1 // output.h -- manage the output file for gold -*- C++ -*- 2 3 // Copyright (C) 2006-2014 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant (at) google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #ifndef GOLD_OUTPUT_H 24 #define GOLD_OUTPUT_H 25 26 #include <list> 27 #include <vector> 28 29 #include "elfcpp.h" 30 #include "mapfile.h" 31 #include "layout.h" 32 #include "reloc-types.h" 33 34 namespace gold 35 { 36 37 class General_options; 38 class Object; 39 class Symbol; 40 class Output_file; 41 class Output_merge_base; 42 class Output_section; 43 class Relocatable_relocs; 44 class Target; 45 template<int size, bool big_endian> 46 class Sized_target; 47 template<int size, bool big_endian> 48 class Sized_relobj; 49 template<int size, bool big_endian> 50 class Sized_relobj_file; 51 52 // An abtract class for data which has to go into the output file. 53 54 class Output_data 55 { 56 public: 57 explicit Output_data() 58 : address_(0), data_size_(0), offset_(-1), 59 is_address_valid_(false), is_data_size_valid_(false), 60 is_offset_valid_(false), is_data_size_fixed_(false), 61 has_dynamic_reloc_(false) 62 { } 63 64 virtual 65 ~Output_data(); 66 67 // Return the address. For allocated sections, this is only valid 68 // after Layout::finalize is finished. 69 uint64_t 70 address() const 71 { 72 gold_assert(this->is_address_valid_); 73 return this->address_; 74 } 75 76 // Return the size of the data. For allocated sections, this must 77 // be valid after Layout::finalize calls set_address, but need not 78 // be valid before then. 79 off_t 80 data_size() const 81 { 82 gold_assert(this->is_data_size_valid_); 83 return this->data_size_; 84 } 85 86 // Get the current data size. 87 off_t 88 current_data_size() const 89 { return this->current_data_size_for_child(); } 90 91 // Return true if data size is fixed. 92 bool 93 is_data_size_fixed() const 94 { return this->is_data_size_fixed_; } 95 96 // Return the file offset. This is only valid after 97 // Layout::finalize is finished. For some non-allocated sections, 98 // it may not be valid until near the end of the link. 99 off_t 100 offset() const 101 { 102 gold_assert(this->is_offset_valid_); 103 return this->offset_; 104 } 105 106 // Reset the address, file offset and data size. This essentially 107 // disables the sanity testing about duplicate and unknown settings. 108 void 109 reset_address_and_file_offset() 110 { 111 this->is_address_valid_ = false; 112 this->is_offset_valid_ = false; 113 if (!this->is_data_size_fixed_) 114 this->is_data_size_valid_ = false; 115 this->do_reset_address_and_file_offset(); 116 } 117 118 // As above, but just for data size. 119 void 120 reset_data_size() 121 { 122 if (!this->is_data_size_fixed_) 123 this->is_data_size_valid_ = false; 124 } 125 126 // Return true if address and file offset already have reset values. In 127 // other words, calling reset_address_and_file_offset will not change them. 128 bool 129 address_and_file_offset_have_reset_values() const 130 { return this->do_address_and_file_offset_have_reset_values(); } 131 132 // Return the required alignment. 133 uint64_t 134 addralign() const 135 { return this->do_addralign(); } 136 137 // Return whether this has a load address. 138 bool 139 has_load_address() const 140 { return this->do_has_load_address(); } 141 142 // Return the load address. 143 uint64_t 144 load_address() const 145 { return this->do_load_address(); } 146 147 // Return whether this is an Output_section. 148 bool 149 is_section() const 150 { return this->do_is_section(); } 151 152 // Return whether this is an Output_section of the specified type. 153 bool 154 is_section_type(elfcpp::Elf_Word stt) const 155 { return this->do_is_section_type(stt); } 156 157 // Return whether this is an Output_section with the specified flag 158 // set. 159 bool 160 is_section_flag_set(elfcpp::Elf_Xword shf) const 161 { return this->do_is_section_flag_set(shf); } 162 163 // Return the output section that this goes in, if there is one. 164 Output_section* 165 output_section() 166 { return this->do_output_section(); } 167 168 const Output_section* 169 output_section() const 170 { return this->do_output_section(); } 171 172 // Return the output section index, if there is an output section. 173 unsigned int 174 out_shndx() const 175 { return this->do_out_shndx(); } 176 177 // Set the output section index, if this is an output section. 178 void 179 set_out_shndx(unsigned int shndx) 180 { this->do_set_out_shndx(shndx); } 181 182 // Set the address and file offset of this data, and finalize the 183 // size of the data. This is called during Layout::finalize for 184 // allocated sections. 185 void 186 set_address_and_file_offset(uint64_t addr, off_t off) 187 { 188 this->set_address(addr); 189 this->set_file_offset(off); 190 this->finalize_data_size(); 191 } 192 193 // Set the address. 194 void 195 set_address(uint64_t addr) 196 { 197 gold_assert(!this->is_address_valid_); 198 this->address_ = addr; 199 this->is_address_valid_ = true; 200 } 201 202 // Set the file offset. 203 void 204 set_file_offset(off_t off) 205 { 206 gold_assert(!this->is_offset_valid_); 207 this->offset_ = off; 208 this->is_offset_valid_ = true; 209 } 210 211 // Update the data size without finalizing it. 212 void 213 pre_finalize_data_size() 214 { 215 if (!this->is_data_size_valid_) 216 { 217 // Tell the child class to update the data size. 218 this->update_data_size(); 219 } 220 } 221 222 // Finalize the data size. 223 void 224 finalize_data_size() 225 { 226 if (!this->is_data_size_valid_) 227 { 228 // Tell the child class to set the data size. 229 this->set_final_data_size(); 230 gold_assert(this->is_data_size_valid_); 231 } 232 } 233 234 // Set the TLS offset. Called only for SHT_TLS sections. 235 void 236 set_tls_offset(uint64_t tls_base) 237 { this->do_set_tls_offset(tls_base); } 238 239 // Return the TLS offset, relative to the base of the TLS segment. 240 // Valid only for SHT_TLS sections. 241 uint64_t 242 tls_offset() const 243 { return this->do_tls_offset(); } 244 245 // Write the data to the output file. This is called after 246 // Layout::finalize is complete. 247 void 248 write(Output_file* file) 249 { this->do_write(file); } 250 251 // This is called by Layout::finalize to note that the sizes of 252 // allocated sections must now be fixed. 253 static void 254 layout_complete() 255 { Output_data::allocated_sizes_are_fixed = true; } 256 257 // Used to check that layout has been done. 258 static bool 259 is_layout_complete() 260 { return Output_data::allocated_sizes_are_fixed; } 261 262 // Note that a dynamic reloc has been applied to this data. 263 void 264 add_dynamic_reloc() 265 { this->has_dynamic_reloc_ = true; } 266 267 // Return whether a dynamic reloc has been applied. 268 bool 269 has_dynamic_reloc() const 270 { return this->has_dynamic_reloc_; } 271 272 // Whether the address is valid. 273 bool 274 is_address_valid() const 275 { return this->is_address_valid_; } 276 277 // Whether the file offset is valid. 278 bool 279 is_offset_valid() const 280 { return this->is_offset_valid_; } 281 282 // Whether the data size is valid. 283 bool 284 is_data_size_valid() const 285 { return this->is_data_size_valid_; } 286 287 // Print information to the map file. 288 void 289 print_to_mapfile(Mapfile* mapfile) const 290 { return this->do_print_to_mapfile(mapfile); } 291 292 protected: 293 // Functions that child classes may or in some cases must implement. 294 295 // Write the data to the output file. 296 virtual void 297 do_write(Output_file*) = 0; 298 299 // Return the required alignment. 300 virtual uint64_t 301 do_addralign() const = 0; 302 303 // Return whether this has a load address. 304 virtual bool 305 do_has_load_address() const 306 { return false; } 307 308 // Return the load address. 309 virtual uint64_t 310 do_load_address() const 311 { gold_unreachable(); } 312 313 // Return whether this is an Output_section. 314 virtual bool 315 do_is_section() const 316 { return false; } 317 318 // Return whether this is an Output_section of the specified type. 319 // This only needs to be implement by Output_section. 320 virtual bool 321 do_is_section_type(elfcpp::Elf_Word) const 322 { return false; } 323 324 // Return whether this is an Output_section with the specific flag 325 // set. This only needs to be implemented by Output_section. 326 virtual bool 327 do_is_section_flag_set(elfcpp::Elf_Xword) const 328 { return false; } 329 330 // Return the output section, if there is one. 331 virtual Output_section* 332 do_output_section() 333 { return NULL; } 334 335 virtual const Output_section* 336 do_output_section() const 337 { return NULL; } 338 339 // Return the output section index, if there is an output section. 340 virtual unsigned int 341 do_out_shndx() const 342 { gold_unreachable(); } 343 344 // Set the output section index, if this is an output section. 345 virtual void 346 do_set_out_shndx(unsigned int) 347 { gold_unreachable(); } 348 349 // This is a hook for derived classes to set the preliminary data size. 350 // This is called by pre_finalize_data_size, normally called during 351 // Layout::finalize, before the section address is set, and is used 352 // during an incremental update, when we need to know the size of a 353 // section before allocating space in the output file. For classes 354 // where the current data size is up to date, this default version of 355 // the method can be inherited. 356 virtual void 357 update_data_size() 358 { } 359 360 // This is a hook for derived classes to set the data size. This is 361 // called by finalize_data_size, normally called during 362 // Layout::finalize, when the section address is set. 363 virtual void 364 set_final_data_size() 365 { gold_unreachable(); } 366 367 // A hook for resetting the address and file offset. 368 virtual void 369 do_reset_address_and_file_offset() 370 { } 371 372 // Return true if address and file offset already have reset values. In 373 // other words, calling reset_address_and_file_offset will not change them. 374 // A child class overriding do_reset_address_and_file_offset may need to 375 // also override this. 376 virtual bool 377 do_address_and_file_offset_have_reset_values() const 378 { return !this->is_address_valid_ && !this->is_offset_valid_; } 379 380 // Set the TLS offset. Called only for SHT_TLS sections. 381 virtual void 382 do_set_tls_offset(uint64_t) 383 { gold_unreachable(); } 384 385 // Return the TLS offset, relative to the base of the TLS segment. 386 // Valid only for SHT_TLS sections. 387 virtual uint64_t 388 do_tls_offset() const 389 { gold_unreachable(); } 390 391 // Print to the map file. This only needs to be implemented by 392 // classes which may appear in a PT_LOAD segment. 393 virtual void 394 do_print_to_mapfile(Mapfile*) const 395 { gold_unreachable(); } 396 397 // Functions that child classes may call. 398 399 // Reset the address. The Output_section class needs this when an 400 // SHF_ALLOC input section is added to an output section which was 401 // formerly not SHF_ALLOC. 402 void 403 mark_address_invalid() 404 { this->is_address_valid_ = false; } 405 406 // Set the size of the data. 407 void 408 set_data_size(off_t data_size) 409 { 410 gold_assert(!this->is_data_size_valid_ 411 && !this->is_data_size_fixed_); 412 this->data_size_ = data_size; 413 this->is_data_size_valid_ = true; 414 } 415 416 // Fix the data size. Once it is fixed, it cannot be changed 417 // and the data size remains always valid. 418 void 419 fix_data_size() 420 { 421 gold_assert(this->is_data_size_valid_); 422 this->is_data_size_fixed_ = true; 423 } 424 425 // Get the current data size--this is for the convenience of 426 // sections which build up their size over time. 427 off_t 428 current_data_size_for_child() const 429 { return this->data_size_; } 430 431 // Set the current data size--this is for the convenience of 432 // sections which build up their size over time. 433 void 434 set_current_data_size_for_child(off_t data_size) 435 { 436 gold_assert(!this->is_data_size_valid_); 437 this->data_size_ = data_size; 438 } 439 440 // Return default alignment for the target size. 441 static uint64_t 442 default_alignment(); 443 444 // Return default alignment for a specified size--32 or 64. 445 static uint64_t 446 default_alignment_for_size(int size); 447 448 private: 449 Output_data(const Output_data&); 450 Output_data& operator=(const Output_data&); 451 452 // This is used for verification, to make sure that we don't try to 453 // change any sizes of allocated sections after we set the section 454 // addresses. 455 static bool allocated_sizes_are_fixed; 456 457 // Memory address in output file. 458 uint64_t address_; 459 // Size of data in output file. 460 off_t data_size_; 461 // File offset of contents in output file. 462 off_t offset_; 463 // Whether address_ is valid. 464 bool is_address_valid_ : 1; 465 // Whether data_size_ is valid. 466 bool is_data_size_valid_ : 1; 467 // Whether offset_ is valid. 468 bool is_offset_valid_ : 1; 469 // Whether data size is fixed. 470 bool is_data_size_fixed_ : 1; 471 // Whether any dynamic relocs have been applied to this section. 472 bool has_dynamic_reloc_ : 1; 473 }; 474 475 // Output the section headers. 476 477 class Output_section_headers : public Output_data 478 { 479 public: 480 Output_section_headers(const Layout*, 481 const Layout::Segment_list*, 482 const Layout::Section_list*, 483 const Layout::Section_list*, 484 const Stringpool*, 485 const Output_section*); 486 487 protected: 488 // Write the data to the file. 489 void 490 do_write(Output_file*); 491 492 // Return the required alignment. 493 uint64_t 494 do_addralign() const 495 { return Output_data::default_alignment(); } 496 497 // Write to a map file. 498 void 499 do_print_to_mapfile(Mapfile* mapfile) const 500 { mapfile->print_output_data(this, _("** section headers")); } 501 502 // Update the data size. 503 void 504 update_data_size() 505 { this->set_data_size(this->do_size()); } 506 507 // Set final data size. 508 void 509 set_final_data_size() 510 { this->set_data_size(this->do_size()); } 511 512 private: 513 // Write the data to the file with the right size and endianness. 514 template<int size, bool big_endian> 515 void 516 do_sized_write(Output_file*); 517 518 // Compute data size. 519 off_t 520 do_size() const; 521 522 const Layout* layout_; 523 const Layout::Segment_list* segment_list_; 524 const Layout::Section_list* section_list_; 525 const Layout::Section_list* unattached_section_list_; 526 const Stringpool* secnamepool_; 527 const Output_section* shstrtab_section_; 528 }; 529 530 // Output the segment headers. 531 532 class Output_segment_headers : public Output_data 533 { 534 public: 535 Output_segment_headers(const Layout::Segment_list& segment_list); 536 537 protected: 538 // Write the data to the file. 539 void 540 do_write(Output_file*); 541 542 // Return the required alignment. 543 uint64_t 544 do_addralign() const 545 { return Output_data::default_alignment(); } 546 547 // Write to a map file. 548 void 549 do_print_to_mapfile(Mapfile* mapfile) const 550 { mapfile->print_output_data(this, _("** segment headers")); } 551 552 // Set final data size. 553 void 554 set_final_data_size() 555 { this->set_data_size(this->do_size()); } 556 557 private: 558 // Write the data to the file with the right size and endianness. 559 template<int size, bool big_endian> 560 void 561 do_sized_write(Output_file*); 562 563 // Compute the current size. 564 off_t 565 do_size() const; 566 567 const Layout::Segment_list& segment_list_; 568 }; 569 570 // Output the ELF file header. 571 572 class Output_file_header : public Output_data 573 { 574 public: 575 Output_file_header(Target*, 576 const Symbol_table*, 577 const Output_segment_headers*); 578 579 // Add information about the section headers. We lay out the ELF 580 // file header before we create the section headers. 581 void set_section_info(const Output_section_headers*, 582 const Output_section* shstrtab); 583 584 protected: 585 // Write the data to the file. 586 void 587 do_write(Output_file*); 588 589 // Return the required alignment. 590 uint64_t 591 do_addralign() const 592 { return Output_data::default_alignment(); } 593 594 // Write to a map file. 595 void 596 do_print_to_mapfile(Mapfile* mapfile) const 597 { mapfile->print_output_data(this, _("** file header")); } 598 599 // Set final data size. 600 void 601 set_final_data_size(void) 602 { this->set_data_size(this->do_size()); } 603 604 private: 605 // Write the data to the file with the right size and endianness. 606 template<int size, bool big_endian> 607 void 608 do_sized_write(Output_file*); 609 610 // Return the value to use for the entry address. 611 template<int size> 612 typename elfcpp::Elf_types<size>::Elf_Addr 613 entry(); 614 615 // Compute the current data size. 616 off_t 617 do_size() const; 618 619 Target* target_; 620 const Symbol_table* symtab_; 621 const Output_segment_headers* segment_header_; 622 const Output_section_headers* section_header_; 623 const Output_section* shstrtab_; 624 }; 625 626 // Output sections are mainly comprised of input sections. However, 627 // there are cases where we have data to write out which is not in an 628 // input section. Output_section_data is used in such cases. This is 629 // an abstract base class. 630 631 class Output_section_data : public Output_data 632 { 633 public: 634 Output_section_data(off_t data_size, uint64_t addralign, 635 bool is_data_size_fixed) 636 : Output_data(), output_section_(NULL), addralign_(addralign) 637 { 638 this->set_data_size(data_size); 639 if (is_data_size_fixed) 640 this->fix_data_size(); 641 } 642 643 Output_section_data(uint64_t addralign) 644 : Output_data(), output_section_(NULL), addralign_(addralign) 645 { } 646 647 // Return the output section. 648 Output_section* 649 output_section() 650 { return this->output_section_; } 651 652 const Output_section* 653 output_section() const 654 { return this->output_section_; } 655 656 // Record the output section. 657 void 658 set_output_section(Output_section* os); 659 660 // Add an input section, for SHF_MERGE sections. This returns true 661 // if the section was handled. 662 bool 663 add_input_section(Relobj* object, unsigned int shndx) 664 { return this->do_add_input_section(object, shndx); } 665 666 // Given an input OBJECT, an input section index SHNDX within that 667 // object, and an OFFSET relative to the start of that input 668 // section, return whether or not the corresponding offset within 669 // the output section is known. If this function returns true, it 670 // sets *POUTPUT to the output offset. The value -1 indicates that 671 // this input offset is being discarded. 672 bool 673 output_offset(const Relobj* object, unsigned int shndx, 674 section_offset_type offset, 675 section_offset_type* poutput) const 676 { return this->do_output_offset(object, shndx, offset, poutput); } 677 678 // Return whether this is the merge section for the input section 679 // SHNDX in OBJECT. This should return true when output_offset 680 // would return true for some values of OFFSET. 681 bool 682 is_merge_section_for(const Relobj* object, unsigned int shndx) const 683 { return this->do_is_merge_section_for(object, shndx); } 684 685 // Write the contents to a buffer. This is used for sections which 686 // require postprocessing, such as compression. 687 void 688 write_to_buffer(unsigned char* buffer) 689 { this->do_write_to_buffer(buffer); } 690 691 // Print merge stats to stderr. This should only be called for 692 // SHF_MERGE sections. 