1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "art_method-inl.h" 18 #include "callee_save_frame.h" 19 #include "common_throws.h" 20 #include "dex_file-inl.h" 21 #include "dex_instruction-inl.h" 22 #include "entrypoints/entrypoint_utils-inl.h" 23 #include "entrypoints/runtime_asm_entrypoints.h" 24 #include "gc/accounting/card_table-inl.h" 25 #include "interpreter/interpreter.h" 26 #include "linear_alloc.h" 27 #include "method_reference.h" 28 #include "mirror/class-inl.h" 29 #include "mirror/dex_cache-inl.h" 30 #include "mirror/method.h" 31 #include "mirror/object-inl.h" 32 #include "mirror/object_array-inl.h" 33 #include "oat_quick_method_header.h" 34 #include "quick_exception_handler.h" 35 #include "runtime.h" 36 #include "scoped_thread_state_change.h" 37 #include "stack.h" 38 #include "debugger.h" 39 40 namespace art { 41 42 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 43 class QuickArgumentVisitor { 44 // Number of bytes for each out register in the caller method's frame. 45 static constexpr size_t kBytesStackArgLocation = 4; 46 // Frame size in bytes of a callee-save frame for RefsAndArgs. 47 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 49 #if defined(__arm__) 50 // The callee save frame is pointed to by SP. 51 // | argN | | 52 // | ... | | 53 // | arg4 | | 54 // | arg3 spill | | Caller's frame 55 // | arg2 spill | | 56 // | arg1 spill | | 57 // | Method* | --- 58 // | LR | 59 // | ... | 4x6 bytes callee saves 60 // | R3 | 61 // | R2 | 62 // | R1 | 63 // | S15 | 64 // | : | 65 // | S0 | 66 // | | 4x2 bytes padding 67 // | Method* | <- sp 68 static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat; 69 static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat; 70 static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat; 71 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat; 72 static constexpr bool kQuickSkipOddFpRegisters = false; 73 static constexpr size_t kNumQuickGprArgs = 3; 74 static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16; 75 static constexpr bool kGprFprLockstep = false; 76 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 77 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 78 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 79 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 80 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 81 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 82 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 83 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 84 } 85 #elif defined(__aarch64__) 86 // The callee save frame is pointed to by SP. 87 // | argN | | 88 // | ... | | 89 // | arg4 | | 90 // | arg3 spill | | Caller's frame 91 // | arg2 spill | | 92 // | arg1 spill | | 93 // | Method* | --- 94 // | LR | 95 // | X29 | 96 // | : | 97 // | X20 | 98 // | X7 | 99 // | : | 100 // | X1 | 101 // | D7 | 102 // | : | 103 // | D0 | 104 // | | padding 105 // | Method* | <- sp 106 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 107 static constexpr bool kAlignPairRegister = false; 108 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 109 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 110 static constexpr bool kQuickSkipOddFpRegisters = false; 111 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 112 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 113 static constexpr bool kGprFprLockstep = false; 114 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 115 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 116 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 117 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 118 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 119 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 120 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 121 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 122 } 123 #elif defined(__mips__) && !defined(__LP64__) 124 // The callee save frame is pointed to by SP. 125 // | argN | | 126 // | ... | | 127 // | arg4 | | 128 // | arg3 spill | | Caller's frame 129 // | arg2 spill | | 130 // | arg1 spill | | 131 // | Method* | --- 132 // | RA | 133 // | ... | callee saves 134 // | A3 | arg3 135 // | A2 | arg2 136 // | A1 | arg1 137 // | F15 | 138 // | F14 | f_arg1 139 // | F13 | 140 // | F12 | f_arg0 141 // | | padding 142 // | A0/Method* | <- sp 143 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 144 static constexpr bool kAlignPairRegister = true; 145 static constexpr bool kQuickSoftFloatAbi = false; 146 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 147 static constexpr bool kQuickSkipOddFpRegisters = true; 148 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 149 static constexpr size_t kNumQuickFprArgs = 4; // 2 arguments passed in FPRs. Floats can be passed 150 // only in even numbered registers and each double 151 // occupies two registers. 152 static constexpr bool kGprFprLockstep = false; 153 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 154 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32; // Offset of first GPR arg. 155 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76; // Offset of return address. 156 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 157 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 158 } 159 #elif defined(__mips__) && defined(__LP64__) 160 // The callee save frame is pointed to by SP. 161 // | argN | | 162 // | ... | | 163 // | arg4 | | 164 // | arg3 spill | | Caller's frame 165 // | arg2 spill | | 166 // | arg1 spill | | 167 // | Method* | --- 168 // | RA | 169 // | ... | callee saves 170 // | A7 | arg7 171 // | A6 | arg6 172 // | A5 | arg5 173 // | A4 | arg4 174 // | A3 | arg3 175 // | A2 | arg2 176 // | A1 | arg1 177 // | F19 | f_arg7 178 // | F18 | f_arg6 179 // | F17 | f_arg5 180 // | F16 | f_arg4 181 // | F15 | f_arg3 182 // | F14 | f_arg2 183 // | F13 | f_arg1 184 // | F12 | f_arg0 185 // | | padding 186 // | A0/Method* | <- sp 187 // NOTE: for Mip64, when A0 is skipped, F0 is also skipped. 188 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 189 static constexpr bool kAlignPairRegister = false; 190 static constexpr bool kQuickSoftFloatAbi = false; 191 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 192 static constexpr bool kQuickSkipOddFpRegisters = false; 193 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 194 static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs. 195 static constexpr bool kGprFprLockstep = true; 196 197 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F1). 198 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1). 199 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address. 200 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 201 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 202 } 203 #elif defined(__i386__) 204 // The callee save frame is pointed to by SP. 205 // | argN | | 206 // | ... | | 207 // | arg4 | | 208 // | arg3 spill | | Caller's frame 209 // | arg2 spill | | 210 // | arg1 spill | | 211 // | Method* | --- 212 // | Return | 213 // | EBP,ESI,EDI | callee saves 214 // | EBX | arg3 215 // | EDX | arg2 216 // | ECX | arg1 217 // | XMM3 | float arg 4 218 // | XMM2 | float arg 3 219 // | XMM1 | float arg 2 220 // | XMM0 | float arg 1 221 // | EAX/Method* | <- sp 222 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 223 static constexpr bool kAlignPairRegister = false; 224 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 225 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 226 static constexpr bool kQuickSkipOddFpRegisters = false; 227 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 228 static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs. 229 static constexpr bool kGprFprLockstep = false; 230 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg. 231 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg. 232 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address. 233 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 234 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 235 } 236 #elif defined(__x86_64__) 237 // The callee save frame is pointed to by SP. 238 // | argN | | 239 // | ... | | 240 // | reg. arg spills | | Caller's frame 241 // | Method* | --- 242 // | Return | 243 // | R15 | callee save 244 // | R14 | callee save 245 // | R13 | callee save 246 // | R12 | callee save 247 // | R9 | arg5 248 // | R8 | arg4 249 // | RSI/R6 | arg1 250 // | RBP/R5 | callee save 251 // | RBX/R3 | callee save 252 // | RDX/R2 | arg2 253 // | RCX/R1 | arg3 254 // | XMM7 | float arg 8 255 // | XMM6 | float arg 7 256 // | XMM5 | float arg 6 257 // | XMM4 | float arg 5 258 // | XMM3 | float arg 4 259 // | XMM2 | float arg 3 260 // | XMM1 | float arg 2 261 // | XMM0 | float arg 1 262 // | Padding | 263 // | RDI/Method* | <- sp 264 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 265 static constexpr bool kAlignPairRegister = false; 266 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 267 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 268 static constexpr bool kQuickSkipOddFpRegisters = false; 269 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 270 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 271 static constexpr bool kGprFprLockstep = false; 272 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 273 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. 274 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. 