1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. 16 // Third party copyrights are property of their respective owners. 17 // 18 // Redistribution and use in source and binary forms, with or without modification, 19 // are permitted provided that the following conditions are met: 20 // 21 // * Redistribution's of source code must retain the above copyright notice, 22 // this list of conditions and the following disclaimer. 23 // 24 // * Redistribution's in binary form must reproduce the above copyright notice, 25 // this list of conditions and the following disclaimer in the documentation 26 // and/or other materials provided with the distribution. 27 // 28 // * The name of the copyright holders may not be used to endorse or promote products 29 // derived from this software without specific prior written permission. 30 // 31 // This software is provided by the copyright holders and contributors "as is" and 32 // any express or implied warranties, including, but not limited to, the implied 33 // warranties of merchantability and fitness for a particular purpose are disclaimed. 34 // In no event shall the Intel Corporation or contributors be liable for any direct, 35 // indirect, incidental, special, exemplary, or consequential damages 36 // (including, but not limited to, procurement of substitute goods or services; 37 // loss of use, data, or profits; or business interruption) however caused 38 // and on any theory of liability, whether in contract, strict liability, 39 // or tort (including negligence or otherwise) arising in any way out of 40 // the use of this software, even if advised of the possibility of such damage. 41 // 42 //M*/ 43 44 #include "precomp.hpp" 45 #include "opencl_kernels_imgproc.hpp" 46 47 /* 48 * This file includes the code, contributed by Simon Perreault 49 * (the function icvMedianBlur_8u_O1) 50 * 51 * Constant-time median filtering -- http://nomis80.org/ctmf.html 52 * Copyright (C) 2006 Simon Perreault 53 * 54 * Contact: 55 * Laboratoire de vision et systemes numeriques 56 * Pavillon Adrien-Pouliot 57 * Universite Laval 58 * Sainte-Foy, Quebec, Canada 59 * G1K 7P4 60 * 61 * perreaul (at) gel.ulaval.ca 62 */ 63 64 namespace cv 65 { 66 67 /****************************************************************************************\ 68 Box Filter 69 \****************************************************************************************/ 70 71 template<typename T, typename ST> 72 struct RowSum : 73 public BaseRowFilter 74 { 75 RowSum( int _ksize, int _anchor ) : 76 BaseRowFilter() 77 { 78 ksize = _ksize; 79 anchor = _anchor; 80 } 81 82 virtual void operator()(const uchar* src, uchar* dst, int width, int cn) 83 { 84 const T* S = (const T*)src; 85 ST* D = (ST*)dst; 86 int i = 0, k, ksz_cn = ksize*cn; 87 88 width = (width - 1)*cn; 89 for( k = 0; k < cn; k++, S++, D++ ) 90 { 91 ST s = 0; 92 for( i = 0; i < ksz_cn; i += cn ) 93 s += S[i]; 94 D[0] = s; 95 for( i = 0; i < width; i += cn ) 96 { 97 s += S[i + ksz_cn] - S[i]; 98 D[i+cn] = s; 99 } 100 } 101 } 102 }; 103 104 105 template<typename ST, typename T> 106 struct ColumnSum : 107 public BaseColumnFilter 108 { 109 ColumnSum( int _ksize, int _anchor, double _scale ) : 110 BaseColumnFilter() 111 { 112 ksize = _ksize; 113 anchor = _anchor; 114 scale = _scale; 115 sumCount = 0; 116 } 117 118 virtual void reset() { sumCount = 0; } 119 120 virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) 121 { 122 int i; 123 ST* SUM; 124 bool haveScale = scale != 1; 125 double _scale = scale; 126 127 if( width != (int)sum.size() ) 128 { 129 sum.resize(width); 130 sumCount = 0; 131 } 132 133 SUM = &sum[0]; 134 if( sumCount == 0 ) 135 { 136 memset((void*)SUM, 0, width*sizeof(ST)); 137 138 for( ; sumCount < ksize - 1; sumCount++, src++ ) 139 { 140 const ST* Sp = (const ST*)src[0]; 141 for( i = 0; i <= width - 2; i += 2 ) 142 { 143 ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1]; 144 SUM[i] = s0; SUM[i+1] = s1; 145 } 146 147 for( ; i < width; i++ ) 148 SUM[i] += Sp[i]; 149 } 150 } 151 else 152 { 153 CV_Assert( sumCount == ksize-1 ); 154 src += ksize-1; 155 } 156 157 for( ; count--; src++ ) 158 { 159 const ST* Sp = (const ST*)src[0]; 160 const ST* Sm = (const ST*)src[1-ksize]; 161 T* D = (T*)dst; 162 if( haveScale ) 163 { 164 for( i = 0; i <= width - 2; i += 2 ) 165 { 166 ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1]; 167 D[i] = saturate_cast<T>(s0*_scale); 168 D[i+1] = saturate_cast<T>(s1*_scale); 169 s0 -= Sm[i]; s1 -= Sm[i+1]; 170 SUM[i] = s0; SUM[i+1] = s1; 171 } 172 173 for( ; i < width; i++ ) 174 { 175 ST s0 = SUM[i] + Sp[i]; 176 D[i] = saturate_cast<T>(s0*_scale); 177 SUM[i] = s0 - Sm[i]; 178 } 179 } 180 else 181 { 182 for( i = 0; i <= width - 2; i += 2 ) 183 { 184 ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1]; 185 D[i] = saturate_cast<T>(s0); 186 D[i+1] = saturate_cast<T>(s1); 187 s0 -= Sm[i]; s1 -= Sm[i+1]; 188 SUM[i] = s0; SUM[i+1] = s1; 189 } 190 191 for( ; i < width; i++ ) 192 { 193 ST s0 = SUM[i] + Sp[i]; 194 D[i] = saturate_cast<T>(s0); 195 SUM[i] = s0 - Sm[i]; 196 } 197 } 198 dst += dststep; 199 } 200 } 201 202 double scale; 203 int sumCount; 204 std::vector<ST> sum; 205 }; 206 207 208 template<> 209 struct ColumnSum<int, uchar> : 210 public BaseColumnFilter 211 { 212 ColumnSum( int _ksize, int _anchor, double _scale ) : 213 BaseColumnFilter() 214 { 215 ksize = _ksize; 216 anchor = _anchor; 217 scale = _scale; 218 sumCount = 0; 219 } 220 221 virtual void reset() { sumCount = 0; } 222 223 virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) 224 { 225 int i; 226 int* SUM; 227 bool haveScale = scale != 1; 228 double _scale = scale; 229 230 #if CV_SSE2 231 bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); 232 #endif 233 234 if( width != (int)sum.size() ) 235 { 236 sum.resize(width); 237 sumCount = 0; 238 } 239 240 SUM = &sum[0]; 241 if( sumCount == 0 ) 242 { 243 memset((void*)SUM, 0, width*sizeof(int)); 244 for( ; sumCount < ksize - 1; sumCount++, src++ ) 245 { 246 const int* Sp = (const int*)src[0]; 247 i = 0; 248 #if CV_SSE2 249 if(haveSSE2) 250 { 251 for( ; i <= width-4; i+=4 ) 252 { 253 __m128i _sum = _mm_loadu_si128((const __m128i*)(SUM+i)); 254 __m128i _sp = _mm_loadu_si128((const __m128i*)(Sp+i)); 255 _mm_storeu_si128((__m128i*)(SUM+i),_mm_add_epi32(_sum, _sp)); 256 } 257 } 258 #elif CV_NEON 259 for( ; i <= width - 4; i+=4 ) 260 vst1q_s32(SUM + i, vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i))); 261 #endif 262 for( ; i < width; i++ ) 263 SUM[i] += Sp[i]; 264 } 265 } 266 else 267 { 268 CV_Assert( sumCount == ksize-1 ); 269 src += ksize-1; 270 } 271 272 for( ; count--; src++ ) 273 { 274 const int* Sp = (const int*)src[0]; 275 const int* Sm = (const int*)src[1-ksize]; 276 uchar* D = (uchar*)dst; 277 if( haveScale ) 278 { 279 i = 0; 280 #if CV_SSE2 281 if(haveSSE2) 282 { 283 const __m128 scale4 = _mm_set1_ps((float)_scale); 284 for( ; i <= width-8; i+=8 ) 285 { 286 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 287 __m128i _sm1 = _mm_loadu_si128((const __m128i*)(Sm+i+4)); 288 289 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 290 _mm_loadu_si128((const __m128i*)(Sp+i))); 291 __m128i _s01 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i+4)), 292 _mm_loadu_si128((const __m128i*)(Sp+i+4))); 293 294 __m128i _s0T = _mm_cvtps_epi32(_mm_mul_ps(scale4, _mm_cvtepi32_ps(_s0))); 295 __m128i _s0T1 = _mm_cvtps_epi32(_mm_mul_ps(scale4, _mm_cvtepi32_ps(_s01))); 296 297 _s0T = _mm_packs_epi32(_s0T, _s0T1); 298 299 _mm_storel_epi64((__m128i*)(D+i), _mm_packus_epi16(_s0T, _s0T)); 300 301 _mm_storeu_si128((__m128i*)(SUM+i), _mm_sub_epi32(_s0,_sm)); 302 _mm_storeu_si128((__m128i*)(SUM+i+4),_mm_sub_epi32(_s01,_sm1)); 303 } 304 } 305 #elif CV_NEON 306 float32x4_t v_scale = vdupq_n_f32((float)_scale); 307 for( ; i <= width-8; i+=8 ) 308 { 309 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 310 int32x4_t v_s01 = vaddq_s32(vld1q_s32(SUM + i + 4), vld1q_s32(Sp + i + 4)); 311 312 uint32x4_t v_s0d = cv_vrndq_u32_f32(vmulq_f32(vcvtq_f32_s32(v_s0), v_scale)); 313 uint32x4_t v_s01d = cv_vrndq_u32_f32(vmulq_f32(vcvtq_f32_s32(v_s01), v_scale)); 314 315 uint16x8_t v_dst = vcombine_u16(vqmovn_u32(v_s0d), vqmovn_u32(v_s01d)); 316 vst1_u8(D + i, vqmovn_u16(v_dst)); 317 318 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 319 vst1q_s32(SUM + i + 4, vsubq_s32(v_s01, vld1q_s32(Sm + i + 4))); 320 } 321 #endif 322 for( ; i < width; i++ ) 323 { 324 int s0 = SUM[i] + Sp[i]; 325 D[i] = saturate_cast<uchar>(s0*_scale); 326 SUM[i] = s0 - Sm[i]; 327 } 328 } 329 else 330 { 331 i = 0; 332 #if CV_SSE2 333 if(haveSSE2) 334 { 335 for( ; i <= width-8; i+=8 ) 336 { 337 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 338 __m128i _sm1 = _mm_loadu_si128((const __m128i*)(Sm+i+4)); 339 340 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 341 _mm_loadu_si128((const __m128i*)(Sp+i))); 342 __m128i _s01 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i+4)), 343 _mm_loadu_si128((const __m128i*)(Sp+i+4))); 344 345 __m128i _s0T = _mm_packs_epi32(_s0, _s01); 346 347 _mm_storel_epi64((__m128i*)(D+i), _mm_packus_epi16(_s0T, _s0T)); 348 349 _mm_storeu_si128((__m128i*)(SUM+i), _mm_sub_epi32(_s0,_sm)); 350 _mm_storeu_si128((__m128i*)(SUM+i+4),_mm_sub_epi32(_s01,_sm1)); 351 } 352 } 353 #elif CV_NEON 354 for( ; i <= width-8; i+=8 ) 355 { 356 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 357 int32x4_t v_s01 = vaddq_s32(vld1q_s32(SUM + i + 4), vld1q_s32(Sp + i + 4)); 358 359 uint16x8_t v_dst = vcombine_u16(vqmovun_s32(v_s0), vqmovun_s32(v_s01)); 360 vst1_u8(D + i, vqmovn_u16(v_dst)); 361 362 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 363 vst1q_s32(SUM + i + 4, vsubq_s32(v_s01, vld1q_s32(Sm + i + 4))); 364 } 365 #endif 366 367 for( ; i < width; i++ ) 368 { 369 int s0 = SUM[i] + Sp[i]; 370 D[i] = saturate_cast<uchar>(s0); 371 SUM[i] = s0 - Sm[i]; 372 } 373 } 374 dst += dststep; 375 } 376 } 377 378 double scale; 379 int sumCount; 380 std::vector<int> sum; 381 }; 382 383 template<> 384 struct ColumnSum<int, short> : 385 public BaseColumnFilter 386 { 387 ColumnSum( int _ksize, int _anchor, double _scale ) : 388 BaseColumnFilter() 389 { 390 ksize = _ksize; 391 anchor = _anchor; 392 scale = _scale; 393 sumCount = 0; 394 } 395 396 virtual void reset() { sumCount = 0; } 397 398 virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) 399 { 400 int i; 401 int* SUM; 402 bool haveScale = scale != 1; 403 double _scale = scale; 404 405 #if CV_SSE2 406 bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); 407 #endif 408 409 if( width != (int)sum.size() ) 410 { 411 sum.resize(width); 412 sumCount = 0; 413 } 414 SUM = &sum[0]; 415 if( sumCount == 0 ) 416 { 417 memset((void*)SUM, 0, width*sizeof(int)); 418 for( ; sumCount < ksize - 1; sumCount++, src++ ) 419 { 420 const int* Sp = (const int*)src[0]; 421 i = 0; 422 #if CV_SSE2 423 if(haveSSE2) 424 { 425 for( ; i <= width-4; i+=4 ) 426 { 427 __m128i _sum = _mm_loadu_si128((const __m128i*)(SUM+i)); 428 __m128i _sp = _mm_loadu_si128((const __m128i*)(Sp+i)); 429 _mm_storeu_si128((__m128i*)(SUM+i),_mm_add_epi32(_sum, _sp)); 430 } 431 } 432 #elif CV_NEON 433 for( ; i <= width - 4; i+=4 ) 434 vst1q_s32(SUM + i, vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i))); 435 #endif 436 for( ; i < width; i++ ) 437 SUM[i] += Sp[i]; 438 } 439 } 440 else 441 { 442 CV_Assert( sumCount == ksize-1 ); 443 src += ksize-1; 444 } 445 446 for( ; count--; src++ ) 447 { 448 const int* Sp = (const int*)src[0]; 449 const int* Sm = (const int*)src[1-ksize]; 450 short* D = (short*)dst; 451 if( haveScale ) 452 { 453 i = 0; 454 #if CV_SSE2 455 if(haveSSE2) 456 { 457 const __m128 scale4 = _mm_set1_ps((float)_scale); 458 for( ; i <= width-8; i+=8 ) 459 { 460 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 461 __m128i _sm1 = _mm_loadu_si128((const __m128i*)(Sm+i+4)); 462 463 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 464 _mm_loadu_si128((const __m128i*)(Sp+i))); 465 __m128i _s01 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i+4)), 466 _mm_loadu_si128((const __m128i*)(Sp+i+4))); 467 468 __m128i _s0T = _mm_cvtps_epi32(_mm_mul_ps(scale4, _mm_cvtepi32_ps(_s0))); 469 __m128i _s0T1 = _mm_cvtps_epi32(_mm_mul_ps(scale4, _mm_cvtepi32_ps(_s01))); 470 471 _mm_storeu_si128((__m128i*)(D+i), _mm_packs_epi32(_s0T, _s0T1)); 472 473 _mm_storeu_si128((__m128i*)(SUM+i),_mm_sub_epi32(_s0,_sm)); 474 _mm_storeu_si128((__m128i*)(SUM+i+4), _mm_sub_epi32(_s01,_sm1)); 475 } 476 } 477 #elif CV_NEON 478 float32x4_t v_scale = vdupq_n_f32((float)_scale); 479 for( ; i <= width-8; i+=8 ) 480 { 481 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 482 int32x4_t v_s01 = vaddq_s32(vld1q_s32(SUM + i + 4), vld1q_s32(Sp + i + 4)); 483 484 int32x4_t v_s0d = cv_vrndq_s32_f32(vmulq_f32(vcvtq_f32_s32(v_s0), v_scale)); 485 int32x4_t v_s01d = cv_vrndq_s32_f32(vmulq_f32(vcvtq_f32_s32(v_s01), v_scale)); 486 vst1q_s16(D + i, vcombine_s16(vqmovn_s32(v_s0d), vqmovn_s32(v_s01d))); 487 488 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 489 vst1q_s32(SUM + i + 4, vsubq_s32(v_s01, vld1q_s32(Sm + i + 4))); 490 } 491 #endif 492 for( ; i < width; i++ ) 493 { 494 int s0 = SUM[i] + Sp[i]; 495 D[i] = saturate_cast<short>(s0*_scale); 496 SUM[i] = s0 - Sm[i]; 497 } 498 } 499 else 500 { 501 i = 0; 502 #if CV_SSE2 503 if(haveSSE2) 504 { 505 for( ; i <= width-8; i+=8 ) 506 { 507 508 