693 void 694 print_merge_stats(const char* section_name) 695 { this->do_print_merge_stats(section_name); } 696 697 protected: 698 // The child class must implement do_write. 699 700 // The child class may implement specific adjustments to the output 701 // section. 702 virtual void 703 do_adjust_output_section(Output_section*) 704 { } 705 706 // May be implemented by child class. Return true if the section 707 // was handled. 708 virtual bool 709 do_add_input_section(Relobj*, unsigned int) 710 { gold_unreachable(); } 711 712 // The child class may implement output_offset. 713 virtual bool 714 do_output_offset(const Relobj*, unsigned int, section_offset_type, 715 section_offset_type*) const 716 { return false; } 717 718 // The child class may implement is_merge_section_for. 719 virtual bool 720 do_is_merge_section_for(const Relobj*, unsigned int) const 721 { return false; } 722 723 // The child class may implement write_to_buffer. Most child 724 // classes can not appear in a compressed section, and they do not 725 // implement this. 726 virtual void 727 do_write_to_buffer(unsigned char*) 728 { gold_unreachable(); } 729 730 // Print merge statistics. 731 virtual void 732 do_print_merge_stats(const char*) 733 { gold_unreachable(); } 734 735 // Return the required alignment. 736 uint64_t 737 do_addralign() const 738 { return this->addralign_; } 739 740 // Return the output section. 741 Output_section* 742 do_output_section() 743 { return this->output_section_; } 744 745 const Output_section* 746 do_output_section() const 747 { return this->output_section_; } 748 749 // Return the section index of the output section. 750 unsigned int 751 do_out_shndx() const; 752 753 // Set the alignment. 754 void 755 set_addralign(uint64_t addralign); 756 757 private: 758 // The output section for this section. 759 Output_section* output_section_; 760 // The required alignment. 761 uint64_t addralign_; 762 }; 763 764 // Some Output_section_data classes build up their data step by step, 765 // rather than all at once. This class provides an interface for 766 // them. 767 768 class Output_section_data_build : public Output_section_data 769 { 770 public: 771 Output_section_data_build(uint64_t addralign) 772 : Output_section_data(addralign) 773 { } 774 775 Output_section_data_build(off_t data_size, uint64_t addralign) 776 : Output_section_data(data_size, addralign, false) 777 { } 778 779 // Set the current data size. 780 void 781 set_current_data_size(off_t data_size) 782 { this->set_current_data_size_for_child(data_size); } 783 784 protected: 785 // Set the final data size. 786 virtual void 787 set_final_data_size() 788 { this->set_data_size(this->current_data_size_for_child()); } 789 }; 790 791 // A simple case of Output_data in which we have constant data to 792 // output. 793 794 class Output_data_const : public Output_section_data 795 { 796 public: 797 Output_data_const(const std::string& data, uint64_t addralign) 798 : Output_section_data(data.size(), addralign, true), data_(data) 799 { } 800 801 Output_data_const(const char* p, off_t len, uint64_t addralign) 802 : Output_section_data(len, addralign, true), data_(p, len) 803 { } 804 805 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign) 806 : Output_section_data(len, addralign, true), 807 data_(reinterpret_cast<const char*>(p), len) 808 { } 809 810 protected: 811 // Write the data to the output file. 812 void 813 do_write(Output_file*); 814 815 // Write the data to a buffer. 816 void 817 do_write_to_buffer(unsigned char* buffer) 818 { memcpy(buffer, this->data_.data(), this->data_.size()); } 819 820 // Write to a map file. 821 void 822 do_print_to_mapfile(Mapfile* mapfile) const 823 { mapfile->print_output_data(this, _("** fill")); } 824 825 private: 826 std::string data_; 827 }; 828 829 // Another version of Output_data with constant data, in which the 830 // buffer is allocated by the caller. 831 832 class Output_data_const_buffer : public Output_section_data 833 { 834 public: 835 Output_data_const_buffer(const unsigned char* p, off_t len, 836 uint64_t addralign, const char* map_name) 837 : Output_section_data(len, addralign, true), 838 p_(p), map_name_(map_name) 839 { } 840 841 protected: 842 // Write the data the output file. 843 void 844 do_write(Output_file*); 845 846 // Write the data to a buffer. 847 void 848 do_write_to_buffer(unsigned char* buffer) 849 { memcpy(buffer, this->p_, this->data_size()); } 850 851 // Write to a map file. 852 void 853 do_print_to_mapfile(Mapfile* mapfile) const 854 { mapfile->print_output_data(this, _(this->map_name_)); } 855 856 private: 857 // The data to output. 858 const unsigned char* p_; 859 // Name to use in a map file. Maps are a rarely used feature, but 860 // the space usage is minor as aren't very many of these objects. 861 const char* map_name_; 862 }; 863 864 // A place holder for a fixed amount of data written out via some 865 // other mechanism. 866 867 class Output_data_fixed_space : public Output_section_data 868 { 869 public: 870 Output_data_fixed_space(off_t data_size, uint64_t addralign, 871 const char* map_name) 872 : Output_section_data(data_size, addralign, true), 873 map_name_(map_name) 874 { } 875 876 protected: 877 // Write out the data--the actual data must be written out 878 // elsewhere. 879 void 880 do_write(Output_file*) 881 { } 882 883 // Write to a map file. 884 void 885 do_print_to_mapfile(Mapfile* mapfile) const 886 { mapfile->print_output_data(this, _(this->map_name_)); } 887 888 private: 889 // Name to use in a map file. Maps are a rarely used feature, but 890 // the space usage is minor as aren't very many of these objects. 891 const char* map_name_; 892 }; 893 894 // A place holder for variable sized data written out via some other 895 // mechanism. 896 897 class Output_data_space : public Output_section_data_build 898 { 899 public: 900 explicit Output_data_space(uint64_t addralign, const char* map_name) 901 : Output_section_data_build(addralign), 902 map_name_(map_name) 903 { } 904 905 explicit Output_data_space(off_t data_size, uint64_t addralign, 906 const char* map_name) 907 : Output_section_data_build(data_size, addralign), 908 map_name_(map_name) 909 { } 910 911 // Set the alignment. 912 void 913 set_space_alignment(uint64_t align) 914 { this->set_addralign(align); } 915 916 protected: 917 // Write out the data--the actual data must be written out 918 // elsewhere. 919 void 920 do_write(Output_file*) 921 { } 922 923 // Write to a map file. 924 void 925 do_print_to_mapfile(Mapfile* mapfile) const 926 { mapfile->print_output_data(this, _(this->map_name_)); } 927 928 private: 929 // Name to use in a map file. Maps are a rarely used feature, but 930 // the space usage is minor as aren't very many of these objects. 931 const char* map_name_; 932 }; 933 934 // Fill fixed space with zeroes. This is just like 935 // Output_data_fixed_space, except that the map name is known. 936 937 class Output_data_zero_fill : public Output_section_data 938 { 939 public: 940 Output_data_zero_fill(off_t data_size, uint64_t addralign) 941 : Output_section_data(data_size, addralign, true) 942 { } 943 944 protected: 945 // There is no data to write out. 946 void 947 do_write(Output_file*) 948 { } 949 950 // Write to a map file. 951 void 952 do_print_to_mapfile(Mapfile* mapfile) const 953 { mapfile->print_output_data(this, "** zero fill"); } 954 }; 955 956 // A string table which goes into an output section. 957 958 class Output_data_strtab : public Output_section_data 959 { 960 public: 961 Output_data_strtab(Stringpool* strtab) 962 : Output_section_data(1), strtab_(strtab) 963 { } 964 965 protected: 966 // This is called to update the section size prior to assigning 967 // the address and file offset. 968 void 969 update_data_size() 970 { this->set_final_data_size(); } 971 972 // This is called to set the address and file offset. Here we make 973 // sure that the Stringpool is finalized. 974 void 975 set_final_data_size(); 976 977 // Write out the data. 978 void 979 do_write(Output_file*); 980 981 // Write the data to a buffer. 982 void 983 do_write_to_buffer(unsigned char* buffer) 984 { this->strtab_->write_to_buffer(buffer, this->data_size()); } 985 986 // Write to a map file. 987 void 988 do_print_to_mapfile(Mapfile* mapfile) const 989 { mapfile->print_output_data(this, _("** string table")); } 990 991 private: 992 Stringpool* strtab_; 993 }; 994 995 // This POD class is used to represent a single reloc in the output 996 // file. This could be a private class within Output_data_reloc, but 997 // the templatization is complex enough that I broke it out into a 998 // separate class. The class is templatized on either elfcpp::SHT_REL 999 // or elfcpp::SHT_RELA, and also on whether this is a dynamic 1000 // relocation or an ordinary relocation. 1001 1002 // A relocation can be against a global symbol, a local symbol, a 1003 // local section symbol, an output section, or the undefined symbol at 1004 // index 0. We represent the latter by using a NULL global symbol. 1005 1006 template<int sh_type, bool dynamic, int size, bool big_endian> 1007 class Output_reloc; 1008 1009 template<bool dynamic, int size, bool big_endian> 1010 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> 1011 { 1012 public: 1013 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 1014 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend; 1015 1016 static const Address invalid_address = static_cast<Address>(0) - 1; 1017 1018 // An uninitialized entry. We need this because we want to put 1019 // instances of this class into an STL container. 1020 Output_reloc() 1021 : local_sym_index_(INVALID_CODE) 1022 { } 1023 1024 // We have a bunch of different constructors. They come in pairs 1025 // depending on how the address of the relocation is specified. It 1026 // can either be an offset in an Output_data or an offset in an 1027 // input section. 1028 1029 // A reloc against a global symbol. 1030 1031 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od, 1032 Address address, bool is_relative, bool is_symbolless, 1033 bool use_plt_offset); 1034 1035 Output_reloc(Symbol* gsym, unsigned int type, 1036 Sized_relobj<size, big_endian>* relobj, 1037 unsigned int shndx, Address address, bool is_relative, 1038 bool is_symbolless, bool use_plt_offset); 1039 1040 // A reloc against a local symbol or local section symbol. 1041 1042 Output_reloc(Sized_relobj<size, big_endian>* relobj, 1043 unsigned int local_sym_index, unsigned int type, 1044 Output_data* od, Address address, bool is_relative, 1045 bool is_symbolless, bool is_section_symbol, 1046 bool use_plt_offset); 1047 1048 Output_reloc(Sized_relobj<size, big_endian>* relobj, 1049 unsigned int local_sym_index, unsigned int type, 1050 unsigned int shndx, Address address, bool is_relative, 1051 bool is_symbolless, bool is_section_symbol, 1052 bool use_plt_offset); 1053 1054 // A reloc against the STT_SECTION symbol of an output section. 1055 1056 Output_reloc(Output_section* os, unsigned int type, Output_data* od, 1057 Address address, bool is_relative); 1058 1059 Output_reloc(Output_section* os, unsigned int type, 1060 Sized_relobj<size, big_endian>* relobj, unsigned int shndx, 1061 Address address, bool is_relative); 1062 1063 // An absolute or relative relocation with no symbol. 1064 1065 Output_reloc(unsigned int type, Output_data* od, Address address, 1066 bool is_relative); 1067 1068 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj, 1069 unsigned int shndx, Address address, bool is_relative); 1070 1071 // A target specific relocation. The target will be called to get 1072 // the symbol index, passing ARG. The type and offset will be set 1073 // as for other relocation types. 1074 1075 Output_reloc(unsigned int type, void* arg, Output_data* od, 1076 Address address); 1077 1078 Output_reloc(unsigned int type, void* arg, 1079 Sized_relobj<size, big_endian>* relobj, 1080 unsigned int shndx, Address address); 1081 1082 // Return the reloc type. 1083 unsigned int 1084 type() const 1085 { return this->type_; } 1086 1087 // Return whether this is a RELATIVE relocation. 1088 bool 1089 is_relative() const 1090 { return this->is_relative_; } 1091 1092 // Return whether this is a relocation which should not use 1093 // a symbol, but which obtains its addend from a symbol. 1094 bool 1095 is_symbolless() const 1096 { return this->is_symbolless_; } 1097 1098 // Return whether this is against a local section symbol. 1099 bool 1100 is_local_section_symbol() const 1101 { 1102 return (this->local_sym_index_ != GSYM_CODE 1103 && this->local_sym_index_ != SECTION_CODE 1104 && this->local_sym_index_ != INVALID_CODE 1105 && this->local_sym_index_ != TARGET_CODE 1106 && this->is_section_symbol_); 1107 } 1108 1109 // Return whether this is a target specific relocation. 1110 bool 1111 is_target_specific() const 1112 { return this->local_sym_index_ == TARGET_CODE; } 1113 1114 // Return the argument to pass to the target for a target specific 1115 // relocation. 1116 void* 1117 target_arg() const 1118 { 1119 gold_assert(this->local_sym_index_ == TARGET_CODE); 1120 return this->u1_.arg; 1121 } 1122 1123 // For a local section symbol, return the offset of the input 1124 // section within the output section. ADDEND is the addend being 1125 // applied to the input section. 1126 Address 1127 local_section_offset(Addend addend) const; 1128 1129 // Get the value of the symbol referred to by a Rel relocation when 1130 // we are adding the given ADDEND. 1131 Address 1132 symbol_value(Addend addend) const; 1133 1134 // If this relocation is against an input section, return the 1135 // relocatable object containing the input section. 1136 Sized_relobj<size, big_endian>* 1137 get_relobj() const 1138 { 1139 if (this->shndx_ == INVALID_CODE) 1140 return NULL; 1141 return this->u2_.relobj; 1142 } 1143 1144 // Write the reloc entry to an output view. 1145 void 1146 write(unsigned char* pov) const; 1147 1148 // Write the offset and info fields to Write_rel. 1149 template<typename Write_rel> 1150 void write_rel(Write_rel*) const; 1151 1152 // This is used when sorting dynamic relocs. Return -1 to sort this 1153 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2. 1154 int 1155 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2) 1156 const; 1157 1158 // Return whether this reloc should be sorted before the argument 1159 // when sorting dynamic relocs. 1160 bool 1161 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& 1162 r2) const 1163 { return this->compare(r2) < 0; } 1164 1165 private: 1166 // Record that we need a dynamic symbol index. 1167 void 1168 set_needs_dynsym_index(); 1169 1170 // Return the symbol index. 1171 unsigned int 1172 get_symbol_index() const; 1173 1174 // Return the output address. 1175 Address 1176 get_address() const; 1177 1178 // Codes for local_sym_index_. 1179 enum 1180 { 1181 // Global symbol. 1182 GSYM_CODE = -1U, 1183 // Output section. 1184 SECTION_CODE = -2U, 1185 // Target specific. 1186 TARGET_CODE = -3U, 1187 // Invalid uninitialized entry. 1188 INVALID_CODE = -4U 1189 }; 1190 1191 union 1192 { 1193 // For a local symbol or local section symbol 1194 // (this->local_sym_index_ >= 0), the object. We will never 1195 // generate a relocation against a local symbol in a dynamic 1196 // object; that doesn't make sense. And our callers will always 1197 // be templatized, so we use Sized_relobj here. 1198 Sized_relobj<size, big_endian>* relobj; 1199 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the 1200 // symbol. If this is NULL, it indicates a relocation against the 1201 // undefined 0 symbol. 1202 Symbol* gsym; 1203 // For a relocation against an output section 1204 // (this->local_sym_index_ == SECTION_CODE), the output section. 1205 Output_section* os; 1206 // For a target specific relocation, an argument to pass to the 1207 // target. 1208 void* arg; 1209 } u1_; 1210 union 1211 { 1212 // If this->shndx_ is not INVALID CODE, the object which holds the 1213 // input section being used to specify the reloc address. 1214 Sized_relobj<size, big_endian>* relobj; 1215 // If this->shndx_ is INVALID_CODE, the output data being used to 1216 // specify the reloc address. This may be NULL if the reloc 1217 // address is absolute. 1218 Output_data* od; 1219 } u2_; 1220 // The address offset within the input section or the Output_data. 1221 Address address_; 1222 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a 1223 // relocation against an output section, or TARGET_CODE for a target 1224 // specific relocation, or INVALID_CODE for an uninitialized value. 1225 // Otherwise, for a local symbol (this->is_section_symbol_ is 1226 // false), the local symbol index. For a local section symbol 1227 // (this->is_section_symbol_ is true), the section index in the 1228 // input file. 1229 unsigned int local_sym_index_; 1230 // The reloc type--a processor specific code. 1231 unsigned int type_ : 28; 1232 // True if the relocation is a RELATIVE relocation. 1233 bool is_relative_ : 1; 1234 // True if the relocation is one which should not use 1235 // a symbol, but which obtains its addend from a symbol. 1236 bool is_symbolless_ : 1; 1237 // True if the relocation is against a section symbol. 1238 bool is_section_symbol_ : 1; 1239 // True if the addend should be the PLT offset. 1240 // (Used only for RELA, but stored here for space.) 1241 bool use_plt_offset_ : 1; 1242 // If the reloc address is an input section in an object, the 1243 // section index. This is INVALID_CODE if the reloc address is 1244 // specified in some other way. 1245 unsigned int shndx_; 1246 }; 1247 1248 // The SHT_RELA version of Output_reloc<>. This is just derived from 1249 // the SHT_REL version of Output_reloc, but it adds an addend. 1250 1251 template<bool dynamic, int size, bool big_endian> 1252 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian> 1253 { 1254 public: 1255 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 1256 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend; 1257 1258 // An uninitialized entry. 1259 Output_reloc() 1260 : rel_() 1261 { } 1262 1263 // A reloc against a global symbol. 1264 1265 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od, 1266 Address address, Addend addend, bool is_relative, 1267 bool is_symbolless, bool use_plt_offset) 1268 : rel_(gsym, type, od, address, is_relative, is_symbolless, 1269 use_plt_offset), 1270 addend_(addend) 1271 { } 1272 1273 Output_reloc(Symbol* gsym, unsigned int type, 1274 Sized_relobj<size, big_endian>* relobj, 1275 unsigned int shndx, Address address, Addend addend, 1276 bool is_relative, bool is_symbolless, bool use_plt_offset) 1277 : rel_(gsym, type, relobj, shndx, address, is_relative, 1278 is_symbolless, use_plt_offset), addend_(addend) 1279 { } 1280 1281 // A reloc against a local symbol. 1282 1283 Output_reloc(Sized_relobj<size, big_endian>* relobj, 1284 unsigned int local_sym_index, unsigned int type, 1285 Output_data* od, Address address, 1286 Addend addend, bool is_relative, 1287 bool is_symbolless, bool is_section_symbol, 1288 bool use_plt_offset) 1289 : rel_(relobj, local_sym_index, type, od, address, is_relative, 1290 is_symbolless, is_section_symbol, use_plt_offset), 1291 addend_(addend) 1292 { } 1293 1294 Output_reloc(Sized_relobj<size, big_endian>* relobj, 1295 unsigned int local_sym_index, unsigned int type, 1296 unsigned int shndx, Address address, 1297 Addend addend, bool is_relative, 1298 bool is_symbolless, bool is_section_symbol, 1299 bool use_plt_offset) 1300 : rel_(relobj, local_sym_index, type, shndx, address, is_relative, 1301 is_symbolless, is_section_symbol, use_plt_offset), 1302 addend_(addend) 1303 { } 1304 1305 // A reloc against the STT_SECTION symbol of an output section. 