[0] = Builder.CreateBitCast(Ops[0],
   4862         llvm::VectorType::get(DoubleTy, 1));
   4863     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4864                                         "vdupd_lane");
   4865   case NEON::BI__builtin_neon_vgetq_lane_i64:
   4866   case NEON::BI__builtin_neon_vdupd_laneq_i64:
   4867     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
   4868     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4869                                         "vgetq_lane");
   4870   case NEON::BI__builtin_neon_vget_lane_f32:
   4871     Ops[0] = Builder.CreateBitCast(Ops[0],
   4872         llvm::VectorType::get(FloatTy, 2));
   4873     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4874                                         "vget_lane");
   4875   case NEON::BI__builtin_neon_vget_lane_f64:
   4876     Ops[0] = Builder.CreateBitCast(Ops[0],
   4877         llvm::VectorType::get(DoubleTy, 1));
   4878     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4879                                         "vget_lane");
   4880   case NEON::BI__builtin_neon_vgetq_lane_f32:
   4881   case NEON::BI__builtin_neon_vdups_laneq_f32:
   4882     Ops[0] = Builder.CreateBitCast(Ops[0],
   4883         llvm::VectorType::get(FloatTy, 4));
   4884     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4885                                         "vgetq_lane");
   4886   case NEON::BI__builtin_neon_vgetq_lane_f64:
   4887   case NEON::BI__builtin_neon_vdupd_laneq_f64:
   4888     Ops[0] = Builder.CreateBitCast(Ops[0],
   4889         llvm::VectorType::get(DoubleTy, 2));
   4890     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   4891                                         "vgetq_lane");
   4892   case NEON::BI__builtin_neon_vaddd_s64:
   4893   case NEON::BI__builtin_neon_vaddd_u64:
   4894     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
   4895   case NEON::BI__builtin_neon_vsubd_s64:
   4896   case NEON::BI__builtin_neon_vsubd_u64:
   4897     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
   4898   case NEON::BI__builtin_neon_vqdmlalh_s16:
   4899   case NEON::BI__builtin_neon_vqdmlslh_s16: {
   4900     SmallVector<Value *, 2> ProductOps;
   4901     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
   4902     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
   4903     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
   4904     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
   4905                           ProductOps, "vqdmlXl");
   4906     Constant *CI = ConstantInt::get(SizeTy, 0);
   4907     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
   4908 
   4909     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
   4910                                         ? Intrinsic::aarch64_neon_sqadd
   4911                                         : Intrinsic::aarch64_neon_sqsub;
   4912     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
   4913   }
   4914   case NEON::BI__builtin_neon_vqshlud_n_s64: {
   4915     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   4916     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
   4917     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
   4918                         Ops, "vqshlu_n");
   4919   }
   4920   case NEON::BI__builtin_neon_vqshld_n_u64:
   4921   case NEON::BI__builtin_neon_vqshld_n_s64: {
   4922     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
   4923                                    ? Intrinsic::aarch64_neon_uqshl
   4924                                    : Intrinsic::aarch64_neon_sqshl;
   4925     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   4926     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
   4927     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
   4928   }
   4929   case NEON::BI__builtin_neon_vrshrd_n_u64:
   4930   case NEON::BI__builtin_neon_vrshrd_n_s64: {
   4931     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
   4932                                    ? Intrinsic::aarch64_neon_urshl
   4933                                    : Intrinsic::aarch64_neon_srshl;
   4934     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   4935     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
   4936     Ops[1] = ConstantInt::get(Int64Ty, -SV);
   4937     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
   4938   }
   4939   case NEON::BI__builtin_neon_vrsrad_n_u64:
   4940   case NEON::BI__builtin_neon_vrsrad_n_s64: {
   4941     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
   4942                                    ? Intrinsic::aarch64_neon_urshl
   4943                                    : Intrinsic::aarch64_neon_srshl;
   4944     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
   4945     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
   4946     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
   4947                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
   4948     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
   4949   }
   4950   case NEON::BI__builtin_neon_vshld_n_s64:
   4951   case NEON::BI__builtin_neon_vshld_n_u64: {
   4952     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
   4953     return Builder.CreateShl(
   4954         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
   4955   }
   4956   case NEON::BI__builtin_neon_vshrd_n_s64: {
   4957     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
   4958     return Builder.CreateAShr(
   4959         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
   4960                                                    Amt->getZExtValue())),
   4961         "shrd_n");
   4962   }
   4963   case NEON::BI__builtin_neon_vshrd_n_u64: {
   4964     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
   4965     uint64_t ShiftAmt = Amt->getZExtValue();
   4966     // Right-shifting an unsigned value by its size yields 0.
   4967     if (ShiftAmt == 64)
   4968       return ConstantInt::get(Int64Ty, 0);
   4969     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
   4970                               "shrd_n");
   4971   }
   4972   case NEON::BI__builtin_neon_vsrad_n_s64: {
   4973     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
   4974     Ops[1] = Builder.CreateAShr(
   4975         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
   4976                                                    Amt->getZExtValue())),
   4977         "shrd_n");
   4978     return Builder.CreateAdd(Ops[0], Ops[1]);
   4979   }
   4980   case NEON::BI__builtin_neon_vsrad_n_u64: {
   4981     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
   4982     uint64_t ShiftAmt = Amt->getZExtValue();
   4983     // Right-shifting an unsigned value by its size yields 0.
   4984     // As Op + 0 = Op, return Ops[0] directly.
   4985     if (ShiftAmt == 64)
   4986       return Ops[0];
   4987     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
   4988                                 "shrd_n");
   4989     return Builder.CreateAdd(Ops[0], Ops[1]);
   4990   }
   4991   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
   4992   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
   4993   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
   4994   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
   4995     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
   4996                                           "lane");
   4997     SmallVector<Value *, 2> ProductOps;
   4998     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
   4999     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
   5000     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
   5001     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
   5002                           ProductOps, "vqdmlXl");
   5003     Constant *CI = ConstantInt::get(SizeTy, 0);
   5004     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
   5005     Ops.pop_back();
   5006 
   5007     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
   5008                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
   5009                           ? Intrinsic::aarch64_neon_sqadd
   5010                           : Intrinsic::aarch64_neon_sqsub;
   5011     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
   5012   }
   5013   case NEON::BI__builtin_neon_vqdmlals_s32:
   5014   case NEON::BI__builtin_neon_vqdmlsls_s32: {
   5015     SmallVector<Value *, 2> ProductOps;
   5016     ProductOps.push_back(Ops[1]);
   5017     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
   5018     Ops[1] =
   5019         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
   5020                      ProductOps, "vqdmlXl");
   5021 
   5022     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
   5023                                         ? Intrinsic::aarch64_neon_sqadd
   5024                                         : Intrinsic::aarch64_neon_sqsub;
   5025     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
   5026   }
   5027   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
   5028   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
   5029   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
   5030   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
   5031     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
   5032                                           "lane");
   5033     SmallVector<Value *, 2> ProductOps;
   5034     ProductOps.push_back(Ops[1]);
   5035     ProductOps.push_back(Ops[2]);
   5036     Ops[1] =
   5037         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
   5038                      ProductOps, "vqdmlXl");
   5039     Ops.pop_back();
   5040 
   5041     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
   5042                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
   5043                           ? Intrinsic::aarch64_neon_sqadd
   5044                           : Intrinsic::aarch64_neon_sqsub;
   5045     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
   5046   }
   5047   }
   5048 
   5049   llvm::VectorType *VTy = GetNeonType(this, Type);
   5050   llvm::Type *Ty = VTy;
   5051   if (!Ty)
   5052     return nullptr;
   5053 
   5054   // Not all intrinsics handled by the common case work for AArch64 yet, so only
   5055   // defer to common code if it's been added to our special map.
   5056   Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
   5057                                    AArch64SIMDIntrinsicsProvenSorted);
   5058 
   5059   if (Builtin)
   5060     return EmitCommonNeonBuiltinExpr(
   5061         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
   5062         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
   5063         /*never use addresses*/ Address::invalid(), Address::invalid());
   5064 
   5065   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops))
   5066     return V;
   5067 
   5068   unsigned Int;
   5069   switch (BuiltinID) {
   5070   default: return nullptr;
   5071   case NEON::BI__builtin_neon_vbsl_v:
   5072   case NEON::BI__builtin_neon_vbslq_v: {
   5073     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
   5074     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
   5075     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
   5076     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
   5077 
   5078     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
   5079     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
   5080     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
   5081     return Builder.CreateBitCast(Ops[0], Ty);
   5082   }
   5083   case NEON::BI__builtin_neon_vfma_lane_v:
   5084   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
   5085     // The ARM builtins (and instructions) have the addend as the first
   5086     // operand, but the 'fma' intrinsics have it last. Swap it around here.
   5087     Value *Addend = Ops[0];
   5088     Value *Multiplicand = Ops[1];
   5089     Value *LaneSource = Ops[2];
   5090     Ops[0] = Multiplicand;
   5091     Ops[1] = LaneSource;
   5092     Ops[2] = Addend;
   5093 
   5094     // Now adjust things to handle the lane access.
   5095     llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
   5096       llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
   5097       VTy;
   5098     llvm::Constant *cst = cast<Constant>(Ops[3]);
   5099     Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
   5100     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
   5101     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
   5102 
   5103     Ops.pop_back();
   5104     Int = Intrinsic::fma;
   5105     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
   5106   }
   5107   case NEON::BI__builtin_neon_vfma_laneq_v: {
   5108     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
   5109     // v1f64 fma should be mapped to Neon scalar f64 fma
   5110     if (VTy && VTy->getElementType() == DoubleTy) {
   5111       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
   5112       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
   5113       llvm::Type *VTy = GetNeonType(this,
   5114         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
   5115       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
   5116       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
   5117       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
   5118       Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
   5119       return Builder.CreateBitCast(Result, Ty);
   5120     }
   5121     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
   5122     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5123     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   5124 
   5125     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
   5126                                             VTy->getNumElements() * 2);
   5127     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
   5128     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
   5129                                                cast<ConstantInt>(Ops[3]));
   5130     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
   5131 
   5132     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
   5133   }
   5134   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
   5135     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
   5136     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5137     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   5138 
   5139     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   5140     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
   5141     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
   5142   }
   5143   case NEON::BI__builtin_neon_vfmas_lane_f32:
   5144   case NEON::BI__builtin_neon_vfmas_laneq_f32:
   5145   case NEON::BI__builtin_neon_vfmad_lane_f64:
   5146   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
   5147     Ops.push_back(EmitScalarExpr(E->getArg(3)));
   5148     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
   5149     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
   5150     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
   5151     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
   5152   }
   5153   case NEON::BI__builtin_neon_vfms_v:
   5154   case NEON::BI__builtin_neon_vfmsq_v: {  // Only used for FP types
   5155     // FIXME: probably remove when we no longer support aarch64_simd.h
   5156     // (arm_neon.h delegates to vfma).
   5157 
   5158     // The ARM builtins (and instructions) have the addend as the first
   5159     // operand, but the 'fma' intrinsics have it last. Swap it around here.
