Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "art_method-inl.h"
     18 #include "callee_save_frame.h"
     19 #include "common_throws.h"
     20 #include "dex_file-inl.h"
     21 #include "dex_instruction-inl.h"
     22 #include "entrypoints/entrypoint_utils-inl.h"
     23 #include "entrypoints/runtime_asm_entrypoints.h"
     24 #include "gc/accounting/card_table-inl.h"
     25 #include "interpreter/interpreter.h"
     26 #include "linear_alloc.h"
     27 #include "method_reference.h"
     28 #include "mirror/class-inl.h"
     29 #include "mirror/dex_cache-inl.h"
     30 #include "mirror/method.h"
     31 #include "mirror/object-inl.h"
     32 #include "mirror/object_array-inl.h"
     33 #include "oat_quick_method_header.h"
     34 #include "quick_exception_handler.h"
     35 #include "runtime.h"
     36 #include "scoped_thread_state_change.h"
     37 #include "stack.h"
     38 #include "debugger.h"
     39 
     40 namespace art {
     41 
     42 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
     43 class QuickArgumentVisitor {
     44   // Number of bytes for each out register in the caller method's frame.
     45   static constexpr size_t kBytesStackArgLocation = 4;
     46   // Frame size in bytes of a callee-save frame for RefsAndArgs.
     47   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
     48       GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
     49 #if defined(__arm__)
     50   // The callee save frame is pointed to by SP.
     51   // | argN       |  |
     52   // | ...        |  |
     53   // | arg4       |  |
     54   // | arg3 spill |  |  Caller's frame
     55   // | arg2 spill |  |
     56   // | arg1 spill |  |
     57   // | Method*    | ---
     58   // | LR         |
     59   // | ...        |    4x6 bytes callee saves
     60   // | R3         |
     61   // | R2         |
     62   // | R1         |
     63   // | S15        |
     64   // | :          |
     65   // | S0         |
     66   // |            |    4x2 bytes padding
     67   // | Method*    |  <- sp
     68   static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
     69   static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
     70   static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
     71   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
     72   static constexpr bool kQuickSkipOddFpRegisters = false;
     73   static constexpr size_t kNumQuickGprArgs = 3;
     74   static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
     75   static constexpr bool kGprFprLockstep = false;
     76   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
     77       arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
     78   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
     79       arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
     80   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
     81       arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
     82   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
     83     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
     84   }
     85 #elif defined(__aarch64__)
     86   // The callee save frame is pointed to by SP.
     87   // | argN       |  |
     88   // | ...        |  |
     89   // | arg4       |  |
     90   // | arg3 spill |  |  Caller's frame
     91   // | arg2 spill |  |
     92   // | arg1 spill |  |
     93   // | Method*    | ---
     94   // | LR         |
     95   // | X29        |
     96   // |  :         |
     97   // | X20        |
     98   // | X7         |
     99   // | :          |
    100   // | X1         |
    101   // | D7         |
    102   // |  :         |
    103   // | D0         |
    104   // |            |    padding
    105   // | Method*    |  <- sp
    106   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    107   static constexpr bool kAlignPairRegister = false;
    108   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    109   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    110   static constexpr bool kQuickSkipOddFpRegisters = false;
    111   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
    112   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
    113   static constexpr bool kGprFprLockstep = false;
    114   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
    115       arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
    116   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
    117       arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
    118   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
    119       arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
    120   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    121     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    122   }
    123 #elif defined(__mips__) && !defined(__LP64__)
    124   // The callee save frame is pointed to by SP.
    125   // | argN       |  |
    126   // | ...        |  |
    127   // | arg4       |  |
    128   // | arg3 spill |  |  Caller's frame
    129   // | arg2 spill |  |
    130   // | arg1 spill |  |
    131   // | Method*    | ---
    132   // | RA         |
    133   // | ...        |    callee saves
    134   // | A3         |    arg3
    135   // | A2         |    arg2
    136   // | A1         |    arg1
    137   // | F15        |
    138   // | F14        |    f_arg1
    139   // | F13        |
    140   // | F12        |    f_arg0
    141   // |            |    padding
    142   // | A0/Method* |  <- sp
    143   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    144   static constexpr bool kAlignPairRegister = true;
    145   static constexpr bool kQuickSoftFloatAbi = false;
    146   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    147   static constexpr bool kQuickSkipOddFpRegisters = true;
    148   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
    149   static constexpr size_t kNumQuickFprArgs = 4;  // 2 arguments passed in FPRs. Floats can be passed
    150                                                  // only in even numbered registers and each double
    151                                                  // occupies two registers.
    152   static constexpr bool kGprFprLockstep = false;
    153   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
    154   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32;  // Offset of first GPR arg.
    155   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76;  // Offset of return address.
    156   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    157     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    158   }
    159 #elif defined(__mips__) && defined(__LP64__)
    160   // The callee save frame is pointed to by SP.
    161   // | argN       |  |
    162   // | ...        |  |
    163   // | arg4       |  |
    164   // | arg3 spill |  |  Caller's frame
    165   // | arg2 spill |  |
    166   // | arg1 spill |  |
    167   // | Method*    | ---
    168   // | RA         |
    169   // | ...        |    callee saves
    170   // | A7         |    arg7
    171   // | A6         |    arg6
    172   // | A5         |    arg5
    173   // | A4         |    arg4
    174   // | A3         |    arg3
    175   // | A2         |    arg2
    176   // | A1         |    arg1
    177   // | F19        |    f_arg7
    178   // | F18        |    f_arg6
    179   // | F17        |    f_arg5
    180   // | F16        |    f_arg4
    181   // | F15        |    f_arg3
    182   // | F14        |    f_arg2
    183   // | F13        |    f_arg1
    184   // | F12        |    f_arg0
    185   // |            |    padding
    186   // | A0/Method* |  <- sp
    187   // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
    188   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    189   static constexpr bool kAlignPairRegister = false;
    190   static constexpr bool kQuickSoftFloatAbi = false;
    191   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    192   static constexpr bool kQuickSkipOddFpRegisters = false;
    193   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
    194   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
    195   static constexpr bool kGprFprLockstep = true;
    196 
    197   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
    198   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
    199   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
    200   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    201     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    202   }
    203 #elif defined(__i386__)
    204   // The callee save frame is pointed to by SP.
    205   // | argN        |  |
    206   // | ...         |  |
    207   // | arg4        |  |
    208   // | arg3 spill  |  |  Caller's frame
    209   // | arg2 spill  |  |
    210   // | arg1 spill  |  |
    211   // | Method*     | ---
    212   // | Return      |
    213   // | EBP,ESI,EDI |    callee saves
    214   // | EBX         |    arg3
    215   // | EDX         |    arg2
    216   // | ECX         |    arg1
    217   // | XMM3        |    float arg 4
    218   // | XMM2        |    float arg 3
    219   // | XMM1        |    float arg 2
    220   // | XMM0        |    float arg 1
    221   // | EAX/Method* |  <- sp
    222   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    223   static constexpr bool kAlignPairRegister = false;
    224   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    225   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    226   static constexpr bool kQuickSkipOddFpRegisters = false;
    227   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
    228   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
    229   static constexpr bool kGprFprLockstep = false;
    230   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
    231   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
    232   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
    233   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    234     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    235   }
    236 #elif defined(__x86_64__)
    237   // The callee save frame is pointed to by SP.
    238   // | argN            |  |
    239   // | ...             |  |
    240   // | reg. arg spills |  |  Caller's frame
    241   // | Method*         | ---
    242   // | Return          |
    243   // | R15             |    callee save
    244   // | R14             |    callee save
    245   // | R13             |    callee save
    246   // | R12             |    callee save
    247   // | R9              |    arg5
    248   // | R8              |    arg4
    249   // | RSI/R6          |    arg1
    250   // | RBP/R5          |    callee save
    251   // | RBX/R3          |    callee save
    252   // | RDX/R2          |    arg2
    253   // | RCX/R1          |    arg3
    254   // | XMM7            |    float arg 8
    255   // | XMM6            |    float arg 7
    256   // | XMM5            |    float arg 6
    257   // | XMM4            |    float arg 5
    258   // | XMM3            |    float arg 4
    259   // | XMM2            |    float arg 3
    260   // | XMM1            |    float arg 2
    261   // | XMM0            |    float arg 1
    262   // | Padding         |
    263   // | RDI/Method*     |  <- sp
    264   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    265   static constexpr bool kAlignPairRegister = false;
    266   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    267   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    268   static constexpr bool kQuickSkipOddFpRegisters = false;
    269   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
    270   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
    271   static constexpr bool kGprFprLockstep = false;
    272   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
    273   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
    274   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
    275   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    276     switch (gpr_index) {
    277       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
    278       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
    279       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
    280       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
    281       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
    282       default:
    283       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
    284       return 0;
    285     }
    286   }
    287 #else
    288 #error "Unsupported architecture"
    289 #endif
    290 
    291  public:
    292   // Special handling for proxy methods. Proxy methods are instance methods so the
    293   // 'this' object is the 1st argument. They also have the same frame layout as the
    294   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
    295   // 1st GPR.
