Home | History | Annotate | Download | only in Instrumentation
      1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer, a race detector.
     11 //
     12 // The tool is under development, for the details about previous versions see
     13 // http://code.google.com/p/data-race-test
     14 //
     15 // The instrumentation phase is quite simple:
     16 //   - Insert calls to run-time library before every memory access.
     17 //      - Optimizations may apply to avoid instrumenting some of the accesses.
     18 //   - Insert calls at function entry/exit.
     19 // The rest is handled by the run-time library.
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "llvm/Transforms/Instrumentation.h"
     23 #include "llvm/ADT/SmallSet.h"
     24 #include "llvm/ADT/SmallString.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/ADT/StringExtras.h"
     28 #include "llvm/Analysis/CaptureTracking.h"
     29 #include "llvm/Analysis/ValueTracking.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/IRBuilder.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/IR/LLVMContext.h"
     36 #include "llvm/IR/Metadata.h"
     37 #include "llvm/IR/Module.h"
     38 #include "llvm/IR/Type.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/MathExtras.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     44 #include "llvm/Transforms/Utils/ModuleUtils.h"
     45 
     46 using namespace llvm;
     47 
     48 #define DEBUG_TYPE "tsan"
     49 
     50 static cl::opt<bool>  ClInstrumentMemoryAccesses(
     51     "tsan-instrument-memory-accesses", cl::init(true),
     52     cl::desc("Instrument memory accesses"), cl::Hidden);
     53 static cl::opt<bool>  ClInstrumentFuncEntryExit(
     54     "tsan-instrument-func-entry-exit", cl::init(true),
     55     cl::desc("Instrument function entry and exit"), cl::Hidden);
     56 static cl::opt<bool>  ClInstrumentAtomics(
     57     "tsan-instrument-atomics", cl::init(true),
     58     cl::desc("Instrument atomics"), cl::Hidden);
     59 static cl::opt<bool>  ClInstrumentMemIntrinsics(
     60     "tsan-instrument-memintrinsics", cl::init(true),
     61     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
     62 
     63 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
     64 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
     65 STATISTIC(NumOmittedReadsBeforeWrite,
     66           "Number of reads ignored due to following writes");
     67 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
     68 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
     69 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
     70 STATISTIC(NumOmittedReadsFromConstantGlobals,
     71           "Number of reads from constant globals");
     72 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
     73 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
     74 
     75 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
     76 static const char *const kTsanInitName = "__tsan_init";
     77 
     78 namespace {
     79 
     80 /// ThreadSanitizer: instrument the code in module to find races.
     81 struct ThreadSanitizer : public FunctionPass {
     82   ThreadSanitizer() : FunctionPass(ID) {}
     83   const char *getPassName() const override;
     84   bool runOnFunction(Function &F) override;
     85   bool doInitialization(Module &M) override;
     86   static char ID;  // Pass identification, replacement for typeid.
     87 
     88  private:
     89   void initializeCallbacks(Module &M);
     90   bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
     91   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
     92   bool instrumentMemIntrinsic(Instruction *I);
     93   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
     94                                       SmallVectorImpl<Instruction *> &All,
     95                                       const DataLayout &DL);
     96   bool addrPointsToConstantData(Value *Addr);
     97   int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
     98 
     99   Type *IntptrTy;
    100   IntegerType *OrdTy;
    101   // Callbacks to run-time library are computed in doInitialization.
    102   Function *TsanFuncEntry;
    103   Function *TsanFuncExit;
    104   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
    105   static const size_t kNumberOfAccessSizes = 5;
    106   Function *TsanRead[kNumberOfAccessSizes];
    107   Function *TsanWrite[kNumberOfAccessSizes];
    108   Function *TsanUnalignedRead[kNumberOfAccessSizes];
    109   Function *TsanUnalignedWrite[kNumberOfAccessSizes];
    110   Function *TsanAtomicLoad[kNumberOfAccessSizes];
    111   Function *TsanAtomicStore[kNumberOfAccessSizes];
    112   Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
    113   Function *TsanAtomicCAS[kNumberOfAccessSizes];
    114   Function *TsanAtomicThreadFence;
    115   Function *TsanAtomicSignalFence;
    116   Function *TsanVptrUpdate;
    117   Function *TsanVptrLoad;
    118   Function *MemmoveFn, *MemcpyFn, *MemsetFn;
    119   Function *TsanCtorFunction;
    120 };
    121 }  // namespace
    122 
    123 char ThreadSanitizer::ID = 0;
    124 INITIALIZE_PASS(ThreadSanitizer, "tsan",
    125     "ThreadSanitizer: detects data races.",
    126     false, false)
    127 
    128 const char *ThreadSanitizer::getPassName() const {
    129   return "ThreadSanitizer";
    130 }
    131 
    132 FunctionPass *llvm::createThreadSanitizerPass() {
    133   return new ThreadSanitizer();
    134 }
    135 
    136 void ThreadSanitizer::initializeCallbacks(Module &M) {
    137   IRBuilder<> IRB(M.getContext());
    138   // Initialize the callbacks.