1306 1307 Output_reloc(Output_section* os, unsigned int type, Output_data* od, 1308 Address address, Addend addend, bool is_relative) 1309 : rel_(os, type, od, address, is_relative), addend_(addend) 1310 { } 1311 1312 Output_reloc(Output_section* os, unsigned int type, 1313 Sized_relobj<size, big_endian>* relobj, 1314 unsigned int shndx, Address address, Addend addend, 1315 bool is_relative) 1316 : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend) 1317 { } 1318 1319 // An absolute or relative relocation with no symbol. 1320 1321 Output_reloc(unsigned int type, Output_data* od, Address address, 1322 Addend addend, bool is_relative) 1323 : rel_(type, od, address, is_relative), addend_(addend) 1324 { } 1325 1326 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj, 1327 unsigned int shndx, Address address, Addend addend, 1328 bool is_relative) 1329 : rel_(type, relobj, shndx, address, is_relative), addend_(addend) 1330 { } 1331 1332 // A target specific relocation. The target will be called to get 1333 // the symbol index and the addend, passing ARG. The type and 1334 // offset will be set as for other relocation types. 1335 1336 Output_reloc(unsigned int type, void* arg, Output_data* od, 1337 Address address, Addend addend) 1338 : rel_(type, arg, od, address), addend_(addend) 1339 { } 1340 1341 Output_reloc(unsigned int type, void* arg, 1342 Sized_relobj<size, big_endian>* relobj, 1343 unsigned int shndx, Address address, Addend addend) 1344 : rel_(type, arg, relobj, shndx, address), addend_(addend) 1345 { } 1346 1347 // Return whether this is a RELATIVE relocation. 1348 bool 1349 is_relative() const 1350 { return this->rel_.is_relative(); } 1351 1352 // Return whether this is a relocation which should not use 1353 // a symbol, but which obtains its addend from a symbol. 1354 bool 1355 is_symbolless() const 1356 { return this->rel_.is_symbolless(); } 1357 1358 // If this relocation is against an input section, return the 1359 // relocatable object containing the input section. 1360 Sized_relobj<size, big_endian>* 1361 get_relobj() const 1362 { return this->rel_.get_relobj(); } 1363 1364 // Write the reloc entry to an output view. 1365 void 1366 write(unsigned char* pov) const; 1367 1368 // Return whether this reloc should be sorted before the argument 1369 // when sorting dynamic relocs. 1370 bool 1371 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>& 1372 r2) const 1373 { 1374 int i = this->rel_.compare(r2.rel_); 1375 if (i < 0) 1376 return true; 1377 else if (i > 0) 1378 return false; 1379 else 1380 return this->addend_ < r2.addend_; 1381 } 1382 1383 private: 1384 // The basic reloc. 1385 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_; 1386 // The addend. 1387 Addend addend_; 1388 }; 1389 1390 // Output_data_reloc_generic is a non-template base class for 1391 // Output_data_reloc_base. This gives the generic code a way to hold 1392 // a pointer to a reloc section. 1393 1394 class Output_data_reloc_generic : public Output_section_data_build 1395 { 1396 public: 1397 Output_data_reloc_generic(int size, bool sort_relocs) 1398 : Output_section_data_build(Output_data::default_alignment_for_size(size)), 1399 relative_reloc_count_(0), sort_relocs_(sort_relocs) 1400 { } 1401 1402 // Return the number of relative relocs in this section. 1403 size_t 1404 relative_reloc_count() const 1405 { return this->relative_reloc_count_; } 1406 1407 // Whether we should sort the relocs. 1408 bool 1409 sort_relocs() const 1410 { return this->sort_relocs_; } 1411 1412 // Add a reloc of type TYPE against the global symbol GSYM. The 1413 // relocation applies to the data at offset ADDRESS within OD. 1414 virtual void 1415 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, 1416 uint64_t address, uint64_t addend) = 0; 1417 1418 // Add a reloc of type TYPE against the global symbol GSYM. The 1419 // relocation applies to data at offset ADDRESS within section SHNDX 1420 // of object file RELOBJ. OD is the associated output section. 1421 virtual void 1422 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, 1423 Relobj* relobj, unsigned int shndx, uint64_t address, 1424 uint64_t addend) = 0; 1425 1426 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX 1427 // in RELOBJ. The relocation applies to the data at offset ADDRESS 1428 // within OD. 1429 virtual void 1430 add_local_generic(Relobj* relobj, unsigned int local_sym_index, 1431 unsigned int type, Output_data* od, uint64_t address, 1432 uint64_t addend) = 0; 1433 1434 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX 1435 // in RELOBJ. The relocation applies to the data at offset ADDRESS 1436 // within section SHNDX of RELOBJ. OD is the associated output 1437 // section. 1438 virtual void 1439 add_local_generic(Relobj* relobj, unsigned int local_sym_index, 1440 unsigned int type, Output_data* od, unsigned int shndx, 1441 uint64_t address, uint64_t addend) = 0; 1442 1443 // Add a reloc of type TYPE against the STT_SECTION symbol of the 1444 // output section OS. The relocation applies to the data at offset 1445 // ADDRESS within OD. 1446 virtual void 1447 add_output_section_generic(Output_section *os, unsigned int type, 1448 Output_data* od, uint64_t address, 1449 uint64_t addend) = 0; 1450 1451 // Add a reloc of type TYPE against the STT_SECTION symbol of the 1452 // output section OS. The relocation applies to the data at offset 1453 // ADDRESS within section SHNDX of RELOBJ. OD is the associated 1454 // output section. 1455 virtual void 1456 add_output_section_generic(Output_section* os, unsigned int type, 1457 Output_data* od, Relobj* relobj, 1458 unsigned int shndx, uint64_t address, 1459 uint64_t addend) = 0; 1460 1461 protected: 1462 // Note that we've added another relative reloc. 1463 void 1464 bump_relative_reloc_count() 1465 { ++this->relative_reloc_count_; } 1466 1467 private: 1468 // The number of relative relocs added to this section. This is to 1469 // support DT_RELCOUNT. 1470 size_t relative_reloc_count_; 1471 // Whether to sort the relocations when writing them out, to make 1472 // the dynamic linker more efficient. 1473 bool sort_relocs_; 1474 }; 1475 1476 // Output_data_reloc is used to manage a section containing relocs. 1477 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC 1478 // indicates whether this is a dynamic relocation or a normal 1479 // relocation. Output_data_reloc_base is a base class. 1480 // Output_data_reloc is the real class, which we specialize based on 1481 // the reloc type. 1482 1483 template<int sh_type, bool dynamic, int size, bool big_endian> 1484 class Output_data_reloc_base : public Output_data_reloc_generic 1485 { 1486 public: 1487 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type; 1488 typedef typename Output_reloc_type::Address Address; 1489 static const int reloc_size = 1490 Reloc_types<sh_type, size, big_endian>::reloc_size; 1491 1492 // Construct the section. 1493 Output_data_reloc_base(bool sort_relocs) 1494 : Output_data_reloc_generic(size, sort_relocs) 1495 { } 1496 1497 protected: 1498 // Write out the data. 1499 void 1500 do_write(Output_file*); 1501 1502 // Set the entry size and the link. 1503 void 1504 do_adjust_output_section(Output_section* os); 1505 1506 // Write to a map file. 1507 void 1508 do_print_to_mapfile(Mapfile* mapfile) const 1509 { 1510 mapfile->print_output_data(this, 1511 (dynamic 1512 ? _("** dynamic relocs") 1513 : _("** relocs"))); 1514 } 1515 1516 // Add a relocation entry. 1517 void 1518 add(Output_data* od, const Output_reloc_type& reloc) 1519 { 1520 this->relocs_.push_back(reloc); 1521 this->set_current_data_size(this->relocs_.size() * reloc_size); 1522 if (dynamic) 1523 od->add_dynamic_reloc(); 1524 if (reloc.is_relative()) 1525 this->bump_relative_reloc_count(); 1526 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj(); 1527 if (relobj != NULL) 1528 relobj->add_dyn_reloc(this->relocs_.size() - 1); 1529 } 1530 1531 private: 1532 typedef std::vector<Output_reloc_type> Relocs; 1533 1534 // The class used to sort the relocations. 1535 struct Sort_relocs_comparison 1536 { 1537 bool 1538 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const 1539 { return r1.sort_before(r2); } 1540 }; 1541 1542 // The relocations in this section. 1543 Relocs relocs_; 1544 }; 1545 1546 // The class which callers actually create. 1547 1548 template<int sh_type, bool dynamic, int size, bool big_endian> 1549 class Output_data_reloc; 1550 1551 // The SHT_REL version of Output_data_reloc. 1552 1553 template<bool dynamic, int size, bool big_endian> 1554 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> 1555 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian> 1556 { 1557 private: 1558 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, 1559 big_endian> Base; 1560 1561 public: 1562 typedef typename Base::Output_reloc_type Output_reloc_type; 1563 typedef typename Output_reloc_type::Address Address; 1564 1565 Output_data_reloc(bool sr) 1566 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr) 1567 { } 1568 1569 // Add a reloc against a global symbol. 1570 1571 void 1572 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address) 1573 { 1574 this->add(od, Output_reloc_type(gsym, type, od, address, 1575 false, false, false)); 1576 } 1577 1578 void 1579 add_global(Symbol* gsym, unsigned int type, Output_data* od, 1580 Sized_relobj<size, big_endian>* relobj, 1581 unsigned int shndx, Address address) 1582 { 1583 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, 1584 false, false, false)); 1585 } 1586 1587 void 1588 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, 1589 uint64_t address, uint64_t addend) 1590 { 1591 gold_assert(addend == 0); 1592 this->add(od, Output_reloc_type(gsym, type, od, 1593 convert_types<Address, uint64_t>(address), 1594 false, false, false)); 1595 } 1596 1597 void 1598 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, 1599 Relobj* relobj, unsigned int shndx, uint64_t address, 1600 uint64_t addend) 1601 { 1602 gold_assert(addend == 0); 1603 Sized_relobj<size, big_endian>* sized_relobj = 1604 static_cast<Sized_relobj<size, big_endian>*>(relobj); 1605 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx, 1606 convert_types<Address, uint64_t>(address), 1607 false, false, false)); 1608 } 1609 1610 // Add a RELATIVE reloc against a global symbol. The final relocation 1611 // will not reference the symbol. 1612 1613 void 1614 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od, 1615 Address address) 1616 { 1617 this->add(od, Output_reloc_type(gsym, type, od, address, true, true, 1618 false)); 1619 } 1620 1621 void 1622 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od, 1623 Sized_relobj<size, big_endian>* relobj, 1624 unsigned int shndx, Address address) 1625 { 1626 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, 1627 true, true, false)); 1628 } 1629 1630 // Add a global relocation which does not use a symbol for the relocation, 1631 // but which gets its addend from a symbol. 1632 1633 void 1634 add_symbolless_global_addend(Symbol* gsym, unsigned int type, 1635 Output_data* od, Address address) 1636 { 1637 this->add(od, Output_reloc_type(gsym, type, od, address, false, true, 1638 false)); 1639 } 1640 1641 void 1642 add_symbolless_global_addend(Symbol* gsym, unsigned int type, 1643 Output_data* od, 1644 Sized_relobj<size, big_endian>* relobj, 1645 unsigned int shndx, Address address) 1646 { 1647 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, 1648 false, true, false)); 1649 } 1650 1651 // Add a reloc against a local symbol. 1652 1653 void 1654 add_local(Sized_relobj<size, big_endian>* relobj, 1655 unsigned int local_sym_index, unsigned int type, 1656 Output_data* od, Address address) 1657 { 1658 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, 1659 address, false, false, false, false)); 1660 } 1661 1662 void 1663 add_local(Sized_relobj<size, big_endian>* relobj, 1664 unsigned int local_sym_index, unsigned int type, 1665 Output_data* od, unsigned int shndx, Address address) 1666 { 1667 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, 1668 address, false, false, false, false)); 1669 } 1670 1671 void 1672 add_local_generic(Relobj* relobj, unsigned int local_sym_index, 1673 unsigned int type, Output_data* od, uint64_t address, 1674 uint64_t addend) 1675 { 1676 gold_assert(addend == 0); 1677 Sized_relobj<size, big_endian>* sized_relobj = 1678 static_cast<Sized_relobj<size, big_endian> *>(relobj); 1679 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od, 1680 convert_types<Address, uint64_t>(address), 1681 false, false, false, false)); 1682 } 1683 1684 void 1685 add_local_generic(Relobj* relobj, unsigned int local_sym_index, 1686 unsigned int type, Output_data* od, unsigned int shndx, 1687 uint64_t address, uint64_t addend) 1688 { 1689 gold_assert(addend == 0); 1690 Sized_relobj<size, big_endian>* sized_relobj = 1691 static_cast<Sized_relobj<size, big_endian>*>(relobj); 1692 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx, 1693 convert_types<Address, uint64_t>(address), 1694 false, false, false, false)); 1695 } 1696 1697 // Add a RELATIVE reloc against a local symbol. 1698 1699 void 1700 add_local_relative(Sized_relobj<size, big_endian>* relobj, 1701 unsigned int local_sym_index, unsigned int type, 1702 Output_data* od, Address address) 1703 { 1704 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, 1705 address, true, true, false, false)); 1706 } 1707 1708 void 1709 add_local_relative(Sized_relobj<size, big_endian>* relobj, 1710 unsigned int local_sym_index, unsigned int type, 1711 Output_data* od, unsigned int shndx, Address address) 1712 { 1713 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, 1714 address, true, true, false, false)); 1715 } 1716 1717 void 1718 add_local_relative(Sized_relobj<size, big_endian>* relobj, 1719 unsigned int local_sym_index, unsigned int type, 1720 Output_data* od, unsigned int shndx, Address address, 1721 bool use_plt_offset) 1722 { 1723 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, 1724 address, true, true, false, 1725 use_plt_offset)); 1726 } 1727 1728 // Add a local relocation which does not use a symbol for the relocation, 1729 // but which gets its addend from a symbol. 1730 1731 void 1732 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj, 1733 unsigned int local_sym_index, unsigned int type, 1734 Output_data* od, Address address) 1735 { 1736 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, 1737 address, false, true, false, false)); 1738 } 1739 1740 void 1741 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj, 1742 unsigned int local_sym_index, unsigned int type, 1743 Output_data* od, unsigned int shndx, 1744 Address address) 1745 { 1746 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, 1747 address, false, true, false, false)); 1748 } 1749 1750 // Add a reloc against a local section symbol. This will be 1751 // converted into a reloc against the STT_SECTION symbol of the 1752 // output section. 1753 1754 void 1755 add_local_section(Sized_relobj<size, big_endian>* relobj, 1756 unsigned int input_shndx, unsigned int type, 1757 Output_data* od, Address address) 1758 { 1759 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, 1760 address, false, false, true, false)); 1761 } 1762 1763 void 1764 add_local_section(Sized_relobj<size, big_endian>* relobj, 1765 unsigned int input_shndx, unsigned int type, 1766 Output_data* od, unsigned int shndx, Address address) 1767 { 1768 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx, 1769 address, false, false, true, false)); 1770 } 1771 1772 // A reloc against the STT_SECTION symbol of an output section. 1773 // OS is the Output_section that the relocation refers to; OD is 1774 // the Output_data object being relocated. 1775 1776 void 1777 add_output_section(Output_section* os, unsigned int type, 1778 Output_data* od, Address address) 1779 { this->add(od, Output_reloc_type(os, type, od, address, false)); } 1780 1781 void 1782 add_output_section(Output_section* os, unsigned int type, Output_data* od, 1783 Sized_relobj<size, big_endian>* relobj, 1784 unsigned int shndx, Address address) 1785 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); } 1786 1787 void 1788 add_output_section_generic(Output_section* os, unsigned int type, 1789 Output_data* od, uint64_t address, 1790 uint64_t addend) 1791 { 1792 gold_assert(addend == 0); 1793 this->add(od, Output_reloc_type(os, type, od, 1794 convert_types<Address, uint64_t>(address), 1795 false)); 1796 } 1797 1798 void 1799 add_output_section_generic(Output_section* os, unsigned int type, 1800 Output_data* od, Relobj* relobj, 1801 unsigned int shndx, uint64_t address, 1802 uint64_t addend) 1803 { 1804 gold_assert(addend == 0); 1805 Sized_relobj<size, big_endian>* sized_relobj = 1806 static_cast<Sized_relobj<size, big_endian>*>(relobj); 1807 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx, 1808 convert_types<Address, uint64_t>(address), 1809 false)); 1810 } 1811 1812 // As above, but the reloc TYPE is relative 1813 1814 void 1815 add_output_section_relative(Output_section* os, unsigned int type, 1816 Output_data* od, Address address) 1817 { this->add(od, Output_reloc_type(os, type, od, address, true)); } 1818 1819 void 1820 add_output_section_relative(Output_section* os, unsigned int type, 1821 Output_data* od, 1822 Sized_relobj<size, big_endian>* relobj, 1823 unsigned int shndx, Address address) 1824 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); } 1825 1826 // Add an absolute relocation. 1827 1828 void 1829 add_absolute(unsigned int type, Output_data* od, Address address) 1830 { this->add(od, Output_reloc_type(type, od, address, false)); } 1831 1832 void 1833 add_absolute(unsigned int type, Output_data* od, 1834 Sized_relobj<size, big_endian>* relobj, 1835 unsigned int shndx, Address address) 1836 { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); } 1837 1838 // Add a relative relocation 1839 1840 void 1841 add_relative(unsigned int type, Output_data* od, Address address) 1842 { this->add(od, Output_reloc_type(type, od, address, true)); } 1843 1844 void 1845 add_relative(unsigned int type, Output_data* od, 1846 Sized_relobj<size, big_endian>* relobj, 1847 unsigned int shndx, Address address) 1848 { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); } 1849 1850 // Add a target specific relocation. A target which calls this must 1851 // define the reloc_symbol_index and reloc_addend virtual functions. 1852 1853 void 1854 add_target_specific(unsigned int type, void* arg, Output_data* od, 1855 Address address) 1856 { this->add(od, Output_reloc_type(type, arg, od, address)); } 1857 1858 void 1859 add_target_specific(unsigned int type, void* arg, Output_data* od, 1860 Sized_relobj<size, big_endian>* relobj, 1861 unsigned int shndx, Address address) 1862 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); } 1863 }; 1864 1865 // The SHT_RELA version of Output_data_reloc. 1866 1867 template<bool dynamic, int size, bool big_endian> 1868 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian> 1869 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian> 1870 { 1871 private: 1872 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, 1873 big_endian> Base; 1874 1875 public: 1876 typedef typename Base::Output_reloc_type Output_reloc_type; 1877 typedef typename Output_reloc_type::Address Address; 1878 typedef typename Output_reloc_type::Addend Addend; 1879 1880 Output_data_reloc(bool sr) 1881 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr) 1882 { } 1883 1884 // Add a reloc against a global symbol. 