    296   static mirror::Object* GetProxyThisObject(ArtMethod** sp)
    297       SHARED_REQUIRES(Locks::mutator_lock_) {
    298     CHECK((*sp)->IsProxyMethod());
    299     CHECK_GT(kNumQuickGprArgs, 0u);
    300     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
    301     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
    302         GprIndexToGprOffset(kThisGprIndex);
    303     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
    304     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
    305   }
    306 
    307   static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
    308     DCHECK((*sp)->IsCalleeSaveMethod());
    309     return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs);
    310   }
    311 
    312   static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
    313     DCHECK((*sp)->IsCalleeSaveMethod());
    314     uint8_t* previous_sp =
    315         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
    316     return *reinterpret_cast<ArtMethod**>(previous_sp);
    317   }
    318 
    319   static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
    320     DCHECK((*sp)->IsCalleeSaveMethod());
    321     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
    322     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
    323         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
    324     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
    325     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
    326     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
    327 
    328     if (current_code->IsOptimized()) {
    329       CodeInfo code_info = current_code->GetOptimizedCodeInfo();
    330       CodeInfoEncoding encoding = code_info.ExtractEncoding();
    331       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
    332       DCHECK(stack_map.IsValid());
    333       if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) {
    334         InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
    335         return inline_info.GetDexPcAtDepth(encoding.inline_info_encoding,
    336                                            inline_info.GetDepth(encoding.inline_info_encoding)-1);
    337       } else {
    338         return stack_map.GetDexPc(encoding.stack_map_encoding);
    339       }
    340     } else {
    341       return current_code->ToDexPc(*caller_sp, outer_pc);
    342     }
    343   }
    344 
    345   // For the given quick ref and args quick frame, return the caller's PC.
    346   static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
    347     DCHECK((*sp)->IsCalleeSaveMethod());
    348     uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
    349     return *reinterpret_cast<uintptr_t*>(lr);
    350   }
    351 
    352   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
    353                        uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) :
    354           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
    355           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
    356           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
    357           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
    358               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
    359           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
    360           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
    361     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
    362                   "Number of Quick FPR arguments unexpected");
    363     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
    364                   "Double alignment unexpected");
    365     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
    366     // next register is even.
    367     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
    368                   "Number of Quick FPR arguments not even");
    369     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
    370   }
    371 
    372   virtual ~QuickArgumentVisitor() {}
    373 
    374   virtual void Visit() = 0;
    375 
    376   Primitive::Type GetParamPrimitiveType() const {
    377     return cur_type_;
    378   }
    379 
    380   uint8_t* GetParamAddress() const {
    381     if (!kQuickSoftFloatAbi) {
    382       Primitive::Type type = GetParamPrimitiveType();
    383       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
    384         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
    385           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
    386             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
    387           }
    388         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    389           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
    390         }
    391         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
    392       }
    393     }
    394     if (gpr_index_ < kNumQuickGprArgs) {
    395       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
    396     }
    397     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
    398   }
    399 
    400   bool IsSplitLongOrDouble() const {
    401     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
    402         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
    403       return is_split_long_or_double_;
    404     } else {
    405       return false;  // An optimization for when GPR and FPRs are 64bit.
    406     }
    407   }
    408 
    409   bool IsParamAReference() const {
    410     return GetParamPrimitiveType() == Primitive::kPrimNot;
    411   }
    412 
    413   bool IsParamALongOrDouble() const {
    414     Primitive::Type type = GetParamPrimitiveType();
    415     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
    416   }
    417 
    418   uint64_t ReadSplitLongParam() const {
    419     // The splitted long is always available through the stack.
    420     return *reinterpret_cast<uint64_t*>(stack_args_
    421         + stack_index_ * kBytesStackArgLocation);
    422   }
    423 
    424   void IncGprIndex() {
    425     gpr_index_++;
    426     if (kGprFprLockstep) {
    427       fpr_index_++;
    428     }
    429   }
    430 
    431   void IncFprIndex() {
    432     fpr_index_++;
    433     if (kGprFprLockstep) {
    434       gpr_index_++;
    435     }
    436   }
    437 
    438   void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) {
    439     // (a) 'stack_args_' should point to the first method's argument
    440     // (b) whatever the argument type it is, the 'stack_index_' should
    441     //     be moved forward along with every visiting.
    442     gpr_index_ = 0;
    443     fpr_index_ = 0;
    444     if (kQuickDoubleRegAlignedFloatBackFilled) {
    445       fpr_double_index_ = 0;
    446     }
    447     stack_index_ = 0;
    448     if (!is_static_) {  // Handle this.
    449       cur_type_ = Primitive::kPrimNot;
    450       is_split_long_or_double_ = false;
    451       Visit();
    452       stack_index_++;
    453       if (kNumQuickGprArgs > 0) {
    454         IncGprIndex();
    455       }
    456     }
    457     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
    458       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
    459       switch (cur_type_) {
    460         case Primitive::kPrimNot:
    461         case Primitive::kPrimBoolean:
    462         case Primitive::kPrimByte:
    463         case Primitive::kPrimChar:
    464         case Primitive::kPrimShort:
    465         case Primitive::kPrimInt:
    466           is_split_long_or_double_ = false;
    467           Visit();
    468           stack_index_++;
    469           if (gpr_index_ < kNumQuickGprArgs) {
    470             IncGprIndex();
    471           }
    472           break;
    473         case Primitive::kPrimFloat:
    474           is_split_long_or_double_ = false;
    475           Visit();
    476           stack_index_++;
    477           if (kQuickSoftFloatAbi) {
    478             if (gpr_index_ < kNumQuickGprArgs) {
    479               IncGprIndex();
    480             }
    481           } else {
    482             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    483               IncFprIndex();
    484               if (kQuickDoubleRegAlignedFloatBackFilled) {
    485                 // Double should not overlap with float.
    486                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
    487                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
    488                 // Float should not overlap with double.
    489                 if (fpr_index_ % 2 == 0) {
    490                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
    491                 }
    492               } else if (kQuickSkipOddFpRegisters) {
    493                 IncFprIndex();
    494               }
    495             }
    496           }
    497           break;
    498         case Primitive::kPrimDouble:
    499         case Primitive::kPrimLong:
    500           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
    501             if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
    502               // Currently, this is only for ARM and MIPS, where the first available parameter
    503               // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or
    504               // A2 (on MIPS) instead.
    505               IncGprIndex();
    506             }
    507             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
    508                 ((gpr_index_ + 1) == kNumQuickGprArgs);
    509             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
    510               // We don't want to split this. Pass over this register.
    511               gpr_index_++;
    512               is_split_long_or_double_ = false;
    513             }
    514             Visit();
    515             if (kBytesStackArgLocation == 4) {
    516               stack_index_+= 2;
    517             } else {
    518               CHECK_EQ(kBytesStackArgLocation, 8U);
    519               stack_index_++;
    520             }
    521             if (gpr_index_ < kNumQuickGprArgs) {
    522               IncGprIndex();
    523               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
    524                 if (gpr_index_ < kNumQuickGprArgs) {
    525                   IncGprIndex();
    526                 }
    527               }
    528             }
    529           } else {
    530             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
    531                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
    532             Visit();
    533             if (kBytesStackArgLocation == 4) {
    534               stack_index_+= 2;
    535             } else {
    536               CHECK_EQ(kBytesStackArgLocation, 8U);
    537               stack_index_++;
    538             }
    539             if (kQuickDoubleRegAlignedFloatBackFilled) {
    540               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
    541                 fpr_double_index_ += 2;
    542                 // Float should not overlap with double.
    543                 if (fpr_index_ % 2 == 0) {
    544                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
    545                 }
    546               }
    547             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    548               IncFprIndex();
    549               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
    550                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    551                   IncFprIndex();
    552                 }
    553               }
    554             }
    555           }
    556           break;
    557         default:
    558           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
    559       }
    560     }
    561   }
    562 
    563  protected:
    564   const bool is_static_;
    565   const char* const shorty_;
    566   const uint32_t shorty_len_;
    567 
    568  private:
    569   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
    570   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
    571   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
    572   uint32_t gpr_index_;  // Index into spilled GPRs.
    573   // Index into spilled FPRs.
    574   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
    575   // holds a higher register number.
    576   uint32_t fpr_index_;
    577   // Index into spilled FPRs for aligned double.
    578   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
    579   // terms of singles, may be behind fpr_index.
    580   uint32_t fpr_double_index_;
    581   uint32_t stack_index_;  // Index into arguments on the stack.
    582   // The current type of argument during VisitArguments.
    583   Primitive::Type cur_type_;
    584   // Does a 64bit parameter straddle the register and stack arguments?
    585   bool is_split_long_or_double_;
    586 };
    587 
    588 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
    589 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
    590 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
    591     SHARED_REQUIRES(Locks::mutator_lock_) {
    592   return QuickArgumentVisitor::GetProxyThisObject(sp);
    593 }
    594 
    595 // Visits arguments on the stack placing them into the shadow frame.
    596 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
    597  public:
    598   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
    599                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
    600       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
    601 
    602   void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
    603 
    604  private:
    605   ShadowFrame* const sf_;
    606   uint32_t cur_reg_;
    607 
    608   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
    609 };
    610 
    611 void BuildQuickShadowFrameVisitor::Visit() {
    612   Primitive::Type type = GetParamPrimitiveType();
    613   switch (type) {
    614     case Primitive::kPrimLong:  // Fall-through.