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 509 __m128i _sm1 = _mm_loadu_si128((const __m128i*)(Sm+i+4)); 510 511 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 512 _mm_loadu_si128((const __m128i*)(Sp+i))); 513 __m128i _s01 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i+4)), 514 _mm_loadu_si128((const __m128i*)(Sp+i+4))); 515 516 _mm_storeu_si128((__m128i*)(D+i), _mm_packs_epi32(_s0, _s01)); 517 518 _mm_storeu_si128((__m128i*)(SUM+i), _mm_sub_epi32(_s0,_sm)); 519 _mm_storeu_si128((__m128i*)(SUM+i+4),_mm_sub_epi32(_s01,_sm1)); 520 } 521 } 522 #elif CV_NEON 523 for( ; i <= width-8; i+=8 ) 524 { 525 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 526 int32x4_t v_s01 = vaddq_s32(vld1q_s32(SUM + i + 4), vld1q_s32(Sp + i + 4)); 527 528 vst1q_s16(D + i, vcombine_s16(vqmovn_s32(v_s0), vqmovn_s32(v_s01))); 529 530 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 531 vst1q_s32(SUM + i + 4, vsubq_s32(v_s01, vld1q_s32(Sm + i + 4))); 532 } 533 #endif 534 535 for( ; i < width; i++ ) 536 { 537 int s0 = SUM[i] + Sp[i]; 538 D[i] = saturate_cast<short>(s0); 539 SUM[i] = s0 - Sm[i]; 540 } 541 } 542 dst += dststep; 543 } 544 } 545 546 double scale; 547 int sumCount; 548 std::vector<int> sum; 549 }; 550 551 552 template<> 553 struct ColumnSum<int, ushort> : 554 public BaseColumnFilter 555 { 556 ColumnSum( int _ksize, int _anchor, double _scale ) : 557 BaseColumnFilter() 558 { 559 ksize = _ksize; 560 anchor = _anchor; 561 scale = _scale; 562 sumCount = 0; 563 } 564 565 virtual void reset() { sumCount = 0; } 566 567 virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) 568 { 569 int i; 570 int* SUM; 571 bool haveScale = scale != 1; 572 double _scale = scale; 573 #if CV_SSE2 574 bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); 575 #endif 576 577 if( width != (int)sum.size() ) 578 { 579 sum.resize(width); 580 sumCount = 0; 581 } 582 SUM = &sum[0]; 583 if( sumCount == 0 ) 584 { 585 memset((void*)SUM, 0, width*sizeof(int)); 586 for( ; sumCount < ksize - 1; sumCount++, src++ ) 587 { 588 const int* Sp = (const int*)src[0]; 589 i = 0; 590 #if CV_SSE2 591 if(haveSSE2) 592 { 593 for( ; i < width-4; i+=4 ) 594 { 595 __m128i _sum = _mm_loadu_si128((const __m128i*)(SUM+i)); 596 __m128i _sp = _mm_loadu_si128((const __m128i*)(Sp+i)); 597 _mm_storeu_si128((__m128i*)(SUM+i), _mm_add_epi32(_sum, _sp)); 598 } 599 } 600 #elif CV_NEON 601 for( ; i <= width - 4; i+=4 ) 602 vst1q_s32(SUM + i, vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i))); 603 #endif 604 for( ; i < width; i++ ) 605 SUM[i] += Sp[i]; 606 } 607 } 608 else 609 { 610 CV_Assert( sumCount == ksize-1 ); 611 src += ksize-1; 612 } 613 614 for( ; count--; src++ ) 615 { 616 const int* Sp = (const int*)src[0]; 617 const int* Sm = (const int*)src[1-ksize]; 618 ushort* D = (ushort*)dst; 619 if( haveScale ) 620 { 621 i = 0; 622 #if CV_SSE2 623 if(haveSSE2) 624 { 625 const __m128 scale4 = _mm_set1_ps((float)_scale); 626 const __m128i delta0 = _mm_set1_epi32(0x8000); 627 const __m128i delta1 = _mm_set1_epi32(0x80008000); 628 629 for( ; i < width-4; i+=4) 630 { 631 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 632 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 633 _mm_loadu_si128((const __m128i*)(Sp+i))); 634 635 __m128i _res = _mm_cvtps_epi32(_mm_mul_ps(scale4, _mm_cvtepi32_ps(_s0))); 636 637 _res = _mm_sub_epi32(_res, delta0); 638 _res = _mm_add_epi16(_mm_packs_epi32(_res, _res), delta1); 639 640 _mm_storel_epi64((__m128i*)(D+i), _res); 641 _mm_storeu_si128((__m128i*)(SUM+i), _mm_sub_epi32(_s0,_sm)); 642 } 643 } 644 #elif CV_NEON 645 float32x4_t v_scale = vdupq_n_f32((float)_scale); 646 for( ; i <= width-8; i+=8 ) 647 { 648 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 649 int32x4_t v_s01 = vaddq_s32(vld1q_s32(SUM + i + 4), vld1q_s32(Sp + i + 4)); 650 651 uint32x4_t v_s0d = cv_vrndq_u32_f32(vmulq_f32(vcvtq_f32_s32(v_s0), v_scale)); 652 uint32x4_t v_s01d = cv_vrndq_u32_f32(vmulq_f32(vcvtq_f32_s32(v_s01), v_scale)); 653 vst1q_u16(D + i, vcombine_u16(vqmovn_u32(v_s0d), vqmovn_u32(v_s01d))); 654 655 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 656 vst1q_s32(SUM + i + 4, vsubq_s32(v_s01, vld1q_s32(Sm + i + 4))); 657 } 658 #endif 659 for( ; i < width; i++ ) 660 { 661 int s0 = SUM[i] + Sp[i]; 662 D[i] = saturate_cast<ushort>(s0*_scale); 663 SUM[i] = s0 - Sm[i]; 664 } 665 } 666 else 667 { 668 i = 0; 669 #if CV_SSE2 670 if(haveSSE2) 671 { 672 const __m128i delta0 = _mm_set1_epi32(0x8000); 673 const __m128i delta1 = _mm_set1_epi32(0x80008000); 674 675 for( ; i < width-4; i+=4 ) 676 { 677 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 678 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 679 _mm_loadu_si128((const __m128i*)(Sp+i))); 680 681 __m128i _res = _mm_sub_epi32(_s0, delta0); 682 _res = _mm_add_epi16(_mm_packs_epi32(_res, _res), delta1); 683 684 _mm_storel_epi64((__m128i*)(D+i), _res); 685 _mm_storeu_si128((__m128i*)(SUM+i), _mm_sub_epi32(_s0,_sm)); 686 } 687 } 688 #elif CV_NEON 689 for( ; i <= width-8; i+=8 ) 690 { 691 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 692 int32x4_t v_s01 = vaddq_s32(vld1q_s32(SUM + i + 4), vld1q_s32(Sp + i + 4)); 693 694 vst1q_u16(D + i, vcombine_u16(vqmovun_s32(v_s0), vqmovun_s32(v_s01))); 695 696 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 697 vst1q_s32(SUM + i + 4, vsubq_s32(v_s01, vld1q_s32(Sm + i + 4))); 698 } 699 #endif 700 701 for( ; i < width; i++ ) 702 { 703 int s0 = SUM[i] + Sp[i]; 704 D[i] = saturate_cast<ushort>(s0); 705 SUM[i] = s0 - Sm[i]; 706 } 707 } 708 dst += dststep; 709 } 710 } 711 712 double scale; 713 int sumCount; 714 std::vector<int> sum; 715 }; 716 717 template<> 718 struct ColumnSum<int, int> : 719 public BaseColumnFilter 720 { 721 ColumnSum( int _ksize, int _anchor, double _scale ) : 722 BaseColumnFilter() 723 { 724 ksize = _ksize; 725 anchor = _anchor; 726 scale = _scale; 727 sumCount = 0; 728 } 729 730 virtual void reset() { sumCount = 0; } 731 732 virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) 733 { 734 int i; 735 int* SUM; 736 bool haveScale = scale != 1; 737 double _scale = scale; 738 739 #if CV_SSE2 740 bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); 741 #endif 742 743 if( width != (int)sum.size() ) 744 { 745 sum.resize(width); 746 sumCount = 0; 747 } 748 SUM = &sum[0]; 749 if( sumCount == 0 ) 750 { 751 memset((void*)SUM, 0, width*sizeof(int)); 752 for( ; sumCount < ksize - 1; sumCount++, src++ ) 753 { 754 const int* Sp = (const int*)src[0]; 755 i = 0; 756 #if CV_SSE2 757 if(haveSSE2) 758 { 759 for( ; i <= width-4; i+=4 ) 760 { 761 __m128i _sum = _mm_loadu_si128((const __m128i*)(SUM+i)); 762 __m128i _sp = _mm_loadu_si128((const __m128i*)(Sp+i)); 763 _mm_storeu_si128((__m128i*)(SUM+i),_mm_add_epi32(_sum, _sp)); 764 } 765 } 766 #elif CV_NEON 767 for( ; i <= width - 4; i+=4 ) 768 vst1q_s32(SUM + i, vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i))); 769 #endif 770 for( ; i < width; i++ ) 771 SUM[i] += Sp[i]; 772 } 773 } 774 else 775 { 776 CV_Assert( sumCount == ksize-1 ); 777 src += ksize-1; 778 } 779 780 for( ; count--; src++ ) 781 { 782 const int* Sp = (const int*)src[0]; 783 const int* Sm = (const int*)src[1-ksize]; 784 int* D = (int*)dst; 785 if( haveScale ) 786 { 787 i = 0; 788 #if CV_SSE2 789 if(haveSSE2) 790 { 791 const __m128 scale4 = _mm_set1_ps((float)_scale); 792 for( ; i <= width-4; i+=4 ) 793 { 794 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 795 796 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 797 _mm_loadu_si128((const __m128i*)(Sp+i))); 798 799 __m128i _s0T = _mm_cvtps_epi32(_mm_mul_ps(scale4, _mm_cvtepi32_ps(_s0))); 800 801 _mm_storeu_si128((__m128i*)(D+i), _s0T); 802 _mm_storeu_si128((__m128i*)(SUM+i),_mm_sub_epi32(_s0,_sm)); 803 } 804 } 805 #elif CV_NEON 806 float32x4_t v_scale = vdupq_n_f32((float)_scale); 807 for( ; i <= width-4; i+=4 ) 808 { 809 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 810 811 int32x4_t v_s0d = cv_vrndq_s32_f32(vmulq_f32(vcvtq_f32_s32(v_s0), v_scale)); 812 vst1q_s32(D + i, v_s0d); 813 814 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 815 } 816 #endif 817 for( ; i < width; i++ ) 818 { 819 int s0 = SUM[i] + Sp[i]; 820 D[i] = saturate_cast<int>(s0*_scale); 821 SUM[i] = s0 - Sm[i]; 822 } 823 } 824 else 825 { 826 i = 0; 827 #if CV_SSE2 828 if(haveSSE2) 829 { 830 for( ; i <= width-4; i+=4 ) 831 { 832 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 833 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 834 _mm_loadu_si128((const __m128i*)(Sp+i))); 835 836 _mm_storeu_si128((__m128i*)(D+i), _s0); 837 _mm_storeu_si128((__m128i*)(SUM+i), _mm_sub_epi32(_s0,_sm)); 838 } 839 } 840 #elif CV_NEON 841 for( ; i <= width-4; i+=4 ) 842 { 843 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 844 845 vst1q_s32(D + i, v_s0); 846 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 847 } 848 #endif 849 850 for( ; i < width; i++ ) 851 { 852 int s0 = SUM[i] + Sp[i]; 853 D[i] = s0; 854 SUM[i] = s0 - Sm[i]; 855 } 856 } 857 dst += dststep; 858 } 859 } 860 861 double scale; 862 int sumCount; 863 std::vector<int> sum; 864 }; 865 866 867 template<> 868 struct ColumnSum<int, float> : 869 public BaseColumnFilter 870 { 871 ColumnSum( int _ksize, int _anchor, double _scale ) : 872 BaseColumnFilter() 873 { 874 ksize = _ksize; 875 anchor = _anchor; 876 scale = _scale; 877 sumCount = 0; 878 } 879 880 virtual void reset() { sumCount = 0; } 881 882 virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) 883 { 884 int i; 885 int* SUM; 886 bool haveScale = scale != 1; 887 double _scale = scale; 888 889 #if CV_SSE2 890 bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); 891 #endif 892 893 if( width != (int)sum.size() ) 894 { 895 sum.resize(width); 896 sumCount = 0; 897 } 898 899 SUM = &sum[0]; 900 if( sumCount == 0 ) 901 { 902 memset((void *)SUM, 0, sizeof(int) * width); 903 904 for( ; sumCount < ksize - 1; sumCount++, src++ ) 905 { 906 const int* Sp = (const int*)src[0]; 907 i = 0; 908 909 #if CV_SSE2 910 if(haveSSE2) 911 { 912 for( ; i < width-4; i+=4 ) 913 { 914 __m128i _sum = _mm_loadu_si128((const __m128i*)(SUM+i)); 915 __m128i _sp = _mm_loadu_si128((const __m128i*)(Sp+i)); 916 _mm_storeu_si128((__m128i*)(SUM+i), _mm_add_epi32(_sum, _sp)); 917 } 918 } 919 #elif CV_NEON 920 for( ; i <= width - 4; i+=4 ) 921 vst1q_s32(SUM + i, vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i))); 922 #endif 923 924 for( ; i < width; i++ ) 925 SUM[i] += Sp[i]; 926 } 927 } 928 else 929 { 930 CV_Assert( sumCount == ksize-1 ); 931 src += ksize-1; 932 } 933 934 for( ; count--; src++ ) 935 { 936 const int * Sp = (const int*)src[0]; 937 const int * Sm = (const int*)src[1-ksize]; 938 float* D = (float*)dst; 939 if( haveScale ) 940 { 941 i = 0; 942 943 #if CV_SSE2 944 if(haveSSE2) 945 { 946 const __m128 scale4 = _mm_set1_ps((float)_scale); 947 948 for( ; i < width-4; i+=4) 949 { 950 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 951 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 952 _mm_loadu_si128((const __m128i*)(Sp+i))); 953 954 _mm_storeu_ps(D+i, _mm_mul_ps(scale4, _mm_cvtepi32_ps(_s0))); 955 _mm_storeu_si128((__m128i*)(SUM+i), _mm_sub_epi32(_s0,_sm)); 956 } 957 } 958 #elif CV_NEON 959 float32x4_t v_scale = vdupq_n_f32((float)_scale); 960 for( ; i <= width-8; i+=8 ) 961 { 962 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 963 int32x4_t v_s01 = vaddq_s32(vld1q_s32(SUM + i + 4), vld1q_s32(Sp + i + 4)); 964 965 vst1q_f32(D + i, vmulq_f32(vcvtq_f32_s32(v_s0), v_scale)); 966 vst1q_f32(D + i + 4, vmulq_f32(vcvtq_f32_s32(v_s01), v_scale)); 967 968 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 969 vst1q_s32(SUM + i + 4, vsubq_s32(v_s01, vld1q_s32(Sm + i + 4))); 970 } 971 #endif 972 973 for( ; i < width; i++ ) 974 { 975 int s0 = SUM[i] + Sp[i]; 976 D[i] = (float)(s0*_scale); 977 SUM[i] = s0 - Sm[i]; 978 } 979 } 980 else 981 { 982 i = 0; 983 984 #if CV_SSE2 985 if(haveSSE2) 986 { 987 for( ; i < width-4; i+=4) 988 { 989 __m128i _sm = _mm_loadu_si128((const __m128i*)(Sm+i)); 990 __m128i _s0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(SUM+i)), 991 _mm_loadu_si128((const __m128i*)(Sp+i))); 992 993 _mm_storeu_ps(D+i, _mm_cvtepi32_ps(_s0)); 994 _mm_storeu_si128((__m128i*)(SUM+i), _mm_sub_epi32(_s0,_sm)); 995 } 996 } 997 #elif CV_NEON 998 for( ; i <= width-8; i+=8 ) 999 { 1000 int32x4_t v_s0 = vaddq_s32(vld1q_s32(SUM + i), vld1q_s32(Sp + i)); 1001 int32x4_t v_s01 = vaddq_s32(vld1q_s32(SUM + i + 4), vld1q_s32(Sp + i + 4)); 1002 1003 vst1q_f32(D + i, vcvtq_f32_s32(v_s0)); 1004 vst1q_f32(D + i + 4, vcvtq_f32_s32(v_s01)); 1005 1006 vst1q_s32(SUM + i, vsubq_s32(v_s0, vld1q_s32(Sm + i))); 1007 vst1q_s32(SUM + i + 4, vsubq_s32(v_s01, vld1q_s32(Sm + i + 4))); 1008 } 1009 #endif 1010 1011 for( ; i < width; i++ ) 1012 { 1013 int s0 = SUM[i] + Sp[i]; 1014 D[i] = (float)(s0); 1015 SUM[i] = s0 - Sm[i]; 1016 } 1017 } 1018 dst += dststep; 1019 } 1020 } 1021 1022 double scale; 1023 int sumCount; 1024 std::vector<int> sum; 1025 }; 1026 1027 #ifdef HAVE_OPENCL 1028 1029 #define DIVUP(total, grain) ((total + grain - 1) / (grain)) 1030 #define ROUNDUP(sz, n) ((sz) + (n) - 1 - (((sz) + (n) - 1) % (n))) 1031 1032 static bool ocl_boxFilter( InputArray _src, OutputArray _dst, int ddepth, 1033 Size ksize, Point anchor, int borderType, bool normalize, bool sqr = false ) 1034 { 1035 const ocl::Device & dev = ocl::Device::getDefault(); 1036 int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), esz = CV_ELEM_SIZE(type); 1037 bool doubleSupport = dev.doubleFPConfig() > 0; 1038 1039 if (ddepth < 0) 1040 ddepth = sdepth; 1041 1042 if (cn > 4 || (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F)) || 1043 _src.offset() % esz != 0 || _src.step() % esz != 0) 1044 return false; 1045 1046 if (anchor.x < 0) 1047 anchor.x = ksize.width / 2; 1048 if (anchor.y < 0) 1049 anchor.y = ksize.height / 2; 1050 1051 int computeUnits = ocl::Device::getDefault().maxComputeUnits(); 1052 float alpha = 1.0f / (ksize.height * ksize.width); 1053 Size size = _src.size(), wholeSize; 1054 bool isolated = (borderType & BORDER_ISOLATED) != 0; 1055 borderType &= ~BORDER_ISOLATED; 1056 int wdepth = std::max(CV_32F, std::max(ddepth, sdepth)), 1057 wtype = CV_MAKE_TYPE(wdepth, cn), dtype = CV_MAKE_TYPE(ddepth, cn); 1058 1059 const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; 1060 size_t globalsize[2] = { size.width, size.height }; 1061 size_t localsize_general[2] = { 0, 1 }, * localsize = NULL; 1062 1063 UMat src = _src.getUMat(); 1064 if (!isolated) 1065 { 1066 Point ofs; 1067 src.locateROI(wholeSize, ofs); 1068 } 1069 1070 int h = isolated ? size.height : wholeSize.height; 1071 int w = isolated ? size.width : wholeSize.width; 1072 1073 size_t maxWorkItemSizes[32]; 1074 ocl::Device::getDefault().maxWorkItemSizes(maxWorkItemSizes); 1075 int tryWorkItems = (int)maxWorkItemSizes[0]; 1076 1077 ocl::Kernel kernel; 1078 1079 if (dev.isIntel() && !