275 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 276 switch (gpr_index) { 277 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 278 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 279 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 280 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 281 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 282 default: 283 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 284 return 0; 285 } 286 } 287 #else 288 #error "Unsupported architecture" 289 #endif 290 291 public: 292 // Special handling for proxy methods. Proxy methods are instance methods so the 293 // 'this' object is the 1st argument. They also have the same frame layout as the 294 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the 295 // 1st GPR. 296 static mirror::Object* GetProxyThisObject(ArtMethod** sp) 297 SHARED_REQUIRES(Locks::mutator_lock_) { 298 CHECK((*sp)->IsProxyMethod()); 299 CHECK_GT(kNumQuickGprArgs, 0u); 300 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR. 301 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset + 302 GprIndexToGprOffset(kThisGprIndex); 303 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset; 304 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr(); 305 } 306 307 static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) { 308 DCHECK((*sp)->IsCalleeSaveMethod()); 309 return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs); 310 } 311 312 static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) { 313 DCHECK((*sp)->IsCalleeSaveMethod()); 314 uint8_t* previous_sp = 315 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 316 return *reinterpret_cast<ArtMethod**>(previous_sp); 317 } 318 319 static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) { 320 DCHECK((*sp)->IsCalleeSaveMethod()); 321 const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 322 ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>( 323 reinterpret_cast<uintptr_t>(sp) + callee_frame_size); 324 uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp); 325 const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc); 326 uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc); 327 328 if (current_code->IsOptimized()) { 329 CodeInfo code_info = current_code->GetOptimizedCodeInfo(); 330 CodeInfoEncoding encoding = code_info.ExtractEncoding(); 331 StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding); 332 DCHECK(stack_map.IsValid()); 333 if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) { 334 InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding); 335 return inline_info.GetDexPcAtDepth(encoding.inline_info_encoding, 336 inline_info.GetDepth(encoding.inline_info_encoding)-1); 337 } else { 338 return stack_map.GetDexPc(encoding.stack_map_encoding); 339 } 340 } else { 341 return current_code->ToDexPc(*caller_sp, outer_pc); 342 } 343 } 344 345 // For the given quick ref and args quick frame, return the caller's PC. 346 static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) { 347 DCHECK((*sp)->IsCalleeSaveMethod()); 348 uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 349 return *reinterpret_cast<uintptr_t*>(lr); 350 } 351 352 QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, 353 uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) : 354 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 355 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 356 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 357 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 358 + sizeof(ArtMethod*)), // Skip ArtMethod*. 359 gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0), 360 cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { 361 static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0), 362 "Number of Quick FPR arguments unexpected"); 363 static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled), 364 "Double alignment unexpected"); 365 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the 366 // next register is even. 367 static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0, 368 "Number of Quick FPR arguments not even"); 369 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*)); 370 } 371 372 virtual ~QuickArgumentVisitor() {} 373 374 virtual void Visit() = 0; 375 376 Primitive::Type GetParamPrimitiveType() const { 377 return cur_type_; 378 } 379 380 uint8_t* GetParamAddress() const { 381 if (!kQuickSoftFloatAbi) { 382 Primitive::Type type = GetParamPrimitiveType(); 383 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 384 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) { 385 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 386 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 387 } 388 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 389 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 390 } 391 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 392 } 393 } 394 if (gpr_index_ < kNumQuickGprArgs) { 395 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 396 } 397 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 398 } 399 400 bool IsSplitLongOrDouble() const { 401 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || 402 (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 403 return is_split_long_or_double_; 404 } else { 405 return false; // An optimization for when GPR and FPRs are 64bit. 406 } 407 } 408 409 bool IsParamAReference() const { 410 return GetParamPrimitiveType() == Primitive::kPrimNot; 411 } 412 413 bool IsParamALongOrDouble() const { 414 Primitive::Type type = GetParamPrimitiveType(); 415 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 416 } 417 418 uint64_t ReadSplitLongParam() const { 419 // The splitted long is always available through the stack. 420 return *reinterpret_cast<uint64_t*>(stack_args_ 421 + stack_index_ * kBytesStackArgLocation); 422 } 423 424 void IncGprIndex() { 425 gpr_index_++; 426 if (kGprFprLockstep) { 427 fpr_index_++; 428 } 429 } 430 431 void IncFprIndex() { 432 fpr_index_++; 433 if (kGprFprLockstep) { 434 gpr_index_++; 435 } 436 } 437 438 void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) { 439 // (a) 'stack_args_' should point to the first method's argument 440 // (b) whatever the argument type it is, the 'stack_index_' should 441 // be moved forward along with every visiting. 442 gpr_index_ = 0; 443 fpr_index_ = 0; 444 if (kQuickDoubleRegAlignedFloatBackFilled) { 445 fpr_double_index_ = 0; 446 } 447 stack_index_ = 0; 448 if (!is_static_) { // Handle this. 449 cur_type_ = Primitive::kPrimNot; 450 is_split_long_or_double_ = false; 451 Visit(); 452 stack_index_++; 453 if (kNumQuickGprArgs > 0) { 454 IncGprIndex(); 455 } 456 } 457 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 458 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 459 switch (cur_type_) { 460 case Primitive::kPrimNot: 461 case Primitive::kPrimBoolean: 462 case Primitive::kPrimByte: 463 case Primitive::kPrimChar: 464 case Primitive::kPrimShort: 465 case Primitive::kPrimInt: 466 is_split_long_or_double_ = false; 467 Visit(); 468 stack_index_++; 469 if (gpr_index_ < kNumQuickGprArgs) { 470 IncGprIndex(); 471 } 472 break; 473 case Primitive::kPrimFloat: 474 is_split_long_or_double_ = false; 475 Visit(); 476 stack_index_++; 477 if (kQuickSoftFloatAbi) { 478 if (gpr_index_ < kNumQuickGprArgs) { 479 IncGprIndex(); 480 } 481 } else { 482 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 483 IncFprIndex(); 484 if (kQuickDoubleRegAlignedFloatBackFilled) { 485 // Double should not overlap with float. 486 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4. 487 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2)); 488 // Float should not overlap with double. 489 if (fpr_index_ % 2 == 0) { 490 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 491 } 492 } else if (kQuickSkipOddFpRegisters) { 493 IncFprIndex(); 494 } 495 } 496 } 497 break; 498 case Primitive::kPrimDouble: 499 case Primitive::kPrimLong: 500 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 501 if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) { 502 // Currently, this is only for ARM and MIPS, where the first available parameter 503 // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or 504 // A2 (on MIPS) instead. 505 IncGprIndex(); 506 } 507 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 508 ((gpr_index_ + 1) == kNumQuickGprArgs); 509 if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) { 510 // We don't want to split this. Pass over this register. 511 gpr_index_++; 512 is_split_long_or_double_ = false; 513 } 514 Visit(); 515 if (kBytesStackArgLocation == 4) { 516 stack_index_+= 2; 517 } else { 518 CHECK_EQ(kBytesStackArgLocation, 8U); 519 stack_index_++; 520 } 521 if (gpr_index_ < kNumQuickGprArgs) { 522 IncGprIndex(); 523 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 524 if (gpr_index_ < kNumQuickGprArgs) { 525 IncGprIndex(); 526 } 527 } 528 } 529 } else { 530 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 531 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled; 532 Visit(); 533 if (kBytesStackArgLocation == 4) { 534 stack_index_+= 2; 535 } else { 536 CHECK_EQ(kBytesStackArgLocation, 8U); 537 stack_index_++; 538 } 539 if (kQuickDoubleRegAlignedFloatBackFilled) { 540 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 541 fpr_double_index_ += 2; 542 // Float should not overlap with double. 543 if (fpr_index_ % 2 == 0) { 544 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 545 } 546 } 547 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 548 IncFprIndex(); 549 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 550 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 551 IncFprIndex(); 552 } 553 } 554 } 555 } 556 break; 557 default: 558 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 559 } 560 } 561 } 562 563 protected: 564 const bool is_static_; 565 const char* const shorty_; 566 const uint32_t shorty_len_; 567 568 private: 569 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame. 570 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame. 571 uint8_t* const stack_args_; // Address of stack arguments in caller's frame. 572 uint32_t gpr_index_; // Index into spilled GPRs. 573 // Index into spilled FPRs. 574 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_ 575 // holds a higher register number. 576 uint32_t fpr_index_; 577 // Index into spilled FPRs for aligned double. 578 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in 579 // terms of singles, may be behind fpr_index. 580 uint32_t fpr_double_index_; 581 uint32_t stack_index_; // Index into arguments on the stack. 582 // The current type of argument during VisitArguments. 583 Primitive::Type cur_type_; 584 // Does a 64bit parameter straddle the register and stack arguments? 585 bool is_split_long_or_double_; 586 }; 587 588 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It 589 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module. 590 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp) 591 SHARED_REQUIRES(Locks::mutator_lock_) { 592 return QuickArgumentVisitor::GetProxyThisObject(sp); 593 } 594 595 // Visits arguments on the stack placing them into the shadow frame. 