    615     case Primitive::kPrimDouble:
    616       if (IsSplitLongOrDouble()) {
    617         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
    618       } else {
    619         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
    620       }
    621       ++cur_reg_;
    622       break;
    623     case Primitive::kPrimNot: {
    624         StackReference<mirror::Object>* stack_ref =
    625             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    626         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
    627       }
    628       break;
    629     case Primitive::kPrimBoolean:  // Fall-through.
    630     case Primitive::kPrimByte:     // Fall-through.
    631     case Primitive::kPrimChar:     // Fall-through.
    632     case Primitive::kPrimShort:    // Fall-through.
    633     case Primitive::kPrimInt:      // Fall-through.
    634     case Primitive::kPrimFloat:
    635       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
    636       break;
    637     case Primitive::kPrimVoid:
    638       LOG(FATAL) << "UNREACHABLE";
    639       UNREACHABLE();
    640   }
    641   ++cur_reg_;
    642 }
    643 
    644 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
    645     SHARED_REQUIRES(Locks::mutator_lock_) {
    646   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
    647   // frame.
    648   ScopedQuickEntrypointChecks sqec(self);
    649 
    650   if (UNLIKELY(!method->IsInvokable())) {
    651     method->ThrowInvocationTimeError();
    652     return 0;
    653   }
    654 
    655   JValue tmp_value;
    656   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
    657       StackedShadowFrameType::kSingleFrameDeoptimizationShadowFrame, false);
    658   ManagedStack fragment;
    659 
    660   DCHECK(!method->IsNative()) << PrettyMethod(method);
    661   uint32_t shorty_len = 0;
    662   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
    663   const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
    664   DCHECK(code_item != nullptr) << PrettyMethod(method);
    665   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
    666 
    667   JValue result;
    668 
    669   if (deopt_frame != nullptr) {
    670     // Coming from single-frame deopt.
    671 
    672     if (kIsDebugBuild) {
    673       // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
    674       // of the call-stack) corresponds to the called method.
    675       ShadowFrame* linked = deopt_frame;
    676       while (linked->GetLink() != nullptr) {
    677         linked = linked->GetLink();
    678       }
    679       CHECK_EQ(method, linked->GetMethod()) << PrettyMethod(method) << " "
    680           << PrettyMethod(linked->GetMethod());
    681     }
    682 
    683     if (VLOG_IS_ON(deopt)) {
    684       // Print out the stack to verify that it was a single-frame deopt.
    685       LOG(INFO) << "Continue-ing from deopt. Stack is:";
    686       QuickExceptionHandler::DumpFramesWithType(self, true);
    687     }
    688 
    689     mirror::Throwable* pending_exception = nullptr;
    690     bool from_code = false;
    691     self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
    692     CHECK(from_code);
    693 
    694     // Push a transition back into managed code onto the linked list in thread.
    695     self->PushManagedStackFragment(&fragment);
    696 
    697     // Ensure that the stack is still in order.
    698     if (kIsDebugBuild) {
    699       class DummyStackVisitor : public StackVisitor {
    700        public:
    701         explicit DummyStackVisitor(Thread* self_in) SHARED_REQUIRES(Locks::mutator_lock_)
    702             : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
    703 
    704         bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    705           // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
    706           // logic. Just always say we want to continue.
    707           return true;
    708         }
    709       };
    710       DummyStackVisitor dsv(self);
    711       dsv.WalkStack();
    712     }
    713 
    714     // Restore the exception that was pending before deoptimization then interpret the
    715     // deoptimized frames.
    716     if (pending_exception != nullptr) {
    717       self->SetException(pending_exception);
    718     }
    719     interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
    720   } else {
    721     const char* old_cause = self->StartAssertNoThreadSuspension(
    722         "Building interpreter shadow frame");
    723     uint16_t num_regs = code_item->registers_size_;
    724     // No last shadow coming from quick.
    725     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
    726         CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
    727     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
    728     size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
    729     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
    730                                                       shadow_frame, first_arg_reg);
    731     shadow_frame_builder.VisitArguments();
    732     const bool needs_initialization =
    733         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
    734     // Push a transition back into managed code onto the linked list in thread.
    735     self->PushManagedStackFragment(&fragment);
    736     self->PushShadowFrame(shadow_frame);
    737     self->EndAssertNoThreadSuspension(old_cause);
    738 
    739     if (needs_initialization) {
    740       // Ensure static method's class is initialized.
    741       StackHandleScope<1> hs(self);
    742       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
    743       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
    744         DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
    745         self->PopManagedStackFragment(fragment);
    746         return 0;
    747       }
    748     }
    749 
    750     result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
    751   }
    752 
    753   // Pop transition.
    754   self->PopManagedStackFragment(fragment);
    755 
    756   // Request a stack deoptimization if needed
    757   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
    758   if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
    759     // Push the context of the deoptimization stack so we can restore the return value and the
    760     // exception before executing the deoptimized frames.
    761     self->PushDeoptimizationContext(
    762         result, shorty[0] == 'L', /* from_code */ false, self->GetException());
    763 
    764     // Set special exception to cause deoptimization.
    765     self->SetException(Thread::GetDeoptimizationException());
    766   }
    767 
    768   // No need to restore the args since the method has already been run by the interpreter.
    769   return result.GetJ();
    770 }
    771 
    772 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
    773 // to jobjects.
    774 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
    775  public:
    776   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
    777                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
    778       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
    779 
    780   void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
    781 
    782   void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
    783 
    784  private:
    785   ScopedObjectAccessUnchecked* const soa_;
    786   std::vector<jvalue>* const args_;
    787   // References which we must update when exiting in case the GC moved the objects.
    788   std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
    789 
    790   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
    791 };
    792 
    793 void BuildQuickArgumentVisitor::Visit() {
    794   jvalue val;
    795   Primitive::Type type = GetParamPrimitiveType();
    796   switch (type) {
    797     case Primitive::kPrimNot: {
    798       StackReference<mirror::Object>* stack_ref =
    799           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    800       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
    801       references_.push_back(std::make_pair(val.l, stack_ref));
    802       break;
    803     }
    804     case Primitive::kPrimLong:  // Fall-through.
    805     case Primitive::kPrimDouble:
    806       if (IsSplitLongOrDouble()) {
    807         val.j = ReadSplitLongParam();
    808       } else {
    809         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
    810       }
    811       break;
    812     case Primitive::kPrimBoolean:  // Fall-through.
    813     case Primitive::kPrimByte:     // Fall-through.
    814     case Primitive::kPrimChar:     // Fall-through.
    815     case Primitive::kPrimShort:    // Fall-through.
    816     case Primitive::kPrimInt:      // Fall-through.
    817     case Primitive::kPrimFloat:
    818       val.i = *reinterpret_cast<jint*>(GetParamAddress());
    819       break;
    820     case Primitive::kPrimVoid:
    821       LOG(FATAL) << "UNREACHABLE";
    822       UNREACHABLE();
    823   }
    824   args_->push_back(val);
    825 }
    826 
    827 void BuildQuickArgumentVisitor::FixupReferences() {
    828   // Fixup any references which may have changed.
    829   for (const auto& pair : references_) {
    830     pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
    831     soa_->Env()->DeleteLocalRef(pair.first);
    832   }
    833 }
    834 
    835 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
    836 // which is responsible for recording callee save registers. We explicitly place into jobjects the
    837 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
    838 // field within the proxy object, which will box the primitive arguments and deal with error cases.
    839 extern "C" uint64_t artQuickProxyInvokeHandler(
    840     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
    841     SHARED_REQUIRES(Locks::mutator_lock_) {
    842   DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
    843   DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
    844   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
    845   const char* old_cause =
    846       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
    847   // Register the top of the managed stack, making stack crawlable.
    848   DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
    849   self->VerifyStack();
    850   // Start new JNI local reference state.
    851   JNIEnvExt* env = self->GetJniEnv();
    852   ScopedObjectAccessUnchecked soa(env);
    853   ScopedJniEnvLocalRefState env_state(env);
    854   // Create local ref. copies of proxy method and the receiver.
    855   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
    856 
    857   // Placing arguments into args vector and remove the receiver.
    858   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
    859   CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
    860                                        << PrettyMethod(non_proxy_method);
    861   std::vector<jvalue> args;
    862   uint32_t shorty_len = 0;
    863   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
    864   BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
    865 
    866   local_ref_visitor.VisitArguments();
    867   DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
    868   args.erase(args.begin());
    869 
    870   // Convert proxy method into expected interface method.
    871   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
    872   DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
    873   DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
    874   self->EndAssertNoThreadSuspension(old_cause);
    875   jobject interface_method_jobj = soa.AddLocalReference<jobject>(
    876       mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
    877 
    878   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
    879   // that performs allocations.
    880   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
    881   // Restore references which might have moved.
    882   local_ref_visitor.FixupReferences();
    883   return result.GetJ();
    884 }
    885 
    886 // Read object references held in arguments from quick frames and place in a JNI local references,
    887 // so they don't get garbage collected.
    888 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
    889  public:
    890   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
    891                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
    892       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
    893 
    894   void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
    895 
    896   void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
    897 
    898  private:
    899   ScopedObjectAccessUnchecked* const soa_;
    900   // References which we must update when exiting in case the GC moved the objects.