   5160     Value *Subtrahend = Ops[0];
   5161     Value *Multiplicand = Ops[2];
   5162     Ops[0] = Multiplicand;
   5163     Ops[2] = Subtrahend;
   5164     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
   5165     Ops[1] = Builder.CreateFNeg(Ops[1]);
   5166     Int = Intrinsic::fma;
   5167     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmls");
   5168   }
   5169   case NEON::BI__builtin_neon_vmull_v:
   5170     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
   5171     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
   5172     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
   5173     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
   5174   case NEON::BI__builtin_neon_vmax_v:
   5175   case NEON::BI__builtin_neon_vmaxq_v:
   5176     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
   5177     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
   5178     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
   5179     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
   5180   case NEON::BI__builtin_neon_vmin_v:
   5181   case NEON::BI__builtin_neon_vminq_v:
   5182     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
   5183     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
   5184     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
   5185     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
   5186   case NEON::BI__builtin_neon_vabd_v:
   5187   case NEON::BI__builtin_neon_vabdq_v:
   5188     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
   5189     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
   5190     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
   5191     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
   5192   case NEON::BI__builtin_neon_vpadal_v:
   5193   case NEON::BI__builtin_neon_vpadalq_v: {
   5194     unsigned ArgElts = VTy->getNumElements();
   5195     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
   5196     unsigned BitWidth = EltTy->getBitWidth();
   5197     llvm::Type *ArgTy = llvm::VectorType::get(
   5198         llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
   5199     llvm::Type* Tys[2] = { VTy, ArgTy };
   5200     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
   5201     SmallVector<llvm::Value*, 1> TmpOps;
   5202     TmpOps.push_back(Ops[1]);
   5203     Function *F = CGM.getIntrinsic(Int, Tys);
   5204     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
   5205     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
   5206     return Builder.CreateAdd(tmp, addend);
   5207   }
   5208   case NEON::BI__builtin_neon_vpmin_v:
   5209   case NEON::BI__builtin_neon_vpminq_v:
   5210     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
   5211     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
   5212     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
   5213     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
   5214   case NEON::BI__builtin_neon_vpmax_v:
   5215   case NEON::BI__builtin_neon_vpmaxq_v:
   5216     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
   5217     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
   5218     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
   5219     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
   5220   case NEON::BI__builtin_neon_vminnm_v:
   5221   case NEON::BI__builtin_neon_vminnmq_v:
   5222     Int = Intrinsic::aarch64_neon_fminnm;
   5223     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
   5224   case NEON::BI__builtin_neon_vmaxnm_v:
   5225   case NEON::BI__builtin_neon_vmaxnmq_v:
   5226     Int = Intrinsic::aarch64_neon_fmaxnm;
   5227     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
   5228   case NEON::BI__builtin_neon_vrecpss_f32: {
   5229     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   5230     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
   5231                         Ops, "vrecps");
   5232   }
   5233   case NEON::BI__builtin_neon_vrecpsd_f64: {
   5234     Ops.push_back(EmitScalarExpr(E->getArg(1)));
   5235     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
   5236                         Ops, "vrecps");
   5237   }
   5238   case NEON::BI__builtin_neon_vqshrun_n_v:
   5239     Int = Intrinsic::aarch64_neon_sqshrun;
   5240     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
   5241   case NEON::BI__builtin_neon_vqrshrun_n_v:
   5242     Int = Intrinsic::aarch64_neon_sqrshrun;
   5243     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
   5244   case NEON::BI__builtin_neon_vqshrn_n_v:
   5245     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
   5246     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
   5247   case NEON::BI__builtin_neon_vrshrn_n_v:
   5248     Int = Intrinsic::aarch64_neon_rshrn;
   5249     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
   5250   case NEON::BI__builtin_neon_vqrshrn_n_v:
   5251     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
   5252     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
   5253   case NEON::BI__builtin_neon_vrnda_v:
   5254   case NEON::BI__builtin_neon_vrndaq_v: {
   5255     Int = Intrinsic::round;
   5256     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
   5257   }
   5258   case NEON::BI__builtin_neon_vrndi_v:
   5259   case NEON::BI__builtin_neon_vrndiq_v: {
   5260     Int = Intrinsic::nearbyint;
   5261     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
   5262   }
   5263   case NEON::BI__builtin_neon_vrndm_v:
   5264   case NEON::BI__builtin_neon_vrndmq_v: {
   5265     Int = Intrinsic::floor;
   5266     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
   5267   }
   5268   case NEON::BI__builtin_neon_vrndn_v:
   5269   case NEON::BI__builtin_neon_vrndnq_v: {
   5270     Int = Intrinsic::aarch64_neon_frintn;
   5271     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
   5272   }
   5273   case NEON::BI__builtin_neon_vrndp_v:
   5274   case NEON::BI__builtin_neon_vrndpq_v: {
   5275     Int = Intrinsic::ceil;
   5276     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
   5277   }
   5278   case NEON::BI__builtin_neon_vrndx_v:
   5279   case NEON::BI__builtin_neon_vrndxq_v: {
   5280     Int = Intrinsic::rint;
   5281     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
   5282   }
   5283   case NEON::BI__builtin_neon_vrnd_v:
   5284   case NEON::BI__builtin_neon_vrndq_v: {
   5285     Int = Intrinsic::trunc;
   5286     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
   5287   }
   5288   case NEON::BI__builtin_neon_vceqz_v:
   5289   case NEON::BI__builtin_neon_vceqzq_v:
   5290     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
   5291                                          ICmpInst::ICMP_EQ, "vceqz");
   5292   case NEON::BI__builtin_neon_vcgez_v:
   5293   case NEON::BI__builtin_neon_vcgezq_v:
   5294     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
   5295                                          ICmpInst::ICMP_SGE, "vcgez");
   5296   case NEON::BI__builtin_neon_vclez_v:
   5297   case NEON::BI__builtin_neon_vclezq_v:
   5298     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
   5299                                          ICmpInst::ICMP_SLE, "vclez");
   5300   case NEON::BI__builtin_neon_vcgtz_v:
   5301   case NEON::BI__builtin_neon_vcgtzq_v:
   5302     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
   5303                                          ICmpInst::ICMP_SGT, "vcgtz");
   5304   case NEON::BI__builtin_neon_vcltz_v:
   5305   case NEON::BI__builtin_neon_vcltzq_v:
   5306     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
   5307                                          ICmpInst::ICMP_SLT, "vcltz");
   5308   case NEON::BI__builtin_neon_vcvt_f64_v:
   5309   case NEON::BI__builtin_neon_vcvtq_f64_v:
   5310     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5311     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
   5312     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
   5313                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
   5314   case NEON::BI__builtin_neon_vcvt_f64_f32: {
   5315     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
   5316            "unexpected vcvt_f64_f32 builtin");
   5317     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
   5318     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
   5319 
   5320     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
   5321   }
   5322   case NEON::BI__builtin_neon_vcvt_f32_f64: {
   5323     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
   5324            "unexpected vcvt_f32_f64 builtin");
   5325     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
   5326     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
   5327 
   5328     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
   5329   }
   5330   case NEON::BI__builtin_neon_vcvt_s32_v:
   5331   case NEON::BI__builtin_neon_vcvt_u32_v:
   5332   case NEON::BI__builtin_neon_vcvt_s64_v:
   5333   case NEON::BI__builtin_neon_vcvt_u64_v:
   5334   case NEON::BI__builtin_neon_vcvtq_s32_v:
   5335   case NEON::BI__builtin_neon_vcvtq_u32_v:
   5336   case NEON::BI__builtin_neon_vcvtq_s64_v:
   5337   case NEON::BI__builtin_neon_vcvtq_u64_v: {
   5338     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
   5339     if (usgn)
   5340       return Builder.CreateFPToUI(Ops[0], Ty);
   5341     return Builder.CreateFPToSI(Ops[0], Ty);
   5342   }
   5343   case NEON::BI__builtin_neon_vcvta_s32_v:
   5344   case NEON::BI__builtin_neon_vcvtaq_s32_v:
   5345   case NEON::BI__builtin_neon_vcvta_u32_v:
   5346   case NEON::BI__builtin_neon_vcvtaq_u32_v:
   5347   case NEON::BI__builtin_neon_vcvta_s64_v:
   5348   case NEON::BI__builtin_neon_vcvtaq_s64_v:
   5349   case NEON::BI__builtin_neon_vcvta_u64_v:
   5350   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
   5351     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
   5352     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
   5353     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
   5354   }
   5355   case NEON::BI__builtin_neon_vcvtm_s32_v:
   5356   case NEON::BI__builtin_neon_vcvtmq_s32_v:
   5357   case NEON::BI__builtin_neon_vcvtm_u32_v:
   5358   case NEON::BI__builtin_neon_vcvtmq_u32_v:
   5359   case NEON::BI__builtin_neon_vcvtm_s64_v:
   5360   case NEON::BI__builtin_neon_vcvtmq_s64_v:
   5361   case NEON::BI__builtin_neon_vcvtm_u64_v:
   5362   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
   5363     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
   5364     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
   5365     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
   5366   }
   5367   case NEON::BI__builtin_neon_vcvtn_s32_v:
   5368   case NEON::BI__builtin_neon_vcvtnq_s32_v:
   5369   case NEON::BI__builtin_neon_vcvtn_u32_v:
   5370   case NEON::BI__builtin_neon_vcvtnq_u32_v:
   5371   case NEON::BI__builtin_neon_vcvtn_s64_v:
   5372   case NEON::BI__builtin_neon_vcvtnq_s64_v:
   5373   case NEON::BI__builtin_neon_vcvtn_u64_v:
   5374   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
   5375     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
   5376     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
   5377     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
   5378   }
   5379   case NEON::BI__builtin_neon_vcvtp_s32_v:
   5380   case NEON::BI__builtin_neon_vcvtpq_s32_v:
   5381   case NEON::BI__builtin_neon_vcvtp_u32_v:
   5382   case NEON::BI__builtin_neon_vcvtpq_u32_v:
   5383   case NEON::BI__builtin_neon_vcvtp_s64_v:
   5384   case NEON::BI__builtin_neon_vcvtpq_s64_v:
   5385   case NEON::BI__builtin_neon_vcvtp_u64_v:
   5386   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
   5387     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
   5388     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
   5389     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
   5390   }
   5391   case NEON::BI__builtin_neon_vmulx_v:
   5392   case NEON::BI__builtin_neon_vmulxq_v: {
   5393     Int = Intrinsic::aarch64_neon_fmulx;
   5394     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
   5395   }
   5396   case NEON::BI__builtin_neon_vmul_lane_v:
   5397   case NEON::BI__builtin_neon_vmul_laneq_v: {
   5398     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
   5399     bool Quad = false;
   5400     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
   5401       Quad = true;
   5402     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
   5403     llvm::Type *VTy = GetNeonType(this,
   5404       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
   5405     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
   5406     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
   5407     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
   5408     return Builder.CreateBitCast(Result, Ty);
   5409   }
   5410   case NEON::BI__builtin_neon_vnegd_s64:
   5411     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
   5412   case NEON::BI__builtin_neon_vpmaxnm_v:
   5413   case NEON::BI__builtin_neon_vpmaxnmq_v: {
   5414     Int = Intrinsic::aarch64_neon_fmaxnmp;
   5415     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
   5416   }
   5417   case NEON::BI__builtin_neon_vpminnm_v:
   5418   case NEON::BI__builtin_neon_vpminnmq_v: {
   5419     Int = Intrinsic::aarch64_neon_fminnmp;
   5420     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
   5421   }
   5422   case NEON::BI__builtin_neon_vsqrt_v:
   5423   case NEON::BI__builtin_neon_vsqrtq_v: {
   5424     Int = Intrinsic::sqrt;
   5425     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5426     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
   5427   }
   5428   case NEON::BI__builtin_neon_vrbit_v:
   5429   case NEON::BI__builtin_neon_vrbitq_v: {
   5430     Int = Intrinsic::aarch64_neon_rbit;
   5431     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
   5432   }
   5433   case NEON::BI__builtin_neon_vaddv_u8:
   5434     // FIXME: These are handled by the AArch64 scalar code.