596 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 597 public: 598 BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty, 599 uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) : 600 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 601 602 void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE; 603 604 private: 605 ShadowFrame* const sf_; 606 uint32_t cur_reg_; 607 608 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 609 }; 610 611 void BuildQuickShadowFrameVisitor::Visit() { 612 Primitive::Type type = GetParamPrimitiveType(); 613 switch (type) { 614 case Primitive::kPrimLong: // Fall-through. 615 case Primitive::kPrimDouble: 616 if (IsSplitLongOrDouble()) { 617 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 618 } else { 619 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 620 } 621 ++cur_reg_; 622 break; 623 case Primitive::kPrimNot: { 624 StackReference<mirror::Object>* stack_ref = 625 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 626 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 627 } 628 break; 629 case Primitive::kPrimBoolean: // Fall-through. 630 case Primitive::kPrimByte: // Fall-through. 631 case Primitive::kPrimChar: // Fall-through. 632 case Primitive::kPrimShort: // Fall-through. 633 case Primitive::kPrimInt: // Fall-through. 634 case Primitive::kPrimFloat: 635 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 636 break; 637 case Primitive::kPrimVoid: 638 LOG(FATAL) << "UNREACHABLE"; 639 UNREACHABLE(); 640 } 641 ++cur_reg_; 642 } 643 644 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp) 645 SHARED_REQUIRES(Locks::mutator_lock_) { 646 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 647 // frame. 648 ScopedQuickEntrypointChecks sqec(self); 649 650 if (UNLIKELY(!method->IsInvokable())) { 651 method->ThrowInvocationTimeError(); 652 return 0; 653 } 654 655 JValue tmp_value; 656 ShadowFrame* deopt_frame = self->PopStackedShadowFrame( 657 StackedShadowFrameType::kSingleFrameDeoptimizationShadowFrame, false); 658 ManagedStack fragment; 659 660 DCHECK(!method->IsNative()) << PrettyMethod(method); 661 uint32_t shorty_len = 0; 662 ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*)); 663 const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem(); 664 DCHECK(code_item != nullptr) << PrettyMethod(method); 665 const char* shorty = non_proxy_method->GetShorty(&shorty_len); 666 667 JValue result; 668 669 if (deopt_frame != nullptr) { 670 // Coming from single-frame deopt. 671 672 if (kIsDebugBuild) { 673 // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom 674 // of the call-stack) corresponds to the called method. 675 ShadowFrame* linked = deopt_frame; 676 while (linked->GetLink() != nullptr) { 677 linked = linked->GetLink(); 678 } 679 CHECK_EQ(method, linked->GetMethod()) << PrettyMethod(method) << " " 680 << PrettyMethod(linked->GetMethod()); 681 } 682 683 if (VLOG_IS_ON(deopt)) { 684 // Print out the stack to verify that it was a single-frame deopt. 685 LOG(INFO) << "Continue-ing from deopt. Stack is:"; 686 QuickExceptionHandler::DumpFramesWithType(self, true); 687 } 688 689 mirror::Throwable* pending_exception = nullptr; 690 bool from_code = false; 691 self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code); 692 CHECK(from_code); 693 694 // Push a transition back into managed code onto the linked list in thread. 695 self->PushManagedStackFragment(&fragment); 696 697 // Ensure that the stack is still in order. 698 if (kIsDebugBuild) { 699 class DummyStackVisitor : public StackVisitor { 700 public: 701 explicit DummyStackVisitor(Thread* self_in) SHARED_REQUIRES(Locks::mutator_lock_) 702 : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {} 703 704 bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 705 // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking 706 // logic. Just always say we want to continue. 707 return true; 708 } 709 }; 710 DummyStackVisitor dsv(self); 711 dsv.WalkStack(); 712 } 713 714 // Restore the exception that was pending before deoptimization then interpret the 715 // deoptimized frames. 716 if (pending_exception != nullptr) { 717 self->SetException(pending_exception); 718 } 719 interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result); 720 } else { 721 const char* old_cause = self->StartAssertNoThreadSuspension( 722 "Building interpreter shadow frame"); 723 uint16_t num_regs = code_item->registers_size_; 724 // No last shadow coming from quick. 725 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = 726 CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0); 727 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); 728 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 729 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, 730 shadow_frame, first_arg_reg); 731 shadow_frame_builder.VisitArguments(); 732 const bool needs_initialization = 733 method->IsStatic() && !method->GetDeclaringClass()->IsInitialized(); 734 // Push a transition back into managed code onto the linked list in thread. 735 self->PushManagedStackFragment(&fragment); 736 self->PushShadowFrame(shadow_frame); 737 self->EndAssertNoThreadSuspension(old_cause); 738 739 if (needs_initialization) { 740 // Ensure static method's class is initialized. 741 StackHandleScope<1> hs(self); 742 Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass())); 743 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { 744 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod()); 745 self->PopManagedStackFragment(fragment); 746 return 0; 747 } 748 } 749 750 result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame); 751 } 752 753 // Pop transition. 754 self->PopManagedStackFragment(fragment); 755 756 // Request a stack deoptimization if needed 757 ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 758 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) { 759 // Push the context of the deoptimization stack so we can restore the return value and the 760 // exception before executing the deoptimized frames. 761 self->PushDeoptimizationContext( 762 result, shorty[0] == 'L', /* from_code */ false, self->GetException()); 763 764 // Set special exception to cause deoptimization. 765 self->SetException(Thread::GetDeoptimizationException()); 766 } 767 768 // No need to restore the args since the method has already been run by the interpreter. 769 return result.GetJ(); 770 } 771 772 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted 773 // to jobjects. 774 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 775 public: 776 BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, 777 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 778 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 779 780 void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE; 781 782 void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_); 783 784 private: 785 ScopedObjectAccessUnchecked* const soa_; 786 std::vector<jvalue>* const args_; 787 // References which we must update when exiting in case the GC moved the objects. 788 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 789 790 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 791 }; 792 793 void BuildQuickArgumentVisitor::Visit() { 794 jvalue val; 795 Primitive::Type type = GetParamPrimitiveType(); 796 switch (type) { 797 case Primitive::kPrimNot: { 798 StackReference<mirror::Object>* stack_ref = 799 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 800 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 801 references_.push_back(std::make_pair(val.l, stack_ref)); 802 break; 803 } 804 case Primitive::kPrimLong: // Fall-through. 805 case Primitive::kPrimDouble: 806 if (IsSplitLongOrDouble()) { 807 val.j = ReadSplitLongParam(); 808 } else { 809 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 810 } 811 break; 812 case Primitive::kPrimBoolean: // Fall-through. 813 case Primitive::kPrimByte: // Fall-through. 814 case Primitive::kPrimChar: // Fall-through. 815 case Primitive::kPrimShort: // Fall-through. 816 case Primitive::kPrimInt: // Fall-through. 817 case Primitive::kPrimFloat: 818 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 819 break; 820 case Primitive::kPrimVoid: 821 LOG(FATAL) << "UNREACHABLE"; 822 UNREACHABLE(); 823 } 824 args_->push_back(val); 825 } 826 827 void BuildQuickArgumentVisitor::FixupReferences() { 828 // Fixup any references which may have changed. 829 for (const auto& pair : references_) { 830 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 831 soa_->Env()->DeleteLocalRef(pair.first); 832 } 833 } 834 835 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 836 // which is responsible for recording callee save registers. We explicitly place into jobjects the 837 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 838 // field within the proxy object, which will box the primitive arguments and deal with error cases. 839 extern "C" uint64_t artQuickProxyInvokeHandler( 840 ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp) 841 SHARED_REQUIRES(Locks::mutator_lock_) { 842 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); 843 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); 844 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 845 const char* old_cause = 846 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 847 // Register the top of the managed stack, making stack crawlable. 848 DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method); 849 self->VerifyStack(); 850 // Start new JNI local reference state. 851 JNIEnvExt* env = self->GetJniEnv(); 852 ScopedObjectAccessUnchecked soa(env); 853 ScopedJniEnvLocalRefState env_state(env); 854 // Create local ref. copies of proxy method and the receiver. 855 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 856 857 // Placing arguments into args vector and remove the receiver. 858 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*)); 859 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " " 860 << PrettyMethod(non_proxy_method); 861 std::vector<jvalue> args; 862 uint32_t shorty_len = 0; 863 const char* shorty = non_proxy_method->GetShorty(&shorty_len); 864 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); 865 866 local_ref_visitor.VisitArguments(); 867 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); 868 args.erase(args.begin()); 869 870 // Convert proxy method into expected interface method. 