    901   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
    902 
    903   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
    904 };
    905 
    906 void RememberForGcArgumentVisitor::Visit() {
    907   if (IsParamAReference()) {
    908     StackReference<mirror::Object>* stack_ref =
    909         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    910     jobject reference =
    911         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
    912     references_.push_back(std::make_pair(reference, stack_ref));
    913   }
    914 }
    915 
    916 void RememberForGcArgumentVisitor::FixupReferences() {
    917   // Fixup any references which may have changed.
    918   for (const auto& pair : references_) {
    919     pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
    920     soa_->Env()->DeleteLocalRef(pair.first);
    921   }
    922 }
    923 
    924 // Lazily resolve a method for quick. Called by stub code.
    925 extern "C" const void* artQuickResolutionTrampoline(
    926     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
    927     SHARED_REQUIRES(Locks::mutator_lock_) {
    928   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
    929   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
    930   // does not have the same stack layout as the callee-save method).
    931   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
    932   // Start new JNI local reference state
    933   JNIEnvExt* env = self->GetJniEnv();
    934   ScopedObjectAccessUnchecked soa(env);
    935   ScopedJniEnvLocalRefState env_state(env);
    936   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
    937 
    938   // Compute details about the called method (avoid GCs)
    939   ClassLinker* linker = Runtime::Current()->GetClassLinker();
    940   InvokeType invoke_type;
    941   MethodReference called_method(nullptr, 0);
    942   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
    943   ArtMethod* caller = nullptr;
    944   if (!called_method_known_on_entry) {
    945     caller = QuickArgumentVisitor::GetCallingMethod(sp);
    946     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
    947     const DexFile::CodeItem* code;
    948     called_method.dex_file = caller->GetDexFile();
    949     code = caller->GetCodeItem();
    950     CHECK_LT(dex_pc, code->insns_size_in_code_units_);
    951     const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
    952     Instruction::Code instr_code = instr->Opcode();
    953     bool is_range;
    954     switch (instr_code) {
    955       case Instruction::INVOKE_DIRECT:
    956         invoke_type = kDirect;
    957         is_range = false;
    958         break;
    959       case Instruction::INVOKE_DIRECT_RANGE:
    960         invoke_type = kDirect;
    961         is_range = true;
    962         break;
    963       case Instruction::INVOKE_STATIC:
    964         invoke_type = kStatic;
    965         is_range = false;
    966         break;
    967       case Instruction::INVOKE_STATIC_RANGE:
    968         invoke_type = kStatic;
    969         is_range = true;
    970         break;
    971       case Instruction::INVOKE_SUPER:
    972         invoke_type = kSuper;
    973         is_range = false;
    974         break;
    975       case Instruction::INVOKE_SUPER_RANGE:
    976         invoke_type = kSuper;
    977         is_range = true;
    978         break;
    979       case Instruction::INVOKE_VIRTUAL:
    980         invoke_type = kVirtual;
    981         is_range = false;
    982         break;
    983       case Instruction::INVOKE_VIRTUAL_RANGE:
    984         invoke_type = kVirtual;
    985         is_range = true;
    986         break;
    987       case Instruction::INVOKE_INTERFACE:
    988         invoke_type = kInterface;
    989         is_range = false;
    990         break;
    991       case Instruction::INVOKE_INTERFACE_RANGE:
    992         invoke_type = kInterface;
    993         is_range = true;
    994         break;
    995       default:
    996         LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
    997         UNREACHABLE();
    998     }
    999     called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
   1000   } else {
   1001     invoke_type = kStatic;
   1002     called_method.dex_file = called->GetDexFile();
   1003     called_method.dex_method_index = called->GetDexMethodIndex();
   1004   }
   1005   uint32_t shorty_len;
   1006   const char* shorty =
   1007       called_method.dex_file->GetMethodShorty(
   1008           called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
   1009   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
   1010   visitor.VisitArguments();
   1011   self->EndAssertNoThreadSuspension(old_cause);
   1012   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
   1013   // Resolve method filling in dex cache.
   1014   if (!called_method_known_on_entry) {
   1015     StackHandleScope<1> hs(self);
   1016     mirror::Object* dummy = nullptr;
   1017     HandleWrapper<mirror::Object> h_receiver(
   1018         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
   1019     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
   1020     called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
   1021         self, called_method.dex_method_index, caller, invoke_type);
   1022   }
   1023   const void* code = nullptr;
   1024   if (LIKELY(!self->IsExceptionPending())) {
   1025     // Incompatible class change should have been handled in resolve method.
   1026     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
   1027         << PrettyMethod(called) << " " << invoke_type;
   1028     if (virtual_or_interface || invoke_type == kSuper) {
   1029       // Refine called method based on receiver for kVirtual/kInterface, and
   1030       // caller for kSuper.
   1031       ArtMethod* orig_called = called;
   1032       if (invoke_type == kVirtual) {
   1033         CHECK(receiver != nullptr) << invoke_type;
   1034         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
   1035       } else if (invoke_type == kInterface) {
   1036         CHECK(receiver != nullptr) << invoke_type;
   1037         called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
   1038       } else {
   1039         DCHECK_EQ(invoke_type, kSuper);
   1040         CHECK(caller != nullptr) << invoke_type;
   1041         StackHandleScope<2> hs(self);
   1042         Handle<mirror::DexCache> dex_cache(
   1043             hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
   1044         Handle<mirror::ClassLoader> class_loader(
   1045             hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
   1046         // TODO Maybe put this into a mirror::Class function.
   1047         mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
   1048             called_method.dex_method_index, dex_cache, class_loader);
   1049         if (ref_class->IsInterface()) {
   1050           called = ref_class->FindVirtualMethodForInterfaceSuper(called, sizeof(void*));
   1051         } else {
   1052           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
   1053               called->GetMethodIndex(), sizeof(void*));
   1054         }
   1055       }
   1056 
   1057       CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
   1058                                << PrettyTypeOf(receiver) << " "
   1059                                << invoke_type << " " << orig_called->GetVtableIndex();
   1060 
   1061       // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
   1062       // of the sharpened method avoiding dirtying the dex cache if possible.
   1063       // Note, called_method.dex_method_index references the dex method before the
   1064       // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
   1065       // about the name and signature.
   1066       uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
   1067       if (!called->HasSameDexCacheResolvedMethods(caller, sizeof(void*))) {
   1068         // Calling from one dex file to another, need to compute the method index appropriate to
   1069         // the caller's dex file. Since we get here only if the original called was a runtime
   1070         // method, we've got the correct dex_file and a dex_method_idx from above.
   1071         DCHECK(!called_method_known_on_entry);
   1072         DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
   1073         const DexFile* caller_dex_file = called_method.dex_file;
   1074         uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
   1075         update_dex_cache_method_index =
   1076             called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
   1077                                                      caller_method_name_and_sig_index);
   1078       }
   1079       if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
   1080           (caller->GetDexCacheResolvedMethod(
   1081               update_dex_cache_method_index, sizeof(void*)) != called)) {
   1082         caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
   1083       }
   1084     } else if (invoke_type == kStatic) {
   1085       const auto called_dex_method_idx = called->GetDexMethodIndex();
   1086       // For static invokes, we may dispatch to the static method in the superclass but resolve
   1087       // using the subclass. To prevent getting slow paths on each invoke, we force set the
   1088       // resolved method for the super class dex method index if we are in the same dex file.
   1089       // b/19175856
   1090       if (called->GetDexFile() == called_method.dex_file &&
   1091           called_method.dex_method_index != called_dex_method_idx) {
   1092         called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
   1093       }
   1094     }
   1095 
   1096     // Ensure that the called method's class is initialized.
   1097     StackHandleScope<1> hs(soa.Self());
   1098     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
   1099     linker->EnsureInitialized(soa.Self(), called_class, true, true);
   1100     if (LIKELY(called_class->IsInitialized())) {
   1101       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
   1102         // If we are single-stepping or the called method is deoptimized (by a
   1103         // breakpoint, for example), then we have to execute the called method
   1104         // with the interpreter.
   1105         code = GetQuickToInterpreterBridge();
   1106       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
   1107         // If the caller is deoptimized (by a breakpoint, for example), we have to
   1108         // continue its execution with interpreter when returning from the called
   1109         // method. Because we do not want to execute the called method with the
   1110         // interpreter, we wrap its execution into the instrumentation stubs.
   1111         // When the called method returns, it will execute the instrumentation
   1112         // exit hook that will determine the need of the interpreter with a call
   1113         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
   1114         // it is needed.
   1115         code = GetQuickInstrumentationEntryPoint();
   1116       } else {
   1117         code = called->GetEntryPointFromQuickCompiledCode();
   1118       }
   1119     } else if (called_class->IsInitializing()) {
   1120       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
   1121         // If we are single-stepping or the called method is deoptimized (by a
   1122         // breakpoint, for example), then we have to execute the called method
   1123         // with the interpreter.
   1124         code = GetQuickToInterpreterBridge();
   1125       } else if (invoke_type == kStatic) {
   1126         // Class is still initializing, go to oat and grab code (trampoline must be left in place
   1127         // until class is initialized to stop races between threads).
   1128         code = linker->GetQuickOatCodeFor(called);
   1129       } else {
   1130         // No trampoline for non-static methods.