    139   TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    140       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    141   TsanFuncExit = checkSanitizerInterfaceFunction(
    142       M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr));
    143   OrdTy = IRB.getInt32Ty();
    144   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
    145     const unsigned ByteSize = 1U << i;
    146     const unsigned BitSize = ByteSize * 8;
    147     std::string ByteSizeStr = utostr(ByteSize);
    148     std::string BitSizeStr = utostr(BitSize);
    149     SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
    150     TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    151         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    152 
    153     SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
    154     TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    155         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    156 
    157     SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
    158     TsanUnalignedRead[i] =
    159         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    160             UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    161 
    162     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
    163     TsanUnalignedWrite[i] =
    164         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    165             UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    166 
    167     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
    168     Type *PtrTy = Ty->getPointerTo();
    169     SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
    170     TsanAtomicLoad[i] = checkSanitizerInterfaceFunction(
    171         M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
    172 
    173     SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
    174     TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    175         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr));
    176 
    177     for (int op = AtomicRMWInst::FIRST_BINOP;
    178         op <= AtomicRMWInst::LAST_BINOP; ++op) {
    179       TsanAtomicRMW[op][i] = nullptr;
    180       const char *NamePart = nullptr;
    181       if (op == AtomicRMWInst::Xchg)
    182         NamePart = "_exchange";
    183       else if (op == AtomicRMWInst::Add)
    184         NamePart = "_fetch_add";
    185       else if (op == AtomicRMWInst::Sub)
    186         NamePart = "_fetch_sub";
    187       else if (op == AtomicRMWInst::And)
    188         NamePart = "_fetch_and";
    189       else if (op == AtomicRMWInst::Or)
    190         NamePart = "_fetch_or";
    191       else if (op == AtomicRMWInst::Xor)
    192         NamePart = "_fetch_xor";
    193       else if (op == AtomicRMWInst::Nand)
    194         NamePart = "_fetch_nand";
    195       else
    196         continue;
    197       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
    198       TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction(
    199           M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
    200     }
    201 
    202     SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
    203                                   "_compare_exchange_val");
    204     TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    205         AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
    206   }
    207   TsanVptrUpdate = checkSanitizerInterfaceFunction(
    208       M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(),
    209                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr));
    210   TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    211       "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    212   TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    213       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
    214   TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    215       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
    216 
    217   MemmoveFn = checkSanitizerInterfaceFunction(
    218       M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    219                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
    220   MemcpyFn = checkSanitizerInterfaceFunction(
    221       M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    222                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
    223   MemsetFn = checkSanitizerInterfaceFunction(
    224       M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    225                             IRB.getInt32Ty(), IntptrTy, nullptr));
    226 }
    227 
    228 bool ThreadSanitizer::doInitialization(Module &M) {
    229   const DataLayout &DL = M.getDataLayout();
    230   IntptrTy = DL.getIntPtrType(M.getContext());
    231   std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
    232       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
    233       /*InitArgs=*/{});
    234 
    235   appendToGlobalCtors(M, TsanCtorFunction, 0);
    236 
    237   return true;
    238 }
    239 
    240 static bool isVtableAccess(Instruction *I) {
    241   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
    242     return Tag->isTBAAVtableAccess();
    243   return false;
    244 }
    245 
    246 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
    247   // If this is a GEP, just analyze its pointer operand.
    248   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
    249     Addr = GEP->getPointerOperand();
    250 
    251   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
    252     if (GV->isConstant()) {
    253       // Reads from constant globals can not race with any writes.