871 ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*)); 872 DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method); 873 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); 874 self->EndAssertNoThreadSuspension(old_cause); 875 jobject interface_method_jobj = soa.AddLocalReference<jobject>( 876 mirror::Method::CreateFromArtMethod(soa.Self(), interface_method)); 877 878 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 879 // that performs allocations. 880 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); 881 // Restore references which might have moved. 882 local_ref_visitor.FixupReferences(); 883 return result.GetJ(); 884 } 885 886 // Read object references held in arguments from quick frames and place in a JNI local references, 887 // so they don't get garbage collected. 888 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 889 public: 890 RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, 891 uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) : 892 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 893 894 void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE; 895 896 void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_); 897 898 private: 899 ScopedObjectAccessUnchecked* const soa_; 900 // References which we must update when exiting in case the GC moved the objects. 901 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; 902 903 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 904 }; 905 906 void RememberForGcArgumentVisitor::Visit() { 907 if (IsParamAReference()) { 908 StackReference<mirror::Object>* stack_ref = 909 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 910 jobject reference = 911 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 912 references_.push_back(std::make_pair(reference, stack_ref)); 913 } 914 } 915 916 void RememberForGcArgumentVisitor::FixupReferences() { 917 // Fixup any references which may have changed. 918 for (const auto& pair : references_) { 919 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 920 soa_->Env()->DeleteLocalRef(pair.first); 921 } 922 } 923 924 // Lazily resolve a method for quick. Called by stub code. 925 extern "C" const void* artQuickResolutionTrampoline( 926 ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp) 927 SHARED_REQUIRES(Locks::mutator_lock_) { 928 // The resolution trampoline stashes the resolved method into the callee-save frame to transport 929 // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely 930 // does not have the same stack layout as the callee-save method). 931 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false); 932 // Start new JNI local reference state 933 JNIEnvExt* env = self->GetJniEnv(); 934 ScopedObjectAccessUnchecked soa(env); 935 ScopedJniEnvLocalRefState env_state(env); 936 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 937 938 // Compute details about the called method (avoid GCs) 939 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 940 InvokeType invoke_type; 941 MethodReference called_method(nullptr, 0); 942 const bool called_method_known_on_entry = !called->IsRuntimeMethod(); 943 ArtMethod* caller = nullptr; 944 if (!called_method_known_on_entry) { 945 caller = QuickArgumentVisitor::GetCallingMethod(sp); 946 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); 947 const DexFile::CodeItem* code; 948 called_method.dex_file = caller->GetDexFile(); 949 code = caller->GetCodeItem(); 950 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 951 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 952 Instruction::Code instr_code = instr->Opcode(); 953 bool is_range; 954 switch (instr_code) { 955 case Instruction::INVOKE_DIRECT: 956 invoke_type = kDirect; 957 is_range = false; 958 break; 959 case Instruction::INVOKE_DIRECT_RANGE: 960 invoke_type = kDirect; 961 is_range = true; 962 break; 963 case Instruction::INVOKE_STATIC: 964 invoke_type = kStatic; 965 is_range = false; 966 break; 967 case Instruction::INVOKE_STATIC_RANGE: 968 invoke_type = kStatic; 969 is_range = true; 970 break; 971 case Instruction::INVOKE_SUPER: 972 invoke_type = kSuper; 973 is_range = false; 974 break; 975 case Instruction::INVOKE_SUPER_RANGE: 976 invoke_type = kSuper; 977 is_range = true; 978 break; 979 case Instruction::INVOKE_VIRTUAL: 980 invoke_type = kVirtual; 981 is_range = false; 982 break; 983 case Instruction::INVOKE_VIRTUAL_RANGE: 984 invoke_type = kVirtual; 985 is_range = true; 986 break; 987 case Instruction::INVOKE_INTERFACE: 988 invoke_type = kInterface; 989 is_range = false; 990 break; 991 case Instruction::INVOKE_INTERFACE_RANGE: 992 invoke_type = kInterface; 993 is_range = true; 994 break; 995 default: 996 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr); 997 UNREACHABLE(); 998 } 999 called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 1000 } else { 1001 invoke_type = kStatic; 1002 called_method.dex_file = called->GetDexFile(); 1003 called_method.dex_method_index = called->GetDexMethodIndex(); 1004 } 1005 uint32_t shorty_len; 1006 const char* shorty = 1007 called_method.dex_file->GetMethodShorty( 1008 called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len); 1009 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 1010 visitor.VisitArguments(); 1011 self->EndAssertNoThreadSuspension(old_cause); 1012 const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 1013 // Resolve method filling in dex cache. 1014 if (!called_method_known_on_entry) { 1015 StackHandleScope<1> hs(self); 1016 mirror::Object* dummy = nullptr; 1017 HandleWrapper<mirror::Object> h_receiver( 1018 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 1019 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); 1020 called = linker->ResolveMethod<ClassLinker::kForceICCECheck>( 1021 self, called_method.dex_method_index, caller, invoke_type); 1022 } 1023 const void* code = nullptr; 1024 if (LIKELY(!self->IsExceptionPending())) { 1025 // Incompatible class change should have been handled in resolve method. 1026 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 1027 << PrettyMethod(called) << " " << invoke_type; 1028 if (virtual_or_interface || invoke_type == kSuper) { 1029 // Refine called method based on receiver for kVirtual/kInterface, and 1030 // caller for kSuper. 1031 ArtMethod* orig_called = called; 1032 if (invoke_type == kVirtual) { 1033 CHECK(receiver != nullptr) << invoke_type; 1034 called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*)); 1035 } else if (invoke_type == kInterface) { 1036 CHECK(receiver != nullptr) << invoke_type; 1037 called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*)); 1038 } else { 1039 DCHECK_EQ(invoke_type, kSuper); 1040 CHECK(caller != nullptr) << invoke_type; 1041 StackHandleScope<2> hs(self); 1042 Handle<mirror::DexCache> dex_cache( 1043 hs.NewHandle(caller->GetDeclaringClass()->GetDexCache())); 1044 Handle<mirror::ClassLoader> class_loader( 1045 hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader())); 1046 // TODO Maybe put this into a mirror::Class function. 1047 mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod( 1048 called_method.dex_method_index, dex_cache, class_loader); 1049 if (ref_class->IsInterface()) { 1050 called = ref_class->FindVirtualMethodForInterfaceSuper(called, sizeof(void*)); 1051 } else { 1052 called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry( 1053 called->GetMethodIndex(), sizeof(void*)); 1054 } 1055 } 1056 1057 CHECK(called != nullptr) << PrettyMethod(orig_called) << " " 1058 << PrettyTypeOf(receiver) << " " 1059 << invoke_type << " " << orig_called->GetVtableIndex(); 1060 1061 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 1062 // of the sharpened method avoiding dirtying the dex cache if possible. 1063 // Note, called_method.dex_method_index references the dex method before the 1064 // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares 1065 // about the name and signature. 1066 uint32_t update_dex_cache_method_index = called->GetDexMethodIndex(); 1067 if (!called->HasSameDexCacheResolvedMethods(caller, sizeof(void*))) { 1068 // Calling from one dex file to another, need to compute the method index appropriate to 1069 // the caller's dex file. Since we get here only if the original called was a runtime 1070 // method, we've got the correct dex_file and a dex_method_idx from above. 1071 DCHECK(!called_method_known_on_entry); 1072 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); 1073 const DexFile* caller_dex_file = called_method.dex_file; 1074 uint32_t caller_method_name_and_sig_index = called_method.dex_method_index; 1075 update_dex_cache_method_index = 1076 called->FindDexMethodIndexInOtherDexFile(*caller_dex_file, 1077 caller_method_name_and_sig_index); 1078 } 1079 if ((update_dex_cache_method_index != DexFile::kDexNoIndex) && 1080 (caller->GetDexCacheResolvedMethod( 1081 update_dex_cache_method_index, sizeof(void*)) != called)) { 1082 caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*)); 1083 } 1084 } else if (invoke_type == kStatic) { 1085 const auto called_dex_method_idx = called->GetDexMethodIndex(); 1086 // For static invokes, we may dispatch to the static method in the superclass but resolve 1087 // using the subclass. To prevent getting slow paths on each invoke, we force set the 1088 // resolved method for the super class dex method index if we are in the same dex file. 1089 // b/19175856 1090 if (called->GetDexFile() == called_method.dex_file && 1091 called_method.dex_method_index != called_dex_method_idx) { 1092 called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*)); 1093 } 1094 } 1095 1096 // Ensure that the called method's class is initialized. 1097 StackHandleScope<1> hs(soa.Self()); 1098 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 1099 linker->EnsureInitialized(soa.Self(), called_class, true, true); 1100 if (LIKELY(called_class->IsInitialized())) { 1101 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { 1102 // If we are single-stepping or the called method is deoptimized (by a 1103 // breakpoint, for example), then we have to execute the called method 1104 // with the interpreter. 