   5435     usgn = true;
   5436     // FALLTHROUGH
   5437   case NEON::BI__builtin_neon_vaddv_s8: {
   5438     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
   5439     Ty = Int32Ty;
   5440     VTy = llvm::VectorType::get(Int8Ty, 8);
   5441     llvm::Type *Tys[2] = { Ty, VTy };
   5442     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5443     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
   5444     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5445   }
   5446   case NEON::BI__builtin_neon_vaddv_u16:
   5447     usgn = true;
   5448     // FALLTHROUGH
   5449   case NEON::BI__builtin_neon_vaddv_s16: {
   5450     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
   5451     Ty = Int32Ty;
   5452     VTy = llvm::VectorType::get(Int16Ty, 4);
   5453     llvm::Type *Tys[2] = { Ty, VTy };
   5454     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5455     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
   5456     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5457   }
   5458   case NEON::BI__builtin_neon_vaddvq_u8:
   5459     usgn = true;
   5460     // FALLTHROUGH
   5461   case NEON::BI__builtin_neon_vaddvq_s8: {
   5462     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
   5463     Ty = Int32Ty;
   5464     VTy = llvm::VectorType::get(Int8Ty, 16);
   5465     llvm::Type *Tys[2] = { Ty, VTy };
   5466     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5467     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
   5468     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5469   }
   5470   case NEON::BI__builtin_neon_vaddvq_u16:
   5471     usgn = true;
   5472     // FALLTHROUGH
   5473   case NEON::BI__builtin_neon_vaddvq_s16: {
   5474     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
   5475     Ty = Int32Ty;
   5476     VTy = llvm::VectorType::get(Int16Ty, 8);
   5477     llvm::Type *Tys[2] = { Ty, VTy };
   5478     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5479     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
   5480     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5481   }
   5482   case NEON::BI__builtin_neon_vmaxv_u8: {
   5483     Int = Intrinsic::aarch64_neon_umaxv;
   5484     Ty = Int32Ty;
   5485     VTy = llvm::VectorType::get(Int8Ty, 8);
   5486     llvm::Type *Tys[2] = { Ty, VTy };
   5487     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5488     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
   5489     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5490   }
   5491   case NEON::BI__builtin_neon_vmaxv_u16: {
   5492     Int = Intrinsic::aarch64_neon_umaxv;
   5493     Ty = Int32Ty;
   5494     VTy = llvm::VectorType::get(Int16Ty, 4);
   5495     llvm::Type *Tys[2] = { Ty, VTy };
   5496     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5497     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
   5498     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5499   }
   5500   case NEON::BI__builtin_neon_vmaxvq_u8: {
   5501     Int = Intrinsic::aarch64_neon_umaxv;
   5502     Ty = Int32Ty;
   5503     VTy = llvm::VectorType::get(Int8Ty, 16);
   5504     llvm::Type *Tys[2] = { Ty, VTy };
   5505     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5506     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
   5507     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5508   }
   5509   case NEON::BI__builtin_neon_vmaxvq_u16: {
   5510     Int = Intrinsic::aarch64_neon_umaxv;
   5511     Ty = Int32Ty;
   5512     VTy = llvm::VectorType::get(Int16Ty, 8);
   5513     llvm::Type *Tys[2] = { Ty, VTy };
   5514     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5515     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
   5516     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5517   }
   5518   case NEON::BI__builtin_neon_vmaxv_s8: {
   5519     Int = Intrinsic::aarch64_neon_smaxv;
   5520     Ty = Int32Ty;
   5521     VTy = llvm::VectorType::get(Int8Ty, 8);
   5522     llvm::Type *Tys[2] = { Ty, VTy };
   5523     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5524     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
   5525     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5526   }
   5527   case NEON::BI__builtin_neon_vmaxv_s16: {
   5528     Int = Intrinsic::aarch64_neon_smaxv;
   5529     Ty = Int32Ty;
   5530     VTy = llvm::VectorType::get(Int16Ty, 4);
   5531     llvm::Type *Tys[2] = { Ty, VTy };
   5532     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5533     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
   5534     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5535   }
   5536   case NEON::BI__builtin_neon_vmaxvq_s8: {
   5537     Int = Intrinsic::aarch64_neon_smaxv;
   5538     Ty = Int32Ty;
   5539     VTy = llvm::VectorType::get(Int8Ty, 16);
   5540     llvm::Type *Tys[2] = { Ty, VTy };
   5541     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5542     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
   5543     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5544   }
   5545   case NEON::BI__builtin_neon_vmaxvq_s16: {
   5546     Int = Intrinsic::aarch64_neon_smaxv;
   5547     Ty = Int32Ty;
   5548     VTy = llvm::VectorType::get(Int16Ty, 8);
   5549     llvm::Type *Tys[2] = { Ty, VTy };
   5550     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5551     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
   5552     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5553   }
   5554   case NEON::BI__builtin_neon_vminv_u8: {
   5555     Int = Intrinsic::aarch64_neon_uminv;
   5556     Ty = Int32Ty;
   5557     VTy = llvm::VectorType::get(Int8Ty, 8);
   5558     llvm::Type *Tys[2] = { Ty, VTy };
   5559     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5560     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
   5561     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5562   }
   5563   case NEON::BI__builtin_neon_vminv_u16: {
   5564     Int = Intrinsic::aarch64_neon_uminv;
   5565     Ty = Int32Ty;
   5566     VTy = llvm::VectorType::get(Int16Ty, 4);
   5567     llvm::Type *Tys[2] = { Ty, VTy };
   5568     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5569     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
   5570     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5571   }
   5572   case NEON::BI__builtin_neon_vminvq_u8: {
   5573     Int = Intrinsic::aarch64_neon_uminv;
   5574     Ty = Int32Ty;
   5575     VTy = llvm::VectorType::get(Int8Ty, 16);
   5576     llvm::Type *Tys[2] = { Ty, VTy };
   5577     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5578     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
   5579     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5580   }
   5581   case NEON::BI__builtin_neon_vminvq_u16: {
   5582     Int = Intrinsic::aarch64_neon_uminv;
   5583     Ty = Int32Ty;
   5584     VTy = llvm::VectorType::get(Int16Ty, 8);
   5585     llvm::Type *Tys[2] = { Ty, VTy };
   5586     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5587     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
   5588     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5589   }
   5590   case NEON::BI__builtin_neon_vminv_s8: {
   5591     Int = Intrinsic::aarch64_neon_sminv;
   5592     Ty = Int32Ty;
   5593     VTy = llvm::VectorType::get(Int8Ty, 8);
   5594     llvm::Type *Tys[2] = { Ty, VTy };
   5595     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5596     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
   5597     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5598   }
   5599   case NEON::BI__builtin_neon_vminv_s16: {
   5600     Int = Intrinsic::aarch64_neon_sminv;
   5601     Ty = Int32Ty;
   5602     VTy = llvm::VectorType::get(Int16Ty, 4);
   5603     llvm::Type *Tys[2] = { Ty, VTy };
   5604     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5605     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
   5606     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5607   }
   5608   case NEON::BI__builtin_neon_vminvq_s8: {
   5609     Int = Intrinsic::aarch64_neon_sminv;
   5610     Ty = Int32Ty;
   5611     VTy = llvm::VectorType::get(Int8Ty, 16);
   5612     llvm::Type *Tys[2] = { Ty, VTy };
   5613     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5614     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
   5615     return Builder.CreateTrunc(Ops[0], Int8Ty);
   5616   }
   5617   case NEON::BI__builtin_neon_vminvq_s16: {
   5618     Int = Intrinsic::aarch64_neon_sminv;
   5619     Ty = Int32Ty;
   5620     VTy = llvm::VectorType::get(Int16Ty, 8);
   5621     llvm::Type *Tys[2] = { Ty, VTy };
   5622     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5623     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
   5624     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5625   }
   5626   case NEON::BI__builtin_neon_vmul_n_f64: {
   5627     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
   5628     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
   5629     return Builder.CreateFMul(Ops[0], RHS);
   5630   }
   5631   case NEON::BI__builtin_neon_vaddlv_u8: {
   5632     Int = Intrinsic::aarch64_neon_uaddlv;
   5633     Ty = Int32Ty;
   5634     VTy = llvm::VectorType::get(Int8Ty, 8);
   5635     llvm::Type *Tys[2] = { Ty, VTy };
   5636     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5637     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
   5638     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5639   }
   5640   case NEON::BI__builtin_neon_vaddlv_u16: {
   5641     Int = Intrinsic::aarch64_neon_uaddlv;
   5642     Ty = Int32Ty;
   5643     VTy = llvm::VectorType::get(Int16Ty, 4);
   5644     llvm::Type *Tys[2] = { Ty, VTy };
   5645     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5646     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
   5647   }
   5648   case NEON::BI__builtin_neon_vaddlvq_u8: {
   5649     Int = Intrinsic::aarch64_neon_uaddlv;
   5650     Ty = Int32Ty;
   5651     VTy = llvm::VectorType::get(Int8Ty, 16);
   5652     llvm::Type *Tys[2] = { Ty, VTy };
   5653     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5654     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
   5655     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5656   }
   5657   case NEON::BI__builtin_neon_vaddlvq_u16: {
   5658     Int = Intrinsic::aarch64_neon_uaddlv;
   5659     Ty = Int32Ty;
   5660     VTy = llvm::VectorType::get(Int16Ty, 8);
   5661     llvm::Type *Tys[2] = { Ty, VTy };
   5662     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5663     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
   5664   }
   5665   case NEON::BI__builtin_neon_vaddlv_s8: {
   5666     Int = Intrinsic::aarch64_neon_saddlv;
   5667     Ty = Int32Ty;
   5668     VTy = llvm::VectorType::get(Int8Ty, 8);
   5669     llvm::Type *Tys[2] = { Ty, VTy };
   5670     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5671     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
   5672     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5673   }
   5674   case NEON::BI__builtin_neon_vaddlv_s16: {
   5675     Int = Intrinsic::aarch64_neon_saddlv;
   5676     Ty = Int32Ty;
   5677     VTy = llvm::VectorType::get(Int16Ty, 4);
   5678     llvm::Type *Tys[2] = { Ty, VTy };
   5679     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5680     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
   5681   }
   5682   case NEON::BI__builtin_neon_vaddlvq_s8: {
   5683     Int = Intrinsic::aarch64_neon_saddlv;
   5684     Ty = Int32Ty;
   5685     VTy = llvm::VectorType::get(Int8Ty, 16);
   5686     llvm::Type *Tys[2] = { Ty, VTy };
   5687     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5688     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
   5689     return Builder.CreateTrunc(Ops[0], Int16Ty);
   5690   }
   5691   case NEON::BI__builtin_neon_vaddlvq_s16: {
   5692     Int = Intrinsic::aarch64_neon_saddlv;
   5693     Ty = Int32Ty;
   5694     VTy = llvm::VectorType::get(Int16Ty, 8);
   5695     llvm::Type *Tys[2] = { Ty, VTy };
   5696     Ops.push_back(EmitScalarExpr(E->getArg(0)));
   5697     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
   5698   }
   5699   case NEON::BI__builtin_neon_vsri_n_v:
   5700   case NEON::BI__builtin_neon_vsriq_n_v: {
   5701     Int = Intrinsic::aarch64_neon_vsri;
   5702     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
   5703     return EmitNeonCall(Intrin, Ops, "vsri_n");
   5704   }
   5705   case NEON::BI__builtin_neon_vsli_n_v:
   5706   case NEON::BI__builtin_neon_vsliq_n_v: {
   5707     Int = Intrinsic::aarch64_neon_vsli;
   5708     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
   5709     return EmitNeonCall(Intrin, Ops, "vsli_n");
   5710   }
   5711   case NEON::BI__builtin_neon_vsra_n_v:
   5712   case NEON::BI__builtin_neon_vsraq_n_v:
   5713     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5714     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
   5715     return Builder.CreateAdd(Ops[0], Ops[1]);
   5716   case NEON::BI__builtin_neon_vrsra_n_v:
   5717   case NEON::BI__builtin_neon_vrsraq_n_v: {
   5718     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
   5719     SmallVector<llvm::Value*,2> TmpOps;
   5720     TmpOps.push_back(Ops[1]);
   5721     TmpOps.push_back(Ops[2]);
   5722     Function* F = CGM.getIntrinsic(Int, Ty);
   5723     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
   5724     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
   5725     return Builder.CreateAdd(Ops[0], tmp);
   5726   }
   5727     // FIXME: Sharing loads & stores with 32-bit is complicated by the absence
   5728     // of an Align parameter here.