    254       NumOmittedReadsFromConstantGlobals++;
    255       return true;
    256     }
    257   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
    258     if (isVtableAccess(L)) {
    259       // Reads from a vtable pointer can not race with any writes.
    260       NumOmittedReadsFromVtable++;
    261       return true;
    262     }
    263   }
    264   return false;
    265 }
    266 
    267 // Instrumenting some of the accesses may be proven redundant.
    268 // Currently handled:
    269 //  - read-before-write (within same BB, no calls between)
    270 //  - not captured variables
    271 //
    272 // We do not handle some of the patterns that should not survive
    273 // after the classic compiler optimizations.
    274 // E.g. two reads from the same temp should be eliminated by CSE,
    275 // two writes should be eliminated by DSE, etc.
    276 //
    277 // 'Local' is a vector of insns within the same BB (no calls between).
    278 // 'All' is a vector of insns that will be instrumented.
    279 void ThreadSanitizer::chooseInstructionsToInstrument(
    280     SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
    281     const DataLayout &DL) {
    282   SmallSet<Value*, 8> WriteTargets;
    283   // Iterate from the end.
    284   for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
    285        E = Local.rend(); It != E; ++It) {
    286     Instruction *I = *It;
    287     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
    288       WriteTargets.insert(Store->getPointerOperand());
    289     } else {
    290       LoadInst *Load = cast<LoadInst>(I);
    291       Value *Addr = Load->getPointerOperand();
    292       if (WriteTargets.count(Addr)) {
    293         // We will write to this temp, so no reason to analyze the read.
    294         NumOmittedReadsBeforeWrite++;
    295         continue;
    296       }
    297       if (addrPointsToConstantData(Addr)) {
    298         // Addr points to some constant data -- it can not race with any writes.
    299         continue;
    300       }
    301     }
    302     Value *Addr = isa<StoreInst>(*I)
    303         ? cast<StoreInst>(I)->getPointerOperand()
    304         : cast<LoadInst>(I)->getPointerOperand();
    305     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
    306         !PointerMayBeCaptured(Addr, true, true)) {
    307       // The variable is addressable but not captured, so it cannot be
    308       // referenced from a different thread and participate in a data race
    309       // (see llvm/Analysis/CaptureTracking.h for details).
    310       NumOmittedNonCaptured++;
    311       continue;
    312     }
    313     All.push_back(I);
    314   }
    315   Local.clear();
    316 }
    317 
    318 static bool isAtomic(Instruction *I) {
    319   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    320     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
    321   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    322     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
    323   if (isa<AtomicRMWInst>(I))
    324     return true;
    325   if (isa<AtomicCmpXchgInst>(I))
    326     return true;
    327   if (isa<FenceInst>(I))
    328     return true;
    329   return false;
    330 }
    331 
    332 bool ThreadSanitizer::runOnFunction(Function &F) {
    333   // This is required to prevent instrumenting call to __tsan_init from within
    334   // the module constructor.
    335   if (&F == TsanCtorFunction)
    336     return false;
    337   initializeCallbacks(*F.getParent());
    338   SmallVector<Instruction*, 8> RetVec;
    339   SmallVector<Instruction*, 8> AllLoadsAndStores;
    340   SmallVector<Instruction*, 8> LocalLoadsAndStores;
    341   SmallVector<Instruction*, 8> AtomicAccesses;
    342   SmallVector<Instruction*, 8> MemIntrinCalls;
    343   bool Res = false;
    344   bool HasCalls = false;
    345   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
    346   const DataLayout &DL = F.getParent()->getDataLayout();
    347 
    348   // Traverse all instructions, collect loads/stores/returns, check for calls.
    349   for (auto &BB : F) {
    350     for (auto &Inst : BB) {
    351       if (isAtomic(&Inst))
    352         AtomicAccesses.push_back(&Inst);
    353       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
    354         LocalLoadsAndStores.push_back(&Inst);
    355       else if (isa<ReturnInst>(Inst))
    356         RetVec.push_back(&Inst);
    357       else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
    358         if (isa<MemIntrinsic>(Inst))
    359           MemIntrinCalls.push_back(&Inst);
    360         HasCalls = true;
    361         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
    362                                        DL);
    363       }
    364     }
    365     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
    366   }
    367 
    368   // We have collected all loads and stores.