1105 code = GetQuickToInterpreterBridge(); 1106 } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) { 1107 // If the caller is deoptimized (by a breakpoint, for example), we have to 1108 // continue its execution with interpreter when returning from the called 1109 // method. Because we do not want to execute the called method with the 1110 // interpreter, we wrap its execution into the instrumentation stubs. 1111 // When the called method returns, it will execute the instrumentation 1112 // exit hook that will determine the need of the interpreter with a call 1113 // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if 1114 // it is needed. 1115 code = GetQuickInstrumentationEntryPoint(); 1116 } else { 1117 code = called->GetEntryPointFromQuickCompiledCode(); 1118 } 1119 } else if (called_class->IsInitializing()) { 1120 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { 1121 // If we are single-stepping or the called method is deoptimized (by a 1122 // breakpoint, for example), then we have to execute the called method 1123 // with the interpreter. 1124 code = GetQuickToInterpreterBridge(); 1125 } else if (invoke_type == kStatic) { 1126 // Class is still initializing, go to oat and grab code (trampoline must be left in place 1127 // until class is initialized to stop races between threads). 1128 code = linker->GetQuickOatCodeFor(called); 1129 } else { 1130 // No trampoline for non-static methods. 1131 code = called->GetEntryPointFromQuickCompiledCode(); 1132 } 1133 } else { 1134 DCHECK(called_class->IsErroneous()); 1135 } 1136 } 1137 CHECK_EQ(code == nullptr, self->IsExceptionPending()); 1138 // Fixup any locally saved objects may have moved during a GC. 1139 visitor.FixupReferences(); 1140 // Place called method in callee-save frame to be placed as first argument to quick method. 1141 *sp = called; 1142 1143 return code; 1144 } 1145 1146 /* 1147 * This class uses a couple of observations to unite the different calling conventions through 1148 * a few constants. 1149 * 1150 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 1151 * possible alignment. 1152 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 1153 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 1154 * when we have to split things 1155 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 1156 * and we can use Int handling directly. 1157 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 1158 * necessary when widening. Also, widening of Ints will take place implicitly, and the 1159 * extension should be compatible with Aarch64, which mandates copying the available bits 1160 * into LSB and leaving the rest unspecified. 1161 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 1162 * the stack. 1163 * 6) There is only little endian. 1164 * 1165 * 1166 * Actual work is supposed to be done in a delegate of the template type. The interface is as 1167 * follows: 1168 * 1169 * void PushGpr(uintptr_t): Add a value for the next GPR 1170 * 1171 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 1172 * padding, that is, think the architecture is 32b and aligns 64b. 1173 * 1174 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 1175 * split this if necessary. The current state will have aligned, if 1176 * necessary. 1177 * 1178 * void PushStack(uintptr_t): Push a value to the stack. 1179 * 1180 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 1181 * as this might be important for null initialization. 1182 * Must return the jobject, that is, the reference to the 1183 * entry in the HandleScope (nullptr if necessary). 1184 * 1185 */ 1186 template<class T> class BuildNativeCallFrameStateMachine { 1187 public: 1188 #if defined(__arm__) 1189 // TODO: These are all dummy values! 1190 static constexpr bool kNativeSoftFloatAbi = true; 1191 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 1192 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 1193 1194 static constexpr size_t kRegistersNeededForLong = 2; 1195 static constexpr size_t kRegistersNeededForDouble = 2; 1196 static constexpr bool kMultiRegistersAligned = true; 1197 static constexpr bool kMultiFPRegistersWidened = false; 1198 static constexpr bool kMultiGPRegistersWidened = false; 1199 static constexpr bool kAlignLongOnStack = true; 1200 static constexpr bool kAlignDoubleOnStack = true; 1201 #elif defined(__aarch64__) 1202 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 1203 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 1204 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 1205 1206 static constexpr size_t kRegistersNeededForLong = 1; 1207 static constexpr size_t kRegistersNeededForDouble = 1; 1208 static constexpr bool kMultiRegistersAligned = false; 1209 static constexpr bool kMultiFPRegistersWidened = false; 1210 static constexpr bool kMultiGPRegistersWidened = false; 1211 static constexpr bool kAlignLongOnStack = false; 1212 static constexpr bool kAlignDoubleOnStack = false; 1213 #elif defined(__mips__) && !defined(__LP64__) 1214 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 1215 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs. 1216 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 1217 1218 static constexpr size_t kRegistersNeededForLong = 2; 1219 static constexpr size_t kRegistersNeededForDouble = 2; 1220 static constexpr bool kMultiRegistersAligned = true; 1221 static constexpr bool kMultiFPRegistersWidened = true; 1222 static constexpr bool kMultiGPRegistersWidened = false; 1223 static constexpr bool kAlignLongOnStack = true; 1224 static constexpr bool kAlignDoubleOnStack = true; 1225 #elif defined(__mips__) && defined(__LP64__) 1226 // Let the code prepare GPRs only and we will load the FPRs with same data. 1227 static constexpr bool kNativeSoftFloatAbi = true; 1228 static constexpr size_t kNumNativeGprArgs = 8; 1229 static constexpr size_t kNumNativeFprArgs = 0; 1230 1231 static constexpr size_t kRegistersNeededForLong = 1; 1232 static constexpr size_t kRegistersNeededForDouble = 1; 1233 static constexpr bool kMultiRegistersAligned = false; 1234 static constexpr bool kMultiFPRegistersWidened = false; 1235 static constexpr bool kMultiGPRegistersWidened = true; 1236 static constexpr bool kAlignLongOnStack = false; 1237 static constexpr bool kAlignDoubleOnStack = false; 1238 #elif defined(__i386__) 1239 // TODO: Check these! 1240 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 1241 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 1242 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 1243 1244 static constexpr size_t kRegistersNeededForLong = 2; 1245 static constexpr size_t kRegistersNeededForDouble = 2; 1246 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 1247 static constexpr bool kMultiFPRegistersWidened = false; 1248 static constexpr bool kMultiGPRegistersWidened = false; 1249 static constexpr bool kAlignLongOnStack = false; 1250 static constexpr bool kAlignDoubleOnStack = false; 1251 #elif defined(__x86_64__) 1252 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 1253 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 1254 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 1255 1256 static constexpr size_t kRegistersNeededForLong = 1; 1257 static constexpr size_t kRegistersNeededForDouble = 1; 1258 static constexpr bool kMultiRegistersAligned = false; 1259 static constexpr bool kMultiFPRegistersWidened = false; 1260 static constexpr bool kMultiGPRegistersWidened = false; 1261 static constexpr bool kAlignLongOnStack = false; 1262 static constexpr bool kAlignDoubleOnStack = false; 1263 #else 1264 #error "Unsupported architecture" 1265 #endif 1266 1267 public: 1268 explicit BuildNativeCallFrameStateMachine(T* delegate) 1269 : gpr_index_(kNumNativeGprArgs), 1270 fpr_index_(kNumNativeFprArgs), 1271 stack_entries_(0), 1272 delegate_(delegate) { 1273 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 1274 // the next register is even; counting down is just to make the compiler happy... 1275 static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even"); 1276 static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even"); 1277 } 1278 1279 virtual ~BuildNativeCallFrameStateMachine() {} 1280 1281 bool HavePointerGpr() const { 1282 return gpr_index_ > 0; 1283 } 1284 1285 void AdvancePointer(const void* val) { 1286 if (HavePointerGpr()) { 1287 gpr_index_--; 1288 PushGpr(reinterpret_cast<uintptr_t>(val)); 1289 } else { 1290 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 1291 PushStack(reinterpret_cast<uintptr_t>(val)); 1292 gpr_index_ = 0; 1293 } 1294 } 1295 1296 bool HaveHandleScopeGpr() const { 1297 return gpr_index_ > 0; 1298 } 1299 1300 void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) { 1301 uintptr_t handle = PushHandle(ptr); 1302 if (HaveHandleScopeGpr()) { 1303 gpr_index_--; 1304 PushGpr(handle); 1305 } else { 1306 stack_entries_++; 1307 PushStack(handle); 1308 gpr_index_ = 0; 1309 } 1310 } 1311 1312 bool HaveIntGpr() const { 1313 return gpr_index_ > 0; 1314 } 1315 1316 void AdvanceInt(uint32_t val) { 1317 if (HaveIntGpr()) { 1318 gpr_index_--; 1319 if (kMultiGPRegistersWidened) { 1320 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); 1321 PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); 1322 } else { 1323 PushGpr(val); 1324 } 1325 } else { 1326 stack_entries_++; 1327 if (kMultiGPRegistersWidened) { 1328 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); 1329 PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); 1330 } else { 1331 PushStack(val); 1332 } 1333 gpr_index_ = 0; 1334 } 1335 } 1336 1337 bool HaveLongGpr() const { 1338 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1339 } 1340 1341 bool LongGprNeedsPadding() const { 1342 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1343 kAlignLongOnStack && // and when it needs alignment 1344 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1345 } 1346 1347 bool LongStackNeedsPadding() const { 1348 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1349 kAlignLongOnStack && // and when it needs 8B alignment 1350 (stack_entries_ & 1) == 1; // counter is odd 1351 } 1352 1353 void AdvanceLong(uint64_t val) { 1354 if (HaveLongGpr()) { 1355 if (LongGprNeedsPadding()) { 1356 PushGpr(0); 1357 gpr_index_--; 1358 } 1359 if (kRegistersNeededForLong == 1) { 1360 PushGpr(static_cast<uintptr_t>(val)); 1361 } else { 1362 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1363 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1364 } 1365 gpr_index_ -= kRegistersNeededForLong; 1366 } else { 1367 if (LongStackNeedsPadding()) { 1368 PushStack(0); 1369 stack_entries_++; 1370 } 1371 if (kRegistersNeededForLong == 1) { 1372 PushStack(static_cast<uintptr_t>(val)); 1373 stack_entries_++; 1374 } else { 1375 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1376 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1377 stack_entries_ += 2; 1378 } 1379 gpr_index_ = 0; 1380 } 1381 } 1382 1383 bool HaveFloatFpr() const { 1384 return fpr_index_ > 0; 1385 } 1386 1387 void AdvanceFloat(float val) { 1388 if (kNativeSoftFloatAbi) { 1389 AdvanceInt(bit_cast<uint32_t, float>(val)); 1390 } else { 1391 if (HaveFloatFpr()) { 1392 fpr_index_--; 1393 if (kRegistersNeededForDouble == 1) { 1394 if (kMultiFPRegistersWidened) { 1395 PushFpr8(bit_cast<uint64_t, double>(val)); 1396 } else { 1397 // No widening, just use the bits. 1398 PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val))); 1399 } 1400 } else { 1401 PushFpr4(val); 1402 } 1403 } else { 1404 stack_entries_++; 1405 if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) { 1406 // Need to widen before storing: Note the "double" in the template instantiation. 