   5729   case NEON::BI__builtin_neon_vld1_x2_v:
   5730   case NEON::BI__builtin_neon_vld1q_x2_v:
   5731   case NEON::BI__builtin_neon_vld1_x3_v:
   5732   case NEON::BI__builtin_neon_vld1q_x3_v:
   5733   case NEON::BI__builtin_neon_vld1_x4_v:
   5734   case NEON::BI__builtin_neon_vld1q_x4_v: {
   5735     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
   5736     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
   5737     llvm::Type *Tys[2] = { VTy, PTy };
   5738     unsigned Int;
   5739     switch (BuiltinID) {
   5740     case NEON::BI__builtin_neon_vld1_x2_v:
   5741     case NEON::BI__builtin_neon_vld1q_x2_v:
   5742       Int = Intrinsic::aarch64_neon_ld1x2;
   5743       break;
   5744     case NEON::BI__builtin_neon_vld1_x3_v:
   5745     case NEON::BI__builtin_neon_vld1q_x3_v:
   5746       Int = Intrinsic::aarch64_neon_ld1x3;
   5747       break;
   5748     case NEON::BI__builtin_neon_vld1_x4_v:
   5749     case NEON::BI__builtin_neon_vld1q_x4_v:
   5750       Int = Intrinsic::aarch64_neon_ld1x4;
   5751       break;
   5752     }
   5753     Function *F = CGM.getIntrinsic(Int, Tys);
   5754     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
   5755     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   5756     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5757     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5758   }
   5759   case NEON::BI__builtin_neon_vst1_x2_v:
   5760   case NEON::BI__builtin_neon_vst1q_x2_v:
   5761   case NEON::BI__builtin_neon_vst1_x3_v:
   5762   case NEON::BI__builtin_neon_vst1q_x3_v:
   5763   case NEON::BI__builtin_neon_vst1_x4_v:
   5764   case NEON::BI__builtin_neon_vst1q_x4_v: {
   5765     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
   5766     llvm::Type *Tys[2] = { VTy, PTy };
   5767     unsigned Int;
   5768     switch (BuiltinID) {
   5769     case NEON::BI__builtin_neon_vst1_x2_v:
   5770     case NEON::BI__builtin_neon_vst1q_x2_v:
   5771       Int = Intrinsic::aarch64_neon_st1x2;
   5772       break;
   5773     case NEON::BI__builtin_neon_vst1_x3_v:
   5774     case NEON::BI__builtin_neon_vst1q_x3_v:
   5775       Int = Intrinsic::aarch64_neon_st1x3;
   5776       break;
   5777     case NEON::BI__builtin_neon_vst1_x4_v:
   5778     case NEON::BI__builtin_neon_vst1q_x4_v:
   5779       Int = Intrinsic::aarch64_neon_st1x4;
   5780       break;
   5781     }
   5782     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
   5783     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
   5784   }
   5785   case NEON::BI__builtin_neon_vld1_v:
   5786   case NEON::BI__builtin_neon_vld1q_v:
   5787     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
   5788     return Builder.CreateDefaultAlignedLoad(Ops[0]);
   5789   case NEON::BI__builtin_neon_vst1_v:
   5790   case NEON::BI__builtin_neon_vst1q_v:
   5791     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
   5792     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
   5793     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5794   case NEON::BI__builtin_neon_vld1_lane_v:
   5795   case NEON::BI__builtin_neon_vld1q_lane_v:
   5796     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   5797     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
   5798     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5799     Ops[0] = Builder.CreateDefaultAlignedLoad(Ops[0]);
   5800     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
   5801   case NEON::BI__builtin_neon_vld1_dup_v:
   5802   case NEON::BI__builtin_neon_vld1q_dup_v: {
   5803     Value *V = UndefValue::get(Ty);
   5804     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
   5805     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5806     Ops[0] = Builder.CreateDefaultAlignedLoad(Ops[0]);
   5807     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
   5808     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
   5809     return EmitNeonSplat(Ops[0], CI);
   5810   }
   5811   case NEON::BI__builtin_neon_vst1_lane_v:
   5812   case NEON::BI__builtin_neon_vst1q_lane_v:
   5813     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   5814     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
   5815     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   5816     return Builder.CreateDefaultAlignedStore(Ops[1],
   5817                                              Builder.CreateBitCast(Ops[0], Ty));
   5818   case NEON::BI__builtin_neon_vld2_v:
   5819   case NEON::BI__builtin_neon_vld2q_v: {
   5820     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
   5821     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
   5822     llvm::Type *Tys[2] = { VTy, PTy };
   5823     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
   5824     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
   5825     Ops[0] = Builder.CreateBitCast(Ops[0],
   5826                 llvm::PointerType::getUnqual(Ops[1]->getType()));
   5827     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5828   }
   5829   case NEON::BI__builtin_neon_vld3_v:
   5830   case NEON::BI__builtin_neon_vld3q_v: {
   5831     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
   5832     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
   5833     llvm::Type *Tys[2] = { VTy, PTy };
   5834     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
   5835     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
   5836     Ops[0] = Builder.CreateBitCast(Ops[0],
   5837                 llvm::PointerType::getUnqual(Ops[1]->getType()));
   5838     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5839   }
   5840   case NEON::BI__builtin_neon_vld4_v:
   5841   case NEON::BI__builtin_neon_vld4q_v: {
   5842     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
   5843     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
   5844     llvm::Type *Tys[2] = { VTy, PTy };
   5845     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
   5846     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
   5847     Ops[0] = Builder.CreateBitCast(Ops[0],
   5848                 llvm::PointerType::getUnqual(Ops[1]->getType()));
   5849     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5850   }
   5851   case NEON::BI__builtin_neon_vld2_dup_v:
   5852   case NEON::BI__builtin_neon_vld2q_dup_v: {
   5853     llvm::Type *PTy =
   5854       llvm::PointerType::getUnqual(VTy->getElementType());
   5855     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
   5856     llvm::Type *Tys[2] = { VTy, PTy };
   5857     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
   5858     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
   5859     Ops[0] = Builder.CreateBitCast(Ops[0],
   5860                 llvm::PointerType::getUnqual(Ops[1]->getType()));
   5861     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5862   }
   5863   case NEON::BI__builtin_neon_vld3_dup_v:
   5864   case NEON::BI__builtin_neon_vld3q_dup_v: {
   5865     llvm::Type *PTy =
   5866       llvm::PointerType::getUnqual(VTy->getElementType());
   5867     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
   5868     llvm::Type *Tys[2] = { VTy, PTy };
   5869     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
   5870     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
   5871     Ops[0] = Builder.CreateBitCast(Ops[0],
   5872                 llvm::PointerType::getUnqual(Ops[1]->getType()));
   5873     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5874   }
   5875   case NEON::BI__builtin_neon_vld4_dup_v:
   5876   case NEON::BI__builtin_neon_vld4q_dup_v: {
   5877     llvm::Type *PTy =
   5878       llvm::PointerType::getUnqual(VTy->getElementType());
   5879     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
   5880     llvm::Type *Tys[2] = { VTy, PTy };
   5881     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
   5882     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
   5883     Ops[0] = Builder.CreateBitCast(Ops[0],
   5884                 llvm::PointerType::getUnqual(Ops[1]->getType()));
   5885     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5886   }
   5887   case NEON::BI__builtin_neon_vld2_lane_v:
   5888   case NEON::BI__builtin_neon_vld2q_lane_v: {
   5889     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
   5890     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
   5891     Ops.push_back(Ops[1]);
   5892     Ops.erase(Ops.begin()+1);
   5893     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   5894     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   5895     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
   5896     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
   5897     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   5898     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5899     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5900   }
   5901   case NEON::BI__builtin_neon_vld3_lane_v:
   5902   case NEON::BI__builtin_neon_vld3q_lane_v: {
   5903     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
   5904     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
   5905     Ops.push_back(Ops[1]);
   5906     Ops.erase(Ops.begin()+1);
   5907     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   5908     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   5909     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
   5910     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
   5911     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
   5912     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   5913     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5914     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5915   }
   5916   case NEON::BI__builtin_neon_vld4_lane_v:
   5917   case NEON::BI__builtin_neon_vld4q_lane_v: {
   5918     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
   5919     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
   5920     Ops.push_back(Ops[1]);
   5921     Ops.erase(Ops.begin()+1);
   5922     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   5923     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   5924     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
   5925     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
   5926     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
   5927     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
   5928     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   5929     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   5930     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   5931   }
   5932   case NEON::BI__builtin_neon_vst2_v:
   5933   case NEON::BI__builtin_neon_vst2q_v: {
   5934     Ops.push_back(Ops[0]);
   5935     Ops.erase(Ops.begin());
   5936     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
   5937     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
   5938                         Ops, "");
   5939   }
   5940   case NEON::BI__builtin_neon_vst2_lane_v:
   5941   case NEON::BI__builtin_neon_vst2q_lane_v: {
   5942     Ops.push_back(Ops[0]);
   5943     Ops.erase(Ops.begin());
   5944     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
   5945     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
   5946     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
   5947                         Ops, "");
   5948   }
   5949   case NEON::BI__builtin_neon_vst3_v:
   5950   case NEON::BI__builtin_neon_vst3q_v: {
   5951     Ops.push_back(Ops[0]);
   5952     Ops.erase(Ops.begin());
   5953     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
   5954     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
   5955                         Ops, "");
   5956   }
   5957   case NEON::BI__builtin_neon_vst3_lane_v:
   5958   case NEON::BI__builtin_neon_vst3q_lane_v: {
   5959     Ops.push_back(Ops[0]);
   5960     Ops.erase(Ops.begin());
   5961     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
   5962     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
   5963     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
   5964                         Ops, "");
   5965   }
   5966   case NEON::BI__builtin_neon_vst4_v:
   5967   case NEON::BI__builtin_neon_vst4q_v: {
   5968     Ops.push_back(Ops[0]);
   5969     Ops.erase(Ops.begin());
   5970     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
   5971     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
   5972                         Ops, "");
   5973   }
   5974   case NEON::BI__builtin_neon_vst4_lane_v:
   5975   case NEON::BI__builtin_neon_vst4q_lane_v: {
   5976     Ops.push_back(Ops[0]);
   5977     Ops.erase(Ops.begin());
   5978     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
   5979     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
   5980     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
   5981                         Ops, "");
   5982   }
   5983   case NEON::BI__builtin_neon_vtrn_v:
   5984   case NEON::BI__builtin_neon_vtrnq_v: {
   5985     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   5986     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   5987     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   5988     Value *SV = nullptr;
   5989 
   5990     for (unsigned vi = 0; vi != 2; ++vi) {
   5991       SmallVector<Constant*, 16> Indices;
   5992       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
   5993         Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
   5994         Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
   5995       }
   5996       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
   5997       SV = llvm::ConstantVector::get(Indices);
   5998       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
   5999       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
   6000     }
   6001     return SV;
   6002   }
   6003   case NEON::BI__builtin_neon_vuzp_v:
   6004   case NEON::BI__builtin_neon_vuzpq_v: {
   6005     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   6006     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   6007     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   6008     Value *SV = nullptr;
   6009 
   6010     for (unsigned vi = 0; vi != 2; ++vi) {
   6011       SmallVector<Constant*, 16> Indices;
   6012       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
   6013         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
   6014 
   6015       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
   6016       SV = llvm::ConstantVector::get(Indices);
   6017       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
   6018       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
   6019     }
   6020     return SV;
   6021   }
   6022   case NEON::BI__builtin_neon_vzip_v:
   6023   case NEON::BI__builtin_neon_vzipq_v: {
   6024     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   6025     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   6026     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   6027     Value *SV = nullptr;
   6028 
   6029     for (unsigned vi = 0; vi != 2; ++vi) {
   6030       SmallVector<Constant*, 16> Indices;
   6031       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
   6032         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
   6033         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
   6034       }
   6035       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
   6036       SV = llvm::ConstantVector::get(Indices);
   6037       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
   6038       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
   6039     }
   6040     return SV;
   6041   }
   6042   case NEON::BI__builtin_neon_vqtbl1q_v: {
   6043     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
   6044                         Ops, "vtbl1");
   6045   }
   6046   case NEON::BI__builtin_neon_vqtbl2q_v: {
   6047     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
   6048                         Ops, "vtbl2");
   6049   }
   6050   case NEON::BI__builtin_neon_vqtbl3q_v: {
   6051     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
   6052                         Ops, "vtbl3");
   6053   }
   6054   case NEON::BI__builtin_neon_vqtbl4q_v: {
   6055     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
   6056                         Ops, "vtbl4");
   6057   }
   6058   case NEON::BI__builtin_neon_vqtbx1q_v: {
   6059     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
   6060                         Ops, "vtbx1");
   6061   }
   6062   case NEON::BI__builtin_neon_vqtbx2q_v: {
   6063     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
   6064                         Ops, "vtbx2");
   6065   }
   6066   case NEON::BI__builtin_neon_vqtbx3q_v: {
   6067     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
   6068                         Ops, "vtbx3");
   6069   }
   6070   case NEON::BI__builtin_neon_vqtbx4q_v: {
   6071     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
   6072                         Ops, "vtbx4");
   6073   }
   6074   case NEON::BI__builtin_neon_vsqadd_v:
   6075   case NEON::BI__builtin_neon_vsqaddq_v: {
   6076     Int = Intrinsic::aarch64_neon_usqadd;
   6077     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
   6078   }
   6079   case NEON::BI__builtin_neon_vuqadd_v:
   6080   case NEON::BI__builtin_neon_vuqaddq_v: {
   6081     Int = Intrinsic::aarch64_neon_suqadd;
   6082     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
   6083   }
   6084   }
   6085 }
   6086 
   6087 llvm::Value *CodeGenFunction::
   6088 BuildVector(ArrayRef<llvm::Value*> Ops) {
   6089   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
   6090          "Not a power-of-two sized vector!");
   6091   bool AllConstants = true;
   6092   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
   6093     AllConstants &= isa<Constant>(Ops[i]);
   6094 
   6095   // If this is a constant vector, create a ConstantVector.
   6096   if (AllConstants) {
   6097     SmallVector<llvm::Constant*, 16> CstOps;
   6098     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   6099       CstOps.push_back(cast<Constant>(Ops[i]));
   6100     return llvm::ConstantVector::get(CstOps);
   6101   }
   6102 
   6103   // Otherwise, insertelement the values to build the vector.
   6104   Value *Result =
   6105     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
   6106 
   6107   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   6108     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
   6109 
   6110   return Result;
   6111 }
   6112 
   6113 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
   6114                                            const CallExpr *E) {
   6115   if (BuiltinID == X86::BI__builtin_ms_va_start ||
   6116       BuiltinID == X86::BI__builtin_ms_va_end)
   6117     return EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
   6118                           BuiltinID == X86::BI__builtin_ms_va_start);
   6119   if (BuiltinID == X86::BI__builtin_ms_va_copy) {
   6120     // Lower this manually. We can't reliably determine whether or not any
   6121     // given va_copy() is for a Win64 va_list from the calling convention
   6122     // alone, because it's legal to do this from a System V ABI function.
   6123     // With opaque pointer types, we won't have enough information in LLVM
   6124     // IR to determine this from the argument types, either. Best to do it
   6125     // now, while we have enough information.
   6126     Address DestAddr = EmitMSVAListRef(E->getArg(0));
   6127     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
   6128 
   6129     llvm::Type *BPP = Int8PtrPtrTy;
   6130 
   6131     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
   6132                        DestAddr.getAlignment());
   6133     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
   6134                       SrcAddr.getAlignment());
   6135 
   6136     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
   6137     return Builder.CreateStore(ArgPtr, DestAddr);
   6138   }
   6139 
   6140   SmallVector<Value*, 4> Ops;
   6141 
   6142   // Find out if any arguments are required to be integer constant expressions.
   6143   unsigned ICEArguments = 0;
   6144   ASTContext::GetBuiltinTypeError Error;
   6145   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
   6146   assert(Error == ASTContext::GE_None && "Should not codegen an error");
   6147 
   6148   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
   6149     // If this is a normal argument, just emit it as a scalar.
   6150     if ((ICEArguments & (1 << i)) == 0) {
   6151       Ops.push_back(EmitScalarExpr(E->getArg(i)));
   6152       continue;
   6153     }
   6154 
   6155     // If this is required to be a constant, constant fold it so that we know
   6156     // that the generated intrinsic gets a ConstantInt.
   6157     llvm::APSInt Result;
   6158     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
   6159     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
   6160     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
   6161   }
   6162 
   6163   switch (BuiltinID) {
   6164   default: return nullptr;
   6165   case X86::BI__builtin_cpu_supports: {
   6166     const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
   6167     StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
   6168 
   6169     // TODO: When/if this becomes more than x86 specific then use a TargetInfo
   6170     // based mapping.