(dev.type() & ocl::Device::TYPE_CPU) && 1080 ((ksize.width < 5 && ksize.height < 5 && esz <= 4) || 1081 (ksize.width == 5 && ksize.height == 5 && cn == 1))) 1082 { 1083 if (w < ksize.width || h < ksize.height) 1084 return false; 1085 1086 // Figure out what vector size to use for loading the pixels. 1087 int pxLoadNumPixels = cn != 1 || size.width % 4 ? 1 : 4; 1088 int pxLoadVecSize = cn * pxLoadNumPixels; 1089 1090 // Figure out how many pixels per work item to compute in X and Y 1091 // directions. Too many and we run out of registers. 1092 int pxPerWorkItemX = 1, pxPerWorkItemY = 1; 1093 if (cn <= 2 && ksize.width <= 4 && ksize.height <= 4) 1094 { 1095 pxPerWorkItemX = size.width % 8 ? size.width % 4 ? size.width % 2 ? 1 : 2 : 4 : 8; 1096 pxPerWorkItemY = size.height % 2 ? 1 : 2; 1097 } 1098 else if (cn < 4 || (ksize.width <= 4 && ksize.height <= 4)) 1099 { 1100 pxPerWorkItemX = size.width % 2 ? 1 : 2; 1101 pxPerWorkItemY = size.height % 2 ? 1 : 2; 1102 } 1103 globalsize[0] = size.width / pxPerWorkItemX; 1104 globalsize[1] = size.height / pxPerWorkItemY; 1105 1106 // Need some padding in the private array for pixels 1107 int privDataWidth = ROUNDUP(pxPerWorkItemX + ksize.width - 1, pxLoadNumPixels); 1108 1109 // Make the global size a nice round number so the runtime can pick 1110 // from reasonable choices for the workgroup size 1111 const int wgRound = 256; 1112 globalsize[0] = ROUNDUP(globalsize[0], wgRound); 1113 1114 char build_options[1024], cvt[2][40]; 1115 sprintf(build_options, "-D cn=%d " 1116 "-D ANCHOR_X=%d -D ANCHOR_Y=%d -D KERNEL_SIZE_X=%d -D KERNEL_SIZE_Y=%d " 1117 "-D PX_LOAD_VEC_SIZE=%d -D PX_LOAD_NUM_PX=%d " 1118 "-D PX_PER_WI_X=%d -D PX_PER_WI_Y=%d -D PRIV_DATA_WIDTH=%d -D %s -D %s " 1119 "-D PX_LOAD_X_ITERATIONS=%d -D PX_LOAD_Y_ITERATIONS=%d " 1120 "-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D WT=%s -D WT1=%s " 1121 "-D convertToWT=%s -D convertToDstT=%s%s%s -D PX_LOAD_FLOAT_VEC_CONV=convert_%s -D OP_BOX_FILTER", 1122 cn, anchor.x, anchor.y, ksize.width, ksize.height, 1123 pxLoadVecSize, pxLoadNumPixels, 1124 pxPerWorkItemX, pxPerWorkItemY, privDataWidth, borderMap[borderType], 1125 isolated ? "BORDER_ISOLATED" : "NO_BORDER_ISOLATED", 1126 privDataWidth / pxLoadNumPixels, pxPerWorkItemY + ksize.height - 1, 1127 ocl::typeToStr(type), ocl::typeToStr(sdepth), ocl::typeToStr(dtype), 1128 ocl::typeToStr(ddepth), ocl::typeToStr(wtype), ocl::typeToStr(wdepth), 1129 ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]), 1130 ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]), 1131 normalize ? " -D NORMALIZE" : "", sqr ? " -D SQR" : "", 1132 ocl::typeToStr(CV_MAKE_TYPE(wdepth, pxLoadVecSize)) //PX_LOAD_FLOAT_VEC_CONV 1133 ); 1134 1135 1136 if (!kernel.create("filterSmall", cv::ocl::imgproc::filterSmall_oclsrc, build_options)) 1137 return false; 1138 } 1139 else 1140 { 1141 localsize = localsize_general; 1142 for ( ; ; ) 1143 { 1144 int BLOCK_SIZE_X = tryWorkItems, BLOCK_SIZE_Y = std::min(ksize.height * 10, size.height); 1145 1146 while (BLOCK_SIZE_X > 32 && BLOCK_SIZE_X >= ksize.width * 2 && BLOCK_SIZE_X > size.width * 2) 1147 BLOCK_SIZE_X /= 2; 1148 while (BLOCK_SIZE_Y < BLOCK_SIZE_X / 8 && BLOCK_SIZE_Y * computeUnits * 32 < size.height) 1149 BLOCK_SIZE_Y *= 2; 1150 1151 if (ksize.width > BLOCK_SIZE_X || w < ksize.width || h < ksize.height) 1152 return false; 1153 1154 char cvt[2][50]; 1155 String opts = format("-D LOCAL_SIZE_X=%d -D BLOCK_SIZE_Y=%d -D ST=%s -D DT=%s -D WT=%s -D convertToDT=%s -D convertToWT=%s" 1156 " -D ANCHOR_X=%d -D ANCHOR_Y=%d -D KERNEL_SIZE_X=%d -D KERNEL_SIZE_Y=%d -D %s%s%s%s%s" 1157 " -D ST1=%s -D DT1=%s -D cn=%d", 1158 BLOCK_SIZE_X, BLOCK_SIZE_Y, ocl::typeToStr(type), ocl::typeToStr(CV_MAKE_TYPE(ddepth, cn)), 1159 ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), 1160 ocl::convertTypeStr(wdepth, ddepth, cn, cvt[0]), 1161 ocl::convertTypeStr(sdepth, wdepth, cn, cvt[1]), 1162 anchor.x, anchor.y, ksize.width, ksize.height, borderMap[borderType], 1163 isolated ? " -D BORDER_ISOLATED" : "", doubleSupport ? " -D DOUBLE_SUPPORT" : "", 1164 normalize ? " -D NORMALIZE" : "", sqr ? " -D SQR" : "", 1165 ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), cn); 1166 1167 localsize[0] = BLOCK_SIZE_X; 1168 globalsize[0] = DIVUP(size.width, BLOCK_SIZE_X - (ksize.width - 1)) * BLOCK_SIZE_X; 1169 globalsize[1] = DIVUP(size.height, BLOCK_SIZE_Y); 1170 1171 kernel.create("boxFilter", cv::ocl::imgproc::boxFilter_oclsrc, opts); 1172 if (kernel.empty()) 1173 return false; 1174 1175 size_t kernelWorkGroupSize = kernel.workGroupSize(); 1176 if (localsize[0] <= kernelWorkGroupSize) 1177 break; 1178 if (BLOCK_SIZE_X < (int)kernelWorkGroupSize) 1179 return false; 1180 1181 tryWorkItems = (int)kernelWorkGroupSize; 1182 } 1183 } 1184 1185 _dst.create(size, CV_MAKETYPE(ddepth, cn)); 1186 UMat dst = _dst.getUMat(); 1187 1188 int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src)); 1189 idxArg = kernel.set(idxArg, (int)src.step); 1190 int srcOffsetX = (int)((src.offset % src.step) / src.elemSize()); 1191 int srcOffsetY = (int)(src.offset / src.step); 1192 int srcEndX = isolated ? srcOffsetX + size.width : wholeSize.width; 1193 int srcEndY = isolated ? srcOffsetY + size.height : wholeSize.height; 1194 idxArg = kernel.set(idxArg, srcOffsetX); 1195 idxArg = kernel.set(idxArg, srcOffsetY); 1196 idxArg = kernel.set(idxArg, srcEndX); 1197 idxArg = kernel.set(idxArg, srcEndY); 1198 idxArg = kernel.set(idxArg, ocl::KernelArg::WriteOnly(dst)); 1199 if (normalize) 1200 idxArg = kernel.set(idxArg, (float)alpha); 1201 1202 return kernel.run(2, globalsize, localsize, false); 1203 } 1204 1205 #undef ROUNDUP 1206 1207 #endif 1208 1209 } 1210 1211 1212 cv::Ptr<cv::BaseRowFilter> cv::getRowSumFilter(int srcType, int sumType, int ksize, int anchor) 1213 { 1214 int sdepth = CV_MAT_DEPTH(srcType), ddepth = CV_MAT_DEPTH(sumType); 1215 CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(srcType) ); 1216 1217 if( anchor < 0 ) 1218 anchor = ksize/2; 1219 1220 if( sdepth == CV_8U && ddepth == CV_32S ) 1221 return makePtr<RowSum<uchar, int> >(ksize, anchor); 1222 if( sdepth == CV_8U && ddepth == CV_64F ) 1223 return makePtr<RowSum<uchar, double> >(ksize, anchor); 1224 if( sdepth == CV_16U && ddepth == CV_32S ) 1225 return makePtr<RowSum<ushort, int> >(ksize, anchor); 1226 if( sdepth == CV_16U && ddepth == CV_64F ) 1227 return makePtr<RowSum<ushort, double> >(ksize, anchor); 1228 if( sdepth == CV_16S && ddepth == CV_32S ) 1229 return makePtr<RowSum<short, int> >(ksize, anchor); 1230 if( sdepth == CV_32S && ddepth == CV_32S ) 1231 return makePtr<RowSum<int, int> >(ksize, anchor); 1232 if( sdepth == CV_16S && ddepth == CV_64F ) 1233 return makePtr<RowSum<short, double> >(ksize, anchor); 1234 if( sdepth == CV_32F && ddepth == CV_64F ) 1235 return makePtr<RowSum<float, double> >(ksize, anchor); 1236 if( sdepth == CV_64F && ddepth == CV_64F ) 1237 return makePtr<RowSum<double, double> >(ksize, anchor); 1238 1239 CV_Error_( CV_StsNotImplemented, 1240 ("Unsupported combination of source format (=%d), and buffer format (=%d)", 1241 srcType, sumType)); 1242 1243 return Ptr<BaseRowFilter>(); 1244 } 1245 1246 1247 cv::Ptr<cv::BaseColumnFilter> cv::getColumnSumFilter(int sumType, int dstType, int ksize, 1248 int anchor, double scale) 1249 { 1250 int sdepth = CV_MAT_DEPTH(sumType), ddepth = CV_MAT_DEPTH(dstType); 1251 CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(dstType) ); 1252 1253 if( anchor < 0 ) 1254 anchor = ksize/2; 1255 1256 if( ddepth == CV_8U && sdepth == CV_32S ) 1257 return makePtr<ColumnSum<int, uchar> >(ksize, anchor, scale); 1258 if( ddepth == CV_8U && sdepth == CV_64F ) 1259 return makePtr<ColumnSum<double, uchar> >(ksize, anchor, scale); 1260 if( ddepth == CV_16U && sdepth == CV_32S ) 1261 return makePtr<ColumnSum<int, ushort> >(ksize, anchor, scale); 1262 if( ddepth == CV_16U && sdepth == CV_64F ) 1263 return makePtr<ColumnSum<double, ushort> >(ksize, anchor, scale); 1264 if( ddepth == CV_16S && sdepth == CV_32S ) 1265 return makePtr<ColumnSum<int, short> >(ksize, anchor, scale); 1266 if( ddepth == CV_16S && sdepth == CV_64F ) 1267 return makePtr<ColumnSum<double, short> >(ksize, anchor, scale); 1268 if( ddepth == CV_32S && sdepth == CV_32S ) 1269 return makePtr<ColumnSum<int, int> >(ksize, anchor, scale); 1270 if( ddepth == CV_32F && sdepth == CV_32S ) 1271 return makePtr<ColumnSum<int, float> >(ksize, anchor, scale); 1272 if( ddepth == CV_32F && sdepth == CV_64F ) 1273 return makePtr<ColumnSum<double, float> >(ksize, anchor, scale); 1274 if( ddepth == CV_64F && sdepth == CV_32S ) 1275 return makePtr<ColumnSum<int, double> >(ksize, anchor, scale); 1276 if( ddepth == CV_64F && sdepth == CV_64F ) 1277 return makePtr<ColumnSum<double, double> >(ksize, anchor, scale); 1278 1279 CV_Error_( CV_StsNotImplemented, 1280 ("Unsupported combination of sum format (=%d), and destination format (=%d)", 1281 sumType, dstType)); 1282 1283 return Ptr<BaseColumnFilter>(); 1284 } 1285 1286 1287 cv::Ptr<cv::FilterEngine> cv::createBoxFilter( int srcType, int dstType, Size ksize, 1288 Point anchor, bool normalize, int borderType ) 1289 { 1290 int sdepth = CV_MAT_DEPTH(srcType); 1291 int cn = CV_MAT_CN(srcType), sumType = CV_64F; 1292 if( sdepth <= CV_32S && (!normalize || 1293 ksize.width*ksize.height <= (sdepth == CV_8U ? (1<<23) : 1294 sdepth == CV_16U ? (1 << 15) : (1 << 16))) ) 1295 sumType = CV_32S; 1296 sumType = CV_MAKETYPE( sumType, cn ); 1297 1298 Ptr<BaseRowFilter> rowFilter = getRowSumFilter(srcType, sumType, ksize.width, anchor.x ); 1299 Ptr<BaseColumnFilter> columnFilter = getColumnSumFilter(sumType, 1300 dstType, ksize.height, anchor.y, normalize ? 1./(ksize.width*ksize.height) : 1); 1301 1302 return makePtr<FilterEngine>(Ptr<BaseFilter>(), rowFilter, columnFilter, 1303 srcType, dstType, sumType, borderType ); 1304 } 1305 1306 1307 void cv::boxFilter( InputArray _src, OutputArray _dst, int ddepth, 1308 Size ksize, Point anchor, 1309 bool normalize, int borderType ) 1310 { 1311 CV_OCL_RUN(_dst.isUMat(), ocl_boxFilter(_src, _dst, ddepth, ksize, anchor, borderType, normalize)) 1312 1313 Mat src = _src.getMat(); 1314 int stype = src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype); 1315 if( ddepth < 0 ) 1316 ddepth = sdepth; 1317 _dst.create( src.size(), CV_MAKETYPE(ddepth, cn) ); 1318 Mat dst = _dst.getMat(); 1319 if( borderType != BORDER_CONSTANT && normalize && (borderType & BORDER_ISOLATED) != 0 ) 1320 { 1321 if( src.rows == 1 ) 1322 ksize.height = 1; 1323 if( src.cols == 1 ) 1324 ksize.width = 1; 1325 } 1326 #ifdef HAVE_TEGRA_OPTIMIZATION 1327 if ( tegra::useTegra() && tegra::box(src, dst, ksize, anchor, normalize, borderType) ) 1328 return; 1329 #endif 1330 1331 #if defined(HAVE_IPP) 1332 CV_IPP_CHECK() 1333 { 1334 int ippBorderType = borderType & ~BORDER_ISOLATED; 1335 Point ocvAnchor, ippAnchor; 1336 ocvAnchor.x = anchor.x < 0 ? ksize.width / 2 : anchor.x; 1337 ocvAnchor.y = anchor.y < 0 ? ksize.height / 2 : anchor.y; 1338 ippAnchor.x = ksize.width / 2 - (ksize.width % 2 == 0 ? 1 : 0); 1339 ippAnchor.y = ksize.height / 2 - (ksize.height % 2 == 0 ? 