1885 1886 void 1887 add_global(Symbol* gsym, unsigned int type, Output_data* od, 1888 Address address, Addend addend) 1889 { 1890 this->add(od, Output_reloc_type(gsym, type, od, address, addend, 1891 false, false, false)); 1892 } 1893 1894 void 1895 add_global(Symbol* gsym, unsigned int type, Output_data* od, 1896 Sized_relobj<size, big_endian>* relobj, 1897 unsigned int shndx, Address address, 1898 Addend addend) 1899 { 1900 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, 1901 addend, false, false, false)); 1902 } 1903 1904 void 1905 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, 1906 uint64_t address, uint64_t addend) 1907 { 1908 this->add(od, Output_reloc_type(gsym, type, od, 1909 convert_types<Address, uint64_t>(address), 1910 convert_types<Addend, uint64_t>(addend), 1911 false, false, false)); 1912 } 1913 1914 void 1915 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, 1916 Relobj* relobj, unsigned int shndx, uint64_t address, 1917 uint64_t addend) 1918 { 1919 Sized_relobj<size, big_endian>* sized_relobj = 1920 static_cast<Sized_relobj<size, big_endian>*>(relobj); 1921 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx, 1922 convert_types<Address, uint64_t>(address), 1923 convert_types<Addend, uint64_t>(addend), 1924 false, false, false)); 1925 } 1926 1927 // Add a RELATIVE reloc against a global symbol. The final output 1928 // relocation will not reference the symbol, but we must keep the symbol 1929 // information long enough to set the addend of the relocation correctly 1930 // when it is written. 1931 1932 void 1933 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od, 1934 Address address, Addend addend, bool use_plt_offset) 1935 { 1936 this->add(od, Output_reloc_type(gsym, type, od, address, addend, true, 1937 true, use_plt_offset)); 1938 } 1939 1940 void 1941 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od, 1942 Sized_relobj<size, big_endian>* relobj, 1943 unsigned int shndx, Address address, Addend addend, 1944 bool use_plt_offset) 1945 { 1946 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, 1947 addend, true, true, use_plt_offset)); 1948 } 1949 1950 // Add a global relocation which does not use a symbol for the relocation, 1951 // but which gets its addend from a symbol. 1952 1953 void 1954 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od, 1955 Address address, Addend addend) 1956 { 1957 this->add(od, Output_reloc_type(gsym, type, od, address, addend, 1958 false, true, false)); 1959 } 1960 1961 void 1962 add_symbolless_global_addend(Symbol* gsym, unsigned int type, 1963 Output_data* od, 1964 Sized_relobj<size, big_endian>* relobj, 1965 unsigned int shndx, Address address, 1966 Addend addend) 1967 { 1968 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, 1969 addend, false, true, false)); 1970 } 1971 1972 // Add a reloc against a local symbol. 1973 1974 void 1975 add_local(Sized_relobj<size, big_endian>* relobj, 1976 unsigned int local_sym_index, unsigned int type, 1977 Output_data* od, Address address, Addend addend) 1978 { 1979 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address, 1980 addend, false, false, false, false)); 1981 } 1982 1983 void 1984 add_local(Sized_relobj<size, big_endian>* relobj, 1985 unsigned int local_sym_index, unsigned int type, 1986 Output_data* od, unsigned int shndx, Address address, 1987 Addend addend) 1988 { 1989 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, 1990 address, addend, false, false, false, 1991 false)); 1992 } 1993 1994 void 1995 add_local_generic(Relobj* relobj, unsigned int local_sym_index, 1996 unsigned int type, Output_data* od, uint64_t address, 1997 uint64_t addend) 1998 { 1999 Sized_relobj<size, big_endian>* sized_relobj = 2000 static_cast<Sized_relobj<size, big_endian> *>(relobj); 2001 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od, 2002 convert_types<Address, uint64_t>(address), 2003 convert_types<Addend, uint64_t>(addend), 2004 false, false, false, false)); 2005 } 2006 2007 void 2008 add_local_generic(Relobj* relobj, unsigned int local_sym_index, 2009 unsigned int type, Output_data* od, unsigned int shndx, 2010 uint64_t address, uint64_t addend) 2011 { 2012 Sized_relobj<size, big_endian>* sized_relobj = 2013 static_cast<Sized_relobj<size, big_endian>*>(relobj); 2014 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx, 2015 convert_types<Address, uint64_t>(address), 2016 convert_types<Addend, uint64_t>(addend), 2017 false, false, false, false)); 2018 } 2019 2020 // Add a RELATIVE reloc against a local symbol. 2021 2022 void 2023 add_local_relative(Sized_relobj<size, big_endian>* relobj, 2024 unsigned int local_sym_index, unsigned int type, 2025 Output_data* od, Address address, Addend addend, 2026 bool use_plt_offset) 2027 { 2028 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address, 2029 addend, true, true, false, 2030 use_plt_offset)); 2031 } 2032 2033 void 2034 add_local_relative(Sized_relobj<size, big_endian>* relobj, 2035 unsigned int local_sym_index, unsigned int type, 2036 Output_data* od, unsigned int shndx, Address address, 2037 Addend addend, bool use_plt_offset) 2038 { 2039 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, 2040 address, addend, true, true, false, 2041 use_plt_offset)); 2042 } 2043 2044 // Add a local relocation which does not use a symbol for the relocation, 2045 // but which gets it's addend from a symbol. 2046 2047 void 2048 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj, 2049 unsigned int local_sym_index, unsigned int type, 2050 Output_data* od, Address address, Addend addend) 2051 { 2052 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address, 2053 addend, false, true, false, false)); 2054 } 2055 2056 void 2057 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj, 2058 unsigned int local_sym_index, unsigned int type, 2059 Output_data* od, unsigned int shndx, 2060 Address address, Addend addend) 2061 { 2062 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, 2063 address, addend, false, true, false, 2064 false)); 2065 } 2066 2067 // Add a reloc against a local section symbol. This will be 2068 // converted into a reloc against the STT_SECTION symbol of the 2069 // output section. 2070 2071 void 2072 add_local_section(Sized_relobj<size, big_endian>* relobj, 2073 unsigned int input_shndx, unsigned int type, 2074 Output_data* od, Address address, Addend addend) 2075 { 2076 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address, 2077 addend, false, false, true, false)); 2078 } 2079 2080 void 2081 add_local_section(Sized_relobj<size, big_endian>* relobj, 2082 unsigned int input_shndx, unsigned int type, 2083 Output_data* od, unsigned int shndx, Address address, 2084 Addend addend) 2085 { 2086 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx, 2087 address, addend, false, false, true, 2088 false)); 2089 } 2090 2091 // A reloc against the STT_SECTION symbol of an output section. 2092 2093 void 2094 add_output_section(Output_section* os, unsigned int type, Output_data* od, 2095 Address address, Addend addend) 2096 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); } 2097 2098 void 2099 add_output_section(Output_section* os, unsigned int type, Output_data* od, 2100 Sized_relobj<size, big_endian>* relobj, 2101 unsigned int shndx, Address address, Addend addend) 2102 { 2103 this->add(od, Output_reloc_type(os, type, relobj, shndx, address, 2104 addend, false)); 2105 } 2106 2107 void 2108 add_output_section_generic(Output_section* os, unsigned int type, 2109 Output_data* od, uint64_t address, 2110 uint64_t addend) 2111 { 2112 this->add(od, Output_reloc_type(os, type, od, 2113 convert_types<Address, uint64_t>(address), 2114 convert_types<Addend, uint64_t>(addend), 2115 false)); 2116 } 2117 2118 void 2119 add_output_section_generic(Output_section* os, unsigned int type, 2120 Output_data* od, Relobj* relobj, 2121 unsigned int shndx, uint64_t address, 2122 uint64_t addend) 2123 { 2124 Sized_relobj<size, big_endian>* sized_relobj = 2125 static_cast<Sized_relobj<size, big_endian>*>(relobj); 2126 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx, 2127 convert_types<Address, uint64_t>(address), 2128 convert_types<Addend, uint64_t>(addend), 2129 false)); 2130 } 2131 2132 // As above, but the reloc TYPE is relative 2133 2134 void 2135 add_output_section_relative(Output_section* os, unsigned int type, 2136 Output_data* od, Address address, Addend addend) 2137 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); } 2138 2139 void 2140 add_output_section_relative(Output_section* os, unsigned int type, 2141 Output_data* od, 2142 Sized_relobj<size, big_endian>* relobj, 2143 unsigned int shndx, Address address, 2144 Addend addend) 2145 { 2146 this->add(od, Output_reloc_type(os, type, relobj, shndx, 2147 address, addend, true)); 2148 } 2149 2150 // Add an absolute relocation. 2151 2152 void 2153 add_absolute(unsigned int type, Output_data* od, Address address, 2154 Addend addend) 2155 { this->add(od, Output_reloc_type(type, od, address, addend, false)); } 2156 2157 void 2158 add_absolute(unsigned int type, Output_data* od, 2159 Sized_relobj<size, big_endian>* relobj, 2160 unsigned int shndx, Address address, Addend addend) 2161 { 2162 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend, 2163 false)); 2164 } 2165 2166 // Add a relative relocation 2167 2168 void 2169 add_relative(unsigned int type, Output_data* od, Address address, 2170 Addend addend) 2171 { this->add(od, Output_reloc_type(type, od, address, addend, true)); } 2172 2173 void 2174 add_relative(unsigned int type, Output_data* od, 2175 Sized_relobj<size, big_endian>* relobj, 2176 unsigned int shndx, Address address, Addend addend) 2177 { 2178 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend, 2179 true)); 2180 } 2181 2182 // Add a target specific relocation. A target which calls this must 2183 // define the reloc_symbol_index and reloc_addend virtual functions. 2184 2185 void 2186 add_target_specific(unsigned int type, void* arg, Output_data* od, 2187 Address address, Addend addend) 2188 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); } 2189 2190 void 2191 add_target_specific(unsigned int type, void* arg, Output_data* od, 2192 Sized_relobj<size, big_endian>* relobj, 2193 unsigned int shndx, Address address, Addend addend) 2194 { 2195 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address, 2196 addend)); 2197 } 2198 }; 2199 2200 // Output_relocatable_relocs represents a relocation section in a 2201 // relocatable link. The actual data is written out in the target 2202 // hook relocate_relocs. This just saves space for it. 2203 2204 template<int sh_type, int size, bool big_endian> 2205 class Output_relocatable_relocs : public Output_section_data 2206 { 2207 public: 2208 Output_relocatable_relocs(Relocatable_relocs* rr) 2209 : Output_section_data(Output_data::default_alignment_for_size(size)), 2210 rr_(rr) 2211 { } 2212 2213 void 2214 set_final_data_size(); 2215 2216 // Write out the data. There is nothing to do here. 2217 void 2218 do_write(Output_file*) 2219 { } 2220 2221 // Write to a map file. 2222 void 2223 do_print_to_mapfile(Mapfile* mapfile) const 2224 { mapfile->print_output_data(this, _("** relocs")); } 2225 2226 private: 2227 // The relocs associated with this input section. 2228 Relocatable_relocs* rr_; 2229 }; 2230 2231 // Handle a GROUP section. 2232 2233 template<int size, bool big_endian> 2234 class Output_data_group : public Output_section_data 2235 { 2236 public: 2237 // The constructor clears *INPUT_SHNDXES. 2238 Output_data_group(Sized_relobj_file<size, big_endian>* relobj, 2239 section_size_type entry_count, 2240 elfcpp::Elf_Word flags, 2241 std::vector<unsigned int>* input_shndxes); 2242 2243 void 2244 do_write(Output_file*); 2245 2246 // Write to a map file. 2247 void 2248 do_print_to_mapfile(Mapfile* mapfile) const 2249 { mapfile->print_output_data(this, _("** group")); } 2250 2251 // Set final data size. 2252 void 2253 set_final_data_size() 2254 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); } 2255 2256 private: 2257 // The input object. 2258 Sized_relobj_file<size, big_endian>* relobj_; 2259 // The group flag word. 2260 elfcpp::Elf_Word flags_; 2261 // The section indexes of the input sections in this group. 2262 std::vector<unsigned int> input_shndxes_; 2263 }; 2264 2265 // Output_data_got is used to manage a GOT. Each entry in the GOT is 2266 // for one symbol--either a global symbol or a local symbol in an 2267 // object. The target specific code adds entries to the GOT as 2268 // needed. The GOT_SIZE template parameter is the size in bits of a 2269 // GOT entry, typically 32 or 64. 2270 2271 class Output_data_got_base : public Output_section_data_build 2272 { 2273 public: 2274 Output_data_got_base(uint64_t align) 2275 : Output_section_data_build(align) 2276 { } 2277 2278 Output_data_got_base(off_t data_size, uint64_t align) 2279 : Output_section_data_build(data_size, align) 2280 { } 2281 2282 // Reserve the slot at index I in the GOT. 2283 void 2284 reserve_slot(unsigned int i) 2285 { this->do_reserve_slot(i); } 2286 2287 protected: 2288 // Reserve the slot at index I in the GOT. 2289 virtual void 2290 do_reserve_slot(unsigned int i) = 0; 2291 }; 2292 2293 template<int got_size, bool big_endian> 2294 class Output_data_got : public Output_data_got_base 2295 { 2296 public: 2297 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype; 2298 2299 Output_data_got() 2300 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)), 2301 entries_(), free_list_() 2302 { } 2303 2304 Output_data_got(off_t data_size) 2305 : Output_data_got_base(data_size, 2306 Output_data::default_alignment_for_size(got_size)), 2307 entries_(), free_list_() 2308 { 2309 // For an incremental update, we have an existing GOT section. 2310 // Initialize the list of entries and the free list. 2311 this->entries_.resize(data_size / (got_size / 8)); 2312 this->free_list_.init(data_size, false); 2313 } 2314 2315 // Add an entry for a global symbol to the GOT. Return true if this 2316 // is a new GOT entry, false if the symbol was already in the GOT. 2317 bool 2318 add_global(Symbol* gsym, unsigned int got_type); 2319 2320 // Like add_global, but use the PLT offset of the global symbol if 2321 // it has one. 2322 bool 2323 add_global_plt(Symbol* gsym, unsigned int got_type); 2324 2325 // Like add_global, but for a TLS symbol where the value will be 2326 // offset using Target::tls_offset_for_global. 2327 bool 2328 add_global_tls(Symbol* gsym, unsigned int got_type) 2329 { return add_global_plt(gsym, got_type); } 2330 2331 // Add an entry for a global symbol to the GOT, and add a dynamic 2332 // relocation of type R_TYPE for the GOT entry. 2333 void 2334 add_global_with_rel(Symbol* gsym, unsigned int got_type, 2335 Output_data_reloc_generic* rel_dyn, unsigned int r_type); 2336 2337 // Add a pair of entries for a global symbol to the GOT, and add 2338 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively. 2339 void 2340 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type, 2341 Output_data_reloc_generic* rel_dyn, 2342 unsigned int r_type_1, unsigned int r_type_2); 2343 2344 // Add an entry for a local symbol to the GOT. This returns true if 2345 // this is a new GOT entry, false if the symbol already has a GOT 2346 // entry. 2347 bool 2348 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type); 2349 2350 // Like add_local, but use the PLT offset of the local symbol if it 2351 // has one. 2352 bool 2353 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type); 2354 2355 // Like add_local, but for a TLS symbol where the value will be 2356 // offset using Target::tls_offset_for_local. 2357 bool 2358 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type) 2359 { return add_local_plt(object, sym_index, got_type); } 2360 2361 // Add an entry for a local symbol to the GOT, and add a dynamic 2362 // relocation of type R_TYPE for the GOT entry. 2363 void 2364 add_local_with_rel(Relobj* object, unsigned int sym_index, 2365 unsigned int got_type, Output_data_reloc_generic* rel_dyn, 2366 unsigned int r_type); 2367 2368 // Add a pair of entries for a local symbol to the GOT, and add 2369 // a dynamic relocation of type R_TYPE using the section symbol of 2370 // the output section to which input section SHNDX maps, on the first. 2371 // The first got entry will have a value of zero, the second the 2372 // value of the local symbol. 2373 void 2374 add_local_pair_with_rel(Relobj* object, unsigned int sym_index, 2375 unsigned int shndx, unsigned int got_type, 2376 Output_data_reloc_generic* rel_dyn, 2377 unsigned int r_type); 2378 2379 // Add a pair of entries for a local symbol to the GOT, and add 2380 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first. 2381 // The first got entry will have a value of zero, the second the 2382 // value of the local symbol offset by Target::tls_offset_for_local. 2383 void 2384 add_local_tls_pair(Relobj* object, unsigned int sym_index, 2385 unsigned int got_type, 2386 Output_data_reloc_generic* rel_dyn, 2387 unsigned int r_type); 2388 2389 // Add a constant to the GOT. This returns the offset of the new 2390 // entry from the start of the GOT. 2391 unsigned int 2392 add_constant(Valtype constant) 2393 { return this->add_got_entry(Got_entry(constant)); } 2394 2395 // Add a pair of constants to the GOT. This returns the offset of 2396 // the new entry from the start of the GOT. 2397 unsigned int 2398 add_constant_pair(Valtype c1, Valtype c2) 2399 { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); } 2400 2401 // Replace GOT entry I with a new constant. 2402 void 2403 replace_constant(unsigned int i, Valtype constant) 2404 { 2405 this->replace_got_entry(i, Got_entry(constant)); 2406 } 2407 2408 // Reserve a slot in the GOT for a local symbol. 2409 void 2410 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index, 2411 unsigned int got_type); 2412 2413 // Reserve a slot in the GOT for a global symbol. 2414 void 2415 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type); 2416 2417 protected: 2418 // Write out the GOT table. 2419 void 2420 do_write(Output_file*); 2421 2422 // Write to a map file. 2423 void 2424 do_print_to_mapfile(Mapfile* mapfile) const 2425 { mapfile->print_output_data(this, _("** GOT")); } 2426 2427 // Reserve the slot at index I in the GOT. 2428 virtual void 2429 do_reserve_slot(unsigned int i) 2430 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); } 2431 2432 // Return the number of words in the GOT. 2433 unsigned int 2434 num_entries () const 2435 { return this->entries_.size(); } 2436 2437 // Return the offset into the GOT of GOT entry I. 2438 unsigned int 2439 got_offset(unsigned int i) const 2440 { return i * (got_size / 8); } 2441 2442 private: 2443 // This POD class holds a single GOT entry. 2444 class Got_entry 2445 { 2446 public: 2447 // Create a zero entry. 2448 Got_entry() 2449 : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false) 2450 { this->u_.constant = 0; } 2451 2452 // Create a global symbol entry. 2453 Got_entry(Symbol* gsym, bool use_plt_or_tls_offset) 2454 : local_sym_index_(GSYM_CODE), 2455 use_plt_or_tls_offset_(use_plt_or_tls_offset) 2456 { this->u_.gsym = gsym; } 2457 2458 // Create a local symbol entry. 