    369   // FIXME: many of these accesses do not need to be checked for races
    370   // (e.g. variables that do not escape, etc).
    371 
    372   // Instrument memory accesses only if we want to report bugs in the function.
    373   if (ClInstrumentMemoryAccesses && SanitizeFunction)
    374     for (auto Inst : AllLoadsAndStores) {
    375       Res |= instrumentLoadOrStore(Inst, DL);
    376     }
    377 
    378   // Instrument atomic memory accesses in any case (they can be used to
    379   // implement synchronization).
    380   if (ClInstrumentAtomics)
    381     for (auto Inst : AtomicAccesses) {
    382       Res |= instrumentAtomic(Inst, DL);
    383     }
    384 
    385   if (ClInstrumentMemIntrinsics && SanitizeFunction)
    386     for (auto Inst : MemIntrinCalls) {
    387       Res |= instrumentMemIntrinsic(Inst);
    388     }
    389 
    390   // Instrument function entry/exit points if there were instrumented accesses.
    391   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
    392     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
    393     Value *ReturnAddress = IRB.CreateCall(
    394         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
    395         IRB.getInt32(0));
    396     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
    397     for (auto RetInst : RetVec) {
    398       IRBuilder<> IRBRet(RetInst);
    399       IRBRet.CreateCall(TsanFuncExit, {});
    400     }
    401     Res = true;
    402   }
    403   return Res;
    404 }
    405 
    406 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
    407                                             const DataLayout &DL) {
    408   IRBuilder<> IRB(I);
    409   bool IsWrite = isa<StoreInst>(*I);
    410   Value *Addr = IsWrite
    411       ? cast<StoreInst>(I)->getPointerOperand()
    412       : cast<LoadInst>(I)->getPointerOperand();
    413   int Idx = getMemoryAccessFuncIndex(Addr, DL);
    414   if (Idx < 0)
    415     return false;
    416   if (IsWrite && isVtableAccess(I)) {
    417     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
    418     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
    419     // StoredValue may be a vector type if we are storing several vptrs at once.
    420     // In this case, just take the first element of the vector since this is
    421     // enough to find vptr races.
    422     if (isa<VectorType>(StoredValue->getType()))
    423       StoredValue = IRB.CreateExtractElement(
    424           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
    425     if (StoredValue->getType()->isIntegerTy())
    426       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
    427     // Call TsanVptrUpdate.
    428     IRB.CreateCall(TsanVptrUpdate,
    429                    {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
    430                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
    431     NumInstrumentedVtableWrites++;
    432     return true;
    433   }
    434   if (!IsWrite && isVtableAccess(I)) {
    435     IRB.CreateCall(TsanVptrLoad,
    436                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
    437     NumInstrumentedVtableReads++;
    438     return true;
    439   }
    440   const unsigned Alignment = IsWrite
    441       ? cast<StoreInst>(I)->getAlignment()
    442       : cast<LoadInst>(I)->getAlignment();
    443   Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
    444   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
    445   Value *OnAccessFunc = nullptr;
    446   if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
    447     OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
    448   else
    449     OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
    450   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
    451   if (IsWrite) NumInstrumentedWrites++;
    452   else         NumInstrumentedReads++;
    453   return true;
    454 }
    455 
    456 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
    457   uint32_t v = 0;
    458   switch (ord) {
    459     case NotAtomic: llvm_unreachable("unexpected atomic ordering!");
    460     case Unordered:              // Fall-through.
    461     case Monotonic:              v = 0; break;
    462     // case Consume:                v = 1; break;  // Not specified yet.
    463     case Acquire:                v = 2; break;
    464     case Release:                v = 3; break;
    465     case AcquireRelease:         v = 4; break;
    466     case SequentiallyConsistent: v = 5; break;
    467   }
    468   return IRB->getInt32(v);
    469 }
    470 
    471 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
    472 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
    473 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
    474 // instead we simply replace them with regular function calls, which are then
    475 // intercepted by the run-time.