1 : 0); 1340 1341 if (normalize && !src.isSubmatrix() && ddepth == sdepth && 1342 (/*ippBorderType == BORDER_REPLICATE ||*/ /* returns ippStsStepErr: Step value is not valid */ 1343 ippBorderType == BORDER_CONSTANT) && ocvAnchor == ippAnchor && 1344 dst.cols != ksize.width && dst.rows != ksize.height) // returns ippStsMaskSizeErr: mask has an illegal value 1345 { 1346 Ipp32s bufSize = 0; 1347 IppiSize roiSize = { dst.cols, dst.rows }, maskSize = { ksize.width, ksize.height }; 1348 1349 #define IPP_FILTER_BOX_BORDER(ippType, ippDataType, flavor) \ 1350 do \ 1351 { \ 1352 if (ippiFilterBoxBorderGetBufferSize(roiSize, maskSize, ippDataType, cn, &bufSize) >= 0) \ 1353 { \ 1354 Ipp8u * buffer = ippsMalloc_8u(bufSize); \ 1355 ippType borderValue[4] = { 0, 0, 0, 0 }; \ 1356 ippBorderType = ippBorderType == BORDER_CONSTANT ? ippBorderConst : ippBorderRepl; \ 1357 IppStatus status = ippiFilterBoxBorder_##flavor(src.ptr<ippType>(), (int)src.step, dst.ptr<ippType>(), \ 1358 (int)dst.step, roiSize, maskSize, \ 1359 (IppiBorderType)ippBorderType, borderValue, buffer); \ 1360 ippsFree(buffer); \ 1361 if (status >= 0) \ 1362 { \ 1363 CV_IMPL_ADD(CV_IMPL_IPP); \ 1364 return; \ 1365 } \ 1366 } \ 1367 setIppErrorStatus(); \ 1368 } while ((void)0, 0) 1369 1370 if (stype == CV_8UC1) 1371 IPP_FILTER_BOX_BORDER(Ipp8u, ipp8u, 8u_C1R); 1372 else if (stype == CV_8UC3) 1373 IPP_FILTER_BOX_BORDER(Ipp8u, ipp8u, 8u_C3R); 1374 else if (stype == CV_8UC4) 1375 IPP_FILTER_BOX_BORDER(Ipp8u, ipp8u, 8u_C4R); 1376 1377 // Oct 2014: performance with BORDER_CONSTANT 1378 //else if (stype == CV_16UC1) 1379 // IPP_FILTER_BOX_BORDER(Ipp16u, ipp16u, 16u_C1R); 1380 else if (stype == CV_16UC3) 1381 IPP_FILTER_BOX_BORDER(Ipp16u, ipp16u, 16u_C3R); 1382 else if (stype == CV_16UC4) 1383 IPP_FILTER_BOX_BORDER(Ipp16u, ipp16u, 16u_C4R); 1384 1385 // Oct 2014: performance with BORDER_CONSTANT 1386 //else if (stype == CV_16SC1) 1387 // IPP_FILTER_BOX_BORDER(Ipp16s, ipp16s, 16s_C1R); 1388 else if (stype == CV_16SC3) 1389 IPP_FILTER_BOX_BORDER(Ipp16s, ipp16s, 16s_C3R); 1390 else if (stype == CV_16SC4) 1391 IPP_FILTER_BOX_BORDER(Ipp16s, ipp16s, 16s_C4R); 1392 1393 else if (stype == CV_32FC1) 1394 IPP_FILTER_BOX_BORDER(Ipp32f, ipp32f, 32f_C1R); 1395 else if (stype == CV_32FC3) 1396 IPP_FILTER_BOX_BORDER(Ipp32f, ipp32f, 32f_C3R); 1397 else if (stype == CV_32FC4) 1398 IPP_FILTER_BOX_BORDER(Ipp32f, ipp32f, 32f_C4R); 1399 } 1400 #undef IPP_FILTER_BOX_BORDER 1401 } 1402 #endif 1403 1404 Ptr<FilterEngine> f = createBoxFilter( src.type(), dst.type(), 1405 ksize, anchor, normalize, borderType ); 1406 f->apply( src, dst ); 1407 } 1408 1409 void cv::blur( InputArray src, OutputArray dst, 1410 Size ksize, Point anchor, int borderType ) 1411 { 1412 boxFilter( src, dst, -1, ksize, anchor, true, borderType ); 1413 } 1414 1415 1416 /****************************************************************************************\ 1417 Squared Box Filter 1418 \****************************************************************************************/ 1419 1420 namespace cv 1421 { 1422 1423 template<typename T, typename ST> 1424 struct SqrRowSum : 1425 public BaseRowFilter 1426 { 1427 SqrRowSum( int _ksize, int _anchor ) : 1428 BaseRowFilter() 1429 { 1430 ksize = _ksize; 1431 anchor = _anchor; 1432 } 1433 1434 virtual void operator()(const uchar* src, uchar* dst, int width, int cn) 1435 { 1436 const T* S = (const T*)src; 1437 ST* D = (ST*)dst; 1438 int i = 0, k, ksz_cn = ksize*cn; 1439 1440 width = (width - 1)*cn; 1441 for( k = 0; k < cn; k++, S++, D++ ) 1442 { 1443 ST s = 0; 1444 for( i = 0; i < ksz_cn; i += cn ) 1445 { 1446 ST val = (ST)S[i]; 1447 s += val*val; 1448 } 1449 D[0] = s; 1450 for( i = 0; i < width; i += cn ) 1451 { 1452 ST val0 = (ST)S[i], val1 = (ST)S[i + ksz_cn]; 1453 s += val1*val1 - val0*val0; 1454 D[i+cn] = s; 1455 } 1456 } 1457 } 1458 }; 1459 1460 static Ptr<BaseRowFilter> getSqrRowSumFilter(int srcType, int sumType, int ksize, int anchor) 1461 { 1462 int sdepth = CV_MAT_DEPTH(srcType), ddepth = CV_MAT_DEPTH(sumType); 1463 CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(srcType) ); 1464 1465 if( anchor < 0 ) 1466 anchor = ksize/2; 1467 1468 if( sdepth == CV_8U && ddepth == CV_32S ) 1469 return makePtr<SqrRowSum<uchar, int> >(ksize, anchor); 1470 if( sdepth == CV_8U && ddepth == CV_64F ) 1471 return makePtr<SqrRowSum<uchar, double> >(ksize, anchor); 1472 if( sdepth == CV_16U && ddepth == CV_64F ) 1473 return makePtr<SqrRowSum<ushort, double> >(ksize, anchor); 1474 if( sdepth == CV_16S && ddepth == CV_64F ) 1475 return makePtr<SqrRowSum<short, double> >(ksize, anchor); 1476 if( sdepth == CV_32F && ddepth == CV_64F ) 1477 return makePtr<SqrRowSum<float, double> >(ksize, anchor); 1478 if( sdepth == CV_64F && ddepth == CV_64F ) 1479 return makePtr<SqrRowSum<double, double> >(ksize, anchor); 1480 1481 CV_Error_( CV_StsNotImplemented, 1482 ("Unsupported combination of source format (=%d), and buffer format (=%d)", 1483 srcType, sumType)); 1484 1485 return Ptr<BaseRowFilter>(); 1486 } 1487 1488 } 1489 1490 void cv::sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth, 1491 Size ksize, Point anchor, 1492 bool normalize, int borderType ) 1493 { 1494 int srcType = _src.type(), sdepth = CV_MAT_DEPTH(srcType), cn = CV_MAT_CN(srcType); 1495 Size size = _src.size(); 1496 1497 if( ddepth < 0 ) 1498 ddepth = sdepth < CV_32F ? CV_32F : CV_64F; 1499 1500 if( borderType != BORDER_CONSTANT && normalize ) 1501 { 1502 if( size.height == 1 ) 1503 ksize.height = 1; 1504 if( size.width == 1 ) 1505 ksize.width = 1; 1506 } 1507 1508 CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2, 1509 ocl_boxFilter(_src, _dst, ddepth, ksize, anchor, borderType, normalize, true)) 1510 1511 int sumDepth = CV_64F; 1512 if( sdepth == CV_8U ) 1513 sumDepth = CV_32S; 1514 int sumType = CV_MAKETYPE( sumDepth, cn ), dstType = CV_MAKETYPE(ddepth, cn); 1515 1516 Mat src = _src.getMat(); 1517 _dst.create( size, dstType ); 1518 Mat dst = _dst.getMat(); 1519 1520 Ptr<BaseRowFilter> rowFilter = getSqrRowSumFilter(srcType, sumType, ksize.width, anchor.x ); 1521 Ptr<BaseColumnFilter> columnFilter = getColumnSumFilter(sumType, 1522 dstType, ksize.height, anchor.y, 1523 normalize ? 1./(ksize.width*ksize.height) : 1); 1524 1525 Ptr<FilterEngine> f = makePtr<FilterEngine>(Ptr<BaseFilter>(), rowFilter, columnFilter, 1526 srcType, dstType, sumType, borderType ); 1527 f->apply( src, dst ); 1528 } 1529 1530 1531 /****************************************************************************************\ 1532 Gaussian Blur 1533 \****************************************************************************************/ 1534 1535 cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype ) 1536 { 1537 const int SMALL_GAUSSIAN_SIZE = 7; 1538 static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] = 1539 { 1540 {1.f}, 1541 {0.25f, 0.5f, 0.25f}, 1542 {0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f}, 1543 {0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f} 1544 }; 1545 1546 const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ? 1547 small_gaussian_tab[n>>1] : 0; 1548 1549 CV_Assert( ktype == CV_32F || ktype == CV_64F ); 1550 Mat kernel(n, 1, ktype); 1551 float* cf = kernel.ptr<float>(); 1552 double* cd = kernel.ptr<double>(); 1553 1554 double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8; 1555 double scale2X = -0.5/(sigmaX*sigmaX); 1556 double sum = 0; 1557 1558 int i; 1559 for( i = 0; i < n; i++ ) 1560 { 1561 double x = i - (n-1)*0.5; 1562 double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x); 1563 if( ktype == CV_32F ) 1564 { 1565 cf[i] = (float)t; 1566 sum += cf[i]; 1567 } 1568 else 1569 { 1570 cd[i] = t; 1571 sum += cd[i]; 1572 } 1573 } 1574 1575 sum = 1./sum; 1576 for( i = 0; i < n; i++ ) 1577 { 1578 if( ktype == CV_32F ) 1579 cf[i] = (float)(cf[i]*sum); 1580 else 1581 cd[i] *= sum; 1582 } 1583 1584 return kernel; 1585 } 1586 1587 namespace cv { 1588 1589 static void createGaussianKernels( Mat & kx, Mat & ky, int type, Size ksize, 1590 double sigma1, double sigma2 ) 1591 { 1592 int depth = CV_MAT_DEPTH(type); 1593 if( sigma2 <= 0 ) 1594 sigma2 = sigma1; 1595 1596 // automatic detection of kernel size from sigma 1597 if( ksize.width <= 0 && sigma1 > 0 ) 1598 ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1; 1599 if( ksize.height <= 0 && sigma2 > 0 ) 1600 ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1; 1601 1602 CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 && 1603 ksize.height > 0 && ksize.height % 2 == 1 ); 1604 1605 sigma1 = std::max( sigma1, 0. ); 1606 sigma2 = std::max( sigma2, 0. ); 1607 1608 kx = getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F) ); 1609 if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON ) 1610 ky = kx; 1611 else 1612 ky = getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F) ); 1613 } 1614 1615 } 1616 1617 cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize, 1618 double sigma1, double sigma2, 1619 int borderType ) 1620 { 1621 Mat kx, ky; 1622 createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); 1623 1624 return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType ); 1625 } 1626 1627 1628 void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize, 1629 double sigma1, double sigma2, 1630 int borderType ) 1631 { 1632 int type = _src.type(); 1633 Size size = _src.size(); 1634 _dst.create( size, type ); 1635 1636 if( borderType != BORDER_CONSTANT && (borderType & BORDER_ISOLATED) != 0 ) 1637 { 1638 if( size.height == 1 ) 1639 ksize.height = 1; 1640 if( size.width == 1 ) 1641 ksize.width = 1; 1642 } 1643 1644 if( ksize.width == 1 && ksize.height == 1 ) 1645 { 1646 _src.copyTo(_dst); 1647 return; 1648 } 1649 1650 #ifdef HAVE_TEGRA_OPTIMIZATION 1651 Mat src = _src.getMat(); 1652 Mat dst = _dst.getMat(); 1653 if(sigma1 == 0 && sigma2 == 0 && tegra::useTegra() && tegra::gaussian(src, dst, ksize, borderType)) 1654 return; 1655 #endif 1656 1657 #if IPP_VERSION_X100 >= 801 && 0 // these functions are slower in IPP 8.1 1658 CV_IPP_CHECK() 1659 { 1660 int depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); 1661 1662 if ((depth == CV_8U || depth == CV_16U || depth == CV_16S || depth == CV_32F) && (cn == 1 || cn == 3) && 1663 sigma1 == sigma2 && ksize.width == ksize.height && sigma1 != 0.0 ) 1664 { 1665 IppiBorderType ippBorder = ippiGetBorderType(borderType); 1666 if (ippBorderConst == ippBorder || ippBorderRepl == ippBorder) 1667 { 1668 Mat src = _src.getMat(), dst = _dst.getMat(); 1669 IppiSize roiSize = { src.cols, src.rows }; 1670 IppDataType dataType = ippiGetDataType(depth); 1671 Ipp32s specSize = 0, bufferSize = 0; 1672 1673 if (ippiFilterGaussianGetBufferSize(roiSize, (Ipp32u)ksize.width, dataType, cn, &specSize, &bufferSize) >= 0) 1674 { 1675 IppFilterGaussianSpec * pSpec = (IppFilterGaussianSpec *)ippMalloc(specSize); 1676 Ipp8u * pBuffer = (Ipp8u*)ippMalloc(bufferSize); 1677 1678 if (ippiFilterGaussianInit(roiSize, (Ipp32u)ksize.width, (Ipp32f)sigma1, ippBorder, dataType, 1, pSpec, pBuffer) >= 0) 1679 { 1680 #define IPP_FILTER_GAUSS(ippfavor, ippcn) \ 1681 do \ 1682 { \ 1683 typedef Ipp##ippfavor ippType; \ 1684 ippType borderValues[] = { 0, 0, 0 }; \ 1685 IppStatus status = ippcn == 1 ? \ 1686 ippiFilterGaussianBorder_##ippfavor##_C1R(src.ptr<ippType>(), (int)src.step, \ 1687 dst.ptr<ippType>(), (int)dst.step, roiSize, borderValues[0], pSpec, pBuffer) : \ 1688 ippiFilterGaussianBorder_##ippfavor##_C3R(src.ptr<ippType>(), (int)src.step, \ 1689 dst.ptr<ippType>(), (int)dst.step, roiSize, borderValues, pSpec, pBuffer); \ 1690 ippFree(pBuffer); \ 1691 ippFree(pSpec); \ 1692 if (status >= 0) \ 1693 { \ 1694 CV_IMPL_ADD(CV_IMPL_IPP); \ 1695 return; \ 1696 } \ 1697 } while ((void)0, 0) 1698 1699 if (type == CV_8UC1) 1700 IPP_FILTER_GAUSS(8u, 1); 1701 else if (type == CV_8UC3) 1702 IPP_FILTER_GAUSS(8u, 3); 1703 else if (type == CV_16UC1) 1704 IPP_FILTER_GAUSS(16u, 1); 1705 else if (type == CV_16UC3) 1706 IPP_FILTER_GAUSS(16u, 3); 1707 else if (type == CV_16SC1) 1708 IPP_FILTER_GAUSS(16s, 1); 1709 else if (type == CV_16SC3) 1710 IPP_FILTER_GAUSS(16s, 3); 1711 else if (type == CV_32FC1) 1712 IPP_FILTER_GAUSS(32f, 1); 1713 else if (type == CV_32FC3) 1714 IPP_FILTER_GAUSS(32f, 3); 1715 #undef IPP_FILTER_GAUSS 1716 } 1717 } 1718 setIppErrorStatus(); 1719 } 1720 } 1721 } 1722 #endif 1723 1724 Mat kx, ky; 1725 createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); 1726 sepFilter2D(_src, _dst, CV_MAT_DEPTH(type), kx, ky, Point(-1,-1), 0, borderType ); 1727 } 1728 1729 /****************************************************************************************\ 1730 Median Filter 1731 \****************************************************************************************/ 1732 1733 namespace cv 1734 { 1735 typedef ushort HT; 1736 1737 /** 1738 * This structure represents a two-tier histogram. The first tier (known as the 1739 * "coarse" level) is 4 bit wide and the second tier (known as the "fine" level) 1740 * is 8 bit wide. Pixels inserted in the fine level also get inserted into the 1741 * coarse bucket designated by the 4 MSBs of the fine bucket value. 1742 * 1743 * The structure is aligned on 16 bits, which is a prerequisite for SIMD 1744 * instructions. Each bucket is 16 bit wide, which means that extra care must be 1745 * taken to prevent overflow. 