2459 Got_entry(Relobj* object, unsigned int local_sym_index, 2460 bool use_plt_or_tls_offset) 2461 : local_sym_index_(local_sym_index), 2462 use_plt_or_tls_offset_(use_plt_or_tls_offset) 2463 { 2464 gold_assert(local_sym_index != GSYM_CODE 2465 && local_sym_index != CONSTANT_CODE 2466 && local_sym_index != RESERVED_CODE 2467 && local_sym_index == this->local_sym_index_); 2468 this->u_.object = object; 2469 } 2470 2471 // Create a constant entry. The constant is a host value--it will 2472 // be swapped, if necessary, when it is written out. 2473 explicit Got_entry(Valtype constant) 2474 : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false) 2475 { this->u_.constant = constant; } 2476 2477 // Write the GOT entry to an output view. 2478 void 2479 write(unsigned int got_indx, unsigned char* pov) const; 2480 2481 private: 2482 enum 2483 { 2484 GSYM_CODE = 0x7fffffff, 2485 CONSTANT_CODE = 0x7ffffffe, 2486 RESERVED_CODE = 0x7ffffffd 2487 }; 2488 2489 union 2490 { 2491 // For a local symbol, the object. 2492 Relobj* object; 2493 // For a global symbol, the symbol. 2494 Symbol* gsym; 2495 // For a constant, the constant. 2496 Valtype constant; 2497 } u_; 2498 // For a local symbol, the local symbol index. This is GSYM_CODE 2499 // for a global symbol, or CONSTANT_CODE for a constant. 2500 unsigned int local_sym_index_ : 31; 2501 // Whether to use the PLT offset of the symbol if it has one. 2502 // For TLS symbols, whether to offset the symbol value. 2503 bool use_plt_or_tls_offset_ : 1; 2504 }; 2505 2506 typedef std::vector<Got_entry> Got_entries; 2507 2508 // Create a new GOT entry and return its offset. 2509 unsigned int 2510 add_got_entry(Got_entry got_entry); 2511 2512 // Create a pair of new GOT entries and return the offset of the first. 2513 unsigned int 2514 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2); 2515 2516 // Replace GOT entry I with a new value. 2517 void 2518 replace_got_entry(unsigned int i, Got_entry got_entry); 2519 2520 // Return the offset into the GOT of the last entry added. 2521 unsigned int 2522 last_got_offset() const 2523 { return this->got_offset(this->num_entries() - 1); } 2524 2525 // Set the size of the section. 2526 void 2527 set_got_size() 2528 { this->set_current_data_size(this->got_offset(this->num_entries())); } 2529 2530 // The list of GOT entries. 2531 Got_entries entries_; 2532 2533 // List of available regions within the section, for incremental 2534 // update links. 2535 Free_list free_list_; 2536 }; 2537 2538 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC 2539 // section. 2540 2541 class Output_data_dynamic : public Output_section_data 2542 { 2543 public: 2544 Output_data_dynamic(Stringpool* pool) 2545 : Output_section_data(Output_data::default_alignment()), 2546 entries_(), pool_(pool) 2547 { } 2548 2549 // Add a new dynamic entry with a fixed numeric value. 2550 void 2551 add_constant(elfcpp::DT tag, unsigned int val) 2552 { this->add_entry(Dynamic_entry(tag, val)); } 2553 2554 // Add a new dynamic entry with the address of output data. 2555 void 2556 add_section_address(elfcpp::DT tag, const Output_data* od) 2557 { this->add_entry(Dynamic_entry(tag, od, false)); } 2558 2559 // Add a new dynamic entry with the address of output data 2560 // plus a constant offset. 2561 void 2562 add_section_plus_offset(elfcpp::DT tag, const Output_data* od, 2563 unsigned int offset) 2564 { this->add_entry(Dynamic_entry(tag, od, offset)); } 2565 2566 // Add a new dynamic entry with the size of output data. 2567 void 2568 add_section_size(elfcpp::DT tag, const Output_data* od) 2569 { this->add_entry(Dynamic_entry(tag, od, true)); } 2570 2571 // Add a new dynamic entry with the total size of two output datas. 2572 void 2573 add_section_size(elfcpp::DT tag, const Output_data* od, 2574 const Output_data* od2) 2575 { this->add_entry(Dynamic_entry(tag, od, od2)); } 2576 2577 // Add a new dynamic entry with the address of a symbol. 2578 void 2579 add_symbol(elfcpp::DT tag, const Symbol* sym) 2580 { this->add_entry(Dynamic_entry(tag, sym)); } 2581 2582 // Add a new dynamic entry with a string. 2583 void 2584 add_string(elfcpp::DT tag, const char* str) 2585 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); } 2586 2587 void 2588 add_string(elfcpp::DT tag, const std::string& str) 2589 { this->add_string(tag, str.c_str()); } 2590 2591 // Add a new dynamic entry with custom value. 2592 void 2593 add_custom(elfcpp::DT tag) 2594 { this->add_entry(Dynamic_entry(tag)); } 2595 2596 protected: 2597 // Adjust the output section to set the entry size. 2598 void 2599 do_adjust_output_section(Output_section*); 2600 2601 // Set the final data size. 2602 void 2603 set_final_data_size(); 2604 2605 // Write out the dynamic entries. 2606 void 2607 do_write(Output_file*); 2608 2609 // Write to a map file. 2610 void 2611 do_print_to_mapfile(Mapfile* mapfile) const 2612 { mapfile->print_output_data(this, _("** dynamic")); } 2613 2614 private: 2615 // This POD class holds a single dynamic entry. 2616 class Dynamic_entry 2617 { 2618 public: 2619 // Create an entry with a fixed numeric value. 2620 Dynamic_entry(elfcpp::DT tag, unsigned int val) 2621 : tag_(tag), offset_(DYNAMIC_NUMBER) 2622 { this->u_.val = val; } 2623 2624 // Create an entry with the size or address of a section. 2625 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size) 2626 : tag_(tag), 2627 offset_(section_size 2628 ? DYNAMIC_SECTION_SIZE 2629 : DYNAMIC_SECTION_ADDRESS) 2630 { 2631 this->u_.od = od; 2632 this->od2 = NULL; 2633 } 2634 2635 // Create an entry with the size of two sections. 2636 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2) 2637 : tag_(tag), 2638 offset_(DYNAMIC_SECTION_SIZE) 2639 { 2640 this->u_.od = od; 2641 this->od2 = od2; 2642 } 2643 2644 // Create an entry with the address of a section plus a constant offset. 2645 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset) 2646 : tag_(tag), 2647 offset_(offset) 2648 { this->u_.od = od; } 2649 2650 // Create an entry with the address of a symbol. 2651 Dynamic_entry(elfcpp::DT tag, const Symbol* sym) 2652 : tag_(tag), offset_(DYNAMIC_SYMBOL) 2653 { this->u_.sym = sym; } 2654 2655 // Create an entry with a string. 2656 Dynamic_entry(elfcpp::DT tag, const char* str) 2657 : tag_(tag), offset_(DYNAMIC_STRING) 2658 { this->u_.str = str; } 2659 2660 // Create an entry with a custom value. 2661 Dynamic_entry(elfcpp::DT tag) 2662 : tag_(tag), offset_(DYNAMIC_CUSTOM) 2663 { } 2664 2665 // Return the tag of this entry. 2666 elfcpp::DT 2667 tag() const 2668 { return this->tag_; } 2669 2670 // Write the dynamic entry to an output view. 2671 template<int size, bool big_endian> 2672 void 2673 write(unsigned char* pov, const Stringpool*) const; 2674 2675 private: 2676 // Classification is encoded in the OFFSET field. 2677 enum Classification 2678 { 2679 // Section address. 2680 DYNAMIC_SECTION_ADDRESS = 0, 2681 // Number. 2682 DYNAMIC_NUMBER = -1U, 2683 // Section size. 2684 DYNAMIC_SECTION_SIZE = -2U, 2685 // Symbol adress. 2686 DYNAMIC_SYMBOL = -3U, 2687 // String. 2688 DYNAMIC_STRING = -4U, 2689 // Custom value. 2690 DYNAMIC_CUSTOM = -5U 2691 // Any other value indicates a section address plus OFFSET. 2692 }; 2693 2694 union 2695 { 2696 // For DYNAMIC_NUMBER. 2697 unsigned int val; 2698 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET. 2699 const Output_data* od; 2700 // For DYNAMIC_SYMBOL. 2701 const Symbol* sym; 2702 // For DYNAMIC_STRING. 2703 const char* str; 2704 } u_; 2705 // For DYNAMIC_SYMBOL with two sections. 2706 const Output_data* od2; 2707 // The dynamic tag. 2708 elfcpp::DT tag_; 2709 // The type of entry (Classification) or offset within a section. 2710 unsigned int offset_; 2711 }; 2712 2713 // Add an entry to the list. 2714 void 2715 add_entry(const Dynamic_entry& entry) 2716 { this->entries_.push_back(entry); } 2717 2718 // Sized version of write function. 2719 template<int size, bool big_endian> 2720 void 2721 sized_write(Output_file* of); 2722 2723 // The type of the list of entries. 2724 typedef std::vector<Dynamic_entry> Dynamic_entries; 2725 2726 // The entries. 2727 Dynamic_entries entries_; 2728 // The pool used for strings. 2729 Stringpool* pool_; 2730 }; 2731 2732 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections, 2733 // which may be required if the object file has more than 2734 // SHN_LORESERVE sections. 2735 2736 class Output_symtab_xindex : public Output_section_data 2737 { 2738 public: 2739 Output_symtab_xindex(size_t symcount) 2740 : Output_section_data(symcount * 4, 4, true), 2741 entries_() 2742 { } 2743 2744 // Add an entry: symbol number SYMNDX has section SHNDX. 2745 void 2746 add(unsigned int symndx, unsigned int shndx) 2747 { this->entries_.push_back(std::make_pair(symndx, shndx)); } 2748 2749 protected: 2750 void 2751 do_write(Output_file*); 2752 2753 // Write to a map file. 2754 void 2755 do_print_to_mapfile(Mapfile* mapfile) const 2756 { mapfile->print_output_data(this, _("** symtab xindex")); } 2757 2758 private: 2759 template<bool big_endian> 2760 void 2761 endian_do_write(unsigned char*); 2762 2763 // It is likely that most symbols will not require entries. Rather 2764 // than keep a vector for all symbols, we keep pairs of symbol index 2765 // and section index. 2766 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries; 2767 2768 // The entries we need. 2769 Xindex_entries entries_; 2770 }; 2771 2772 // A relaxed input section. 2773 class Output_relaxed_input_section : public Output_section_data_build 2774 { 2775 public: 2776 // We would like to call relobj->section_addralign(shndx) to get the 2777 // alignment but we do not want the constructor to fail. So callers 2778 // are repsonsible for ensuring that. 2779 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx, 2780 uint64_t addralign) 2781 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx) 2782 { } 2783 2784 // Return the Relobj of this relaxed input section. 2785 Relobj* 2786 relobj() const 2787 { return this->relobj_; } 2788 2789 // Return the section index of this relaxed input section. 2790 unsigned int 2791 shndx() const 2792 { return this->shndx_; } 2793 2794 protected: 2795 void 2796 set_relobj(Relobj* relobj) 2797 { this->relobj_ = relobj; } 2798 2799 void 2800 set_shndx(unsigned int shndx) 2801 { this->shndx_ = shndx; } 2802 2803 private: 2804 Relobj* relobj_; 2805 unsigned int shndx_; 2806 }; 2807 2808 // This class describes properties of merge data sections. It is used 2809 // as a key type for maps. 2810 class Merge_section_properties 2811 { 2812 public: 2813 Merge_section_properties(bool is_string, uint64_t entsize, 2814 uint64_t addralign) 2815 : is_string_(is_string), entsize_(entsize), addralign_(addralign) 2816 { } 2817 2818 // Whether this equals to another Merge_section_properties MSP. 2819 bool 2820 eq(const Merge_section_properties& msp) const 2821 { 2822 return ((this->is_string_ == msp.is_string_) 2823 && (this->entsize_ == msp.entsize_) 2824 && (this->addralign_ == msp.addralign_)); 2825 } 2826 2827 // Compute a hash value for this using 64-bit FNV-1a hash. 2828 size_t 2829 hash_value() const 2830 { 2831 uint64_t h = 14695981039346656037ULL; // FNV offset basis. 2832 uint64_t prime = 1099511628211ULL; 2833 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime; 2834 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime; 2835 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime; 2836 return h; 2837 } 2838 2839 // Functors for associative containers. 2840 struct equal_to 2841 { 2842 bool 2843 operator()(const Merge_section_properties& msp1, 2844 const Merge_section_properties& msp2) const 2845 { return msp1.eq(msp2); } 2846 }; 2847 2848 struct hash 2849 { 2850 size_t 2851 operator()(const Merge_section_properties& msp) const 2852 { return msp.hash_value(); } 2853 }; 2854 2855 private: 2856 // Whether this merge data section is for strings. 2857 bool is_string_; 2858 // Entsize of this merge data section. 2859 uint64_t entsize_; 2860 // Address alignment. 2861 uint64_t addralign_; 2862 }; 2863 2864 // This class is used to speed up look up of special input sections in an 2865 // Output_section. 2866 2867 class Output_section_lookup_maps 2868 { 2869 public: 2870 Output_section_lookup_maps() 2871 : is_valid_(true), merge_sections_by_properties_(), 2872 merge_sections_by_id_(), relaxed_input_sections_by_id_() 2873 { } 2874 2875 // Whether the maps are valid. 2876 bool 2877 is_valid() const 2878 { return this->is_valid_; } 2879 2880 // Invalidate the maps. 2881 void 2882 invalidate() 2883 { this->is_valid_ = false; } 2884 2885 // Clear the maps. 2886 void 2887 clear() 2888 { 2889 this->merge_sections_by_properties_.clear(); 2890 this->merge_sections_by_id_.clear(); 2891 this->relaxed_input_sections_by_id_.clear(); 2892 // A cleared map is valid. 2893 this->is_valid_ = true; 2894 } 2895 2896 // Find a merge section by merge section properties. Return NULL if none 2897 // is found. 2898 Output_merge_base* 2899 find_merge_section(const Merge_section_properties& msp) const 2900 { 2901 gold_assert(this->is_valid_); 2902 Merge_sections_by_properties::const_iterator p = 2903 this->merge_sections_by_properties_.find(msp); 2904 return p != this->merge_sections_by_properties_.end() ? p->second : NULL; 2905 } 2906 2907 // Find a merge section by section ID of a merge input section. Return NULL 2908 // if none is found. 2909 Output_merge_base* 2910 find_merge_section(const Object* object, unsigned int shndx) const 2911 { 2912 gold_assert(this->is_valid_); 2913 Merge_sections_by_id::const_iterator p = 2914 this->merge_sections_by_id_.find(Const_section_id(object, shndx)); 2915 return p != this->merge_sections_by_id_.end() ? p->second : NULL; 2916 } 2917 2918 // Add a merge section pointed by POMB with properties MSP. 2919 void 2920 add_merge_section(const Merge_section_properties& msp, 2921 Output_merge_base* pomb) 2922 { 2923 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb); 2924 std::pair<Merge_sections_by_properties::iterator, bool> result = 2925 this->merge_sections_by_properties_.insert(value); 2926 gold_assert(result.second); 2927 } 2928 2929 // Add a mapping from a merged input section in OBJECT with index SHNDX 2930 // to a merge output section pointed by POMB. 2931 void 2932 add_merge_input_section(const Object* object, unsigned int shndx, 2933 Output_merge_base* pomb) 2934 { 2935 Const_section_id csid(object, shndx); 2936 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb); 2937 std::pair<Merge_sections_by_id::iterator, bool> result = 2938 this->merge_sections_by_id_.insert(value); 2939 gold_assert(result.second); 2940 } 2941 2942 // Find a relaxed input section of OBJECT with index SHNDX. 2943 Output_relaxed_input_section* 2944 find_relaxed_input_section(const Object* object, unsigned int shndx) const 2945 { 2946 gold_assert(this->is_valid_); 2947 Relaxed_input_sections_by_id::const_iterator p = 2948 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx)); 2949 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL; 2950 } 2951 2952 // Add a relaxed input section pointed by POMB and whose original input 2953 // section is in OBJECT with index SHNDX. 2954 void 2955 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx, 2956 Output_relaxed_input_section* poris) 2957 { 2958 Const_section_id csid(relobj, shndx); 2959 std::pair<Const_section_id, Output_relaxed_input_section*> 2960 value(csid, poris); 2961 std::pair<Relaxed_input_sections_by_id::iterator, bool> result = 2962 this->relaxed_input_sections_by_id_.insert(value); 2963 gold_assert(result.second); 2964 } 2965 2966 private: 2967 typedef Unordered_map<Const_section_id, Output_merge_base*, 2968 Const_section_id_hash> 2969 Merge_sections_by_id; 2970 2971 typedef Unordered_map<Merge_section_properties, Output_merge_base*, 2972 Merge_section_properties::hash, 2973 Merge_section_properties::equal_to> 2974 Merge_sections_by_properties; 2975 2976 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*, 2977 Const_section_id_hash> 2978 Relaxed_input_sections_by_id; 2979 2980 // Whether this is valid 2981 bool is_valid_; 2982 // Merge sections by merge section properties. 2983 Merge_sections_by_properties merge_sections_by_properties_; 2984 // Merge sections by section IDs. 2985 Merge_sections_by_id merge_sections_by_id_; 2986 // Relaxed sections by section IDs. 2987 Relaxed_input_sections_by_id relaxed_input_sections_by_id_; 2988 }; 2989 2990 // This abstract base class defines the interface for the 2991 // types of methods used to fill free space left in an output 2992 // section during an incremental link. These methods are used 2993 // to insert dummy compilation units into debug info so that 2994 // debug info consumers can scan the debug info serially. 2995 2996 class Output_fill 2997 { 2998 public: 2999 Output_fill() 3000 : is_big_endian_(parameters->target().is_big_endian()) 3001 { } 3002 3003 virtual 3004 ~Output_fill() 3005 { } 3006 3007 // Return the smallest size chunk of free space that can be 3008 // filled with a dummy compilation unit. 3009 size_t 3010 minimum_hole_size() const 3011 { return this->do_minimum_hole_size(); } 3012 3013 // Write a fill pattern of length LEN at offset OFF in the file. 3014 void 3015 write(Output_file* of, off_t off, size_t len) const 3016 { this->do_write(of, off, len); } 3017 3018 protected: 3019 virtual size_t 3020 do_minimum_hole_size() const = 0; 3021 3022 virtual void 3023 do_write(Output_file* of, off_t off, size_t len) const = 0; 3024 3025 bool 3026 is_big_endian() const 3027 { return this->is_big_endian_; } 3028 3029 private: 3030 bool is_big_endian_; 3031 }; 3032 3033 // Fill method that introduces a dummy compilation unit in 3034 // a .debug_info or .debug_types section. 3035 3036 class Output_fill_debug_info : public Output_fill 3037 { 3038 public: 3039 Output_fill_debug_info(bool is_debug_types) 3040 : is_debug_types_(is_debug_types) 3041 { } 3042 3043 protected: 3044 virtual size_t 3045 do_minimum_hole_size() const; 3046 3047 virtual void 3048 do_write(Output_file* of, off_t off, size_t len) const; 3049 3050 private: 3051 // Version of the header. 3052 static const int version = 4; 3053 // True if this is a .debug_types section. 3054 bool is_debug_types_; 3055 }; 3056 3057 // Fill method that introduces a dummy compilation unit in 3058 // a .debug_line section. 3059 3060 class Output_fill_debug_line : public Output_fill 3061 { 3062 public: 3063 Output_fill_debug_line() 3064 { } 3065 3066 protected: 3067 virtual size_t 3068 do_minimum_hole_size() const; 3069 3070 virtual void 3071 do_write(Output_file* of, off_t off, size_t len) const; 3072 3073 private: 3074 // Version of the header. We write a DWARF-3 header because it's smaller 3075 // and many tools have not yet been updated to understand the DWARF-4 header. 3076 static const int version = 3; 3077 // Length of the portion of the header that follows the header_length 3078 // field. This includes the following fields: 3079 // minimum_instruction_length, default_is_stmt, line_base, line_range, 3080 // opcode_base, standard_opcode_lengths[], include_directories, filenames. 3081 // The standard_opcode_lengths array is 12 bytes long, and the 3082 // include_directories and filenames fields each contain only a single 3083 // null byte. 3084 static const size_t header_length = 19; 3085 }; 3086 3087 // An output section. We don't expect to have too many output 3088 // sections, so we don't bother to do a template on the size. 3089 3090 class Output_section : public Output_data 3091 { 3092 public: 3093 // Create an output section, giving the name, type, and flags. 