   1131         code = called->GetEntryPointFromQuickCompiledCode();
   1132       }
   1133     } else {
   1134       DCHECK(called_class->IsErroneous());
   1135     }
   1136   }
   1137   CHECK_EQ(code == nullptr, self->IsExceptionPending());
   1138   // Fixup any locally saved objects may have moved during a GC.
   1139   visitor.FixupReferences();
   1140   // Place called method in callee-save frame to be placed as first argument to quick method.
   1141   *sp = called;
   1142 
   1143   return code;
   1144 }
   1145 
   1146 /*
   1147  * This class uses a couple of observations to unite the different calling conventions through
   1148  * a few constants.
   1149  *
   1150  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
   1151  *    possible alignment.
   1152  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
   1153  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
   1154  *    when we have to split things
   1155  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
   1156  *    and we can use Int handling directly.
   1157  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
   1158  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
   1159  *    extension should be compatible with Aarch64, which mandates copying the available bits
   1160  *    into LSB and leaving the rest unspecified.
   1161  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
   1162  *    the stack.
   1163  * 6) There is only little endian.
   1164  *
   1165  *
   1166  * Actual work is supposed to be done in a delegate of the template type. The interface is as
   1167  * follows:
   1168  *
   1169  * void PushGpr(uintptr_t):   Add a value for the next GPR
   1170  *
   1171  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
   1172  *                            padding, that is, think the architecture is 32b and aligns 64b.
   1173  *
   1174  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
   1175  *                            split this if necessary. The current state will have aligned, if
   1176  *                            necessary.
   1177  *
   1178  * void PushStack(uintptr_t): Push a value to the stack.
   1179  *
   1180  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
   1181  *                                          as this might be important for null initialization.
   1182  *                                          Must return the jobject, that is, the reference to the
   1183  *                                          entry in the HandleScope (nullptr if necessary).
   1184  *
   1185  */
   1186 template<class T> class BuildNativeCallFrameStateMachine {
   1187  public:
   1188 #if defined(__arm__)
   1189   // TODO: These are all dummy values!
   1190   static constexpr bool kNativeSoftFloatAbi = true;
   1191   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
   1192   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
   1193 
   1194   static constexpr size_t kRegistersNeededForLong = 2;
   1195   static constexpr size_t kRegistersNeededForDouble = 2;
   1196   static constexpr bool kMultiRegistersAligned = true;
   1197   static constexpr bool kMultiFPRegistersWidened = false;
   1198   static constexpr bool kMultiGPRegistersWidened = false;
   1199   static constexpr bool kAlignLongOnStack = true;
   1200   static constexpr bool kAlignDoubleOnStack = true;
   1201 #elif defined(__aarch64__)
   1202   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
   1203   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
   1204   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
   1205 
   1206   static constexpr size_t kRegistersNeededForLong = 1;
   1207   static constexpr size_t kRegistersNeededForDouble = 1;
   1208   static constexpr bool kMultiRegistersAligned = false;
   1209   static constexpr bool kMultiFPRegistersWidened = false;
   1210   static constexpr bool kMultiGPRegistersWidened = false;
   1211   static constexpr bool kAlignLongOnStack = false;
   1212   static constexpr bool kAlignDoubleOnStack = false;
   1213 #elif defined(__mips__) && !defined(__LP64__)
   1214   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
   1215   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
   1216   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
   1217 
   1218   static constexpr size_t kRegistersNeededForLong = 2;
   1219   static constexpr size_t kRegistersNeededForDouble = 2;
   1220   static constexpr bool kMultiRegistersAligned = true;
   1221   static constexpr bool kMultiFPRegistersWidened = true;
   1222   static constexpr bool kMultiGPRegistersWidened = false;
   1223   static constexpr bool kAlignLongOnStack = true;
   1224   static constexpr bool kAlignDoubleOnStack = true;
   1225 #elif defined(__mips__) && defined(__LP64__)
   1226   // Let the code prepare GPRs only and we will load the FPRs with same data.
   1227   static constexpr bool kNativeSoftFloatAbi = true;
   1228   static constexpr size_t kNumNativeGprArgs = 8;
   1229   static constexpr size_t kNumNativeFprArgs = 0;
   1230 
   1231   static constexpr size_t kRegistersNeededForLong = 1;
   1232   static constexpr size_t kRegistersNeededForDouble = 1;
   1233   static constexpr bool kMultiRegistersAligned = false;
   1234   static constexpr bool kMultiFPRegistersWidened = false;
   1235   static constexpr bool kMultiGPRegistersWidened = true;
   1236   static constexpr bool kAlignLongOnStack = false;
   1237   static constexpr bool kAlignDoubleOnStack = false;
   1238 #elif defined(__i386__)
   1239   // TODO: Check these!
   1240   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
   1241   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
   1242   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
   1243 
   1244   static constexpr size_t kRegistersNeededForLong = 2;
   1245   static constexpr size_t kRegistersNeededForDouble = 2;
   1246   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
   1247   static constexpr bool kMultiFPRegistersWidened = false;
   1248   static constexpr bool kMultiGPRegistersWidened = false;
   1249   static constexpr bool kAlignLongOnStack = false;
   1250   static constexpr bool kAlignDoubleOnStack = false;
   1251 #elif defined(__x86_64__)
   1252   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
   1253   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
   1254   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
   1255 
   1256   static constexpr size_t kRegistersNeededForLong = 1;
   1257   static constexpr size_t kRegistersNeededForDouble = 1;
   1258   static constexpr bool kMultiRegistersAligned = false;
   1259   static constexpr bool kMultiFPRegistersWidened = false;
   1260   static constexpr bool kMultiGPRegistersWidened = false;
   1261   static constexpr bool kAlignLongOnStack = false;
   1262   static constexpr bool kAlignDoubleOnStack = false;
   1263 #else
   1264 #error "Unsupported architecture"
   1265 #endif
   1266 
   1267  public:
   1268   explicit BuildNativeCallFrameStateMachine(T* delegate)
   1269       : gpr_index_(kNumNativeGprArgs),
   1270         fpr_index_(kNumNativeFprArgs),
   1271         stack_entries_(0),
   1272         delegate_(delegate) {
   1273     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
   1274     // the next register is even; counting down is just to make the compiler happy...
   1275     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
   1276     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
   1277   }
   1278 
   1279   virtual ~BuildNativeCallFrameStateMachine() {}
   1280 
   1281   bool HavePointerGpr() const {
   1282     return gpr_index_ > 0;
   1283   }
   1284 
   1285   void AdvancePointer(const void* val) {
   1286     if (HavePointerGpr()) {
   1287       gpr_index_--;
   1288       PushGpr(reinterpret_cast<uintptr_t>(val));
   1289     } else {
   1290       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
   1291       PushStack(reinterpret_cast<uintptr_t>(val));
   1292       gpr_index_ = 0;
   1293     }
   1294   }
   1295 
   1296   bool HaveHandleScopeGpr() const {
   1297     return gpr_index_ > 0;
   1298   }
   1299 
   1300   void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
   1301     uintptr_t handle = PushHandle(ptr);
   1302     if (HaveHandleScopeGpr()) {
   1303       gpr_index_--;
   1304       PushGpr(handle);
   1305     } else {
   1306       stack_entries_++;
   1307       PushStack(handle);
   1308       gpr_index_ = 0;
   1309     }
   1310   }
   1311 
   1312   bool HaveIntGpr() const {
   1313     return gpr_index_ > 0;
   1314   }
   1315 
   1316   void AdvanceInt(uint32_t val) {
   1317     if (HaveIntGpr()) {
   1318       gpr_index_--;
   1319       if (kMultiGPRegistersWidened) {
   1320         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
   1321         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
   1322       } else {
   1323         PushGpr(val);
   1324       }
   1325     } else {
   1326       stack_entries_++;
   1327       if (kMultiGPRegistersWidened) {
   1328         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
   1329         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
   1330       } else {
   1331         PushStack(val);
   1332       }
   1333       gpr_index_ = 0;
   1334     }
   1335   }
   1336 
   1337   bool HaveLongGpr() const {
   1338     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
   1339   }
   1340 
   1341   bool LongGprNeedsPadding() const {
   1342     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
   1343         kAlignLongOnStack &&                  // and when it needs alignment
   1344         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
   1345   }
   1346 
   1347   bool LongStackNeedsPadding() const {
   1348     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
   1349         kAlignLongOnStack &&                  // and when it needs 8B alignment
   1350         (stack_entries_ & 1) == 1;            // counter is odd
   1351   }
   1352 
   1353   void AdvanceLong(uint64_t val) {
   1354     if (HaveLongGpr()) {
   1355       if (LongGprNeedsPadding()) {
   1356         PushGpr(0);
   1357         gpr_index_--;
   1358       }
   1359       if (kRegistersNeededForLong == 1) {
   1360         PushGpr(static_cast<uintptr_t>(val));
   1361       } else {
   1362         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1363         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1364       }
   1365       gpr_index_ -= kRegistersNeededForLong;
   1366     } else {
   1367       if (LongStackNeedsPadding()) {
   1368         PushStack(0);
   1369         stack_entries_++;
   1370       }
   1371       if (kRegistersNeededForLong == 1) {
   1372         PushStack(static_cast<uintptr_t>(val));
   1373         stack_entries_++;
   1374       } else {
   1375         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1376         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1377         stack_entries_ += 2;
   1378       }
   1379       gpr_index_ = 0;
   1380     }
   1381   }
   1382 
   1383   bool HaveFloatFpr() const {
   1384     return fpr_index_ > 0;
   1385   }
   1386 
   1387   void AdvanceFloat(float val) {
   1388     if (kNativeSoftFloatAbi) {
   1389       AdvanceInt(bit_cast<uint32_t, float>(val));
   1390     } else {
   1391       if (HaveFloatFpr()) {
   1392         fpr_index_--;
   1393         if (kRegistersNeededForDouble == 1) {
   1394           if (kMultiFPRegistersWidened) {
   1395             PushFpr8(bit_cast<uint64_t, double>(val));
   1396           } else {
   1397             // No widening, just use the bits.