1407 // Note: We need to jump through those hoops to make the compiler happy. 1408 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); 1409 PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val))); 1410 } else { 1411 PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val))); 1412 } 1413 fpr_index_ = 0; 1414 } 1415 } 1416 } 1417 1418 bool HaveDoubleFpr() const { 1419 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1420 } 1421 1422 bool DoubleFprNeedsPadding() const { 1423 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1424 kAlignDoubleOnStack && // and when it needs alignment 1425 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1426 } 1427 1428 bool DoubleStackNeedsPadding() const { 1429 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1430 kAlignDoubleOnStack && // and when it needs 8B alignment 1431 (stack_entries_ & 1) == 1; // counter is odd 1432 } 1433 1434 void AdvanceDouble(uint64_t val) { 1435 if (kNativeSoftFloatAbi) { 1436 AdvanceLong(val); 1437 } else { 1438 if (HaveDoubleFpr()) { 1439 if (DoubleFprNeedsPadding()) { 1440 PushFpr4(0); 1441 fpr_index_--; 1442 } 1443 PushFpr8(val); 1444 fpr_index_ -= kRegistersNeededForDouble; 1445 } else { 1446 if (DoubleStackNeedsPadding()) { 1447 PushStack(0); 1448 stack_entries_++; 1449 } 1450 if (kRegistersNeededForDouble == 1) { 1451 PushStack(static_cast<uintptr_t>(val)); 1452 stack_entries_++; 1453 } else { 1454 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1455 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1456 stack_entries_ += 2; 1457 } 1458 fpr_index_ = 0; 1459 } 1460 } 1461 } 1462 1463 uint32_t GetStackEntries() const { 1464 return stack_entries_; 1465 } 1466 1467 uint32_t GetNumberOfUsedGprs() const { 1468 return kNumNativeGprArgs - gpr_index_; 1469 } 1470 1471 uint32_t GetNumberOfUsedFprs() const { 1472 return kNumNativeFprArgs - fpr_index_; 1473 } 1474 1475 private: 1476 void PushGpr(uintptr_t val) { 1477 delegate_->PushGpr(val); 1478 } 1479 void PushFpr4(float val) { 1480 delegate_->PushFpr4(val); 1481 } 1482 void PushFpr8(uint64_t val) { 1483 delegate_->PushFpr8(val); 1484 } 1485 void PushStack(uintptr_t val) { 1486 delegate_->PushStack(val); 1487 } 1488 uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) { 1489 return delegate_->PushHandle(ref); 1490 } 1491 1492 uint32_t gpr_index_; // Number of free GPRs 1493 uint32_t fpr_index_; // Number of free FPRs 1494 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1495 // extended 1496 T* const delegate_; // What Push implementation gets called 1497 }; 1498 1499 // Computes the sizes of register stacks and call stack area. Handling of references can be extended 1500 // in subclasses. 1501 // 1502 // To handle native pointers, use "L" in the shorty for an object reference, which simulates 1503 // them with handles. 1504 class ComputeNativeCallFrameSize { 1505 public: 1506 ComputeNativeCallFrameSize() : num_stack_entries_(0) {} 1507 1508 virtual ~ComputeNativeCallFrameSize() {} 1509 1510 uint32_t GetStackSize() const { 1511 return num_stack_entries_ * sizeof(uintptr_t); 1512 } 1513 1514 uint8_t* LayoutCallStack(uint8_t* sp8) const { 1515 sp8 -= GetStackSize(); 1516 // Align by kStackAlignment. 1517 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1518 return sp8; 1519 } 1520 1521 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) 1522 const { 1523 // Assumption is OK right now, as we have soft-float arm 1524 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; 1525 sp8 -= fregs * sizeof(uintptr_t); 1526 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1527 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; 1528 sp8 -= iregs * sizeof(uintptr_t); 1529 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1530 return sp8; 1531 } 1532 1533 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, 1534 uint32_t** start_fpr) const { 1535 // Native call stack. 1536 sp8 = LayoutCallStack(sp8); 1537 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1538 1539 // Put fprs and gprs below. 1540 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); 1541 1542 // Return the new bottom. 1543 return sp8; 1544 } 1545 1546 virtual void WalkHeader( 1547 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED) 1548 SHARED_REQUIRES(Locks::mutator_lock_) { 1549 } 1550 1551 void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) { 1552 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); 1553 1554 WalkHeader(&sm); 1555 1556 for (uint32_t i = 1; i < shorty_len; ++i) { 1557 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1558 switch (cur_type_) { 1559 case Primitive::kPrimNot: 1560 // TODO: fix abuse of mirror types. 1561 sm.AdvanceHandleScope( 1562 reinterpret_cast<mirror::Object*>(0x12345678)); 1563 break; 1564 1565 case Primitive::kPrimBoolean: 1566 case Primitive::kPrimByte: 1567 case Primitive::kPrimChar: 1568 case Primitive::kPrimShort: 1569 case Primitive::kPrimInt: 1570 sm.AdvanceInt(0); 1571 break; 1572 case Primitive::kPrimFloat: 1573 sm.AdvanceFloat(0); 1574 break; 1575 case Primitive::kPrimDouble: 1576 sm.AdvanceDouble(0); 1577 break; 1578 case Primitive::kPrimLong: 1579 sm.AdvanceLong(0); 1580 break; 1581 default: 1582 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1583 UNREACHABLE(); 1584 } 1585 } 1586 1587 num_stack_entries_ = sm.GetStackEntries(); 1588 } 1589 1590 void PushGpr(uintptr_t /* val */) { 1591 // not optimizing registers, yet 1592 } 1593 1594 void PushFpr4(float /* val */) { 1595 // not optimizing registers, yet 1596 } 1597 1598 void PushFpr8(uint64_t /* val */) { 1599 // not optimizing registers, yet 1600 } 1601 1602 void PushStack(uintptr_t /* val */) { 1603 // counting is already done in the superclass 1604 } 1605 1606 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { 1607 return reinterpret_cast<uintptr_t>(nullptr); 1608 } 1609 1610 protected: 1611 uint32_t num_stack_entries_; 1612 }; 1613 1614 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { 1615 public: 1616 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {} 1617 1618 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs 1619 // is at *m = sp. Will update to point to the bottom of the save frame. 1620 // 1621 // Note: assumes ComputeAll() has been run before. 1622 void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) 1623 SHARED_REQUIRES(Locks::mutator_lock_) { 1624 ArtMethod* method = **m; 1625 1626 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*)); 1627 1628 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1629 1630 // First, fix up the layout of the callee-save frame. 1631 // We have to squeeze in the HandleScope, and relocate the method pointer. 1632 1633 // "Free" the slot for the method. 1634 sp8 += sizeof(void*); // In the callee-save frame we use a full pointer. 1635 1636 // Under the callee saves put handle scope and new method stack reference. 1637 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1638 size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*); 1639 1640 sp8 -= scope_and_method; 1641 // Align by kStackAlignment. 1642 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1643 1644 uint8_t* sp8_table = sp8 + sizeof(ArtMethod*); 1645 *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(), 1646 num_handle_scope_references_); 1647 1648 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1649 uint8_t* method_pointer = sp8; 1650 auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer); 1651 *new_method_ref = method; 1652 *m = new_method_ref; 1653 } 1654 1655 // Adds space for the cookie. Note: may leave stack unaligned. 1656 void LayoutCookie(uint8_t** sp) const { 1657 // Reference cookie and padding 1658 *sp -= 8; 1659 } 1660 1661 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. 1662 // Returns the new bottom. Note: this may be unaligned. 1663 uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) 1664 SHARED_REQUIRES(Locks::mutator_lock_) { 1665 // First, fix up the layout of the callee-save frame. 1666 // We have to squeeze in the HandleScope, and relocate the method pointer. 1667 LayoutCalleeSaveFrame(self, m, sp, handle_scope); 1668 1669 // The bottom of the callee-save frame is now where the method is, *m. 1670 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); 1671 1672 // Add space for cookie. 1673 LayoutCookie(&sp8); 1674 1675 return sp8; 1676 } 1677 1678 // WARNING: After this, *sp won't be pointing to the method anymore! 1679 uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len, 1680 HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr, 1681 uint32_t** start_fpr) 1682 SHARED_REQUIRES(Locks::mutator_lock_) { 1683 Walk(shorty, shorty_len); 1684 1685 // JNI part. 1686 uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope); 1687 1688 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); 1689 1690 // Return the new bottom. 1691 return sp8; 1692 } 1693 1694 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; 1695 1696 // Add JNIEnv* and jobj/jclass before the shorty-derived elements. 