   6171     // Processor features and mapping to processor feature value.
   6172     enum X86Features {
   6173       CMOV = 0,
   6174       MMX,
   6175       POPCNT,
   6176       SSE,
   6177       SSE2,
   6178       SSE3,
   6179       SSSE3,
   6180       SSE4_1,
   6181       SSE4_2,
   6182       AVX,
   6183       AVX2,
   6184       SSE4_A,
   6185       FMA4,
   6186       XOP,
   6187       FMA,
   6188       AVX512F,
   6189       BMI,
   6190       BMI2,
   6191       MAX
   6192     };
   6193 
   6194     X86Features Feature = StringSwitch<X86Features>(FeatureStr)
   6195                               .Case("cmov", X86Features::CMOV)
   6196                               .Case("mmx", X86Features::MMX)
   6197                               .Case("popcnt", X86Features::POPCNT)
   6198                               .Case("sse", X86Features::SSE)
   6199                               .Case("sse2", X86Features::SSE2)
   6200                               .Case("sse3", X86Features::SSE3)
   6201                               .Case("sse4.1", X86Features::SSE4_1)
   6202                               .Case("sse4.2", X86Features::SSE4_2)
   6203                               .Case("avx", X86Features::AVX)
   6204                               .Case("avx2", X86Features::AVX2)
   6205                               .Case("sse4a", X86Features::SSE4_A)
   6206                               .Case("fma4", X86Features::FMA4)
   6207                               .Case("xop", X86Features::XOP)
   6208                               .Case("fma", X86Features::FMA)
   6209                               .Case("avx512f", X86Features::AVX512F)
   6210                               .Case("bmi", X86Features::BMI)
   6211                               .Case("bmi2", X86Features::BMI2)
   6212                               .Default(X86Features::MAX);
   6213     assert(Feature != X86Features::MAX && "Invalid feature!");
   6214 
   6215     // Matching the struct layout from the compiler-rt/libgcc structure that is
   6216     // filled in:
   6217     // unsigned int __cpu_vendor;
   6218     // unsigned int __cpu_type;
   6219     // unsigned int __cpu_subtype;
   6220     // unsigned int __cpu_features[1];
   6221     llvm::Type *STy = llvm::StructType::get(
   6222         Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1), nullptr);
   6223 
   6224     // Grab the global __cpu_model.
   6225     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
   6226 
   6227     // Grab the first (0th) element from the field __cpu_features off of the
   6228     // global in the struct STy.
   6229     Value *Idxs[] = {
   6230       ConstantInt::get(Int32Ty, 0),
   6231       ConstantInt::get(Int32Ty, 3),
   6232       ConstantInt::get(Int32Ty, 0)
   6233     };
   6234     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
   6235     Value *Features = Builder.CreateAlignedLoad(CpuFeatures,
   6236                                                 CharUnits::fromQuantity(4));
   6237 
   6238     // Check the value of the bit corresponding to the feature requested.
   6239     Value *Bitset = Builder.CreateAnd(
   6240         Features, llvm::ConstantInt::get(Int32Ty, 1 << Feature));
   6241     return Builder.CreateICmpNE(Bitset, llvm::ConstantInt::get(Int32Ty, 0));
   6242   }
   6243   case X86::BI_mm_prefetch: {
   6244     Value *Address = Ops[0];
   6245     Value *RW = ConstantInt::get(Int32Ty, 0);
   6246     Value *Locality = Ops[1];
   6247     Value *Data = ConstantInt::get(Int32Ty, 1);
   6248     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
   6249     return Builder.CreateCall(F, {Address, RW, Locality, Data});
   6250   }
   6251   case X86::BI__builtin_ia32_undef128:
   6252   case X86::BI__builtin_ia32_undef256:
   6253   case X86::BI__builtin_ia32_undef512:
   6254     return UndefValue::get(ConvertType(E->getType()));
   6255   case X86::BI__builtin_ia32_vec_init_v8qi:
   6256   case X86::BI__builtin_ia32_vec_init_v4hi:
   6257   case X86::BI__builtin_ia32_vec_init_v2si:
   6258     return Builder.CreateBitCast(BuildVector(Ops),
   6259                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
   6260   case X86::BI__builtin_ia32_vec_ext_v2si:
   6261     return Builder.CreateExtractElement(Ops[0],
   6262                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
   6263   case X86::BI__builtin_ia32_ldmxcsr: {
   6264     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
   6265     Builder.CreateStore(Ops[0], Tmp);
   6266     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
   6267                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
   6268   }
   6269   case X86::BI__builtin_ia32_stmxcsr: {
   6270     Address Tmp = CreateMemTemp(E->getType());
   6271     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
   6272                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
   6273     return Builder.CreateLoad(Tmp, "stmxcsr");
   6274   }
   6275   case X86::BI__builtin_ia32_xsave:
   6276   case X86::BI__builtin_ia32_xsave64:
   6277   case X86::BI__builtin_ia32_xrstor:
   6278   case X86::BI__builtin_ia32_xrstor64:
   6279   case X86::BI__builtin_ia32_xsaveopt:
   6280   case X86::BI__builtin_ia32_xsaveopt64:
   6281   case X86::BI__builtin_ia32_xrstors:
   6282   case X86::BI__builtin_ia32_xrstors64:
   6283   case X86::BI__builtin_ia32_xsavec:
   6284   case X86::BI__builtin_ia32_xsavec64:
   6285   case X86::BI__builtin_ia32_xsaves:
   6286   case X86::BI__builtin_ia32_xsaves64: {
   6287     Intrinsic::ID ID;
   6288 #define INTRINSIC_X86_XSAVE_ID(NAME) \
   6289     case X86::BI__builtin_ia32_##NAME: \
   6290       ID = Intrinsic::x86_##NAME; \
   6291       break
   6292     switch (BuiltinID) {
   6293     default: llvm_unreachable("Unsupported intrinsic!");
   6294     INTRINSIC_X86_XSAVE_ID(xsave);
   6295     INTRINSIC_X86_XSAVE_ID(xsave64);
   6296     INTRINSIC_X86_XSAVE_ID(xrstor);
   6297     INTRINSIC_X86_XSAVE_ID(xrstor64);
   6298     INTRINSIC_X86_XSAVE_ID(xsaveopt);
   6299     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
   6300     INTRINSIC_X86_XSAVE_ID(xrstors);
   6301     INTRINSIC_X86_XSAVE_ID(xrstors64);
   6302     INTRINSIC_X86_XSAVE_ID(xsavec);
   6303     INTRINSIC_X86_XSAVE_ID(xsavec64);
   6304     INTRINSIC_X86_XSAVE_ID(xsaves);
   6305     INTRINSIC_X86_XSAVE_ID(xsaves64);
   6306     }
   6307 #undef INTRINSIC_X86_XSAVE_ID
   6308     Value *Mhi = Builder.CreateTrunc(
   6309       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
   6310     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
   6311     Ops[1] = Mhi;
   6312     Ops.push_back(Mlo);
   6313     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
   6314   }
   6315   case X86::BI__builtin_ia32_storehps:
   6316   case X86::BI__builtin_ia32_storelps: {
   6317     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
   6318     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
   6319 
   6320     // cast val v2i64
   6321     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
   6322 
   6323     // extract (0, 1)
   6324     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
   6325     llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
   6326     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
   6327 
   6328     // cast pointer to i64 & store
   6329     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
   6330     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
   6331   }
   6332   case X86::BI__builtin_ia32_palignr128:
   6333   case X86::BI__builtin_ia32_palignr256: {
   6334     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
   6335 
   6336     unsigned NumElts =
   6337       cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
   6338     assert(NumElts % 16 == 0);
   6339     unsigned NumLanes = NumElts / 16;
   6340     unsigned NumLaneElts = NumElts / NumLanes;
   6341 
   6342     // If palignr is shifting the pair of vectors more than the size of two
   6343     // lanes, emit zero.
   6344     if (ShiftVal >= (2 * NumLaneElts))
   6345       return llvm::Constant::getNullValue(ConvertType(E->getType()));
   6346 
   6347     // If palignr is shifting the pair of input vectors more than one lane,
   6348     // but less than two lanes, convert to shifting in zeroes.
   6349     if (ShiftVal > NumLaneElts) {
   6350       ShiftVal -= NumLaneElts;
   6351       Ops[1] = Ops[0];
   6352       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
   6353     }
   6354 
   6355     uint32_t Indices[32];
   6356     // 256-bit palignr operates on 128-bit lanes so we need to handle that
   6357     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
   6358       for (unsigned i = 0; i != NumLaneElts; ++i) {
   6359         unsigned Idx = ShiftVal + i;
   6360         if (Idx >= NumLaneElts)
   6361           Idx += NumElts - NumLaneElts; // End of lane, switch operand.
   6362         Indices[l + i] = Idx + l;
   6363       }
   6364     }
   6365 
   6366     Value *SV = llvm::ConstantDataVector::get(getLLVMContext(),
   6367                                               makeArrayRef(Indices, NumElts));
   6368     return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
   6369   }
   6370   case X86::BI__builtin_ia32_pslldqi256: {
   6371     // Shift value is in bits so divide by 8.
   6372     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
   6373 
   6374     // If pslldq is shifting the vector more than 15 bytes, emit zero.
   6375     if (shiftVal >= 16)
   6376       return llvm::Constant::getNullValue(ConvertType(E->getType()));
   6377 
   6378     uint32_t Indices[32];
   6379     // 256-bit pslldq operates on 128-bit lanes so we need to handle that
   6380     for (unsigned l = 0; l != 32; l += 16) {
   6381       for (unsigned i = 0; i != 16; ++i) {
   6382         unsigned Idx = 32 + i - shiftVal;
   6383         if (Idx < 32) Idx -= 16; // end of lane, switch operand.
   6384         Indices[l + i] = Idx + l;
   6385       }
   6386     }
   6387 
   6388     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
   6389     Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
   6390     Value *Zero = llvm::Constant::getNullValue(VecTy);
   6391 
   6392     Value *SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
   6393     SV = Builder.CreateShuffleVector(Zero, Ops[0], SV, "pslldq");
   6394     llvm::Type *ResultType = ConvertType(E->getType());
   6395     return Builder.CreateBitCast(SV, ResultType, "cast");
   6396   }
   6397   case X86::BI__builtin_ia32_psrldqi256: {
   6398     // Shift value is in bits so divide by 8.
   6399     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
   6400 
   6401     // If psrldq is shifting the vector more than 15 bytes, emit zero.
   6402     if (shiftVal >= 16)
   6403       return llvm::Constant::getNullValue(ConvertType(E->getType()));
   6404 
   6405     uint32_t Indices[32];
   6406     // 256-bit psrldq operates on 128-bit lanes so we need to handle that
   6407     for (unsigned l = 0; l != 32; l += 16) {
   6408       for (unsigned i = 0; i != 16; ++i) {
   6409         unsigned Idx = i + shiftVal;
   6410         if (Idx >= 16) Idx += 16; // end of lane, switch operand.
   6411         Indices[l + i] = Idx + l;
   6412       }
   6413     }
   6414 
   6415     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
   6416     Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
   6417     Value *Zero = llvm::Constant::getNullValue(VecTy);
   6418 
   6419     Value *SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
   6420     SV = Builder.CreateShuffleVector(Ops[0], Zero, SV, "psrldq");
   6421     llvm::Type *ResultType = ConvertType(E->getType());
   6422     return Builder.CreateBitCast(SV, ResultType, "cast");
   6423   }
   6424   case X86::BI__builtin_ia32_movntps:
   6425   case X86::BI__builtin_ia32_movntps256:
   6426   case X86::BI__builtin_ia32_movntpd:
   6427   case X86::BI__builtin_ia32_movntpd256:
   6428   case X86::BI__builtin_ia32_movntdq:
   6429   case X86::BI__builtin_ia32_movntdq256:
   6430   case X86::BI__builtin_ia32_movnti:
   6431   case X86::BI__builtin_ia32_movnti64: {
   6432     llvm::MDNode *Node = llvm::MDNode::get(
   6433         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
   6434 
   6435     // Convert the type of the pointer to a pointer to the stored type.
   6436     Value *BC = Builder.CreateBitCast(Ops[0],
   6437                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
   6438                                       "cast");
   6439     StoreInst *SI = Builder.CreateDefaultAlignedStore(Ops[1], BC);
   6440     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
   6441 
   6442     // If the operand is an integer, we can't assume alignment. Otherwise,
   6443     // assume natural alignment.
   6444     QualType ArgTy = E->getArg(1)->getType();
   6445     unsigned Align;
   6446     if (ArgTy->isIntegerType())
   6447       Align = 1;
   6448     else
   6449       Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
   6450     SI->setAlignment(Align);
   6451     return SI;
   6452   }
   6453   // 3DNow!