   1398             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
   1399           }
   1400         } else {
   1401           PushFpr4(val);
   1402         }
   1403       } else {
   1404         stack_entries_++;
   1405         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
   1406           // Need to widen before storing: Note the "double" in the template instantiation.
   1407           // Note: We need to jump through those hoops to make the compiler happy.
   1408           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
   1409           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
   1410         } else {
   1411           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
   1412         }
   1413         fpr_index_ = 0;
   1414       }
   1415     }
   1416   }
   1417 
   1418   bool HaveDoubleFpr() const {
   1419     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
   1420   }
   1421 
   1422   bool DoubleFprNeedsPadding() const {
   1423     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
   1424         kAlignDoubleOnStack &&                  // and when it needs alignment
   1425         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
   1426   }
   1427 
   1428   bool DoubleStackNeedsPadding() const {
   1429     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
   1430         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
   1431         (stack_entries_ & 1) == 1;              // counter is odd
   1432   }
   1433 
   1434   void AdvanceDouble(uint64_t val) {
   1435     if (kNativeSoftFloatAbi) {
   1436       AdvanceLong(val);
   1437     } else {
   1438       if (HaveDoubleFpr()) {
   1439         if (DoubleFprNeedsPadding()) {
   1440           PushFpr4(0);
   1441           fpr_index_--;
   1442         }
   1443         PushFpr8(val);
   1444         fpr_index_ -= kRegistersNeededForDouble;
   1445       } else {
   1446         if (DoubleStackNeedsPadding()) {
   1447           PushStack(0);
   1448           stack_entries_++;
   1449         }
   1450         if (kRegistersNeededForDouble == 1) {
   1451           PushStack(static_cast<uintptr_t>(val));
   1452           stack_entries_++;
   1453         } else {
   1454           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1455           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1456           stack_entries_ += 2;
   1457         }
   1458         fpr_index_ = 0;
   1459       }
   1460     }
   1461   }
   1462 
   1463   uint32_t GetStackEntries() const {
   1464     return stack_entries_;
   1465   }
   1466 
   1467   uint32_t GetNumberOfUsedGprs() const {
   1468     return kNumNativeGprArgs - gpr_index_;
   1469   }
   1470 
   1471   uint32_t GetNumberOfUsedFprs() const {
   1472     return kNumNativeFprArgs - fpr_index_;
   1473   }
   1474 
   1475  private:
   1476   void PushGpr(uintptr_t val) {
   1477     delegate_->PushGpr(val);
   1478   }
   1479   void PushFpr4(float val) {
   1480     delegate_->PushFpr4(val);
   1481   }
   1482   void PushFpr8(uint64_t val) {
   1483     delegate_->PushFpr8(val);
   1484   }
   1485   void PushStack(uintptr_t val) {
   1486     delegate_->PushStack(val);
   1487   }
   1488   uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) {
   1489     return delegate_->PushHandle(ref);
   1490   }
   1491 
   1492   uint32_t gpr_index_;      // Number of free GPRs
   1493   uint32_t fpr_index_;      // Number of free FPRs
   1494   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
   1495                             // extended
   1496   T* const delegate_;             // What Push implementation gets called
   1497 };
   1498 
   1499 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
   1500 // in subclasses.
   1501 //
   1502 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
   1503 // them with handles.
   1504 class ComputeNativeCallFrameSize {
   1505  public:
   1506   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
   1507 
   1508   virtual ~ComputeNativeCallFrameSize() {}
   1509 
   1510   uint32_t GetStackSize() const {
   1511     return num_stack_entries_ * sizeof(uintptr_t);
   1512   }
   1513 
   1514   uint8_t* LayoutCallStack(uint8_t* sp8) const {
   1515     sp8 -= GetStackSize();
   1516     // Align by kStackAlignment.
   1517     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
   1518     return sp8;
   1519   }
   1520 
   1521   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
   1522       const {
   1523     // Assumption is OK right now, as we have soft-float arm
   1524     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
   1525     sp8 -= fregs * sizeof(uintptr_t);
   1526     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
   1527     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
   1528     sp8 -= iregs * sizeof(uintptr_t);
   1529     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
   1530     return sp8;
   1531   }
   1532 
   1533   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
   1534                             uint32_t** start_fpr) const {
   1535     // Native call stack.
   1536     sp8 = LayoutCallStack(sp8);
   1537     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
   1538 
   1539     // Put fprs and gprs below.
   1540     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
   1541 
   1542     // Return the new bottom.
   1543     return sp8;
   1544   }
   1545 
   1546   virtual void WalkHeader(
   1547       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
   1548       SHARED_REQUIRES(Locks::mutator_lock_) {
   1549   }
   1550 
   1551   void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) {
   1552     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
   1553 
   1554     WalkHeader(&sm);
   1555 
   1556     for (uint32_t i = 1; i < shorty_len; ++i) {
   1557       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
   1558       switch (cur_type_) {
   1559         case Primitive::kPrimNot:
   1560           // TODO: fix abuse of mirror types.
   1561           sm.AdvanceHandleScope(
   1562               reinterpret_cast<mirror::Object*>(0x12345678));
   1563           break;
   1564 
   1565         case Primitive::kPrimBoolean:
   1566         case Primitive::kPrimByte:
   1567         case Primitive::kPrimChar:
   1568         case Primitive::kPrimShort:
   1569         case Primitive::kPrimInt:
   1570           sm.AdvanceInt(0);
   1571           break;
   1572         case Primitive::kPrimFloat:
   1573           sm.AdvanceFloat(0);
   1574           break;
   1575         case Primitive::kPrimDouble:
   1576           sm.AdvanceDouble(0);
   1577           break;
   1578         case Primitive::kPrimLong:
   1579           sm.AdvanceLong(0);
   1580           break;
   1581         default:
   1582           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
   1583           UNREACHABLE();
   1584       }
   1585     }
   1586 
   1587     num_stack_entries_ = sm.GetStackEntries();
   1588   }
   1589 
   1590   void PushGpr(uintptr_t /* val */) {
   1591     // not optimizing registers, yet
   1592   }
   1593 
   1594   void PushFpr4(float /* val */) {
   1595     // not optimizing registers, yet
   1596   }
   1597 
   1598   void PushFpr8(uint64_t /* val */) {
   1599     // not optimizing registers, yet
   1600   }
   1601 
   1602   void PushStack(uintptr_t /* val */) {
   1603     // counting is already done in the superclass
   1604   }
   1605 
   1606   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
   1607     return reinterpret_cast<uintptr_t>(nullptr);
   1608   }
   1609 
   1610  protected:
   1611   uint32_t num_stack_entries_;
   1612 };
   1613 
   1614 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
   1615  public:
   1616   ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
   1617 
   1618   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
   1619   // is at *m = sp. Will update to point to the bottom of the save frame.
   1620   //
   1621   // Note: assumes ComputeAll() has been run before.
   1622   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
   1623       SHARED_REQUIRES(Locks::mutator_lock_) {
   1624     ArtMethod* method = **m;
   1625 
   1626     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
   1627 
   1628     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
   1629 
   1630     // First, fix up the layout of the callee-save frame.
   1631     // We have to squeeze in the HandleScope, and relocate the method pointer.
   1632 
   1633     // "Free" the slot for the method.
   1634     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
   1635 
   1636     // Under the callee saves put handle scope and new method stack reference.
   1637     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
   1638     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
   1639 
   1640     sp8 -= scope_and_method;
   1641     // Align by kStackAlignment.
   1642     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
   1643 
   1644     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
   1645     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
   1646                                         num_handle_scope_references_);
   1647 
   1648     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
   1649     uint8_t* method_pointer = sp8;
   1650     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
   1651     *new_method_ref = method;
   1652     *m = new_method_ref;
   1653   }
   1654 
   1655   // Adds space for the cookie. Note: may leave stack unaligned.
   1656   void LayoutCookie(uint8_t** sp) const {
   1657     // Reference cookie and padding
   1658     *sp -= 8;
   1659   }
   1660 
   1661   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
   1662   // Returns the new bottom. Note: this may be unaligned.
   1663   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
   1664       SHARED_REQUIRES(Locks::mutator_lock_) {
   1665     // First, fix up the layout of the callee-save frame.
   1666     // We have to squeeze in the HandleScope, and relocate the method pointer.
   1667     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
   1668 
   1669     // The bottom of the callee-save frame is now where the method is, *m.
   1670     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
   1671 
   1672     // Add space for cookie.
   1673     LayoutCookie(&sp8);
   1674 
   1675     return sp8;
   1676   }
   1677 
   1678   // WARNING: After this, *sp won't be pointing to the method anymore!