1697 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE 1698 SHARED_REQUIRES(Locks::mutator_lock_); 1699 1700 private: 1701 uint32_t num_handle_scope_references_; 1702 }; 1703 1704 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { 1705 num_handle_scope_references_++; 1706 return reinterpret_cast<uintptr_t>(nullptr); 1707 } 1708 1709 void ComputeGenericJniFrameSize::WalkHeader( 1710 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { 1711 // JNIEnv 1712 sm->AdvancePointer(nullptr); 1713 1714 // Class object or this as first argument 1715 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1716 } 1717 1718 // Class to push values to three separate regions. Used to fill the native call part. Adheres to 1719 // the template requirements of BuildGenericJniFrameStateMachine. 1720 class FillNativeCall { 1721 public: 1722 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : 1723 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} 1724 1725 virtual ~FillNativeCall() {} 1726 1727 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { 1728 cur_gpr_reg_ = gpr_regs; 1729 cur_fpr_reg_ = fpr_regs; 1730 cur_stack_arg_ = stack_args; 1731 } 1732 1733 void PushGpr(uintptr_t val) { 1734 *cur_gpr_reg_ = val; 1735 cur_gpr_reg_++; 1736 } 1737 1738 void PushFpr4(float val) { 1739 *cur_fpr_reg_ = val; 1740 cur_fpr_reg_++; 1741 } 1742 1743 void PushFpr8(uint64_t val) { 1744 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1745 *tmp = val; 1746 cur_fpr_reg_ += 2; 1747 } 1748 1749 void PushStack(uintptr_t val) { 1750 *cur_stack_arg_ = val; 1751 cur_stack_arg_++; 1752 } 1753 1754 virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) { 1755 LOG(FATAL) << "(Non-JNI) Native call does not use handles."; 1756 UNREACHABLE(); 1757 } 1758 1759 private: 1760 uintptr_t* cur_gpr_reg_; 1761 uint32_t* cur_fpr_reg_; 1762 uintptr_t* cur_stack_arg_; 1763 }; 1764 1765 // Visits arguments on the stack placing them into a region lower down the stack for the benefit 1766 // of transitioning into native code. 1767 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1768 public: 1769 BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len, 1770 ArtMethod*** sp) 1771 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), 1772 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) { 1773 ComputeGenericJniFrameSize fsc; 1774 uintptr_t* start_gpr_reg; 1775 uint32_t* start_fpr_reg; 1776 uintptr_t* start_stack_arg; 1777 bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len, 1778 &handle_scope_, 1779 &start_stack_arg, 1780 &start_gpr_reg, &start_fpr_reg); 1781 1782 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); 1783 1784 // jni environment is always first argument 1785 sm_.AdvancePointer(self->GetJniEnv()); 1786 1787 if (is_static) { 1788 sm_.AdvanceHandleScope((**sp)->GetDeclaringClass()); 1789 } 1790 } 1791 1792 void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE; 1793 1794 void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_); 1795 1796 StackReference<mirror::Object>* GetFirstHandleScopeEntry() { 1797 return handle_scope_->GetHandle(0).GetReference(); 1798 } 1799 1800 jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) { 1801 return handle_scope_->GetHandle(0).ToJObject(); 1802 } 1803 1804 void* GetBottomOfUsedArea() const { 1805 return bottom_of_used_area_; 1806 } 1807 1808 private: 1809 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. 1810 class FillJniCall FINAL : public FillNativeCall { 1811 public: 1812 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, 1813 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args), 1814 handle_scope_(handle_scope), cur_entry_(0) {} 1815 1816 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_); 1817 1818 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { 1819 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); 1820 handle_scope_ = scope; 1821 cur_entry_ = 0U; 1822 } 1823 1824 void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) { 1825 // Initialize padding entries. 1826 size_t expected_slots = handle_scope_->NumberOfReferences(); 1827 while (cur_entry_ < expected_slots) { 1828 handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr); 1829 } 1830 DCHECK_NE(cur_entry_, 0U); 1831 } 1832 1833 private: 1834 HandleScope* handle_scope_; 1835 size_t cur_entry_; 1836 }; 1837 1838 HandleScope* handle_scope_; 1839 FillJniCall jni_call_; 1840 void* bottom_of_used_area_; 1841 1842 BuildNativeCallFrameStateMachine<FillJniCall> sm_; 1843 1844 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1845 }; 1846 1847 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { 1848 uintptr_t tmp; 1849 MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_); 1850 h.Assign(ref); 1851 tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); 1852 cur_entry_++; 1853 return tmp; 1854 } 1855 1856 void BuildGenericJniFrameVisitor::Visit() { 1857 Primitive::Type type = GetParamPrimitiveType(); 1858 switch (type) { 1859 case Primitive::kPrimLong: { 1860 jlong long_arg; 1861 if (IsSplitLongOrDouble()) { 1862 long_arg = ReadSplitLongParam(); 1863 } else { 1864 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1865 } 1866 sm_.AdvanceLong(long_arg); 1867 break; 1868 } 1869 case Primitive::kPrimDouble: { 1870 uint64_t double_arg; 1871 if (IsSplitLongOrDouble()) { 1872 // Read into union so that we don't case to a double. 1873 double_arg = ReadSplitLongParam(); 1874 } else { 1875 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1876 } 1877 sm_.AdvanceDouble(double_arg); 1878 break; 1879 } 1880 case Primitive::kPrimNot: { 1881 StackReference<mirror::Object>* stack_ref = 1882 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1883 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1884 break; 1885 } 1886 case Primitive::kPrimFloat: 1887 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 1888 break; 1889 case Primitive::kPrimBoolean: // Fall-through. 1890 case Primitive::kPrimByte: // Fall-through. 1891 case Primitive::kPrimChar: // Fall-through. 1892 case Primitive::kPrimShort: // Fall-through. 1893 case Primitive::kPrimInt: // Fall-through. 1894 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 1895 break; 1896 case Primitive::kPrimVoid: 1897 LOG(FATAL) << "UNREACHABLE"; 1898 UNREACHABLE(); 1899 } 1900 } 1901 1902 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 1903 // Clear out rest of the scope. 1904 jni_call_.ResetRemainingScopeSlots(); 1905 // Install HandleScope. 1906 self->PushHandleScope(handle_scope_); 1907 } 1908 1909 #if defined(__arm__) || defined(__aarch64__) 1910 extern "C" void* artFindNativeMethod(); 1911 #else 1912 extern "C" void* artFindNativeMethod(Thread* self); 1913 #endif 1914 1915 uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { 1916 if (lock != nullptr) { 1917 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 1918 } else { 1919 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 1920 } 1921 } 1922 1923 void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { 1924 if (lock != nullptr) { 1925 JniMethodEndSynchronized(cookie, lock, self); 1926 } else { 1927 JniMethodEnd(cookie, self); 1928 } 1929 } 1930 1931 /* 1932 * Initializes an alloca region assumed to be directly below sp for a native call: 1933 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 1934 * The final element on the stack is a pointer to the native code. 1935 * 1936 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 1937 * We need to fix this, as the handle scope needs to go into the callee-save frame. 1938 * 1939 * The return of this function denotes: 1940 * 1) How many bytes of the alloca can be released, if the value is non-negative. 1941 * 2) An error, if the value is negative. 1942 */ 1943 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp) 1944 SHARED_REQUIRES(Locks::mutator_lock_) { 1945 ArtMethod* called = *sp; 1946 DCHECK(called->IsNative()) << PrettyMethod(called, true); 1947 uint32_t shorty_len = 0; 1948 const char* shorty = called->GetShorty(&shorty_len); 1949 1950 // Run the visitor and update sp. 1951 BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp); 1952 visitor.VisitArguments(); 1953 visitor.FinalizeHandleScope(self); 1954 1955 // Fix up managed-stack things in Thread. 1956 self->SetTopOfStack(sp); 1957 1958 self->VerifyStack(); 1959 1960 // Start JNI, save the cookie. 1961 uint32_t cookie; 1962 if (called->IsSynchronized()) { 1963 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 1964 if (self->IsExceptionPending()) { 1965 self->PopHandleScope(); 1966 // A negative value denotes an error. 1967 return GetTwoWordFailureValue(); 1968 } 1969 } else { 1970 cookie = JniMethodStart(self); 1971 } 1972 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1973 *(sp32 - 1) = cookie; 1974 1975 // Retrieve the stored native code. 1976 void* nativeCode = called->GetEntryPointFromJni(); 1977 1978 // There are two cases for the content of nativeCode: 1979 // 1) Pointer to the native function. 1980 // 2) Pointer to the trampoline for native code binding. 1981 // In the second case, we need to execute the binding and continue with the actual native function 1982 // pointer. 1983 DCHECK(nativeCode != nullptr); 1984 if (nativeCode == GetJniDlsymLookupStub()) { 1985 #if defined(__arm__) || defined(__aarch64__) 1986 nativeCode = artFindNativeMethod(); 1987 #else 1988 nativeCode = artFindNativeMethod(self); 1989 #endif 1990 1991 if (nativeCode == nullptr) { 1992 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 1993 1994 // End JNI, as the assembly will move to deliver the exception. 1995 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 1996 if (shorty[0] == 'L') { 1997 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); 1998 } else { 1999 artQuickGenericJniEndJNINonRef(self, cookie, lock); 2000 } 2001 2002 return GetTwoWordFailureValue(); 2003 } 2004 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 2005 } 2006 2007 // Return native code addr(lo) and bottom of alloca address(hi). 2008 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), 2009 reinterpret_cast<uintptr_t>(nativeCode)); 2010 } 2011 2012 // Defined in quick_jni_entrypoints.cc. 2013 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie, 2014 jvalue result, uint64_t result_f, ArtMethod* called, 2015 HandleScope* handle_scope); 2016 /* 2017 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 2018 * unlocking. 