   6454   case X86::BI__builtin_ia32_pswapdsf:
   6455   case X86::BI__builtin_ia32_pswapdsi: {
   6456     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
   6457     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
   6458     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
   6459     return Builder.CreateCall(F, Ops, "pswapd");
   6460   }
   6461   case X86::BI__builtin_ia32_rdrand16_step:
   6462   case X86::BI__builtin_ia32_rdrand32_step:
   6463   case X86::BI__builtin_ia32_rdrand64_step:
   6464   case X86::BI__builtin_ia32_rdseed16_step:
   6465   case X86::BI__builtin_ia32_rdseed32_step:
   6466   case X86::BI__builtin_ia32_rdseed64_step: {
   6467     Intrinsic::ID ID;
   6468     switch (BuiltinID) {
   6469     default: llvm_unreachable("Unsupported intrinsic!");
   6470     case X86::BI__builtin_ia32_rdrand16_step:
   6471       ID = Intrinsic::x86_rdrand_16;
   6472       break;
   6473     case X86::BI__builtin_ia32_rdrand32_step:
   6474       ID = Intrinsic::x86_rdrand_32;
   6475       break;
   6476     case X86::BI__builtin_ia32_rdrand64_step:
   6477       ID = Intrinsic::x86_rdrand_64;
   6478       break;
   6479     case X86::BI__builtin_ia32_rdseed16_step:
   6480       ID = Intrinsic::x86_rdseed_16;
   6481       break;
   6482     case X86::BI__builtin_ia32_rdseed32_step:
   6483       ID = Intrinsic::x86_rdseed_32;
   6484       break;
   6485     case X86::BI__builtin_ia32_rdseed64_step:
   6486       ID = Intrinsic::x86_rdseed_64;
   6487       break;
   6488     }
   6489 
   6490     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
   6491     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
   6492                                       Ops[0]);
   6493     return Builder.CreateExtractValue(Call, 1);
   6494   }
   6495   // SSE comparison intrisics
   6496   case X86::BI__builtin_ia32_cmpeqps:
   6497   case X86::BI__builtin_ia32_cmpltps:
   6498   case X86::BI__builtin_ia32_cmpleps:
   6499   case X86::BI__builtin_ia32_cmpunordps:
   6500   case X86::BI__builtin_ia32_cmpneqps:
   6501   case X86::BI__builtin_ia32_cmpnltps:
   6502   case X86::BI__builtin_ia32_cmpnleps:
   6503   case X86::BI__builtin_ia32_cmpordps:
   6504   case X86::BI__builtin_ia32_cmpeqss:
   6505   case X86::BI__builtin_ia32_cmpltss:
   6506   case X86::BI__builtin_ia32_cmpless:
   6507   case X86::BI__builtin_ia32_cmpunordss:
   6508   case X86::BI__builtin_ia32_cmpneqss:
   6509   case X86::BI__builtin_ia32_cmpnltss:
   6510   case X86::BI__builtin_ia32_cmpnless:
   6511   case X86::BI__builtin_ia32_cmpordss:
   6512   case X86::BI__builtin_ia32_cmpeqpd:
   6513   case X86::BI__builtin_ia32_cmpltpd:
   6514   case X86::BI__builtin_ia32_cmplepd:
   6515   case X86::BI__builtin_ia32_cmpunordpd:
   6516   case X86::BI__builtin_ia32_cmpneqpd:
   6517   case X86::BI__builtin_ia32_cmpnltpd:
   6518   case X86::BI__builtin_ia32_cmpnlepd:
   6519   case X86::BI__builtin_ia32_cmpordpd:
   6520   case X86::BI__builtin_ia32_cmpeqsd:
   6521   case X86::BI__builtin_ia32_cmpltsd:
   6522   case X86::BI__builtin_ia32_cmplesd:
   6523   case X86::BI__builtin_ia32_cmpunordsd:
   6524   case X86::BI__builtin_ia32_cmpneqsd:
   6525   case X86::BI__builtin_ia32_cmpnltsd:
   6526   case X86::BI__builtin_ia32_cmpnlesd:
   6527   case X86::BI__builtin_ia32_cmpordsd:
   6528     // These exist so that the builtin that takes an immediate can be bounds
   6529     // checked by clang to avoid passing bad immediates to the backend. Since
   6530     // AVX has a larger immediate than SSE we would need separate builtins to
   6531     // do the different bounds checking. Rather than create a clang specific
   6532     // SSE only builtin, this implements eight separate builtins to match gcc
   6533     // implementation.
   6534 
   6535     // Choose the immediate.
   6536     unsigned Imm;
   6537     switch (BuiltinID) {
   6538     default: llvm_unreachable("Unsupported intrinsic!");
   6539     case X86::BI__builtin_ia32_cmpeqps:
   6540     case X86::BI__builtin_ia32_cmpeqss:
   6541     case X86::BI__builtin_ia32_cmpeqpd:
   6542     case X86::BI__builtin_ia32_cmpeqsd:
   6543       Imm = 0;
   6544       break;
   6545     case X86::BI__builtin_ia32_cmpltps:
   6546     case X86::BI__builtin_ia32_cmpltss:
   6547     case X86::BI__builtin_ia32_cmpltpd:
   6548     case X86::BI__builtin_ia32_cmpltsd:
   6549       Imm = 1;
   6550       break;
   6551     case X86::BI__builtin_ia32_cmpleps:
   6552     case X86::BI__builtin_ia32_cmpless:
   6553     case X86::BI__builtin_ia32_cmplepd:
   6554     case X86::BI__builtin_ia32_cmplesd:
   6555       Imm = 2;
   6556       break;
   6557     case X86::BI__builtin_ia32_cmpunordps:
   6558     case X86::BI__builtin_ia32_cmpunordss:
   6559     case X86::BI__builtin_ia32_cmpunordpd:
   6560     case X86::BI__builtin_ia32_cmpunordsd:
   6561       Imm = 3;
   6562       break;
   6563     case X86::BI__builtin_ia32_cmpneqps:
   6564     case X86::BI__builtin_ia32_cmpneqss:
   6565     case X86::BI__builtin_ia32_cmpneqpd:
   6566     case X86::BI__builtin_ia32_cmpneqsd:
   6567       Imm = 4;
   6568       break;
   6569     case X86::BI__builtin_ia32_cmpnltps:
   6570     case X86::BI__builtin_ia32_cmpnltss:
   6571     case X86::BI__builtin_ia32_cmpnltpd:
   6572     case X86::BI__builtin_ia32_cmpnltsd:
   6573       Imm = 5;
   6574       break;
   6575     case X86::BI__builtin_ia32_cmpnleps:
   6576     case X86::BI__builtin_ia32_cmpnless:
   6577     case X86::BI__builtin_ia32_cmpnlepd:
   6578     case X86::BI__builtin_ia32_cmpnlesd:
   6579       Imm = 6;
   6580       break;
   6581     case X86::BI__builtin_ia32_cmpordps:
   6582     case X86::BI__builtin_ia32_cmpordss:
   6583     case X86::BI__builtin_ia32_cmpordpd:
   6584     case X86::BI__builtin_ia32_cmpordsd:
   6585       Imm = 7;
   6586       break;
   6587     }
   6588 
   6589     // Choose the intrinsic ID.
   6590     const char *name;
   6591     Intrinsic::ID ID;
   6592     switch (BuiltinID) {
   6593     default: llvm_unreachable("Unsupported intrinsic!");
   6594     case X86::BI__builtin_ia32_cmpeqps:
   6595     case X86::BI__builtin_ia32_cmpltps:
   6596     case X86::BI__builtin_ia32_cmpleps:
   6597     case X86::BI__builtin_ia32_cmpunordps:
   6598     case X86::BI__builtin_ia32_cmpneqps:
   6599     case X86::BI__builtin_ia32_cmpnltps:
   6600     case X86::BI__builtin_ia32_cmpnleps:
   6601     case X86::BI__builtin_ia32_cmpordps:
   6602       name = "cmpps";
   6603       ID = Intrinsic::x86_sse_cmp_ps;
   6604       break;
   6605     case X86::BI__builtin_ia32_cmpeqss:
   6606     case X86::BI__builtin_ia32_cmpltss:
   6607     case X86::BI__builtin_ia32_cmpless:
   6608     case X86::BI__builtin_ia32_cmpunordss:
   6609     case X86::BI__builtin_ia32_cmpneqss:
   6610     case X86::BI__builtin_ia32_cmpnltss:
   6611     case X86::BI__builtin_ia32_cmpnless:
   6612     case X86::BI__builtin_ia32_cmpordss:
   6613       name = "cmpss";
   6614       ID = Intrinsic::x86_sse_cmp_ss;
   6615       break;
   6616     case X86::BI__builtin_ia32_cmpeqpd:
   6617     case X86::BI__builtin_ia32_cmpltpd:
   6618     case X86::BI__builtin_ia32_cmplepd:
   6619     case X86::BI__builtin_ia32_cmpunordpd:
   6620     case X86::BI__builtin_ia32_cmpneqpd:
   6621     case X86::BI__builtin_ia32_cmpnltpd:
   6622     case X86::BI__builtin_ia32_cmpnlepd:
   6623     case X86::BI__builtin_ia32_cmpordpd:
   6624       name = "cmppd";
   6625       ID = Intrinsic::x86_sse2_cmp_pd;
   6626       break;
   6627     case X86::BI__builtin_ia32_cmpeqsd:
   6628     case X86::BI__builtin_ia32_cmpltsd:
   6629     case X86::BI__builtin_ia32_cmplesd:
   6630     case X86::BI__builtin_ia32_cmpunordsd:
   6631     case X86::BI__builtin_ia32_cmpneqsd:
   6632     case X86::BI__builtin_ia32_cmpnltsd:
   6633     case X86::BI__builtin_ia32_cmpnlesd:
   6634     case X86::BI__builtin_ia32_cmpordsd:
   6635       name = "cmpsd";
   6636       ID = Intrinsic::x86_sse2_cmp_sd;
   6637       break;
   6638     }
   6639 
   6640     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
   6641     llvm::Function *F = CGM.getIntrinsic(ID);
   6642     return Builder.CreateCall(F, Ops, name);
   6643   }
   6644 }
   6645 
   6646 
   6647 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
   6648                                            const CallExpr *E) {
   6649   SmallVector<Value*, 4> Ops;
   6650 
   6651   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
   6652     Ops.push_back(EmitScalarExpr(E->getArg(i)));
   6653 
   6654   Intrinsic::ID ID = Intrinsic::not_intrinsic;
   6655 
   6656   switch (BuiltinID) {
   6657   default: return nullptr;
   6658 
   6659   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
   6660   // call __builtin_readcyclecounter.