   1679   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
   1680                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
   1681                          uint32_t** start_fpr)
   1682       SHARED_REQUIRES(Locks::mutator_lock_) {
   1683     Walk(shorty, shorty_len);
   1684 
   1685     // JNI part.
   1686     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
   1687 
   1688     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
   1689 
   1690     // Return the new bottom.
   1691     return sp8;
   1692   }
   1693 
   1694   uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
   1695 
   1696   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
   1697   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
   1698       SHARED_REQUIRES(Locks::mutator_lock_);
   1699 
   1700  private:
   1701   uint32_t num_handle_scope_references_;
   1702 };
   1703 
   1704 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
   1705   num_handle_scope_references_++;
   1706   return reinterpret_cast<uintptr_t>(nullptr);
   1707 }
   1708 
   1709 void ComputeGenericJniFrameSize::WalkHeader(
   1710     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
   1711   // JNIEnv
   1712   sm->AdvancePointer(nullptr);
   1713 
   1714   // Class object or this as first argument
   1715   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
   1716 }
   1717 
   1718 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
   1719 // the template requirements of BuildGenericJniFrameStateMachine.
   1720 class FillNativeCall {
   1721  public:
   1722   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
   1723       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
   1724 
   1725   virtual ~FillNativeCall() {}
   1726 
   1727   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
   1728     cur_gpr_reg_ = gpr_regs;
   1729     cur_fpr_reg_ = fpr_regs;
   1730     cur_stack_arg_ = stack_args;
   1731   }
   1732 
   1733   void PushGpr(uintptr_t val) {
   1734     *cur_gpr_reg_ = val;
   1735     cur_gpr_reg_++;
   1736   }
   1737 
   1738   void PushFpr4(float val) {
   1739     *cur_fpr_reg_ = val;
   1740     cur_fpr_reg_++;
   1741   }
   1742 
   1743   void PushFpr8(uint64_t val) {
   1744     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
   1745     *tmp = val;
   1746     cur_fpr_reg_ += 2;
   1747   }
   1748 
   1749   void PushStack(uintptr_t val) {
   1750     *cur_stack_arg_ = val;
   1751     cur_stack_arg_++;
   1752   }
   1753 
   1754   virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) {
   1755     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
   1756     UNREACHABLE();
   1757   }
   1758 
   1759  private:
   1760   uintptr_t* cur_gpr_reg_;
   1761   uint32_t* cur_fpr_reg_;
   1762   uintptr_t* cur_stack_arg_;
   1763 };
   1764 
   1765 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
   1766 // of transitioning into native code.
   1767 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
   1768  public:
   1769   BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
   1770                               ArtMethod*** sp)
   1771      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
   1772        jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
   1773     ComputeGenericJniFrameSize fsc;
   1774     uintptr_t* start_gpr_reg;
   1775     uint32_t* start_fpr_reg;
   1776     uintptr_t* start_stack_arg;
   1777     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
   1778                                              &handle_scope_,
   1779                                              &start_stack_arg,
   1780                                              &start_gpr_reg, &start_fpr_reg);
   1781 
   1782     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
   1783 
   1784     // jni environment is always first argument
   1785     sm_.AdvancePointer(self->GetJniEnv());
   1786 
   1787     if (is_static) {
   1788       sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
   1789     }
   1790   }
   1791 
   1792   void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
   1793 
   1794   void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
   1795 
   1796   StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
   1797     return handle_scope_->GetHandle(0).GetReference();
   1798   }
   1799 
   1800   jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) {
   1801     return handle_scope_->GetHandle(0).ToJObject();
   1802   }
   1803 
   1804   void* GetBottomOfUsedArea() const {
   1805     return bottom_of_used_area_;
   1806   }
   1807 
   1808  private:
   1809   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
   1810   class FillJniCall FINAL : public FillNativeCall {
   1811    public:
   1812     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
   1813                 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
   1814                                              handle_scope_(handle_scope), cur_entry_(0) {}
   1815 
   1816     uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
   1817 
   1818     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
   1819       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
   1820       handle_scope_ = scope;
   1821       cur_entry_ = 0U;
   1822     }
   1823 
   1824     void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) {
   1825       // Initialize padding entries.
   1826       size_t expected_slots = handle_scope_->NumberOfReferences();
   1827       while (cur_entry_ < expected_slots) {
   1828         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
   1829       }
   1830       DCHECK_NE(cur_entry_, 0U);
   1831     }
   1832 
   1833    private:
   1834     HandleScope* handle_scope_;
   1835     size_t cur_entry_;
   1836   };
   1837 
   1838   HandleScope* handle_scope_;
   1839   FillJniCall jni_call_;
   1840   void* bottom_of_used_area_;
   1841 
   1842   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
   1843 
   1844   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
   1845 };
   1846 
   1847 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
   1848   uintptr_t tmp;
   1849   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
   1850   h.Assign(ref);
   1851   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
   1852   cur_entry_++;
   1853   return tmp;
   1854 }
   1855 
   1856 void BuildGenericJniFrameVisitor::Visit() {
   1857   Primitive::Type type = GetParamPrimitiveType();
   1858   switch (type) {
   1859     case Primitive::kPrimLong: {
   1860       jlong long_arg;
   1861       if (IsSplitLongOrDouble()) {
   1862         long_arg = ReadSplitLongParam();
   1863       } else {
   1864         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
   1865       }
   1866       sm_.AdvanceLong(long_arg);
   1867       break;
   1868     }
   1869     case Primitive::kPrimDouble: {
   1870       uint64_t double_arg;
   1871       if (IsSplitLongOrDouble()) {
   1872         // Read into union so that we don't case to a double.
   1873         double_arg = ReadSplitLongParam();
   1874       } else {
   1875         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
   1876       }
   1877       sm_.AdvanceDouble(double_arg);
   1878       break;
   1879     }
   1880     case Primitive::kPrimNot: {
   1881       StackReference<mirror::Object>* stack_ref =
   1882           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
   1883       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
   1884       break;
   1885     }
   1886     case Primitive::kPrimFloat:
   1887       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
   1888       break;
   1889     case Primitive::kPrimBoolean:  // Fall-through.
   1890     case Primitive::kPrimByte:     // Fall-through.
   1891     case Primitive::kPrimChar:     // Fall-through.
   1892     case Primitive::kPrimShort:    // Fall-through.
   1893     case Primitive::kPrimInt:      // Fall-through.
   1894       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
   1895       break;
   1896     case Primitive::kPrimVoid:
   1897       LOG(FATAL) << "UNREACHABLE";
   1898       UNREACHABLE();
   1899   }
   1900 }
   1901 
   1902 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
   1903   // Clear out rest of the scope.
   1904   jni_call_.ResetRemainingScopeSlots();
   1905   // Install HandleScope.
   1906   self->PushHandleScope(handle_scope_);
   1907 }
   1908 
   1909 #if defined(__arm__) || defined(__aarch64__)
   1910 extern "C" void* artFindNativeMethod();
   1911 #else
   1912 extern "C" void* artFindNativeMethod(Thread* self);
   1913 #endif
   1914 
   1915 uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
   1916   if (lock != nullptr) {
   1917     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
   1918   } else {
   1919     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
   1920   }
   1921 }
   1922 
   1923 void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
   1924   if (lock != nullptr) {
   1925     JniMethodEndSynchronized(cookie, lock, self);
   1926   } else {
   1927     JniMethodEnd(cookie, self);
   1928   }
   1929 }
   1930 
   1931 /*
   1932  * Initializes an alloca region assumed to be directly below sp for a native call:
   1933  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
   1934  * The final element on the stack is a pointer to the native code.
   1935  *
   1936  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
   1937  * We need to fix this, as the handle scope needs to go into the callee-save frame.
   1938  *
   1939  * The return of this function denotes:
   1940  * 1) How many bytes of the alloca can be released, if the value is non-negative.
   1941  * 2) An error, if the value is negative.
   1942  */
   1943 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
   1944     SHARED_REQUIRES(Locks::mutator_lock_) {
   1945   ArtMethod* called = *sp;
   1946   DCHECK(called->IsNative()) << PrettyMethod(called, true);
   1947   uint32_t shorty_len = 0;
   1948   const char* shorty = called->GetShorty(&shorty_len);
   1949 
   1950   // Run the visitor and update sp.
   1951   BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
   1952   visitor.VisitArguments();
   1953   visitor.FinalizeHandleScope(self);
   1954 
   1955   // Fix up managed-stack things in Thread.
   1956   self->SetTopOfStack(sp);
   1957 
   1958   self->VerifyStack();
   1959 
   1960   // Start JNI, save the cookie.
   1961   uint32_t cookie;
   1962   if (called->IsSynchronized()) {
   1963     cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
   1964     if (self->IsExceptionPending()) {
   1965       self->PopHandleScope();
   1966       // A negative value denotes an error.
   1967       return GetTwoWordFailureValue();
   1968     }
   1969   } else {
   1970     cookie = JniMethodStart(self);
   1971   }
   1972   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
   1973   *(sp32 - 1) = cookie;
   1974 
   1975   // Retrieve the stored native code.
   1976   void* nativeCode = called->GetEntryPointFromJni();
   1977 
   1978   // There are two cases for the content of nativeCode:
   1979   // 1) Pointer to the native function.
   1980   // 2) Pointer to the trampoline for native code binding.