3094 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword); 3095 virtual ~Output_section(); 3096 3097 // Add a new input section SHNDX, named NAME, with header SHDR, from 3098 // object OBJECT. RELOC_SHNDX is the index of a relocation section 3099 // which applies to this section, or 0 if none, or -1 if more than 3100 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause 3101 // in a linker script; in that case we need to keep track of input 3102 // sections associated with an output section. Return the offset 3103 // within the output section. 3104 template<int size, bool big_endian> 3105 off_t 3106 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object, 3107 unsigned int shndx, const char* name, 3108 const elfcpp::Shdr<size, big_endian>& shdr, 3109 unsigned int reloc_shndx, bool have_sections_script); 3110 3111 // Add generated data POSD to this output section. 3112 void 3113 add_output_section_data(Output_section_data* posd); 3114 3115 // Add a relaxed input section PORIS called NAME to this output section 3116 // with LAYOUT. 3117 void 3118 add_relaxed_input_section(Layout* layout, 3119 Output_relaxed_input_section* poris, 3120 const std::string& name); 3121 3122 // Return the section name. 3123 const char* 3124 name() const 3125 { return this->name_; } 3126 3127 // Return the section type. 3128 elfcpp::Elf_Word 3129 type() const 3130 { return this->type_; } 3131 3132 // Return the section flags. 3133 elfcpp::Elf_Xword 3134 flags() const 3135 { return this->flags_; } 3136 3137 typedef std::map<Section_id, unsigned int> Section_layout_order; 3138 3139 void 3140 update_section_layout(const Section_layout_order* order_map); 3141 3142 // Update the output section flags based on input section flags. 3143 void 3144 update_flags_for_input_section(elfcpp::Elf_Xword flags); 3145 3146 // Return the entsize field. 3147 uint64_t 3148 entsize() const 3149 { return this->entsize_; } 3150 3151 // Set the entsize field. 3152 void 3153 set_entsize(uint64_t v); 3154 3155 // Set the load address. 3156 void 3157 set_load_address(uint64_t load_address) 3158 { 3159 this->load_address_ = load_address; 3160 this->has_load_address_ = true; 3161 } 3162 3163 // Set the link field to the output section index of a section. 3164 void 3165 set_link_section(const Output_data* od) 3166 { 3167 gold_assert(this->link_ == 0 3168 && !this->should_link_to_symtab_ 3169 && !this->should_link_to_dynsym_); 3170 this->link_section_ = od; 3171 } 3172 3173 // Set the link field to a constant. 3174 void 3175 set_link(unsigned int v) 3176 { 3177 gold_assert(this->link_section_ == NULL 3178 && !this->should_link_to_symtab_ 3179 && !this->should_link_to_dynsym_); 3180 this->link_ = v; 3181 } 3182 3183 // Record that this section should link to the normal symbol table. 3184 void 3185 set_should_link_to_symtab() 3186 { 3187 gold_assert(this->link_section_ == NULL 3188 && this->link_ == 0 3189 && !this->should_link_to_dynsym_); 3190 this->should_link_to_symtab_ = true; 3191 } 3192 3193 // Record that this section should link to the dynamic symbol table. 3194 void 3195 set_should_link_to_dynsym() 3196 { 3197 gold_assert(this->link_section_ == NULL 3198 && this->link_ == 0 3199 && !this->should_link_to_symtab_); 3200 this->should_link_to_dynsym_ = true; 3201 } 3202 3203 // Return the info field. 3204 unsigned int 3205 info() const 3206 { 3207 gold_assert(this->info_section_ == NULL 3208 && this->info_symndx_ == NULL); 3209 return this->info_; 3210 } 3211 3212 // Set the info field to the output section index of a section. 3213 void 3214 set_info_section(const Output_section* os) 3215 { 3216 gold_assert((this->info_section_ == NULL 3217 || (this->info_section_ == os 3218 && this->info_uses_section_index_)) 3219 && this->info_symndx_ == NULL 3220 && this->info_ == 0); 3221 this->info_section_ = os; 3222 this->info_uses_section_index_= true; 3223 } 3224 3225 // Set the info field to the symbol table index of a symbol. 3226 void 3227 set_info_symndx(const Symbol* sym) 3228 { 3229 gold_assert(this->info_section_ == NULL 3230 && (this->info_symndx_ == NULL 3231 || this->info_symndx_ == sym) 3232 && this->info_ == 0); 3233 this->info_symndx_ = sym; 3234 } 3235 3236 // Set the info field to the symbol table index of a section symbol. 3237 void 3238 set_info_section_symndx(const Output_section* os) 3239 { 3240 gold_assert((this->info_section_ == NULL 3241 || (this->info_section_ == os 3242 && !this->info_uses_section_index_)) 3243 && this->info_symndx_ == NULL 3244 && this->info_ == 0); 3245 this->info_section_ = os; 3246 this->info_uses_section_index_ = false; 3247 } 3248 3249 // Set the info field to a constant. 3250 void 3251 set_info(unsigned int v) 3252 { 3253 gold_assert(this->info_section_ == NULL 3254 && this->info_symndx_ == NULL 3255 && (this->info_ == 0 3256 || this->info_ == v)); 3257 this->info_ = v; 3258 } 3259 3260 // Set the addralign field. 3261 void 3262 set_addralign(uint64_t v) 3263 { this->addralign_ = v; } 3264 3265 void 3266 checkpoint_set_addralign(uint64_t val) 3267 { 3268 if (this->checkpoint_ != NULL) 3269 this->checkpoint_->set_addralign(val); 3270 } 3271 3272 // Whether the output section index has been set. 3273 bool 3274 has_out_shndx() const 3275 { return this->out_shndx_ != -1U; } 3276 3277 // Indicate that we need a symtab index. 3278 void 3279 set_needs_symtab_index() 3280 { this->needs_symtab_index_ = true; } 3281 3282 // Return whether we need a symtab index. 3283 bool 3284 needs_symtab_index() const 3285 { return this->needs_symtab_index_; } 3286 3287 // Get the symtab index. 3288 unsigned int 3289 symtab_index() const 3290 { 3291 gold_assert(this->symtab_index_ != 0); 3292 return this->symtab_index_; 3293 } 3294 3295 // Set the symtab index. 3296 void 3297 set_symtab_index(unsigned int index) 3298 { 3299 gold_assert(index != 0); 3300 this->symtab_index_ = index; 3301 } 3302 3303 // Indicate that we need a dynsym index. 3304 void 3305 set_needs_dynsym_index() 3306 { this->needs_dynsym_index_ = true; } 3307 3308 // Return whether we need a dynsym index. 3309 bool 3310 needs_dynsym_index() const 3311 { return this->needs_dynsym_index_; } 3312 3313 // Get the dynsym index. 3314 unsigned int 3315 dynsym_index() const 3316 { 3317 gold_assert(this->dynsym_index_ != 0); 3318 return this->dynsym_index_; 3319 } 3320 3321 // Set the dynsym index. 3322 void 3323 set_dynsym_index(unsigned int index) 3324 { 3325 gold_assert(index != 0); 3326 this->dynsym_index_ = index; 3327 } 3328 3329 // Sort the attached input sections. 3330 void 3331 sort_attached_input_sections(); 3332 3333 // Return whether the input sections sections attachd to this output 3334 // section may require sorting. This is used to handle constructor 3335 // priorities compatibly with GNU ld. 3336 bool 3337 may_sort_attached_input_sections() const 3338 { return this->may_sort_attached_input_sections_; } 3339 3340 // Record that the input sections attached to this output section 3341 // may require sorting. 3342 void 3343 set_may_sort_attached_input_sections() 3344 { this->may_sort_attached_input_sections_ = true; } 3345 3346 // Returns true if input sections must be sorted according to the 3347 // order in which their name appear in the --section-ordering-file. 3348 bool 3349 input_section_order_specified() 3350 { return this->input_section_order_specified_; } 3351 3352 // Record that input sections must be sorted as some of their names 3353 // match the patterns specified through --section-ordering-file. 3354 void 3355 set_input_section_order_specified() 3356 { this->input_section_order_specified_ = true; } 3357 3358 // Return whether the input sections attached to this output section 3359 // require sorting. This is used to handle constructor priorities 3360 // compatibly with GNU ld. 3361 bool 3362 must_sort_attached_input_sections() const 3363 { return this->must_sort_attached_input_sections_; } 3364 3365 // Record that the input sections attached to this output section 3366 // require sorting. 3367 void 3368 set_must_sort_attached_input_sections() 3369 { this->must_sort_attached_input_sections_ = true; } 3370 3371 // Get the order in which this section appears in the PT_LOAD output 3372 // segment. 3373 Output_section_order 3374 order() const 3375 { return this->order_; } 3376 3377 // Set the order for this section. 3378 void 3379 set_order(Output_section_order order) 3380 { this->order_ = order; } 3381 3382 // Return whether this section holds relro data--data which has 3383 // dynamic relocations but which may be marked read-only after the 3384 // dynamic relocations have been completed. 3385 bool 3386 is_relro() const 3387 { return this->is_relro_; } 3388 3389 // Record that this section holds relro data. 3390 void 3391 set_is_relro() 3392 { this->is_relro_ = true; } 3393 3394 // Record that this section does not hold relro data. 3395 void 3396 clear_is_relro() 3397 { this->is_relro_ = false; } 3398 3399 // True if this is a small section: a section which holds small 3400 // variables. 3401 bool 3402 is_small_section() const 3403 { return this->is_small_section_; } 3404 3405 // Record that this is a small section. 3406 void 3407 set_is_small_section() 3408 { this->is_small_section_ = true; } 3409 3410 // True if this is a large section: a section which holds large 3411 // variables. 3412 bool 3413 is_large_section() const 3414 { return this->is_large_section_; } 3415 3416 // Record that this is a large section. 3417 void 3418 set_is_large_section() 3419 { this->is_large_section_ = true; } 3420 3421 // True if this is a large data (not BSS) section. 3422 bool 3423 is_large_data_section() 3424 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; } 3425 3426 // Return whether this section should be written after all the input 3427 // sections are complete. 3428 bool 3429 after_input_sections() const 3430 { return this->after_input_sections_; } 3431 3432 // Record that this section should be written after all the input 3433 // sections are complete. 3434 void 3435 set_after_input_sections() 3436 { this->after_input_sections_ = true; } 3437 3438 // Return whether this section requires postprocessing after all 3439 // relocations have been applied. 3440 bool 3441 requires_postprocessing() const 3442 { return this->requires_postprocessing_; } 3443 3444 bool 3445 is_unique_segment() const 3446 { return this->is_unique_segment_; } 3447 3448 void 3449 set_is_unique_segment() 3450 { this->is_unique_segment_ = true; } 3451 3452 uint64_t extra_segment_flags() const 3453 { return this->extra_segment_flags_; } 3454 3455 void 3456 set_extra_segment_flags(uint64_t flags) 3457 { this->extra_segment_flags_ = flags; } 3458 3459 uint64_t segment_alignment() const 3460 { return this->segment_alignment_; } 3461 3462 void 3463 set_segment_alignment(uint64_t align) 3464 { this->segment_alignment_ = align; } 3465 3466 // If a section requires postprocessing, return the buffer to use. 3467 unsigned char* 3468 postprocessing_buffer() const 3469 { 3470 gold_assert(this->postprocessing_buffer_ != NULL); 3471 return this->postprocessing_buffer_; 3472 } 3473 3474 // If a section requires postprocessing, create the buffer to use. 3475 void 3476 create_postprocessing_buffer(); 3477 3478 // If a section requires postprocessing, this is the size of the 3479 // buffer to which relocations should be applied. 3480 off_t 3481 postprocessing_buffer_size() const 3482 { return this->current_data_size_for_child(); } 3483 3484 // Modify the section name. This is only permitted for an 3485 // unallocated section, and only before the size has been finalized. 3486 // Otherwise the name will not get into Layout::namepool_. 3487 void 3488 set_name(const char* newname) 3489 { 3490 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0); 3491 gold_assert(!this->is_data_size_valid()); 3492 this->name_ = newname; 3493 } 3494 3495 // Return whether the offset OFFSET in the input section SHNDX in 3496 // object OBJECT is being included in the link. 3497 bool 3498 is_input_address_mapped(const Relobj* object, unsigned int shndx, 3499 off_t offset) const; 3500 3501 // Return the offset within the output section of OFFSET relative to 3502 // the start of input section SHNDX in object OBJECT. 3503 section_offset_type 3504 output_offset(const Relobj* object, unsigned int shndx, 3505 section_offset_type offset) const; 3506 3507 // Return the output virtual address of OFFSET relative to the start 3508 // of input section SHNDX in object OBJECT. 3509 uint64_t 3510 output_address(const Relobj* object, unsigned int shndx, 3511 off_t offset) const; 3512 3513 // Look for the merged section for input section SHNDX in object 3514 // OBJECT. If found, return true, and set *ADDR to the address of 3515 // the start of the merged section. This is not necessary the 3516 // output offset corresponding to input offset 0 in the section, 3517 // since the section may be mapped arbitrarily. 3518 bool 3519 find_starting_output_address(const Relobj* object, unsigned int shndx, 3520 uint64_t* addr) const; 3521 3522 // Record that this output section was found in the SECTIONS clause 3523 // of a linker script. 3524 void 3525 set_found_in_sections_clause() 3526 { this->found_in_sections_clause_ = true; } 3527 3528 // Return whether this output section was found in the SECTIONS 3529 // clause of a linker script. 3530 bool 3531 found_in_sections_clause() const 3532 { return this->found_in_sections_clause_; } 3533 3534 // Write the section header into *OPHDR. 3535 template<int size, bool big_endian> 3536 void 3537 write_header(const Layout*, const Stringpool*, 3538 elfcpp::Shdr_write<size, big_endian>*) const; 3539 3540 // The next few calls are for linker script support. 3541 3542 // In some cases we need to keep a list of the input sections 3543 // associated with this output section. We only need the list if we 3544 // might have to change the offsets of the input section within the 3545 // output section after we add the input section. The ordinary 3546 // input sections will be written out when we process the object 3547 // file, and as such we don't need to track them here. We do need 3548 // to track Output_section_data objects here. We store instances of 3549 // this structure in a std::vector, so it must be a POD. There can 3550 // be many instances of this structure, so we use a union to save 3551 // some space. 3552 class Input_section 3553 { 3554 public: 3555 Input_section() 3556 : shndx_(0), p2align_(0) 3557 { 3558 this->u1_.data_size = 0; 3559 this->u2_.object = NULL; 3560 } 3561 3562 // For an ordinary input section. 3563 Input_section(Relobj* object, unsigned int shndx, off_t data_size, 3564 uint64_t addralign) 3565 : shndx_(shndx), 3566 p2align_(ffsll(static_cast<long long>(addralign))), 3567 section_order_index_(0) 3568 { 3569 gold_assert(shndx != OUTPUT_SECTION_CODE 3570 && shndx != MERGE_DATA_SECTION_CODE 3571 && shndx != MERGE_STRING_SECTION_CODE 3572 && shndx != RELAXED_INPUT_SECTION_CODE); 3573 this->u1_.data_size = data_size; 3574 this->u2_.object = object; 3575 } 3576 3577 // For a non-merge output section. 3578 Input_section(Output_section_data* posd) 3579 : shndx_(OUTPUT_SECTION_CODE), p2align_(0), 3580 section_order_index_(0) 3581 { 3582 this->u1_.data_size = 0; 3583 this->u2_.posd = posd; 3584 } 3585 3586 // For a merge section. 3587 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize) 3588 : shndx_(is_string 3589 ? MERGE_STRING_SECTION_CODE 3590 : MERGE_DATA_SECTION_CODE), 3591 p2align_(0), 3592 section_order_index_(0) 3593 { 3594 this->u1_.entsize = entsize; 3595 this->u2_.posd = posd; 3596 } 3597 3598 // For a relaxed input section. 3599 Input_section(Output_relaxed_input_section* psection) 3600 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0), 3601 section_order_index_(0) 3602 { 3603 this->u1_.data_size = 0; 3604 this->u2_.poris = psection; 3605 } 3606 3607 unsigned int 3608 section_order_index() const 3609 { 3610 return this->section_order_index_; 3611 } 3612 3613 void 3614 set_section_order_index(unsigned int number) 3615 { 3616 this->section_order_index_ = number; 3617 } 3618 3619 // The required alignment. 3620 uint64_t 3621 addralign() const 3622 { 3623 if (this->p2align_ != 0) 3624 return static_cast<uint64_t>(1) << (this->p2align_ - 1); 3625 else if (!this->is_input_section()) 3626 return this->u2_.posd->addralign(); 3627 else 3628 return 0; 3629 } 3630 3631 // Set the required alignment, which must be either 0 or a power of 2. 3632 // For input sections that are sub-classes of Output_section_data, a 3633 // alignment of zero means asking the underlying object for alignment. 3634 void 3635 set_addralign(uint64_t addralign) 3636 { 3637 if (addralign == 0) 3638 this->p2align_ = 0; 3639 else 3640 { 3641 gold_assert((addralign & (addralign - 1)) == 0); 3642 this->p2align_ = ffsll(static_cast<long long>(addralign)); 3643 } 3644 } 3645 3646 // Return the current required size, without finalization. 3647 off_t 3648 current_data_size() const; 3649 3650 // Return the required size. 3651 off_t 3652 data_size() const; 3653 3654 // Whether this is an input section. 3655 bool 3656 is_input_section() const 3657 { 3658 return (this->shndx_ != OUTPUT_SECTION_CODE 3659 && this->shndx_ != MERGE_DATA_SECTION_CODE 3660 && this->shndx_ != MERGE_STRING_SECTION_CODE 3661 && this->shndx_ != RELAXED_INPUT_SECTION_CODE); 3662 } 3663 3664 // Return whether this is a merge section which matches the 3665 // parameters. 3666 bool 3667 is_merge_section(bool is_string, uint64_t entsize, 3668 uint64_t addralign) const 3669 { 3670 return (this->shndx_ == (is_string 3671 ? MERGE_STRING_SECTION_CODE 3672 : MERGE_DATA_SECTION_CODE) 3673 && this->u1_.entsize == entsize 3674 && this->addralign() == addralign); 3675 } 3676 3677 // Return whether this is a merge section for some input section. 3678 bool 3679 is_merge_section() const 3680 { 3681 return (this->shndx_ == MERGE_DATA_SECTION_CODE 3682 || this->shndx_ == MERGE_STRING_SECTION_CODE); 3683 } 3684 3685 // Return whether this is a relaxed input section. 3686 bool 3687 is_relaxed_input_section() const 3688 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; } 3689 3690 // Return whether this is a generic Output_section_data. 3691 bool 3692 is_output_section_data() const 3693 { 3694 return this->shndx_ == OUTPUT_SECTION_CODE; 3695 } 3696 3697 // Return the object for an input section. 3698 Relobj* 3699 relobj() const; 3700 3701 // Return the input section index for an input section. 3702 unsigned int 3703 shndx() const; 3704 3705 // For non-input-sections, return the associated Output_section_data 3706 // object. 3707 Output_section_data* 3708 output_section_data() const 3709 { 3710 gold_assert(!this->is_input_section()); 3711 return this->u2_.posd; 3712 } 3713 3714 // For a merge section, return the Output_merge_base pointer. 3715 Output_merge_base* 3716 output_merge_base() const 3717 { 3718 gold_assert(this->is_merge_section()); 3719 return this->u2_.pomb; 3720 } 3721 3722 // Return the Output_relaxed_input_section object. 3723 Output_relaxed_input_section* 3724 relaxed_input_section() const 3725 { 3726 gold_assert(this->is_relaxed_input_section()); 3727 return this->u2_.poris; 3728 } 3729 3730 // Set the output section. 3731 void 3732 set_output_section(Output_section* os) 3733 { 3734 gold_assert(!this->is_input_section()); 3735 Output_section_data* posd = 3736 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd; 3737 posd->set_output_section(os); 3738 } 3739 3740 // Set the address and file offset. This is called during 3741 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of 3742 // the enclosing section. 3743 void 3744 set_address_and_file_offset(uint64_t address, off_t file_offset, 3745 off_t section_file_offset); 3746 3747 // Reset the address and file offset. 