1746 */ 1747 typedef struct 1748 { 1749 HT coarse[16]; 1750 HT fine[16][16]; 1751 } Histogram; 1752 1753 1754 #if CV_SSE2 1755 #define MEDIAN_HAVE_SIMD 1 1756 1757 static inline void histogram_add_simd( const HT x[16], HT y[16] ) 1758 { 1759 const __m128i* rx = (const __m128i*)x; 1760 __m128i* ry = (__m128i*)y; 1761 __m128i r0 = _mm_add_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0)); 1762 __m128i r1 = _mm_add_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1)); 1763 _mm_store_si128(ry+0, r0); 1764 _mm_store_si128(ry+1, r1); 1765 } 1766 1767 static inline void histogram_sub_simd( const HT x[16], HT y[16] ) 1768 { 1769 const __m128i* rx = (const __m128i*)x; 1770 __m128i* ry = (__m128i*)y; 1771 __m128i r0 = _mm_sub_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0)); 1772 __m128i r1 = _mm_sub_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1)); 1773 _mm_store_si128(ry+0, r0); 1774 _mm_store_si128(ry+1, r1); 1775 } 1776 1777 #elif CV_NEON 1778 #define MEDIAN_HAVE_SIMD 1 1779 1780 static inline void histogram_add_simd( const HT x[16], HT y[16] ) 1781 { 1782 vst1q_u16(y, vaddq_u16(vld1q_u16(x), vld1q_u16(y))); 1783 vst1q_u16(y + 8, vaddq_u16(vld1q_u16(x + 8), vld1q_u16(y + 8))); 1784 } 1785 1786 static inline void histogram_sub_simd( const HT x[16], HT y[16] ) 1787 { 1788 vst1q_u16(y, vsubq_u16(vld1q_u16(x), vld1q_u16(y))); 1789 vst1q_u16(y + 8, vsubq_u16(vld1q_u16(x + 8), vld1q_u16(y + 8))); 1790 } 1791 1792 #else 1793 #define MEDIAN_HAVE_SIMD 0 1794 #endif 1795 1796 1797 static inline void histogram_add( const HT x[16], HT y[16] ) 1798 { 1799 int i; 1800 for( i = 0; i < 16; ++i ) 1801 y[i] = (HT)(y[i] + x[i]); 1802 } 1803 1804 static inline void histogram_sub( const HT x[16], HT y[16] ) 1805 { 1806 int i; 1807 for( i = 0; i < 16; ++i ) 1808 y[i] = (HT)(y[i] - x[i]); 1809 } 1810 1811 static inline void histogram_muladd( int a, const HT x[16], 1812 HT y[16] ) 1813 { 1814 for( int i = 0; i < 16; ++i ) 1815 y[i] = (HT)(y[i] + a * x[i]); 1816 } 1817 1818 static void 1819 medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize ) 1820 { 1821 /** 1822 * HOP is short for Histogram OPeration. This macro makes an operation \a op on 1823 * histogram \a h for pixel value \a x. It takes care of handling both levels. 1824 */ 1825 #define HOP(h,x,op) \ 1826 h.coarse[x>>4] op, \ 1827 *((HT*)h.fine + x) op 1828 1829 #define COP(c,j,x,op) \ 1830 h_coarse[ 16*(n*c+j) + (x>>4) ] op, \ 1831 h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op 1832 1833 int cn = _dst.channels(), m = _dst.rows, r = (ksize-1)/2; 1834 size_t sstep = _src.step, dstep = _dst.step; 1835 Histogram CV_DECL_ALIGNED(16) H[4]; 1836 HT CV_DECL_ALIGNED(16) luc[4][16]; 1837 1838 int STRIPE_SIZE = std::min( _dst.cols, 512/cn ); 1839 1840 std::vector<HT> _h_coarse(1 * 16 * (STRIPE_SIZE + 2*r) * cn + 16); 1841 std::vector<HT> _h_fine(16 * 16 * (STRIPE_SIZE + 2*r) * cn + 16); 1842 HT* h_coarse = alignPtr(&_h_coarse[0], 16); 1843 HT* h_fine = alignPtr(&_h_fine[0], 16); 1844 #if MEDIAN_HAVE_SIMD 1845 volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2) || checkHardwareSupport(CV_CPU_NEON); 1846 #endif 1847 1848 for( int x = 0; x < _dst.cols; x += STRIPE_SIZE ) 1849 { 1850 int i, j, k, c, n = std::min(_dst.cols - x, STRIPE_SIZE) + r*2; 1851 const uchar* src = _src.ptr() + x*cn; 1852 uchar* dst = _dst.ptr() + (x - r)*cn; 1853 1854 memset( h_coarse, 0, 16*n*cn*sizeof(h_coarse[0]) ); 1855 memset( h_fine, 0, 16*16*n*cn*sizeof(h_fine[0]) ); 1856 1857 // First row initialization 1858 for( c = 0; c < cn; c++ ) 1859 { 1860 for( j = 0; j < n; j++ ) 1861 COP( c, j, src[cn*j+c], += (cv::HT)(r+2) ); 1862 1863 for( i = 1; i < r; i++ ) 1864 { 1865 const uchar* p = src + sstep*std::min(i, m-1); 1866 for ( j = 0; j < n; j++ ) 1867 COP( c, j, p[cn*j+c], ++ ); 1868 } 1869 } 1870 1871 for( i = 0; i < m; i++ ) 1872 { 1873 const uchar* p0 = src + sstep * std::max( 0, i-r-1 ); 1874 const uchar* p1 = src + sstep * std::min( m-1, i+r ); 1875 1876 memset( H, 0, cn*sizeof(H[0]) ); 1877 memset( luc, 0, cn*sizeof(luc[0]) ); 1878 for( c = 0; c < cn; c++ ) 1879 { 1880 // Update column histograms for the entire row. 1881 for( j = 0; j < n; j++ ) 1882 { 1883 COP( c, j, p0[j*cn + c], -- ); 1884 COP( c, j, p1[j*cn + c], ++ ); 1885 } 1886 1887 // First column initialization 1888 for( k = 0; k < 16; ++k ) 1889 histogram_muladd( 2*r+1, &h_fine[16*n*(16*c+k)], &H[c].fine[k][0] ); 1890 1891 #if MEDIAN_HAVE_SIMD 1892 if( useSIMD ) 1893 { 1894 for( j = 0; j < 2*r; ++j ) 1895 histogram_add_simd( &h_coarse[16*(n*c+j)], H[c].coarse ); 1896 1897 for( j = r; j < n-r; j++ ) 1898 { 1899 int t = 2*r*r + 2*r, b, sum = 0; 1900 HT* segment; 1901 1902 histogram_add_simd( &h_coarse[16*(n*c + std::min(j+r,n-1))], H[c].coarse ); 1903 1904 // Find median at coarse level 1905 for ( k = 0; k < 16 ; ++k ) 1906 { 1907 sum += H[c].coarse[k]; 1908 if ( sum > t ) 1909 { 1910 sum -= H[c].coarse[k]; 1911 break; 1912 } 1913 } 1914 assert( k < 16 ); 1915 1916 /* Update corresponding histogram segment */ 1917 if ( luc[c][k] <= j-r ) 1918 { 1919 memset( &H[c].fine[k], 0, 16 * sizeof(HT) ); 1920 for ( luc[c][k] = cv::HT(j-r); luc[c][k] < MIN(j+r+1,n); ++luc[c][k] ) 1921 histogram_add_simd( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] ); 1922 1923 if ( luc[c][k] < j+r+1 ) 1924 { 1925 histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] ); 1926 luc[c][k] = (HT)(j+r+1); 1927 } 1928 } 1929 else 1930 { 1931 for ( ; luc[c][k] < j+r+1; ++luc[c][k] ) 1932 { 1933 histogram_sub_simd( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] ); 1934 histogram_add_simd( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] ); 1935 } 1936 } 1937 1938 histogram_sub_simd( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse ); 1939 1940 /* Find median in segment */ 1941 segment = H[c].fine[k]; 1942 for ( b = 0; b < 16 ; b++ ) 1943 { 1944 sum += segment[b]; 1945 if ( sum > t ) 1946 { 1947 dst[dstep*i+cn*j+c] = (uchar)(16*k + b); 1948 break; 1949 } 1950 } 1951 assert( b < 16 ); 1952 } 1953 } 1954 else 1955 #endif 1956 { 1957 for( j = 0; j < 2*r; ++j ) 1958 histogram_add( &h_coarse[16*(n*c+j)], H[c].coarse ); 1959 1960 for( j = r; j < n-r; j++ ) 1961 { 1962 int t = 2*r*r + 2*r, b, sum = 0; 1963 HT* segment; 1964 1965 histogram_add( &h_coarse[16*(n*c + std::min(j+r,n-1))], H[c].coarse ); 1966 1967 // Find median at coarse level 1968 for ( k = 0; k < 16 ; ++k ) 1969 { 1970 sum += H[c].coarse[k]; 1971 if ( sum > t ) 1972 { 1973 sum -= H[c].coarse[k]; 1974 break; 1975 } 1976 } 1977 assert( k < 16 ); 1978 1979 /* Update corresponding histogram segment */ 1980 if ( luc[c][k] <= j-r ) 1981 { 1982 memset( &H[c].fine[k], 0, 16 * sizeof(HT) ); 1983 for ( luc[c][k] = cv::HT(j-r); luc[c][k] < MIN(j+r+1,n); ++luc[c][k] ) 1984 histogram_add( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] ); 1985 1986 if ( luc[c][k] < j+r+1 ) 1987 { 1988 histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] ); 1989 luc[c][k] = (HT)(j+r+1); 1990 } 1991 } 1992 else 1993 { 1994 for ( ; luc[c][k] < j+r+1; ++luc[c][k] ) 1995 { 1996 histogram_sub( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] ); 1997 histogram_add( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] ); 1998 } 1999 } 2000 2001 histogram_sub( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse ); 2002 2003 /* Find median in segment */ 2004 segment = H[c].fine[k]; 2005 for ( b = 0; b < 16 ; b++ ) 2006 { 2007 sum += segment[b]; 2008 if ( sum > t ) 2009 { 2010 dst[dstep*i+cn*j+c] = (uchar)(16*k + b); 2011 break; 2012 } 2013 } 2014 assert( b < 16 ); 2015 } 2016 } 2017 } 2018 } 2019 } 2020 2021 #undef HOP 2022 #undef COP 2023 } 2024 2025 static void 2026 medianBlur_8u_Om( const Mat& _src, Mat& _dst, int m ) 2027 { 2028 #define N 16 2029 int zone0[4][N]; 2030 int zone1[4][N*N]; 2031 int x, y; 2032 int n2 = m*m/2; 2033 Size size = _dst.size(); 2034 const uchar* src = _src.ptr(); 2035 uchar* dst = _dst.ptr(); 2036 int src_step = (int)_src.step, dst_step = (int)_dst.step; 2037 int cn = _src.channels(); 2038 const uchar* src_max = src + size.height*src_step; 2039 2040 #define UPDATE_ACC01( pix, cn, op ) \ 2041 { \ 2042 int p = (pix); \ 2043 zone1[cn][p] op; \ 2044 zone0[cn][p >> 4] op; \ 2045 } 2046 2047 //CV_Assert( size.height >= nx && size.width >= nx ); 2048 for( x = 0; x < size.width; x++, src += cn, dst += cn ) 2049 { 2050 uchar* dst_cur = dst; 2051 const uchar* src_top = src; 2052 const uchar* src_bottom = src; 2053 int k, c; 2054 int src_step1 = src_step, dst_step1 = dst_step; 2055 2056 if( x % 2 != 0 ) 2057 { 2058 src_bottom = src_top += src_step*(size.height-1); 2059 dst_cur += dst_step*(size.height-1); 2060 src_step1 = -src_step1; 2061 dst_step1 = -dst_step1; 2062 } 2063 2064 // init accumulator 2065 memset( zone0, 0, sizeof(zone0[0])*cn ); 2066 memset( zone1, 0, sizeof(zone1[0])*cn ); 2067 2068 for( y = 0; y <= m/2; y++ ) 2069 { 2070 for( c = 0; c < cn; c++ ) 2071 { 2072 if( y > 0 ) 2073 { 2074 for( k = 0; k < m*cn; k += cn ) 2075 UPDATE_ACC01( src_bottom[k+c], c, ++ ); 2076 } 2077 else 2078 { 2079 for( k = 0; k < m*cn; k += cn ) 2080 UPDATE_ACC01( src_bottom[k+c], c, += m/2+1 ); 2081 } 2082 } 2083 2084 if( (src_step1 > 0 && y < size.height-1) || 2085 (src_step1 < 0 && size.height-y-1 > 0) ) 2086 src_bottom += src_step1; 2087 } 2088 2089 for( y = 0; y < size.height; y++, dst_cur += dst_step1 ) 2090 { 2091 // find median 2092 for( c = 0; c < cn; c++ ) 2093 { 2094 int s = 0; 2095 for( k = 0; ; k++ ) 2096 { 2097 int t = s + zone0[c][k]; 2098 if( t > n2 ) break; 2099 s = t; 2100 } 2101 2102 for( k *= N; ;k++ ) 2103 { 2104 s += zone1[c][k]; 2105 if( s > n2 ) break; 2106 } 2107 2108 dst_cur[c] = (uchar)k; 2109 } 2110 2111 if( y+1 == size.height ) 2112 break; 2113 2114 if( cn == 1 ) 2115 { 2116 for( k = 0; k < m; k++ ) 2117 { 2118 int p = src_top[k]; 2119 int q = src_bottom[k]; 2120 zone1[0][p]--; 2121 zone0[0][p>>4]--; 2122 zone1[0][q]++; 2123 zone0[0][q>>4]++; 2124 } 2125 } 2126 else if( cn == 3 ) 2127 { 2128 for( k = 0; k < m*3; k += 3 ) 2129 { 2130 UPDATE_ACC01( src_top[k], 0, -- ); 2131 UPDATE_ACC01( src_top[k+1], 1, -- ); 2132 UPDATE_ACC01( src_top[k+2], 2, -- ); 2133 2134 UPDATE_ACC01( src_bottom[k], 0, ++ ); 2135 UPDATE_ACC01( src_bottom[k+1], 1, ++ ); 2136 UPDATE_ACC01( src_bottom[k+2], 2, ++ ); 2137 } 2138 } 2139 else 2140 { 2141 assert( cn == 4 ); 2142 for( k = 0; k < m*4; k += 4 ) 2143 { 2144 UPDATE_ACC01( src_top[k], 0, -- ); 2145 UPDATE_ACC01( src_top[k+1], 1, -- ); 2146 UPDATE_ACC01( src_top[k+2], 2, -- ); 2147 UPDATE_ACC01( src_top[k+3], 3, -- ); 2148 2149 UPDATE_ACC01( src_bottom[k], 0, ++ ); 2150 UPDATE_ACC01( src_bottom[k+1], 1, ++ ); 2151 UPDATE_ACC01( src_bottom[k+2], 2, ++ ); 2152 UPDATE_ACC01( src_bottom[k+3], 3, ++ ); 2153 } 2154 } 2155 2156 if( (src_step1 > 0 && src_bottom + src_step1 < src_max) || 2157 (src_step1 < 0 && src_bottom + src_step1 >= src) ) 2158 src_bottom += src_step1; 2159 2160 if( y >= m/2 ) 2161 src_top += src_step1; 2162 } 2163 } 2164 #undef N 2165 #undef UPDATE_ACC 2166 } 2167 2168 2169 struct MinMax8u 2170 { 2171 typedef uchar value_type; 2172 typedef int arg_type; 2173 enum { SIZE = 1 }; 2174 arg_type load(const uchar* ptr) { return *ptr; } 2175 void store(uchar* ptr, arg_type val) { *ptr = (uchar)val; } 2176 void operator()(arg_type& a, arg_type& b) const 2177 { 2178 int t = CV_FAST_CAST_8U(a - b); 2179 b += t; a -= t; 2180 } 2181 }; 2182 2183 struct MinMax16u 2184 { 2185 typedef ushort value_type; 2186 typedef int arg_type; 2187 enum { SIZE = 1 }; 2188 arg_type load(const ushort* ptr) { return *ptr; } 2189 void store(ushort* ptr, arg_type val) { *ptr = (ushort)val; } 2190 void operator()(arg_type& a, arg_type& b) const 2191 { 2192 arg_type t = a; 2193 a = std::min(a, b); 2194 b = std::max(b, t); 2195 } 2196 }; 2197 2198 struct MinMax16s 2199 { 2200 typedef short value_type; 2201 typedef int arg_type; 2202 enum { SIZE = 1 }; 2203 arg_type load(const short* ptr) { return *ptr; } 2204 void store(short* ptr, arg_type val) { *ptr = (short)val; } 2205 void operator()(arg_type& a, arg_type& b) const 2206 { 2207 arg_type t = a; 2208 a = std::min(a, b); 2209 b = std::max(b, t); 2210 } 2211 }; 2212 2213 struct MinMax32f 2214 { 2215 typedef float value_type; 2216 typedef float arg_type; 2217 enum { SIZE = 1 }; 2218 arg_type load(const float* ptr) { return *ptr; } 2219 void store(float* ptr, arg_type val) { *ptr = val; } 2220 void operator()(arg_type& a, arg_type& b) const 2221 { 2222 arg_type t = a; 2223 a = std::min(a, b); 2224 b = std::max(b, t); 2225 } 2226 }; 2227 2228 #if CV_SSE2 2229 2230 struct MinMaxVec8u 2231 { 2232 typedef uchar value_type; 2233 typedef __m128i arg_type; 2234 enum { SIZE = 16 }; 2235 arg_type load(const uchar* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } 2236 void store(uchar* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); } 2237 void operator()(arg_type& a, arg_type& b) const 2238 { 2239 arg_type t = a; 2240 a = _mm_min_epu8(a, b); 2241 b = _mm_max_epu8(b, t); 2242 } 2243 }; 2244 2245 2246 struct MinMaxVec16u 2247 { 2248 typedef ushort value_type; 2249 typedef __m128i arg_type; 2250 enum { SIZE = 8 }; 2251 arg_type load(const ushort* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } 2252 void store(ushort* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); } 2253 void operator()(arg_type& a, arg_type& b) const 2254 { 2255 arg_type t = _mm_subs_epu16(a, b); 2256 a = _mm_subs_epu16(a, t); 2257 b = _mm_adds_epu16(b, t); 2258 } 2259 }; 2260 2261 2262 struct MinMaxVec16s 2263 { 2264 typedef short value_type; 2265 typedef __m128i arg_type; 2266 enum { SIZE = 8 }; 2267 arg_type load(const short* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } 2268 void store(short* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); } 2269 void operator()(arg_type& a, arg_type& b) const 2270 { 2271 arg_type t = a; 2272 a = _mm_min_epi16(a, b); 2273 b = _mm_max_epi16(b, t); 2274 } 2275 }; 2276 2277 2278 struct MinMaxVec32f 2279 { 2280 typedef float value_type; 2281 typedef __m128 arg_type; 2282 enum { SIZE = 4 }; 2283 arg_type load(const float* ptr) { return _mm_loadu_ps(ptr); } 2284 void store(float* ptr, arg_type val) { _mm_storeu_ps(ptr, val); } 