   1981   // In the second case, we need to execute the binding and continue with the actual native function
   1982   // pointer.
   1983   DCHECK(nativeCode != nullptr);
   1984   if (nativeCode == GetJniDlsymLookupStub()) {
   1985 #if defined(__arm__) || defined(__aarch64__)
   1986     nativeCode = artFindNativeMethod();
   1987 #else
   1988     nativeCode = artFindNativeMethod(self);
   1989 #endif
   1990 
   1991     if (nativeCode == nullptr) {
   1992       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
   1993 
   1994       // End JNI, as the assembly will move to deliver the exception.
   1995       jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
   1996       if (shorty[0] == 'L') {
   1997         artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
   1998       } else {
   1999         artQuickGenericJniEndJNINonRef(self, cookie, lock);
   2000       }
   2001 
   2002       return GetTwoWordFailureValue();
   2003     }
   2004     // Note that the native code pointer will be automatically set by artFindNativeMethod().
   2005   }
   2006 
   2007   // Return native code addr(lo) and bottom of alloca address(hi).
   2008   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
   2009                                 reinterpret_cast<uintptr_t>(nativeCode));
   2010 }
   2011 
   2012 // Defined in quick_jni_entrypoints.cc.
   2013 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
   2014                                     jvalue result, uint64_t result_f, ArtMethod* called,
   2015                                     HandleScope* handle_scope);
   2016 /*
   2017  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
   2018  * unlocking.
   2019  */
   2020 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
   2021                                                     jvalue result,
   2022                                                     uint64_t result_f) {
   2023   // We're here just back from a native call. We don't have the shared mutator lock at this point
   2024   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
   2025   // anything that requires a mutator lock before that would cause problems as GC may have the
   2026   // exclusive mutator lock and may be moving objects, etc.
   2027   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
   2028   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
   2029   ArtMethod* called = *sp;
   2030   uint32_t cookie = *(sp32 - 1);
   2031   HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
   2032   return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
   2033 }
   2034 
   2035 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
   2036 // for the method pointer.
   2037 //
   2038 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
   2039 // to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations).
   2040 
   2041 template<InvokeType type, bool access_check>
   2042 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self,
   2043                                      ArtMethod** sp) {
   2044   ScopedQuickEntrypointChecks sqec(self);
   2045   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
   2046   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
   2047   ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
   2048   if (UNLIKELY(method == nullptr)) {
   2049     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
   2050     uint32_t shorty_len;
   2051     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
   2052     {
   2053       // Remember the args in case a GC happens in FindMethodFromCode.
   2054       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
   2055       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
   2056       visitor.VisitArguments();
   2057       method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method,
   2058                                                       self);
   2059       visitor.FixupReferences();
   2060     }
   2061 
   2062     if (UNLIKELY(method == nullptr)) {
   2063       CHECK(self->IsExceptionPending());
   2064       return GetTwoWordFailureValue();  // Failure.
   2065     }
   2066   }
   2067   DCHECK(!self->IsExceptionPending());
   2068   const void* code = method->GetEntryPointFromQuickCompiledCode();
   2069 
   2070   // When we return, the caller will branch to this address, so it had better not be 0!
   2071   DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
   2072                           << " location: "
   2073                           << method->GetDexFile()->GetLocation();
   2074 
   2075   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
   2076                                 reinterpret_cast<uintptr_t>(method));
   2077 }
   2078 
   2079 // Explicit artInvokeCommon template function declarations to please analysis tool.
   2080 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
   2081   template SHARED_REQUIRES(Locks::mutator_lock_)                                          \
   2082   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
   2083       uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2084 
   2085 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
   2086 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
   2087 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
   2088 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
   2089 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
   2090 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
   2091 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
   2092 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
   2093 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
   2094 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
   2095 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
   2096 
   2097 // See comments in runtime_support_asm.S
   2098 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
   2099     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2100     SHARED_REQUIRES(Locks::mutator_lock_) {
   2101   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
   2102 }
   2103 
   2104 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
   2105     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2106     SHARED_REQUIRES(Locks::mutator_lock_) {
   2107   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
   2108 }
   2109 
   2110 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
   2111     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2112     SHARED_REQUIRES(Locks::mutator_lock_) {
   2113   return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp);
   2114 }
   2115 
   2116 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
   2117     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2118     SHARED_REQUIRES(Locks::mutator_lock_) {
   2119   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
   2120 }
   2121 
   2122 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
   2123     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2124     SHARED_REQUIRES(Locks::mutator_lock_) {
   2125   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
   2126 }
   2127 
   2128 // Determine target of interface dispatch. This object is known non-null. First argument
   2129 // is there for consistency but should not be used, as some architectures overwrite it
   2130 // in the assembly trampoline.
   2131 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
   2132                                                       mirror::Object* this_object,
   2133                                                       Thread* self,
   2134                                                       ArtMethod** sp)
   2135     SHARED_REQUIRES(Locks::mutator_lock_) {
   2136   ScopedQuickEntrypointChecks sqec(self);
   2137   StackHandleScope<1> hs(self);
   2138   Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
   2139 
   2140   // The optimizing compiler currently does not inline methods that have an interface
   2141   // invocation. We use the outer method directly to avoid fetching a stack map, which is
   2142   // more expensive.
   2143   ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp);
   2144   DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp));
   2145 
   2146   // Fetch the dex_method_idx of the target interface method from the caller.
   2147   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
   2148 
   2149   const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
   2150   CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
   2151   const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
   2152   Instruction::Code instr_code = instr->Opcode();
   2153   CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
   2154         instr_code == Instruction::INVOKE_INTERFACE_RANGE)
   2155       << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
   2156   uint32_t dex_method_idx;
   2157   if (instr_code == Instruction::INVOKE_INTERFACE) {
   2158     dex_method_idx = instr->VRegB_35c();
   2159   } else {
   2160     CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
   2161     dex_method_idx = instr->VRegB_3rc();
   2162   }
   2163 
   2164   ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
   2165       dex_method_idx, sizeof(void*));
   2166   DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method);
   2167   ArtMethod* method = nullptr;
   2168 
   2169   if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
   2170     // If the dex cache already resolved the interface method, look whether we have
   2171     // a match in the ImtConflictTable.
   2172     uint32_t imt_index = interface_method->GetDexMethodIndex();
   2173     ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry(
   2174         imt_index % mirror::Class::kImtSize, sizeof(void*));
   2175     if (LIKELY(conflict_method->IsRuntimeMethod())) {
   2176       ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
   2177       DCHECK(current_table != nullptr);
   2178       method = current_table->Lookup(interface_method, sizeof(void*));
   2179     } else {
   2180       // It seems we aren't really a conflict method!
   2181       method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
   2182     }
   2183     if (method != nullptr) {
   2184       return GetTwoWordSuccessValue(
   2185           reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
   2186           reinterpret_cast<uintptr_t>(method));
   2187     }
   2188 
   2189     // No match, use the IfTable.
   2190     method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
   2191     if (UNLIKELY(method == nullptr)) {
   2192       ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
   2193           interface_method, this_object, caller_method);
   2194       return GetTwoWordFailureValue();  // Failure.
   2195     }
   2196   } else {
   2197     // The dex cache did not resolve the method, look it up in the dex file
   2198     // of the caller,
   2199     DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
   2200     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
   2201         ->GetDexFile();
   2202     uint32_t shorty_len;
   2203     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
   2204                                                    &shorty_len);
   2205     {
   2206       // Remember the args in case a GC happens in FindMethodFromCode.
   2207       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
   2208       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
   2209       visitor.VisitArguments();
   2210       method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method,
   2211                                                      self);
   2212       visitor.FixupReferences();
   2213     }
   2214 
   2215     if (UNLIKELY(method == nullptr)) {
   2216       CHECK(self->IsExceptionPending());
   2217       return GetTwoWordFailureValue();  // Failure.
   2218     }
   2219     interface_method = caller_method->GetDexCacheResolvedMethod(dex_method_idx, sizeof(void*));
   2220     DCHECK(!interface_method->IsRuntimeMethod());
   2221   }
   2222 
   2223   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
   2224   // We create a new table with the new pair { interface_method, method }.
   2225   uint32_t imt_index = interface_method->GetDexMethodIndex();
   2226   ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry(
   2227       imt_index % mirror::Class::kImtSize, sizeof(void*));
   2228   if (conflict_method->IsRuntimeMethod()) {
   2229     ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
   2230         cls.Get(),
   2231         conflict_method,
   2232         interface_method,
   2233         method,
   2234         /*force_new_conflict_method*/false);
   2235     if (new_conflict_method != conflict_method) {
   2236       // Update the IMT if we create a new conflict method. No fence needed here, as the
   2237       // data is consistent.
   2238       cls->SetEmbeddedImTableEntry(imt_index % mirror::Class::kImtSize,
   2239                                   new_conflict_method,
   2240                                   sizeof(void*));
   2241     }
   2242   }
   2243 
   2244   const void* code = method->GetEntryPointFromQuickCompiledCode();
   2245 
   2246   // When we return, the caller will branch to this address, so it had better not be 0!
   2247   DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
   2248                           << " location: " << method->GetDexFile()->GetLocation();
   2249 
   2250   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
   2251                                 reinterpret_cast<uintptr_t>(method));
   2252 }
   2253 
   2254 }  // namespace art
   2255