3748 void 3749 reset_address_and_file_offset(); 3750 3751 // Finalize the data size. 3752 void 3753 finalize_data_size(); 3754 3755 // Add an input section, for SHF_MERGE sections. 3756 bool 3757 add_input_section(Relobj* object, unsigned int shndx) 3758 { 3759 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE 3760 || this->shndx_ == MERGE_STRING_SECTION_CODE); 3761 return this->u2_.posd->add_input_section(object, shndx); 3762 } 3763 3764 // Given an input OBJECT, an input section index SHNDX within that 3765 // object, and an OFFSET relative to the start of that input 3766 // section, return whether or not the output offset is known. If 3767 // this function returns true, it sets *POUTPUT to the offset in 3768 // the output section, relative to the start of the input section 3769 // in the output section. *POUTPUT may be different from OFFSET 3770 // for a merged section. 3771 bool 3772 output_offset(const Relobj* object, unsigned int shndx, 3773 section_offset_type offset, 3774 section_offset_type* poutput) const; 3775 3776 // Return whether this is the merge section for the input section 3777 // SHNDX in OBJECT. 3778 bool 3779 is_merge_section_for(const Relobj* object, unsigned int shndx) const; 3780 3781 // Write out the data. This does nothing for an input section. 3782 void 3783 write(Output_file*); 3784 3785 // Write the data to a buffer. This does nothing for an input 3786 // section. 3787 void 3788 write_to_buffer(unsigned char*); 3789 3790 // Print to a map file. 3791 void 3792 print_to_mapfile(Mapfile*) const; 3793 3794 // Print statistics about merge sections to stderr. 3795 void 3796 print_merge_stats(const char* section_name) 3797 { 3798 if (this->shndx_ == MERGE_DATA_SECTION_CODE 3799 || this->shndx_ == MERGE_STRING_SECTION_CODE) 3800 this->u2_.posd->print_merge_stats(section_name); 3801 } 3802 3803 private: 3804 // Code values which appear in shndx_. If the value is not one of 3805 // these codes, it is the input section index in the object file. 3806 enum 3807 { 3808 // An Output_section_data. 3809 OUTPUT_SECTION_CODE = -1U, 3810 // An Output_section_data for an SHF_MERGE section with 3811 // SHF_STRINGS not set. 3812 MERGE_DATA_SECTION_CODE = -2U, 3813 // An Output_section_data for an SHF_MERGE section with 3814 // SHF_STRINGS set. 3815 MERGE_STRING_SECTION_CODE = -3U, 3816 // An Output_section_data for a relaxed input section. 3817 RELAXED_INPUT_SECTION_CODE = -4U 3818 }; 3819 3820 // For an ordinary input section, this is the section index in the 3821 // input file. For an Output_section_data, this is 3822 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or 3823 // MERGE_STRING_SECTION_CODE. 3824 unsigned int shndx_; 3825 // The required alignment, stored as a power of 2. 3826 unsigned int p2align_; 3827 union 3828 { 3829 // For an ordinary input section, the section size. 3830 off_t data_size; 3831 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not 3832 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the 3833 // entity size. 3834 uint64_t entsize; 3835 } u1_; 3836 union 3837 { 3838 // For an ordinary input section, the object which holds the 3839 // input section. 3840 Relobj* object; 3841 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or 3842 // MERGE_STRING_SECTION_CODE, the data. 3843 Output_section_data* posd; 3844 Output_merge_base* pomb; 3845 // For RELAXED_INPUT_SECTION_CODE, the data. 3846 Output_relaxed_input_section* poris; 3847 } u2_; 3848 // The line number of the pattern it matches in the --section-ordering-file 3849 // file. It is 0 if does not match any pattern. 3850 unsigned int section_order_index_; 3851 }; 3852 3853 // Store the list of input sections for this Output_section into the 3854 // list passed in. This removes the input sections, leaving only 3855 // any Output_section_data elements. This returns the size of those 3856 // Output_section_data elements. ADDRESS is the address of this 3857 // output section. FILL is the fill value to use, in case there are 3858 // any spaces between the remaining Output_section_data elements. 3859 uint64_t 3860 get_input_sections(uint64_t address, const std::string& fill, 3861 std::list<Input_section>*); 3862 3863 // Add a script input section. A script input section can either be 3864 // a plain input section or a sub-class of Output_section_data. 3865 void 3866 add_script_input_section(const Input_section& input_section); 3867 3868 // Set the current size of the output section. 3869 void 3870 set_current_data_size(off_t size) 3871 { this->set_current_data_size_for_child(size); } 3872 3873 // End of linker script support. 3874 3875 // Save states before doing section layout. 3876 // This is used for relaxation. 3877 void 3878 save_states(); 3879 3880 // Restore states prior to section layout. 3881 void 3882 restore_states(); 3883 3884 // Discard states. 3885 void 3886 discard_states(); 3887 3888 // Convert existing input sections to relaxed input sections. 3889 void 3890 convert_input_sections_to_relaxed_sections( 3891 const std::vector<Output_relaxed_input_section*>& sections); 3892 3893 // Find a relaxed input section to an input section in OBJECT 3894 // with index SHNDX. Return NULL if none is found. 3895 const Output_relaxed_input_section* 3896 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const; 3897 3898 // Whether section offsets need adjustment due to relaxation. 3899 bool 3900 section_offsets_need_adjustment() const 3901 { return this->section_offsets_need_adjustment_; } 3902 3903 // Set section_offsets_need_adjustment to be true. 3904 void 3905 set_section_offsets_need_adjustment() 3906 { this->section_offsets_need_adjustment_ = true; } 3907 3908 // Set section_offsets_need_adjustment to be false. 3909 void 3910 clear_section_offsets_need_adjustment() 3911 { this->section_offsets_need_adjustment_ = false; } 3912 3913 // Adjust section offsets of input sections in this. This is 3914 // requires if relaxation caused some input sections to change sizes. 3915 void 3916 adjust_section_offsets(); 3917 3918 // Whether this is a NOLOAD section. 3919 bool 3920 is_noload() const 3921 { return this->is_noload_; } 3922 3923 // Set NOLOAD flag. 3924 void 3925 set_is_noload() 3926 { this->is_noload_ = true; } 3927 3928 // Print merge statistics to stderr. 3929 void 3930 print_merge_stats(); 3931 3932 // Set a fixed layout for the section. Used for incremental update links. 3933 void 3934 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size, 3935 uint64_t sh_addralign); 3936 3937 // Return TRUE if the section has a fixed layout. 3938 bool 3939 has_fixed_layout() const 3940 { return this->has_fixed_layout_; } 3941 3942 // Set flag to allow patch space for this section. Used for full 3943 // incremental links. 3944 void 3945 set_is_patch_space_allowed() 3946 { this->is_patch_space_allowed_ = true; } 3947 3948 // Set a fill method to use for free space left in the output section 3949 // during incremental links. 3950 void 3951 set_free_space_fill(Output_fill* free_space_fill) 3952 { 3953 this->free_space_fill_ = free_space_fill; 3954 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size()); 3955 } 3956 3957 // Reserve space within the fixed layout for the section. Used for 3958 // incremental update links. 3959 void 3960 reserve(uint64_t sh_offset, uint64_t sh_size); 3961 3962 // Allocate space from the free list for the section. Used for 3963 // incremental update links. 3964 off_t 3965 allocate(off_t len, uint64_t addralign); 3966 3967 typedef std::vector<Input_section> Input_section_list; 3968 3969 // Allow access to the input sections. 3970 const Input_section_list& 3971 input_sections() const 3972 { return this->input_sections_; } 3973 3974 Input_section_list& 3975 input_sections() 3976 { return this->input_sections_; } 3977 3978 protected: 3979 // Return the output section--i.e., the object itself. 3980 Output_section* 3981 do_output_section() 3982 { return this; } 3983 3984 const Output_section* 3985 do_output_section() const 3986 { return this; } 3987 3988 // Return the section index in the output file. 3989 unsigned int 3990 do_out_shndx() const 3991 { 3992 gold_assert(this->out_shndx_ != -1U); 3993 return this->out_shndx_; 3994 } 3995 3996 // Set the output section index. 3997 void 3998 do_set_out_shndx(unsigned int shndx) 3999 { 4000 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx); 4001 this->out_shndx_ = shndx; 4002 } 4003 4004 // Update the data size of the Output_section. For a typical 4005 // Output_section, there is nothing to do, but if there are any 4006 // Output_section_data objects we need to do a trial layout 4007 // here. 4008 virtual void 4009 update_data_size(); 4010 4011 // Set the final data size of the Output_section. For a typical 4012 // Output_section, there is nothing to do, but if there are any 4013 // Output_section_data objects we need to set their final addresses 4014 // here. 4015 virtual void 4016 set_final_data_size(); 4017 4018 // Reset the address and file offset. 4019 void 4020 do_reset_address_and_file_offset(); 4021 4022 // Return true if address and file offset already have reset values. In 4023 // other words, calling reset_address_and_file_offset will not change them. 4024 bool 4025 do_address_and_file_offset_have_reset_values() const; 4026 4027 // Write the data to the file. For a typical Output_section, this 4028 // does nothing: the data is written out by calling Object::Relocate 4029 // on each input object. But if there are any Output_section_data 4030 // objects we do need to write them out here. 4031 virtual void 4032 do_write(Output_file*); 4033 4034 // Return the address alignment--function required by parent class. 4035 uint64_t 4036 do_addralign() const 4037 { return this->addralign_; } 4038 4039 // Return whether there is a load address. 4040 bool 4041 do_has_load_address() const 4042 { return this->has_load_address_; } 4043 4044 // Return the load address. 4045 uint64_t 4046 do_load_address() const 4047 { 4048 gold_assert(this->has_load_address_); 4049 return this->load_address_; 4050 } 4051 4052 // Return whether this is an Output_section. 4053 bool 4054 do_is_section() const 4055 { return true; } 4056 4057 // Return whether this is a section of the specified type. 4058 bool 4059 do_is_section_type(elfcpp::Elf_Word type) const 4060 { return this->type_ == type; } 4061 4062 // Return whether the specified section flag is set. 4063 bool 4064 do_is_section_flag_set(elfcpp::Elf_Xword flag) const 4065 { return (this->flags_ & flag) != 0; } 4066 4067 // Set the TLS offset. Called only for SHT_TLS sections. 4068 void 4069 do_set_tls_offset(uint64_t tls_base); 4070 4071 // Return the TLS offset, relative to the base of the TLS segment. 4072 // Valid only for SHT_TLS sections. 4073 uint64_t 4074 do_tls_offset() const 4075 { return this->tls_offset_; } 4076 4077 // This may be implemented by a child class. 4078 virtual void 4079 do_finalize_name(Layout*) 4080 { } 4081 4082 // Print to the map file. 4083 virtual void 4084 do_print_to_mapfile(Mapfile*) const; 4085 4086 // Record that this section requires postprocessing after all 4087 // relocations have been applied. This is called by a child class. 4088 void 4089 set_requires_postprocessing() 4090 { 4091 this->requires_postprocessing_ = true; 4092 this->after_input_sections_ = true; 4093 } 4094 4095 // Write all the data of an Output_section into the postprocessing 4096 // buffer. 4097 void 4098 write_to_postprocessing_buffer(); 4099 4100 // Whether this always keeps an input section list 4101 bool 4102 always_keeps_input_sections() const 4103 { return this->always_keeps_input_sections_; } 4104 4105 // Always keep an input section list. 4106 void 4107 set_always_keeps_input_sections() 4108 { 4109 gold_assert(this->current_data_size_for_child() == 0); 4110 this->always_keeps_input_sections_ = true; 4111 } 4112 4113 private: 4114 // We only save enough information to undo the effects of section layout. 4115 class Checkpoint_output_section 4116 { 4117 public: 4118 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags, 4119 const Input_section_list& input_sections, 4120 off_t first_input_offset, 4121 bool attached_input_sections_are_sorted) 4122 : addralign_(addralign), flags_(flags), 4123 input_sections_(input_sections), 4124 input_sections_size_(input_sections_.size()), 4125 input_sections_copy_(), first_input_offset_(first_input_offset), 4126 attached_input_sections_are_sorted_(attached_input_sections_are_sorted) 4127 { } 4128 4129 virtual 4130 ~Checkpoint_output_section() 4131 { } 4132 4133 // Return the address alignment. 4134 uint64_t 4135 addralign() const 4136 { return this->addralign_; } 4137 4138 void 4139 set_addralign(uint64_t val) 4140 { this->addralign_ = val; } 4141 4142 // Return the section flags. 4143 elfcpp::Elf_Xword 4144 flags() const 4145 { return this->flags_; } 4146 4147 // Return a reference to the input section list copy. 4148 Input_section_list* 4149 input_sections() 4150 { return &this->input_sections_copy_; } 4151 4152 // Return the size of input_sections at the time when checkpoint is 4153 // taken. 4154 size_t 4155 input_sections_size() const 4156 { return this->input_sections_size_; } 4157 4158 // Whether input sections are copied. 4159 bool 4160 input_sections_saved() const 4161 { return this->input_sections_copy_.size() == this->input_sections_size_; } 4162 4163 off_t 4164 first_input_offset() const 4165 { return this->first_input_offset_; } 4166 4167 bool 4168 attached_input_sections_are_sorted() const 4169 { return this->attached_input_sections_are_sorted_; } 4170 4171 // Save input sections. 4172 void 4173 save_input_sections() 4174 { 4175 this->input_sections_copy_.reserve(this->input_sections_size_); 4176 this->input_sections_copy_.clear(); 4177 Input_section_list::const_iterator p = this->input_sections_.begin(); 4178 gold_assert(this->input_sections_size_ >= this->input_sections_.size()); 4179 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p) 4180 this->input_sections_copy_.push_back(*p); 4181 } 4182 4183 private: 4184 // The section alignment. 4185 uint64_t addralign_; 4186 // The section flags. 4187 elfcpp::Elf_Xword flags_; 4188 // Reference to the input sections to be checkpointed. 4189 const Input_section_list& input_sections_; 4190 // Size of the checkpointed portion of input_sections_; 4191 size_t input_sections_size_; 4192 // Copy of input sections. 4193 Input_section_list input_sections_copy_; 4194 // The offset of the first entry in input_sections_. 4195 off_t first_input_offset_; 4196 // True if the input sections attached to this output section have 4197 // already been sorted. 4198 bool attached_input_sections_are_sorted_; 4199 }; 4200 4201 // This class is used to sort the input sections. 4202 class Input_section_sort_entry; 4203 4204 // This is the sort comparison function for ctors and dtors. 4205 struct Input_section_sort_compare 4206 { 4207 bool 4208 operator()(const Input_section_sort_entry&, 4209 const Input_section_sort_entry&) const; 4210 }; 4211 4212 // This is the sort comparison function for .init_array and .fini_array. 4213 struct Input_section_sort_init_fini_compare 4214 { 4215 bool 4216 operator()(const Input_section_sort_entry&, 4217 const Input_section_sort_entry&) const; 4218 }; 4219 4220 // This is the sort comparison function when a section order is specified 4221 // from an input file. 4222 struct Input_section_sort_section_order_index_compare 4223 { 4224 bool 4225 operator()(const Input_section_sort_entry&, 4226 const Input_section_sort_entry&) const; 4227 }; 4228 4229 // This is the sort comparison function for .text to sort sections with 4230 // prefixes .text.{unlikely,exit,startup,hot} before other sections. 4231 struct Input_section_sort_section_prefix_special_ordering_compare 4232 { 4233 bool 4234 operator()(const Input_section_sort_entry&, 4235 const Input_section_sort_entry&) const; 4236 }; 4237 4238 // This is the sort comparison function for sorting sections by name. 4239 struct Input_section_sort_section_name_compare 4240 { 4241 bool 4242 operator()(const Input_section_sort_entry&, 4243 const Input_section_sort_entry&) const; 4244 }; 4245 4246 // Fill data. This is used to fill in data between input sections. 4247 // It is also used for data statements (BYTE, WORD, etc.) in linker 4248 // scripts. When we have to keep track of the input sections, we 4249 // can use an Output_data_const, but we don't want to have to keep 4250 // track of input sections just to implement fills. 4251 class Fill 4252 { 4253 public: 4254 Fill(off_t section_offset, off_t length) 4255 : section_offset_(section_offset), 4256 length_(convert_to_section_size_type(length)) 4257 { } 4258 4259 // Return section offset. 4260 off_t 4261 section_offset() const 4262 { return this->section_offset_; } 4263 4264 // Return fill length. 4265 section_size_type 4266 length() const 4267 { return this->length_; } 4268 4269 private: 4270 // The offset within the output section. 4271 off_t section_offset_; 4272 // The length of the space to fill. 4273 section_size_type length_; 4274 }; 4275 4276 typedef std::vector<Fill> Fill_list; 4277 4278 // Map used during relaxation of existing sections. This map 4279 // a section id an input section list index. We assume that 4280 // Input_section_list is a vector. 4281 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map; 4282 4283 // Add a new output section by Input_section. 4284 void 4285 add_output_section_data(Input_section*); 4286 4287 // Add an SHF_MERGE input section. Returns true if the section was 4288 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section 4289 // stores information about the merged input sections. 4290 bool 4291 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags, 4292 uint64_t entsize, uint64_t addralign, 4293 bool keeps_input_sections); 4294 4295 // Add an output SHF_MERGE section POSD to this output section. 4296 // IS_STRING indicates whether it is a SHF_STRINGS section, and 4297 // ENTSIZE is the entity size. This returns the entry added to 4298 // input_sections_. 4299 void 4300 add_output_merge_section(Output_section_data* posd, bool is_string, 4301 uint64_t entsize); 4302 4303 // Find the merge section into which an input section with index SHNDX in 4304 // OBJECT has been added. Return NULL if none found. 4305 Output_section_data* 4306 find_merge_section(const Relobj* object, unsigned int shndx) const; 4307 4308 // Build a relaxation map. 4309 void 4310 build_relaxation_map( 4311 const Input_section_list& input_sections, 4312 size_t limit, 4313 Relaxation_map* map) const; 4314 4315 // Convert input sections in an input section list into relaxed sections. 4316 void 4317 convert_input_sections_in_list_to_relaxed_sections( 4318 const std::vector<Output_relaxed_input_section*>& relaxed_sections, 4319 const Relaxation_map& map, 4320 Input_section_list* input_sections); 4321 4322 // Build the lookup maps for merge and relaxed input sections. 4323 void 4324 build_lookup_maps() const; 4325 4326 // Most of these fields are only valid after layout. 4327 4328 // The name of the section. This will point into a Stringpool. 4329 const char* name_; 4330 // The section address is in the parent class. 4331 // The section alignment. 4332 uint64_t addralign_; 4333 // The section entry size. 4334 uint64_t entsize_; 4335 // The load address. This is only used when using a linker script 4336 // with a SECTIONS clause. The has_load_address_ field indicates 4337 // whether this field is valid. 4338 uint64_t load_address_; 4339 // The file offset is in the parent class. 4340 // Set the section link field to the index of this section. 