2019 */ 2020 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, 2021 jvalue result, 2022 uint64_t result_f) { 2023 // We're here just back from a native call. We don't have the shared mutator lock at this point 2024 // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing 2025 // anything that requires a mutator lock before that would cause problems as GC may have the 2026 // exclusive mutator lock and may be moving objects, etc. 2027 ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame(); 2028 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 2029 ArtMethod* called = *sp; 2030 uint32_t cookie = *(sp32 - 1); 2031 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp)); 2032 return GenericJniMethodEnd(self, cookie, result, result_f, called, table); 2033 } 2034 2035 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value 2036 // for the method pointer. 2037 // 2038 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming 2039 // to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations). 2040 2041 template<InvokeType type, bool access_check> 2042 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self, 2043 ArtMethod** sp) { 2044 ScopedQuickEntrypointChecks sqec(self); 2045 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); 2046 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); 2047 ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type); 2048 if (UNLIKELY(method == nullptr)) { 2049 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 2050 uint32_t shorty_len; 2051 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 2052 { 2053 // Remember the args in case a GC happens in FindMethodFromCode. 2054 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 2055 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 2056 visitor.VisitArguments(); 2057 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method, 2058 self); 2059 visitor.FixupReferences(); 2060 } 2061 2062 if (UNLIKELY(method == nullptr)) { 2063 CHECK(self->IsExceptionPending()); 2064 return GetTwoWordFailureValue(); // Failure. 2065 } 2066 } 2067 DCHECK(!self->IsExceptionPending()); 2068 const void* code = method->GetEntryPointFromQuickCompiledCode(); 2069 2070 // When we return, the caller will branch to this address, so it had better not be 0! 2071 DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method) 2072 << " location: " 2073 << method->GetDexFile()->GetLocation(); 2074 2075 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 2076 reinterpret_cast<uintptr_t>(method)); 2077 } 2078 2079 // Explicit artInvokeCommon template function declarations to please analysis tool. 2080 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 2081 template SHARED_REQUIRES(Locks::mutator_lock_) \ 2082 TwoWordReturn artInvokeCommon<type, access_check>( \ 2083 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2084 2085 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 2086 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 2087 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 2088 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 2089 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 2090 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 2091 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 2092 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 2093 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 2094 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 2095 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 2096 2097 // See comments in runtime_support_asm.S 2098 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( 2099 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2100 SHARED_REQUIRES(Locks::mutator_lock_) { 2101 return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp); 2102 } 2103 2104 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( 2105 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2106 SHARED_REQUIRES(Locks::mutator_lock_) { 2107 return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp); 2108 } 2109 2110 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( 2111 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2112 SHARED_REQUIRES(Locks::mutator_lock_) { 2113 return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp); 2114 } 2115 2116 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( 2117 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2118 SHARED_REQUIRES(Locks::mutator_lock_) { 2119 return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp); 2120 } 2121 2122 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( 2123 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2124 SHARED_REQUIRES(Locks::mutator_lock_) { 2125 return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp); 2126 } 2127 2128 // Determine target of interface dispatch. This object is known non-null. First argument 2129 // is there for consistency but should not be used, as some architectures overwrite it 2130 // in the assembly trampoline. 2131 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED, 2132 mirror::Object* this_object, 2133 Thread* self, 2134 ArtMethod** sp) 2135 SHARED_REQUIRES(Locks::mutator_lock_) { 2136 ScopedQuickEntrypointChecks sqec(self); 2137 StackHandleScope<1> hs(self); 2138 Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass())); 2139 2140 // The optimizing compiler currently does not inline methods that have an interface 2141 // invocation. We use the outer method directly to avoid fetching a stack map, which is 2142 // more expensive. 2143 ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp); 2144 DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp)); 2145 2146 // Fetch the dex_method_idx of the target interface method from the caller. 2147 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); 2148 2149 const DexFile::CodeItem* code_item = caller_method->GetCodeItem(); 2150 CHECK_LT(dex_pc, code_item->insns_size_in_code_units_); 2151 const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]); 2152 Instruction::Code instr_code = instr->Opcode(); 2153 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 2154 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 2155 << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr); 2156 uint32_t dex_method_idx; 2157 if (instr_code == Instruction::INVOKE_INTERFACE) { 2158 dex_method_idx = instr->VRegB_35c(); 2159 } else { 2160 CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 2161 dex_method_idx = instr->VRegB_3rc(); 2162 } 2163 2164 ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod( 2165 dex_method_idx, sizeof(void*)); 2166 DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method); 2167 ArtMethod* method = nullptr; 2168 2169 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 2170 // If the dex cache already resolved the interface method, look whether we have 2171 // a match in the ImtConflictTable. 2172 uint32_t imt_index = interface_method->GetDexMethodIndex(); 2173 ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry( 2174 imt_index % mirror::Class::kImtSize, sizeof(void*)); 2175 if (LIKELY(conflict_method->IsRuntimeMethod())) { 2176 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*)); 2177 DCHECK(current_table != nullptr); 2178 method = current_table->Lookup(interface_method, sizeof(void*)); 2179 } else { 2180 // It seems we aren't really a conflict method! 2181 method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*)); 2182 } 2183 if (method != nullptr) { 2184 return GetTwoWordSuccessValue( 2185 reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()), 2186 reinterpret_cast<uintptr_t>(method)); 2187 } 2188 2189 // No match, use the IfTable. 2190 method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*)); 2191 if (UNLIKELY(method == nullptr)) { 2192 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch( 2193 interface_method, this_object, caller_method); 2194 return GetTwoWordFailureValue(); // Failure. 2195 } 2196 } else { 2197 // The dex cache did not resolve the method, look it up in the dex file 2198 // of the caller, 2199 DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod()); 2200 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() 2201 ->GetDexFile(); 2202 uint32_t shorty_len; 2203 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), 2204 &shorty_len); 2205 { 2206 // Remember the args in case a GC happens in FindMethodFromCode. 2207 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 2208 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 2209 visitor.VisitArguments(); 2210 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method, 2211 self); 2212 visitor.FixupReferences(); 2213 } 2214 2215 if (UNLIKELY(method == nullptr)) { 2216 CHECK(self->IsExceptionPending()); 2217 return GetTwoWordFailureValue(); // Failure. 2218 } 2219 interface_method = caller_method->GetDexCacheResolvedMethod(dex_method_idx, sizeof(void*)); 2220 DCHECK(!interface_method->IsRuntimeMethod()); 2221 } 2222 2223 // We arrive here if we have found an implementation, and it is not in the ImtConflictTable. 2224 // We create a new table with the new pair { interface_method, method }. 2225 uint32_t imt_index = interface_method->GetDexMethodIndex(); 2226 ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry( 2227 imt_index % mirror::Class::kImtSize, sizeof(void*)); 2228 if (conflict_method->IsRuntimeMethod()) { 2229 ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable( 2230 cls.Get(), 2231 conflict_method, 2232 interface_method, 2233 method, 2234 /*force_new_conflict_method*/false); 2235 if (new_conflict_method != conflict_method) { 2236 // Update the IMT if we create a new conflict method. No fence needed here, as the 2237 // data is consistent. 2238 cls->SetEmbeddedImTableEntry(imt_index % mirror::Class::kImtSize, 2239 new_conflict_method, 2240 sizeof(void*)); 2241 } 2242 } 2243 2244 const void* code = method->GetEntryPointFromQuickCompiledCode(); 2245 2246 // When we return, the caller will branch to this address, so it had better not be 0! 2247 DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method) 2248 << " location: " << method->GetDexFile()->GetLocation(); 2249 2250 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 2251 reinterpret_cast<uintptr_t>(method)); 2252 } 2253 2254 } // namespace art 2255