    476 // Since tsan is running after everyone else, the calls should not be
    477 // replaced back with intrinsics. If that becomes wrong at some point,
    478 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
    479 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
    480   IRBuilder<> IRB(I);
    481   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
    482     IRB.CreateCall(
    483         MemsetFn,
    484         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
    485          IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
    486          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
    487     I->eraseFromParent();
    488   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
    489     IRB.CreateCall(
    490         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
    491         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
    492          IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
    493          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
    494     I->eraseFromParent();
    495   }
    496   return false;
    497 }
    498 
    499 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
    500 // standards.  For background see C++11 standard.  A slightly older, publicly
    501 // available draft of the standard (not entirely up-to-date, but close enough
    502 // for casual browsing) is available here:
    503 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
    504 // The following page contains more background information:
    505 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
    506 
    507 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
    508   IRBuilder<> IRB(I);
    509   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    510     Value *Addr = LI->getPointerOperand();
    511     int Idx = getMemoryAccessFuncIndex(Addr, DL);
    512     if (Idx < 0)
    513       return false;
    514     const unsigned ByteSize = 1U << Idx;
    515     const unsigned BitSize = ByteSize * 8;
    516     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
    517     Type *PtrTy = Ty->getPointerTo();
    518     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
    519                      createOrdering(&IRB, LI->getOrdering())};
    520     CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
    521     ReplaceInstWithInst(I, C);
    522 
    523   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    524     Value *Addr = SI->getPointerOperand();
    525     int Idx = getMemoryAccessFuncIndex(Addr, DL);
    526     if (Idx < 0)
    527       return false;
    528     const unsigned ByteSize = 1U << Idx;
    529     const unsigned BitSize = ByteSize * 8;
    530     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
    531     Type *PtrTy = Ty->getPointerTo();
    532     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
    533                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
    534                      createOrdering(&IRB, SI->getOrdering())};
    535     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
    536     ReplaceInstWithInst(I, C);
    537   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
    538     Value *Addr = RMWI->getPointerOperand();
    539     int Idx = getMemoryAccessFuncIndex(Addr, DL);
    540     if (Idx < 0)
    541       return false;
    542     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
    543     if (!F)
    544       return false;
    545     const unsigned ByteSize = 1U << Idx;
    546     const unsigned BitSize = ByteSize * 8;
    547     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
    548     Type *PtrTy = Ty->getPointerTo();
    549     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
    550                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
    551                      createOrdering(&IRB, RMWI->getOrdering())};
    552     CallInst *C = CallInst::Create(F, Args);
    553     ReplaceInstWithInst(I, C);
    554   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
    555     Value *Addr = CASI->getPointerOperand();
    556     int Idx = getMemoryAccessFuncIndex(Addr, DL);
    557     if (Idx < 0)
    558       return false;
    559     const unsigned ByteSize = 1U << Idx;
    560     const unsigned BitSize = ByteSize * 8;
    561     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
    562     Type *PtrTy = Ty->getPointerTo();
    563     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
    564                      IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
    565                      IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
    566                      createOrdering(&IRB, CASI->getSuccessOrdering()),
    567                      createOrdering(&IRB, CASI->getFailureOrdering())};
    568     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
    569     Value *Success = IRB.CreateICmpEQ(C, CASI->getCompareOperand());
    570 
    571     Value *Res = IRB.CreateInsertValue(UndefValue::get(CASI->getType()), C, 0);
    572     Res = IRB.CreateInsertValue(Res, Success, 1);
    573 
    574     I->replaceAllUsesWith(Res);
    575     I->eraseFromParent();
    576   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
    577     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
    578     Function *F = FI->getSynchScope() == SingleThread ?
    579         TsanAtomicSignalFence : TsanAtomicThreadFence;
    580     CallInst *C = CallInst::Create(F, Args);
    581     ReplaceInstWithInst(I, C);
    582   }
    583   return true;
    584 }
    585 
    586 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
    587                                               const DataLayout &DL) {
    588   Type *OrigPtrTy = Addr->getType();
    589   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
    590   assert(OrigTy->isSized());
    591   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
    592   if (TypeSize != 8  && TypeSize != 16 &&
    593       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
    594     NumAccessesWithBadSize++;
    595     // Ignore all unusual sizes.
    596     return -1;
    597   }
    598   size_t Idx = countTrailingZeros(TypeSize / 8);
    599   assert(Idx < kNumberOfAccessSizes);
    600   return Idx;
    601 }
    602