4341 const Output_data* link_section_; 4342 // If link_section_ is NULL, this is the link field. 4343 unsigned int link_; 4344 // Set the section info field to the index of this section. 4345 const Output_section* info_section_; 4346 // If info_section_ is NULL, set the info field to the symbol table 4347 // index of this symbol. 4348 const Symbol* info_symndx_; 4349 // If info_section_ and info_symndx_ are NULL, this is the section 4350 // info field. 4351 unsigned int info_; 4352 // The section type. 4353 const elfcpp::Elf_Word type_; 4354 // The section flags. 4355 elfcpp::Elf_Xword flags_; 4356 // The order of this section in the output segment. 4357 Output_section_order order_; 4358 // The section index. 4359 unsigned int out_shndx_; 4360 // If there is a STT_SECTION for this output section in the normal 4361 // symbol table, this is the symbol index. This starts out as zero. 4362 // It is initialized in Layout::finalize() to be the index, or -1U 4363 // if there isn't one. 4364 unsigned int symtab_index_; 4365 // If there is a STT_SECTION for this output section in the dynamic 4366 // symbol table, this is the symbol index. This starts out as zero. 4367 // It is initialized in Layout::finalize() to be the index, or -1U 4368 // if there isn't one. 4369 unsigned int dynsym_index_; 4370 // The input sections. This will be empty in cases where we don't 4371 // need to keep track of them. 4372 Input_section_list input_sections_; 4373 // The offset of the first entry in input_sections_. 4374 off_t first_input_offset_; 4375 // The fill data. This is separate from input_sections_ because we 4376 // often will need fill sections without needing to keep track of 4377 // input sections. 4378 Fill_list fills_; 4379 // If the section requires postprocessing, this buffer holds the 4380 // section contents during relocation. 4381 unsigned char* postprocessing_buffer_; 4382 // Whether this output section needs a STT_SECTION symbol in the 4383 // normal symbol table. This will be true if there is a relocation 4384 // which needs it. 4385 bool needs_symtab_index_ : 1; 4386 // Whether this output section needs a STT_SECTION symbol in the 4387 // dynamic symbol table. This will be true if there is a dynamic 4388 // relocation which needs it. 4389 bool needs_dynsym_index_ : 1; 4390 // Whether the link field of this output section should point to the 4391 // normal symbol table. 4392 bool should_link_to_symtab_ : 1; 4393 // Whether the link field of this output section should point to the 4394 // dynamic symbol table. 4395 bool should_link_to_dynsym_ : 1; 4396 // Whether this section should be written after all the input 4397 // sections are complete. 4398 bool after_input_sections_ : 1; 4399 // Whether this section requires post processing after all 4400 // relocations have been applied. 4401 bool requires_postprocessing_ : 1; 4402 // Whether an input section was mapped to this output section 4403 // because of a SECTIONS clause in a linker script. 4404 bool found_in_sections_clause_ : 1; 4405 // Whether this section has an explicitly specified load address. 4406 bool has_load_address_ : 1; 4407 // True if the info_section_ field means the section index of the 4408 // section, false if it means the symbol index of the corresponding 4409 // section symbol. 4410 bool info_uses_section_index_ : 1; 4411 // True if input sections attached to this output section have to be 4412 // sorted according to a specified order. 4413 bool input_section_order_specified_ : 1; 4414 // True if the input sections attached to this output section may 4415 // need sorting. 4416 bool may_sort_attached_input_sections_ : 1; 4417 // True if the input sections attached to this output section must 4418 // be sorted. 4419 bool must_sort_attached_input_sections_ : 1; 4420 // True if the input sections attached to this output section have 4421 // already been sorted. 4422 bool attached_input_sections_are_sorted_ : 1; 4423 // True if this section holds relro data. 4424 bool is_relro_ : 1; 4425 // True if this is a small section. 4426 bool is_small_section_ : 1; 4427 // True if this is a large section. 4428 bool is_large_section_ : 1; 4429 // Whether code-fills are generated at write. 4430 bool generate_code_fills_at_write_ : 1; 4431 // Whether the entry size field should be zero. 4432 bool is_entsize_zero_ : 1; 4433 // Whether section offsets need adjustment due to relaxation. 4434 bool section_offsets_need_adjustment_ : 1; 4435 // Whether this is a NOLOAD section. 4436 bool is_noload_ : 1; 4437 // Whether this always keeps input section. 4438 bool always_keeps_input_sections_ : 1; 4439 // Whether this section has a fixed layout, for incremental update links. 4440 bool has_fixed_layout_ : 1; 4441 // True if we can add patch space to this section. 4442 bool is_patch_space_allowed_ : 1; 4443 // True if this output section goes into a unique segment. 4444 bool is_unique_segment_ : 1; 4445 // For SHT_TLS sections, the offset of this section relative to the base 4446 // of the TLS segment. 4447 uint64_t tls_offset_; 4448 // Additional segment flags, specified via linker plugin, when mapping some 4449 // input sections to unique segments. 4450 uint64_t extra_segment_flags_; 4451 // Segment alignment specified via linker plugin, when mapping some 4452 // input sections to unique segments. 4453 uint64_t segment_alignment_; 4454 // Saved checkpoint. 4455 Checkpoint_output_section* checkpoint_; 4456 // Fast lookup maps for merged and relaxed input sections. 4457 Output_section_lookup_maps* lookup_maps_; 4458 // List of available regions within the section, for incremental 4459 // update links. 4460 Free_list free_list_; 4461 // Method for filling chunks of free space. 4462 Output_fill* free_space_fill_; 4463 // Amount added as patch space for incremental linking. 4464 off_t patch_space_; 4465 }; 4466 4467 // An output segment. PT_LOAD segments are built from collections of 4468 // output sections. Other segments typically point within PT_LOAD 4469 // segments, and are built directly as needed. 4470 // 4471 // NOTE: We want to use the copy constructor for this class. During 4472 // relaxation, we may try built the segments multiple times. We do 4473 // that by copying the original segment list before lay-out, doing 4474 // a trial lay-out and roll-back to the saved copied if we need to 4475 // to the lay-out again. 4476 4477 class Output_segment 4478 { 4479 public: 4480 // Create an output segment, specifying the type and flags. 4481 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word); 4482 4483 // Return the virtual address. 4484 uint64_t 4485 vaddr() const 4486 { return this->vaddr_; } 4487 4488 // Return the physical address. 4489 uint64_t 4490 paddr() const 4491 { return this->paddr_; } 4492 4493 // Return the segment type. 4494 elfcpp::Elf_Word 4495 type() const 4496 { return this->type_; } 4497 4498 // Return the segment flags. 4499 elfcpp::Elf_Word 4500 flags() const 4501 { return this->flags_; } 4502 4503 // Return the memory size. 4504 uint64_t 4505 memsz() const 4506 { return this->memsz_; } 4507 4508 // Return the file size. 4509 off_t 4510 filesz() const 4511 { return this->filesz_; } 4512 4513 // Return the file offset. 4514 off_t 4515 offset() const 4516 { return this->offset_; } 4517 4518 // Whether this is a segment created to hold large data sections. 4519 bool 4520 is_large_data_segment() const 4521 { return this->is_large_data_segment_; } 4522 4523 // Record that this is a segment created to hold large data 4524 // sections. 4525 void 4526 set_is_large_data_segment() 4527 { this->is_large_data_segment_ = true; } 4528 4529 bool 4530 is_unique_segment() const 4531 { return this->is_unique_segment_; } 4532 4533 // Mark segment as unique, happens when linker plugins request that 4534 // certain input sections be mapped to unique segments. 4535 void 4536 set_is_unique_segment() 4537 { this->is_unique_segment_ = true; } 4538 4539 // Return the maximum alignment of the Output_data. 4540 uint64_t 4541 maximum_alignment(); 4542 4543 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is 4544 // the segment flags to use. 4545 void 4546 add_output_section_to_load(Layout* layout, Output_section* os, 4547 elfcpp::Elf_Word seg_flags); 4548 4549 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS 4550 // is the segment flags to use. 4551 void 4552 add_output_section_to_nonload(Output_section* os, 4553 elfcpp::Elf_Word seg_flags); 4554 4555 // Remove an Output_section from this segment. It is an error if it 4556 // is not present. 4557 void 4558 remove_output_section(Output_section* os); 4559 4560 // Add an Output_data (which need not be an Output_section) to the 4561 // start of this segment. 4562 void 4563 add_initial_output_data(Output_data*); 4564 4565 // Return true if this segment has any sections which hold actual 4566 // data, rather than being a BSS section. 4567 bool 4568 has_any_data_sections() const; 4569 4570 // Whether this segment has a dynamic relocs. 4571 bool 4572 has_dynamic_reloc() const; 4573 4574 // Return the first section. 4575 Output_section* 4576 first_section() const; 4577 4578 // Return the address of the first section. 4579 uint64_t 4580 first_section_load_address() const 4581 { 4582 const Output_section* os = this->first_section(); 4583 return os->has_load_address() ? os->load_address() : os->address(); 4584 } 4585 4586 // Return whether the addresses have been set already. 4587 bool 4588 are_addresses_set() const 4589 { return this->are_addresses_set_; } 4590 4591 // Set the addresses. 4592 void 4593 set_addresses(uint64_t vaddr, uint64_t paddr) 4594 { 4595 this->vaddr_ = vaddr; 4596 this->paddr_ = paddr; 4597 this->are_addresses_set_ = true; 4598 } 4599 4600 // Update the flags for the flags of an output section added to this 4601 // segment. 4602 void 4603 update_flags_for_output_section(elfcpp::Elf_Xword flags) 4604 { 4605 // The ELF ABI specifies that a PT_TLS segment should always have 4606 // PF_R as the flags. 4607 if (this->type() != elfcpp::PT_TLS) 4608 this->flags_ |= flags; 4609 } 4610 4611 // Set the segment flags. This is only used if we have a PHDRS 4612 // clause which explicitly specifies the flags. 4613 void 4614 set_flags(elfcpp::Elf_Word flags) 4615 { this->flags_ = flags; } 4616 4617 // Set the address of the segment to ADDR and the offset to *POFF 4618 // and set the addresses and offsets of all contained output 4619 // sections accordingly. Set the section indexes of all contained 4620 // output sections starting with *PSHNDX. If RESET is true, first 4621 // reset the addresses of the contained sections. Return the 4622 // address of the immediately following segment. Update *POFF and 4623 // *PSHNDX. This should only be called for a PT_LOAD segment. 4624 uint64_t 4625 set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr, 4626 unsigned int* increase_relro, bool* has_relro, 4627 off_t* poff, unsigned int* pshndx); 4628 4629 // Set the minimum alignment of this segment. This may be adjusted 4630 // upward based on the section alignments. 4631 void 4632 set_minimum_p_align(uint64_t align) 4633 { 4634 if (align > this->min_p_align_) 4635 this->min_p_align_ = align; 4636 } 4637 4638 // Set the offset of this segment based on the section. This should 4639 // only be called for a non-PT_LOAD segment. 4640 void 4641 set_offset(unsigned int increase); 4642 4643 // Set the TLS offsets of the sections contained in the PT_TLS segment. 4644 void 4645 set_tls_offsets(); 4646 4647 // Return the number of output sections. 4648 unsigned int 4649 output_section_count() const; 4650 4651 // Return the section attached to the list segment with the lowest 4652 // load address. This is used when handling a PHDRS clause in a 4653 // linker script. 4654 Output_section* 4655 section_with_lowest_load_address() const; 4656 4657 // Write the segment header into *OPHDR. 4658 template<int size, bool big_endian> 4659 void 4660 write_header(elfcpp::Phdr_write<size, big_endian>*); 4661 4662 // Write the section headers of associated sections into V. 4663 template<int size, bool big_endian> 4664 unsigned char* 4665 write_section_headers(const Layout*, const Stringpool*, unsigned char* v, 4666 unsigned int* pshndx) const; 4667 4668 // Print the output sections in the map file. 4669 void 4670 print_sections_to_mapfile(Mapfile*) const; 4671 4672 private: 4673 typedef std::vector<Output_data*> Output_data_list; 4674 4675 // Find the maximum alignment in an Output_data_list. 4676 static uint64_t 4677 maximum_alignment_list(const Output_data_list*); 4678 4679 // Return whether the first data section is a relro section. 4680 bool 4681 is_first_section_relro() const; 4682 4683 // Set the section addresses in an Output_data_list. 4684 uint64_t 4685 set_section_list_addresses(Layout*, bool reset, Output_data_list*, 4686 uint64_t addr, off_t* poff, unsigned int* pshndx, 4687 bool* in_tls); 4688 4689 // Return the number of Output_sections in an Output_data_list. 4690 unsigned int 4691 output_section_count_list(const Output_data_list*) const; 4692 4693 // Return whether an Output_data_list has a dynamic reloc. 4694 bool 4695 has_dynamic_reloc_list(const Output_data_list*) const; 4696 4697 // Find the section with the lowest load address in an 4698 // Output_data_list. 4699 void 4700 lowest_load_address_in_list(const Output_data_list* pdl, 4701 Output_section** found, 4702 uint64_t* found_lma) const; 4703 4704 // Find the first and last entries by address. 4705 void 4706 find_first_and_last_list(const Output_data_list* pdl, 4707 const Output_data** pfirst, 4708 const Output_data** plast) const; 4709 4710 // Write the section headers in the list into V. 4711 template<int size, bool big_endian> 4712 unsigned char* 4713 write_section_headers_list(const Layout*, const Stringpool*, 4714 const Output_data_list*, unsigned char* v, 4715 unsigned int* pshdx) const; 4716 4717 // Print a section list to the mapfile. 4718 void 4719 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const; 4720 4721 // NOTE: We want to use the copy constructor. Currently, shallow copy 4722 // works for us so we do not need to write our own copy constructor. 4723 4724 // The list of output data attached to this segment. 4725 Output_data_list output_lists_[ORDER_MAX]; 4726 // The segment virtual address. 4727 uint64_t vaddr_; 4728 // The segment physical address. 4729 uint64_t paddr_; 4730 // The size of the segment in memory. 4731 uint64_t memsz_; 4732 // The maximum section alignment. The is_max_align_known_ field 4733 // indicates whether this has been finalized. 4734 uint64_t max_align_; 4735 // The required minimum value for the p_align field. This is used 4736 // for PT_LOAD segments. Note that this does not mean that 4737 // addresses should be aligned to this value; it means the p_paddr 4738 // and p_vaddr fields must be congruent modulo this value. For 4739 // non-PT_LOAD segments, the dynamic linker works more efficiently 4740 // if the p_align field has the more conventional value, although it 4741 // can align as needed. 4742 uint64_t min_p_align_; 4743 // The offset of the segment data within the file. 4744 off_t offset_; 4745 // The size of the segment data in the file. 4746 off_t filesz_; 4747 // The segment type; 4748 elfcpp::Elf_Word type_; 4749 // The segment flags. 4750 elfcpp::Elf_Word flags_; 4751 // Whether we have finalized max_align_. 4752 bool is_max_align_known_ : 1; 4753 // Whether vaddr and paddr were set by a linker script. 4754 bool are_addresses_set_ : 1; 4755 // Whether this segment holds large data sections. 4756 bool is_large_data_segment_ : 1; 4757 // Whether this was marked as a unique segment via a linker plugin. 4758 bool is_unique_segment_ : 1; 4759 }; 4760 4761 // This class represents the output file. 4762 4763 class Output_file 4764 { 4765 public: 4766 Output_file(const char* name); 4767 4768 // Indicate that this is a temporary file which should not be 4769 // output. 4770 void 4771 set_is_temporary() 4772 { this->is_temporary_ = true; } 4773 4774 // Try to open an existing file. Returns false if the file doesn't 4775 // exist, has a size of 0 or can't be mmaped. This method is 4776 // thread-unsafe. If BASE_NAME is not NULL, use the contents of 4777 // that file as the base for incremental linking. 4778 bool 4779 open_base_file(const char* base_name, bool writable); 4780 4781 // Open the output file. FILE_SIZE is the final size of the file. 4782 // If the file already exists, it is deleted/truncated. This method 4783 // is thread-unsafe. 4784 void 4785 open(off_t file_size); 4786 4787 // Resize the output file. This method is thread-unsafe. 4788 void 4789 resize(off_t file_size); 4790 4791 // Close the output file (flushing all buffered data) and make sure 4792 // there are no errors. This method is thread-unsafe. 4793 void 4794 close(); 4795 4796 // Return the size of this file. 4797 off_t 4798 filesize() 4799 { return this->file_size_; } 4800 4801 // Return the name of this file. 4802 const char* 4803 filename() 4804 { return this->name_; } 4805 4806 // We currently always use mmap which makes the view handling quite 4807 // simple. In the future we may support other approaches. 4808 4809 // Write data to the output file. 4810 void 4811 write(off_t offset, const void* data, size_t len) 4812 { memcpy(this->base_ + offset, data, len); } 4813 4814 // Get a buffer to use to write to the file, given the offset into 4815 // the file and the size. 4816 unsigned char* 4817 get_output_view(off_t start, size_t size) 4818 { 4819 gold_assert(start >= 0 4820 && start + static_cast<off_t>(size) <= this->file_size_); 4821 return this->base_ + start; 4822 } 4823 4824 // VIEW must have been returned by get_output_view. Write the 4825 // buffer to the file, passing in the offset and the size. 4826 void 4827 write_output_view(off_t, size_t, unsigned char*) 4828 { } 4829 4830 // Get a read/write buffer. This is used when we want to write part 4831 // of the file, read it in, and write it again. 4832 unsigned char* 4833 get_input_output_view(off_t start, size_t size) 4834 { return this->get_output_view(start, size); } 4835 4836 // Write a read/write buffer back to the file. 4837 void 4838 write_input_output_view(off_t, size_t, unsigned char*) 4839 { } 4840 4841 // Get a read buffer. This is used when we just want to read part 4842 // of the file back it in. 4843 const unsigned char* 4844 get_input_view(off_t start, size_t size) 4845 { return this->get_output_view(start, size); } 4846 4847 // Release a read bfufer. 4848 void 4849 free_input_view(off_t, size_t, const unsigned char*) 4850 { } 4851 4852 private: 4853 // Map the file into memory or, if that fails, allocate anonymous 4854 // memory. 4855 void 4856 map(); 4857 4858 // Allocate anonymous memory for the file. 4859 bool 4860 map_anonymous(); 4861 4862 // Map the file into memory. 4863 bool 4864 map_no_anonymous(bool); 4865 4866 // Unmap the file from memory (and flush to disk buffers). 4867 void 4868 unmap(); 4869 4870 // File name. 4871 const char* name_; 4872 // File descriptor. 4873 int o_; 4874 // File size. 4875 off_t file_size_; 4876 // Base of file mapped into memory. 4877 unsigned char* base_; 4878 // True iff base_ points to a memory buffer rather than an output file. 4879 bool map_is_anonymous_; 4880 // True if base_ was allocated using new rather than mmap. 4881 bool map_is_allocated_; 4882 // True if this is a temporary file which should not be output. 4883 bool is_temporary_; 4884 }; 4885 4886 } // End namespace gold. 4887 4888 #endif // !defined(GOLD_OUTPUT_H) 4889