2285 void operator()(arg_type& a, arg_type& b) const 2286 { 2287 arg_type t = a; 2288 a = _mm_min_ps(a, b); 2289 b = _mm_max_ps(b, t); 2290 } 2291 }; 2292 2293 #elif CV_NEON 2294 2295 struct MinMaxVec8u 2296 { 2297 typedef uchar value_type; 2298 typedef uint8x16_t arg_type; 2299 enum { SIZE = 16 }; 2300 arg_type load(const uchar* ptr) { return vld1q_u8(ptr); } 2301 void store(uchar* ptr, arg_type val) { vst1q_u8(ptr, val); } 2302 void operator()(arg_type& a, arg_type& b) const 2303 { 2304 arg_type t = a; 2305 a = vminq_u8(a, b); 2306 b = vmaxq_u8(b, t); 2307 } 2308 }; 2309 2310 2311 struct MinMaxVec16u 2312 { 2313 typedef ushort value_type; 2314 typedef uint16x8_t arg_type; 2315 enum { SIZE = 8 }; 2316 arg_type load(const ushort* ptr) { return vld1q_u16(ptr); } 2317 void store(ushort* ptr, arg_type val) { vst1q_u16(ptr, val); } 2318 void operator()(arg_type& a, arg_type& b) const 2319 { 2320 arg_type t = a; 2321 a = vminq_u16(a, b); 2322 b = vmaxq_u16(b, t); 2323 } 2324 }; 2325 2326 2327 struct MinMaxVec16s 2328 { 2329 typedef short value_type; 2330 typedef int16x8_t arg_type; 2331 enum { SIZE = 8 }; 2332 arg_type load(const short* ptr) { return vld1q_s16(ptr); } 2333 void store(short* ptr, arg_type val) { vst1q_s16(ptr, val); } 2334 void operator()(arg_type& a, arg_type& b) const 2335 { 2336 arg_type t = a; 2337 a = vminq_s16(a, b); 2338 b = vmaxq_s16(b, t); 2339 } 2340 }; 2341 2342 2343 struct MinMaxVec32f 2344 { 2345 typedef float value_type; 2346 typedef float32x4_t arg_type; 2347 enum { SIZE = 4 }; 2348 arg_type load(const float* ptr) { return vld1q_f32(ptr); } 2349 void store(float* ptr, arg_type val) { vst1q_f32(ptr, val); } 2350 void operator()(arg_type& a, arg_type& b) const 2351 { 2352 arg_type t = a; 2353 a = vminq_f32(a, b); 2354 b = vmaxq_f32(b, t); 2355 } 2356 }; 2357 2358 2359 #else 2360 2361 typedef MinMax8u MinMaxVec8u; 2362 typedef MinMax16u MinMaxVec16u; 2363 typedef MinMax16s MinMaxVec16s; 2364 typedef MinMax32f MinMaxVec32f; 2365 2366 #endif 2367 2368 template<class Op, class VecOp> 2369 static void 2370 medianBlur_SortNet( const Mat& _src, Mat& _dst, int m ) 2371 { 2372 typedef typename Op::value_type T; 2373 typedef typename Op::arg_type WT; 2374 typedef typename VecOp::arg_type VT; 2375 2376 const T* src = _src.ptr<T>(); 2377 T* dst = _dst.ptr<T>(); 2378 int sstep = (int)(_src.step/sizeof(T)); 2379 int dstep = (int)(_dst.step/sizeof(T)); 2380 Size size = _dst.size(); 2381 int i, j, k, cn = _src.channels(); 2382 Op op; 2383 VecOp vop; 2384 volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2) || checkHardwareSupport(CV_CPU_NEON); 2385 2386 if( m == 3 ) 2387 { 2388 if( size.width == 1 || size.height == 1 ) 2389 { 2390 int len = size.width + size.height - 1; 2391 int sdelta = size.height == 1 ? cn : sstep; 2392 int sdelta0 = size.height == 1 ? 0 : sstep - cn; 2393 int ddelta = size.height == 1 ? cn : dstep; 2394 2395 for( i = 0; i < len; i++, src += sdelta0, dst += ddelta ) 2396 for( j = 0; j < cn; j++, src++ ) 2397 { 2398 WT p0 = src[i > 0 ? -sdelta : 0]; 2399 WT p1 = src[0]; 2400 WT p2 = src[i < len - 1 ? sdelta : 0]; 2401 2402 op(p0, p1); op(p1, p2); op(p0, p1); 2403 dst[j] = (T)p1; 2404 } 2405 return; 2406 } 2407 2408 size.width *= cn; 2409 for( i = 0; i < size.height; i++, dst += dstep ) 2410 { 2411 const T* row0 = src + std::max(i - 1, 0)*sstep; 2412 const T* row1 = src + i*sstep; 2413 const T* row2 = src + std::min(i + 1, size.height-1)*sstep; 2414 int limit = useSIMD ? cn : size.width; 2415 2416 for(j = 0;; ) 2417 { 2418 for( ; j < limit; j++ ) 2419 { 2420 int j0 = j >= cn ? j - cn : j; 2421 int j2 = j < size.width - cn ? j + cn : j; 2422 WT p0 = row0[j0], p1 = row0[j], p2 = row0[j2]; 2423 WT p3 = row1[j0], p4 = row1[j], p5 = row1[j2]; 2424 WT p6 = row2[j0], p7 = row2[j], p8 = row2[j2]; 2425 2426 op(p1, p2); op(p4, p5); op(p7, p8); op(p0, p1); 2427 op(p3, p4); op(p6, p7); op(p1, p2); op(p4, p5); 2428 op(p7, p8); op(p0, p3); op(p5, p8); op(p4, p7); 2429 op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7); 2430 op(p4, p2); op(p6, p4); op(p4, p2); 2431 dst[j] = (T)p4; 2432 } 2433 2434 if( limit == size.width ) 2435 break; 2436 2437 for( ; j <= size.width - VecOp::SIZE - cn; j += VecOp::SIZE ) 2438 { 2439 VT p0 = vop.load(row0+j-cn), p1 = vop.load(row0+j), p2 = vop.load(row0+j+cn); 2440 VT p3 = vop.load(row1+j-cn), p4 = vop.load(row1+j), p5 = vop.load(row1+j+cn); 2441 VT p6 = vop.load(row2+j-cn), p7 = vop.load(row2+j), p8 = vop.load(row2+j+cn); 2442 2443 vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p1); 2444 vop(p3, p4); vop(p6, p7); vop(p1, p2); vop(p4, p5); 2445 vop(p7, p8); vop(p0, p3); vop(p5, p8); vop(p4, p7); 2446 vop(p3, p6); vop(p1, p4); vop(p2, p5); vop(p4, p7); 2447 vop(p4, p2); vop(p6, p4); vop(p4, p2); 2448 vop.store(dst+j, p4); 2449 } 2450 2451 limit = size.width; 2452 } 2453 } 2454 } 2455 else if( m == 5 ) 2456 { 2457 if( size.width == 1 || size.height == 1 ) 2458 { 2459 int len = size.width + size.height - 1; 2460 int sdelta = size.height == 1 ? cn : sstep; 2461 int sdelta0 = size.height == 1 ? 0 : sstep - cn; 2462 int ddelta = size.height == 1 ? cn : dstep; 2463 2464 for( i = 0; i < len; i++, src += sdelta0, dst += ddelta ) 2465 for( j = 0; j < cn; j++, src++ ) 2466 { 2467 int i1 = i > 0 ? -sdelta : 0; 2468 int i0 = i > 1 ? -sdelta*2 : i1; 2469 int i3 = i < len-1 ? sdelta : 0; 2470 int i4 = i < len-2 ? sdelta*2 : i3; 2471 WT p0 = src[i0], p1 = src[i1], p2 = src[0], p3 = src[i3], p4 = src[i4]; 2472 2473 op(p0, p1); op(p3, p4); op(p2, p3); op(p3, p4); op(p0, p2); 2474 op(p2, p4); op(p1, p3); op(p1, p2); 2475 dst[j] = (T)p2; 2476 } 2477 return; 2478 } 2479 2480 size.width *= cn; 2481 for( i = 0; i < size.height; i++, dst += dstep ) 2482 { 2483 const T* row[5]; 2484 row[0] = src + std::max(i - 2, 0)*sstep; 2485 row[1] = src + std::max(i - 1, 0)*sstep; 2486 row[2] = src + i*sstep; 2487 row[3] = src + std::min(i + 1, size.height-1)*sstep; 2488 row[4] = src + std::min(i + 2, size.height-1)*sstep; 2489 int limit = useSIMD ? cn*2 : size.width; 2490 2491 for(j = 0;; ) 2492 { 2493 for( ; j < limit; j++ ) 2494 { 2495 WT p[25]; 2496 int j1 = j >= cn ? j - cn : j; 2497 int j0 = j >= cn*2 ? j - cn*2 : j1; 2498 int j3 = j < size.width - cn ? j + cn : j; 2499 int j4 = j < size.width - cn*2 ? j + cn*2 : j3; 2500 for( k = 0; k < 5; k++ ) 2501 { 2502 const T* rowk = row[k]; 2503 p[k*5] = rowk[j0]; p[k*5+1] = rowk[j1]; 2504 p[k*5+2] = rowk[j]; p[k*5+3] = rowk[j3]; 2505 p[k*5+4] = rowk[j4]; 2506 } 2507 2508 op(p[1], p[2]); op(p[0], p[1]); op(p[1], p[2]); op(p[4], p[5]); op(p[3], p[4]); 2509 op(p[4], p[5]); op(p[0], p[3]); op(p[2], p[5]); op(p[2], p[3]); op(p[1], p[4]); 2510 op(p[1], p[2]); op(p[3], p[4]); op(p[7], p[8]); op(p[6], p[7]); op(p[7], p[8]); 2511 op(p[10], p[11]); op(p[9], p[10]); op(p[10], p[11]); op(p[6], p[9]); op(p[8], p[11]); 2512 op(p[8], p[9]); op(p[7], p[10]); op(p[7], p[8]); op(p[9], p[10]); op(p[0], p[6]); 2513 op(p[4], p[10]); op(p[4], p[6]); op(p[2], p[8]); op(p[2], p[4]); op(p[6], p[8]); 2514 op(p[1], p[7]); op(p[5], p[11]); op(p[5], p[7]); op(p[3], p[9]); op(p[3], p[5]); 2515 op(p[7], p[9]); op(p[1], p[2]); op(p[3], p[4]); op(p[5], p[6]); op(p[7], p[8]); 2516 op(p[9], p[10]); op(p[13], p[14]); op(p[12], p[13]); op(p[13], p[14]); op(p[16], p[17]); 2517 op(p[15], p[16]); op(p[16], p[17]); op(p[12], p[15]); op(p[14], p[17]); op(p[14], p[15]); 2518 op(p[13], p[16]); op(p[13], p[14]); op(p[15], p[16]); op(p[19], p[20]); op(p[18], p[19]); 2519 op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[21], p[23]); op(p[22], p[24]); 2520 op(p[22], p[23]); op(p[18], p[21]); op(p[20], p[23]); op(p[20], p[21]); op(p[19], p[22]); 2521 op(p[22], p[24]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[12], p[18]); 2522 op(p[16], p[22]); op(p[16], p[18]); op(p[14], p[20]); op(p[20], p[24]); op(p[14], p[16]); 2523 op(p[18], p[20]); op(p[22], p[24]); op(p[13], p[19]); op(p[17], p[23]); op(p[17], p[19]); 2524 op(p[15], p[21]); op(p[15], p[17]); op(p[19], p[21]); op(p[13], p[14]); op(p[15], p[16]); 2525 op(p[17], p[18]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[0], p[12]); 2526 op(p[8], p[20]); op(p[8], p[12]); op(p[4], p[16]); op(p[16], p[24]); op(p[12], p[16]); 2527 op(p[2], p[14]); op(p[10], p[22]); op(p[10], p[14]); op(p[6], p[18]); op(p[6], p[10]); 2528 op(p[10], p[12]); op(p[1], p[13]); op(p[9], p[21]); op(p[9], p[13]); op(p[5], p[17]); 2529 op(p[13], p[17]); op(p[3], p[15]); op(p[11], p[23]); op(p[11], p[15]); op(p[7], p[19]); 2530 op(p[7], p[11]); op(p[11], p[13]); op(p[11], p[12]); 2531 dst[j] = (T)p[12]; 2532 } 2533 2534 if( limit == size.width ) 2535 break; 2536 2537 for( ; j <= size.width - VecOp::SIZE - cn*2; j += VecOp::SIZE ) 2538 { 2539 VT p[25]; 2540 for( k = 0; k < 5; k++ ) 2541 { 2542 const T* rowk = row[k]; 2543 p[k*5] = vop.load(rowk+j-cn*2); p[k*5+1] = vop.load(rowk+j-cn); 2544 p[k*5+2] = vop.load(rowk+j); p[k*5+3] = vop.load(rowk+j+cn); 2545 p[k*5+4] = vop.load(rowk+j+cn*2); 2546 } 2547 2548 vop(p[1], p[2]); vop(p[0], p[1]); vop(p[1], p[2]); vop(p[4], p[5]); vop(p[3], p[4]); 2549 vop(p[4], p[5]); vop(p[0], p[3]); vop(p[2], p[5]); vop(p[2], p[3]); vop(p[1], p[4]); 2550 vop(p[1], p[2]); vop(p[3], p[4]); vop(p[7], p[8]); vop(p[6], p[7]); vop(p[7], p[8]); 2551 vop(p[10], p[11]); vop(p[9], p[10]); vop(p[10], p[11]); vop(p[6], p[9]); vop(p[8], p[11]); 2552 vop(p[8], p[9]); vop(p[7], p[10]); vop(p[7], p[8]); vop(p[9], p[10]); vop(p[0], p[6]); 2553 vop(p[4], p[10]); vop(p[4], p[6]); vop(p[2], p[8]); vop(p[2], p[4]); vop(p[6], p[8]); 2554 vop(p[1], p[7]); vop(p[5], p[11]); vop(p[5], p[7]); vop(p[3], p[9]); vop(p[3], p[5]); 2555 vop(p[7], p[9]); vop(p[1], p[2]); vop(p[3], p[4]); vop(p[5], p[6]); vop(p[7], p[8]); 2556 vop(p[9], p[10]); vop(p[13], p[14]); vop(p[12], p[13]); vop(p[13], p[14]); vop(p[16], p[17]); 2557 vop(p[15], p[16]); vop(p[16], p[17]); vop(p[12], p[15]); vop(p[14], p[17]); vop(p[14], p[15]); 2558 vop(p[13], p[16]); vop(p[13], p[14]); vop(p[15], p[16]); vop(p[19], p[20]); vop(p[18], p[19]); 2559 vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[21], p[23]); vop(p[22], p[24]); 2560 vop(p[22], p[23]); vop(p[18], p[21]); vop(p[20], p[23]); vop(p[20], p[21]); vop(p[19], p[22]); 2561 vop(p[22], p[24]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[12], p[18]); 2562 vop(p[16], p[22]); vop(p[16], p[18]); vop(p[14], p[20]); vop(p[20], p[24]); vop(p[14], p[16]); 2563 vop(p[18], p[20]); vop(p[22], p[24]); vop(p[13], p[19]); vop(p[17], p[23]); vop(p[17], p[19]); 2564 vop(p[15], p[21]); vop(p[15], p[17]); vop(p[19], p[21]); vop(p[13], p[14]); vop(p[15], p[16]); 2565 vop(p[17], p[18]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[0], p[12]); 2566 vop(p[8], p[20]); vop(p[8], p[12]); vop(p[4], p[16]); vop(p[16], p[24]); vop(p[12], p[16]); 2567 vop(p[2], p[14]); vop(p[10], p[22]); vop(p[10], p[14]); vop(p[6], p[18]); vop(p[6], p[10]); 2568 vop(p[10], p[12]); vop(p[1], p[13]); vop(p[9], p[21]); vop(p[9], p[13]); vop(p[5], p[17]); 2569 vop(p[13], p[17]); vop(p[3], p[15]); vop(p[11], p[23]); vop(p[11], p[15]); vop(p[7], p[19]); 2570 vop(p[7], p[11]); vop(p[11], p[13]); vop(p[11], p[12]); 2571 vop.store(dst+j, p[12]); 2572 } 2573 2574 limit = size.width; 2575 } 2576 } 2577 } 2578 } 2579 2580 #ifdef HAVE_OPENCL 2581 2582 static bool ocl_medianFilter(InputArray _src, OutputArray _dst, int m) 2583 { 2584 size_t localsize[2] = { 16, 16 }; 2585 size_t globalsize[2]; 2586 int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); 2587 2588 if ( !((depth == CV_8U || depth == CV_16U || depth == CV_16S || depth == CV_32F) && cn <= 4 && (m == 3 || m == 5)) ) 2589 return false; 2590 2591 Size imgSize = _src.size(); 2592 bool useOptimized = (1 == cn) && 2593 (size_t)imgSize.width >= localsize[0] * 8 && 2594 (size_t)imgSize.height >= localsize[1] * 8 && 2595 imgSize.width % 4 == 0 && 2596 imgSize.height % 4 == 0 && 2597 (ocl::Device::getDefault().isIntel()); 2598 2599 cv::String kname = format( useOptimized ? "medianFilter%d_u" : "medianFilter%d", m) ; 2600 cv::String kdefs = useOptimized ? 