   6661   case PPC::BI__builtin_ppc_get_timebase:
   6662     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
   6663 
   6664   // vec_ld, vec_lvsl, vec_lvsr
   6665   case PPC::BI__builtin_altivec_lvx:
   6666   case PPC::BI__builtin_altivec_lvxl:
   6667   case PPC::BI__builtin_altivec_lvebx:
   6668   case PPC::BI__builtin_altivec_lvehx:
   6669   case PPC::BI__builtin_altivec_lvewx:
   6670   case PPC::BI__builtin_altivec_lvsl:
   6671   case PPC::BI__builtin_altivec_lvsr:
   6672   case PPC::BI__builtin_vsx_lxvd2x:
   6673   case PPC::BI__builtin_vsx_lxvw4x:
   6674   {
   6675     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
   6676 
   6677     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
   6678     Ops.pop_back();
   6679 
   6680     switch (BuiltinID) {
   6681     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
   6682     case PPC::BI__builtin_altivec_lvx:
   6683       ID = Intrinsic::ppc_altivec_lvx;
   6684       break;
   6685     case PPC::BI__builtin_altivec_lvxl:
   6686       ID = Intrinsic::ppc_altivec_lvxl;
   6687       break;
   6688     case PPC::BI__builtin_altivec_lvebx:
   6689       ID = Intrinsic::ppc_altivec_lvebx;
   6690       break;
   6691     case PPC::BI__builtin_altivec_lvehx:
   6692       ID = Intrinsic::ppc_altivec_lvehx;
   6693       break;
   6694     case PPC::BI__builtin_altivec_lvewx:
   6695       ID = Intrinsic::ppc_altivec_lvewx;
   6696       break;
   6697     case PPC::BI__builtin_altivec_lvsl:
   6698       ID = Intrinsic::ppc_altivec_lvsl;
   6699       break;
   6700     case PPC::BI__builtin_altivec_lvsr:
   6701       ID = Intrinsic::ppc_altivec_lvsr;
   6702       break;
   6703     case PPC::BI__builtin_vsx_lxvd2x:
   6704       ID = Intrinsic::ppc_vsx_lxvd2x;
   6705       break;
   6706     case PPC::BI__builtin_vsx_lxvw4x:
   6707       ID = Intrinsic::ppc_vsx_lxvw4x;
   6708       break;
   6709     }
   6710     llvm::Function *F = CGM.getIntrinsic(ID);
   6711     return Builder.CreateCall(F, Ops, "");
   6712   }
   6713 
   6714   // vec_st
   6715   case PPC::BI__builtin_altivec_stvx:
   6716   case PPC::BI__builtin_altivec_stvxl:
   6717   case PPC::BI__builtin_altivec_stvebx:
   6718   case PPC::BI__builtin_altivec_stvehx:
   6719   case PPC::BI__builtin_altivec_stvewx:
   6720   case PPC::BI__builtin_vsx_stxvd2x:
   6721   case PPC::BI__builtin_vsx_stxvw4x:
   6722   {
   6723     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
   6724     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
   6725     Ops.pop_back();
   6726 
   6727     switch (BuiltinID) {
   6728     default: llvm_unreachable("Unsupported st intrinsic!");
   6729     case PPC::BI__builtin_altivec_stvx:
   6730       ID = Intrinsic::ppc_altivec_stvx;
   6731       break;
   6732     case PPC::BI__builtin_altivec_stvxl:
   6733       ID = Intrinsic::ppc_altivec_stvxl;
   6734       break;
   6735     case PPC::BI__builtin_altivec_stvebx:
   6736       ID = Intrinsic::ppc_altivec_stvebx;
   6737       break;
   6738     case PPC::BI__builtin_altivec_stvehx:
   6739       ID = Intrinsic::ppc_altivec_stvehx;
   6740       break;
   6741     case PPC::BI__builtin_altivec_stvewx:
   6742       ID = Intrinsic::ppc_altivec_stvewx;
   6743       break;
   6744     case PPC::BI__builtin_vsx_stxvd2x:
   6745       ID = Intrinsic::ppc_vsx_stxvd2x;
   6746       break;
   6747     case PPC::BI__builtin_vsx_stxvw4x:
   6748       ID = Intrinsic::ppc_vsx_stxvw4x;
   6749       break;
   6750     }
   6751     llvm::Function *F = CGM.getIntrinsic(ID);
   6752     return Builder.CreateCall(F, Ops, "");
   6753   }
   6754   // Square root
   6755   case PPC::BI__builtin_vsx_xvsqrtsp:
   6756   case PPC::BI__builtin_vsx_xvsqrtdp: {
   6757     llvm::Type *ResultType = ConvertType(E->getType());
   6758     Value *X = EmitScalarExpr(E->getArg(0));
   6759     ID = Intrinsic::sqrt;
   6760     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
   6761     return Builder.CreateCall(F, X);
   6762   }
   6763   // Count leading zeros
   6764   case PPC::BI__builtin_altivec_vclzb:
   6765   case PPC::BI__builtin_altivec_vclzh:
   6766   case PPC::BI__builtin_altivec_vclzw:
   6767   case PPC::BI__builtin_altivec_vclzd: {
   6768     llvm::Type *ResultType = ConvertType(E->getType());
   6769     Value *X = EmitScalarExpr(E->getArg(0));
   6770     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
   6771     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
   6772     return Builder.CreateCall(F, {X, Undef});
   6773   }
   6774   // Copy sign
   6775   case PPC::BI__builtin_vsx_xvcpsgnsp:
   6776   case PPC::BI__builtin_vsx_xvcpsgndp: {
   6777     llvm::Type *ResultType = ConvertType(E->getType());
   6778     Value *X = EmitScalarExpr(E->getArg(0));
   6779     Value *Y = EmitScalarExpr(E->getArg(1));
   6780     ID = Intrinsic::copysign;
   6781     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
   6782     return Builder.CreateCall(F, {X, Y});
   6783   }
   6784   // Rounding/truncation
   6785   case PPC::BI__builtin_vsx_xvrspip:
   6786   case PPC::BI__builtin_vsx_xvrdpip:
   6787   case PPC::BI__builtin_vsx_xvrdpim:
   6788   case PPC::BI__builtin_vsx_xvrspim:
   6789   case PPC::BI__builtin_vsx_xvrdpi:
   6790   case PPC::BI__builtin_vsx_xvrspi:
   6791   case PPC::BI__builtin_vsx_xvrdpic:
   6792   case PPC::BI__builtin_vsx_xvrspic:
   6793   case PPC::BI__builtin_vsx_xvrdpiz:
   6794   case PPC::BI__builtin_vsx_xvrspiz: {
   6795     llvm::Type *ResultType = ConvertType(E->getType());
   6796     Value *X = EmitScalarExpr(E->getArg(0));
   6797     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
   6798         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
   6799       ID = Intrinsic::floor;
   6800     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
   6801              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
   6802       ID = Intrinsic::round;
   6803     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
   6804              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
   6805       ID = Intrinsic::nearbyint;
   6806     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
   6807              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
   6808       ID = Intrinsic::ceil;
   6809     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
   6810              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
   6811       ID = Intrinsic::trunc;
   6812     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
   6813     return Builder.CreateCall(F, X);
   6814   }
   6815   // FMA variations
   6816   case PPC::BI__builtin_vsx_xvmaddadp:
   6817   case PPC::BI__builtin_vsx_xvmaddasp:
   6818   case PPC::BI__builtin_vsx_xvnmaddadp:
   6819   case PPC::BI__builtin_vsx_xvnmaddasp:
   6820   case PPC::BI__builtin_vsx_xvmsubadp:
   6821   case PPC::BI__builtin_vsx_xvmsubasp:
   6822   case PPC::BI__builtin_vsx_xvnmsubadp:
   6823   case PPC::BI__builtin_vsx_xvnmsubasp: {
   6824     llvm::Type *ResultType = ConvertType(E->getType());
   6825     Value *X = EmitScalarExpr(E->getArg(0));
   6826     Value *Y = EmitScalarExpr(E->getArg(1));
   6827     Value *Z = EmitScalarExpr(E->getArg(2));
   6828     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
   6829     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
   6830     switch (BuiltinID) {
   6831       case PPC::BI__builtin_vsx_xvmaddadp:
   6832       case PPC::BI__builtin_vsx_xvmaddasp:
   6833         return Builder.CreateCall(F, {X, Y, Z});
   6834       case PPC::BI__builtin_vsx_xvnmaddadp:
   6835       case PPC::BI__builtin_vsx_xvnmaddasp:
   6836         return Builder.CreateFSub(Zero,
   6837                                   Builder.CreateCall(F, {X, Y, Z}), "sub");
   6838       case PPC::BI__builtin_vsx_xvmsubadp:
   6839       case PPC::BI__builtin_vsx_xvmsubasp:
   6840         return Builder.CreateCall(F,
   6841                                   {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
   6842       case PPC::BI__builtin_vsx_xvnmsubadp:
   6843       case PPC::BI__builtin_vsx_xvnmsubasp:
   6844         Value *FsubRes =
   6845           Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
   6846         return Builder.CreateFSub(Zero, FsubRes, "sub");
   6847     }
   6848     llvm_unreachable("Unknown FMA operation");
   6849     return nullptr; // Suppress no-return warning
   6850   }
   6851   }
   6852 }
   6853 
   6854 // Emit an intrinsic that has 1 float or double.
   6855 static Value *emitUnaryFPBuiltin(CodeGenFunction &CGF,
   6856                                  const CallExpr *E,
   6857                                  unsigned IntrinsicID) {
   6858   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
   6859 
   6860   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
   6861   return CGF.Builder.CreateCall(F, Src0);
   6862 }
   6863 
   6864 // Emit an intrinsic that has 3 float or double operands.
   6865 static Value *emitTernaryFPBuiltin(CodeGenFunction &CGF,
   6866                                    const CallExpr *E,
   6867                                    unsigned IntrinsicID) {
   6868   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
   6869   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
   6870   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
   6871 
   6872   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
   6873   return CGF.Builder.CreateCall(F, {Src0, Src1, Src2});
   6874 }
   6875 
   6876 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
   6877 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
   6878                                const CallExpr *E,
   6879                                unsigned IntrinsicID) {
   6880   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
   6881   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
   6882 
   6883   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
   6884   return CGF.Builder.CreateCall(F, {Src0, Src1});
   6885 }
   6886 
   6887 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
   6888                                               const CallExpr *E) {
   6889   switch (BuiltinID) {
   6890   case AMDGPU::BI__builtin_amdgpu_div_scale:
   6891   case AMDGPU::BI__builtin_amdgpu_div_scalef: {
   6892     // Translate from the intrinsics's struct return to the builtin's out
   6893     // argument.
   6894 
   6895     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
   6896 
   6897     llvm::Value *X = EmitScalarExpr(E->getArg(0));
   6898     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
   6899     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
   6900 
   6901     llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::AMDGPU_div_scale,
   6902                                            X->getType());
   6903 
   6904     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
   6905 
   6906     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
   6907     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
   6908 
   6909     llvm::Type *RealFlagType
   6910       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
   6911 
   6912     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
   6913     Builder.CreateStore(FlagExt, FlagOutPtr);
   6914     return Result;
   6915   }
   6916   case AMDGPU::BI__builtin_amdgpu_div_fmas:
   6917   case AMDGPU::BI__builtin_amdgpu_div_fmasf: {
   6918     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
   6919     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
   6920     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
   6921     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
   6922 
   6923     llvm::Value *F = CGM.getIntrinsic(Intrinsic::AMDGPU_div_fmas,
   6924                                       Src0->getType());
   6925     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
   6926     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
   6927   }
   6928   case AMDGPU::BI__builtin_amdgpu_div_fixup:
   6929   case AMDGPU::BI__builtin_amdgpu_div_fixupf:
   6930     return emitTernaryFPBuiltin(*this, E, Intrinsic::AMDGPU_div_fixup);
   6931   case AMDGPU::BI__builtin_amdgpu_trig_preop:
   6932   case AMDGPU::BI__builtin_amdgpu_trig_preopf:
   6933     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_trig_preop);
   6934   case AMDGPU::BI__builtin_amdgpu_rcp:
   6935   case AMDGPU::BI__builtin_amdgpu_rcpf:
   6936     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rcp);
   6937   case AMDGPU::BI__builtin_amdgpu_rsq:
   6938   case AMDGPU::BI__builtin_amdgpu_rsqf:
   6939     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq);
   6940   case AMDGPU::BI__builtin_amdgpu_rsq_clamped:
   6941   case AMDGPU::BI__builtin_amdgpu_rsq_clampedf:
   6942     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq_clamped);
   6943   case AMDGPU::BI__builtin_amdgpu_ldexp:
   6944   case AMDGPU::BI__builtin_amdgpu_ldexpf:
   6945     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_ldexp);
   6946   case AMDGPU::BI__builtin_amdgpu_class:
   6947   case AMDGPU::BI__builtin_amdgpu_classf:
   6948     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_class);
   6949    default:
   6950     return nullptr;
   6951   }
   6952 }
   6953 
   6954 /// Handle a SystemZ function in which the final argument is a pointer
   6955 /// to an int that receives the post-instruction CC value.  At the LLVM level
   6956 /// this is represented as a function that returns a {result, cc} pair.
   6957 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
   6958                                          unsigned IntrinsicID,
   6959                                          const CallExpr *E) {
   6960   unsigned NumArgs = E->getNumArgs() - 1;
   6961   SmallVector<Value *, 8> Args(NumArgs);
   6962   for (unsigned I = 0; I < NumArgs; ++I)
   6963     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
   6964   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
   6965   Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
   6966   Value *Call = CGF.Builder.CreateCall(F, Args);
   6967   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
   6968   CGF.Builder.CreateStore(CC, CCPtr);
   6969   return CGF.Builder.CreateExtractValue(Call, 0);
   6970 }
   6971 
   6972 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
   6973                                                const CallExpr *E) {
   6974   switch (BuiltinID) {
   6975   case SystemZ::BI__builtin_tbegin: {
   6976     Value *TDB = EmitScalarExpr(E->getArg(0));
   6977     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
   6978     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
   6979     return Builder.CreateCall(F, {TDB, Control});
   6980   }
   6981   case SystemZ::BI__builtin_tbegin_nofloat: {
   6982     Value *TDB = EmitScalarExpr(E->getArg(0));
   6983     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
   6984     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
   6985     return Builder.CreateCall(F, {TDB, Control});
   6986   }
   6987   case SystemZ::BI__builtin_tbeginc: {
   6988     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
   6989     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
   6990     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
   6991     return Builder.CreateCall(F, {TDB, Control});
   6992   }
   6993   case SystemZ::BI__builtin_tabort: {
   6994     Value *Data = EmitScalarExpr(E->getArg(0));
   6995     Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
   6996     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
   6997   }
   6998   case SystemZ::BI__builtin_non_tx_store: {
   6999     Value *Address = EmitScalarExpr(E->getArg(0));
   7000     Value *Data = EmitScalarExpr(E->getArg(1));
   7001     Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
   7002     return Builder.CreateCall(F, {Data, Address});
   7003   }
   7004 
   7005   // Vector builtins.  Note that most vector builtins are mapped automatically
   7006   // to target-specific LLVM intrinsics.  The ones handled specially here can
   7007   // be represented via standard LLVM IR, which is preferable to enable common
   7008   // LLVM optimizations.