2601 format("-D T=%s -D T1=%s -D T4=%s%d -D cn=%d -D USE_4OPT", ocl::typeToStr(type), 2602 ocl::typeToStr(depth), ocl::typeToStr(depth), cn*4, cn) 2603 : 2604 format("-D T=%s -D T1=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn) ; 2605 2606 ocl::Kernel k(kname.c_str(), ocl::imgproc::medianFilter_oclsrc, kdefs.c_str() ); 2607 2608 if (k.empty()) 2609 return false; 2610 2611 UMat src = _src.getUMat(); 2612 _dst.create(src.size(), type); 2613 UMat dst = _dst.getUMat(); 2614 2615 k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst)); 2616 2617 if( useOptimized ) 2618 { 2619 globalsize[0] = DIVUP(src.cols / 4, localsize[0]) * localsize[0]; 2620 globalsize[1] = DIVUP(src.rows / 4, localsize[1]) * localsize[1]; 2621 } 2622 else 2623 { 2624 globalsize[0] = (src.cols + localsize[0] + 2) / localsize[0] * localsize[0]; 2625 globalsize[1] = (src.rows + localsize[1] - 1) / localsize[1] * localsize[1]; 2626 } 2627 2628 return k.run(2, globalsize, localsize, false); 2629 } 2630 2631 #endif 2632 2633 } 2634 2635 void cv::medianBlur( InputArray _src0, OutputArray _dst, int ksize ) 2636 { 2637 CV_Assert( (ksize % 2 == 1) && (_src0.dims() <= 2 )); 2638 2639 if( ksize <= 1 ) 2640 { 2641 _src0.copyTo(_dst); 2642 return; 2643 } 2644 2645 CV_OCL_RUN(_dst.isUMat(), 2646 ocl_medianFilter(_src0,_dst, ksize)) 2647 2648 Mat src0 = _src0.getMat(); 2649 _dst.create( src0.size(), src0.type() ); 2650 Mat dst = _dst.getMat(); 2651 2652 #if IPP_VERSION_X100 >= 801 2653 CV_IPP_CHECK() 2654 { 2655 #define IPP_FILTER_MEDIAN_BORDER(ippType, ippDataType, flavor) \ 2656 do \ 2657 { \ 2658 if (ippiFilterMedianBorderGetBufferSize(dstRoiSize, maskSize, \ 2659 ippDataType, CV_MAT_CN(type), &bufSize) >= 0) \ 2660 { \ 2661 Ipp8u * buffer = ippsMalloc_8u(bufSize); \ 2662 IppStatus status = ippiFilterMedianBorder_##flavor(src.ptr<ippType>(), (int)src.step, \ 2663 dst.ptr<ippType>(), (int)dst.step, dstRoiSize, maskSize, \ 2664 ippBorderRepl, (ippType)0, buffer); \ 2665 ippsFree(buffer); \ 2666 if (status >= 0) \ 2667 { \ 2668 CV_IMPL_ADD(CV_IMPL_IPP); \ 2669 return; \ 2670 } \ 2671 } \ 2672 setIppErrorStatus(); \ 2673 } \ 2674 while ((void)0, 0) 2675 2676 if( ksize <= 5 ) 2677 { 2678 Ipp32s bufSize; 2679 IppiSize dstRoiSize = ippiSize(dst.cols, dst.rows), maskSize = ippiSize(ksize, ksize); 2680 Mat src; 2681 if( dst.data != src0.data ) 2682 src = src0; 2683 else 2684 src0.copyTo(src); 2685 2686 int type = src0.type(); 2687 if (type == CV_8UC1) 2688 IPP_FILTER_MEDIAN_BORDER(Ipp8u, ipp8u, 8u_C1R); 2689 else if (type == CV_16UC1) 2690 IPP_FILTER_MEDIAN_BORDER(Ipp16u, ipp16u, 16u_C1R); 2691 else if (type == CV_16SC1) 2692 IPP_FILTER_MEDIAN_BORDER(Ipp16s, ipp16s, 16s_C1R); 2693 else if (type == CV_32FC1) 2694 IPP_FILTER_MEDIAN_BORDER(Ipp32f, ipp32f, 32f_C1R); 2695 } 2696 #undef IPP_FILTER_MEDIAN_BORDER 2697 } 2698 #endif 2699 2700 #ifdef HAVE_TEGRA_OPTIMIZATION 2701 if (tegra::useTegra() && tegra::medianBlur(src0, dst, ksize)) 2702 return; 2703 #endif 2704 2705 bool useSortNet = ksize == 3 || (ksize == 5 2706 #if !(CV_SSE2 || CV_NEON) 2707 && src0.depth() > CV_8U 2708 #endif 2709 ); 2710 2711 Mat src; 2712 if( useSortNet ) 2713 { 2714 if( dst.data != src0.data ) 2715 src = src0; 2716 else 2717 src0.copyTo(src); 2718 2719 if( src.depth() == CV_8U ) 2720 medianBlur_SortNet<MinMax8u, MinMaxVec8u>( src, dst, ksize ); 2721 else if( src.depth() == CV_16U ) 2722 medianBlur_SortNet<MinMax16u, MinMaxVec16u>( src, dst, ksize ); 2723 else if( src.depth() == CV_16S ) 2724 medianBlur_SortNet<MinMax16s, MinMaxVec16s>( src, dst, ksize ); 2725 else if( src.depth() == CV_32F ) 2726 medianBlur_SortNet<MinMax32f, MinMaxVec32f>( src, dst, ksize ); 2727 else 2728 CV_Error(CV_StsUnsupportedFormat, ""); 2729 2730 return; 2731 } 2732 else 2733 { 2734 cv::copyMakeBorder( src0, src, 0, 0, ksize/2, ksize/2, BORDER_REPLICATE ); 2735 2736 int cn = src0.channels(); 2737 CV_Assert( src.depth() == CV_8U && (cn == 1 || cn == 3 || cn == 4) ); 2738 2739 double img_size_mp = (double)(src0.total())/(1 << 20); 2740 if( ksize <= 3 + (img_size_mp < 1 ? 12 : img_size_mp < 4 ? 6 : 2)* 2741 (MEDIAN_HAVE_SIMD && (checkHardwareSupport(CV_CPU_SSE2) || checkHardwareSupport(CV_CPU_NEON)) ? 1 : 3)) 2742 medianBlur_8u_Om( src, dst, ksize ); 2743 else 2744 medianBlur_8u_O1( src, dst, ksize ); 2745 } 2746 } 2747 2748 /****************************************************************************************\ 2749 Bilateral Filtering 2750 \****************************************************************************************/ 2751 2752 namespace cv 2753 { 2754 2755 class BilateralFilter_8u_Invoker : 2756 public ParallelLoopBody 2757 { 2758 public: 2759 BilateralFilter_8u_Invoker(Mat& _dest, const Mat& _temp, int _radius, int _maxk, 2760 int* _space_ofs, float *_space_weight, float *_color_weight) : 2761 temp(&_temp), dest(&_dest), radius(_radius), 2762 maxk(_maxk), space_ofs(_space_ofs), space_weight(_space_weight), color_weight(_color_weight) 2763 { 2764 } 2765 2766 virtual void operator() (const Range& range) const 2767 { 2768 int i, j, cn = dest->channels(), k; 2769 Size size = dest->size(); 2770 #if CV_SSE3 2771 int CV_DECL_ALIGNED(16) buf[4]; 2772 float CV_DECL_ALIGNED(16) bufSum[4]; 2773 static const unsigned int CV_DECL_ALIGNED(16) bufSignMask[] = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; 2774 bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3); 2775 #endif 2776 2777 for( i = range.start; i < range.end; i++ ) 2778 { 2779 const uchar* sptr = temp->ptr(i+radius) + radius*cn; 2780 uchar* dptr = dest->ptr(i); 2781 2782 if( cn == 1 ) 2783 { 2784 for( j = 0; j < size.width; j++ ) 2785 { 2786 float sum = 0, wsum = 0; 2787 int val0 = sptr[j]; 2788 k = 0; 2789 #if CV_SSE3 2790 if( haveSSE3 ) 2791 { 2792 __m128 _val0 = _mm_set1_ps(static_cast<float>(val0)); 2793 const __m128 _signMask = _mm_load_ps((const float*)bufSignMask); 2794 2795 for( ; k <= maxk - 4; k += 4 ) 2796 { 2797 __m128 _valF = _mm_set_ps(sptr[j + space_ofs[k+3]], sptr[j + space_ofs[k+2]], 2798 sptr[j + space_ofs[k+1]], sptr[j + space_ofs[k]]); 2799 2800 __m128 _val = _mm_andnot_ps(_signMask, _mm_sub_ps(_valF, _val0)); 2801 _mm_store_si128((__m128i*)buf, _mm_cvtps_epi32(_val)); 2802 2803 __m128 _cw = _mm_set_ps(color_weight[buf[3]],color_weight[buf[2]], 2804 color_weight[buf[1]],color_weight[buf[0]]); 2805 __m128 _sw = _mm_loadu_ps(space_weight+k); 2806 __m128 _w = _mm_mul_ps(_cw, _sw); 2807 _cw = _mm_mul_ps(_w, _valF); 2808 2809 _sw = _mm_hadd_ps(_w, _cw); 2810 _sw = _mm_hadd_ps(_sw, _sw); 2811 _mm_storel_pi((__m64*)bufSum, _sw); 2812 2813 sum += bufSum[1]; 2814 wsum += bufSum[0]; 2815 } 2816 } 2817 #endif 2818 for( ; k < maxk; k++ ) 2819 { 2820 int val = sptr[j + space_ofs[k]]; 2821 float w = space_weight[k]*color_weight[std::abs(val - val0)]; 2822 sum += val*w; 2823 wsum += w; 2824 } 2825 // overflow is not possible here => there is no need to use cv::saturate_cast 2826 dptr[j] = (uchar)cvRound(sum/wsum); 2827 } 2828 } 2829 else 2830 { 2831 assert( cn == 3 ); 2832 for( j = 0; j < size.width*3; j += 3 ) 2833 { 2834 float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0; 2835 int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2]; 2836 k = 0; 2837 #if CV_SSE3 2838 if( haveSSE3 ) 2839 { 2840 const __m128i izero = _mm_setzero_si128(); 2841 const __m128 _b0 = _mm_set1_ps(static_cast<float>(b0)); 2842 const __m128 _g0 = _mm_set1_ps(static_cast<float>(g0)); 2843 const __m128 _r0 = _mm_set1_ps(static_cast<float>(r0)); 2844 const __m128 _signMask = _mm_load_ps((const float*)bufSignMask); 2845 2846 for( ; k <= maxk - 4; k += 4 ) 2847 { 2848 const int* const sptr_k0 = reinterpret_cast<const int*>(sptr + j + space_ofs[k]); 2849 const int* const sptr_k1 = reinterpret_cast<const int*>(sptr + j + space_ofs[k+1]); 2850 const int* const sptr_k2 = reinterpret_cast<const int*>(sptr + j + space_ofs[k+2]); 2851 const int* const sptr_k3 = reinterpret_cast<const int*>(sptr + j + space_ofs[k+3]); 2852 2853 __m128 _b = _mm_cvtepi32_ps(_mm_unpacklo_epi16(_mm_unpacklo_epi8(_mm_cvtsi32_si128(sptr_k0[0]), izero), izero)); 2854 __m128 _g = _mm_cvtepi32_ps(_mm_unpacklo_epi16(_mm_unpacklo_epi8(_mm_cvtsi32_si128(sptr_k1[0]), izero), izero)); 2855 __m128 _r = _mm_cvtepi32_ps(_mm_unpacklo_epi16(_mm_unpacklo_epi8(_mm_cvtsi32_si128(sptr_k2[0]), izero), izero)); 2856 __m128 _z = _mm_cvtepi32_ps(_mm_unpacklo_epi16(_mm_unpacklo_epi8(_mm_cvtsi32_si128(sptr_k3[0]), izero), izero)); 2857 2858 _MM_TRANSPOSE4_PS(_b, _g, _r, _z); 2859 2860 __m128 bt = _mm_andnot_ps(_signMask, _mm_sub_ps(_b,_b0)); 2861 __m128 gt = _mm_andnot_ps(_signMask, _mm_sub_ps(_g,_g0)); 2862 __m128 rt = _mm_andnot_ps(_signMask, _mm_sub_ps(_r,_r0)); 2863 2864 bt =_mm_add_ps(rt, _mm_add_ps(bt, gt)); 2865 _mm_store_si128((__m128i*)buf, _mm_cvtps_epi32(bt)); 2866 2867 __m128 _w = _mm_set_ps(color_weight[buf[3]],color_weight[buf[2]], 2868 color_weight[buf[1]],color_weight[buf[0]]); 2869 __m128 _sw = _mm_loadu_ps(space_weight+k); 2870 2871 _w = _mm_mul_ps(_w,_sw); 2872 _b = _mm_mul_ps(_b, _w); 2873 _g = _mm_mul_ps(_g, _w); 2874 _r = _mm_mul_ps(_r, _w); 2875 2876 _w = _mm_hadd_ps(_w, _b); 2877 _g = _mm_hadd_ps(_g, _r); 2878 2879 _w = _mm_hadd_ps(_w, _g); 2880 _mm_store_ps(bufSum, _w); 2881 2882 wsum += bufSum[0]; 2883 sum_b += bufSum[1]; 2884 sum_g += bufSum[2]; 2885 sum_r += bufSum[3]; 2886 } 2887 } 2888 #endif 2889 2890 for( ; k < maxk; k++ ) 2891 { 2892 const uchar* sptr_k = sptr + j + space_ofs[k]; 2893 int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2]; 2894 float w = space_weight[k]*color_weight[std::abs(b - b0) + 2895 std::abs(g - g0) + std::abs(r - r0)]; 2896 sum_b += b*w; sum_g += g*w; sum_r += r*w; 2897 wsum += w; 2898 } 2899 wsum = 1.f/wsum; 2900 b0 = cvRound(sum_b*wsum); 2901 g0 = cvRound(sum_g*wsum); 2902 r0 = cvRound(sum_r*wsum); 2903 dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0; 2904 } 2905 } 2906 } 2907 } 2908 2909 private: 2910 const Mat *temp; 2911 Mat *dest; 2912 int radius, maxk, *space_ofs; 2913 float *space_weight, *color_weight; 2914 }; 2915 2916 #if defined (HAVE_IPP) && !defined(HAVE_IPP_ICV_ONLY) && 0 2917 class IPPBilateralFilter_8u_Invoker : 2918 public ParallelLoopBody 2919 { 2920 public: 2921 IPPBilateralFilter_8u_Invoker(Mat &_src, Mat &_dst, double _sigma_color, double _sigma_space, int _radius, bool *_ok) : 2922 ParallelLoopBody(), src(_src), dst(_dst), sigma_color(_sigma_color), sigma_space(_sigma_space), radius(_radius), ok(_ok) 2923 { 2924 *ok = true; 2925 } 2926 2927 virtual void operator() (const Range& range) const 2928 { 2929 int d = radius * 2 + 1; 2930 IppiSize kernel = {d, d}; 2931 IppiSize roi={dst.cols, range.end - range.start}; 2932 int bufsize=0; 2933 if (0 > ippiFilterBilateralGetBufSize_8u_C1R( ippiFilterBilateralGauss, roi, kernel, &bufsize)) 2934 { 2935 *ok = false; 2936 return; 2937 } 2938 AutoBuffer<uchar> buf(bufsize); 2939 IppiFilterBilateralSpec *pSpec = (IppiFilterBilateralSpec *)alignPtr(&buf[0], 32); 2940 if (0 > ippiFilterBilateralInit_8u_C1R( ippiFilterBilateralGauss, kernel, (Ipp32f)sigma_color, (Ipp32f)sigma_space, 1, pSpec )) 2941 { 2942 *ok = false; 2943 return; 2944 } 2945 if (0 > ippiFilterBilateral_8u_C1R( src.ptr<uchar>(range.start) + radius * ((int)src.step[0] + 1), (int)src.step[0], dst.ptr<uchar>(range.start), (int)dst.step[0], roi, kernel, pSpec )) 2946 *ok = false; 2947 else 2948 { 2949 CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT); 2950 } 2951 } 2952 private: 2953 Mat &src; 2954 Mat &dst; 2955 double sigma_color; 2956 double sigma_space; 2957 int radius; 2958 bool *ok; 2959 const IPPBilateralFilter_8u_Invoker& operator= (const IPPBilateralFilter_8u_Invoker&); 2960 }; 2961 #endif 2962 2963 #ifdef HAVE_OPENCL 2964 2965 static bool ocl_bilateralFilter_8u(InputArray _src, OutputArray _dst, int d, 2966 double sigma_color, double sigma_space, 2967 int borderType) 2968 { 2969 #ifdef ANDROID 2970 if (ocl::Device::getDefault().isNVidia()) 2971 return false; 2972 #endif 2973 2974 int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); 2975 int i, j, maxk, radius; 2976 2977 if (depth != CV_8U || cn > 4) 2978 return false; 2979 2980 if (sigma_color <= 0) 2981 sigma_color = 1; 2982 if (sigma_space <= 0) 2983 sigma_space = 1; 2984 2985 double gauss_color_coeff = -0.5 / (sigma_color * sigma_color); 2986 double gauss_space_coeff = -0.5 / (sigma_space * sigma_space); 2987 2988 if ( d <= 0 ) 2989 radius = cvRound(sigma_space * 1.5); 2990 else 2991 radius = d / 2; 2992 radius = MAX(radius, 1); 2993 d = radius * 2 + 1; 2994 2995 UMat src = _src.getUMat(), dst = _dst.getUMat(), temp; 2996 if (src.u == dst.u) 2997 return false; 2998 2999 copyMakeBorder(src, temp, radius, radius, radius, radius, borderType); 3000 std::vector<float> _space_weight(d * d); 3001 std::vector<int> _space_ofs(d * d); 3002 float * const space_weight = &_space_weight[0]; 3003 int * const space_ofs = &_space_ofs[0]; 3004 3005 // initialize space-related bilateral filter coefficients 3006 for( i = -radius, maxk = 0; i <= radius; i++ ) 3007 for( j = -radius; j <= radius; j++ ) 3008 { 3009 double r = std::sqrt((double)i * i + (double)j * j); 3010 if ( r > radius ) 3011 continue; 3012 space_weight[maxk] = (float)std::exp(r * r * gauss_space_coeff); 3013 space_ofs[maxk++] = (int)(i * temp.step + j * cn); 3014 } 3015 3016 char cvt[3][40]; 3017 String cnstr = cn > 1 ? format("%d", cn) : ""; 3018 String kernelName("bilateral"); 3019 size_t sizeDiv = 1; 3020 if ((ocl::Device::getDefault().isIntel()) && 3021 (ocl::Device::getDefault().type() == ocl::Device::TYPE_GPU)) 3022 { 3023 //Intel GPU 3024 if (dst.cols % 4 == 0 && cn == 1) // For single channel x4 sized images. 