   7009 
   7010   case SystemZ::BI__builtin_s390_vpopctb:
   7011   case SystemZ::BI__builtin_s390_vpopcth:
   7012   case SystemZ::BI__builtin_s390_vpopctf:
   7013   case SystemZ::BI__builtin_s390_vpopctg: {
   7014     llvm::Type *ResultType = ConvertType(E->getType());
   7015     Value *X = EmitScalarExpr(E->getArg(0));
   7016     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
   7017     return Builder.CreateCall(F, X);
   7018   }
   7019 
   7020   case SystemZ::BI__builtin_s390_vclzb:
   7021   case SystemZ::BI__builtin_s390_vclzh:
   7022   case SystemZ::BI__builtin_s390_vclzf:
   7023   case SystemZ::BI__builtin_s390_vclzg: {
   7024     llvm::Type *ResultType = ConvertType(E->getType());
   7025     Value *X = EmitScalarExpr(E->getArg(0));
   7026     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
   7027     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
   7028     return Builder.CreateCall(F, {X, Undef});
   7029   }
   7030 
   7031   case SystemZ::BI__builtin_s390_vctzb:
   7032   case SystemZ::BI__builtin_s390_vctzh:
   7033   case SystemZ::BI__builtin_s390_vctzf:
   7034   case SystemZ::BI__builtin_s390_vctzg: {
   7035     llvm::Type *ResultType = ConvertType(E->getType());
   7036     Value *X = EmitScalarExpr(E->getArg(0));
   7037     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
   7038     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
   7039     return Builder.CreateCall(F, {X, Undef});
   7040   }
   7041 
   7042   case SystemZ::BI__builtin_s390_vfsqdb: {
   7043     llvm::Type *ResultType = ConvertType(E->getType());
   7044     Value *X = EmitScalarExpr(E->getArg(0));
   7045     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
   7046     return Builder.CreateCall(F, X);
   7047   }
   7048   case SystemZ::BI__builtin_s390_vfmadb: {
   7049     llvm::Type *ResultType = ConvertType(E->getType());
   7050     Value *X = EmitScalarExpr(E->getArg(0));
   7051     Value *Y = EmitScalarExpr(E->getArg(1));
   7052     Value *Z = EmitScalarExpr(E->getArg(2));
   7053     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
   7054     return Builder.CreateCall(F, {X, Y, Z});
   7055   }
   7056   case SystemZ::BI__builtin_s390_vfmsdb: {
   7057     llvm::Type *ResultType = ConvertType(E->getType());
   7058     Value *X = EmitScalarExpr(E->getArg(0));
   7059     Value *Y = EmitScalarExpr(E->getArg(1));
   7060     Value *Z = EmitScalarExpr(E->getArg(2));
   7061     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
   7062     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
   7063     return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
   7064   }
   7065   case SystemZ::BI__builtin_s390_vflpdb: {
   7066     llvm::Type *ResultType = ConvertType(E->getType());
   7067     Value *X = EmitScalarExpr(E->getArg(0));
   7068     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
   7069     return Builder.CreateCall(F, X);
   7070   }
   7071   case SystemZ::BI__builtin_s390_vflndb: {
   7072     llvm::Type *ResultType = ConvertType(E->getType());
   7073     Value *X = EmitScalarExpr(E->getArg(0));
   7074     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
   7075     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
   7076     return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
   7077   }
   7078   case SystemZ::BI__builtin_s390_vfidb: {
   7079     llvm::Type *ResultType = ConvertType(E->getType());
   7080     Value *X = EmitScalarExpr(E->getArg(0));
   7081     // Constant-fold the M4 and M5 mask arguments.
   7082     llvm::APSInt M4, M5;
   7083     bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
   7084     bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
   7085     assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
   7086     (void)IsConstM4; (void)IsConstM5;
   7087     // Check whether this instance of vfidb can be represented via a LLVM
   7088     // standard intrinsic.  We only support some combinations of M4 and M5.
   7089     Intrinsic::ID ID = Intrinsic::not_intrinsic;
   7090     switch (M4.getZExtValue()) {
   7091     default: break;
   7092     case 0:  // IEEE-inexact exception allowed
   7093       switch (M5.getZExtValue()) {
   7094       default: break;
   7095       case 0: ID = Intrinsic::rint; break;
   7096       }
   7097       break;
   7098     case 4:  // IEEE-inexact exception suppressed
   7099       switch (M5.getZExtValue()) {
   7100       default: break;
   7101       case 0: ID = Intrinsic::nearbyint; break;
   7102       case 1: ID = Intrinsic::round; break;
   7103       case 5: ID = Intrinsic::trunc; break;
   7104       case 6: ID = Intrinsic::ceil; break;
   7105       case 7: ID = Intrinsic::floor; break;
   7106       }
   7107       break;
   7108     }
   7109     if (ID != Intrinsic::not_intrinsic) {
   7110       Function *F = CGM.getIntrinsic(ID, ResultType);
   7111       return Builder.CreateCall(F, X);
   7112     }
   7113     Function *F = CGM.getIntrinsic(Intrinsic::s390_vfidb);
   7114     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
   7115     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
   7116     return Builder.CreateCall(F, {X, M4Value, M5Value});
   7117   }
   7118 
   7119   // Vector intrisincs that output the post-instruction CC value.
   7120 
   7121 #define INTRINSIC_WITH_CC(NAME) \
   7122     case SystemZ::BI__builtin_##NAME: \
   7123       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
   7124 
   7125   INTRINSIC_WITH_CC(s390_vpkshs);
   7126   INTRINSIC_WITH_CC(s390_vpksfs);
   7127   INTRINSIC_WITH_CC(s390_vpksgs);
   7128 
   7129   INTRINSIC_WITH_CC(s390_vpklshs);
   7130   INTRINSIC_WITH_CC(s390_vpklsfs);
   7131   INTRINSIC_WITH_CC(s390_vpklsgs);
   7132 
   7133   INTRINSIC_WITH_CC(s390_vceqbs);
   7134   INTRINSIC_WITH_CC(s390_vceqhs);
   7135   INTRINSIC_WITH_CC(s390_vceqfs);
   7136   INTRINSIC_WITH_CC(s390_vceqgs);
   7137 
   7138   INTRINSIC_WITH_CC(s390_vchbs);
   7139   INTRINSIC_WITH_CC(s390_vchhs);
   7140   INTRINSIC_WITH_CC(s390_vchfs);
   7141   INTRINSIC_WITH_CC(s390_vchgs);
   7142 
   7143   INTRINSIC_WITH_CC(s390_vchlbs);
   7144   INTRINSIC_WITH_CC(s390_vchlhs);
   7145   INTRINSIC_WITH_CC(s390_vchlfs);
   7146   INTRINSIC_WITH_CC(s390_vchlgs);
   7147 
   7148   INTRINSIC_WITH_CC(s390_vfaebs);
   7149   INTRINSIC_WITH_CC(s390_vfaehs);
   7150   INTRINSIC_WITH_CC(s390_vfaefs);
   7151 
   7152   INTRINSIC_WITH_CC(s390_vfaezbs);
   7153   INTRINSIC_WITH_CC(s390_vfaezhs);
   7154   INTRINSIC_WITH_CC(s390_vfaezfs);
   7155 
   7156   INTRINSIC_WITH_CC(s390_vfeebs);
   7157   INTRINSIC_WITH_CC(s390_vfeehs);
   7158   INTRINSIC_WITH_CC(s390_vfeefs);
   7159 
   7160   INTRINSIC_WITH_CC(s390_vfeezbs);
   7161   INTRINSIC_WITH_CC(s390_vfeezhs);
   7162   INTRINSIC_WITH_CC(s390_vfeezfs);
   7163 
   7164   INTRINSIC_WITH_CC(s390_vfenebs);
   7165   INTRINSIC_WITH_CC(s390_vfenehs);
   7166   INTRINSIC_WITH_CC(s390_vfenefs);
   7167 
   7168   INTRINSIC_WITH_CC(s390_vfenezbs);
   7169   INTRINSIC_WITH_CC(s390_vfenezhs);
   7170   INTRINSIC_WITH_CC(s390_vfenezfs);
   7171 
   7172   INTRINSIC_WITH_CC(s390_vistrbs);
   7173   INTRINSIC_WITH_CC(s390_vistrhs);
   7174   INTRINSIC_WITH_CC(s390_vistrfs);
   7175 
   7176   INTRINSIC_WITH_CC(s390_vstrcbs);
   7177   INTRINSIC_WITH_CC(s390_vstrchs);
   7178   INTRINSIC_WITH_CC(s390_vstrcfs);
   7179 
   7180   INTRINSIC_WITH_CC(s390_vstrczbs);
   7181   INTRINSIC_WITH_CC(s390_vstrczhs);
   7182   INTRINSIC_WITH_CC(s390_vstrczfs);
   7183 
   7184   INTRINSIC_WITH_CC(s390_vfcedbs);
   7185   INTRINSIC_WITH_CC(s390_vfchdbs);
   7186   INTRINSIC_WITH_CC(s390_vfchedbs);
   7187 
   7188   INTRINSIC_WITH_CC(s390_vftcidb);
   7189 
   7190 #undef INTRINSIC_WITH_CC
   7191 
   7192   default:
   7193     return nullptr;
   7194   }
   7195 }
   7196 
   7197 Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
   7198                                              const CallExpr *E) {
   7199   switch (BuiltinID) {
   7200   case NVPTX::BI__nvvm_atom_add_gen_i:
   7201   case NVPTX::BI__nvvm_atom_add_gen_l:
   7202   case NVPTX::BI__nvvm_atom_add_gen_ll:
   7203     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
   7204 
   7205   case NVPTX::BI__nvvm_atom_sub_gen_i:
   7206   case NVPTX::BI__nvvm_atom_sub_gen_l:
   7207   case NVPTX::BI__nvvm_atom_sub_gen_ll:
   7208     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
   7209 
   7210   case NVPTX::BI__nvvm_atom_and_gen_i:
   7211   case NVPTX::BI__nvvm_atom_and_gen_l:
   7212   case NVPTX::BI__nvvm_atom_and_gen_ll:
   7213     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
   7214 
   7215   case NVPTX::BI__nvvm_atom_or_gen_i:
   7216   case NVPTX::BI__nvvm_atom_or_gen_l:
   7217   case NVPTX::BI__nvvm_atom_or_gen_ll:
   7218     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
   7219 
   7220   case NVPTX::BI__nvvm_atom_xor_gen_i:
   7221   case NVPTX::BI__nvvm_atom_xor_gen_l:
   7222   case NVPTX::BI__nvvm_atom_xor_gen_ll:
   7223     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
   7224 
   7225   case NVPTX::BI__nvvm_atom_xchg_gen_i:
   7226   case NVPTX::BI__nvvm_atom_xchg_gen_l:
   7227   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
   7228     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
   7229 
   7230   case NVPTX::BI__nvvm_atom_max_gen_i:
   7231   case NVPTX::BI__nvvm_atom_max_gen_l:
   7232   case NVPTX::BI__nvvm_atom_max_gen_ll:
   7233     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
   7234 
   7235   case NVPTX::BI__nvvm_atom_max_gen_ui:
   7236   case NVPTX::BI__nvvm_atom_max_gen_ul:
   7237   case NVPTX::BI__nvvm_atom_max_gen_ull:
   7238     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
   7239 
   7240   case NVPTX::BI__nvvm_atom_min_gen_i:
   7241   case NVPTX::BI__nvvm_atom_min_gen_l:
   7242   case NVPTX::BI__nvvm_atom_min_gen_ll:
   7243     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
   7244 
   7245   case NVPTX::BI__nvvm_atom_min_gen_ui:
   7246   case NVPTX::BI__nvvm_atom_min_gen_ul:
   7247   case NVPTX::BI__nvvm_atom_min_gen_ull:
   7248     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
   7249 
   7250   case NVPTX::BI__nvvm_atom_cas_gen_i:
   7251   case NVPTX::BI__nvvm_atom_cas_gen_l:
   7252   case NVPTX::BI__nvvm_atom_cas_gen_ll:
   7253     // __nvvm_atom_cas_gen_* should return the old value rather than the
   7254     // success flag.
   7255     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
   7256 
   7257   case NVPTX::BI__nvvm_atom_add_gen_f: {
   7258     Value *Ptr = EmitScalarExpr(E->getArg(0));
   7259     Value *Val = EmitScalarExpr(E->getArg(1));
   7260     // atomicrmw only deals with integer arguments so we need to use
   7261     // LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
   7262     Value *FnALAF32 =
   7263         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
   7264     return Builder.CreateCall(FnALAF32, {Ptr, Val});
   7265   }
   7266 
   7267   default:
   7268     return nullptr;
   7269   }
   7270 }
   7271 
   7272 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
   7273                                                    const CallExpr *E) {
   7274   switch (BuiltinID) {
   7275   case WebAssembly::BI__builtin_wasm_memory_size: {
   7276     llvm::Type *ResultType = ConvertType(E->getType());
   7277     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
   7278     return Builder.CreateCall(Callee);
   7279   }
   7280   case WebAssembly::BI__builtin_wasm_grow_memory: {
   7281     Value *X = EmitScalarExpr(E->getArg(0));
   7282     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_grow_memory, X->getType());
   7283     return Builder.CreateCall(Callee, X);
   7284   }
   7285 
   7286   default:
   7287     return nullptr;
   7288   }
   7289 }
   7290