3025 { 3026 kernelName = "bilateral_float4"; 3027 sizeDiv = 4; 3028 } 3029 } 3030 ocl::Kernel k(kernelName.c_str(), ocl::imgproc::bilateral_oclsrc, 3031 format("-D radius=%d -D maxk=%d -D cn=%d -D int_t=%s -D uint_t=uint%s -D convert_int_t=%s" 3032 " -D uchar_t=%s -D float_t=%s -D convert_float_t=%s -D convert_uchar_t=%s -D gauss_color_coeff=%f", 3033 radius, maxk, cn, ocl::typeToStr(CV_32SC(cn)), cnstr.c_str(), 3034 ocl::convertTypeStr(CV_8U, CV_32S, cn, cvt[0]), 3035 ocl::typeToStr(type), ocl::typeToStr(CV_32FC(cn)), 3036 ocl::convertTypeStr(CV_32S, CV_32F, cn, cvt[1]), 3037 ocl::convertTypeStr(CV_32F, CV_8U, cn, cvt[2]), gauss_color_coeff)); 3038 if (k.empty()) 3039 return false; 3040 3041 Mat mspace_weight(1, d * d, CV_32FC1, space_weight); 3042 Mat mspace_ofs(1, d * d, CV_32SC1, space_ofs); 3043 UMat ucolor_weight, uspace_weight, uspace_ofs; 3044 3045 mspace_weight.copyTo(uspace_weight); 3046 mspace_ofs.copyTo(uspace_ofs); 3047 3048 k.args(ocl::KernelArg::ReadOnlyNoSize(temp), ocl::KernelArg::WriteOnly(dst), 3049 ocl::KernelArg::PtrReadOnly(uspace_weight), 3050 ocl::KernelArg::PtrReadOnly(uspace_ofs)); 3051 3052 size_t globalsize[2] = { dst.cols / sizeDiv, dst.rows }; 3053 return k.run(2, globalsize, NULL, false); 3054 } 3055 3056 #endif 3057 static void 3058 bilateralFilter_8u( const Mat& src, Mat& dst, int d, 3059 double sigma_color, double sigma_space, 3060 int borderType ) 3061 { 3062 int cn = src.channels(); 3063 int i, j, maxk, radius; 3064 Size size = src.size(); 3065 3066 CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) && src.data != dst.data ); 3067 3068 if( sigma_color <= 0 ) 3069 sigma_color = 1; 3070 if( sigma_space <= 0 ) 3071 sigma_space = 1; 3072 3073 double gauss_color_coeff = -0.5/(sigma_color*sigma_color); 3074 double gauss_space_coeff = -0.5/(sigma_space*sigma_space); 3075 3076 if( d <= 0 ) 3077 radius = cvRound(sigma_space*1.5); 3078 else 3079 radius = d/2; 3080 radius = MAX(radius, 1); 3081 d = radius*2 + 1; 3082 3083 Mat temp; 3084 copyMakeBorder( src, temp, radius, radius, radius, radius, borderType ); 3085 3086 #if defined HAVE_IPP && (IPP_VERSION_MAJOR >= 7) && 0 3087 CV_IPP_CHECK() 3088 { 3089 if( cn == 1 ) 3090 { 3091 bool ok; 3092 IPPBilateralFilter_8u_Invoker body(temp, dst, sigma_color * sigma_color, sigma_space * sigma_space, radius, &ok ); 3093 parallel_for_(Range(0, dst.rows), body, dst.total()/(double)(1<<16)); 3094 if( ok ) 3095 { 3096 CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT); 3097 return; 3098 } 3099 setIppErrorStatus(); 3100 } 3101 } 3102 #endif 3103 3104 std::vector<float> _color_weight(cn*256); 3105 std::vector<float> _space_weight(d*d); 3106 std::vector<int> _space_ofs(d*d); 3107 float* color_weight = &_color_weight[0]; 3108 float* space_weight = &_space_weight[0]; 3109 int* space_ofs = &_space_ofs[0]; 3110 3111 // initialize color-related bilateral filter coefficients 3112 3113 for( i = 0; i < 256*cn; i++ ) 3114 color_weight[i] = (float)std::exp(i*i*gauss_color_coeff); 3115 3116 // initialize space-related bilateral filter coefficients 3117 for( i = -radius, maxk = 0; i <= radius; i++ ) 3118 { 3119 j = -radius; 3120 3121 for( ; j <= radius; j++ ) 3122 { 3123 double r = std::sqrt((double)i*i + (double)j*j); 3124 if( r > radius ) 3125 continue; 3126 space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff); 3127 space_ofs[maxk++] = (int)(i*temp.step + j*cn); 3128 } 3129 } 3130 3131 BilateralFilter_8u_Invoker body(dst, temp, radius, maxk, space_ofs, space_weight, color_weight); 3132 parallel_for_(Range(0, size.height), body, dst.total()/(double)(1<<16)); 3133 } 3134 3135 3136 class BilateralFilter_32f_Invoker : 3137 public ParallelLoopBody 3138 { 3139 public: 3140 3141 BilateralFilter_32f_Invoker(int _cn, int _radius, int _maxk, int *_space_ofs, 3142 const Mat& _temp, Mat& _dest, float _scale_index, float *_space_weight, float *_expLUT) : 3143 cn(_cn), radius(_radius), maxk(_maxk), space_ofs(_space_ofs), 3144 temp(&_temp), dest(&_dest), scale_index(_scale_index), space_weight(_space_weight), expLUT(_expLUT) 3145 { 3146 } 3147 3148 virtual void operator() (const Range& range) const 3149 { 3150 int i, j, k; 3151 Size size = dest->size(); 3152 #if CV_SSE3 3153 int CV_DECL_ALIGNED(16) idxBuf[4]; 3154 float CV_DECL_ALIGNED(16) bufSum32[4]; 3155 static const unsigned int CV_DECL_ALIGNED(16) bufSignMask[] = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; 3156 bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3); 3157 #endif 3158 3159 for( i = range.start; i < range.end; i++ ) 3160 { 3161 const float* sptr = temp->ptr<float>(i+radius) + radius*cn; 3162 float* dptr = dest->ptr<float>(i); 3163 3164 if( cn == 1 ) 3165 { 3166 for( j = 0; j < size.width; j++ ) 3167 { 3168 float sum = 0, wsum = 0; 3169 float val0 = sptr[j]; 3170 k = 0; 3171 #if CV_SSE3 3172 if( haveSSE3 ) 3173 { 3174 __m128 psum = _mm_setzero_ps(); 3175 const __m128 _val0 = _mm_set1_ps(sptr[j]); 3176 const __m128 _scale_index = _mm_set1_ps(scale_index); 3177 const __m128 _signMask = _mm_load_ps((const float*)bufSignMask); 3178 3179 for( ; k <= maxk - 4 ; k += 4 ) 3180 { 3181 __m128 _sw = _mm_loadu_ps(space_weight + k); 3182 __m128 _val = _mm_set_ps(sptr[j + space_ofs[k+3]], sptr[j + space_ofs[k+2]], 3183 sptr[j + space_ofs[k+1]], sptr[j + space_ofs[k]]); 3184 __m128 _alpha = _mm_mul_ps(_mm_andnot_ps( _signMask, _mm_sub_ps(_val,_val0)), _scale_index); 3185 3186 __m128i _idx = _mm_cvtps_epi32(_alpha); 3187 _mm_store_si128((__m128i*)idxBuf, _idx); 3188 _alpha = _mm_sub_ps(_alpha, _mm_cvtepi32_ps(_idx)); 3189 3190 __m128 _explut = _mm_set_ps(expLUT[idxBuf[3]], expLUT[idxBuf[2]], 3191 expLUT[idxBuf[1]], expLUT[idxBuf[0]]); 3192 __m128 _explut1 = _mm_set_ps(expLUT[idxBuf[3]+1], expLUT[idxBuf[2]+1], 3193 expLUT[idxBuf[1]+1], expLUT[idxBuf[0]+1]); 3194 3195 __m128 _w = _mm_mul_ps(_sw, _mm_add_ps(_explut, _mm_mul_ps(_alpha, _mm_sub_ps(_explut1, _explut)))); 3196 _val = _mm_mul_ps(_w, _val); 3197 3198 _sw = _mm_hadd_ps(_w, _val); 3199 _sw = _mm_hadd_ps(_sw, _sw); 3200 psum = _mm_add_ps(_sw, psum); 3201 } 3202 _mm_storel_pi((__m64*)bufSum32, psum); 3203 3204 sum = bufSum32[1]; 3205 wsum = bufSum32[0]; 3206 } 3207 #endif 3208 3209 for( ; k < maxk; k++ ) 3210 { 3211 float val = sptr[j + space_ofs[k]]; 3212 float alpha = (float)(std::abs(val - val0)*scale_index); 3213 int idx = cvFloor(alpha); 3214 alpha -= idx; 3215 float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx])); 3216 sum += val*w; 3217 wsum += w; 3218 } 3219 dptr[j] = (float)(sum/wsum); 3220 } 3221 } 3222 else 3223 { 3224 CV_Assert( cn == 3 ); 3225 for( j = 0; j < size.width*3; j += 3 ) 3226 { 3227 float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0; 3228 float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2]; 3229 k = 0; 3230 #if CV_SSE3 3231 if( haveSSE3 ) 3232 { 3233 __m128 sum = _mm_setzero_ps(); 3234 const __m128 _b0 = _mm_set1_ps(b0); 3235 const __m128 _g0 = _mm_set1_ps(g0); 3236 const __m128 _r0 = _mm_set1_ps(r0); 3237 const __m128 _scale_index = _mm_set1_ps(scale_index); 3238 const __m128 _signMask = _mm_load_ps((const float*)bufSignMask); 3239 3240 for( ; k <= maxk-4; k += 4 ) 3241 { 3242 __m128 _sw = _mm_loadu_ps(space_weight + k); 3243 3244 const float* const sptr_k0 = sptr + j + space_ofs[k]; 3245 const float* const sptr_k1 = sptr + j + space_ofs[k+1]; 3246 const float* const sptr_k2 = sptr + j + space_ofs[k+2]; 3247 const float* const sptr_k3 = sptr + j + space_ofs[k+3]; 3248 3249 __m128 _b = _mm_loadu_ps(sptr_k0); 3250 __m128 _g = _mm_loadu_ps(sptr_k1); 3251 __m128 _r = _mm_loadu_ps(sptr_k2); 3252 __m128 _z = _mm_loadu_ps(sptr_k3); 3253 _MM_TRANSPOSE4_PS(_b, _g, _r, _z); 3254 3255 __m128 _bt = _mm_andnot_ps(_signMask,_mm_sub_ps(_b,_b0)); 3256 __m128 _gt = _mm_andnot_ps(_signMask,_mm_sub_ps(_g,_g0)); 3257 __m128 _rt = _mm_andnot_ps(_signMask,_mm_sub_ps(_r,_r0)); 3258 3259 __m128 _alpha = _mm_mul_ps(_scale_index, _mm_add_ps(_rt,_mm_add_ps(_bt, _gt))); 3260 3261 __m128i _idx = _mm_cvtps_epi32(_alpha); 3262 _mm_store_si128((__m128i*)idxBuf, _idx); 3263 _alpha = _mm_sub_ps(_alpha, _mm_cvtepi32_ps(_idx)); 3264 3265 __m128 _explut = _mm_set_ps(expLUT[idxBuf[3]], expLUT[idxBuf[2]], expLUT[idxBuf[1]], expLUT[idxBuf[0]]); 3266 __m128 _explut1 = _mm_set_ps(expLUT[idxBuf[3]+1], expLUT[idxBuf[2]+1], expLUT[idxBuf[1]+1], expLUT[idxBuf[0]+1]); 3267 3268 __m128 _w = _mm_mul_ps(_sw, _mm_add_ps(_explut, _mm_mul_ps(_alpha, _mm_sub_ps(_explut1, _explut)))); 3269 3270 _b = _mm_mul_ps(_b, _w); 3271 _g = _mm_mul_ps(_g, _w); 3272 _r = _mm_mul_ps(_r, _w); 3273 3274 _w = _mm_hadd_ps(_w, _b); 3275 _g = _mm_hadd_ps(_g, _r); 3276 3277 _w = _mm_hadd_ps(_w, _g); 3278 sum = _mm_add_ps(sum, _w); 3279 } 3280 _mm_store_ps(bufSum32, sum); 3281 wsum = bufSum32[0]; 3282 sum_b = bufSum32[1]; 3283 sum_g = bufSum32[2]; 3284 sum_r = bufSum32[3]; 3285 } 3286 #endif 3287 3288 for(; k < maxk; k++ ) 3289 { 3290 const float* sptr_k = sptr + j + space_ofs[k]; 3291 float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2]; 3292 float alpha = (float)((std::abs(b - b0) + 3293 std::abs(g - g0) + std::abs(r - r0))*scale_index); 3294 int idx = cvFloor(alpha); 3295 alpha -= idx; 3296 float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx])); 3297 sum_b += b*w; sum_g += g*w; sum_r += r*w; 3298 wsum += w; 3299 } 3300 wsum = 1.f/wsum; 3301 b0 = sum_b*wsum; 3302 g0 = sum_g*wsum; 3303 r0 = sum_r*wsum; 3304 dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0; 3305 } 3306 } 3307 } 3308 } 3309 3310 private: 3311 int cn, radius, maxk, *space_ofs; 3312 const Mat* temp; 3313 Mat *dest; 3314 float scale_index, *space_weight, *expLUT; 3315 }; 3316 3317 3318 static void 3319 bilateralFilter_32f( const Mat& src, Mat& dst, int d, 3320 double sigma_color, double sigma_space, 3321 int borderType ) 3322 { 3323 int cn = src.channels(); 3324 int i, j, maxk, radius; 3325 double minValSrc=-1, maxValSrc=1; 3326 const int kExpNumBinsPerChannel = 1 << 12; 3327 int kExpNumBins = 0; 3328 float lastExpVal = 1.f; 3329 float len, scale_index; 3330 Size size = src.size(); 3331 3332 CV_Assert( (src.type() == CV_32FC1 || src.type() == CV_32FC3) && src.data != dst.data ); 3333 3334 if( sigma_color <= 0 ) 3335 sigma_color = 1; 3336 if( sigma_space <= 0 ) 3337 sigma_space = 1; 3338 3339 double gauss_color_coeff = -0.5/(sigma_color*sigma_color); 3340 double gauss_space_coeff = -0.5/(sigma_space*sigma_space); 3341 3342 if( d <= 0 ) 3343 radius = cvRound(sigma_space*1.5); 3344 else 3345 radius = d/2; 3346 radius = MAX(radius, 1); 3347 d = radius*2 + 1; 3348 // compute the min/max range for the input image (even if multichannel) 3349 3350 minMaxLoc( src.reshape(1), &minValSrc, &maxValSrc ); 3351 if(std::abs(minValSrc - maxValSrc) < FLT_EPSILON) 3352 { 3353 src.copyTo(dst); 3354 return; 3355 } 3356 3357 // temporary copy of the image with borders for easy processing 3358 Mat temp; 3359 copyMakeBorder( src, temp, radius, radius, radius, radius, borderType ); 3360 const double insteadNaNValue = -5. * sigma_color; 3361 patchNaNs( temp, insteadNaNValue ); // this replacement of NaNs makes the assumption that depth values are nonnegative 3362 // TODO: make insteadNaNValue avalible in the outside function interface to control the cases breaking the assumption 3363 // allocate lookup tables 3364 std::vector<float> _space_weight(d*d); 3365 std::vector<int> _space_ofs(d*d); 3366 float* space_weight = &_space_weight[0]; 3367 int* space_ofs = &_space_ofs[0]; 3368 3369 // assign a length which is slightly more than needed 3370 len = (float)(maxValSrc - minValSrc) * cn; 3371 kExpNumBins = kExpNumBinsPerChannel * cn; 3372 std::vector<float> _expLUT(kExpNumBins+2); 3373 float* expLUT = &_expLUT[0]; 3374 3375 scale_index = kExpNumBins/len; 3376 3377 // initialize the exp LUT 3378 for( i = 0; i < kExpNumBins+2; i++ ) 3379 { 3380 if( lastExpVal > 0.f ) 3381 { 3382 double val = i / scale_index; 3383 expLUT[i] = (float)std::exp(val * val * gauss_color_coeff); 3384 lastExpVal = expLUT[i]; 3385 } 3386 else 3387 expLUT[i] = 0.f; 3388 } 3389 3390 // initialize space-related bilateral filter coefficients 3391 for( i = -radius, maxk = 0; i <= radius; i++ ) 3392 for( j = -radius; j <= radius; j++ ) 3393 { 3394 double r = std::sqrt((double)i*i + (double)j*j); 3395 if( r > radius ) 3396 continue; 3397 space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff); 3398 space_ofs[maxk++] = (int)(i*(temp.step/sizeof(float)) + j*cn); 3399 } 3400 3401 // parallel_for usage 3402 3403 BilateralFilter_32f_Invoker body(cn, radius, maxk, space_ofs, temp, dst, scale_index, space_weight, expLUT); 3404 parallel_for_(Range(0, size.height), body, dst.total()/(double)(1<<16)); 3405 } 3406 3407 } 3408 3409 void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d, 3410 double sigmaColor, double sigmaSpace, 3411 int borderType ) 3412 { 3413 _dst.create( _src.size(), _src.type() ); 3414 3415 CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), 3416 ocl_bilateralFilter_8u(_src, _dst, d, sigmaColor, sigmaSpace, borderType)) 3417 3418 Mat src = _src.getMat(), dst = _dst.getMat(); 3419 3420 if( src.depth() == CV_8U ) 3421 bilateralFilter_8u( src, dst, d, sigmaColor, sigmaSpace, borderType ); 3422 else if( src.depth() == CV_32F ) 3423 bilateralFilter_32f( src, dst, d, sigmaColor, sigmaSpace, borderType ); 3424 else 3425 CV_Error( CV_StsUnsupportedFormat, 3426 "Bilateral filtering is only implemented for 8u and 32f images" ); 3427 } 3428 3429 ////////////////////////////////////////////////////////////////////////////////////////// 3430 3431 CV_IMPL void 3432 cvSmooth( const void* srcarr, void* dstarr, int smooth_type, 3433 int param1, int param2, double param3, double param4 ) 3434 { 3435 cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0; 3436 3437 CV_Assert( dst.size() == src.size() && 3438 (smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) ); 3439 3440 if( param2 <= 0 ) 3441 param2 = param1; 3442 3443 if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ) 3444 cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1), 3445 smooth_type == CV_BLUR, cv::BORDER_REPLICATE ); 3446 else if( smooth_type == CV_GAUSSIAN ) 3447 cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE ); 3448 else if( smooth_type == CV_MEDIAN ) 3449 cv::medianBlur( src, dst, param1 ); 3450 else 3451 cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE ); 3452 3453 if( dst.data != dst0.data ) 3454 CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" ); 3455 } 3456 3457 /* End of file. */ 3458